Poincaré Duality in Spaces with Singularities

A Dissertation Presented to
The Faculty of the Graduate School of Arts and Sciences

Brandeis University

Department of Mathematics

‘In Partial Fulfillment
of the Requirements of the Degree

Doctor of Philosophy

Clinton G. McCrory

May, 1972




Abstract

Poincaré Duality in Spaces with Singularities

A Dissertation Presented to the Faculty of the Graduate School of
Arts and Sciences of Brandeis University, Waltham, Massachusetts.

by Clinton G. McCrory

If X is a compact topological n-dimensional manifold with-
out boundary, the Poincaré duality is an isomorphism from the qt—lz
cohomology Hq(X) to the (n—q)i;h homology Hn_q(X) for each in-
teger q. In 1954; E. C. Zeeman introduced a spectral sequence
E(X) associated to any topological space X, which collapses to the
Poincaré duality isomorphism when X is a manifold.

Using this spectral sequence, we study the failure of
Poincareé duality for spaces which are not manifolds; for example,
singular algebraic varieties.

We give a geometrical characterization of the filtration
associated to E(X) of a homology class « € HS(X). If X is
triangulable, this filtration equals the ""degrees of freedom'" of «
in X - the maximum integer q such that o is represented by a
(singular) cycle in the complement of any (g-1)-dimensional sub-
space of X. If X is stratified by piecewise-linear manifolds,

o has > q degrees of freedom if and only if « is represented by

a cycle whose support intersects each stratum in codimension > q.



For example, a normal complex projective algebraic
variety V satisfies Poincaré duality (with respect to its canon-
ical orientation class) if and only if every homology class
o€ Hg(V) has n-s degrees of freedom, where n is the (real)
dimension of V,

We also show that the filtration of a cohomology class in
the dual spectral sequence g(X) equals its geometric '"codimen-
sion" in X (when X is triangulable), as conjectured by Zeeman,

Our analysis rests on a simple combinatorial formula for
cap product, which provides an isomorphism_ from E (or I/E\J) to
a spectral sequence of G, Whitehead,

One application of the spectral sequences is to the study
of "characteristic homology classes" of varieties. One such
class is the diagonal by € Hn(V x V) {V as above). We show
that AV always has n degrees of freedom with field coefficients,
and we study the ""Thom classes" UV € HY(V x V) geometrically
dual to A v The principal result of the discussion is that V is
a homology manifold if and only if V has a Thom class UV
which vanishes off the diagonal in V x V., (Actually, our results
hold for arbitrary topological n-circuits, or "geometric n-

cycles. ")
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7 -7 omit [t, 0] = [0, ©] . Let [0, ©t] = O
whenever O is not a top dimensional proper

face of T,

18 -5 For an arbitrary topological space X, the
filtrations (1.5) and (1.6) do not have length

(n-s), but length n, the covering dimension of X.

21 -7 Replace bl|support b Z O by

b|X-support b = O .

35 6 The first term in o(c N T) is

3 n(Y) <‘£1"“’9'p—q—1’ '£>

32 The example illustrated by the diagram indicates
that there is a non-standard sign in my definition
of cap product. In fact, the geometric definition
of the duality chain msp O (p.25) agrees with the
algebraic definition of cap product (so D = So(+17),
page 30). However, the cap product (2.3) satisfies
10 x = (=) FeeetP s(x), where x € Cp(K) and
8: cﬁ(K)-a Cp(K') is subdivision. This sign
problem pops up for the product (2.6) in the
following places:
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5] 7 €y n x) = + (ty) (x)
L2 -6 (2.6) satisfies O) with a sign .

A simple (but fundamental) change of notation removes
these sign difficulties. Namely, let the "canonical" orientation
of a simplex of the first derived‘complex K' be <-°—o s ecey _gi> ’
where O >...>0; (instead of 6,<...<0;). This recessitates |
writing homology before cohomology in the cap product, and
(2.3) (p. 32) beconmes

q —
Yp no* =2 n(r, wp-q-‘l""’ Wy o) <".£.9 9p-q-1’ eoey WyH 9_>o
The analogous change is made in (2.6) (p.38). We then have

1 n x = 8(x) for (2.3), and the sign r (2.6) on p.l4 is also

posi tive.

It remains to check the boundary formulas for these new
definitions (Lemma 1A, p.34, and Lemma 1B, p.39). A short
calculation shows that (2.3) satisfies

d(xyny) =dxny+ (1) Lxnoy
(This is the same sign as [Sp], p.253.) (2.6) satisfies
b(xp oy = ()% ny+ (-1 xn oy

(This is the same sign as [HW] , p.154.) These formulas
enagble all subsequent arguments to go through.
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56 7 ey is not defined for an arbitrary

n-dimensional space X. (The local singular
homology of X may be non-zero in dimensions
greater than n if X is locally pathological.)
A convenient class of spaces for which ex is
defined is locally triangulable smaces.

62 2 For any locally trisngulable n-dimensional

space X eee

Remark. The geometric characterization of the filtration of a
homology (or cohomology) class in Zeeman's spectral sequence
(section 5) should hold for locally triangulable spaces.

(This was suggested by J. Munkres.)

72 Clearly c3 is & boundary! Thus
H(X) 2z e %, H1(Xj Hy;) 2 Z® Z, and
ey is still an isomorphism, whe reas -n[X]

and © aren't surjective, as desired.

13 -2 Lyseecesly are the closures of the components
of 1ink v - 5(1link v)

81 3 . coi = wixx w,
90 2, 12 See erratum, p.179 .
91 1 See erratum, p.179 .
1 5 D ©86 =0 °D

qQ q-1
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98 This proposition was proved by Akin [Ak]
(by a different argument), without the
condition that the isotopy can be made
arbitrarily small.

101 =l See erratum, p.179 .

115 11 See erratam, P.179 .

125 7 f"1(|Lq]~) should be x—;f:"1(|1,q_1 D)

125 9 The argument given here for (ii) is wrong,
but it can be modified (cf. erratum, p.179).
The argument given is valid if A is a
subpolyhedron of Y.

174 -5 If X has intersection pairings ¢y on

H, (X; F) satisfying (4.5)eeo



Table of Contents

Page
Introduction 1
I. The Poincareé duality spectral sequence 4
1. Zeeman's spectral sequence 7
2., The cap product 24
3. G. Whitehead's spectral sequence 43
4, FElementary properties 56
A. The E2 term 56
B. The E' term | 59
C. The edge morphisms 62
D. Circuits and normalization 67
5. A geometrical interpretation of the filtration 85
A. The degrees of freedom of a homology
class 87
B. The extent of a cohomology class 111
C. Degrees of freedom over a map 124
6. Applications 127
A, The Euler characteristic 129

B. The Stiefel homology classes 132



Page

II. Thom classes 135
1. Degrees of freedom of the diagonal 138
2, Symmetry of the Thom class 147
3. A characterization of homology manifolds 154
4. Intersection pairings 165
Bibliography 176

Erratum : 179



Introduction

The topology of a space is reflected in the structure of
its homology groups. The homogeneity of a manifold manifests
itself in the Poincaré duality, which has its most precise
geometrical expression in Lefschetz' intersection theory.
Cycles in a manifold can be intersected because they have
enough freedom of movement to be made transverse to each
other. In this thesis, I will discuss how the gingularities of a
space (for example, an algebraic variety) disturb Poincaré
duality by restricting the '"freedom' of its cycles.

My main tool is a spectral sequence due to Zeeman
[Ze 1]. It provides a framework for the geometrical study of
Poincareé duality (as undertaken classically by Cech and Wylie -
cf. [Wy]). The most striking feature of this spectral sequence
is the topologically invariant filtration it induces on the homo-
logy groups of a space. The principal result of chapter I is
that the filtration of a homology class in a triangulable space
X is équal to its ""degrees of freedom' - the maximum integer
q such that the class is represented by a cycle in the‘comple—
ment of any (q-1)-dimensional subspace. As a corollary, a
"normal" geometric cycle X (e.g. a normal algebraic variety)

satisfies Poincaré duality if and only if each homology class in



X has degree of freedom equal to its formal codimension. I
also show that the filtration of a cohomology class in the '"dual"

"codimension, " as

spectral sequence is equal to its geometric
Qonjectured by Zeeman.

If X has a p.l1. structure, the degrees of freedom of a
homology class has a more precise description., Given a p.1l.
stratification of X (for example, a p.l. triangulation, or a
Whitney stratification of an algebraic variety), a homology class
has > q degrees of freedom if and only if it is represented by a
cycle whose support intersects each stratum i;’l codimension > (.

.The passage from algebra to geometry is effected by a
simple combinatorial formula for the cap product. If Gq and

Tp are (oriented) simplexes of the complex K, and g<rT, let

s s o 3 3 >
- —_— ._1 g‘).p_q_l .I.

where the sum is over all (p-q)-simplexes of the first derived
complex K' consisting of barycenters y of simplexes w
with ¢ <@ < 1. It follows from this formula that a homology
class has filtration q if and only if it is represented by a
(simplicial) cycle in the ''q-coskeleton' of K. (The ;1—
coskeleton is a canonical codimension q subcomplex of K!',

equal to the (n-q)-skeleton of the classical dual cell complex



when K is a combinatorial n-manifold.) The g-coskeleton
has q degrees of freedom in |K [ since it intersects each
simplex of K in codimension (.

If X is a (normal) geometric n-cycle, the homology
class A represented by the diagonal in X x X has n degrees
of freedom if and only if A has a '"Poincaré dual" cohomology
class U in X x X (UN [X xX] =A). In chapter II, I will
show that such a "Thom class' U always exists with field
coefficients. Furthermore, X is a duality space (+ N [X] is
an isomorphism) if and only if X has a Tho;'n class U with a
certain symmetry property. The main result of chapter II is
that X is an integral homology manifold (i.e. its local integral
homology groups are like those of Euclidean space) if and only
if X has a Thom class U which vanishes off the diagonal in
X x X. Finally, I show that Thom classes for X are equiva-
lent to "intersection pairings' on the homology of X. As a
corollary, any geometric cycle which has a pairing satisfying
certain simple axioms must be a homology manifold.

There are several exciting directions for possible
applications of these results, One is the study of the Stiefel
and Chern homology classes of algebraic varieties, ‘;md another
is the analysis of bordism theories with singularities (see §6 of

chapter I).



For many helpful conversations, I thank Phil Lynch
and David Stone, Who had the patience to listen to my ravings.
My advisor, Professor Jerome Levine, has made quite a few
clarifying suggestions, for which I am grateful. I especially
thank Dennis Sullivan, who introduced me to Zeeman's spec-

tral sequence, and who has inspired me all along the way.



1. The Poincaré duality spectral sequence

In his thesis (1954; [Ze 1] 1963) Zeeman defined a spectral

sequence E for any topological space X which runs
HiIGH ) =>H _ (X),
p p-q

where Np is the sheaf of local homology of X. E is a topological
invariant of X, but not a homotopy type invariant. If X is an n-
manifold, E collapses to the Poincaré duality isomorphism
1Yx) = Hn_q(X). If X is a gencral space, E relates its local
and global homological structures, providing subtle information
about how the ''singularities' of X disturb duality.

Associated with E is a filtration of the homology of X.
The filtration of a cycle a in X measures how close the cycle
comes to beivng geometrically dual to a cocycle B. (If « is dual
to B, and y is a cycle, B(y) is the "intersection' of y with a.)
A problem posed by Zeeman is to give a geometric interpretation
of the filtration of a cycle -- in order to gain some insight into the
failure of duality.

Zeeman gave an elegant combinatorial definition of E for a
triangulable space, and defined E for arbitrary spaces as the

limit of spectral sequences associated to nerves of open coverings



of X. Cartan ([SC], 1951) defined on isomorphic spectral sequence,
using sheaf theory, | to prove duality. for topological manifolds.

(The modern sheaf-theoretic proofs of duality use generalizations
of Cartan's spectral sequence - see [Sw]ior[Br] for example.)

I will discuss the geometry of Zeeman's spectral sequence
for triangulable spaces by explicit use of their combinatorial struc-
ture. This analysis will be put in a geometrical
setting in section 5 , where I will describe the relation between
the filtration of a cycle and its interaction with a (p.1) stratifica-
tion of X. (A triahgulation is the simplest stratification of a space. )

In §1 I will summarize the definition and basic properties of
E for a simplicial complex K ([Zel], §2). Zeeman emphasizes the
algebraically dual spectral sequence ]/E\), which converges to the
cohomology of K, so my disucssion of E will complement his. In
§2 I will give a combinatorial definition of cap product, which pro-
vides an isomorphism from Zeeman's spectral sequence to a spec-
tral sequence of G. Whitehead (§3). This isomorphism gives rise to
a geometric description of E (§4 and 5), including an interpretation
of the filtration of a homology class, and a proof of Zeeman's con-
jecture that the filtration (associated to ]/*\3) of a cohomology class
equals its ""codimension'. In §6 I will use the spectral sequence to
study the euler characteristic and the Stiefel homology classes of a

variety, and I will indicate possible ways of increasing its usefulness.



1. Zeeman's spectral sequence

Let K be a finite simplicial complex. Recall the
definition of the simplicial chain complex C*(K). Suppose that each
simplex of K is given an arbitrary orientation. Then Ci(K) is the
free abelian group generated by the oriented i-simplexes of K, and

d: Ci(K) - Ci—l(K) is the homomorphism induced by

dr = ¥ [o,Tlo s
o<t

where if ¢ and t are oriented simplexes of K, [o,7] is the

incidence number of ¢ and 7. (If 7 is an i-simplex and o is

i

an (i-1)~face of 7, then [o,7] + 1, depending on whether the
given orientation of 7 induces + the given orientationon ¢ . Let
[T,0] = [o,7], andlet [o,7] = 0 whenever one is not a top dimen-

sional proper face of the other.) The fact that 3e3 = 0 is equiva-

lent to the formula

(1.1) s [p,ollo, 7] =0 0, T € K.
o€K

The simplicial homology H_(K) is the homology of C,(K), which
is independent of the choices of orientations for the simplexes of

K (cf. [HW], chapter 2),




Since K is finite, the group of simplicial cochains
Cl(K) = Hom(Ci(K), Z) can be identified with Ci(K)’

5 = Hom(3, Z) : C 1K) » CYK) is induced by

80 =% [o, Tl
T
and &8 = 0 is equivalent to (1.1). The simplicial cohomology

H’S(K) is the homology of C’F(K).

Remark, On a finite complex, a simplicial chain and a simplicial
cochain are the same thing - a sum of oriented simplexes. Much of
the following discussion will explicitly use the geometry of

simplicial cocycles:

k4




1f we replace Ci(K) in the preceding definition by the
group of formal sums of oriented simplexes with coefficients in
any abelian group G, we obtain the simplicial homology
H*(K; G) and the simplicial cohomology H*K; G).

The description of Zeeman's spectral sequence involves
the simplicial homology or cohomology of K with a ''system of
coefficients', the combinatorial analog of a sheaf. A simplicial
complex K can be regarded as a category with objects the sim-
plexes of K and morphisms the inclusions of faces. A _s_t_ggli on
K is a functor from K to the category of abelian groups. if £
is a covariant stack, the cohomology of K with coefficients in
2, HxK;2), is the homology of the chain coﬁplex CH*K; &),

.. i .
where a cochain in C (K;£) is a sum

g0, O an i-simplex of K, gcé 2(0),

and

(1.2) 5(T gcc) =3 [0, THAo <’T)(go ¥ s

T
where #(c<t): £(0) = 2 (r) is the morphism corresponding to the
inclusion ¢ < T . If & 1is contravariant, H*(K;it) is defined

similarly.
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For example, if G is an abelian group and £ is the
constant stack with £(c) = G for all ¢ and Z£(o<t) = idG,
H4K;2) = HYK; @) and H (K;2) = H (K G).

The local (integral) homology stack Np is defined as

follows. ?{p(o) = Hp(star o, dstar o), and

Np(c <)t Hp(star 5, dstar g) - Hp(star T, & star 1) is

"restriction'', so E[p is covariant. Here star g consists of all

simplexes of K which have ¢ as a face, star ¢ is its closure,

and 3 star o 1is staro - starg. If o0 <r, star o> starrT,

and Hp(o<'r) is the composition

Hp(star o, O star o) Hp(star T, d star 1)
excision excision
\Y \Y%
Hp(K, K - star o) —Lestriction, Hp(K,K - star T)

Zeeman simplifies the definition of ﬁ[p by use of the classical
convention that if S is any collection of simplexes of K, H,(S)
is the (simplicial) homology of that part of C*(K) generated by
S. If K-S is a subcomplex of K, then H*(S) is the relative
homology group H_ (K, K-S). (For example, if S covers an
open subset U of |K]|, H*(S) is isomorphic to the singular

homology of U Dbasedon



11
infinite chains, and H*(S) is isomorphic to the singular
cohomology of U with compact supports.) If S and T cover

open sets UoV of |K|, thereis a simplicial restriction

homomorphism
Hp(S) - Hp(T)

and a simplicial inclusion homomorphism
HP(T) » H(S).

Thus ,%/p(c) = Hp(star o), and pr(o<'r) is the restriction

homomorphism
H (star ¢g) - H (star 7).
p p

Similarly, the local cohomology stack Np on K is defined by

%(p(’r) = Hp(star 7), andif g <7,

Hp(star T) > Hp(star o)

is induced by the inclusion star Tt c staro.

The relation between stacks and sheaves can be
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summarized as follows. If § is any presheaf of abelian groups
on X = IKI (i.e. a functor from t};e category of open sets and
inclusions of open sets of X to the category of abelian groups),
define a stack £ on K by #£(c) = 8(|star g[). If § is contra-
variant, then &£ is covariant. Then if g is "invariant under
subdivision', & is a sheaf and H*(X; g) T HHK;£). & is

invariant under subdivision means that
s(|star | o |star w]|) : 8(|star 5|) » 8(|star w])

is an isomorphism whenever ¢ ¢ K and @ is a simplex of a
subdivision of K with interior w < interior ¢. For example,
if § is the presheaf s(U) =AHp(X, X-U) (singular homology),
then & is invariant under subdivision, and the associated stack
is Np. If & 1is covariant and invariant under subdivision,
H*(X; 8) = H*(K; Z). (For related remarks, see the proof of
Lemma 10 of [Ze 1], and §4 below, where a slightly different
definition of stacks is given.)

Now Zeeman's homology spectral sequence is defined as
follows. If x =% ncc is an integral simplicial chain, the
support of x is the smallest subcomplex of K containing all the
o for which n_ #0. Let Dp, q be the abelian group

Cp(K) ® CcYK) modulo the subgroup {x®y, y | support x = 0}.
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Let d: D > D + D be induced b
p.a p-l,q “p,atl Y

(1.3) d(x®y) =3x8 y - (-1)'x ® 8y.

(The signs are justified in [Ze 1].) Let D =% Dp . and let

3

D = & D . Then D is a double complex, bigraded by
s = P, d
pP-qg=s

p and g, with a total grading s =p-q. d: DS - Ds—l’ and

dod = 0. There are two spectral sequences associated to (D, d),
got by filtering D with respectio p or 4. (For a pleasant
discussion of these spectral sequences, see [Go], page 86.) They
both converge to H_(D), the homology of D with respect to d.

These spectral sequences are interesting because of the

subtle "'facing relation' defining D. If x and y are elementary
chains ¢ and 1 (i.e. x is the chain l¢ and y is the cochain

y(r) =1, ylp)=0 for p# ), then y | support x = 0 just says

that v is not a faceof o . Thus D can be identified with

" the free abelian group generated by all pairs of simplexes (cp, -rq)
such that ¢ > . (Note however that the differential d on

C,(K)® C#(K) doesn't preserve the facing relation, That is why
D was defined as a quotient of C_(K)® C*(K).) Thus the "domain"
of D is {(p.q), 0<g<p<n}.

An easy argument (Lemma 1 of [Ze 1]) shows that the
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p-filtration spectral sequence of (D, d) collapses to an
isomorphism H*(K) Zs H*(D). Zeeman's homology spectral
sequence E for K is the q-filtration spectral sequence
associated to D. He defines a ''dual’’ double complex I/S, for
which the p-filtration spectral sequence collapses to an isomor-
phism H*(/I\)) Z> HXK). Zeeman's cohomology spectral sequence

A A
E for K is the qg-filtration spectral sequence associated to D.

Theorem ([Ze 1], p. 159). 1) The spectral sequences of the finite
simplicial compiex K run
2

B THYKx)=>H (K
» q P P-q

%2, TH KK => 1" 4K).

2) The sequ‘ences are topological (although not homotopy type)
invariants of |K]|.

3) If K is a closed orientable combinatorial n-manifold, then
both éequences collapse to the Poincaré duality isomorphism.

The proof of 1) for E goes as follows. Let

FqD =3 D. .. Fip is generated by all pairs of simplexes
Pa

(ci, 73) such that ¢ >r and j>q. Now
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+
gl -u (¥, D),
P, q p-q
where the homology is with respect to the differential induced by

+
do®1) = 3081 - (-1)°6®8r . Clearly FID/FI'D can be identi-

fied with £ C,(star r%), where C (star 7% is the free abelian

q
T

group generated by the simplexes ¢ of starrT (i.e. o>r1).

Furthermore, the second summand of d(op@q-q) (1.3) lies in
+ + '

Fq 1D, so d on FqD/Fq 1D corresponds to the simplicial

boundary operator in each C*(star' rrq)_ Thus

(1.4) E1 T v H(starT)= g H (star 7, o star 7)
P, q q p q p
TEC T€C
= cUx; W)
p
Now d1 : E1 - E1 is the boundary map
P, q p, g+l 7

+ + +2
g (i, F¥ D) B #4p, F¥°D) induced by d. Since
P-q p-q-1
. q .. g+l 1
the first summand of d(op®'r ) (1.3) doesn't liein F D, d
q qt+l
corresponds to + & : C (K;?{p) -» C (K;%{p). (Compare the
general discussion on pp. 86-87 of [Go].)
A
Zeeman proves the topological invariance of E (and E)

in §3 of [Ze 1]. Intuitively, his proof generalizes the proof that

the simplicial cohomology of a complex K is isomorphic to the
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(\éech cohomology of the underlying space |K|. E is clearly not
a homotopy invariant of |K]|, becéuse the sheaves a(p of local
homology occurring in the E2 term are not invariants of the
“global homotopy type of |K|. For example, Zeeman calculates
E for K = the cone on a closed manifold M ([Ze 1], p. 160).
|K| is contractible, but the local homology at the cone point (the
only singularity of IK |) is the homology of M.
If K is a closed combinatorial n-manifold, then _s—t;l?‘—o_
is a combinatorial n-ball for all ¢ € K, so
%(p(c) = Np(star o, o star g) = Z p=n 1i.e. K is a homology
0 p#n
n-manifold (has the local homology of euclidean n-space). K is
orientable means ?{n is the constant sheaf Z, so E collapses

to the isomorphism
HYK) = HAK; v ) > H_ (K.
n n-q

Remark: Actually, Zeeman doesn't verify that this isomorphism
is ""the'" Poincaré duality isomorphism. It's possible to prove this
using the analysis in [Go] mentioned above - in fact this led me

to the alternate description of E to come in §3.



