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ABSTRACT. A definition of PL transversality is given, using the order-
reversing duality on partially ordered sets. David Stone’s theory of stratified
polyhedra is thereby simplified; in particular, the symmetry of blocktransver-
sality is proved. Also, polyhedra satisfying Poincar€ duality are characterized
geometrically.

The purpose of this paper is to develop a simple theory of transversality for
polyhedra in piecewise linear manifolds. Our main tool is a canonical geometric
duality for “structured” cone complexes. Cone complexes have also been used
by M. Cohen [7] and E. Akin [2] to study simplicial maps. The rigid geometry
provided by a structured cone complex on a polyhedron is analogous to a Rie-
mannian metric on a smooth manifold (as manifested by its relation to duality
and transversality). In fact, structured cone complexes are equivalent to van
Kampen’s combinatorial “star complexes” [10] (1929).

PL transversality has been studied by M. A. Armstrong and E. C. Zeeman
([4],[3D), C. P. Rourke and B. J. Sanderson ([15], [17], [18]), and D. Stone
[22]. The stumbling block of Stone’s stratified blocktransversality theory was
the question of whether transversality of polyhedra in a manifold is symmetric.
Furthermore, symmetry of blocktransversality easily implies that Stone’s defini-
tion is equivalent to Rourke and Sanderson’s “mocktransversality” for polyhedra—
yielding a unified and versatile theory.

Our analysis of transversality stems from its close relation to Poincaré
duality—in fact our definition echoes Lefschetz’ classical (1930) definition of
transversality of cycles in a combinatorial manifold [12]. If X is a closed PL
manifold, and C is a cell complex on X, a choice of cone structures for the cells
of C determines a dual cell complex C*. We define polyhedra P and Q to be
transverse in X if there is such a structured cell complex C on X with P a sub-
complex of C and Q a subcomplex of C*. This definition is symmetric, and our
main result is that it is equivalent to Stone’s definition.
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In §1, we discuss the geometry of partially ordered sets, which are in effect
“abstract” cone complexes. §2 sets out the theory of cone complexes, struc-
tures, and geometric duality. In §3, we analyze Stone’s PL stratifications in
terms of cone complexes. §4 contains our definition of transversality and the
proof that it is equivalent te Stone’s definition. Finally, in §5, we consider ques-
tions of transversality when the ambient space X is not a manifold, where the
“obstruction” to transversality is seen to be due precisely to the failure of Poin-
caré duality in X.

I would like to thank David Stone not only for teaching me about stratifi-
cations, but also for the chats which contained the seeds of many of the ideas
presented here.

1. Preliminaries. A polyhedron is a topological space with a maximal fam-
ily of piecewise-linearly related (locally finite) triangulations. By a triangulation
of a polyhedron we will always mean a triangulation from this family (in other
words, a PL triangulation). A homeomorphism X = Y of polyhedra will always
mean a PL homeomorphism.

If X is a polyhedron and x € X, Ik(x; X) denotes the link of x in any tri-
angulation of X with x a vertex. lk(x; X) is well defined up to PL homeomor-
phism, and a neighborhood of x in X (st(x; X), the star of x) is homeomorphic to
the cone on lk(x; X). Thus polyhedra are locally conical, a fact which can be
used as their definition [19].

As a combinatorial prelude to our discussion of the geometry of polyhedra,
we discuss products, joins, and duality for partially ordered sets, simplifying van
Kampen’s theory of star complexes ([10], [20, §661]).

Recall that an (abstract) simplicial complex K is a set of nonempty finite
subsets of a given set V(K) (the set of vertexes of K) such that {v}€ K for all v
€ V(K), and if 0 €K and 7 C 0, then 7 € K. The elements of K are called its
simplexes, and if T C o one says 7 is a face of 0. (We will always assume that K
is locally finite: if T € K, there are only finitely many ¢ €K with 1 C 0)) If K
and L are simplicial complexes, a simplicial map f: K — L is a function V(f):
V(K) — V(L) such that if ¢ € K, then V(f) (0) € L. Simplicial complexes and
simplicial maps form a category, which we will denote by (S).

There is a functor from (S) to the category of polyhedra and piecewise
linear maps which assigns to a simplicial complex K (or a simplicial map f) its
geometric realization |K | (or |f1). |K| can be defined as a union of standard
euclidean simplexes, with identifications according to the face relation in K.

A poset (partially ordered set) (4, <) is a set A with a reflexive, transitive,
antisymmetric relation <. That is to say, if @, b, ¢ € 4,
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(i) a<a,

(i) @ <b and b <c implies a < ¢, and

(iii) a <b and b <a impliesa = b.

Ifa < b and a # b, one writes ¢ <b. (We will always assume that A4 is locally
finite: if a € A, there are only finitely many b € 4 witha <b or b <a.) If
(4, <) and (B, <) are posets, a function f: A — B is isotone (order preserving)
ifa <b in A implies fa) <f(b) in B. Partially ordered sets and order preserving
functions form a category (P). (For further discussion, see [6, Chapter I].)

There are canonical functors i: (S) — (P) and 7: (P) — (S) defined as fol-
lows: i(K) = (K, ©), the set K with its face relation. i can be thought of as an
inclusion of categories, but (S) is not a full subcategory of (P). (Not all functions
between simplicial complexes which preserve the face relation arise from simpli-
cial maps.)

(4, <) is the nerve of (4, <). The vertexes of n(4, <) are the elements of
A, and its simplexes are all finite subsets of 4 of the form {a,, a,,* * *, 4;} with
ay <a; <-+-++<a;. Sucha set will be written (zy, ,, * * *, @;) to emphasize
that it is ordered.

Neither i nor 7 is an equivalence of categories. For example, if 4 = {a, b}
with a < b, there is no complex K with i(K) = (4, <). On the other hand, if K
is the boundary of the standard 2-simplex, there is no (4, <) with n(4, <) = K.
Notice, however, that if K is any simplicial complex, ni(K) = K', the first derived
complex of K. This is the geometrical explanation for the close relation between
(S) and (P).

From now on, we will omit the ordering from our notation, and write 4 =
“, <).

The most striking property of posets not shared by simplicial complexes is
the canonical duality between a poset 4 and the same set with the reverse order-
ing, which we will denote A. Clearly 4 = A , and n(/’f) = n(A4). The geometric
significance of this duality will unfold in §2—for the moment we will be content
with its formal properties.

If A and B are posets, their product A x B is the set of ordered pairs
(@ b), a€A,bEB,with (2, b,) < (a,,b,) ifa; <b, and a, <b,. There
is no natural definition of the product of two simplicial complexes—one must or-
der the vertexes. However, n(4) and n(B) are simplicial complexes with vertex
orderings (total on each simplex) inherited from 4 and B, and if we form the
simplicial complex n(4)x n(B) using these orderings, n(4) x n(B) = n(4 x B).
Thus the product of posets corresponds to the usual geometric notion.

PROPOSITION 1.1. If A and B are partially ordered sets, (A x Bf= A x B.
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The proof is trivial.

