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ZEEMAN’S FILTRATION OF HOMOLOGY
BY
CLINT MCCRORY'

ABSTRACT. Geometric interpretations of Zeeman’s filtrations of the
homology and cohomology of a triangulable space are given, using an
analysis of his spectral sequence for Poincare duality.

The failure of a space to satisfy Poincaré duality is reflected by a topologi-
cally invariant filtration of its homology groups. In some sense, the filtration
of a homology class measures the “degree of freedom” of its cycles. This
filtration was first studied by Zeeman, who defined it using a spectral
sequence for Poincaré duality. (This spectral sequence was also discovered
independently by Cartan and by Fary.) Zeeman started a geometric investi-
gation of the spectral sequence for spaces such as singular algebraic varieties,
for which it reveals a wealth of information by relating their local and global
homology [30]. I was introduced to Zeeman’s spectral sequence by Sullivan
(cf. [25, p. 202] and [26]).

In this paper I show that the Zeeman filtration of a homology class a in a
triangulable space is equal to the largest integer g such that « is represented
by a cycle in the complement of any closed subspace of dimension less than ¢
(Theorem 8.3). If S is a stratification of the space X, then the homology class
a of X has filtration > ¢ if and only if a is represented by a cycle whose
intersection with each stratum S of & has codimension > ¢ in S (Theorem
8.4). This new geometric interpretation of the Zeeman filtration has been
generalized recently by M. Goresky and R. MacPherson to define “inter-
section homology theories” for stratified spaces [9].

Zeeman also defined a filtration of the cohomology of a space. Here I
prove his conjecture that the filtration of a cohomology class 8 of a triangu-
lable space is the smallest integer ¢ such that B is represented by a cocycle
whose support has dimension ¢ (Theorem 8.8). (An incomplete proof of
Zeeman’s conjecture is given in [7].) In another paper [21] I will show that
there is a simple relation between the Zeeman filtration and the Deligne
weight filtration of the rational cohomology of a complex projective variety.
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My proofs use triangulations in an essential way, to define a “coskeleton”
filtration whose associated spectral sequence is isomorphic with Zeeman’s
(Theorem 6.1). This isomorphism is constructed using a remarkable formula
for cap product. (After discovering this formula, I found that it was known to
W. Flexner in 1940 [5].)

A certain amount of technical background on Zeeman’s spectral sequence
is necessary to prove my geometric characterization of the associated
filtration. §1 contains a brief description of the spectral sequence. The second
section is devoted to a proof of its topological invariance which is somewhat
simpler than Zeeman’s. To give some feeling for the spectral sequence, some
of its applications are outlined in §3. (These applications are not new, but it is
interesting that in each case, analysis of the coskeleton spectral sequence
leads to an elementary proof without spectral sequences.) §§4 through 6 are
concerned with the coskeleton spectral sequence and the cap product. §7 is
about the dual cohomology spectral sequence. The geometry of these
algebraic structures is revealed in §8, which contains the main theorems. The
relation of the homology filtration to stratifications is described, and the
cohomology filtration is explained using cycles in a Euclidean neighborhood.
Several examples are given in §9. (I advise the geometrically minded reader to
start with these last two sections.)

I adopt the following conventions. All simplicial complexes are assumed to
be locally finite and finite dimensional. An oriented simplicial complex is one
in which each simplex has been oriented arbitrarily. Then simplicial
homology is defined using oriented simplexes as in [10, Chapter 2]. Homology
is with integer coefficients unless stated otherwise, but any coefficient ring
would do.

This paper is a revised version of part of my doctoral thesis at Brandeis
University [17]. I thank my advisor Jerome Levine, David Stone, and Dennis
Sullivan for all they have taught me. Some helpful criticism of this paper was
given to me by Kari Vilonen.

1. Zeeman’s spectral sequence. In his thesis (1954) Zeeman developed a
theory of double complexes (dihomology) with which he investigated a
relation between homology and cohomology generalizing the Poincaré duality
for manifolds [30]. In this section his Poincaré duality spectral sequence for
finite simplicial complexes is extended to pairs of locally finite complexes.

1.1. Let K be an oriented simplicial complex and let L be a full subcomplex
of K. Let C.(K) be the oriented simplicial chain complex of K, with boundary
map 9. If x € C.(K) the support of x, denoted X, is the smallest subcomplex
of K containing all the simplexes which occur with nonzero coefficient in x.
Let C'(K) = Hom(C.(K), Z) be the cochain complex of K, with coboundary
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8. If J is a subcomplex of K and y € C'(K) then y|J € C'(J) denotes the
restriction of y to J.

Define two differentials d” and d” on the group C.(K) ® C'(K) as follows.
If x € C(K) and y € CYK), then d'(x ®y) =3x®y and d"(x @ y) =
(—17% ® 8y. Let D = D(K, L) be the quotient of C.(K) ® C'(K) by the
subgroup generated by all elements x ® y such that y|x = 0 or y|L = 0. Let
D, , be the image of C,(K) ® CK) in D. The differentials d’ and d” induce
differentials on D. Since d’d” + d”d’ = 0, the bigraded group D = (D, }
together with the two families of homomorphisms

d:D,,— D, d":D,,— D, 44
is a double complex [6, p. 31]. A total grading on D is defined by D, =
2p_g=sDp, lfd=d" + d" thend: D> D;_andd °d =0.

Let 'E and "E be the first and second spectral sequences of the double
complex D [6, p. 86]. The first comes from the p-filtration of D and the
second comes from the g-filtration. Both spectral sequences converge to the
homology H (D) with respect to tbe total differential 4. We will see that the
first spectral sequence 'E collapses. The Zeeman spectral sequence of the pair
(K, L) is the second spectral sequence E = "E.