Formally, E has the same domain as D, namely
0<g<p<n-=dimK. The differentials run
r r r

d : Ep, q - Ep+1"-1, gtr ’

and the E°°s+q g’ 0 < g< n-s, are the successive quotients of

£

the filtration
(1.5) H@E =F'oF'>...5F %50
s s S .

induced on HS(K) by the g-filtration of D. Precisely, Fg
corresponds to Im(HS(FqD) - HS(D)) under the isomorphism

H (K) => H (D), and
S S

© ~ 4 g+l
Es+q,q FS/FS .

17
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A
E has the same domain, and the differentials run in the

opposite direction,

Ar Ar Ar
. - E .
P, q p-r+l, g-r

The E°°S+q . 0 < g < n-s, are the successive quotients of the

>

filtration

>
[ 205

(1.6) 0c

| )]

A
induced on HS(K) by the g-filtration of D.

The filtrations (1. 5) and (1. 86) are in fact defined as
A

topological invariants of any space X (since E and E can be

defined topologically - see [Ze 1], §3).

Example. Let X be the '"pinched torus"

11 1 1
X=8 x 8/{p} xS, pes.
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X 1is homeomorphic to the curve x3 + y3 = xyz in the complex
projective plané, which has one singular point (x =y = 0).

0 = 0; -&/1 =0 except at the singular point x, where

3[1:%; and 2[2'; Z, except at x, where 2(2= Z & Z.. The

Clearly ¥

2 ~
nonzero entires in the E2 term are E1 0° HO(X;Nl) = Z,

2 0 ~ 2 2 ~ 2
E2, 0° H (X,%[Z) = Z, and E2’ 9 = H (X,i{z) = Z; and d =0,
2 0 2 0
Therefore E~ = E , and so HO(X) = FO, H2(X) = Fz, and
0

Hl(X) = F1 .

H2 Z

H1 0 0

HO 0 Z, Z,
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If o€ HS(X), filtration « = max{q, a € F(Sl} Thus the generator
of HI(X) has filtration 0 instead of filtration 1 as it would in
a 2-manifold. (If X is a manifold, Np =0 for p<n, so the
E2 term is concentrated along the line p =n, and all cycles
have maximum filtration, i.e. HS(X) = Fg_s for all s.)

Now H (X)= H (X)= Hy(X)= Z, and so
o) Y 5lx) Y i) T Z . Let [X] be a generator of H,(X).
The Poincaré duality map Hi(X) - HZ—i(X) is given by

a-an [X], N =cap product.
Lemma. +N[X]: Hl(X) -~ Hl(X) is the zero map.

Proof: X can also be considered as the two-sphere with the north

and south poles identified., Let f: 82 -» X be the identification
2 2 2
map. Let [S"] be a generator of H2(S ) with f [S7] = [X]. If

1
B € H (X),
. 2 sk 2 2]
B N[X] =Bﬂf* (S1]-= f*(f(B) NSO = f*(O n[s) = 0.
The second equality holds by the "naturality" of cap product - cf.

§3. *(B) = 0 because HI(SZ) = 0,

Thus the generator of HI(X) is not in the image of the
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"duality map" +N [X], 1i.e. there is no cohomology class dual to
it. This is the algebraic manifest ation of its not having maxi-
mum filtration. We will see that, geometrically, this failure

of duality stems from the fact that the generator of Hl(X) does
not have as many '"degrees of freedom' as it would in a 2-
manifold - any cycle representing it must pass through the singu-
lar point x,

It turns out that I% of the pinched torus is '"dual' to E,
so the elements of Hl(X) have filtration 0
(Filtration B = min{q, B € ﬁ‘q}). Algebraical‘ly, this corresponds
to the fact that «N [X] is the zero map on Hl(X); geometrically,
to the fact that the generator of Hl(X) can be represented by a
cocycle which is supported by the singular point x, If X were a
2-manifold, any element of HI(X) would be given by the cocycle b =
"intersection with a'" for some 1-cycle a, and so the support of
b would be 1-dimensional. (If b is a cocycle, support b is
the smallest closed subset of X such that b | supportb # 0.)

The ideas suggested by this example will be developed in
the following sections. I will return to the pinched torus periodi-
cally, since it is the simplest example of a '"geometric cycle with
singularity." |

A more sophisticated example is given by Zeeman on p.

181 of [Ze 1]. Let X be the quadric cone in P3((E),
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x2 + y2 + z2 = 0 in homogeneous coordinates (x,y,z,w). X

is homeomorphic fo the Thom spac.e of the tangent bundle of

the 2-sphere. X is a 4-manifold except for one singular
“point %, and a neighborhood of x is homeomorphic to the

cone on real projective 3-space P3(IR) = the tangent circle
bundle of the 2-sphere, The homology of X is Z0 Z0 Z.
The spectral sequence E shows that the generator f of HZ(X)
has filtration 0, but 2B has filtration 2, This is because
any cycle representing 8 must pass through x, but 28 can
be represented by a cycle in the complement of x. 1/7} shows
that all elements of HZ(X) have filtration 2. This reflects

the fact that the support of any 2-cocycle on X is 2-dimension-

al. Algebraically, we have that
2
e 0 [X]: HY(X) » Hy(X)

is ""multiplication by 2", which is injective (so 2-cohomology
classes have maximum filtration) but not surjective (so not all 2-
homology classes have maximum filtration). I will give a com-
plete analysis of E and ﬁ when X has isolated singularities
in §§4 and 5.

The spectral sequences of the quadric cone in P3(([')

A
have particular interest because they show that E may not be
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dual to E - since /c\iz # 0 but d2 = 0. Also, E and ﬁ may be
significantly differént with other coe;fficients than Z. The defini-
tion of D and ]/5, and hence E and ]%, can be made with
coefficients in any abelian group G. Then the coefficients of the
E2 term are the stacks of local homology with coefficients in G,
and E converges to H(K;G) (I/% => H*(K, G)). For the spectral
sequences of the quadric cone X with Z/2 coefficients, the non-
zero class in HZ(X) = Z.] 2 has filtration zero. This reflects the
fact that although the generator o« ¢ H2(X) can't be supported by
the singular point x, its image under the coefficient homomor-
phism H2(X) - HZ(X; Z/2) can. (Moreover, notice that for ration-
al or Z/p coefficients with p odd, X is a homology manifold,
and so E and é collapse.)

In the process of generalizing E and ’g) to arbitrary
topological spaces, Zeeman defines a spectral sequence E({)
associated to any continuous map f: X » Y. The general sequences
are described in Theorem 2 of [Ze 1]. Es’ q = wYy; f*ﬁlp), where
x(p is the sheaf of local homology on X, and f#}[p is the sheaf
induced by f>:< on Y. E(f) => H*X. (Zeeman's spectral sequence

E of X is just E of the identity map on X.) I will give a

geometrical discussion of E of a simplicial map in §§3 and 5,
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2. The cap product

The first step in a geometrical analysis of the spectral
sequence E is an interpretation of the isomorphism
H*(K) = H (D) ([Ze 1] Lemma 1). Zeeman shows that the in-
verse isomorphism is induced by cap product, and as a corollary
he shows that there is a relation between cap product and the
filtration of a homology class ([Ze 1] Theorem 3).

To understand the geometrical relation between cap prod-
uct and duality, let us return to the days of yesteryear, and the
classical proof of Poincaré duality for a combinatorial n-
manifold K. K is a finite simplicial complex such that the
closed star of each simplex ¢ is a combinatorial n-cell., (That
is, EEEFE has a simplicial subdivision isomorphic to some sub-
division of the standard n-simplex.) Let K' be the first bary-
centric subdivision of K. To each simplex in K is associated a
"dual," which is a subcomplex of K'. If ci is an i-simplex of

K, dual 01 is a combinatorial (n-i)-cell,
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Assume that K is an orientable n-manifold, i.,e, its n-
simplexes can be oriented coherently (in oth;er words, so their
sum is a cycle). Choose such an orientation for the n-
simplexes of K, and orient the other simplexes arbitrarily.
(A vertex has a canonical orientation,) This determines
orientations of the dual cells so that if ¢ is an elementary co-

chain,
dual(®o) = 3 (dual o).
Thus taking duals induces a chain isomorphism
B o CHEK) 2> D _(K),

3

where D\E(K) is the complex of cellular chains on K consisting
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of formal sums of oriented dual cells. Therefore # induces an
isomorphism of homology. H(C*(X)) = H*(K), and

H(D*(K)) = H*(K) (cellular homology = simplicial homology,
cf. [HW] §3.8). This is the classical description of the duality

isomorphism

H*(K) => H  (K).
-

5

(Of course, duality wasn't expressed in terms of cochomo-
logy originally - my aim is to bring out the geometrical content
of the classical proof.)

The geometric duality ¢ - dual ¢ can be described in an
arbitrary simplicial complex K. The vertexes of the éierived
complex K' are the barycenters of simplexes of K. Each sim-

lex of K' can be written uniquely as <g ,0.>, where each
P quely o g,

R
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gj € K, -G—j is its barycenter, and 9 < 9y <...< o, (o<1
means g is a proper face of T.) .Now let dual o
= Kggs o v s0” €KL 0 < 00}. Dual ¢ is a subcomplex of K
. "transverse' to g ; if K is a combinatorial manifold, dualo
is the classical dual cell of ¢ (cf. [Ze 1], proof of Lemma 11).
Recall the basic subcomplexes of K and K' which des-
cribe the geometry of K at a simplex o: !
star o = {1 € K, 0 <1}
star'c = {<90, .. .,gi> eK', ¢ = oj for som? j}
linkog =f{r € K, 7 € star g and T has no vertexes in common
with o}

inkls = {< > ! <
link'c = {<g,, ...,02>€ K', © 04}

=f<g ..., 0> €K, o<
dual ¢ {90’ g, €K o_oo}

If S is a collection of simplexes of K, S denotes its closure
(the smallest subcomplex of K containing S), and S' denotes

its first barycentric subdivision, so S' - K'. Thereis a
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canonical p.1. homeomorphism star'g—w——> star g and a canonical
simplicial isomorphism link'sc —> (link 0)' (so it is customary
to identify these complexes).

If J and L are subcomplexes of K, J*IL denotes their
simplicial join (when it's defined; cf, [Ze 2]). (Link g = {1 € K,
T 1is joinable to ¢}.) Now we can describe the relations between
star g, linkg, and dualg. By definition,

dual ¢ = ¢ * link'g,

e}

i.e. dualg is the simplicial cone on link's with cone point g,
the barycenter of ¢ . Thus dual ¢ is called the dual cone of c.

Now

star ¢ = g * link ¢,

p.1.
and g*link g = Yo *2 * link'c = 30 * dual g, so we have an
isomorphism of pairs

p.1l.
(2.1) (star ¢, 3 star g) = 3¢ * (dual g, link'g) .

If ¢ isan i-simplex, 3¢ is a combinatorial (i-1)-sphere, so

(star g, 3 star g) is p.1. homeomorphic to the iﬂl— suspension of
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(dual g, link'g).

This structure is used in the classical proof of duality to
show that if ¢ is an i-simplex of the combinatorial n-manifold
K, dual g is an (n-i)-cell. Since K is an n-manifold, star ¢
is an n-cell, so 3 star g = 3¢ * link ¢ 1is an (n-1)-sphere,

Since 30 is an (i-1)-sphere, it follows that link ¢ is an
(n-i-1)-sphere. (cf. [Mo]). Thus dual ¢ = g * link'sc is an (n-i)-
cell.

Now according to Whitney ([Wh] 1938), if M is an oriented
(closed) n-manifold, the Poincaré duality map =HM) - Hn_q(M)
is given by cap product with the fundamental class [M]. That is,
[M] is the generator of Hn(M) corresponding to the given
orientation; and if B € HYM), the dual of B is B n[M]¢€ Hn_q(l\/[).
The essential step in understanding the relation of cap product to
duality is to see how «N[M] fits into the classical proof when
M = |K|. This will provide a bridge from the algebra of cap
product to the rigid combinatorial geometry of K discussed above.

Let K be an oriented combinatorial n-manifold (with its
n-simplexes coherently oriented so their sum is a fundamental
cycle [K] ¢ Cn(K), and with the lower dimensional simplexes
arbitrarily oriented), If ci is an i-simplex of K, define a

chain Do’ € C_ .(K') by
n-1
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i i n

(2.2) Dlo’) = z NCAPIE S L SRR o

. ’
oi<r e, <e®

where the sum is taken over all increasing sequences

i i+l i i+l
‘ o <7< ... <1 of simplexes of K, and T](Gl,'l'l et

i i+l i+l i+2 -1
= [ol,'r1 ][’r1 ,’r1 l... [Tn ,Tn] ([ , ] = incidence number,

+1 n j

cf. §1). Note that n(ol, 7t ,...,T ) =0 unless 7’ is a top

jt+1

dimensional proper face of T for each j, i.e. dimension

= j. Note also that we are using the canonical orientations of
the simplexes of K' - the vertexes of a simplex K' are ordered

by ¢ <1 <=>¢ < 1. Clearly D(c) is the sum of all the (n-i)-

simplexes in dual ¢ . I will show below that
Do) = 3(Do),

from which it follows that D is a chain map C*(K) - C, - (K",

equal to the composition

+
C*#(K) LN D _ (K) ® > C, (K,

where s is the subdivision map.
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Therefore D induces the Poincare duality isomorphism
H#(K) > H___(K) T H__ (K)
n- s n-s
In fact, I will show that (2. 2) can be generalized to a for-
mula for the cap product of a simplicial cochain and a simplicial

chain, so that D(g) = o n [K] (cf. [Fr)).

Theorem 1A. Let K be an (oriented) simplicial complex. The

cap product pairing between the cohomology and the homology of

K is induced by the pairing
q
CHK®C (K)-»C_ (K")
b p-q

given by
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q ) , T

, ™ <g,w
== =p-q-1"—

(2.3) o' N T pX n(o,wl,...,w

p-q-l 1:...

Here Gq is an elementary q-cochain, Tp is an elementary p-
chain, and the sum is taken over all sequences of simplexes

o] <w1< v e <wp_q_1<"[‘ in K with dim wi=i-q.

6in r =0 it p<aq, and o

p

Nt =olr)<e>.)
p —

Remark. The immediate geometrical significance of this definition
of cap product is that if y is a g-cochain and x is a p-chain,

support yNx < U dual g, and so it has a certain degree of
dim o=q

"transversality' to the simplexes of K.

Proof: (Cf. [Wh].) I will show that (2.3) agrees up to sign with the
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definition of cap product in [Sp]. There is no standard definition
of cap product - the various defini‘;ions differ by signs depending
on the dimensions of the factors (cf. [G. Wh]). (I will come back
to this point in the next section. Zeeman's sign conventions for

the double complex D force a particular choice of signs for cap

product which differs from mine.)

Let x € Cp(K) be a cycle, and let A, be the chain

complex
0 i<o
A, =
! -i
Py i>0
Let €_ : AO - Z be given by ¢_(y) = y(x), where y¢€ P (k)

= Hom(Cp(K), Z). € , isan augmentation for the chain complex
A,. Let e: CO(K') » Z be the standard augmentation for
C*(K‘) which assigns 1 to each vertex of K'.

Define an acyclic carrier T from A* to C*(K') as

follows., If ¢ is an elementary cochain of K, let T{o)

= (star g)' c K'. If ¢ <7, star g> starT, and starog is
acyclic, since it collapses to O,
Now it follows from the classical acyclic carrier technique

(cf. [HW]) that there is a chain map
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(PX : A>{< - C*(K')

such that P preserves augmentation and is carried by T, i.e.
eq;X =€ and supp ¢{c) =T (o) for each elementary cochain ¢
of K. Furthermore, any two augmentation preserving chain maps
carried by T are chain homotopic.

I claim that cpx(y) =y N x, as defined in (2.3) is such a

chain map. The following properties must be checked:

1) 1f ye cXK), and q>p, yn x= 0.
2) If y€ cP(x), ely Nx=yx).

(2.4) 3) alynx)=8y N x
4) If ¢ is an elementary g-cochain,

suppl(o Nx) c (star g)'.
1), 2), and 4) are clear by (2.3).

Lemma 1A, If x¢ Cp(K) and y € Cq(K),

)p"q

Ay Nnx)=dyn x+ (-1 y N 3x.

Proof: It suffices to prove the formula when x and y are

elementary, say x = Tp and y = cq. Let y denote a sequence
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c < Wy <...< < 71 of simplexes of K with

w
p-q-1
W _,_q»T). Thus (2.3)

dim y, = i-q, and let n(y) =n(0,w1,..., b-q
says
= < >
o nNT=% nly To Wy eees Wy T
Y
Then
= < >
d(e N1) =X TKY)Q,Ql,...,gp_q_l,l .
Y
p—q-l i A
+o ) T <o, W W e W T
y i-1 1 i p-q-1
pP-q
- < >
+Z n(Y)( 1) g,"u‘ll, .""u'J'p"'Q"l
y
Now &g = £ [osw,]Jw,, so
171
o<w1
doNT = T [o,wl]w1 n-T
0<w1
= % [o,uw] b n(wl,...,'r)<_w_1,...,1>
o<w <...w <T
1 | p-a-1

i

% ony<gs .1,
Y

since nlo,w,s...,7) = [0, wl]n(wl, ..., T). Similarly,

1
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T = = w s T , SO
0 . <T[ p-q-1’ "Mp_g-1
p-q-1
= < >
On aT Z n(Y) g_’_@_l:---,_p_q_l .
Y
Thus we have that
3o nr)=sont+ (-1 % nar

i A
+% (1) % nly)os . el T
i vy .
so we must show this last term is zero. But the coefficient of
/\ »
<Oy eees W, T2 18

i
("1) Zﬂ(c,--.,wi_l,w,w ,-..,T),

w

i+l

where the sum is over all y such that W _q << Wi This

equals

-1 % [oow ] vee [oy_ g wllwswg g beees o o 4ol

w

p-q-1

But i [w, ;- wHw,w, ,1=0 (1.1), so the coefficient of

<O ... ,_/u)ii, ...,T> is indeed zero. This completes the proof of
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the lemma, and therefore of property 3) of (2. 4).

Now I will show that (the subdivision of) Spanier's cap
product ([Sp]) satisfies (2.4) (up to sign), and so agrees (up to
sign) with my cap product. If 'rp is an (oriented) simplex of

K, say 1 =<v

IRREY Vp>, and y € Cq(K), Spanier (following

Whitney [Wh]) defines cap product as the pairing { induced by
(2.5) (y,m) =y(<v__ ..., v>)<v ..., V__ >,
vy Y(SVhq o) <V

i.e. {(y,t) is y of the back g-face of 1t times the front
(p-qg)-face of 7. (In other words, he uses the classical
Alexander-Whitney "diagonal approximation" + - £ (front
‘ i+j=p
i-face of 1 ® back j-face of 1) to define N. See [Sp], p. 254.)
Let s: C>,<(K) -+ C_(K') be the subdivision chain map.

We must show that s{(ynx) satisfies (2.4). 1) and 2) are clear

from (2.5). According to [Sp], p. 253,
0% %) = (1P N6y, %) + iy, 3).
. _ q _ b-q
So if 3x =0, 3sy(y", xp) = (-1)" “sy(dy,x). Thus 3) holds up to

sign. Finally, if y =¢, (2.5) implies that {(y,7) = 0 unless

o <7, in which case {(y,7) =+w, w<rt. Thus y(o,T) lies in

star ¢, as desired, This completes the proof of Theorem 1A.
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The pairing of theorem 1 will be used in §3 to analyse
the spectral szquence E. A certain amount of information about
A A
E will then follow from the formal duality between E and E,

 but a complementary theorem on cap product is needed for a

A
complete geometrical analysis of E,.

Theorem 1B. Let K be an (oriented) simplicial complex. The

cap product pairing between the cohomology and the homology of

K is induced by the pairing
cdkne Cc (K)» C__ (K)
p p-q

given by

(2.6) <o

0 if 7 o]
#q

Here <_c_

ERE ,_qq> is an arbitrary g-simplex of K' (so

9 <...< oq), and T is an elementary p-chain of K. Note

that n(oo, cees oq) = 0 unless s is a top dimensional proper

face of o, for each i, so the only case in which

+1

<gg - .,gq> Nt #0 is when dim g, = i+p-q for each i



39

(p = dim 1).

Proof: I will show that (2, 6) agrees up to sign with the definition

of cap product in [Sp].
Lemma 1B, If x¢ Cp(K) and y € CHKY),
dynx)=synx+ -D% nsx.

Proof. Let y =<g .,g_q> and x =7 . Then by (2.5)

0"

< * e e > = 3 e o 0o i =
(a) 2(<gy %4 N nla, oq)aoo if 7 %

+
o> = Z<p,go:-.-,g>+ by (—1)q 1<0,---:gq:u)>:

NOoWw 8<G .5 ««.s
=0 - < <
p GO O'q w

where p is a top dimensional proper face of % and Oq is a

top dimensional proper face of y . Thus

Y (0,0, ¢20050_) if t=¢0
p<o %o 9’ ' d
6<00,...,0 >NT = 0
- —q
_ q+l . _
(1) n(GO:---}Cq:w)oo lf T =W
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" Now % n(p,oo, .. .,cq)p = n(oo, .. .,oq)aoo by (1.1) and the

p<0,

definition of 1y, so

T\(oo, cens cq)aco if 7= cq
< > =

(b) 6 _9_0:...,_9'(1 n T q+1 .f
(-1)7 "nlog ...,Gq,w)co if 7 =w

Finally, a3t = & [o,7]o, so
o<t

. ) 0
Ul oq)[cq, o, i [Oq ] #
0 otherwise,

SO

it o o=
n(co,...,oq,w)co if 7 =w

(c) <o

e o > -
Oy g_q nNnoar

0 otherwise
Comparing (a), (b), and (c), we have
0’ L

+1
a(<0' s’ -.-,O' > ﬂ T) = 6<0 £ --o:o. > ﬂ T- (—1)q <O.

q
286G, e.0,0 >Nt (1)< 0 >N 3T,

0,..

e >N o7
—-q
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as desired.