The join of two finite posets A4 and B can be defined in two ways:

(i) A #* B is the disjoint union of 4 and B with their given partial orders,
and witha > b for alla € 4, b € B.

(i) (van Kampen) A ®B is the disjoint union of A4, 4 x B, and B, with
the partial order given by the orders on these sets, plus the condition that ; <
(@, b) if a; <a,,and b; < (g b,) ifb) <D,.

Recall that the join K * L of two finite simplicial complexes has for its
vertex set the disjoint union of V(K) and V(L), with simplexes 0, 7,and 0 * 7 =
oUT, 6 €K, E€L. The geometric realization |K = L | is the space of all line
segments from |K| to |L |.

Clearly i(K * L) = i(K) ® i(L), which is a subdivision of i(K) * i(L). On
the other hand, n(4 * B) = n(4) * n(B), which has n(4) & n(B) as a subdivision.

If A is a finite poset, the cone on A is the #join of a point with 4, ¢4 =
{c} * A. The following result is due to van Kampen [10, p. 12].

ProposITION 1.2. Let A and B be finite posets. There is a canonical
isomorphism c(A) x ¢(B) = c(4 * B)".

ProOF. The elements of c(ﬁ) X c(ﬁ) are of four types:

M o),

) (@ 0),acA,

(3) (c, b), bE B,

4) (@, b),a€A,bEB.
These correspond to the four types of elements in ¢(4 * B :

MDe,

(Q)a€A4,

() bEB,

@) (@, b),a€A,bEB.
It is easy to check that this correspondence is order preserving. Q.E.D.

Several standard polyhedral facts (which we will need subsequently) are
corollaries of Proposition 1.2. If X is a compact polyhedron, let cX denote the
cone on X.

COROLLARY 1.3. If X and Y are compact polyhedra, cX x cY = c¢(X * Y),
and X # Y = (X x cY) U (cX x Y), where the union is along X x Y.
COROLLARY 1.4. If X and Y are polyhedra, x € X, andy €Y,
K@ p); XxY)=lk(; X) *1k(y; V).
Let I denote the unit interval {x ER, 0 <x < 1}.
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CorROLLARY 1.5. If X is a polyhedron, and x € X, k((x, 0); X x I) =
c(Ik(x; X))

2. Cone complexes. We adopt the following useful notation, due to Stall-
ings [21, §1.6]. If S is a set of sets, and 4 is a set, 4 v/~ S means 4 is a union
of elements of S.

DEFINITION. A cone complex C on a polyhedron X is a locally finite cov-
ering of X by compact subpolyhedra, together with a subpolyhedron da of each
element a of C such that

(i) foreach @ € C,da+/ C,

(ii) if « and B are distinct elements of C, an E is empty, where a

= o\da,

(iii) for each « in C, there is a (PL) homeomorphism a = ¢(dc) rel da.

We will write X = | C |, and refer to the elements of C simply as the cones
of C.

Note that (i) and (ii) imply that, if « and 8 are cones of C, thena N g~/ C.
It should also be emphasized that da is not necessarily the topological boundary
of a.

ExampPLES. (1) A triangulation, or more generally a cellulation of a poly-
hedron, is a cone complex. We will suppress triangulating homeomorphisms, and
think of a triangulation K of X as a collection of closed simplexes covering X. By
a cell complex, we will always mean a cone complex in which each cone a is a
ball, with da its boundary sphere.

(2) The classical “dual complex™ to a triangulation K of X is a cone com-
plex, comprising the “dual cones” o* to simplexes o of K, where o* =
N, <, st (@, K') in the first derived complex XK', where 7 denotes the barycenter
of 7. S SR

All of the terminology of cell complexes generalizes to cone complexes.
Let C be a cone complex on X. If a, § are cones of C, and a C da, we say a is a
(proper) face of B, and write a < 8. The height of a cone a of C is the maximum
integer 7 such that there is a sequence ay <@y <++*<e;=ain C. Thei-
skeleton C; of C consists of all cones of C of height <i. C; covers an i-dimen-
sional subpolyhedron of X (by induction on i. Note that height « = 0 ¢ da=&
© o is a point). Dually, the depth of a cone a of C is the maximum integer j such
that there is a sequence of cones & = &y <@, <**+ <a; in C. The cones of
depth 0 are called principal.

A subcomplex D C C is a subset such that « < B in C and 8 € D implies a
€ D. If A C X is a union of cones of C, we write 4 v/ C, and if A4 is the
union of all the cones of the subcomplex D we write |D| = A4, or D= C|A4.
(We will say that A4 is a subcomplex of C, when no confusion can occur.) A
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subdivision B of C is a cone complex with | B| = | C| such that @ € C implies
ay B.

Cone complexes were introduced by Akin [2], following ideas of Cohen
[7]. He also introduced the concept of “structuring” a cone complex to study
its geometry.

Let C be a cone complex on X. If a is a cone of C, a homeomorphism
fo: @ = c(da)rel da is called a structure for a. The apex (cone point) a of & in
this structure is f; '(c). A structure for C is a choice of structures for each cone
in C. By Alexander’s trick any two structures for a cone a of C are isotopic,
keeping da fixed. Furthermore, this isotopy can be extended to an ambient
isotopy of X = | C | by conewise extension over each (structured) cone g with
a < f. Thus a structure for C is “unique up to isotopy.” However, we will be
concerned with the rigid geometry defined by a fixed structure.

ExampLES. (1) A triangulation has a canonical “barycentric” structure, for
a simplex o is the join of its barycenter ¢ with its boundary.

(2) An arbitrary cell complex does not have a preferred structure. By a
structured cell complex, we will mean a cell complex structured as a cone com-
plex. Note that by our convention above the cone points must lie in the in-
teriors of the cells.

(3) If K is a triangulation, the dual cone complex K* has a canonical
structure, for the dual cone o* is g * link'(0), where link'(0) = {{zp,***, 7,
€K', 0<r7y}.

(4) Let 4 be a (locally finite) poset, and let X = [n(4) |. Define a cone
complex C on X with one cone a for each elementa €4, a = In{b € A4,

b <a}|. Not only is C clearly a cone complex, but C also has a canonical
structure, since n{b € 4, b <a} is a simplicial cone with apex a. The following
proposition says that structured cone complexes are precisely such “geometric
realizations” of posets.

PrROPOSITION 2.1. A structured cone complex C on X has a canonical de-
rived subdivision C', which is a triangulation of X with vertexes the apexes of
cones of C. As an abstract simplicial complex, C' is the nerve of poset C (with
its face ordering).

ProoF. C' is constructed by induction up the skeletons of C. If & € C
has height 0, « is a point, so « is a vertex of C'. If & has positive height, let
foi 0= () (rel d) be the given structure for . Let C'|a be the subdivision
induced by f; ! from ¢ * C'| da, the simplicial cone on the inductively defined
subdivision of da. Thus the simplexes in C’ are of the form (g, -, a,),
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oy <--+<q;in C,so abstractly, C' is just the nerve of C.
Duality.