1.2. Let N (L) be the open stellar neighborhood of L in K. A simplex o of K
is in N(L) if and only if some face of ¢ is in L. Thus K\ N(L) is a
subcomplex of K. Let o denote the subcomplex of K consisting of the faces of
o (including o). Since L is a full subcomplex of K, if ¢ € N(L) then
6 N L = 7 for some face 7 of a.

—_ ]’q’

PROPOSITION. The first spectral sequence ' E collapses to an isomorphism
H,(K,K\ N (L)) = H (D).

ProoF. By [6, p. 87], ’Epz’q = "H,("H,D) where 'H is homology with respect
to d’ and ”“H is homology with respect to d”. Let (o) be the subgroup of
C,(K) generated by the oriented p-simplex o. If D, is the image in D of the
subgroup (o) ® C'(K) of C.(K) ® C'(K), then D) = (6) ® C'(6 N L). Since
o N L =7 forsomer < o, it follows that "H, (D) = C,(K)/C,(K\ N (L))
if g =0, and "H, (D) = 0 if g # 0. Thus 'E,fq = H,(K, K\N(L))ifg=0
and 'E2, = 0if g # 0, so 'E collapses as desired.

1.3. The simplicial complex K can be regarded as a category with objects its
simplexes ¢ and morphisms the face operators ¢ > 7. A stack (or system of
coefficients) S on K is a contravariant functor from K to the category of
abelian groups. A cochain on K with coefficients in S is a function ¢ which
assigns an element of S(o) to each simplex ¢ of K. The cochain ¢ has finite
support if c(o) = 0 for all but a finite number of simplexes 0. If 6 > 7 let S, :
S (1) > S(o) be the corresponding morphism, and let [g, 7] = =1 be the
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incidence number of ¢ and 7 (the coefficient of 7 in the chain do). If ¢ is a
cochain with finite support and coefficients in S let 8¢ be the cochain defined
by éc(a) = 3o, 7]S,,(c(7)). Let C'(K; S) be the resulting chain complex,
with homology H'(K; S).

If J is a subcomplex of K and S is a stack on K, then H'(J; S) is defined
by restricting S to J.

The pth local homology stack h, = h,(K) is defined as follows. If 7 € K
then h,(7) = H,(K, K’\St(1)), where St(1) = {0 € K |o > 7} is the open star
of 7 in K. If ¢ > 7 then St(¢) C St(r) and (h,),,: h,(T) = h,(0) is induced by
the inclusion K\ St(7) C K\ St(0).

PROPOSITION. The second spectral sequence has
”Epz,q = H(L; hp(K))'

PRrROOF. Again ” Epz,q = "H,(H,D). If 7 is an oriented simplex of K (which
is identified with a generator of C'(K)) let D/ be the image in D of the
subgroup C.(K) ® (1) of C.(K) ® C'(K). Then D} = C.(K, K\St(1)) ® (1)
if r € L, and D; = 0 if 7 & L. Therefore 'H, (D) = C%(L; h,(K)) and the
proposition follows.

q

dim K

dim L

FIGURE 1
1.4. In summary the Zeeman spectral sequence E = E (K, L) runs
E2, = HY(L; h(K)) > H,_,(K, K\N (L)),
E/,#0 onlyif0< g <dim(L)andg < p < dim(X),
dE > E, \144r
(See Figure 1.)

2. Topological invariance. We will give a topological description of
Zeeman’s spectral sequence using standard constructions of sheaf theory. In
essentially this form it was first defined by Cartan in 1951 [3] to prove



ZEEMAN'’S FILTRATION OF HOMOLOGY 151

Poincaré duality for manifolds (cf. 3.1 below). A general reference for sheaf
theory is [6].

2.1. Let X be a topological space, with 4 a closed subspace. Let A. be the
differential sheaf of germs of singular chains on X; that is, the sheaf
generated by the presheaf U C(X, X\ U). Let D = D(X, A) = C"C'(A; A)
be the bigraded group of Cech cochains of 4 with compact supports, and
coefficients in the restriction of A. to A (cf. [6, 1I§5]). Let d’: C";’(A;
A )—> C"(A A _1) be induced by the differential A, »A,_,, and let d":
C"(A A)— C" *1(4; A,) be (=1’ times the d1fferent1a1 of the complex
Cx(4; A) Then d’'d” + d”"d’ =0, so D is a double complex with total
differential d = d" + d”. Let 'E and “E be the first and second spectral
sequences of D. The spectral sequence 'E collapses to an isomorphism of the
singular homology group of (X, X\ A) with the homology of D with respect
to d. The Zeeman spectral sequence of the pair (X, A) is the spectral sequence
E="E.

2.2. Let h,(X) be the pth local homology sheaf, or the sheaf generated by the
presheaf U — H,(X, X\ U) (singular homology). Let H 9(4; h,(X)) be the
gth Cech cohomology group with compact supports and coefflclents in the
restriction A,(X)|4.

If either (i) 4 has finite covering dimension a or (ii) 4,(X)|4 = 0 forp > n,
then the Zeeman spectral sequence E = E (X, A) converges, with

. q
E}, = HI(4; h(X)) = H,_ (X, X\ 4),
E/,#0 onlyif0<g<aand0<p<n

(Compare [6, p. 178], [2, IV 2.9, V 8.6].)
2.3. Let (|K|, |L|) be the geometric realization of the simplicial pair (K, L),
with L full in K.