Now the proof of theorem 1B foilows from the acyclic
carrier argument of theorem 1, Let t: C¥*(K') > C*(K) be the
dual of subdivision (i.e. (ty)(x) = y(sx)), and let x be a fixed
p-cycle of K. The cap product of (2. 6) satisfies

1) If y€ Cq(K'), and q>p, ynNnx=0

2) If ye YK, ely Nx) = (ty)x)

3) 3y Nnx)=08y N x (by the lemma)

4) supp<o.,...,0 > N x)c star g_ .
p? 0 q q

I claim that y - ¢ (ty, x) also safisfies 1) - 4), where
is Spanier's cap i)roduct (2.5). 1) and 2) are clear, and 3)
follows from his boundary formula. Finally, 1{!(’t<00, vees cq>, ) =0
unless <g., ..., o-q> lies in a face of T, 1i.e. Gq <q, in

0

which case {(t<o, ..., oq>, =+w, w<7, so y{<o,..., cq>, )
lies in star oq.

Therefore his cap product is chain homotopic to mine,

Remark. Steenrod (unpublished, cf. [G. Wh]) showed that cap
product [and cup product] can be characterized as a pairing of
homology theories satisfying certain axioms. These axioms are
listed in [St 1] as follows. If X is a topological space and Al’

A2 are subspaces, N is a bilinear pairing
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n:Hq(X,Al)xH (X, AUA)->H (X, A,)
P 1 2 P-q 2

such that
0) ely nx)=<yx> e=augmentation, <, > = Kronecker
pairing
1) aynx=D%synsx i:A X, ye HYX),
x € H (X, A)
p
2) synx=(-D% (ynew, it A -~ X, yeHNA),
x € H (X, A)
p
3) f (fxy Nx)=yNf x, where f: (X, A

LAY > (Y, B, B,)

1 1

is a continuous map, and y € Hq(Y, Bl)’

X € Hp(X, A1U Az).

We have seen that the cap products (2. 3) and (2. 6) satisfy
0), 1), and 2). (The sign for (2.3) in 1) and 2) is (-1)’ ¢ by
Lemma 1A, and the sign for (2.6) is (-1)? by lemma 1B. This
sign is in fact arbitrary.) It is an easy matter to check the
naturality axiom (3) for a simplicial map. (Note that it's enough

to check the axioms for triangulable spaces and maps.)
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- 3. G. Whitehead's spectral sequence

If K is a simplicial complex let Ki denote the i-
skeleton of K, the union of all the simplexes of dimension _<_ i,

Let K(l), the i-coskeleton of K, be the union of all the duals

of simplexes ¢ with dim ¢ > i, If K is n-dimensional, K(l)
ig an (n-i)-dimensional subcomplex of the first derived complex

K' (Zeeman calls K(l) the (n—i)E coskeleton of K [Ze 1].)

In terms of K!', we have

e S . <
(K.) {_g_o,...,_qj , dim oj_l}
(3.1)
K(i)={<g,...o‘> dim g >i}.
=0 ’__j ’ 0 —
If K is a combinatorial n-manifold, K(l) is (the first derived

complex of) the (n-i)-skeleton of the dual cell complex to K.
The following properties of K(l) for an arbitrary complex are

immediate from the definition:
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k=kV5 x5 ox™5p, n-dimx
dim® ™ n (K)) = -

(3.2)
IK(l)l is a deformation retract of |K| - !Ki—l |, and
IKi! is a deformation retract of |K| - !K(1+1)|

Using the definition (2. 3) of cap product, if xp isa p-

q

chain and y° is a g-cochainon K, yNx isa (p-g)-chain on

(q)

K c K',

Proposition 1, TLet z € CS(K'). If supp z C K(q), then z is

homologous to a chain

J

Z = qu v N X g4y
where each yj € Cj(K) and Xs+j € Cs+j(K).
Proof: It is clear that any elementary chain <go, ce ,_qs> in
K(q) (i.e. dim % > q) is homologous to a chain ¥ + <:r_k0,...,_'r_ks>,

k

. N . (g + .
where dim Tho = & and dim Tie(i+1) (dim Tki) 1 for each k,i

Yr. N 1 by (2.3), so the

But <I- kO ks

ko,.-.,T

> =
Ths n('rko, RETAN

proposition follows.
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This proposition shows that the filtration of the complex
K' by its coskeletbns bears an in’ce;resting relation to the cap
product. Let E denote the homology spectral sequence associ-
ated to this filtration (3. 2). Then E converges to the simplicial
homology H_(K'), and % is associated to the filtration

H(K‘)=§O:> ﬁla...jﬁnao,
s s s S

where %2 = Im[HS(K(q)

) - HS(K‘)]. This spectral sequence has
been studied in a more general setting by G. Whitehead [G. Wh].

(See the remarks following theorems 2A and B.)

Theorem 2A. Zeeman's spectral sequence E of a simplicial

complex K is isomorphic to Whitehead's spectral sequence E
of K' (up to sign). More precisely, there is a map of spectral

sequences

E s r
P, d p-2q, q -

commuting up to sign with the differentials.

Corollary 1. E is a topological invariant of |K|, and
~2

~ 1) .
E; ;7 BUREY, o).
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Corollary 2. If a € H_(X), where X = |K|, the filtration of

o associated to E is > q if and only if o is represented by a

(q)

simplicial cycle in K 77,

Remark, §5 is devoted to the geometrical application of

Corollary 2.

Lemma. ILet f: K- 1. be a simplicial map of finite complexes.
The following conditions are equivalent:

1) dim f(g) = dim ¢ for all g € K

) |t] 1) is finite for all x € |L].

(q)

3) Ve yhere £ is a first derived of 1.

Proof: See [Sta], pp. 83, 85.

Such a map is called nondegenerate. By 3), f{' induces a map of

Whitehead spectral sequences.
Corollary 3. A continuous map g: X - Y induces a map of
Zeeman's spectral sequences if g is the realization of a

nondegenerate simplicial map.

Proof of theorem: Consider the homomorphism
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given by x®y->ynx (2.3. Ifylsuppx=0, ynNx=0, so

this map induces a homomorphism

c: Dp’ g Cp_q(K'),
where D is the double complex used to define E (§1).
Unfortunately, c¢ does not commute with the_ differentials, 1i.e,
cd # dc, becauée Zeeman's sign convention (1. 3) is different
from mine (lemma 1A). However, it is easy to define isomor-
phisms e(p, q) : Dp q—a D ” with e(p, q) equal to multiplica-

2 3

tion by + 1, so that

d(e(p, q)Xp® yq) = (-1)p—qe(p-1, Q3x B y + elp, g+1)x ® 8y,
Thenif ¢ = ¥ elp,q): D=> D, we have that
P, q
C(ede)(xP®yq) - (-1 % x v+ X 3y = ac(x®y).

Thus c is a homomorphism of differential abelian groups

c: (D, ede) » (C_(K), ).
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(q%

Now by the definition (2.3) of n, C(FqD) c C.(K
(cf. the proposition above), i.e. ¢ takes the filtration defining

E to the filtration defining E, so c¢ induces a map of spectral

~sequences c_,. The total grading of D is given by
DS = T D , so c(DS)C CS(K'), i.e. ¢ preserves the
p-g=s

total grading as well. Thus

where j = q (filtration degree) and i+ j =p - g (total degree),

soi=p -~ 2q.

N\

E

N\

1 ~
I claim that c_ : E1 > E is an isomorphism,
¥ P, q P-29, 9

and so c¢, is an isomorphism of spectral sequences. Now

+ ~
E = Hp_q(FqD,Fq 1D) = T H (star )= % Hp(star T, d star r);

P dimr=q ° A
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~ + ~ (<]
E1 = H (K(q), K(q l)) =¥ H_ (dualr)
P-2q,q pP-q q P9
T

=% H_ (dual T, link't).
P-q
’Tq

| The top isomorphism was proved above (1. 4). The bottom

(q)

=) dualT, dualt = T % link'r,

q
-

+ +
and link't% = U dualo c K9V, now cl:um_ (Flp, r?lp)
<0

isomorphism holds because K

+
- I’Ip_q(K(Q), K<q 1)) is induced by Xp@yq - yNx, soon each

1 .
direct summand Hp(star T, 8 star 1), ¢, 1is induced by

Xp -7 N Xp’ where ¢ is an elementary cochain. But

TNe: H (star 7, 3 star 1) > H (dual 7, link's)
p pP-q

is an isomorphism for each T, the inverse of the suspension

isomorphism (cf. (2.1)) - in fact 0 «: C, (star 7, 3 star 1)
- C*-q(dual T,1link't) is a chain isomorphism, since g -» 7N g
is a bijection between the oriented simplexes of star v+ ¢ K and
the oriented simplexes of dual T < K'. This completes the proof
2
of the theorem. (For a discussion of the isomorphism ¢ on the |
2
E~ terms, see §4.)
A
Let ]5 be the cohomology spectral sequence associated to

A
the filtration (3.2) of K'. E converges to the simplicial
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A
cohomology H*(K'), and E® is associated to the filtration

where FZ = Ker[H (K') - HS(K<q+1))].

A
Theorem 2B. Zeeman's spectral sequence E of a simplicial

A
complex K is isomorphic to the spectral sequence E of K!

(up to sign). More precisely, there is a map of spectral sequences

commuting up to sign with the differentials,

Proof. This theorem follows by a completely algebraic argument
A A
from the proof of theorem 2A. D = Hom(D, Z), d = Hom(d, Z);

C*(K') = Hom(C _(K'), Z), and § = Hom(p, Z). Moreover, the
i A

~

A A
filtrations on D and C*(K') used to define E and E are induced
. . Aq q+l
from the filtrations on D and C, K'Y - F'={f: F|F = 0}.
Thus Hom(c, Z) : Hom(C _(K'), Z) » Hom(D, Z) induces the
desired map of spectral sequences, which is an isomorphism on
the E1 terms by the dual argument to that given for theorem 1A,

However, this proof obscures the geometry somewhat, It
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is more enlightening to use the definition (2, 6) of cap product

q ] K
cHxBC K) > C_ (K)

>

~4 A
to compare E and E. Recall that D is the free abelian

2

group generated by pairs of simplexes (op, Tq) with ¢ > 1.

Define a map

— g A
c: C(K')» v D
P P, Pp-S

by E(ws) = ¥ (o,wNo) (using the definition (2.6) of N ). As
geK
in the proof of theorem 2A, a little calculation shows there is an

A A
isomorphism € : D—> D which is multiplication by +1 on
- A —_
each ﬁ , such that c(8y) = edec(w), so c is a homomorphism

p,

of differential groups
— A A
c: (C*(K),6)~ (D, ede).

Now an elementary cochain y € CS(K') has filtration < q means

+
that w(p) =0 for p € K(q 1)

(g+1)

, i.e. the simplex w does not lie in

=< . ens >, i i =+ r
K If w 20’ Es this means that dim 09 = 1 00 or 0

so c(w) is a sum of terms (o, + 00) with dim 005 q, which lies

A A — -
in FID = L D_ .. Therefore c is filtration preserving, so c¢
i<q 7
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induces a map c_, of spectral sequences,

A A
c E .- E

with j = q and i+j = p-q, so i=p-2q. The argument that _c—l
is an isomorphism is essentially the same as for c}: , with
homology replaced by cohomology. This completes the proof of

Theorem 2B.

The general setting of Whitehead [G. Wh] gives some
A

perspective on the spectral sequences ﬁ and AI:J Since they are
defined by a filtration on K, they can be defined for any
generalized homology theory (G, G¥), with E(K') => G*(K')
and I%(K‘) => G*(K'). Since the E2 terms can be calculated
without using the dimension axiom for G (cf. §4), we have that
if X = |K|,

~2

= j . —_—
Ei,j H (X,,&i_*_zj) Gi+j(X)

. t
where .&p is the sheaf of local p-ll- G-homology on X (and the
A :
dual result holds for £ ). This observation simplifies

Whitehead's discussion of ﬁ" somewhat.

Furthermore, Whitehead's definition of ﬁ involves two
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subspaces of X, so that for ordinary homology theory, the
spectral sequence of a homology manifold collapses to the gene-

ral duality isomorphism
HYA, B) &> H _ (X-B,X-4),

where A and B are subpolyhedra of X = IKI For arbitrary
K the spectral sequence E has the following description. Let
P 5 Q be full subcomplexes of K. (L < K is full means ¢ € L
if and only if all the faces of ¢ arein L.) Let N(P) and N(Q)
be their open derived neighborhoods in K'. (N(L) is all sim-
plexes of K' which have a face in 1.'). Then E runs

L, .= s Wy A, L) => .. ' > e 3

Fl,J H (P, Q azl+23) H1+J(K N(Q), K'-N(P))
where %, 1is the local homology stack on K (restricted to P).
If (X,A,B)=(K|[,|P],]|Q]), we have

= . _ - -
E i, § H'(A, B; Ni+2j) Hi+j(X B, X-A),

from which all the classical duality theorems follow. (For
example, if A =X and X-B is an open homology manifold,

one obtains the Lefschetz duality HS(X, B) Z> Hn_S(X—B).)
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In this setting, the definition of E still uses a filtration by

"

coskeletons, and is only slightly different from the ''absolute"

case X = A, B=0,

Finally, E can be generalized to a spectral sequence
defined for any simplicial map s : K- I, and E is isomorphic
to Zeeman's spectral sequence E of |s| (see the end of §1).
Let s':K'-» L' be a first derived of f (i.e. barycentrically
subdivide I, and then choose ''barycenters' in K so that s

subdivides to a simplicial map, cf. [Co]). Now since L(q) is a

subcomplex of 1.!, (S')—lL(q) is a subcomplex of K' for each
q. Let E (s') be the homology spectral sequence associated to

this filtration of K', so E => H,(K').

Theorem 2C. If s: K- L is a simplicial map, and f = [s],

Zeeman's spectral sequence E(f) is isomorphic (up to sign) to

E (s").

Corollary 1. E(s') is a topological invariant of f, and

ﬁizj T u [1.], f>?<ﬁ[i+2j)’ where #%, is the sheaf of local homology

¥ ar,
xR

2

on |K|, and f ¥, is the sheaf induced by f on [1.].

Corollary 2. If s is a triangulation of f: X > Y, the filtration

of ac¢ HS(X) associated to E(f) is < q if and only if o is



represented by a simplicial cycle a in K' such that s'(a)

(q)

lies in L. %,

A
Remarks 1. There is of course a definition of E(f'), and
A A
E(f") = E(f).

2. Corollary 2 will be interpreted geometrically in §5.

o5
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4. Elementary properties

In this section I will begin the geometrical discussion of
the spectral sequence E. The E 2 term can be calculated
directly, without reference to Zeeman's spectral sequence E,
and the progression from ]:fl to E¥ relates the local
"obstructions to duality" to the global ones. The edge morphism
ey’ Hq(X; ,‘%[n) - Hn_q(X), which is defined for any n-dimensional
space X and which reduces to the duality map when X is a
manifold, can be interpreted for arbitrary (triangulable) X as
cap product with a canonical class <X> € HH(X;Nn). If X is an
n-circuit with fundamental class [X], *N[X]: HYx) - Hn_q(X)

factors through eX; furthermore, eX can be described in

terms of a topological "'normalization' of X,
4A. The E term

Recall that the definition of the homology of a complex K
with coefficients in a stack £ (§1) required that the simplexes
of K be oriented arbitrarily, so that incidence numbers could
be used in the boundary formula (1. 2). Suppose the covariant
functor M : K » (abelian groups) has the property that

M(c<t) = 0 unless ¢ is a top dimensional proper face of 7,
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and if p,7 € K

(4.1) T Mp<o)emlo<T)=0

c€K
the zero homomorphism from 7(p) to M(r). Then the cohomology
of K with coefficients in 7, H*(K;7), can be defined to be the
homeoelogy of the chain complex C*(K;7), where a cochain in

Cl(K; m is a sum
Zg O: GE K1: ggem(‘j):
and

&(2 gco) = f mic < 'r)(go)'r
(Compare (1.2).) I will call such a functor 7 an "oriented
stack'., Note that if # 1is a stack, an orientation of K deter-
mines an oriented stack ;Z such that C*(K;2) = C*(K;z) by
letting 2 (5) = £(s) and 2(c < 71) = [0, TR (0 < T).
If K is a simplicial complex, define a covariant
oriented stack hp on K as follows. If % € Cq(K),

L

h () =H (dialo)=H (dualog,link's). If ¢ <=7
P p-q p-q q g+l
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h (0 <7):h (g)> h (1) is the map
p p p

H (dual o, link'sg) H (dual 7, link'r)
b-q p-g-1 .
d. l excision
e
H (link's) —— H (link'c, dual p)
p-g-1 p-q-1 Li P
g%p
ptT

(Recall that link'c = |J dualp.) h_satisfies (4.1) because of
0<p p ‘
the 3, in hp(o < T),

Now h - is isomorphic to the oriented stack associated to

the stack ﬁ(p, for the isomorphism is given by

cNe:¥% (o) =H (star g, d starg)»> H (dual g, link's) = h (o).
p p p-q p

~

5 .
Proposition 1, E, . is canonically isomorphic to HJ(K, hi+2j)’

>

and the isomorphism

.2
2 % ~2
E > E
P, q pP-2q,q
I I
HYUK; ¥ ) HYK, h )
p P

of theorem 2A is induced by the isomorphism of coefficients
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1 14 ~
@ g0t~ o Hi+j(dua1'r,1ink'1'),

-

Proof: El .= H, (K

s

1 ~ ~1
). dF LB s

23 d : i, § Ei—2, i+1 is induced by the boundary

~ e

= H (K; hi+
. .

map of C_(K'), and thus induces § : CJ(K; hi+ ) > CJ 1(K;h

2
by the definition of h_ . The description of ¢ is clear from

the proof of theorem 2A.

Remark, This discussion brings out the technical point that the
definition of E depends on a choice of orientations for the sim-
plexes of K, whereas the definition of E doesn't (the simplexes

of K' being canonically oriented.)

4B. The Er term.

To gain a feeling for the workings of E, consider the
groups Zr. First, recall that E is defined to be the spectral
sequence associated to the filtration

(n)

1 (q)DK(q+1)D ... 2K

> K >...2K o 0,

Now, following the discussion in [Mc L] (Ch. XI, §3),

2j i+ 2j)
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(i)

~r

(j+r)
zl, ; ).

{c;c¢€ Ci+j(K ), 3 céE Ci+j-1(K

~~

In other words, Z: . is the "approximate i+j cycles of level

s J

~ro . .
r'' - an element of Z  is a chain ¢ whose boundary lies r

stages lower down in the filtration than ¢ does. One can think

of |K| as being broken up into a lot of little disjoint pieces -

the open duals cones to the simplexes of K, each of which is
"transverse' to its dual simplex. Now a simplicial chain ¢
wending its way through K' will have a certain '"degree of trans-
versality'' to K, equal to the minimum integ(;r j such that ¢
intersects the dual to some j-simplex. The integer j can also
be thought of as the ""geometric codimension' of ¢, since c¢

must intersect each simplex of K in codimension at least j (3. 2).
The chain ¢ will also have a ''"depth of coherence'" r, which
measures how much of a cycle c¢ is, i.e. how well the parts of

¢ fit together. c has depth of coherence > r if (geom. cod. 3c)
> (geom. cod. c) - r. In other words, ¢ can be written uniquely
as ¢c= % cc , Where CO_ is a chain in dudal 0. The geometric
codimension j = min{dim o, c # 0} . c¢ has depth of coherence
> r means that if dim 7t < g+r, the boundaries of the chains Co
for ¢ <71 cancell each other out when restricted to dL:al T. (If
o <7, dualrc link'c =3 dual ¢, so there are '""boundary maps"

C*(dl;al o) - C*(duoal 1) for ¢ <7, discussed above in the
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2

definition of the stack h,.) For example, let c € Ei 7 i.e.

let ¢ be an (i+j)-chain of K' with geometric codimension j
and depth of coherence 2, Consider the sum x = % ccc. c
j
o

has depth of coherence 2 says that for all r ¢ Cj+1(K)’

L dc | daal T =0, which is precisely the condition that x
o<t

). (Compare Proposition 1. )

. Jppr.
is a cocycle of CY(K; hi+23

Now as r ~»w®, the chains of Z° have more and more
coherence; that is, they come closer to being cycles., At =,
we are just dealing with cycles, and the structure of £ is
determined by the filtrations (geometric codimensions) of
these cycles, Each term E' can be thought of as a group of
"obstructions to duality, " o is completely local, being the
direct sum of the local homology of K at each simplex.
(Cycles in E1 have no coherence, ) B is completely global,
measuring the "degrees of freedom' of cycles on K up to
homoloéy (see §5). & 2 (and E* for 2< r <e) is a mixture
of local and global information about K. In practice, ’E 2 can
be calculated by grouping the places with the same local homo-
logy together into strata, and analyzing the way the global i

homology of these pieces fits together (cf. the examples at the

end of §5.)
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4C. The edge morphisms

For any topological space X, there are two edge

morphisms associated to E:

2

e : HY X% )= E —>>E Oz Fq(H XN c H (x)
X n n, n, n-g n-q
2~
£ H ) = FUH (X)) —>> B cBS T HOGGH)
X p p p, 0 p, 0 P

A ’
(Associated to E, we have g : Hq(X)e Hn_q(X;;’&[n) and

X
A P p .
fX : HO(X;&/ ) » H (X).) The map fX is well known in sheaf

theory - it assigns to a homology class the corresponding

section of the local homology sheaf. Since fX is geometrically

uninteresting, I won't discuss it here. (See the example of ise-~
lated singularities below.)