THEOREM 2.2. Let C be a structured cone complex on X. There is a can-
onical dual structured cone complex C* on X, with (C*)* = C, and (C*)' = C'.
There is a bijection a + a* between the cones of C and C* such that a < §
B* < a*, g* = a,and |st (&, C')| is homeomorphic to & x a*.

ProoF. The existence of C* is a formal consequence of Proposition 2.1

and §1. In concrete terms, C* is constructed from C just as is the dual complex
to a triangulation. If a € C, « is the union of all simplexes {&,***, ¢;) in C’
with @; < a. o* is the union of all simplexes (@g,**+,ap)in C' witha <o.
Thus C' | a* is the simplicial join of & with Ik'(e) = {€gp,***, &€ C, a <},
s0 a* is a structured cone. d(a*) = |IK'(@)| = Ua<ﬁ,ﬁ*, so d(a*) is a union of
cones of C*. Clearly a* N g* = Ua,s<y7* 50 (@9, N B*)°= g if a* # p*.

It remains to show Ist(a, C')| = a x a*. Now

Ist(@, C)| =la * k(@ C)l=la*(C|3a) * '@
= ca * [IK'(@)]) = c(da) x c|1k'(@)| by Corollary 1.4
=a x a*.

ExAMPLE. Let K be a triangulation of the closed n-manifold M. Define
amap M — R by f(¢) = dim o for 0 € K, and let f be linear on each
simplex of K'. Then f is a PL Morse function [11], and the critical points of f
are the barycenters of simplexes of K. The handle decomposition of M associ-
ated to f is just K thickened up. The dual Morse function —f (got by “turning
M upside-down”) has as its handle decomposition a thickening of K*, the classi-
cal dual cell complex to K. More generally, if C is a structured cone complex on
a polyhedron X, we can define a “Morse function” f: X— R by f(a) = height «
for each cone « of C, and extend f conically over the cones of C (by induction
on their height) using the given structure. (Thus if o is a simplex of C’, the
values of f on the vertexes of ¢ are distinct. Such functions do enjoy some of
the algebraic properties of a classical Morse function—cf. [5].) The cones of C
can be recovered.as the “descending polyhedra™ of the critical points, and the
linear cone structures can be “pulled back” from R. In this way, the dual
Morse function g = —f is associated with the dual structured cone complex C*.

Products.

ProrosiTioN 2.3. If Cis a cone complex on X and D is a cone complex
onY, then Cx D={axpB,a€ C, BE D} is a cone complex on X x Y. Struc-
tures for C and D determine a structure for C x D, and (C x D)* = C* x D*.
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ProoOF. This follows immediately from Propositions 2.1 and 1.1

Restriction. Following Akin [2], we now analyze the restriction of a cone
complex to a subpolyhedron. Let C be a cone complex on X and let 4 be a sub-

polyhedron of X. C induces a cone complex on A if, for each cone a in C such
o
that a N 4 # &,

aNA=c@axn A4) rel(da N A4).

Then we define C|4 = {aN 4, a€ Cand @ N A #Z}, with (@ N 4) =
(0a) N A.

Suppose further that C is structured, and the structure on the cone « re-
stricts to a structure on a N A for each a with @ N 4 # @. (Thatis, if f: a =
¢ * (3a) rel da is the given structure on @, fyla N da: a N da= ¢ * (da N A4)
rel da N A.) Then we say that C induces a structured cone complex on 4. (See
[2] for a discussion of extending structures.)

LeMMA 24. The structured cone complex C on X induces a structured
cone complex on the subpolyhedron A C X if and only if A is a full subcomplex
of C.

ProoF. Induction on the dimension of A (i.e., the height of C|A4) yields
the result easily.

ProPOSITION 2.5. Let C be a structured cone complex on X. If C induces
a structured cone complex on A C X, then so does C*, and (C14)* = C*|A.

Proor. Since (C*)' = C', Lemma 2.4 implies that C induces a structured
cone complex on A if and only if C* does. Clearly, (C 14)' = C'l4, so if
a N A+ @, the dual of aN 4 in (C|A)* is covered by the simplexes (g,,** *,
a;) in C' lying in A with & <, and so equals a* N 4. Q.ED.

Subdivision. Let C be a cone complex, and D a subcomplex. D isa full
subcomplex of C if &, € D and ¥ € C, with e, § < v, implies there exists § € D
with @, § <& <. (In other words, each ¥ € C has at most one maximal face
in D. This is equivalent to the usual definition when C and D are simplicial com-
plexes.) A subdivision B of C is a full subdivision if every subcomplex of C is
subdivided by a full subcomplex of B.

LEMMA 2.6. Any structured cone complex C has a structured subdivision
B such that
() B is a full subdivision of C,
(ii) B* is a full subdivision of C*,
(i) B' is a full subdivision of C'.
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ProoF. Recall that if 4 is a poset, the set {c¢} @4 is defined with a partial
ordering so that n({c} ® A) is a subdivision of n(c4) (§1). Thus, by the equiv-
alence of structured cone complexes and posets (Proposition 2.1), if A is a struc-
tured cone complex we can form a structured cone complex c ® A, with ¢ ® A|
=clAl

We will prove the lemma by induction on the height of C, using the follow-
ing observation: If A is a cone complex and D is a full subcomplex, then ¢ ®D
is a full subcomplex of c ®A.

If height C = 0, the lemma is trivial. So suppose height C = n, and the
lemma is true for complexes of height < n. Thus we assume B |C,,_ | has been
defined, so we just need to define Bl+y for each principal cone v of C, given B|d7y.
Let K = (y ®(B13y))', a triangulation of vy (depending on the given structure of
7). Let the cones of B|y be the following sets (not the cones of y ® (B|97)):

) Ist@;K)l,

(@) (@ *8) NIk(y; K)I, for each B € Blay,

(3) @ *B8)— Ist(x; K)|, for each B € B2y,

(4) all g€ Bloy.

We now define the cone structures for the sets (1)—(3), The cone (1) is homeo-
morphic to 7y by “pseudo-radial projection,” which sends the cones (2) of its
boundary to the corresponding cones (4) of B|dy. The cones (1) and (2) are
structured by these identifications. Now each cone (3) is canonically homeo-
morphic to § x I, being the stellar neighborhood of g in y * 8. (Thus all the
cones (3) form a collar of dy in v.) Let the structure on a cone (3) correspond
to the product of the given structure on § with the usual structure 7 = {}A} *
{0, 1}. Now Bl is clearly a structured cone complex subdivision of Cly (i.e.,
v and its faces).

It remains to verify (i), (ii), (iii) of the lemma for Bly, Cly (which imply
(i), (i), (iii) for B, C).

(i) We must show that each subcomplex D of C|v intersects each cone a
of B |7y in at most one maximal face of a. This is clear for & of type (1) or (2),
since a C :;, and it is true for type (4) by inductive hypothesis. If ais of type
(3), a N 3y = B € Bl 3y, so since D intersects B in at most one maximal face, D
intersects & in at most one maximal face.