PROPOSITION. There is an isomorphism of spectral sequences
E(K, L) = E(|K], |L|)

Proor. Let (X, A) = (|K|, |L|). We shall define a morphism ¢: D(XK,
L) — D (X, A) of bigraded differential groups which induces an isomorphism
¢?: EXK, L) = EXX, A), so ¢ induces an isomorphism of spectral sequen-
ces.

By definition D (K, L) = C9(L; -, (K)), where ¢,(K) is the stack of local
p-chains of K, ¢,(1) = C,(K, K\ St(r)) Similarly D(X A) = Ci(4; A).

Let ¢, be the presheaf on X defined by ¢, = (X, X\ U)if U N 4 #J and
¢,(U)=0if Un 4 =J. The sheaf generated by ¢, is ¢,(X),, the unique
sheaf on X whose restriction to 4 equals ¢,(X)|4 and whose restriction to
X\ 4 is zero.
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If QU is an open covering of X let N be the nerve of . If AU(K) is the
covering of X by the open sets |St(v)] where v is a vertex of K, then
NU(K) =

The morphism ¢ is the composition

C9(L; ¢(K)) 5 CT7(NUK): )

£ Ca(NU(K); (X)) 5 C2 (45 ¢, (X)),

where f is induced by the canonical coefficient map C »(K, K\S¢(1)) = C,(X,
X \\|St(7)]), g is induced by the coefficient map ¢, = ¢,(X) 4, and h comes
from the fact that C4(4; ¢ ¢,(X)) =lim C(NU; (X ),4), the direct limit
over all open coverings A of X.

Let h, be the local homology sheaf corresponding to ¢ . The morphism ¢?
of E? is the composition

79 (L B(K)) T (VLK) )
L HI (NUK): hy(X),) 5 B3 (43 b (X)),

It is easy to see that f? and g? are isomorphisms. It remains to see that A2 is
an isomorphism.

Let J be a simplicial subdivision of K. If 7 is a g-simplex of K and x € |7|
(the “interior” of 7) then the restriction H,(X, X \St(1)) > H,(X, X\ {x}) is
an isomorphism. Thus if p is a g-simplex of J such that |p| C ||, then the
restriction H,(X, X \|St(r, K)|) - H,(X, X \|St(p, J)|) is an isomorphism. A
standard spectral sequence argument shows that the subdivision map
HY(NU(K); k) — HY(NWUWJ); h ,) is an isomorphism (cf. [30, Lemma 10]).
Since the collection of open coven'ngs of X of the form A(J) for J a
subdivision of K is cofinal in the directed system of open coverings of X, the
map A? is an isomorphism.

2.4. REMARK. Here are two variations of the Zeeman spectral sequence:

(1) For a triple X D A D B with 4 and B closed, there is a spectral
sequence

- q
H? (4, B; h,(X)) =H,_,(X\ B, X\ 4).
(2) For amap f: X — Y there is a spectral sequence
< q
Hi(Y; fh,) =>H,_ (X).
The latter version is done by Zeeman [30, p. 171].

3. Applications. Generalizations of the classical Poincaré duality theorem
can be proved using the spectral sequence E. The following representative
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theorems were all first proved (for triangulable spaces) without spectral
sequences.

3.1. Duality for manifolds. Let X be a topological n-manifold without
boundary. That is, every point of X has a neighborhood homeomorphic with
Euclidean n-space. The orientation sheaf of X is the local singular homology
sheaf 4,. (The manifold X is orientable if and only if A, is the constant sheaf
Z.) Consider the spectral sequence E (X, 4) where 4 is a closed subspace of
X. Since , = 0 for p # n, it follows that E?, = HZ(A; h,) = 0 for p # n, so
E collapses to the Alexander-Lefschetz duality isomorphism

H? (45 h) = H,_,(X, X\ A4).

If X is compact and oriented and 4 = X we obtain the Poincaré duality
isomorphism

H{(X) = H, ,(X)
(cf. [3, exp. 20, p. 3]). A more general duality theorem can be obtained by
using the spectral sequence 2.4(1) above.

3.2. Partial Poincaré duality. For simplicity let us consider finite simplicial
complexes. Let K be a finite n-dimensional complex with 4,(K) = Z. The
complex K is s-regular if C?(K; h,) = 0 for all p and g such thatp — ¢ = s
and p # n. Thus in the spectral sequence E (K) we have that for such p and ¢
the terms E;, are zero for 1 < r < oo, so the edge morphism H"™*(K) -
H,(K) is surjective. Furthermore d,,: E,,— E;,,_,,,, must be zero for
pP—qg=s, S0 Epz,q =.Es for p + g = s — 1. Therefore the edge morphism
H"*Y(K)—> H,_(K) is injective. So if K is both s-regular and (s - 1)-
regular then H" *(K) = H,(K). This result is due to Cech [4, p. 693] and
Wylie [29, p. 187]. (Their result is actually a dual statement which is proved
using the dual of E, defined in §7 below.) Therefore if K is s-regular for all
s < k then H"*(K) = H,(K) for s < k and H" *(K) — H,(K) is surjec-
tive. This result was recently rediscovered and applied to complex projective
varieties by Kaup [13], [14] and Kato [11], [12].

3.3. Let K be a finite simplicial complex and let L be a full subcomplex of
dimension /. Suppose that h,(K)|L =0 for p < /. Then in the spectral
sequence E (K, L) we have Epz’q =0forp = g # [,s0 H'(L; h(K)) = H(K,
K\UN (L)), or

H(L; h(K)) = H_, (K, K\N(L)) forq >,

since both groups are zero for ¢ > /. This isomorphism was discovered
recently by J. Munkres.