On the other hand, the edge morphism ey is the "Poincare
duality" map for the space X. We will see that if X is a mani-

fold, ex is the classical duality isomorphism. In general, the

image of e_ is the group of homology classes of maximum filtra-

X

tion in E, so ey is surjective if and only if E® T H*(X). Thus

E gives an algebraic criterion for e, to be a surjection, In the

X

following discussion, I will analyze the geometry of ex by com-

paring it with the map N [X] when X is a geometric cycle.
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Proposition 2. Let X be a triangulable space. Then

e = <X : H(X:;% )» H (X), and
X n n

B =< Hq(X) -» H (X;?{n), where
X n-q

A n
< = .
x> el(l) € Hn(X,%( ).

Remark. This is proved in a more general setting in [Br]

(corollary 10, 2).

Before the proof, some background on cap product with
stack coefficients is necessary. (Presumably the following

definitions agree with [Br] for stacks which come from sheaves.)

I.et ¢ be a covariant stack and B a contravariant stack on K,
and suppose there is a pairing ¢ : ¢ ® £~ Z, i.e. a homomor-
phism 0 @ (o) ® B(c) > Z for each ¢ € K such that the

1

following diagram 'commutes" for ¢ < :

a(c) ® »(o) ¢
o
(4.2) ‘ T l \ 7.

alr) ® B(r)

That is, if a € (o) and b € B(r), cpo(a® B(o < 1)b)
=9, (@ <71)a® b), so ola® b) is well-defined. Then ¢

determines a cap-product pairing
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(4.3) HUK; ) H (K;8) > H__ (K
' p pP-q
defined on the chain level by
Fao)® Ebt)> T oa ®b T,
o T o T

c T o, T

where N : Cq(K)® Cp(K)—» Cp_q(K‘) is cap product (2.3). (Any
chain map representing cap product may be used here.) If # is
any contravariant stack, there is also a cap product pairing
(4.4) HYKY @ H (K;8)» H___(K;5)
p pP-q
defined on the chain level by
Cnw® (EbrT)»Zn b wNr,
w T w T

where N : Cq(K') ® Cp(K) - Cp_q(K) is the cap product of (2.6).

Proof of Proposition 2: The first step is to describe e in

terms of the spectral sequence F(K'), |K| =X,

72 —>>E” *rFlE ®)cH (K.
n-2q-q n-2q, q n-q n-q

e )
eK.H(K,%/n)
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By the proof of proposition 1, the isomorphism

~2

n-2q, q 1s induced by the map

Hq(K;N ) =
n
_—
= [cT Ir S TNe |,

where c'r is an n-cycle of star v mod 3 star T . Furthermore

6Zc1)=0=>3ErNc)=0, and TN cT represents eY(Z coT).
T T S T

Similarly we have

A -A
Ao A Ro
e : HYKY) = 7 YY) —>> B c £ -H  (Kxh
K n-2q, q n-2q, q n-gq

inducedby T no-> £ n [wllo N (& isan n-cocycle on
o " o
n
star(o n w)).

Thus <K> - ’éx(l) is represented by T fwlw € C_(K;u").

¥n

Let ¢ : ¥ ®¥" 5 Z be the Kronecker pairing cp(alc ® Bg)
= <Bo’ a'c> = BO(Q’O). (4. 2) clearly commutes, so « N <X> indeed

gives homomorphisms
'N<K>: HY(K;% ) » H_(K')
n n-q

<k HYKY) H &)
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by (4.3) and (4. 4) respectively.

Now let © [c Jr € Cq(K;'z(n). By definition (4. 3)

. q

(z [CT]T) n <K> = (v [cT]'r) N [wlw

=35 <w, CT>T n w

T TN c_ = eK(Z [C’T]T)

Similarly, let % n_o e cdx). By definition (4. 4)

(zno) N <K =(n o)nzlww
o o

A
n N =e_ (X n o).
v O[w]o W K( 5 )
This completes the proof of proposition 2.

Corollary. If M is a closed oriented combinatorial n-manifold,

€M is the classical Poincare duality map.

Proof, ¥ is just the ""orientation sheaf'' of M - M is orient-
able if and only if Nn is isomorphic to the constant sheaf Z.

Under the isomorphism Nn = Z determined by the fundamental
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class [M] € Hn(M) = Z, <M> corresponds to [M], and
ey =+ NIMI: Hi(M) - H O, which can be identified with
(the subdivision of) the classical duality map using the defini-
tion (2.3) of cap product.

If M is not orientable, i.e. %n is not constant,
ey I{q(M;Nn) Z5 Hn_q(M) is the usual '"twisted Poincaré

duality."
4D. Circuits and normalization

Many spaces with singularities carry 'fundamental

' so the natural ""duality map' for such spaces

homology classes, '
is cap product with the fundamental class. This duality map

bears a simple relation to the edge morphism e.

An n-circuit, or geometric n-cycle, is a compact n-

dimensional space X such that Hn(X) Tz, together with a
generator [X] of Hn(X). Furthermore, X can be triangulated
as a finite simplicial complex K such that
(i) every simplex of K is a face of some n-simplex
(X is "purely n-dimensional''), and
(ii) every (n-1)-simplex of K is a face of exactly two
n-simplexes (the singular set of X has codimension

> 2).
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[X] is called the fundamental class of X. Amap f: X -~>Y of

n-circuits has degree k if £, [X] = k[Y].

If X is an n-circuit, then any triangulation K of X
satisfies (i) and (ii) (see [ST], where n-circuits are called
"oriented n-pseudomanifolds'). The term ''n-circuit' was

introduced by Lefschetz; ''geometric cycle' is due to Sullivan.

Examples. 1. Any singular cycle in a space Y can be repre-
sented by amap f: X - Y, where X is a curcuit., Further-
more, a singulér homology can be represented by a map of a
"circuit with boundary" into Y. One thus obtains an elementary
geometric picture of ordinary homology theory. The topological
and combinatorial properties of geometric cycles in Y can pro-
vide subtle invariants of Y ([Su 1]).

2. A complex projective algebraic variety V of complex dimen-
sion k is a 2k-circuit ([Le], [Za]). V is triangulable ([Loj]),
and the singular set SV is a subvariety of complex codimension
at least one. Furthermore, V - SV is a connected open complex
manifold, so the complex structure gives V - SV a canonical
orientation. (In fact, any complex analytic space is a circuit. )

A simple example is the singular curve x3 + y3 = Xyz in PZ((I,‘),
the "pinched torus'" discussed in §1.

3. A real algebraic variety (or, more generally, a real analytic
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set) is usually not a circuit, but a "'mod 2 circuit." That is,
Hn(V) = z/2, and V = |K]|, Whe;'e every (n-1)-simplex of
K 1is a face of an even number of n-simplexes. Any purely
. n-dimensional connected compact real analytic set is a mod 2

circuit ([BH]).

Proposition 3, Let X be an n-circuit, There is a canonical

homomorphism § : Hq(X) - Hq(X; %{n) such that the following

diagram commutes:

adx) 12l

N

H(GH,)
(The analogous result holds for QX .)

Proof: Let X = |K|. I will always assume the n-simplexes of
K are coherently oriented to represent [X].

6 : CHK) ~ Cq(K,Nn) is defined by

8(x no)—T[an ]o
i i
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where ¢ € Cq(K), and the sum is taken over all wij € Cn(K)

such that Uiiwij' Since K is an n-circuif,

{E niwij =1, Z wij is a cycle in (star 0. d star ci) for each

J J

i, so [¥ n.,w..] € H (star g,, d star ¢.) =& (0.). I claim that §
A S n i i n i

J

is a chain map, i.e. &6 =66 .

86(= njo;) =8 2 [T nyulo,

summed over all Ty which have some Gi ag a face. Clearly

summed over all i,j such that 0, <7 < U’ij' On the cother hand,

k

88(2 ny0,) =6 = [0 Ty IoyTy
i ik

=3 [oi,'rk]ni JZ [wkj]Tk’

ik

summed over all j suchthat 71, <u Thus %8 = 06, so @

k — Ykj°

induced a map on homology. It remains to show that
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sy N <K> =un [K] for uc Hq(K). I.et u be represented by

the cocycle T n.o.
i

8@ u.5.) N<K> = (£ [T nuw,.lo.) N <K>
; 1 i i7" ]

=5 1’11(0 N U)i.):

where the sum is over all mij such that 9, < ‘”ij (cf. the proof

of proposition 2). Now

it

(f; nioi) n [K] (5.3 nioi) n s wk)
i i k

It

v n.(o. N w)s
ik i1 k

where the sum is over all g € K_. Since o, nNw, =0 if
k n i k

< =
oifwk, e(z: no.) N <K (iz ni"i)” [K], g.e.d.

§ is clearly not injective in general, since 8 injective
=> . [K] injective (and +nN [K] isn't injective for the pinched
torus, for example). Neither is © surjective in general, as is

shown by the following example.

1 1
B B

where 4 is connected sum (by a tube not touching Sclw X {x} or

Let X=<six 52)# (S, x 82) six {x} =5, x {x},
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S1 x {x}).

X is a 3-circuit with singularity S(x) T s,

Hz(X) T Z e Z o Z, generated by cycles c,, ¢, C

1 20 3

representing the two 2-spheres in Y and the transverse 2-

sphere of the tube. Now the sheaf NS has stalk Z except along

the singular circle, where the stalk is Z & Z. Thus

~ 1 2 2
nix;n,) T HYS xS 2 sty g%,

It is clear that we have

Zi ® LB Z

7 N

Z
o0 —2E s B x)
\ &
8 e
o x.)
9,
ik

Z ® Z D Z

X



73

e is an isomorphism, but « N [X] and § aren't surjective,
In fact, if u € Cl(X) is the Kr‘one.cker dual of the 1l-cycle
represented by the singular circle SX, and v ¢ Cl(X) is the
~ dual of the 1-cycle running around the tube, u and v repre-
sent the generators of Hl(X), and [u] N [X] = [Cl] + [02],
V1N [x] = [eg].

This example suggests that it is possible to analyze e
by partially resolving the singularities of X to make the sheaf
Nn constant. The following discussion of this idea combines
ideas of Kaup [Ka] with a simple resolution technique of Sullivan
(unpublished, cf. [Su 2]).

If X is an algebraic variety in Pn(d?) there is an
algebraic normalization X NN X, such that Tr_l(X) is finite,
X has only one ""branch'" at each point, and the points of 7r—1(X)
correspond to the branches of X at x (see [Mu], §8 and 9 of

chapter 3). If X is triangulated as a complex K, and x is a

vertex of K, the k branches of X at x are the cones x % Li

1 E i _<_ k, where Ll’ s Lk are the components of

link v - S(link v), S = singular set.
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The branches of X at a point x € into, where ¢ is a simplex
of codimension > 2 in K, are the sets g % Li’ ‘Where the Li
are the closures of the components of link ¢ - S(link o). Alge-
braic normalization corresponds to "pulling apart'" the branches

of X at each point x in a canonical way.

Lemma, If X is an n-circuit, the following conditions are
equivalent:

(i) link ¢ - S(link o) is connected for ¢ € Kn K any

-2
triangulation of X

(ii) v T %, the constant sheaf with stalk Z.

Proof: First note that if X = |K| is an n-circuit, and o is an
i-simplex of K, link g is purely (n-i-1)-dimensional, the

singularity S(link g) is of codimension > 2 in link ¢, and each
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component of link ¢ - S(link ¢) is oriented. This follows from

the fact that star g = o = link s . Now if x € int g, the stalk

¥ (X)=H (X,X - {x})T H (star g, 3 star g) =
n n n

H (dual o, link'o) T H . .(link'c) (since dualg = g * link'o).
n-i n-i-1 -

If i_<_ n-2, n-i-1> 0, so ﬁn— is a free abelian group on

i-1
the components of link ¢ - S(link g).

As a corollary of the proof, the stalk of Nn at x€ X is
a free abelian group on the branches of X at x. If ?Jn = Z,

i.e. X has but one branch at each point, we will say X is

locally irreducible, or normal., 'Zariski's Main Theorem' says

that a normal complex algebraic variety is indeed normal in this

sense (cf. [Mu}).

Proposition 4 (Sullivan), Any n-circuit X has a unique

"normalization', i.e. there is a locally irreducible n-circuit X
and a degree one map T : X -» X such that 7T—1(X) is finite for
each x € X, and the canonical sheaf map 77';::2/11(5(-) - %(n(X) is an
isomorphism. Moreover, if p: Y = X is another normalization
of X, there is a unique homeomorphism h: X » Y such that

T = poh, and h is degree 1,

Remarks. By the proof of the lemma, WJ}(n(}_f) EakS %{n (X) says

-1
that the points of T ~(x) are in one-to-one correspondence with
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the branches of X at x (in a continuous fashion as x varies).
As a corollary of the proof, we Wiil obtain an explicit geometri-
cal construction for the algebraic normalization of a variety. It
should be noted that real varieties have algebraic normalizations,

but the pulling apart of the codimension one singularities is not

OO
OO —CD

Proof: First I will sketch Sullivan's step-by-step construction,

unique topologically (Sullivan):

and then construct an abstract ""lattice' describing it.
Let X = |K|, and suppose dim SX =s. If ¢ isan s-
simplex of SX, link ¢ will be an (n-s-1)-manifold - possibly

with several components, say linkog = L1 JU... U Lk' Now re-
k

place the neighborhood star ¢ 5 xlinkg of 0 by U o, % Li’
“i=1

identifying each aoi to 3o . The resulting space X contains
k copies of o, X has just one branch at each of these simplexes,

and there is a canonical map p: X X got by identifying all the
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oi's too.

Now one continues this ”pull.ing apart' process down
through the skeletons of K. If link ¢ is connected for all ¢
of dimension > t, then the link of a t-simplex 1 will be a
disjoint union of (n-t-1)-circuits, and so the normalization
process can be repeated for 1. Thus 7 : X -» X is constructed
in a finite number of steps.

Now consider the sheaf ?Jn, which (by the proof of the
last lemma) reflects the "branching pattern" of X. If X = [K]|,
Nn is a stack on K with a particularly simpl.e description. If
o €K, ?In(c) is a free abelian group. Let ozj(o), 1<j< ko ,
be generators for i,/n(o). If 0 <7, then ,‘&[n(o) - zzn(T) is given

by a matrix

a.(o) >z eV alr).
.oij i
i
(e°7) satisfies
1]
(i) each einT =+ 1 or 0
(ii) for each i, there is a unique j such that ei(;'r% 0.
Let eci’j'r =0 if ¢ is not a face of 7. Properties (i) and (ii)
hold because the generators ai(o) correspond to the components
L) of link'o - S(link'c), and e‘i’j'r $0 <=> L c L) (by

the proof of the lemma and the definition of the stack h*
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Let S-= {a/j(o), 1<j< ko , 0 € K}. S is partially
ordered by the relation afj(o) < a/i(;r) <=> cgr # 0 (which is
transitive by (ii). Let 7 be the nerve of (S,<), i.e. 71 is
the finite simplicial complex whose i-simplexes are ordered
strings S <...< s, of elements of S. Now the first derived
complex K' is the nerve of (K,<), and thereis a canonical
simplicial map 7N - K' which sends the vertex ai(o) of n to
the barycenter of ¢ for all i, ¢ . I claim that the geometric
realization 7: || - |K'| = X of this map is a normalization
of X. In fact, it's easy to interpret Sullival-fl's construction so
that it produces 9 - K' from K.

More generally, suppose p: Y » X = [Kl is any
normalization of X. I will construct a homeomorphism
h: || » Y suchthat 7 = peh by induction up the skeletons of

K. The sheaf isomorphism § : p#}[n(Y)—a }L/n(X) determines

a function g€ : S » Y as follows. ozi(o) € S is an element of

Hn(star o, d star o), which is isomorphic (by restriction) to the
stalk %n(g_) of ¥ at the barycenter g € X. Now

3 v ¥ (y) = ¥ (), and ¥ (y) is a free abelian group,
o} n n - n

= py)=o

since Y is locally irreducible. Now let g(ai(o)) be. the point of

Y over g corresponding to the summand of ;’&[n(g) generated by

ai(o). I claim that § extends (uniquely) to a homeomorphism
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-1

h: |7l » Y. Suppose hy =7

(th_ll)f—> p"l(th_ll) has
been defined extending £ (i.e. ht—l(ai(c)) = §(ai(o)) for

dim o_<_t—1), and let T be a t-simplex of K. Now

p—l(';) » 7 is a trivial covering space of T (since %[n(X) is
constant on 1), i.e. p~1(;) = "F X p-l(l). The same is true
of 77'—1("1)') » 1, for property (ii) of (eng) says that for each
face o of 7 and each vertex ai(T) of M over 7, thereisa

unique vertex aj(o) of N over g. Thus ’IT—l('?') is simplicially

isomorphic to T x (t)'. Thus h

-1 extends over W—l(;) for

each t-simplex r of K. (As a corollary, any normalization Y

of X can betriangulated sothatthe projection map p is simplicial.)

Examples. 1. If X is the pinched torus 82/ {n, s}, where n

and s are the north and south poles of the 2-sphere, the normali-
zation of X is the identification map 82 -» X.

2, If X = (Sclr X 82) & (Sé X Sz)/Sclz x {x}= Sé x {x} (described above),
the normalization of X is the identification map

1

(s x s 4 (st x 5% o x.

B

Proposition 5 (cf. [Ka]). Let 7: X » X Dbe the normalization of

the n-circuit X. There is a canonical isomorphism
Vo Hq(ff) - Hq(X; ?{n) for each g such that the following diagram

commutes:
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-n[}?]>

oY) H (X)
x n-q
| T
q K
H 1) \ \% \Y
) e
78 ) ——> H(X)
n n-q

(Recall that e 8 = +N [X] by proposition 3.)

Proof: Let f: L - K be a triangulation of 7. Notice that f is

nondegenerate; that is, f(o) has the same dimensiori as g for
each ¢ € K, since 7T—1(X) is finite for each x € X, Now the

fundamental class' [X] determines an isomorphism %n(ff) = Z,
i.e., for each simplex 5 € L, [}_i_] restricted to star ¢ gives

an n-cycle ¢ = ¥ w, o <uw, representing a generator of
o

W
n

% _(0)= Z. (X is locally irreducible.) Define § by

(% nccf) = T ncf*[co](f*c).

q a
o o

1 =f,0 isa g-simplexof K, and f*[cc] Eﬁln('r). It's easy to
check that &y = ¢§, so { induces a map on cohomology. { is
in fact a chain isomorphism, because f*?{n(L) = Nn(K) since f
is a normalization.

It remains to show that the diagram commutes, and it's

enough to check this for elementary cochains. If 7 € Cq(K),
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fxr = § €.0, where the o, are all the (oriented) g-simplexes
_ “ €y
i

of L such that f*oi =e.T, €7 + 1. Thus y(£7)

=yve.fJc M o)=x f[c JIr. But ¢ = T w_ ., SO
S e TR ok g, o}

n
i <
i i i i w <o
gflc )= T x fw = ¥ p_, since
. Q. *n n
1 1 o w >0 ‘On>'r
f>,<0=4_~"r

¥ (1) % % (o). Thus y(f*r) =[ £ p_lr, which equals
n n n
f*O' z—i—T pn>T

6(t) by definition (see the proof of proposition 3).
Now let g € CHL). I claim eX(q;(o-)) = f,.(o 0 [L]).

i = = >
eX(\L(o)) eX([ r fw o)=L n(y) <_'r_,_p_q+1,...,p_n > a

w ~0 Y

cycle in C (K'), where 1 =f0, p = fw, w >o, and vy
q % n *n n

runs over all sequences 1< p

gl T < P P; a0 i-simplex of

K. On the other hand,

f.lo N [L]) = f*(é n(B) <0,_(gq+1, cew >)
= < >
E ul) £.00 f>:<9-)q+1’ e f*_w_n ¢
where f runs over all sequences ¢ < wq+1 <...< W, in L.
NOW [f*wi’ fﬂzwi_'_l] = [wi’ wi_'_l]’ SO

SEw ).

T](U: U)q+11 ce s wn) = n<f*0': f*UJ q_l_l: . =Wy
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Furthermore, each sequence ¢ < pq+1 <...< oy lifts to a

sequence in L, so the proof is complete.

As an application of some of the ideas in this section, I
will analyze the spectral sequence E of an n-circuit X with
isolated homological singularities (e.g. the pinched torus, or the

quadric cone in P _(T), cf §1).

3
Let X be an n-circuit such that, except for a finite
number of singular points, the stalk of 2{1 is' 0 for i<n and
Z: for i=n (i..e. X 1is a closed homology manifold with iso-
lated singularities). Then Hq(X;Np) =0 for gq> 0 and p<n,

2
so E  has one nonzero row (q = 0) and one nonzero column

(p = n).

HYUX: v )
n

0
H(X; %p)
There are "transgression" homomorphisms

n-p+1

t=d 1 x; W) o Hn"p“(xmn) which fit into the long
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exact sequence

e f
X X
(4.5) s> HoGH V> mUGH ) > H () > BGH ) -
n-q-1 n n-q n-q

where eX and fX are the edge morphisms of E (cf. [Ka ]).
L.et K be a triangulation of X, The singular points
of X must be vertexes of K because %, 1is constant on the in-

terior of each simplex of K. Let K'" be the second derived

s
complex of K, andlet C = U (star V.o K'"), where Viree s Vg
i=1
are the singular points of X. Then W = X - lé[ is an oriented
s
homology manifold with boundary aW = |J (link Vs K'").
i=1
\F

Proposition 6. The long exact sequence (4. 5) is isomorphic to

the long exact homology sequence of the pair (W, 3 W).
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Proof: I will define the isomorphisms in the following ladder,

and leave the reader to check commutativity (using E).

e f
X
o nloon s iy )= B ) S B ) o ..
n-q+1 n n-q n-gq

55 5
44 % §s B q Y
\% N Y, v

. H (W) — H W)—>H (W,3W)—> H
n-q n-q-

n-q n-q 1

oy is the composition HY(x; v )z HYX, ©) T HYW, 3 W)

1

H (W), B :H X)TH (X,COFH -(W,3W).
g ‘n-q n-q n-q

n-q
Y HO(X;%/ Y= % (v.)=Y H (star v,,p siar v,)
q n-q ; nta i n-q i i
Ty H (‘a star v.) = H {3 W).
; n-g-1 i n-gq-1

The ladder begins with BO and ends with a .