(i) First note that if & € Blv, each cone of C*|y intersects « in a subcone of

o (with respect to the given structure on a). This is clear for a of type (1), (2), or (4);
and it is true for type (3) because C*|v respects the canonical collar of 7 in 7v.
Thus C* induces a cone complex C*|a on a. As nonstructured cone complexes,
C*la=a ® (C*|0a). Now to show (ii), it suffices to show that B*|a is a full sub-
division of C*|a for each principal cone a € B| v (ie., a is type (1) or (3)).
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(This is because of Proposition 2.5.) This condition holds for (1) because C*|a
corresponds to C*|y =y * (C*|9y) under the homeomorphism & =y, B*|a
corresponds to y ® (B*|97), and B* |3y is a full subdivision of C*|dy by induc-
tive hypothesis. (Here we apply our preliminary observation that coning pre-
serves fullness.) The condition holds for type (3) by induction on height a, since
B*la=a®(B*|0a) and C*|a = a ®(C*|da) (as nonstructured complexes).

(iii) The argument is the same as for (ii)—just replace B*, C* by B', C'.

ReMARK. The inductive construction of the subdivision B is canonical,
given the structure on C.

Intrinsic dimension. To analyze how the cones of a complex intersect the
“singularities” of the underlying polyhedron, we invoke the theory of intrinsic
dimension, developed by Armstrong [3]. For a complete discussion of intrinsic
dimension, with geometric applications, see [1].

If x is a point in the subpolyhedron 4 of X, the intrinsic dimension
d(x; X, A) of (X, A) at x is the largest integer i such that there is a (PL) triangu-
lation of (X, A) with x in the interior of an i-simplex. Equivalently, d(x; X, 4)
is the largest integer i such that Ik (x; X, A) is an i-fold suspension. d(x; X, &)
= d(x; X) is the intrinsic dimension of X at x. Clearly d(x; X, 4) < d(x; X),
and d(x; X, A) < d(x; A).

THEOREM 2.7. Let C be a cone complex on X, and let o € C. Then if x
€a,

(i) dx; X, o) = d(x; @),
(i) d(x; X) <d(x; a) + depth a.

. REMARKS. Property (i) says that « is locally unknotted in X, in the sense
of Akin [1]. Combining (i) and (ii), we have d(x; &) < d(x; X) < d(x; @) +
depth a for all x € a.

In fact, this theorem is true for Akin’s “general complexes™ [2], in which
property (iii) of a cone complex (a = ¢(da) rel da) is weakened to da is collared
in a. This is because each facet of a general complex has a little “transverse star.”
This has been exploited by Cohen and Sullivan [9] for manifold complexes, and
clarified by Rourke and Sanderson [18].

ProOF. Choose a structure for C. By the proof of Theorem 2.2, if x € @ ,
a€(C, ’

*) k(x; X, @) = (0(a*) * k(x; ), kix; o).

(i) We have d(x; X, a) < d(x; &) a priori, so we must show d(x; X, a) =
d(x; a). By the second characterization of intrinsic dimension, this says
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Ik (x; X, &) desuspends at least as much as 1k (x; &), which is true by ().
(i) We must show that Ik (x; X) desuspends at most ¢ more times than
Ik (x; @), where g = depth a.. This follows from (%) by results of Morton. More pre-

cisely, suppose 1k(x; X) =S¥ * 4 and k(x; &) = S’ * B, where 4 and B are not sus-
pensions. Then by (%),

Sk %A = 3(a*) * S' * B.
Write 3(a*) = ™ * C, where C is not a suspension. Then
Sk *Agsm+l+1 *B*C-

Now by [14, Theorem 1] ,k=m+ 1 + 1. Butm <dimd(a*)=q — 1,s0 k<l +q.
Q.E.D.
The intrinsic i-skeleton of a polyhedron X is {x € X, d(x; X) < i}, or the inter-
section of the i-skeletons of all triangulations of X. The intrinsic i-stratum
of X is {x € X; d(x; X) = i}. (ii) says that if ¢ = depth a, the intersection of
a with the intrinsic i-skeleton of X contains the intrinsic (i — g)-skeleton of a.
DerFINITION. The cone complex C on X is transverse if for each a € C,
d(x; X) = d(x; a) + depth a for all x € a.

CorOLLARY 2.8. Let C be a structured cone complex. C is transverse if
and only if C* is a cell complex.

ProOF. By the proof of Theorem 2.7, d(x; X) = d(x; @) + depth « if and
only if d(a*) is a sphere, i.e., a* is a cell.

LemMMA 2.9. A4 cone complex is a cell complex if and only if its principal
cones are cells.

ProOF. A cone (@, dc) is a cell if and only if it is a manifold with boundary.
But if $<a, and depth 8= depth & + 1, a is a manifold implies § is, since da is
collared in a (apply Corollary 1.5). Thus if the principal cones of a complex are
cells, all its cones are cells, by induction on their depth.

PrOPOSITION 2.10. Let C be a cone complex on X. C is a cell complex if and
only if for each cone a, a is contained in an intrinsic stratum of X.

ProOF. If is a principal cone of C, d(x; @) = d(x; X) forx € @, so if a lies
in an intrinsic stratum, o is a cell. Thus C is a cell complex by Lemma 2.9. Con-
versely, if C is a cell complex, and « € C, for each pair of points x, ¥ €& there
is an isotopy of a which takes x to y, keeping da fixed. This isotopy extends
conically over each § > a to an ambient isotopy of X, so d(x; X) = d(y; X).
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ReEMARK. Our original approach to cone complexes and duality was
through “cone coordinates,” using cone rays in each cone. (Cone coordinates
can be expressed in terms of barycentric coordinates in the derived complex.)
Such a tack is plagued by “standard mistakes,” and conceals the combinatorial
simplicity of cone complexes. However, it does seem to have a certain geomet-
rical affinity with the smooth category (smooth manifolds and Thom’s stratified
sets).

3. Stratified polyhedra. In this section we discuss the relation between
cone complexes and Stone’s PL stratification theory. This not only enhances
the geometry of cone complexes, but also sheds some light on stratifications.
First we summarize the definition of a stratified polyhedron—for a complete dis-
cussion, see Stone’s notes [22].

Let X be a polyhedron. A filtration X=X, DX, _; D+ DX, by
subpolyhedra is called a variety of X if for each point x in X, say x € X; — X;_,,
there are an integer k and a compact polyhedron L such that a neighborhood ¥
of x in X is homeomorphic to D¥ x cL, with X; N N corresponding to D¥ x {c}.
Furthermore, for each j > i, X; N N corresponds to DF x cL; for some subpoly-
hedron L; C L.

Clearly, if X; = X; — X;_, is nonempty, it is a disjoint union of manifolds
of various dimensions k. X is called the ith stratum of the given variety. The
definition essentially says that each stratum X; is “equisingular”; that is, X has
locally constant “normal geometry” along X;. The filtration of a polyhedron by
the skeletons of a triangulation, or by its intrinsic skeletons, is a variety. A
Whitney stratification of a real analytic variety has a canonical PL structure in which
it is a PL variety [23].