4. The coskeleton filtration. Dual cells were used by Poincaré in 1899 [22,
§VII] to prove his duality theorem. The dual skeleton construction for
combinatorial manifolds generalizes to arbitrary simplicial complexes, provi-
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ding a framework for the geometric study of duality.

4.1. Let K’ be the barycentric subdivision of the simplicial complex K. The
vertices of K’ are the barycenters bo of the simplexes ¢ of K, and the
simplexes of K’ are the sets {bay, . . ., ba,) with gy > - - - > o, in K. (We
will always use the decreasing order of simplexes.) Define

K, = {{boy, . . ., bo,) € K’'|dim g < p)
K7 = {(boo, ..., bo,y € K'|dim o, > q},

The subcomplex K, of K’ is just the barycentric subdivision of the pth
skeleton of K. The subcomplex K? of K’ is the gth coskeleton of K. Notice
that K7 has codimension q in K. Clearly

dim(K, N K?) =p — g,
K, = K'\N(K?*'), K?=K\N(K,_,).

4.2. If L is a subcomplex of K let C = C(K’, L’) be the simplicial chain
complex C.(K’, K'\\N(L’)), and let F'C = C.(K', K'\\N(L")). (Note that
KN L' = L') The filtration F'C of C gives rise to a spectral sequence
E’' = E'(K, L) (cf. [6, p. 77]). This coskeleton spectral sequence is a special

case of a spectral sequence of G. Whitehead (the spectral sequence *E of [27,
p- 275]). A priori it runs

E'(K, L): (E');;= H,,;(K', K'\\N (L)),
(E"),; #0 onlyif0<i<dim(K)and0 < i+, < dim(K),
(d): (E")y= (B )isrjmrer-

In §6 it will be shown that E’(K, L), suitably reindexed, is isomorphic with
Zeeman’s spectral sequence E (K, L) (if L is full in K).

5. Cap product. Cech and Whitney [28] observed that the Poincaré duality
isomorphism can be defined using the cap product pairing. Comparison of
this cap product isomorphism with the classical dual cell isomorphism leads
to a remarkable definition of cap product.

5.1. Let K be an oriented simplicial complex. If S = (bwy, ..., bw,) is a
simplex of the barycentric subdivision K’, let &(S) = [wg, w]lw;,
C )t [w_y, @) (Thus &(S)# 0 only if dimw, =dimw,— i for i =
l,...,s)If 6 > 7 are simplexes of K, let D(a, 1) = {bwy, . .., bw,) € K'|o
> w, and w, > 7}, the dual cell to 7 in 0. If ¢ is a p-simplex and 7 is a
g-simplex, define a chain ¢’(¢ ® 1) € C,_,(K") by

ce®1)= > &(S)S.
S eD(o,1)
dim S=p—¢q
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This determines a cap product homomorphism
¢ G (K)® CI(K)—>C,_,(K).
This definition is due to W. Flexner [5].
ProposiTION. If x € C,(K) andy € C9(K), then
W(x®y)=c'(x®y)+ (—1)" c'(x ® &).

Proor. This is a straightforward calculation, using the identity Z[p, o]0,
7] =0(.e. 32 = 0).
It follows that ¢’ induces a homomorphism
C: H,(K)® H(K)— H,_ (K').
5.2. Now let s: H,_ (K)— H,_,(K") be the subdivision isomorphism, and
let C: H,(K)® H'(K)— H,_,(K) be the classical Whitney cap product

C(a ® B) = an B defined using the Alexander-Whitney diagonal
approximation, with sign convention as in [23, p. 254].

PROPOSITION. Flexner’s cap product is homologous with the subdivision of
Whitney’s, i.e. C' = s o C.

ProOOF. Let z € C,(K) be a cycle and let 4. be the chain complex
A; = CP7(K) for i > 0 with differential §, and 4; = 0 for i < 0. Define an
augmentation ¢,: A.—Z by ¢&,(») = y(2) if y € CP(K), ¢,(y) = 0 otherwise
(or g,(y) = {z,y)). Let &: C(K") — Z be the standard augmentation.

Define an acyclic carrier I" (cf. [10, 3.4]) from 4. to C.(K’) as follows. The
carrier I' assigns to the generator 7 the subcomplex I'(t) = {S € K’| for each
vertex bw of S, either w > 7 or 7 > w}, the closed star of b7 in K'.

Define two homomorphisms c;, ¢,: 4. C.(K’) by c,(y) = ¢'(z ® y) and
¢, () = c(z ® y), where c is the chain-level Whitney cap product. By Propo-
sition 5.1, ¢; is a chain map. By [23, p. 253], ¢, is a chain map. Both ¢, and c,
are augmentation preserving and carried by I'. Therefore ¢, and ¢, are chain
homotopic, so ¢’(z ® y) is homologous with ¢(z ® y) for all cocycles y.

5.3. REMARKS. (1) Alternatively, the cap product can be characterized by
several axioms (listed in [24, p. 959]), which can easily be checked for the
Flexner and Whitney products.

(2) It follows from Flexner’s definition that the cap product can be defined
as a homomorphism

H,(K)® H?(L,M)— H,_ (K'’\\N(M’), K'\\N (L))
(cf. [27, p. 265]).