Corollary., If the n-circuit X has at most finitely many
homological singular points, and eX is an isomorphism (e.g.
if X is normal and «n [X] = eX is an isomorphism), X is

a homology manifold.

W)- ...
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5. A geometrical interpretation of the filtration

By Theorem 2 (8 3), the filtration (1.5) induced on the
‘homology of a space X by the spectral sequence E comes
from the filtration of a triangulation K of X by its coskeletons
(3.2). In this section, I will use the fact that the coskeletons of
K are "transverse'" to the skeletons of K, to characterize the
filtration of a homology (or cohomology) class topologically.

Let X be a triangulable space of dimension n. A
"transverse p-cycle'in X is a singular p-cycle c¢ such that

for some triangulation K of X,

dim{(support ¢) N o) <p+ dimg - n

for all g € K. (One might also say that ¢ is in "general
position" in K, or that c is "transimplicial' to K.) A basic
lemma in classical intersection theory is that, if X is a
(homology) manifold, any cycle in X can be approximated by

a transverse cycle (cf. [Le], [ST]). However, if X has sin-
gularities, there may be some cycles in X which aren't homo-
logous to transverse cycles. (For example, any 1l-cycle
running around the pinched torus must intersect the singular

point, which is a vertex of any triangulation.)
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In fact, a homology class in a singular space is
.represented by a transverse cycle. if and only if it has maximum
filtration in Zeeman's spectral sequence. Recall that if
o € Hp(X), and dim X = n, filtration o < n-p. By Corollary

2 to Theorem 2A, « has filtration n-p if and only if « is

represented by a simplicial cycle in K(n—p)’ K| = X. But

(n-p)

dim(K Ng)=p+dimg-n forall g€ K (3.2), so sucha

cycle is transimplicial to K. Conversely, suppose « is
represented by a transverse cycle ¢, say c is transimplicial

to K. Then supp c N K =P, so suppcc X - lKn

ol
(3.2),

n-p-1

(n-p) l

But |K is a deformation retract of X - IKn

so ¢ is homologous to a cycle in K(n—p)’ so filtration o = n-p.

_p_l I

(This argument will be generalized in section A (below.)

Now if X is a normal n-circuit, we have seen that «
has maximum filtration if and only if o« =8N [X], i.e. « is
dual to a cohomology class f. (Hence it is a direct consequence
of the definition (2. 3) of cap product that « is represented by a
transverse cycle.)

Thus the homology classes of maximum filtration in a
space are, geometrically, those represented by transverse
cycles; and, algebraically, those dual to cohomology classes.

In this section I will show that the filtration of a homology

class measures how its topological "freedom of movement' is
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restricted in X. Dually, the filtration of a cohomology class
shows how "elusive' it is; B € Hp(}.() has maximum filtration
if and only if B n [X] # 0 (X normal), so B is quite "spread
out", being supported by its dual cycle.

If X is a polyhedron, and consequently is equipped with
a rigid geometrical decomposition into equisingular strata, I
will show that a homology class has filtration > q if and only if
it is represented by a cycle which intersects the strata in co-

dimension > q.
5A. The degrees of freedom of a homology class

Recall that a topological space A has Cech dimension
< q if any open cover of A has a refinement U such that

= + b « 0 sy
Uoﬂ...ﬂUq f for any g+ 1 open sets UO,

U in U
q

(i.e. the nerve of U has no q simplexes).

Definition. If « € HS(X) is a singular homology class, « has

> q degrees of freedom in X, df(e)> q, if

a € Image[Hs(X—A) - HS(X)]

for all closed subspaces Ac X of Cech dimension < q. (In
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other words, any cycle representing « can be moved off A by

a homology.)

Examples. 1. If X is the annulus S1 x I, the generator of
Hl(X) has 1 degree of freedom. If {s} x I is collapsed to a
point for some s € Sl, to produce a homotopy equivalent space
Y, the generator of Hl(Y) has 0 degrees of freedom, since

any cycle representing it must pass through the singular point.

2. Similarly, if X is the pinched torus S1 X Sl/{w} X S1

(§ 1), the generator of Hl(X) has 0 degrees of freedom,
since it can't be moved off the singular point.

3. If K is a combinatorial n-manifold, any « € quKl) has
n-s degrees of freedom, since o is represented by a simpli-
cial s-cycle a, which can be moved off any closed Ac K|

of dimension < n-s by ""general position'" {(cf. the lemma below).
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However, (assuming a is of infinite order for simplicity) a
can't be moved off the support of its dual cycle b, which is
(n-s)-dimensional.

Note that if ¢, € HS(X), df(na) > df(e), and
df(at+f) > min(df(e), df(8)). Thus the homology classes of X
with > q degrees of freedom form a subgroup of Hs (X) for

each q. This yields a filtration of HS(X) by subgroups
0c Flc...c Fq‘lchc CFOCH (X)
s s S S s

(n = dim X), which is a topological invariant of X by definition.

Theorem 3A. Let o€ HS(X) be a singular homology class. If
X is triangulable, then the degrees of freedom of o equals the

filtration of o in Zeeman's spectral sequence.

Proof: Let K be a triangulation of X. I will show the equiva-

lence of the following conditions:
1) df(e)> q
2) @€ Im[H (X- ]Kq_l [y - HS(X)] (e is represented by a
cycle in the complement of the (g-1)-skeleton of K)

(q)l)_)

3) ac¢ Im[HS( |K HS(X)] (e is represented by a

cycle in the g-coskeleton on K)
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4) filtration > q in E

5)* « is represented by a (simplicial) cycle which can
be moved off any closed Ac X of dim< g by an
arbitrarily small ambient isotopy of X.

Clearly 1) => 2) (let A = ]Kq [}). 2) => 3) because IK(q)I

-1

is a deformation retract of X - [Kq (3.2). Now let

Al
a € HS( IK(q)I) be such that @ - o under the inclusion map.

(q)

Then a simplicial cycle in K 7" < K' representing @ will also

represent «. Therefore, by corollary 2 to theorem 2A,

3) <=> 4) (in other words, by the isomorphism E = E, where

~

E is got by filtering X by the coskeletons of K). Clearly
5) => 1). I claim that 3) => 5)] which will complete the proof.
What I will actually show is that any closed A of dimension
< g can be ambient ¢ -isotoped off ]K(q)]. (This is a variation

on the usual '"general position' theorem - compare the p.1.

(q)

proposition below.) Recall that dim(K n Ki) =i-q for all i

(3.2), so K(q) N Kq-l = . Suppose that A has been ambient

(q)

e-isotoped so that K nKi, NA=§¢ for i<j. Let ¢ bea

j-simplex of K. I will define an isotopy hJC star ¢ keeping

(q)

d star ¢ fixed which moves A off |K N o| (and which can
be made arbitrarily small). Repeating this construction for each

o € K in order of increasing dimension will produce the desired

isotopy.

*See Erratum.
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Temma 17 Let B, C be closed subspaces of the j-disc Dj.
Suppose that there is a triangulation of D with B as an r-
dimensional subcomplex, and suppose C has Cech dimension
s. If r+s<j, and BN Cn 3D =P, thereis an arbitrarily
small isotopy ft of D such that f’c | 3D is the identity and
BN fl(C) = f.

Before proving the lemma, let's use it to construct ht'
Let D =o~j, B = !K(q)| Ng, and C=AnNo.
dim B + dim C < (j-g) + (g-1) = j -1, and BN CAN 3D = 9 (by

inductive hypothesis), so there is an ¢ -isotopy ft of o rel dac

such that ]K(q) NolnN fl(A o) = P. Now (star g, star o)
T (o * link g, 30 * link g), so hJc = ft %« 1 is an extension of ft
to an isotopy of star ¢ rel 3 starg which moves A off

K'Y 5], andit f, is small, h  will be small.

Proof of lemma: The proof reduces to the case B = Dr c DJ

(standard inclusion) as follows. Let L be a triangulation of

DJ with B as an r-subcomplex (e.g. the first barycentric

subdivision of oJ in the proof of the theorem). Now apply the

lemmato 7, Cn start c star v for the simplexes T of
Lr’ in order of increasing dimension, to move C off Lr'

So suppose B = Drc Dj = Dr X Dj-r, and Cc Dj is
of dimension < j-r, with Bn CN3d Dj =f., If x€ f)j_r,

*See Erratum.
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- consider the isotopy of D' rel 3 defined by pushing the

center of D linearly to x, and extending this motion

j-r

conically over D to 3D Multiplying this isotopy by

the identity on Dr, we obtain an isotopy hf of D' rel

D’ X 9 DF—J. I claim that, given e > 0, thereis an X € D
X

such that lxol <e¢ and hlo(C) N D = p. Suppose this isn't

true, i.e. there is an ¢ > 0 such that for all x € f)r_:J with

|x] <€, there exists a ¢ € C such that h}f(c) ¢ D', Let

p: DJ X Dr—:l

- DI‘—j be the projection. Thgn there is an

e'> 0 suchthat pl(c)o {x ¢ Dr-j, |x| <e'}, so the projection
of C has dimension r-j. This implies that dim C> r-j (see
[Na], theorem 21-2), which is a contradiction. Now if

IXO] <e and h}:O(C) nD = p, it's easy to modify ht so that
it keeps 3 Dj fixed and still moves C off D' (by changing

ht in a small collar of aDJ). This completes the proof of

theorem 3A.'

Corollary 1. Let o€ HS(X), X triangulable. If there exist

B e Hq(X) and vy € Hs+q(X) such that 8N y = a, then

df(a) > q.

Proof: By the definition (2. 3) of cap product, o« is represented

by a cycle in K(q) for any triangulation K of X. Thus the
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~ corollary follows by the proof that 3) => 5) above.

Remark. Since degrees of freedom = filtration in E, corollary

1 is equivalent to Theorem 3 of [Ze 1]. As Zeeman points out,

filtration « = q does not imply that o =T Bi Ny, with dim Bi > q
i

for each i. However, this is true on the chain level by Proposi-

tion 1 of §3.

Corollary 2, If X is triangulable, and dim X =n, then

df(e) < n-s for all o€ HS(X).

Corollary 3. If X is triangulable, and « € HS(X), then

a € Imfe,: Hn_S(X; %,’n) - HS(X)] if and only if df(a) = n-s.

X

Corollary 4. ILet X be anormal n-circuit. Then X is a

duality spacé (i.e. » N [X] is an isomorphism) if and only if
each homology class in X has the maximum degree of free-

dom (i.e. equal to its codimension).

Proof: By corollary 2, we can only conclude that « N [X] is
surjective, But in fact « N [X] surjective implies » N [X] is
injective (though not conversely - e.g. the quadric cone in

P3(Q‘), §1). This is a general fact which follows from the
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"universal coefficient theorem'":

Lemma 2, Let (C_,3) be a chain complex of free abelian
groups, and let (C#*,08) be the dual complex Cq = Hom(Cq, Z),

8 = Hom(p, Z). Let D: C¥ o Cn be a chain map, i.e.

D :c% s ¢
q n

induced map D, : H(C¥*) - H(Cn_\b) on homology is surjective,

for all g, and Dq o5 =3 o Dq. Then if the

it is an isomorphism.

Proof: Write H_(C¥) = HYC) T 7 2 1%, and H(C,) = H(O)

= Fq D Tq, where F = free part and T = torsion part. By the

universal coefficient theorem ([Sp] (5. 5. 3)),

T R and T3 7T for all gq.
q q-1

, so since D_ is surjective, D\,,(Fq) = Fn-q’

which implies rank(Fq)zrank(F ). Replacing q by n-q, we

Now D>,<(Fq) c Fn

have rank(F )> rank(F ), so rank(F ) = rank(F ), and
n-q — q q n-q

D, |Fl. ¥, F
n

is an isomorphism for all gq. (A surjection of free abelian groups

of equal rank is an isomorphism.)
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Now we also have D:,:(Tq) =T , which implies order

(Tq) > order‘(Tn

), so order(Tq_l.)?_order(Tn ). Replacing

), so order(Tq)

-qF >
q by n-g+i, order(Tn_q) __order(Tq_1

= order(T ), and
n-q

p, | T9: 195 T
pod n_q

is an isomorphism for all q. (A surjection of finite abelian

groups of the same order is an isomorphism.) Thus

D :HYO) T Fla 195 F @ T TH(C) is anisomor-
n n-q g

phism for all q.

Remarks on Theorem 3A. 1., If X is not triangulable, I can

show filtration o < degrees of freedom «, but I don't know
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whether equality always holds.

2. The definition of degrees of freedom makes sense for co-
efficients in any abelian group G, as does the definition of E,
The same proof shows theorem 3A is true for G coefficients,
If o : G» H is a homomorphism of groups and o € HS(X; G),
clearly df(;o*oz) > df(e). Sometimes the equality is strict (see
[Ze 1], p. 181). (For example, X may be a G-homology
manifold but not a Z-duality space.)

Now suppose that X is a polyhedron; that is, X is
equipped with a piecewise linear structure, .consisting of a
maximal family of p.1. related triangulations. (For a general
disucssion of p.1l. structures, see [Ze 2], chapter 1.) This
rigid geometry provides a good framework in which to develop
the theory of general position and transversality.

Many polyhedra, such as algebraic varieties, have

natural geometrical "stratifications."

Definition. A p.l. stratification of an n-dimensional polyhedron

X is a filtration

X=X 25X ,>... DXODQ

by subpolyhedra such that Xi - Xi— is an (open) p.1l. i-manifold

1
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for each i, and each point x € Xi - Xi— has a neighborhood

1
N in (X, Xi) p.l. homeomorphic to ({(cone L) x Di, Di) for
some polyhedron L. Furthermore, for each j> i, Xj n N
corresponds to (cone Lj) X Di for some subpolyhedron Lj of
L.

The manifolds Ii = Xi - X. are called the strata, and

i-1
L is the link of T“i at x, The description of N says that X

has ""locally constant normal geometry' along X in other

words, the stratum 1, is "equisingular',

/r L = {p,q, r}

D. Stone calls such an object a ''p.1. variety," reserv-

ing the name '"'p.1. stratification" for a p.l. variety with block-
Yy

bundles along the strata (see [Sto]).

Examples. 1. Let f: |K|- X be ap.l. triangulation of X,

and let Xn = f(lKnl), the n-skeleton. ‘Li is homeomorphic
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to a union of open i-simplexes, so .it‘s an i-manifold. The
eqﬁisingularity condition holds because star g = c{link ¢) X ©

for each ¢ € K.

"2, Let Xi be the intersection of the i-skeletons of all p.l.
triangulations of X. The resulting filtration is called the
intrinsic stratification of X (Zeeman and Armstrong). Ii is
clearly an i-manifold. For a proof of equisingularity, see [Ak].
3. It is probably true that any smooth stratified set in the sense
of Thom can be triangulated as a p.1l. stratification, but no one

has written down a proof.

The following result puts the proof of Theorem 3A in a

geometric context.

Proposition. Let A, B be subpolyhedra of X, and let {Xi}

be a p.l. stratification of X. There ig an arbitrarily small
p.1l. ambient isotopy ht of X such that, for each stratum 11 ,

h(x.)=7. for all t, and
t 71 i

dim(h, (A) N BN X< dim(A N ) + dim(B N 1) - L

In other words, ht moves AN 1, into "'general

position' with respect to B N X4 in each stratum X - This
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roposition generalizes Zeeman's general position theorem for
o

subpolyhedra of a p.1. manifold ([Ze 2], chapter 6, theorem 15).

Proof: The isotopy is constructed by induction up the strata.
Suppose that dim(A N B N Ij) < dim(A N 'Lj) + dim(B n ’Lj) -J
for j<i, (This is always true for j = 0,) Zeeman describes

a procedure for moving A N Ii into general position with
respect to B n Ii in Ii by a sequence of "local shifts" ([Ze 2],
chapter 6, p. 11). I claim that such a local s.hift extends to an

ambient stratum-preserving isotopy of X which leaves Xi—l

fixed, from which the proposition follows by induction., Let K
be a triangulation of X with A, B, and all the Xj as sub-

complexes, say Xj = ,K(j Given o € K a local

. - Koo,
)! (i) (i-1)
shift of Ii with respect to this triangulation is a carefully

chosen isotopy ft of the i-disk star(g_,K'(i)), keeping its

boundary fixed. Now s’car(_g, K= D1 x c(L) = D1 % L., where

L is the link of X, at ¢ . Thus ft % 1. is a topological

L

isotopy of star(g, K') keeping its boundary fixed, and equal to
e ' o . - - .
ft on star(_c_;_, K(i))' However, ft 1L is not piecewise linear

(a variation of '"the standard mistake'", cf. [Ze 2], chapters 1

and 2).
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Lemma., Let P, Q be polyhedra, If F: Px I-Px 1 isa
p.l. isotopy with F | P x {0} the identity, there is a p.l. iso-
topy G: PxQ)x I- (P xQ)x I with G | (P Q) x{0}uQx]I
the identity, and G | P x I = F, (P and Q sitinside P % Q

as the two "ends' of the join.)

Proof: It is clear from the definition of simplicial join (and of

the product of a complex with a 1-simplex) that

(P Q) x I =[(P x I) = (Q x {I}JU[(P x {01 x (Q x Iﬂ,

where the union is along the common subpolyhedron
P x {0DU (Qx {1}). Thus we canlet G | (P x I) = (Q x {1})
=Fx1, and G | (P x {0}) % (Q x I) Dbe the identity. (G is

clearly level-preserving since F is.)

Applying this lemma to the proof of the proposition, we
obtain a p.l. isotopy g, of _s:f?a—r—'(g, K') keeping its boundary
fixed, and equalto f, on star(g, Ki;y)- Extend g by the
identity outside Esﬂ‘-(_q, K'). The resulting ambient ilsotopy

keeps Xi- fixed, and preserves the strata by the construction

1

of gy since each Xj intersects star(g, K') in a subpolyhedron

corresponding to D x Lj c D x L.
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Corollary 6. Let X be a polyhedron with a p.l. stratification

{Xi}, and let « € HS(X). Then df(e) > q if and only if « is
represented by a p.1. cycle a such that dim(support a N Ii) <i-q
for each i. (A p.l. cycle is a simplicial cycle in some p.l. trian-

gulation.)

Proof: Let K be ap.l. triangulation of X with all the X]_ as

subcomplexes, If df(a)> g, «a is represented by a simplicial

cycle a in K(q)

(q)

(condition 3 in the proof of theorem 3A.) But
K intersects every simplex of K in codimension ¢, so the
support of a intersects Ii in codimension at least g for all i.
Conversely, suppose « is represented by a p.1l. cycle whose
support A intersects each I’i in codimension > q. By the propo-
sition, there is a (p.l.) isotopy ht of X such that

h (A) N ]Kq_ll Ny, =9 forall i, i.e. h,(A) N qu_ll = 0.
Thus « is represented by a cycle in the complement of the (g-1)-

skeleton |K so df(e) > q by condition 2 in the proof of

q-1 g
theorem 3A.

Remark” The proof of theorem 3A contains a topological version
of the above '""general position" proposition (with {Xi} the
skeletons of a topological triangulation of the space X). It

follows from that proof that '"p.1. cycle' can be replaced by

*See Erratum.
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"singular cycle' in the corollary, since a singular cycle whose
support intersects each stratum of z;. p.1l. stratification in Cech
codimension g can be moved off the (g-1)-skeleton of any
triangulation by a topological isotopy.

This corollary gives a precise geometrical condition for
a homology class to have q degrees of freedom. This condition
can be further sharpened by introducing blockbundles into the
stratification (as in [Sto]). For example, the homology classes
of maximum filtration in.a polyhedron are those represented by
cycles "blocktransverse' to the strata (see [Mc CJ).

It would be interesting to relate the filtration of a class
to a topologically invariant "stratification' of a space. The most
appealing tack would be to use the local homology sheaves Np to
define this stratification, since the information carried by these
sheaves is all that is necessary to compute Zeeman's spectral
sequence., Such a "homological stratification'' might also help to
answer the question of whether the filtration of a class equals its

degree of freedom in a nontriangulable space.

Examples.
1. Let X be an n-circuit with one singular point x. (The same
analysis will hold for a finite number of singularities.,) Examples

are the 2-circuit x3 + y3 = xyz in Pz((D) (the pinched torus) or
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the 4-circuit x2 + y2 + z2 =0 in PS(GZ) (the quadric cone).
By corollary 6, a class o € HS(X) will have n-s degrees of
freedom unless the support of every cycle representing «
contains x, in which case df(«¢) = 0. The spectral sequence
E was analyzed completely in §4. From the Ez term, it is
apparent that ¢ must have filtration n-s or 0, and filtration
=n-s if and only if o € Im(eX), where ey is the edge mor-
phism of E (4.5). But by proposition 6 of §4, Im(eX)
= Im[HS(X - {x})~> HS(X)]. Thus filt o = n-s if and only if «
is represented by a cycle in the complement of the singular
point x.
2. Let X be the 3-circuit got from the 3-sphere by identify-

ing antipocal points of a circle:
X = S3/x = -%X, X€ Sl.

The homology of X is Z Z/2 0 Z, the generator « of
Hl(X) = Z/2 being represented by the singular circle S(X). I
claim that o« has one degree of freedom - « is represented by
a cycle in the complement of any given point, but any cycle
representing o must intersect S(X).

A neighborhood of S(X) in X is the total space of the

nontrivial bundle over S1 with fiber the cone on two circles.
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Thus the link of a point x € S(X) is 82 U S2, i.e. the
neighborhood star(x) = cone(82 U S2) = D3 vV DS, with x as the
cone point. Thus 2{3 has stalk Z 9 Z along S(X), and the
two summands are interchanged in passing around S(X). Since
¥y | X - 8(X) = zZ, H*(X;N3) = Z 00 Z. (This also follows
from Proposition 5 of §4, since the normalization of X is the
identification map 83 -» X. Thus H*(X;Z[B)? H*(SB).) Ko is
supported by S(X), where its stalk is Z, and the generators

of Z are interchanged in passing around S(X). Thus

~ 2
H*(X;Nz) = 0 Z/2, Clearly %[1 and NO are zero, so E (X) is
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H

a// v X
2

2 2 .