REMARK. Stone’s varieties are slightly more general; he refers to the
above class as “skeletal varieties” [22, Chapter 1,§2]. His definition facilitates
the discussion of “polyhedra with boundary,” which are necessary for his treat-
ment of cobordism with singularities.

A regular neighborhood system for the variety (X, *, X) is a collec-
tion of subpolyhedra N;; of X, n =i >j >0, such that for each k, X =
U ki V> Xig O Ny = Ny for i > k, and Ny is a regular neighborhood of NV;
in c1(X;\U;> Vi) which meets the boundary regularly. (For an elaboration of
this definition, and some appealing illustrations, see [22, Chapter 1, §3].) In
short, each stratum is equipped with a regular neighborhood in each of the
higher strata incident to it, and these neighborhoods fit together neatly.

A stratification of a polyhedron X with respect to a variety filtration
(X5 ° * *» Xy) is a regular neighborhood system {NV;}, plus a block bundle
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structure £; on each Ny, such that all the blocks intersect nicely (see [22, Chap-
ter 1, §4]). More precisely, &; is a block bundle with total space V;;, base N;
and fiber a cone (possibly different cones for different components of N;;). Thus
a typical block g is homeomorphic to D¥ x cL for some compact polyhedron L.
Therefore § = ¢(S¥~! * L), so each block is a cone. (The boundary of § as a
cone is 38 U B"in Stone’s notation [22, p. 30].) Thus the blocks of the bundles
t,j>n =] =0, define a partition of X = X,, = U,-N,,j into cones. It follows
from Stone’s definition [22, p. 35, axiom bs4] that this partition is in fact a
cone complex, which we will call the cone complex associated to the given strat-
ification of X.

THEOREM 3.1. Let (X,,,* **, X,) be a variety filtration of the polyhedron
X = X,,, and let C be a cone complex on X. C is the cone complex associated
to a stratification of X with respect to the variety (X,,,* * *, X,) if and only if
there is a structure for C such that X is a full subcomplex of C* for each i.

REMARK. By Proposition 2.10, it follows that C* is a cell complex, since
d(x; X) is locally constant for x € X; by equisingularity.

COROLLARY.3.2. A cone complex C on a polyhedron X is associated to
some stratification of X with respect to the intrinsic variety of X if and only if
C is transverse and satisfies the following intersection property:

(*) If ¢ € C, let d(@) = min{d(x; X), x € a}. Then if a,B,v€E C, withy
a principal cone of Cla N B, d(y) = max {d(a), d(B)}.

ProOF. If C is transverse, C* is a cell complex for any structure on C,
so the intrinsic skeletons of X are subcomplexes of C* (by Proposition 2.10).
Furthermore, since d(x; X) is constant along cone rays of a cone a, except
at the apex @, d(e) = d(; X) =d(0*; X), so d(@) = i ® a* C X;. Thus property
() is dual to the statement that each intrinsic skeleton of X is covered by a full
subcomplex of C*. Therefore the corollary follows from the theorem.

PROOF OF THEOREM. First we show that if C is the cone complex asso-
ciated to a stratification of X with respect to (X, * *, X;), then C can be
structured so that each X; is a full subcomplex of C*. Let {§;, n=>1i=>
j =0} be the cone blockbundles comprising the given stratification. By defini-
tion, the cones of C are the blocks of the bundles ‘gnj, n=j=0. According to
Stone’s definition [22, p. 35, axioms bsl, bs2], for each j, (sni, XN E(f"‘l)f) is
a blockbundle “flag” over the cell complex 2,.]-, and the total space of .Ei]— is N,.j,
where {N;} is a regular neighborhood system for (X,,,***,X,). Thus,if fisa
block of £,; (ie., a cone of C), BN X; =B NN, is the block of &; lying in B.
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Thus the definition of a flag [22, p. 33] implies that each cone § of C can be
structured so that § N X; is a structured subcone for each i. Define a structure
for C by choosing such a structure for each cone . Now X; v/ C* if and only
if a*, B* € C*, a* < B*, f* C X, implies a* C X;. Since the structure on C
induces a structured cone complex on X; by definition, X; is a full sub-
complex of C' = (C*¥)' (Lemma 2.4). Thus to show X;+/ C, we need only
show that if @, 8 € C, a > §, § € X; implies @ € X;. Now § € X; means fisa
block of Ep, for some p. Suppose « is a block of gqi' Since a < 8, Stone’s
definition (axiom bs4) implies j = i, ie., @ € X;. By the same token, X; is
a full subcomplex of C* « a, 8, v € C, v a principal cone of Cla N B, and
@, B € X, impliesy € X;. Say a € &,;, BE §,;. Then vy € &,; for some r, again
by Stone’s definition (axiom bs4), so y € X;. This proves the first half of the
theorem.

For the converse we must show that, given a variety (X,,,***, X,) and
a structured cell complex B on X = X, with each X; a full subcomplex
of B, a stratification for X with respect to (X,,***, X,) can be constructed out
of the cones of B*. We simply repeat Stone’s construction [22, pp. 43—49].
He starts with a simplicial complex B such that each X; is a full subcomplex
B;, and constructs a stratification using the dual cones in B; to simplexes
of B, foralln =i >0. Let D(o, B;) denote the dual of ¢ in B;. By Proposition
2.5, D(o, B;) = 0* N B, so his construction only uses the cones of B* and their
intersections with the given variety filtrations of X. (Since we are not concerned
with “boundaries” of polyhedra, we can ignore the extra cones in his construc-
tion needed for boundaries.) It is easy to see that the only place where he uses
the fact that B is simplicial, rather than cellular, is in checking that certain sub-
polyhedra are regular neighborhoods (e.g., that the neighborhoods built out of
the cones of B* form a regular neighborhood system for X). Here he invokes
Cohen’s definition of a regular neighborhood as a stellar neighborhood in the
first derived complex of some (full) triangulation. Therefore, to transfer Stone’s
arguments to cell complexes, we just need the following result.

LemMA 3.3. Let C be a structured cell complex on X, and let Y = |D|,
where D is a full subcomplex of C. Then \N(D', C)=|{0 € C'; there ex-
st w€E€D,r€C, 0< 7, w< 1} is aregular neighborhood of Y in X.

Proor. This is an easy consequence of Cohen’s stellar neighborhood theo-
rem [8, p. 204].

REMARK. As a corollary of this proof, Stone’s axiom bs3 for a stratified
polyhedron X [22, p. 35] is a consequence of his other three axioms, if the
underlying filtration of X is a variety. This is because bs3 was not used to derive
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the characteristic properties of the cone complex associated to a stratification.
Furthermore, it is not logically necessary to state that the neighborhoods Ny (the
total spaces of the bundles &;;) are regular neighborhoods—this is a consequence
of bsl and bs4, and Cohen’s stellar neighborhood theorem.