6. An isomorphism of spectral sequences. Cap product defines an
isomorphism from Zeeman’s spectral sequence to the coskeleton spectral
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sequence of G. Whitehead. This gives a powerful geometric interpretation of
Zeeman’s spectral sequence and implies the topological invariance of the
coskeleton spectral sequence.

6.1. Let L be a full subcomplex of K. Consider the cap product
homomorphism ¢’: C.(K)® C'(K)—> C(K')(5.1).If o 2 r thenc'(c ® 7) =
0, and if 7 & L then ¢’(0 ® 7)C K'\\N(L’) for all 0. Therefore ¢’ induces a
homomorphism from D (K, L) (1.1) to C(K’, L’) (4.2). Proposition 5.1 says
that ¢’ = c’d, where d is the total differential on the double complex D (K,
L). Furthermore ¢’ preserves the total degree and maps the second filtration
of D to the filtration of C, ie. ¢'(D,,) C F4(C,_,). Therefore ¢’ induces a
map of spectral sequences

¢:E(K,L)— E'(K, L),
(¢): El,—(E)

r
ar—2q°

THEOREM. The map ¢’ is an isomorphism of spectral sequences. In fact (c’)" is
an isomorphism for all r > 1.

PROOF. It is enough to show that (¢)! is an isomorphism. This follows from
local simplicial geometry. Recall that if 7 € K then St(1) = {0 € K|o > 7} is
the open star of 7 in K. Let St(r) = {w € K|w < o for some ¢ € St(r)} be the
closed star of 7 in K. Let 3St(r) =St(r)\.St(r). Let DI(1) = {<(bwy, - - - , bw,)
€ K’'|lw, > 7} be the dual cone of 7 in K’, and let Lk(7) = {<{bwy, . . ., bw)
€ K'|w, > 7} be the link of v in K’. The subcomplex DI(r) of K’ is the
simplicial cone with base Lk(7) and apex br.

By the proof of Proposition 1.2, the group Ep"q is the direct sum over all
g-simplexes 7 € L of the groups H,(K, K\St(7)), which equal Hp(§(f),
aSt(r)) by excision. On the other hand (E ’)}, p—2g €quals H,_ (K%,
(K\N(L%) u K?*") by definition (cf. [6, p. 77]). Now K7 is the union of
DI(r) for all g-simplexes 7 € K, so K9\ N (L?) is the union of DI(r) for all
g-simplexes 1 € K\ L, and K?*! is the union of Lk(r) for all g-simplexes
T € K. Thus (E ’)}, »—24 is the direct sum of the groups H,_, (DI(7), Lk(7))
over all g-simplexes 7 of L.

The homomorphism (c’)!: E' — (E’)! is induced by the sum of the cap
product maps

(¢)": C,(St(7), 35t (1)) - C,_,(DI(), Lk(7)),
() (x)=c(x® 7).

It remains to show that (¢’)" induces an isomorphism in homology.

Recall the subcomplex D (o, 7) (5.1), the dual cell to 7 in o. Let L(o,
1) = {(bwy, - - ., bw,y € D(o, 7)lw, # 7}, the link cell of 7 in o. The
geometric realizations | D (o, 7)| and |L(a, 7)| are closed piecewise-linear cells.
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(D (o, 7) is the cone from bt on L(o, 7), and L(o, 7) is simplicially isomorphic
with (p)’, where p is the simplex spanned by the vertices of o not in 7.) The
collection of these cells for all o € St(r) is a cell subdivision of (|DI(7)),
|Lk(7)]). If o is a p-simplex and 7 is a g-simplex, then the (p — g)-chain
c’(6 ® 1) defines an orientation for the (p — g)-cell |D (o, 7)|, since the
boundary of ¢’(c ® 7) lies in the boundary of |D (e, 7)| by Proposition 5.1.
Let C.(|DI(7)|, [Lk(7)|) be the resulting oriented cellular chain complex. There
is a commutative triangle of homomorphisms

C,(St(r), 3St(r)) L), C,_4(DI(r), Lk(1))

g h
Cp_q(IDI(D)1, ILk(7) )

where g sends the generator ¢ to the generator |D (s, 7)| and & is the
subdivision map. Since g is a chain isomorphism and k& induces an
isomorphism in homology, (¢’)” induces an isomorphism in homology.

6.3. As a corollary of this theorem, the edge morphisms of the spectral
sequence E (X, A4) can be described using cap product. If 4,(X)|4 = 0 for
p > nand h,(X)|4 # 0 there are edge morphisms

e;: HI(A; h,(X)) = H,_ (X, X\A).
For simplicity we will discuss the case 4 = X.

A normal n-circuit is a triangulable space X together with a class [X] €
H,(X) with the following properties. First, the sheaf A,(X) is constant. It
follows that X is n-dimensional and the stalk h,(X), = H,(X, X\ {x)}) is
infinite cyclic for all x € X. Second, the restriction of [X] to H,(X, X\ {x})
is a generator for all x € X. The class [X] is the orientation class of X. For
example, a normal complex projective variety of pure complex dimension d is
a normal 2d-circuit.

PROPOSITION. If X is a normal n-circuit, then e,(B)=[X1nN B for all
B € HI(X).

This follows immediately from the preceding theorem. It can be generalized
using cap product with sheaf coefficients (cf. [2, V 10]) or by using a
topological normalization process ([17], [13]).

7. The dual spectral sequence. The companion spectral sequence which
converges to cohomology rather than homology was emphasized by Zeeman.
The topological version of this spectral sequence is technically harder to set
up since it involves inverse rather than direct limits.