It follows that d =0, so E® = E , and « indeed has
filtration 1,
3. By jacking example 2 up a dimension, we can better see how
the "twisting' of X along S(X) disturbs duality when S(X) is
a manifold. Let A be the total space of the bundle over the

1 1 . . 1 1 .
torus S x S with fiber (S U S7), twisted along one factor

of the torus:
2 1 1
A=D xS x S/(0,%,¥) = (0, -x, )

2
Let X be the union of A with B = S1 X S1 x D, identified
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. along their common boundary. X is a 4-circuit with S(X) a
torus. The Mayer-Vietoris sequence of (X; A, B) shows that
H,(X)* z, Ze Z|2, Z]2, Z, Z. Let o, B be generators of
the two summands Z, Z/2 of Hl(X). B is represented by the
circle Cc S(X) along which the twisting occurs, and e« is
represented by the other factor of S(X). The generator vy of
Hz(X) is represented by S(X). I claim that df(3) = 2, since
any cycle representing f must intersect S(X); and df(y) = 1,
since any cycle representing y must intersect C,

Note that C is not determined by thé geometry of X,
By Corollary 6 above, df(y) =1 <=> any cycle representing
y intersects S(X) in codimension < 1. The characterization
of degrees of freedom as codimension with respect to a stratifi-
cation is intrinsic to the geometry of X,

The computation of E2 is similar to example 2, -The

lxsluslxslxDz,

fe)
is supported by S(X),

normalization of X is just X=D"x S

so HA(GH ) SHXX) = Z Z 0 Z Z. ¥,

2
where its stalk is Z, twisted along C. Thus E is
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ol
Z
0 Z
0 Z]2 0
0 0 | zZ/2| Z
0 0 0 0 Z

v v ¢ ¥ ¢ %

Z., ZoZ[2, Z[2, %, Z

2 )
Again d =0, so E2 =F , and df(B) = 2, df(y) = 1.

Remark. If X is an n-circuit with S(X) a manifold, let
£/S(X) be the "normal bundle' along the singularity. lg] is
a regular neighborhood of S(X), and the "fiber" of § 1is cL,

where L is the link of S(X). (In example 3, S(X) = S1 X Sl,

1U Sl.) The effect of the "twisting' (i.e.

le| = A, and L=S
non-triviality) of & on the homology of |g| is measured by
the Serre spectral sequence of §. Sullivan has suggested that

Zeeman's spectral sequence E of a stratified space contains

the information of the Serre spectral sequences of the
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fibrations along the singularities and the Mayer-Vietorrs
sequences for glueing all the strata.together. It seems clear
to me that this information determines I, but that much of
it is lost in passing to E. However, any attempt to use E
in a more subtle way than as a computational tool should in-
volve such a '"picking apart" of E (cf. §6).

It is difficult to compute Zeeman's spectral sequence
for spaces one finds "'in nature'' (e.g. algebraic varieties), for
one really has to know a good bit about the homology of X, as
well as the geometry of its decomposition into equisingular
strata, in order to fathom E(X). However, E provides an
excellent framework in which to organize and test one's know-
ledge about X, and it can often be useful in computing H*(X).
4. Let V be the variety {xy2 = wzz} in complex projective
3-space with homogeneous coordinates (x,y,z,w). The inter-
section of V with affine 3-space is the variety
W = {xy2 = z2}, known as the "pinch point" (which describes
its geometry in a neighborhood of 0). V is a 4-circuit with
S(V)y={y=2z=0}% Pl(C) = Sz. Now the stratum S(V)c V
fails to be equisingular at the two points p = {x =y = z = 0}
(The origin of CS) and q = {y =2z =w = 0} (the point at
infinity). (So Vo S(V)> {p,q} is ap.l. stratification of V).

To see this, it suffices to consider W =V - q, since
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V-q% V-p. S(W) is the x-plane {y =z =0}, and the
"normal fiber'" to a point (a, 0, 0) 6 S(W) - 0 can be identified
with a neighborhood of the origin in {ay2 = 22} , a conein

_ (Ez. Thus the normal fiber is the cone on two circles

c:(S1 U Sl). (So the link of S(V) away from p and g is

S1 U Sl). As (a, 0, 0) moves once around the unit circle in
the x-plane, this cone flips over. Therefore S(W)c W is
not equisingular at the origin, and the link of the origin in W
is just the 3-circuit X of example 2. In fact, it is clear that
V is just the suspension of X, 1i.e. the join of X with the
two points {p,ql. Thus H, (V)=2Z0 ZJ/2 0 Z, and

Hz(V) = Z]2 is generated by the homology class « of the

algebraic cycle S(V). The sheaves %p on V are:

¥o ¥y ¥q X ¥y
vV - S(V) 0 0 0 0 Z
S(V) - {p,q} |0 0 0 Z  Ze Z
p or g 0 0 Z[2 0 Z

~

Here Z denotes that 2[3 is not constant - the generators of

the stalk Z are flipped as one runs around the equator of

S(V) - {p,q}. It follows that E2 is
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Z
0 0
0 Z/2| 0

R
o

Z.

¥ ¥ v ¥ ¥
2

Z 0 Z/ 0 Z

(The normalization of V is homeomorphic to S4.) Now the
generators of HO(X;?;(I) S Z/2@® Z/2 correspond to the gene-
rators of Hl(link p) and Hl(link q). It follows from the des-
cription of 35} 2 (§4A and B) that d2 of each of these generators
is the generator of H2(X; 2{3) = Z/ 2. Since this is the only
possible non-zero differential of E, E° has the same 4th
column as E, and the only other non-zero term is

E;’ 0 = Z/2. Hence ac¢€ H2(X) has filtration O, Geometrically,
the cycle S(V) can be moved off p by a homology if and only if

its intersection with 1link p is null-homologous in link p. But

S(V) nlink p represents the generator of
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Hl(link p) = Hl(X) = Z/2 (cf. example 2).
5B. The extent of a cohomology class

This section is ""dual'' to the last section, but there are
some interesting differences which point out the geometrical

disparity between homology and cohomology on singular spaces.

Definition. If B € Ho(X) is a singular cohomology class, f

has extent < g, ex(p)<gqg, if
B € Kernel[H (X) » H°(X-A)]

(3| X -A=0) for some closed subspace Ac X of Cech di-

mension < q.

Examples. 1, If X is the annulus S1 x I, the generator of
Hl(X) has extent 1 (it vanishes on X - {s}x I, but not on
X - {x} for any x € X). If {s}x I is collapsed to a point to
produce a homotopy equivalent space Y, the generafcor of
Hl(Y) has extent 0, since it vanishes on the complement of
the singular point. (This is Zeeman's example.)

2. Similarly, if X is the pinched torus 81 X Sl/{w} X Sl,



112

the generator of H]'(X) has extent 0, since it vanishes on
the complement of the singular point.

3. If K is a combinatorial n-manifold, any f3 ¢ HS(IKI)
has extent n-s. Assume K is closed and oriented, and let
o be the Poincaré dual homology class of B (i.e.

=8N [K]D. Let 2 g be a simplicial (n-s)-cycle repre-
senting «. Then a (singular) cocycle b° representing B is
given by bs(cs) = an—s . CS, where + is intersection. (The
singular cycle S is first approximated by a simplicial

cycle "transverse' to a ). Now b° I K| - sup(a.n S) =0,

so extent B < n-s. However, since any s-cycle can be moved
off a set of dimension <n-s, B |X - A#0 for all A of
dim < n-s.

Zeeman's terminology for the extent of a cohomology

"codimension" ([Ze 1], p. 177). If b° isa singular

class is
cochain on X, Ilet sup b° = {x € X; for every neighborhood
U of x, b° | U#0}. Then codimension b° is the Cech

dimension of sup b° (a closed set by definition). The

codimension of a cohomology class B is the minimum co-

dimension of any cocycle representing it. The equivalence of
codimension and extent is a corollary of the following observa-

tion.
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Lemma. If b° isa singular cochain on X with 5(b°) = 0
s .
(b~ is a cocycle), then sup bS is the smallest closed set

Ac X suchthat b° | X - A = 0.

Remark. The lemma is false if b° is an arbitrary cochain,

. s
since b~ may have empty support without being zero.

_Proof: First we must show that there is such a smallest

closed set, i.e. if b lX—Ai=O, i€, then b lX—ﬂAi=0.
' I

Suppose f: 2% s X - N Ai = (X-Ai) is a singular simplex.

I I
Choose a subdivision (e.g. barycentric) of AS fine enough so
that f(o S) is contained in some X - Ai for each little s-
simplex oS in the subdivision. If each US has its orientation
induced from AS, then f is homologous to T f | cs. Since b
. s s
is a cocycle, b{f) =b(x f | o ) =5 b(f | o) =0.

Now it is clear that sup b is the intersection of all

closed Ac X suchthat b | X - A =0,

Remark. There isn't a good definition of the support of a
simplicial cocycle, which accounts for our use of singular
cohomology. This reflects a difference in personality between
cohomology and homology, which is more at home in the discrete

simplicial world than cohomology.




Note that if B, y € H(X), ex(nB)< ex(B), and
ex(B+y) < max{ex(B), ex(y)}. Thus the cohomology classes of
X with extent < q form a subgroup of HS(X) for each q.

This yields a filtration of HS(X) by subgroups

S As As
0 q Fq+1

A
anlN CFS = HS(X)
n
(n = dim X), which is a topological invariant of X by defini-

tion. Note also that if B, y € H*(X),

ex(B U y) < max{ex(B), ex(y)}, so Fq . F: is a subring of
s

H¥(X)., In bther words, the above filtration respects the pro-
duct structure of H*(X). (To see that

ex(B U yv) < max{ex(B), ex(y)}, recall that if B|U=0 and

v | V=0, where U, V are open subsets of X, then

Buy |Buv=0.)
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Theorem 3B. Let B¢ H°(X) be a singular cohomology class.

If X is triangulable, then the extent of B equals the filtra-
tion of B in Zeeman's spectral sequence. (This was conjec-

tured by Zeeman, [Ze 1] p. 178.)

Proof: Let K be a triangulation of X, I will show the

equivalence of the following conditions:
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1) ex(B)<gq
2) B¢ Ker[H(X)> H(X - qul) (8 vanishes off the

g-skeleton of K)

g+l

3) B¢ Ker[HS(X) S HY( IK( )l)] (3 vanishes on the

(g+1)-coskeleton of K)

A
4) filtration B<q in E.

Clearly 2) => 1) (let A = [K_[). 2)<=> 3) since ESAR T

a deformation retract of X - [qu (3.2). By theorem 2B and
A
the definition of Whitehead's spectral sequence E, 4)<=>

5 S (9t y,

B € Ker[H (K')-» H as a simplicial cohomology

class, so 4) <=> 3). Finally, 1) => 3)7 Let Ac X bea
closed subspace of Cech dimension < g such that 8 | X - A=0.

By the proof of theorem 3A, there is an & -ambient isotopy hJC

(g+1)

of X suchthat |K | n h, (A) = fi. Let g be the inverse of

(q+1) I

s

hy. B =g*B, but g | X - hl(A) =0, and X - hl(A)D K

+1
so B | |K<q )I = 0. This completes the proof of theorem 3B.

Corollary 1. Let B € HS(X), X triangulable. If ex(B)<gq,

then BN =0 forall y € Ht(X) with t> s + q.

Proof: By condition 3) of the above proof, S is represented by

+
(@) _ o fop

a simplicial cocycle b on K' suchthat b | K
any triangulation K of X. Now by the definition (2. 6) of cap

*See Erratum.,
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product, bN ¢+ =0 for any elementary chain v of K of

dimension > s + q.

.Corollary 2. If X is triangulable, and (B, v € H*(X),

FI1t(B U v) < max{filt(B), filt(y)} .

In other words, the filtration induced on H*(X) by the spectral

A
sequence E respects the ring structure,

Corollary 3. If X is triangulable, and dim X =n, then

ex(B) < n-s for all B¢ HS(X).

Corollary 4, If X is triangulable, and B € HS(X), then

B € Ker[/éX: H°(X) - Hn_S(X;?{n)] if and only if ex(B) < n-s.
For example, if X is a locally irreducible n-circuit,
the kernel of the duality map + N [X] is the cohomology
classes with extent < n-s. Therefore N [X] is injective
<=> every cohomology class in X has maximum extent.
Recall, however, that + N [X] may be injective withopt

being surjective.
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Remarks. 1. If X is not triangulable, Zeeman has shown
that filtration 8 < extent B. 1 don't know whether they are al-
ways equal.

: ‘ A
2. Extent can be defined with any coefficient group, as can E,

and theorem 3B is true for arbitrary coefficients by the same

proof.

G. L. Gordon ([Gor 1], [Gor 2]) has made a study of the
cohomology of stratified spaces with applications to the theory
of residues on complex analytic varieties, u'sing the classical
"tubular cycles' or ''pseudocycles' of Lefschetz - forerunners
of the more abstract cocycles of today. The following results

are interpretations of Gordon's work.,

Proposition 1. Let XO C X1 C ... C Xn = X be a filtration of

X such that
i) X is triangulable as a complex K with each Xi
covered by a subcomplex
ii) for each i, w7V | X-X =0 for p<i
Then if B ¢ HS(X) has extent <q, B | X - Xs+q = 0. (For
example, let {Xi} be a p.1. stratification of X (Wifh respect

to some p.l. structure).



. Proof: Let 9(0 o 9(1 C ... C ?{n = K be full subcomplexes of
K with I’(il = X,. Let N(Xs-%q) be the stellar neighborhood

of Xs+q in K',

N(}(sﬁ—q) ={p €K', p>yp for some u €%g+q}.

Since ¥ is full in K', |[|%_ | is a deformation retract of
s+ s+q

the open neighborhood [N(}(c+q) |, so it suffices to represent

B by a simplicial cocycle b on K' such that

b | K' - N(?(S+q)] = 0. To this end, we use the decomposition

of K!

K'= |J dualg ydual g = linkg = |J dualr.
c€K c<T

By theorem 3A, extent BS < q implies B is represented by a

(g+1) -

simplicial S-cocycle b on K' suchthat b | K 0.

glart) |

Now U dual g, and N(;(s+q) = U dualg.

dim o>q GEKs+q

I will construct an (s-1)-cochain ¢ on K' such that &§c - b

vanishes off N(9(S+q), by defining ¢ on the open complexes
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o - 3 3 - C e
dual ¢ one at a time, in order of decreasing dimension of ¢ .

Suppose c¢ € CS_I(K‘) has been defined so that

§c -b | dualt = 0 forall 1 > ¢, and g¢xs+q, dim ¢ < q.



~Since &6c - Db |  dual g = 0, &c - b is a chainin

Cs(dual g, link ¢). But condition (ii) on the filtration [Xl}
implies that Hj(dual 0,link g) = 0 for j<(s+q) - dimog (cf.
(2.1)). (s+q) - dim ¢ > s, so H (dual o, link g) = 0. Thus
there exists d ¢ Cs_l(dual g, link g) such that

6d = (5c - b) | dual 0. Viewing d as a cochainin K', we

have (8(c-d) - b) | dual g = 0, Thus we have extended the

definition of ¢ over duoal o, which completes the proof.

Even if {Xl} is a p.1. stratification of X, the con-

verse of the proposition is false. For example, let

1 1
X =5 x9S U Slxsl.

{S}xsl

119
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Let X_ be empty, and let X_. be the singular circle of X,

0

Then XO c Xl c -X2 =X 1is a (smooth) stratification of X.

1

Let B € Hl(X) be the algebraic dual of the homology class «
represented by one of the circles "transverse' to the singular-

Clearly B [ X -X_, =0, but extent 3=1, not O,

ity Xl' 1
Gordon studies the cohomology of a space X by embed-

ding it in an m-manifold M, and using the Lefschetz duality
HO(X) 2> H (M, M-X) TH__ (N, 3N),
m-s m-s
where N is a regular neighborhood of X in M. Cocycles on

X can then be thought of as transversal intersections of cycles

in C_(N, 3N) with X, so-called "tubular cycles."
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Proposition 2. Let K be a full subcomplex of the

combinatorial m-manifold Q. Let N be the stellar neighbor-
hood of K in Q. Then if B ¢ HS(K) has extent < g, its
Lefschetz dual o« € Hm_S(N, 3N) is represented by a (simpli-
cial) cycle which intersects K in a subcomplex of dimension

<q.

Proof: extent 8< q<=> [ is represented by a simplicial co-

(g+1)

cycle b on K' such that b IK = 0, Now «a is represent-
ed by the simplicial cycle m*(b) n [N] € Crn.—s(N’ 3N), where
[N] is the fundamental class of N, 7 : N- K is a simplicial
retraction, and 7¥(b) N [N] 1is given by (2.6). Now the sim-
plexes of K' occurring in 7%(b) are just the simplexes of b,

(g+1) _

since 7 is the identity on K., But b I K 0, so all

simplexes <g ...,_gs> of XK' occurring in m*(b) have

O,
dim ¢ 0 < q. Therefore, by formula (2. 6), the simplexes of K

occurring in 7¥(b) N [N] must all have dimension < aq.

Examples. 1. Let X be an n-circuit with one singular point

x (or a finite number of singular points). Then the transgression
homomorphisms of ﬁ fit into a long exact sequence ‘dual to (4.5),
which is isomorphic to the cohomology long exact sequence of the

pair (W,3W), W =X - star x. Thus it is clear that a
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cohomology class BS has filtration n-s or 0, and

filtration BS = 0 <=> BS | X - {x} = 0. In other words, BS
can have extent n-s or 0, and will have extent 0 <=> it
is represented by a cocycle supported by the singular point
{x} (cf. [Ze 1], p. 183).

3 1
2. Let X =S /x=-%x, x€8, example 2of §5A.

~

A2
H(X)= Z 0 Z/2 Z. The analysis of X in §5A yields that E  is

Z
H, A
0
z | 7
Z/2
o | o |7
Z
0 0 0 A

0 o |z/2 | =

NP

Hence the generator f3 of HZ(X) has filtration 0. This
corresponds geometrically to the fact that B can be supported
by any point in the singular circle S(X).

It is also easy (and informative) to compute E for

examples 3 and 4 of §5A.,
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5C., Degrees of freedom over a map

This section generalizes § A to an analysis of

(triangulable) maps. (There is a dual generalization of §5B.)

Definition, If « € HS(X) is a singular homology class, and
f: X-» Y is a continuous map, a has > q degrees of

freedom over f if

o e Image[Hs(X-f_l(A)) 5 H_(X)]
for all closed subspaces Ac Y of Cech dimension < g.

Note that the degree of freedom of o over f is less
than or equal to the degree of freedom of f (e) in Y. If f is
closed (e.g. X compact), and dim f(B) < dim B for all
closed Bc X (e.g. if f is triangulable), then the degree of
freedom of o over f is also less than or equal to the degree

of freedom of « in X.

Theorem 3C. Let o€ HS(X) be a singular homology class, If

f: X - Y is a triangulable map, then the degrees of freedom of

a over f equals the filtration of o in Zeeman's spectral
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sequence for f,
The proof of this theorem is a generalization of the
proof of theorem 3A. By theorem 2C, « has filtration > q

in E(f) if and only if a is represented by a simplicial cycle

()

in (s')_l(L ), where s: K- L is a triangulation of f.

Thus we need only show

) f—l( | L(q)

-1
l) is a deformation retract of f (]qu)
(compare (3. 2))
(i1 If AcY, and dim A< g, £ 1(a) canbe e-

(q)

isotoped off f_l([L .

(q))

Every simplex in K' is the join of a simplex in (s')_l(L
with a simplex in (s')—l(Lé). Thus the deformation retraction
(i) is given by ''sliding along the join lines' in each simplex of

(q)] nar=9,

K'. By the proof of theorem 3A, if AN IL
T € L, ANt canbe ¢ -isotoped off ]L(q)] Nr in 1, keep-
. . : . . . -1,0, ~ -1 °
ing ®r fixed. Since f is triangulable, f "(v) =f (r)x 7,
and f corresponds to projection onto T (see [Mi], p. 125,
lemma 3). Thus the isotopy of AN+ in 1 can be lifted to an

isotopy moving f_l(AﬂT) off f-l(lL(q)l N r) in f-I(T).

Condition (ii) follows by induction on dim 7 .

Remarks, This theorem needs to be proved for a wider class of

maps. (Most algebraic maps aren't triangulable, for example.)
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The spectral sequence should be interesting when X and Y
are (smooth) manifolds and f is a (differentiable)} mapping

with singularities.
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6. Applications

In §5A we have seen that Zeeman's spectral sequence
relates the local homology of a space X to the filtration on its
global homology which measures the restriction of movement
of cycles caused by the singularities of X. For example, a
normal n-circuit X is a Poincare duality space if and only if
each homology class @ has degree of freedom equal to its
codimension n-s. (If X is a polyhedron, this is equivalent to
o being represented by a cycle which intersects each stratum
of the intrinsic stratification of X in codimension n-s
(Corollary 6 of §5A).)

With this geometry under our belt, there are several
directions to explore (which were described to me by D. Sullivan
when he first introduced me to the spectral sequence). One is to
find generaliiations, for spaces with singularities, of facts about
manifolds which only depend on Poincare duality. For example,
the euler characteristic of an odd-dimensional manifold is zero.
Sullivén has shown recently that any space which can be stratified
using only odd-dimensional strata has zero euler characteristic.
My analysis of Zeeman's spectral sequence led to a particularly
simple proof of this fact (§A).

A similar (but much more difficult) problem is to
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generalize the fact that the boundary of an oriented manifold
has signature zero (cf. [Su 2], p. 202). In other words, what
singularities can one introduce into manifold theory and retain
the cobordism invariance of the signature? (Note that it isn't
clear what the definition of the signature of an n-circuit X
should be. One choice is the signature of the total cup product
pairing on H*(X), (e B) - <aUy B, [X]P.) Atpresent, this
problem seems too hard to solve without adding significant
further machinery to the spectral sequence.

Another direction is to study ''characteristic homology
classes' of spaces with singularities. In chapter II, I will
analyze the diagonal cycle A in X x X for an n-circuit X,
$§3 and 4 in particular will shed some light on the concept of
degrees of freedom of a cycle. The spectral sequence, how-
ever, is only used in a mundane way (Lemma 4 of § IL. 3).