CorOLLARY 3.4. Let C, and C, be transverse cone complexes on X.
There are transverse subdivisions Dy, D, of C,, C, respectively, and an isotopy
h, of X such that hy: D, =D, (ie., hy maps each cone of D, onto a cone of
D,, and h,(0c) = dh,(a) for all « € D,).

Proor. This follows from Stone’s uniqueness theorem [22, p. 58]. It can
also be proved directly using stellar subdivisions.

4. Transversality of polyhedra in manifolds. In this section and the next,
we show how cone complexes can be used to unify the theory of PL transver-
sality, as developed by Armstrong and Zeeman, Rourke and Sanderson, and Stone.
As a corollary of this analysis, we show that blocktransversality of polyhedra in a
manifold is symmetric, which settles an important question of Stone.

We begin with a discussion of cone complexes on PL manifolds.

ProrosITION 4.1. If X is a polyhedron, the following are equivalent.

(@) X is a PL manifold without boundary.

(b) Any cone complex on X is a cell complex.

(c) Any cone complex on X is transverse.

(d) There is a structured cell complex C on X such that C* is a cell complex.

ProoF. (a) = (b) by Proposition 2.10. (b) < (c) because C is transverse
@ C* is cellular (Corollary 2.8). Clearly (b) = (d). (d) = (a) because if x € X,
say x € 0,0 €C, Ik (x; X) = 90 * 9(0*), so if C and C* are cellular, 1k (x; X)
is a sphere for all x € X.

If X is a manifold with boundary, the situation is not much more compli-
cated. Let C be a cone complex on X. Then if ¢ is a cone of C, d0 is either a
sphere or a ball. If 9o is a sphere, either ocC (X\oX) or 0 CoX. Ifdsisa
ball, 6 N (X\oX) # & and ¢ N 3X #&. By definition, C is a cell complex if
and only if 9o is a sphere for all 0 € C. Thus it is clear that C is a cell complex
if and only if 3X v/~ C. If C is a structured cell complex, and 3X is a full
subcomplex of C,|{c* € C*, 0 € C*, 6 N 0X #&}is a collar of 0X in X.

DerFINITION. Let P and Q be subpolyhedra of the manifold X. P is trans-
verse to Q, written P (© Q, if there is a structured cone complex C on X such that

Q@+ Cand P\/ C*
Note that P h @  Q th P, since (C*)* = C. By Proposition 4.1, if X has no
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boundary then C and. C* are cell complexes.

REMARK. It is interesting to note that a triangulation K of a (closed) mani-
fold X and its dual cell complex K* do not have the symmetry of a structured
cell complex and its dual. Specifically, if the (locally flat) submanifold Y of X
is a subcomplex of K*, the normal bundle of Y is a fiber bundle (i.e., its
structural group can be reduced from PL to PL). Since normal blockbundles
are not always fibered [16], there may exist submanifolds ¥ of X which cannot
be subcomplexes of the dual to any triangulation of X—so the transversality theo-
rem cannot be true if we use a triangulation in our definition of transversality.
This observation led Armstrong and Zeeman to introduce the concept of “tran-
simpliciality” (see [4, p. 433]).

Proper subpolyhedra. To simplify our discussion of transversality in a mani-
fold X, we will assume that subpolyhedra intersect 0X transversely. We say the
subpolyhedron P of X is proper if (0X, P N 0X) is collared in (X, P).

REMARK. (30X, P N 3X) is collared in (X, P) if and only if (X, P N 3X)
is locally collared in (X, P) (cf. [1, p. 455]). It is easy to see that if P is a sub-
polyhedron of the manifold X, P is proper if and only if P (h 9X. We will
actually need a stronger result:

LEMMA 4.2. Let P be a proper subpolyhedron of the manifold X. Given
any structured cone complex C on X with P N C*, there is a structured subdi-
vision B of C such that B is a cell complex and P/ B*.

ProOF. We construct B by altering C slightly. The cones a € C with da
a sphere are left unchanged. If da is a ball, we replace a by &, with @ = a as a
subset of X, and 0& = da U (@ N 8X). We also add the cell $= a N 3X to fill
up 9(®). The structure on § is induced by the given structure on @. Now & =
(@ N 3X) x I, so & can be structured as a cell, but we must choose this struc-
ture to respect P N &. More precisely, if P N a# &, there is a homeomorphism
ffl@PNa)=(@NadX,PNan dX) x [0, 1] with f(x) = (x,0) forx EanN
0X, since (o, PN a) = st(x; X, P), (@N X, PN aNdX) = st(x; 0X, PN 3X),
and (3X, P N 9X) is collared in (X, P). If g: a = c(da) is the given structure for
a, and h: I = ¢{0, 1} is the standard structure for I, [(gla N 8X) x h]o f de-
fines a structure for &@. By this construction, P intersects each (open) structured
cone of B in a subcone, so (by Lemma 2.4) to show that P/~ B*, it is enough
to check that if B, v € B, with § <1, then P N § # & implies P N '°y # &. But
this is clear from our construction, since P/~ C*.

CorROLLARY 4.3. If Pand Q are subpolyhedra of the manifold X, with P
proper, then P \\ Q if and only if there is a structured cell complex C on X such
that Q/~ Cand P/ C*.
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Blocktransversality. Stone [22, Chapter 4] has defined blocktransversality
of polyhedra in manifolds generalizing Rourke and Sanderson’s concept of block-
transversality for submanifolds [15]. If P is blocktransverse to Q, we will write
PlQ.

THEOREM 4.4. If Pand Q are proper subpolyhedra of the manifold X,
Pl Qifand only if Pt Q.

COROLLARY 4.5 (SYMMETRY OF BLOCKTRANSVERSALITY). If Pand Q
are proper subpolyhedra of the manifold X, PLQ < Q L P.

ReEMARK. The definition of blocktransversality we will use is slightly less
general than Stone’s, since his definition of variety is broader (cf. §3). In fact,
the theorem is true for arbitrary subpolyhedra P and Q with his more general
definition of P L Q, and the proof is only a bit more involved.

PrOOF. Stone defines P L Q if Q has a “stratified normal blockbundle” in
X which P intersects in a union of blocks. A stratified normal blockbundle for
Q in X, or an “(n + 1, n)-stratification” in Stone’s terminology, is almost the
same as a stratification of X with respect to the filtration (X,,, 1, X,,,***, Xo)»
where X = X, ,, Q = X,, and (X,,,* * *, X,) is the intrinsic variety of Q in X
(ie., dim Q = n, and X; = {x € Q, d(x; X, Q) < i} for i <n). The only differ-
ence is that an (n + 1, n)-stratification of Q in X does not include the cellula-
tion £t 1yn4+1) F Nons 1)+ 1) = AU, 5 ;N4 1)) (cf. §3 above and [22,
Chapter 1, §4]). Since N =U,5 N, 4 1); is a regular neighborhood of Q in X,
it is fruitful to think of an (n + 1, n)-stratification of Q in X as a normal block-
bundle £/Q with total space N. (This is the basic theme of Stone’s work.) In
these terms, P 1 Q means that there exists £/Q in X such that PN N is a union
of blocks of the cone blockbundles £, , ;; for 0 <j<n. We now proceed to
the proof of the theorem.