7.1. Let K be a simplicial complex. The pth local cohomology costack h? (K)
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is defined by 7> H” (K, K\\St(7)). Let L be a full subcomplex of K, and let
H (L; h?(K)) be the homology group of L with coefficients in h?(K)|L,
defmed using possibly infinite sums of simplexes. The Zeeman spectral
sequence E (K, L) runs

E2, = H,(L; *(K)) S H"~7 (K, K\ N ().
It is defined dually to E (K, L). Briefly, let D be the subgroup of C'(K) ®
C.(K) generated by the elements ¢ ® 7 such that 0 > 7 and 7 € L. If
x € CP(K) and y € C(K), let d'(x®y)=06x®y and d"(x ®y) =
(= 1Y% ®dy. These d1fferent1als restrict to D, making it a double complex.
Its second spectral sequence is E (KX, L).

7.2. The coskeleton spectral sequence E'(K, L) is the standard cohomology
spectral sequence arising from the filtration of K’ by its coskeletons, with

(E");,=H™* (K, K'\N(L)).

7.3 THEOREM. There is an isomorphism of spectral sequences
E(K,L) = E'(K, L).

PrOOF. Dualize the proof of Theorem 6.1.

7.4. Now let X be a space and 4 a closed subspace. The topological
Zeeman spectral sequence E (X, 4) can be defined for coefficients in a field A
merely by dualizing the definition of E (X, A). The resulting spectral sequence
is strictly dual to E (X, A), i.e. E" = Hom(E’, A) and d” = Hom(d’, A) for
all r. It runs

B2, = H,(4; k(X)) S H?™1 (X, X\ A),

where H (4; L?(X)) is the gth Cech homology group of 4 with arbitrary
supports and coefficients in the restriction of the pth local cohomology
cosheaf of X. With field coefficients an isomorphism E (K, L) = E(|K|, |L|)
is obtained by dualizing Proposition 2.3.

7.5. Zeeman defined E (X) for arbitrary coefficients as a “semispectral
sequence”, the inverse limit of spectral sequences defined on the nerves of
open coverings, and he proved that E(K)y=E (K]) [30, p. 171]. It follows
that if X is triangulable then E(X) is a spectral sequence, and - that the
spectral sequence of a complex is a topological invariant. Zeeman’s definition
and topological invariance theorem can be extended to pairs (X, 4).

8. Topology of the filtrations. Associated to the spectral sequences E(X)
and E (X) there are filtrations of the homology and cohomology of X which
reflect the interaction of cycles and cocycles with the singularities of X. We
will give geometric interpretations of these filtrations for a triangulable space.



ZEEMAN’S FILTRATION OF HOMOLOGY 159

Our description of the cohomology filtration was conjectured by Zeeman [30,
p- 178]. Our description of the homology filtration is new.

Throughout this section we will assume that X is homeomorphic with the
geometric realization of an n-dimensional simplicial complex K.

8.1. The homology filtration. The spectral sequence E(X) converges to a
topologically invariant filtration

H/(X)=F°H/(X)D -+ D> FH/(X)DF'"'H(X)D -
of the singular homology of X by subgroups. There are isomorphisms
E = FH, (X)/F'""'H,_,(X)

for all p and q. Since X is finite dimensional it follows that F7H (X) = 0 for ¢
sufficiently large. If a € H,(X) is nonzero, the Zeeman filtration fa is the
largest integer ¢ such that « € FIH (X).

8.2. Of the following properties of the filtration, (1), (2), and (3) are due to
Zeeman. Recall that the n-dimensional triangulable space X is a homology
n-manifold if h,(X) = 0 for p < n and h,(X) is locally constant.

PROPOSITION. Let X be an n-dimensional triangulable space, and let a €
H (X)) be nonzero.

(D) fa < n-—s.

(2) If X is a homology n-manifold then fa = n — s.

B3 IfB € HI(X) thenf(a n B) > q.

(4) If X is a normal n-circuit then fa = n — s if and only if there exists
B € H" *(X)with[X]N B = a.

(5) If X is a normal n-circuit then the map

[X]n- :H"(X)—> H(X)

is an isomorphism for all s if and only if a« € H,(X) implies fa = n — s for all
s.

Proor. (1) follows from the fact that Ep%q =0forp >nsos=p—q<n
— g, i.e. ¢ < n — 5. (2) holds since Epz,q = 0 for p # n. (3) is true because
a N B is represented by a cycle in the g-coskeleton |K?| by Flexner’s
definition of cap product (5.1), and the filtration of H,(X) is induced by the
coskeleton filtration of X by Theorem 6.1. One direction of (4) follows from
(1), (3), and Proposition 6.3. The other direction follows easily from Flexner’s
definition. (For details, see [18, p. 289].) (5) follows from (4) and a universal
coefficient argument (see [19, Lemma 8]).

8.3. DEFINITION. The class a € H,(X) has geometric codimension > q if
a € Image[H,(X \4) - H,(X)] for every closed subspace 4 of X with
covering dimension less than q.

For example if X is an annulus in the plane and « € H,(X) is nonzero
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then a has geometric codimension one. But if a line segment connecting the
two boundary components of X is collapsed to a point, then the image of a in
the resulting pinched annulus has geometric codimension zero.

THEOREM. In a triangulable space the Zeeman filtration of a homology class
equals its geometric codimension.