A quite provocative problem is to analyze the degrees
of freedom of the Stiefel homology classes of a variety. (For
their interesting history, see [Su 3] and [H].) In §B I will
make some elementary observations about this problem. A
harder problem is to analyze the Chern homology classes of an
algebraic variety, recently discovered by R. MacPhérson

(unpublished).
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A. The euler characteristic y

If M is a closed, oriented (2k+1)-dimensional manifold,
x (M) = 0, For if Bi is the ith Betti number of M,

Bi = 82k+1—i by Poincare duality, so

_— (—l)ij - oy (M),

B s o PRY
x(M) = T (-1)'B; : 08y

1

If X is any space and x € X, let X , the local euler
X
characteristic of X at %, be the euler characteristic of

H (X, X - {x}), i.e.

X, =T (-1)'rank H(X,X - {x}),
i

For example, if X is an n-manifold, XX =1 for all xe X if

n is even, and Xx = -1 for all x¢€ X if n is odd.

Lemma. If X is triangulable and Xx = -1 for all x € X, then

¥ (X) = 0.

Proof: Let K be a triangulation of X, Recall the decomposition
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K'= (J dualg,

o€K
where dual g = {<_¢_0,...,_T_i> €K', 747 o} . Now
X (X) = x (K') = ¥ X(dual o)

9

5 (1)U Ty (sthar o) by (2.1)
C

- (P

.lq

dim g

1

-z (-1)
= - ¥(K) = - x (X).
(A similar proof has been given by Banchoff [Ba].)

Remark. This lemma can be proved using the spectral sequence
E in the same way that one proves the multiplicativity of X for
fibrations with the Serre spectral sequence (cf. [Sp] 9.3.1). One

defines X(ﬁr) =% (—1)S rank EZ , where E: = ¥ E
s p-q=s
~r ~r+1 ~1 ~co
Then X(E) = X (E ) for 1<r, so X(E")=x(E ), and

p,q

X(Ew) = x (X). The proof of the lemma amounts to the calculation
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that ¥ (B1) = 0.

Proposition (Sullivan), If X has a (p.l.) stratification with

only odd-dimensional strata, then vy (X) = 0.

Outline of proof: If x lies in an open stratum S consider the

transverse link L to S at x. (The fiber of the normal bundle
along S is the cone on 1..) The stratification on X induces
one on L., Furthermore, the strata of 1. are odd dimensional.
Since I. has fewer strata than X, we can ‘assume by induction
that x (L) = 0. It follows that Xx = -1, so ¥X(X) =0 Dby the

lemma.
Corollary (Sullivan). If V is an algebraic variety in complex
projective n-space, and W is a subvariety, then

X(V) = X (W) + x (V-W).

Outline of proof: Let N be a regular neighborhood of W in V,

X(V) = x(N) + x(V-N) - x(T),

where T is the boundary of N. Since W is a deformation

retract of N, (W) = x(N) and %x(V-W) = x (V-N). Since T is
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a bicollared subspace of V, and V has a stratification with
only even-dimensional strata (Thom), the induced stratification
on T has only odd-dimensional strata, so ¥(T) = 0 by the

proposition,
B. The Stiefel homology classes Si

LLet K be a finite simplicial complex. Let <, be the
sum of all the i-simplexes in K', an unoriented simplicial
chain in K'. A combinatorial calculation S};OWS that aci =0
for all i if and only if X_ is odd for all x € X = |K|. Sucha

space X is called a (mod 2) Euler space. The classes

Si(X) = [Ci] € Hi(X; Z]2) are called the Stiefel homology classes
of X. They are piecewise linear invariants of X, andif X is
a smooth n-manifold, si is the Poincaré dual of Wn_i, - the
(n-i)th Stiefel-Whitney cohomology class of X. (An n-mani-
fold X 1is an Euler space since XX = (—1)n for all x€ X.) In
fact, any real analytic space is an Euler space. For discussion
and proofs of these results, see [Su 3] and [HT].

Note that if X is an Euler space, so is |link v| for all

vertexes v of a triangulation of X,

Lemma. If X = |K| is an Euler space, then Si(X) has > 0



133

degrees of freedom if and only if Si-l( |link v|) = 0 for all

v € K.

~ Proof: By the proof of theorem 3A, df(si(X)) > 0 <=> Ci(K')
can be moved off the 0-skeleton of K by a simplicial homo-
logy in K', If v € KO’ let link'v = link(v, K') (cf. §2).
Link'v is simplicially isomorphic to (link v)', so I will
identify them. Now ci(K') restricted to star'v = int(v x link'v)
is equal to v = ci_l(link'v). Furthermore, .if bi is a chain in
link'v such that Bbi = Ci_l(link‘v), V ok bi is a homology of
ci(K') off v. Conversely, a homology of ci(K') off v,
resiricted to star'v, is the join of v with a homology of
ci_l(link‘v) to 0. Thus ci(K‘) can be moved off v <=>
ci_l(link'v) ~ 0, q.e.d.
Example. Let X be the suspension of the Klein bottle B.
v(B) = 0, so X is an Euler space. If K is a triangulation
of B, the join of K with two points p,q is a triangulation
of X, and |link p| = |link q| = B. Thus df(s 2(X)) = 0, since
Sl(B) # 0, being dual to Wl(B), the obstruction to orienting B.
Thus df(si(X)) < n-i for some Euler spaces X - in
particular there may be no class Wn—i € Hn—i(X, Z[2) such

that Wn_1 n sn(X) = Si(X) (sn(X) is the "mod 2 fundamental



~class' of X).

One should be able to say something more about the
filtration of si(X) in Zeeman's spectral sequence (Z/2
coefficients), since si and ’E are both defined in a simple
combinatcrial fashion using the first barycentric subdivision
of a triangulation. Nevertheless, such an analysis has eluded

me, and I now believe that one must have some geometrical

understanding of what the s; mean before their degrees of

freedom can be computed,.

134
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II. Thom classes

If X is an n-circuit, the freedom of movement of the
diagonal A in X x X is severely restricted by any singular-
ities in X. Consequently, the homological properties of A re-
flect the global geometry of X in a subtle way.

Suppose X is ap.l. n-manifold, and let U ¢ Hn(X x X)
be the Poincare daal of [4] € H (X x X). Then U | X x X -2
=0, so U is the image of a class U ¢ H (X x X,X x X - 4).

% corresponds fo the Thom class of the tangent bundle of X via
the isomorphism

H (X x X, X - )T HY(TX, TX - X) T H(D(TX), S(TX)).
(Here the tangent bundle TX is identified with a regular neigh-
borhood of A in X x X, and D, S denote the associated disc
and sphere bundles,)

If X is an arbitrary n-circuit, a Thom class is a
class U € HY(X x X) suchthat Un [X x X] = [A]l. I will show
in § 1 that with field coefficients, any n-circuit X has a
Thom class, so [A] has the maximum degree of freedom in
X x X (equal to its codimension, n). This is geometrically

surprizing, since it follows that the diagonal is homologous to
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a cycle transverse to the singularities of X x X (Corollary
6 of §5A). |

Thus we are led to study the algebraic properties of
. Thom classes. In §2, I will show that the n-circuit X is a
duality space (i.e. «+ N [X] is an isomorphism) if and only if

X has a Thom class U such that
Uy Tawv =0y v

for all V € H¥X x X), where T is the involution on X x X,
T(x,y) = (v, x). In §3 I will show that if X is a normal n-
circuit (i, e. the "orientation sheaf ivn is constant), then X

is a homology manifold if and only if X has a Thom class U

such that U | X x X - A= 0. In other words, X is a homology

manifold if and only if the diagonal A is homologous to a

transverse cycle which lies in a regular neighborhood of A.

§4 contains an application to homology intersection
theory, where the use of the diagonal was introduced classically
by Lefschetz (cf. [St 2]). If X is a (homology) manifold, and

a, B are homology classes,

a+B=UnN (ax B) € H ()= H (X).
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In general, the existence of an'

'intersection pairing" on H_(X)
is equivalent to the existence of a Thora class for X. In
particular, I will give simple axioms for an intersection pairing
o on H (X; ), F a field, such that ¢ exists if and only if X
is an F-homology manifold.

The notation in this chapter will be Spanier's [Sp]. In
particular, I will use his sign convention for cap product, in
order to refer to his formulas relating cup, cap, and slant
products. My techniques are based on a proof of Poincaré duality

for smooth manifolds given by Milnor [Mi], and Spanier's dis-

cussion of duality for topological manifolds [Sp].
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1. Degrees of freedom of the diagonal
Let X be an n-circuit with fundamental class [X],

and let d: X - X x X be the diagonal map d(x) = (x,x). The

diagonal A = d(X)c X x X represcnts a homology class

[a]=d[X]e€ Hn(X ¥ X). A Thom class for X is a cohomology
class U € H (X xX) suchthat Un [X xX] = [8]. (XxX isa

2n-circuit with fundamental class [X x X] = [X] x [X].)

Proposition 1, ILet X be an n-circuit, andlet h: Z > F be a

homomorphism from the integers to a field F. There is a class

U ¢ H (X x X; F) suchthat U h [X x X] = h[a].

Corollary 1. h [A] has n degrees of freedom in X x X. (This

follows from I, Theorem 3A, Corollary 1.)

For example, if F is the rational numbers or the in-
tegers modulo a prime p, there is a canonical coefficient
homomorphism h, so we can simply say that A has n degrees

of freedom as a cycle with coefficients in ® or Z/p.

Proof of the proposition: For simplicity of notation, I will omit

h,, and write [A], [X], etc., for their images under h, .
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Let {ai} be a basis for IX; F) over F, and let {Bi} be

the algebraically dual basis of H_ (X, F), i.e. <ai, Bj> = 6ij'

Then by the Kunneth theorem, {ai X ozj} is a basis for
H¥(X x X;F), and {Bi X Bj} is the dual basis for H (X x X; F),
i < : > =
i.e. <a;x ey Bk X BJ& 6ik6j;z, .

el [A] = 2 a, (B, ). We have
Now let [A] =T aiJ(Bl X B]) We have

o
1

.= <a. X a., [A1>
ij i j

)

<, x a.,d, [X]>
i i

[}

<d#(a, x @.), [X]>
i” 7]

1]

! >
<Q'i U Q'j: [X] .

Thus (a,j) is the cup product pairing matrix for X with
i
respect to {ozi} .
We're looking for a class U ¢ Hn(X ¥ X; F) such that

Un [X xX]=[a]. Let U=k§,}‘b bkz(aka az). NOW
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Un [Xx X] = (2]
Lo=> <ai % aj’ Un[XxX]> = <ai X aj, [A]> for every 1i,]
<=> <(a/i X aj) UU, [Xx X]> = aij'

Now

(@, x ) U U =(a, x e)U (L b,_aa)
i j i j k L

4 k.

X bkz(ai X aj)U (ak X az)

1

) x (e. U )

_1yE
X bkz( 1%—<aiu o, : ,

by [Sp] (5.6.13), where @ € HL(X; F).
We have <(a/i X aj)U U, [X x X]>

= 6:[((a/i X ozj) Uu)n [X x X]], € = augmentation, and
(e x @) U W) N (X x X = (25 (180 U @) x (@)U @) 0 (1X] x [X)
(i+k)(n—j+_&)((

.k )
- ¥ bkz(-l)g-—(—l)-— =2 U @) 0 XD x ey U @) 0 XD,

by [Sp] (5.6.21). Thus, letting s = jk + (i+k)(n-j+y),
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1
™

S
< > - < >« < >
a; x aj) U U, [X x X] (-1)°b, <a; Uy, [X] o U @y, [X]

S
=z (-1)'by a2,

s+is

I

b

v (-1) 8, kzazj .

it

Since i +k = _lg +tg =4t _J_ n, a short calculation shows

s + lﬁ = nk, Therefore

(1.1) UN[Xx X]=[a]l<=> ¢ (—l)nkaﬂ;bkﬁ azj = aij .
kg

L.et A, B be the matrices (aij)’ (bij)' If C = (Cij) satisfies
ACA = A, then bij-: (-1)n-i-cij satisfies (1.1), so X has a
Thom class U (F coefficients) <=> A has a '"quasi-inverse"
C.

But over a field, A always has a quasi-inverse, for let
P, Q be nonsingular matrices such that PAQ is diagonal with

1's and O0's on the diagonal. Let C = QP. Then
(PAQ)(PAQ) = PAQ,

SO AQPA = A,
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or ACA = A,

This completes the proof.

Remark. Note that if C is a quasi-inverse for A, C may
have nonzero entries Cij with i +j # n. Thus

ni . .
T (-1) }_Cijai X aj is an inhomogeneous element of H*(X x X).

Therefore we let

U= T (—1)nic..a/. X ..
. ij i i
itj=n |

If v= ¢ (—l)n—i—c..a. x «., the proof of the proposition shows
i_+l#n U U
that (U+v) n [X xX]=[a]¢€ Hn(X x X). But (U+v) n [X x X]
=UN[Xx X]+vn [Xx X}, so Un [Xx X]=[a] and
vNn[Xx X]=0.
The following is an amusing corollary of this analysis.
Let M(d) be the space of d x d matrices with entries in the

field F. Given a matrix A € M(d), let N, = {D¢€ M(d), ADA = 0}.

A
NA is a linear subspace of M(d). It is easy to show that NA has
index r2 in M(d), where r =rank A, i.e. if k = 'dimFNA,
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(Note that {C ¢ M(d), ACA = A} is a coset of N,, so this

equation implies for example that A has a unique quasi-

inverse <=> A is nonsingular.,) Now if A is the cup prod-
2

uct matrix of a space X, d = dimFH*(X x X)),

k2 = dimFKer(- N[Xx X]), and A is the matrix of - n [X].
Thus « n [X] is an isomorphism if and only if « N [X x X] is

(F coefficients). Therefore X is a duality space if and only if

X x X 1is,

Corollary 2. Suppose X is an n-circuit such that H:,:(X; Z)

is torsion free, Then the following are eguivalent,
1) X has a Thom class
2) the cup product pairing matrix of X has a quasi-
inverse

3) Coker(s n [X]) is torsion free.

Proof: Since H _(X) is torsion free, the proof of the proposition
verbatim shows that 1) <=> 2). Now the matrix A of « N [X] is

just the cup product pairing matrix, for aij is defined by
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(1.2) ozj Nni[Xj=y a.B.,
<=> <a, a N [X]> =<y, T aijBi>,
<=> <a/kU aj, [X1> = a, .

Now any integral matrix A can be diagonalized by elementary
row and column operations, say PAQ is diagonal, where P
and @ are compositions of elementary mat?ices. Clearly A
has a quasi-inverse if and only if PAQ does. Furthermore, P
and Q correspond to changes of basis in the target and source
of « N [X], so PAQ will also represent . N [X]. Thus it
suffices to prove 2) <=> 3) when A is diagonal. But then A
has a quasi-inverse <=> all its entries are *+1 <=>

Coker(s N [X]) is torsion free,

Remark, An integral matrix A has a quasi-inverse if and only
if the greatest common divisor g(A) of the determinants of the
r x r minors of A is 1, where r = rank A, This is because
elementary row and column operations don't change .g(A), and if

A is diagonal, g(A) =1 <=> all the entries of A are +1 or 0.

2
Examples., 1. If X is the pinched torus S1 X Sl/{x} X Xl,
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the homology of X is Z Z Z, and the cup product matrix A

is

0 0 1
0 0 0
1 0 0

Thus A has a quasi-inverse C, for example C = A. There-

fore, if 1 is the generator of HO(X) such that e{y) = 1,
[A1=1 x [X]+[X]x1,

so we cantake U =y x 1+ 1 x u, where <y, [X]> =1, Thus
the diagonal in X x X has the maximum degree of freedom, in
spite of the singularity.

2, Let X4 be the quadric cone in P3(C), which is homeomor-
phis to the Thom space of the tangent bundle of 82. The homo-

logyof X is Z 0 Z 0 Z , and the cup product matrix A is
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g(A) = det A =2, so A has no quasi-inverse. Thus X has no
Thom class. Since X is locally irreducible Wn = Z), sois

X x X, so [A] has 0 degrees of freedom in X x X (I, Cor.

3 to Thm. 3A). In other words, A isn't homologous to a cycle
lying in the complement of the singular point of X x X. It is
interesting to note that X is a homology manifold with @ or
Z]p coefficients for p an odd prime, since the local homology
at the singular point is 00 0 Z/2 Z. (The link of the singular

point is PS(IR) = the tangent circle bundle of 5‘2.)
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2. Symmetry of the Thom class

Suppose the n-circuit X is a duality space; that is,
+ N [X] is an isomorphism, where [X] is the fundamental
class of X. Then X x X is also a duality space (+ N [X x X]
is an isomorphism for all field coefficients by the Kunneth
theorem, and hence .+ N [X x X] is an isomorphism for
integral coefficients), so X has a unique Thom class. How-
ever, it is easy to construct an n-circuit with a unique Thom
class, which is not a duality space (cf. the pr.oof of prop. 1, §1,
and the remark following it).

When « 0 [X] is an isomorphism, U has a strong

"symmetry' property, which in fact characterizes duality spaces.

Proposition, Let X be a space, and let [X] € Hn(X),

U € Hn(X x X) for some n, with U n ([X]x [X]) = d [X],
where d: X -» X x X is the diagonal map d(x) = (x,x). Let
T:X x X-» X x X bethe map T(x,y) = (y,x). Then the follow-
ing are equivalent:
1)« n[x]: BYx) - Hn_q(X). is an isomorphism for all
a
2) Uy T*v =UU v for all v € H¥X x X)

3) UNT,z=(-1)"Unz forall z¢€H(Xx X)
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4) U/an XD = -1)"% for «c HYX)

n+np

5) (U/B)n [X]=(-1) B for B¢ Hp(X)

Here / is the slant product - cf. [Sp].

Corollary. An n-circuit X is a duality space if and only if
X has a Thom class U such that Uy T*v = UU v for all
v € HXX x X), or equivalently, Un T,z = (-1)"Unz for all

z € H, (X x X).

Note that the proposition is purely ”élgebraic”, i.e.
all the conditions are homotopy invariants of X. Condition 1)
just says that X is a Poincare duality space of formal dimen-
sion n, with fundamental class [X] (cf. [Bro]). If X satis-
fies Poincare duality with local coefficients, and X has the
homotopy type of a CW complex, then there is a homotopy
equivalence f: X =~ Y, where Y is an n-circuit, and
f*[X] = [Y], the fundamental class of Y. ([Wa], proof of Cor.
2.3.2). (If X only satisfies ordinary Poincare duality, 7r1(X)
may not be finitely generated, in which case X can't be homo-
topy equivalent to an n-circuit,)

The geometric content of the corollary is that. the n-
circuit X is a duality space if and only if the diagonal cycle

A in X x X is homologous to a transverse cycle A such that
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Z + T z is homologous to (—1)nz + z for all cycles z in
X x X. (SeeI.5.) It should be emphasized that this condition
is stronger than T;,:E ~ (--1)“Z . In other words, U may

~ satisfy T*U = (-1)7U but UnN T z # (-1)'Un z for some z.

Note that if X is a duality space, T*U = (—l)nU, for then it

suffices to show
(T*U) 0 [X x X] = (-1)"[a]
<=> T _(T*¥U)n [X x X]) = (—l)nT*.[A]
<=> UnTJX x X] = -]

But T[X x X] = T,([X] x [X]) = (-D"[X x X], and
UNn [X x X]=[A]. However, if one only knows that
T*0 = (—1)nU, one can only conclude that

Un T,z =T(T*U nz) = (-1)"T (U n 2).

For example, consider the pinched torus X2 (example
1of §1). [A]=1 x [X]+[X] x1, where t is the canonical
generator of HO(X), so X has a Thom class
U=px 1+1xu. Thus T[] = [A] and T*U =U, but X is
not a duality space,

Now the proof of the proposition follows the scheme
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4 > 1< 5
N
1) => 2): Let [X x X]=[X]x [X]. It suffices to show

(T#vy U)Nn [X x X]=(vu U)n [X x X],

since + N [X x X] is an isomorphism (and UU v = (—l)mv uu

for v € H](X x X)). Now

Txv N (U N [X x X])

1

(T*vy U) N [X x X]

THv 0 d[X]

1

d(d*T*v N [X])

d,(d*v n [X]), since Td=d

v 0 d,[X]

vn (UNXx XD

(vu U)n [X x X].



1) and 2) => 3): QGiven z € H*(X x X), let v e H¥X x X)

be suchthat vn [X xX]=2z. By 2), UU T*v =UU v. Thus

(TuTxw)N[Xx X1=(UuUv)nI[Xx X],

so UN(TwAXxXD=Unn[XxX])=Un z.

i

But UN(TH N [Xx X =UnTJIT(T* 0 [X x X])]

1

UNTva T [X%X])
n
=UnT (v (-1)[X x X])
= (-D"U N T,z
2) => 4): Firstof all, UN [X x X] = d[X] => U/[X] = 1.
It suffices to show (U/[XPn [X]=[X]. Let p : X xX=» X
be projection onto the first factor.

(U/IXD N [X] = p U N (X]x [X]) [Sp](6.1.6)

=p,d,[X]

= [X].
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Now let o ¢ HYX).

U/lan XD =(UuU (1x a))/[X] [Sp] (6.1.5)

(U U (ax 1)/[X] by 2)

)" x DU UY/X]

IH!

- -1 U U/ X [Sp] (6.1.4)

- (-1)"% 1

= -1y,
3) => 5): Let B¢ Hp(X).

(U/B) N [X]=pUN (X]x B [Sp] (6.1.6)

n+np

= -1)MPp (U n (B x X)) by 3)

- C™MPw/ XD B [Sp] (6.1.6)

n+np

(-1) 1np

"

n+np

= (-1) B
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5) —> 1): 5) implies that « 0 [X]: H' D(X) » H (X) is
surjective for all p, so .« N [X] is an isomorphism by

Jemma 2 of 1.5 A,

4) => 1): 4) implies that U/.: Hn_q(X) - Hq(X) is surjective
for all q, so U/+ is an isomorphism by lemma 2 of I. 5A,

But 4) says that U/. is a left inverse for .0 [X] (up to sign),
so + N [X] is also an isomorphism. This completes the proof

of the proposition.