P h Q=P Q: Since P is proper, there is a structured cell complex C on
X with @+/ Cand P+/~ C* (Corollary 4.3). By Lemma 2.6, there is a struc-
tured subdivision B of C such that B* is a full subdivision of C*. Since C is a
cell complex, the intrinsic strata of Q in X are unions of open cells of C. Thus,
by Theorem 3.1, C* is the cone complex associated to some stratification {E,-j}
of X with respect to the intrinsic variety (X, ;, X,,,***, Xy) of @ =X, in
X=X, ,,- Throwing away the blocks of £, , 1,4 1), We obtain a normal
blockbundle £/Q in X which P intersects in blocks. (P+/ B*, whose cones
are blocks of £, , 1y;, 0<j<n+1)

P1Q =Pt Q: Let £/Q be a normal bundle with total space N which P
intersects in blocks. Let K be a triangulation of X\N such that P\N and all
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the sets § N AN, B a block of &, are subcomplexes of K. Let C be the cone
complex on X consisting of all the blocks 8 of the bundles 5(n+1)j’ 0<j<
n, plus the simplexes of K. By the proof of Theorem 3.1 (namely, by the defi-
nition of a blockbundle flag), C has a structure such that each intrinsic stratum
of Q in X is a union of open cones of C*. In particular, Q v/ C* and P/ C
(by construction), so P NQ. Q.E.D.

ReMARK. This argument can clearly be made with respect to any stratifi-
cation of Q in X.

Mocktransversality. The following definition of transversality arises from
Rourke and Sanderson’s elegant description of geometric homology theories and
duality [18].

If C is a cell complex, and P is a subpolyhedron of | C |, we will say that P
is transverse to C if (da, P N 9¢) is collared in (o, P N a) for each cell a of C.

DerFiNITION. If P and Q are subpolyhedra of the manifold X, P is mock-
transverse to Q if there is a cell complex C on X such that @/ Cand P is
transverse to C.

THEOREM 4.6. If P and Q are proper subpolyhedra of the manifold X, P
is mocktransverse to Q if and only if P Q.

Proor. If Ph Q, then by Lemma 4.2 there is a structured cell complex
Con X with Q+/ Cand P/ C* By Proposition 2.5, P N a is a structured
subcone of « for each a € C, so (0a, P N da) is collared in (a, P N ).

Conversely, suppose P is mocktransverse to Q, with respect to the cellula-
tion C of X. We will define a structured cellular subdivision D of C such that
P~/ D* We construct D|a for each a € C, by induction on height a. (Note
that @ N &)/ D*|a for all a implies P/ D*) Now a cell « is a manifold
with boundary da, and P N « is a proper subpolyhedron by mocktransversality.
We assume inductively that D|da has been defined so that (P N da) v/ D*|da.
By using a collar, D*| da can be extended to a transverse cone complex B on a
with @ N a)y/ B. Let D|a = B*. This completes the inductive step.

REMARK. In [18], Rourke and Sanderson point out that P is mocktrans-
verse to Q if and only if Q is blocktransverse to P. This observation was a
germinal point in the development of my definition of transversality.

Note that Theorem 4.6 is not true if P is not proper, because the proof
shows that if P is mocktransverse to Q in X, P is a proper subpolyhedron of X.

It is not hard to see that if P and Q are subpolyhedra of the manifold X,
P is mocktransverse to Q if and only if P is transimplicial to Q, in the sense of
Armstrong and Zeeman ([4], [3]). The hallmark of these definitions, as well as
ours, is that they are “global”—a cellulation of the entire ambient manifold is used.
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In fact, Rourke and Sanderson [17] have shown that P and Q “locally” trans-
verse in the sense of Armstrong [3] does not imply P L Q, even if P and Q are
locally flat submanifolds.

The fault with local PL transversality is that the relative transversality theo-
rem is false, even for submanifolds (Hudson, unpublished). That is, there exist
(locally flat) proper submanifolds P and Q of a manifold X, such that P N 8X
and Q N 90X are locally transverse in 9.X, but there is no isotopy of X keeping 0X
fixed which moves P locally transverse to Q. However, the relative transversality
theorem"is true for blocktransversality ([15], [22]). Rourke and Sanderson have
found a quite simple proof of the relative mocktransversality theorem for maps
[18], which easily adapts to a proof of the following theorem. By Theorem 4.4,
Stone’s transversality theorem is a corollary.

THEOREM 4.7. Let P and Q be proper subpolyhedra of the compact mani-
fold X, with P N 3aX) M (Q N 0X) in 0X. There is an arbitrarily small ambient
isotopy h, of X such that h,|3X is the identity for all t, and h,(P) h Q.

REMARKS. (1) Some restriction on the way P and Q meet 3X is essential
if the isotopy is to keep dX fixed. This is because if P, = {x € P, d(x; X, P) <
i}, then P (h Q implies (P, N 3X) th (Q; N 0X) in X for all 4 j, so this condition
must be true at the outset (cf. [22, pp. 86—87]). However, if X is the 3-disc
{Gyrxp,%3), —1<x; <L,—1<x,<1,0<x3;<1},and P={xEX,x; =
[x;1}, @ ={x €X, x5 = |x, |}, then B, N 3X) h (Q; N 3X), but no isotopy of
X keeping 90X fixed can move P transverse to Q (P nor Q is proper).

(2) The proof can be made with respect to any variety filtration of X (see
[22, Chapter 1, §2], for the definition), so Stone’s transversality theorem is in-
deed a corollary.

5. Transversality to a stratification.

DEFINITION. Let (X,,,***, X,) be a variety filtration of the polyhedron
X = X,, and let P be a subpolyhedron of X. P is transverse to (X, **, X,),
written P (X,,,* * *, X,), if there is a structured cone complex C on X such
that X; v/~ C for each i and P/~ C*.

REMARK. By Proposition 2.10, any cone complex C with X; v/ C for all
i is a cell complex.

By the proof of Theorem 3.1, P th (X,,,***,X,) if and only if there is a
stratification ¢ = {Eii} of X with respect to (X,,,* * *, X,) such that P intersects
each bundle £,; (and hence each bundle ¢;;) in a union of blocks. In other
words, P is blocktransverse to each stratum.

If X is a manifold and (X, * +, X,) is the intrinsic variety of the
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subpolyhedron @ = X, _, in X, P (X,,, = * -, X,) just says Ph @ (and P is
proper).

Recall that if (X,,,***, X,) is the intrinsic variety of X and C is a cellula-
tion of X, then X; v/ C for each i (Proposition 2.10). Thus if P is transverse to
any variety of X, P is transverse to the intrinsic variety. Rourke and Sanderson’s
mocktransversality technique yields the following generalization of Theorem 4.7.