PROOF. Suppose that a € H,(X) has geometric codimension > ¢. Then
a € Im[ H,(X\|K,_,|) > H,(X)]
= Im[ H,(X \|K?|) - H,(X)] = FUH,(X)

by Theorem 6.1. On the other hand suppose that fa > g. Let 4 be a cicsed
subspace of X of dimension < q. We shall show that ra = 0 where r:
H/(X)— H/(X, X\ A4) is the restriction map. The restriction map C";’(X ;
A)— Ci(4; A,|A) of double complexes (2.1) induces a map E(X)—
E (X, A) of spectral sequences. Therefore f(ra) > fa = g, where f(ra) is the
filtration of ra with respect to E (X, A). But since dim 4 < g, this implies
ra = 0.

REMARK. The proof shows that even if X is not triangulable the geometric
codimension of a homology class is greater than or equal to its Zeeman
filtration.

8.4. The choice of a triangulation |K| = X determines a piecewise-linear
structure on X. A piecewise-linear cycle a of X is a simplicial cycle in some
subdivision of K. The support |a| is the union of all the closed simplexes
which occur with nonzero coefficient in a.

THEOREM. Let S be a peicewise-linear stratification of X. The class a €
H.(X) has geometric codimension > q if and only if a is represented by a
piecewise-linear cycle a such that |a| N S has codimension > q in S for all
strata S of &.

PRrOOF. (Compare [18].) If a has geometric codimension > g then
a € Im[ H,(X\|K,_|) > H,(X)] = Im[ H, (]K*) > H,(X)].

Let a be any simplicial cycle in K7 representing a. Since dim(K, N K9) =
p — qforallp and g (4.1) and S C |K,| if dim S = p, it follows that dim(|a|
N S) < p — q. Conversely, suppose that « is represented by a cycle a such
that |a] N S has codimension >gq in S for all strata S € 5. By Akin’s
stratified general position theorem [1, Theorem 6, p. 471], [20] there is an
isotopy of X which moves |a| off the (¢ — 1)-skeleton of K, so

a € Im[ H,(X\|K,_,|) > H, (X)] = Im[H,(]K)) - H (X)] = FH,(X),

so a has geometric codimension > g by Theorem 8.3.
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8.5. The cohomology filtration. The spectral sequence E(X) converges to a
topologically invariant filtration

H*(X)D> -+ D>FH(X)D F,_\H'(X)D -+ DFH (X)D0
of the singular cohomology of X by subgroups. There are isomorphisms
E® = F,H? 9 (X)/F, \H*"(X)
for all p and q. Since X is finite dimensional it follows that F,H*(X) =
H*(X) for q sufficiently large. If 8 € H*(X) the Zeeman filtration f is the
smallest integer ¢ such that 8 € F h*(X).

8.6. Of the following properties of the filtration, (1) and (2) are due to
Zeeman.

PROPOSITION. Let X be an n-dimensional triangulable space, and let § €
H?*(X) be nonzero.

DB <n-s.

(2) If X is a homology n-manifold then f = n — s.

B)IffB< qgthena n B=0foralla € H,(X)withp — q > s.

(4) If X is a normal n-circuit then f8 < n — s if and only if [X] n B = 0.

B IffB < qthen f(B U Y) < qforall y € H(X).
In other words, F,H'(X) is an ideal of the ring H'(X).

ProOF. The proofs of (1) through (4) are dual to their counterparts in
Proposition 8.2. And (5) follows from the fact that f8 < ¢ if and only if
BICX\|K,]) = 0.

8.7. PROPOSITION. Let A be a field. If B € H*(X; A) then f < q if and only
if {a, B> = 0 for all « € H(X; A) with fa > gq.

Proor. The filtration f8 < ¢ if and only if B| |[K?*'| = 0 if and only if
{a, B> = Oforalla € Im[H,(|K*|) > H,(X)), ie.fa > q.

8.8. DEFINITION. The class 8 € H*(X) has geometric dimension < q if
B € Ker[H*(X) —» H*(X\ A4)] for some closed subspace 4 of X with
dimension less than or equal to q.

In other words B is represented by a cocycle whose support has dimension
< g. (Zeeman calls the geometric dimension of B the “codimension” of B.)
For example if X is an annulus in the plane and B € H'(X) is nonzero then
B has geometric dimension one. But B is the pull-back of a class in the
pinched annulus with geometric dimension zero.

THEOREM. In a triangulable space the Zeeman filtration of a cohomology class
equals its geometric dimension.
Proor. If B € H*(X) and fB < g then by Theorem 7.3,
B € Ker[ H* (X) - H* (|K**"|)] = Ker[ H* (X) > H* (X\|K/]) ]
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so 3 has geometric dimension < ¢. For coefficients in a field, the proof that
B has geometric dimension < ¢ implies fB < ¢ is dual to the second part of
the proof of Theorem 8.3. For arbitrary coefficients, there are technical
problems if X cannot be triangulated so that 4 is a subcomplex. These
difficulties are handled by Zeeman in [30, Theorem 4].

REMARK. Zeeman proves filtration < geometric dimension in the cohomol-
ogy of any compact Hausdorff space.

8.9. The following result was motivated by the work of G. L. Gordon [7],
[8]. Again fix a piecewise-linear structure on X.

THEOREM. Let X be a compact subpolyhedron of R*. The class B € H*(X)
has geometric dimension < q if and only if the Alexander-Lefschetz dual class
a € H,_, (R*, R¥\ X) is represented by a piecewise-linear cycle a such that
dim(ja| N X) < q.

PROOF. Let J be a triangulation of R* by linear simplexes such that X is
triangulated by a full subcomplex K. Let N be the closed stellar neighborhood
of X in R* with respect to the barycentric subdivision J’, let dN be the
boundary of N, and let 7: N - X be the canonical simplicial retraction. (If
o € J with |6| N X #J then |o| N X = |7| for some 7 € K. Then 7(bo) =
br, and 7 is linear on the simplexes of J' in N.)