Remark. Milnor's proof of duality for smooth manifolds (with

coefficients in a field) in [Mi] is essentially 2) => 1). 3) => 5)
is Spanier's proof that + N [X] is the inverse of his duality
isomorphism U/. for a topological manifold ([Sp] (6.3.12)).

2) and 3) are true for manifolds because U vanishes off the
diagonal. (This is the tack Milnor and Spanier take.) In the
next section I will show that if U vanishes off the diagonal, X

is in fact a homology manifold.
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3. A characterization of homology manifolds

A locally irreducible n-circuit X is a duality space if
~and only if every cycle in X is homologous to a transverse
cycle (I.5). If X is ap.l. manifold, these homologies can be
made arbitrarily small - that is, any cycle can be closely
approximated by a transverse cycle. Now (at least with field
coefficients), the diagonal A ¢ X x X is homologous to a trans-
verse cycle for any n-circuit X. When X is a manifold, this
cycle can be found arbitrarily close to A - in other words,

0, where U is the Thom class. Conversely,

U |XxX-n

U|Xx X-p =0 implies X is a duality space, since U will
then satisfy the symmetry property Uy T*v =TUU v of § 2.
This observation led Sullivan to conjecture that X will in fact

be homology manifold, since Poincare duality is given by a

natural quasi-geometric condition,

Theorem 4. Let X be a normal n-circuit, X is a homology
n-manifold if and only if X has a Thom class U such that
U|[XxX-a-=0.

A normal (locally irreducible) n-circuit is just a
connected purely n-dimensional polyhedron with a given

isomorphism of the "orientation sheaf" :&[n with the constant
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sheaf Z (cf. 1.4D). In other words, Hn(X) T Z, and there

is given a generator [X] of Hn(X; such that the image of [X]
under the restriction map Hn(X) - Hn(X’ X-{x}) is an isomor-
- phism for each x € X, Thus an oriented homology n-manifold

is a normal n-circuit.

Proof: If X is an oriented homology n-manifold, X x X is

an oriented homology 2n-manifold. Consider the diagram

HY(X x X, X x X - ) —> HI(X x X)

(3. 1) . N [X x X] N [X x X

\ \%
i

st
b

H_n(A) > Hn(X X X)

The vertical arrows are Lefschetz and Poincaré duality,
respectively, and the horizontal arrows are induced by the
inclusionof Ao in X x X. If Ue H(X x X,X x X - 4) is
dual to [A] € H_(a), i%U is dual to [A] € H (X x X), i.e.
U= j*U is the Thom classof X. Thus U | X xX - A =0,

The proof of the converse is broken into five lemmas.

Lemma 1, Let X be a normal n-circuit, and let

Te H'X xX, X xX-1A), U= j*Uc H(X x X). The
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following are equivalent:

1) UnI[Xx X]=][Al i.e: U is a Thom class for X

2) U/[X]=1

3) U | {x} x X is the generator of H ({x} x X) = H(X)
corresponding to y, where <y, [X]> =1, for all
x € X.

4) E | {x} x (X, X - {x}) is the generator corresponding
to u_€ H(X,X - {x}), where <. IX1 > = 1
[X]X = the restriction of [X] to (X,X - {x}).

(In other words, U 1is an orientation for X in the

sense of Spanier ([Sp] 8. 2).)

Lemma 2. If the n-circuit X has a Thom class U such that

U |Xx X-p =0, then X is a duality space.

I.emma 3. Suppose that the connected subpolyhedron Y of X
has a neighborhood N in X such that (N,Y) = (Y x Dk,Y x 0)
for some Kk, (Dk is the standard k-disc with center 0.) Then
a) if X is a normal n-circuit, Y is a normal (n-k)-
circuit
b) if X has a Thom class UX such that

UX | XxX-A 0, then Y has a Thom class U

X Y

such that UY]YxY-AY=O.
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I will say that Y is a "tubular" subpolyhedron of X. For
example, if X is a p.l. manifold, its tubular subpolyhedra

are all submanifolds with trivial normal bundles.

Lemma 4. Suppose that Y is a normal m-circuit with isolated
homological singularities (points y such that Hi(Y,Y -{yh #o0
for some i<n). If Y is a duality space, then Y is a homology

manifold - i.e. Y has no homological singularities.

I.emma 5. Let X be a normal n-circuit which is not a homology
manifold. Let S(X) be the set of homological singularities of X.
Then there is a tubular subpolyhedron Y < X such that

S(Y) = Y n S(X) consists of isolated points.

Now the theorem follows easily from the lemmas, for
suppose X has a Thom class vanishing off the diagonal. If X
is not a homology manifold, we can choose Y as in lemma 5 -
a tubular supbolyhedron of X with isolated singularities. But
Y has a Thom class which vanishes off the diagonal (lemma 3),
so Y is a duality space (lemma 2), so S(Y) = § (lemma 4),

contradicting the choice of Y.
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Proof of lemma 1:

1) => 2) occurs in the proof of the proposition in §2 above

(see "2) => 4)" of that proof).

2) => 1) (U/[X]) n [X]=p (U N[Xx X] [Sp] (6.1.6),
SO [X]=p, (UN [Xx X]) by 2),

SO d*[X] = d*p*(U n [X x X7.

Now d.p (UN[Xx X])=Un[Xx X], since Un[Xx X] isin
the image of i, : Hn(A ) - Hn(X x X), namely U N [X x X]
= i;,:(rfl N [X x X]), where Tc B X xX,X x X-A) and

j*(\f: U  (see the diagram (3.1) above).

2) <=> 3): Let xOEX, andlet f : X > X x X be the map

0
fO(X) = (x, xo). Then U | {XO} x X = (fo)*U. Let 1€ HO(X)

be such that e(y) =1 (¢ = standard augmentation), ¢ is
represented by the 0O-cycle {XO} . Now
e(U/[X]) = <U/[X], 1>
= <U, [X] x 1>

= <U, (fo)*[XP

= <(f0)*U, XP
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Thus U/[X] =1 <=> <(f0)*U, [X]> = 1. (Note that this
argument shows that U | {x}x X is a generator for some

x implies it is a generator for all x.)
3 <=> 4): This is clear from the diagram

H (X x X, X x X - A)—jji-—> HY(X x X)

| |

Vv \Y

=~

H (%) x (X, X~ {x})) > HO(f) x X)

The bottom arrow is an isomorphism since X is locally
irreducible, so HYX,X - {x}) —> H(X)T Z for all x € X.
The vertical arrows are restriction maps, and j*ﬁ = U.

This proves lemma 1,

Proof of lemma 2: I claim it suffices to show

() pJUN 2 =py) U0z if zeHXxX),

where Pys Py X x X » X are the first and second projections,
respectively., By the proposition of §2, it suffices to show that

(U/B) n IX] = -1)""PB for B H (X). But
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(U/B) 0 [X] = (py), (U 0 ((X] x B)) [Sp] (6.1.6)
= (pZ)*(U n (X7 x B)) by ()
= (pl)*T*(U n ([X] x B)
= (), {THU 0 T (X] x B))
= (-1)P(p ) (T¥U 0 (B x [XD)

= (-1)"P(T*U/ X)) N B

(This last step uses that (-1)nT*U/[X] = 1, which is clear
since U 1is a Thom class for the n-circuit X <=> (-1)nT*U
is, and U/[X] =1 for any Thom class U.) Thusit remains
to show that U | X x X - 4 = 0 => (p,) (U N 2).

Let N be a regular neighborhood of the diagonal in
X x X, A is a deformation retract of N, and p1 l A = p2 l b,
so p, | N is homotopic to P, | N. Thus it is enough to show
that U Nz is represented by a cycle in N, This follows from

the diagram
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X x X)® H, (XXX)

/\
H#(X x X, X x X -A)® HEXxX, X x X -4)
SS A i:::
i $S
Y} sk
H*N,N - A) ® H*(N, N - A) n > H*(N)

~

and the fact that U = j* U. In other words,

(This argument is due to Milnor [Mi].)

Proof of lemma 3:

a): If YcX is tubular, and y € Y, then y has a neighbor-
hood A in X suchthat (A,ANY)T (An Y) x DLANTY). It
follows that Hi(Y,Y -y = Hi+k(X’X - {y} for all i, Thus
if X is purely n-dimensional and Hn(X,X - x})F Z for all

x € X, Y is purely (n-k)-dimensional and
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v Hn-k(Y’ Y -{y}) = Z for all y € Y. Infact, itis clear that
the sheaf ;L[n_k(Y) is isomorphic to the restriction of the sheaf

v (X) to Y, soif ¥ (X) is constant, sois ¥ (Y).
n n n-k

b): I will show that if ﬁX satisfies condition 4) of lemma 1,
there is a class GY satisfying it for Y. It is helpful to think

of the tube N as the total space of a trivial k-dimensional

bundle over Y. Thus there is a Thom isomorphism
. o ik
H(Y) 2> H (N, N-Y)
for i> 0. Now consider the following diagram:

TJX c X x X, X xX - by > H({y} x X - {¥D)

| |

Vv \Y

HU(Y x N, Y x N - Ag) > H({y} x (N, N - {y})

A

T, e BN x ¥, ¥ x Y -8 )» B (v x (4, Y - D)

The map f is the relative Thom isomorphism for the trivial

Dk bundle over Y x Y:
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-k s k k k
H Y XY, Y x Y-8) B H (Y xYx D, (Y x Y x(D-0)) U((Yx Y -4,)x D))

|

HYY x N, Y x N-8)
g is the obvious isomorphism, and all the other arrows are
restriction maps. The diagram clearly commutes, so if we

define GY to be the image of U and ﬁX | vy} x X, X - {y}D)

X’
is a generator, then Uy | {v¥} x (Y,Y - {y} is a generator.

Proof of lemma 4: This is just the corollary to Proposition 6

of 1.4.

Proof of lemma 5: Y is essentially a hyperplane section of X

in some large Euclidean space (this was Sullivan's idea). Embed
X piecewise linearly in some Euclidean space RN. Let K be
a triangulatioh of X such that each simplex of ﬁ is embedded
linearly in RN. Suppose dim S(X) = s, andlet ¢ be an s-
dimensional simplex of K such that ¢ lies in S(X). (If any
point in ¢ lies in S(X), allof ¢ does.) Let Pc RN be the
s-dimensional plane containing ¢ . Choose a triangulation i

of R.N so that L | X is a subdivision of IZ and P is covered

by a subcomplex of f: . Now let 1 be an s-simplex of f,

with T c ¢ . Assume that the barycenter 7 is the origin of
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‘ RN, and let p: RN - P be projection onto the linear
subspace P, Let m: L - J be a simplicial approximation
to p relativeto r, i.e. L is some subdivision of E s
and 7 |t =p | 7= identity (cf. [Ze 3]).

Now let 7' : L'~ J' be a first derived of 7 (say J'
is the barycentric subdivision of IJ, and the first derived
L' is chosen so that |7'| = |7]). Let Q = l(’TT')_l(_"_r_)l, so
Q is a "p.l. approximation" to the (N-s)-hyperplane perpen-

dicular to P. Let Y =X N @ be the "hyperplane section' of

X by Q. Thus Y = () '(z)|, where f is the simplicial

map got by restricting 7 to L | X = K.

For any simplicial map f: K- J, (f')_l(J(s)) c K(S),

J(S), K (s

where are the s-coskeletons of J, K. (This is an

easy consequence of the definition (3.1).) Therefore, since

T € 19 v k). But sx) e X,

(s)
1

, and
dim(K n KS) = 0, so dim(Y n S(X)) = 0; thatis Y inter-
sects S(X) in isolated points.

Furthermore, for any simplicial map f: K-~ J and
any s-simplex 1 € J, f—l(;) is p.1l. homeomorphic to
(f‘)-l(I_) x D°. (The proof is elementary - see [Mi], p. 125,
lemma 3.) Thus Y = f_l(:r_) is a tubular subpolyhe&ron of X,

(By throwing away the components of Y not containing =, we

can make Y connected.) This completes the proof of the theorem.
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4., Intersection pairings

To illuminate the geometry of Thom classes, I will
discuss their relation to intersection pairings. If an inter-
section pairing on homology is any pairing compatible with
the cup product pairing on cohomology, then the existence of
an intersection pairing on H*(X) is equivalent to the existence
of a Thom class for X. Furthermore, X is a homology
manifold if and only if there is an intersection pairing on
H (X) satisfying a simple quasi-geometric axiom,

Throughout this section, X will be an n-circuit,

H_ (X) will denote the integral homology of X, and H_(X; )
will denote the homology of X with coefficients in the field
F. I will assume there is given a homomorphism h: Z - F,

and I will write [X] = h,[X] ¢ Hn(X; F), etc. (cf. prop. 1 of §1).

Definition. An intersection pairing on the n-circuit X is a

homomorphism
o: HX)® H (X)-»> H (X)
p q ptqg-n

defined for all p, q such that if v € H (X) and w € H (X),
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(4.1) o (v N [XD, (wn [X]D) = (vU w) N [X]

If X is a duality space, (4.1) determines ¢, which
is the classical intersection pairing of Lefschetz when X

is a p.1l. n-manifold,

Proposition 1, If U is a Thom class for X, then X has an

intersection pairing QOU defined by

n+np

o B y) = (-1) (U/Bynvy

n+np

= 1) Pp U n (v x B,

where € Hp(X), vy € Hq(X), and p: X x X ~» X is projection

onto the first factor.

Remark. If X is a manifold, U N (v x B) is the intersection

of y x B with the diagonal Ac X x X (a la Lefschetz).

Proof: We must verify (4.1). Let v e H (X), w € H (X).
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(pu((V N XD, (wn X))

- -™MpLIU A (w n XD x (v [XI]

nr+s{n-r)
1Y

= (-1) LUNwx v)n X xXD] [Sp] (5.7.21)

nr+s(n-r)

= (-1) p. [UU (wx v))n X x X]]

nr+s(n-r)+n(r+s)

= (-1) p, [wx vIU U)n[X x X]]

= (-1) P ((wx v) 0 (UN [X x X))

st
K

= (-1 "p (w x V) N d X))

= (-1)rsp\,,d~k(d*(vv x v) N XD

3K

r
= (- S(wu v) n XD
=(vuy w) n [X], g.e.d.
Now if F 1is a field, H*(X; F) clearly has an inter-

section pairing, since (4.1) determines the pairing on the

direct summand Im(. N [X]), and the pairing on the
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complementary summand can be arbitrary.

Proposition 2, Any intersection pairing ¢ on H_(X;F) yields

a Thom class U_ € H (X x X; F) defined by

i
U =31 (-1F (B., B.)e., x «a.
® e @By By x ey

where {ai} is a basis for H*(X;F), dim 2 =i, and {Bi} is

the algebraically dual basis for H_(X; F), i.e. <ai’ Bj> =85, ..

Proof: By (1.1), we must show that if Cij =g (Bi’ Bj)’

Z;(-l)—l—la .c..a, =a ,
i3 pi‘ij ja pq

where 3 =<a U a,[X]>. Now <o U a,[X]>
pa p q p q

= e((ap U] a/q) N [X]), so by (4.1),

apq =€ ((ap n [xXn, (a/q n [XN).

But . N[X]=¢% a,.B. (1.2). Thus
j ; i
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Y
i

€ cp[(; aipBi), ('2; aquj)]

bq i j

1

e T a. a. oB.,B)
ij ip Jq@ 1 BJ

i
. ™M

1
™
_—
1

since p+i =n=1+j for all nonzero api’ Cij'

ILLemma. U 1is a Thom class for Xn <=> (—l)nT*U is a Thom

class for X,

Proof: T (T*U 0 [X x X)) = U N THX x X] = -1)"U n [X x X].

Since T,T, =1 and T _[A] = [A], the lemma follows.

Proposition 3. U(cp )~ (-l)nT*U.
u

Proof: Let U= % b a X «o_.
EE——— pq rq p q
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n+ni
=p, (U N (Bj x BNe; x aj)

-
i

s (12 ¢ [(-1)

u o ij

i+n_j_
v (-1)F ep, UN (Bj X Bi))(ozi X aj)

=% (-1} Sep,l?T bpq(ap X ozq) N (Bj x B, x a/j)
ra

_ itnj oo _ypli-a)

=5 (-1} ep,[7¥ bpq( 1)y (ap N Bj) X (ozq N Bi)](a/i X aj)
bq

_ _ i+n_;

=y (-1} pi bpqépjéqi(ai X aj)

=3 (_1)_i+ni_ X o

1]

1" 5 (-1b..@. x @, since i +j=n for b_ £0,
i1 =0 i
n N
=(-1)" ¢ bjiT (aj X afi)
= (-1)"'T#U, g.e.d.

One should not expect that ¢ =+ gy since the
P
definition of U only uses the values of o(B,v) for B € Hp(X),
Qp .
Yy € Hq(X), with p + q = n. However, this much of the pairing

can be recovered from U
©
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Proposition 4. If B¢ Hp(X; F), v € Hq(X; F), p+q-=n,

o B ¥) = D % Gy, B).
®

Proof: It suffices to check that co

B,B )=
(U
(Lp)p q

(_1@6 CP(Bq’ Bp), where {Bi} is the basis for H*(X; F) used
to define U .
¢

_ (o n+n}_3_
eoy )Byr B = (1) e p, (U 0 (B x B

-1 p (v (-1 e 0B B, x a)n (B x B)]
e i 73 1 J q p

- (0" b0 (1 e olf BEDRE D B x (@0 B
ij

nq i
= "1 - L _1 .3 . . .
(-1) i); (-1)» ¢ o (B, BJ)élqéjp
- (-1 ata |
(-1) e cp(Bq, Bp)
Pg
= (-1 s s .e.d.
(-1Y—¢ @(Bq Bp) q.e

If the intersection pairing ¢ on H(X; F) satisfies

(4.2) oB,vy) = (—1)pqcp(m B), dimB=p, dimy=gq,
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then it follows easily that T*U = (—1)nUQP . Conversely, if the
¢
Thom class U satisfies T*U = (—1)nU, it is clear that (4. 2)
holds for e,
Thus, if ¢ 1is "symmetric" (satisfies (4. 2)), U(P is
"weakly symmetric (T*U = (-1)"U ), and 0 =¢p. If U
® ¢ (Ucp)

is symmetric, then sois . and U = U.

(:pu)
We have seen in § 2 that the Thom class of a duality

space is symmetric in this sense. However, T*U = (—1)nU

does not imply X is a duality space, so the axioms (4.1) and

(4. 2) for the intersection pairing do not characterize duality

spaces,

Proposition 5. If the intersection pairing v on H(X;F)

satisfies

(4. 3) | olan [X1),B)=an B,

for all o€ H*X; F) and B¢ H (X; F), then X is an F-

duality space. (Note that (4.3) => (4.1).)

Proof: It suffices to show that
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« N [X]: HXX; F) » H (X; F)

i

is injective., But o n [X] =0 implies an B =0 forall B8

by (4.3), so a=0. (If «

8l

= < > =
2 n.a., el N Bi) a, Bi n,

where {ai}, {Bi} are dual bases for H*X; F), H_(X; F).)

Corollary. If the n-circuit X has an intersection pairing
satisfying (4. 3), then Ker(. N [X]) is all torsion.
The fundamental geometric property of the homology

intersection pairing o(8,y) = 8 « vy on a manifold is

(4.4) If B and v are represented by cycles with disjoint

support, then (B, vy) = 0.
It may be true that any n-circuit X which has a pairing
satisfying (4.1) and (4.4) is a homology manifold. I will prove

this by replacing (4.4) by a stronger and less geometric condi-

tion, If X is a manifold,

Bev=+p ((Bxy)+ D)

In fact, it's easy to show that
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B (n—p)qp
(B, v) = (-1) LB x v, b)
for any n-circuit X, where p=dim B, q=dimy, ¢ is any
intersection pairing on H_(X), and | is any intersection
pairing on H_ (X x X). Thus the intersection pairing ¢ on a

manifold satisfies

(4.5) If v nijBi X Yj € Hn(X x X) is represented by a cycle

not meeting the diagonal, then T (-1}l<p(Bi, yj) =0,

Proposition 6. I.et X be a normal n-circuit with an intersec-

tion pairing ¢ on H (X;F), F afield. If ¢ satisfies (4.5),

then X is an F-homology manifold,

Corollary. If X has intersection pairings ¢, on H*(X; F) for

F
F=@®, Z/p for all p, then X is an integral hormology

manifold.
Proof: By proposition 2,
U=73 (-1 ¢ o (B.,Ba, x a,
i im0 j

is a Thom class for X (F coefficients). Now



<U, % n_fB x B>
kg SEEC L gag,

t

i
(-1 e o (B Bj)nkz 6ik6jz

1

k

hus (4.5 that i = i ted b
Thus ( ) says that if § = ¢ nkf’ Bk e Bz is represented by a
cycle not meeting the diagonal, <U, 8> = 0. In other words
U |Xx X-4a =0, since the coefficients are in a field.

Therefore X is an F-homology manifold by Theorem 4 (§3).
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b (—1)—1- € cp(Bi, Bj)nkz<ai X a/j, Bk X BZ>
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Erratum

The proof of lemma 1, p. 9.1, is incorrect. The mistake lies
in concluding that dim p(C) = r-j implies dim(C)> r-j (p. 92).

" This is false in general (and the theorem of [Na] referred to is irre-
levant). I don't know whether the lemma is true, though I doubt it.*
Thus theorems 3A and 3B are unproved as they stand.

However, the general position proposition of p. 98 implies
that theorems 3A and 3B are true if the definitions of "degrees of
freedom'" and "extent" are changed to require the subspaces A of
X to be subcomplexes of some triangulation.

In fact, both theorems are true as they stand. The proof of
theorem 3B shows that extent f§ < filtration B for any triangulable
space, but theorem 4 of [Ze 1] asserts that filtration B < extent B
for any compact Hausdorff space. Thus extent B = filtration B for
any compact triangulable space. Similarly, the proof of theorem
3A shows that degree of freedom o < filtration a, and the proof
of theorem 4 of [Ze 1] can be dualized in a straightforward manner
to show filtration o < degree of freedom oa. Thus degree of

freedom « = filtration « for any compact triangulable space.

* T}\‘Q I"Q,/“f\\tvko\ ;j ;@-lse ~ . ; . ”A'V\H\-U‘\V\e\s meCK\GCQ‘\