THEOREM 5.1. Let P be a subpolyhedron 5f X which is transverse to the
intrinsic variety of X. If (X,,, ***,X,) is any variety of X, there is an arbi-
trarily small ambient isotopy h, of X such that h,(P) D (X,,,** *, X,).

For example, we can take (X,,,* * *, X,) to be the intrinsic variety of a
subpolyhedron Q in X. Thus if P is transverse to the “singularities” of X, P can
be isotoped transverse to any polyhedron Q in X. But not every subpolyhedron
can be made transverse to the singularities of X in the first place.

ExaMpLE. Let X = (S! x $1)/(S* x {p]),p €S, the pinched torus, and let P
be the image of {p}x S! under the identification map. The intrinsic O-stratum
of X is just the singular point x,. If C is a structured cell complex on X, x,
must be a vertex of C, and its dual is thus a principal cone of C*, so any 1-
dimensional subcomplex of C* misses x,. However, no isotopy of P in X can
move P off x,, so P cannot be made transverse to the intrinsic stratification of
X. In fact, if we think of P as a mod 2 cycle, P is not homologous to a cycle
which misses x.

The following result, which is based on [13], characterizes the “obstruction”
to moving a cycle in X (via homology) transverse to the intrinsic stratification.

THEOREM 5.2. Let X be a normal polyhedral n-circuit with fundamental
class [X]. A homology class z € H(X) is represented by a PL cycle whose sup-
port is transverse to the intrinsic stratification of X if and only if z = [X] Ny
for some cohomology class y € H"~*(X).

REMARKS. A normal n-circuit (“orientable polyhedron”) is an n-dimen-
sional polyhedron X such that the restriction homomorphism H,,(X) —
H, (X, X\{x})is an isomorphism for allx €X. H(X), H*(X) denote singular
homology and cohomology with integral coefficients. (The theorem is true mutatis
mutandis for arbitrary coefficients.) N is cap product.

ProOF. We use the following formula for cap product [13]. Let K be a
structured cell complex on X, and let C(K), C*(K) be the oriented cellular
chains and cochains on K. (We assume that the cells of K have been arbitrarily
oriented.) Cap product is induced by the pairing
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C,(K) ® CIK) — C,_,(K")
given by

ap nBq =Zi<gp’1p—l"..’lq+l’gq>'

Here a;, is an elementary p-chain (oriented p-cell), B, is an elementary g-cochain,
and the sum is taken over all sequences of cells ap.>7p—l Seee >'yq 1> B, with
dim y; = i. The coefficient e(a,, Y,_15***, Vg4 1, B,) = 1 is defined as fol-
lows. Let [@, Y] = %1 denote the incidence number of the oriented cells & and
7. Then

e(ap9 7p_1’...’7q+13 ﬁq)= [ap’ 7p—l] [71)—1’ 7p_2] e [7q+l, Bq]'

Now suppose that the orientations for the n-cells of K were chosen coher-
ently, so that their sum v/, represents the fundamental class. Then

(Zﬂ) n Bn—s = Zi <1n’ Yn—1>"""° ’Qn-.s')’

the sum of all the s-simplexes of X'l (8,_,)*, with appropriate orientations. Thus
z= [X] Ny implies that z is represented by a simplicial cycle in K’ whose sup-
port is a union of cones of K*, and hence is transverse to the intrinsic stratifica-
tion of X.

Conversely, suppose z € Hy(X) is represented by a PL cycle ¢ whose sup-
port is transverse to the intrinsic stratification of X, i.e., there is a structured
cell complex K on X such that (support ¢)+/ K*. It is clear that by subdivid-
ing K’ so that ¢ is simplicial, and then “amalgamating” ¢ on each simplex of K’,
we can assume that ¢ is a simplicial cycle on X'. Thus it remains to show that
an integer u(B) can be assigned to each (7 — s)-cell § in K with f* C support c,
so that (Z,v4) N (Z u(@B)h) = c.

Let (y,,***,8,_,) be a simplex of K’ in support ¢, occurring in ¢ with
coefficient A. Let u(B,_s) = €(¥,,* * *, B,_J\. This definition of u(g,_,) is
clearly what the cap product formula requires, but we must show that is is well
defined and that Z u(B)g is a cocycle.

To show that u(B, _,) is well defined, we must show that if ¢ and 7 are s-
simplexes of K’ lying in (B,_)*, then e(0)A(0) = e(T\(r). Since X is a normal
n-circuit, 3(8,,_ ;)* = 1k (8,_; X) is an (s — 1)-circuit, so (8,_,)* is an s-circuit
with boundary. Thus it suffices to check the case when o and 7 have a common
(s — I)-face. Then, since dc = 0, A(6) = —\(r)- Checking that (o) = —e(7) is
an elementary exercise which we leave to the reader. It is also straightforward
to check that §(Z u(f)8) = 0. Q.E.D.
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An algebraic argument shows that if X is an n-circuit with fundamental
class [X], then [X] N « : H"75(X) — Hy(X) is surjective for all s implies it is
an isomorphism for all s [13].

CorROLLARY 5.3. Let X be a normal polyhedral n-circuit with fundamental
class [X]. Then [X] N+ : H¥X) — H(X) is an isomorphism (i.e., (X, [X]) is
a Poincaré duality space) if and only if every (singular) cycle in X is homologous
to a PL cycle whose support is transverse to the intrinsic stratification of X.

This corollary generalizes the classical Poincaré duality theorem for closed
(PL) manifolds, since a closed manifold has but one intrinsic stratum. The way
that singularities in a space disturb Poincaré duality is explored more fully in [13],
using a fascinating spectral sequence of Zeeman.

We have suggested that an appropriate definition of “P is transverse to @ in
X” is that P is transverse to the intrinsic stratification of Q in X. In closing, we
would like to discuss the more general definition of P rh Q: that there is a struc-
tured cone complex C on X with @+/ Cand P/ C*. (These definitions are
equivalent when X is a manifold and P is proper.)

We will say that P and Q are in general position in X if for each i,

dim@®PnNQ nx‘.)<dim(ani)+ dim(@ NX;) — 4,

where X; isthe intrinsic /-stratum of X. A pleasant little combinatorial argument
shows that P (h Q implies P and Q are in general position.

Akin has shown that if P and Q are subpolyhedra of X, there is an ambient
isotopy of X moving P into general position with respect to Q. (See [1, p. 471].
For a different proof, which shows that the isotopy can be made arbitrarily small,
see [13, p. 98].) In fact, one can show that P h Q in X implies that (P N X,)
(@ N X,)in X, for each i. (The converse is false. For example, let X be the
pinched torus, with P and Q two circles not homologous to zero, which intersect
only at the singular point of X.)

Given P and Q in X, it is not always possible to make P h Q by an isotopy of
of P. However, it should always be possible to make (P N X;) h (@ N X)) in X,
for each i (by an e-ambient isotopy of X), as suggested by Akin’s general position
theorem.
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