Now B has geometric dimension < g if and only if 8 € Ker[ H°(X) —
H*|K*Y] = Im[H*(X, |K7*']) > H*(X)]. Consider the following
commutative diagram of isomorphisms:

H* (X, |K?*Y) = H*(N, 7 |K9*" )= H,_ (N\ 7~ |K7*!|, (N\7 7' [K*]) NON)

\) !
H (X) = H*(N) H,_,(N,dN)

n

Since
H,_ (N\77'|K ), (N\7 7 '|K7 ) noN)
=H, (77K, 7" "|K|N3N)

it follows that B has geometric codimension < g if and only if
o € Im[ H,_,(n7'|K,], 7~ '|K,|n8N) —> H,_ (N, aN) |

Since 7~ '|K,| N X = |K,], this means that a is represented by a cycle a such
that [a| N X C |K,|. )

8.10. REMARK. In fact the Zeeman cohomology spectral sequence E (X) is
isomorphic with the Leray homology spectral sequence of the map «: (N,
ON) > X (cf. [2, IV 6.1]). Similarly E(X) is isomorphic with the Leray
cohomology spectral sequence of .
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9. Examples. The following examples illustrate the spectral sequences E (X)
and E (X) and the Zeeman filtrations.

9.1. The pinched torus. Let X be obtained by collapsing a meridian on the
torus to a point: X = S'X S'/{¢} X S!, t € S'. The space X is
homeomorphic with the curve x> + y* = xyz in the complex projective plane,
which has one singular point x = y = 0. The homology of X is Hy(X) = Z,
H\(X) = Z, Hy(X) = Z. The sheaf h, is 0, and the stalk of A, is 0 except at
the singular point, where it is Z. Similarly the stalk of h, is Z except at the
singular point, where it is Z @ Z. Therefore the nonzero entries in the E?
term are Ely = H'X; h) =Z, E}, = HX; hy) = Z, and E}, = HXX;
h)) = Z. (Figure 2.) It follows that d>=0 and E?> = E®, so Hy(X) =
F?Hy(X), H\(X) = F°H(X), and Hy(X) = F°H,(X). Thus a generator a €
H,(X) has filtration 0 instead of filtration 1 as it would in a 2-manifold. This
reflects the fact that any cycle representing a must pass through the singular
point of X. The dual spectral sequence E shows that a generator 8 € H'(X)
has filtration 0, since B is represented by a cocycle which is supported by the
singular point.

H? Z

H! 0 0

FIGURE 2

9.2. Isolated singularities. Zeeman describes two examples in detail: the
cone on a closed manifold [30, p. 160] and the quadric cone in complex
projective 3-space [30, p. 181]. The former shows that a contractible space can
have a nontrivial spectral sequence, and the latter shows that E and E are not
strictly dual with integer coefficients.

In general, let X be a compact n-dimensional triangulable space for which
there exists a finite subset ¥ such that h|(X\Z) =0 for all p < n and
h,|(X\\Z) = Z. Then the differentials and edge morphisms of E(X) give a
long exact sequence

> HO(X; hy_yuy) SHO(X; hy) SH,_ (X) > HO(X; hoog) = -

(cf. [13]). It follows that if the duality map e? is an isomorphism for all ¢ then
X is in fact a homology manifold (cf. [19, Lemma 3]). Let K be a trian-
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gulation of X with the points of = as vertices and with St(v) N St(w) =& for
distinct vertices v and w of =. Let W= X\ U ,x|St(v)|. Then W is an
oriented homology n-manifold with boundary, and the long exact sequence
above is isomorphic with the long exact homology sequence of the pair (W,
ow).

9.3. The Cartan umbrella (cf. [16, p. 204]). Let X be the surface wx? = yz?2
in complex projective 3-space. The singular set = of X is the curve x = z = 0.
Letp =[1,0,0,0] and ¢ = [0, O, 1, 0]. The points p and q are pinch points of
X. Then {X\Z, Z\{p, 9}, {P}, {q}} is a minimal Whitney stratification of
X. The local homology sheaves of X have the following stalks:

he h, hy, hy h

X\2 0 o 0 0 z
S\{pq) 0 0 0 Z Z®Z

{p}or{q} O O Z/2 0 y/

The sheaf h; is not constant-the generators of the stalk Z are flipped as one
runs around an essential loop in 2\ {p, ¢}. The homology of X is Z, 0,
Z®Z, 0, Z. The only possible nonzero differential of E is d*: HYX;
hy) - H*(X; h,) (Figure 3). The definition of the coskeleton sequence E’

0 YA N/

0 0 /
zp'e

0 0 0 Z

Z/2

v v v w vk
Z

0 Z&Z o Y/

FIGURE 3

shows that d*(1, 0) = 1 = d%(0, 1). Therefore the nonzero terms of E® are
EN=121Z E3=LZO®L, E3;=1Z, and E;; =Z/2. Hence some classes in
H,(X) have filtration zero. More precisely, let a be the image of the
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orientation class of the curve x = z = 0 (the singular set of X), and let 8 be
the image of the orientation class of the curve w = y = 0. Then each class
y € H,(X) can be written uniquely as y = ma + nf8, m, n €Z, and y has
filtration zero if and only if m is odd. If y has filtration zero, then the support
of any cycle representing y must contain the points p and g. For example, the
first Chern homology class ¢,(X) (as constructed by MacPherson [15]) is
Sa — B, which has filtration zero.
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