
A CHARACTERIZATION OF HOMOLOGY MANIFOLDS

CLINT McCRORY

A homology «-manifold is a space which has the same local homology at each
point as Euclidean n-space. The principal result of this paper is the characterization
of triangulable homology manifolds by a global property: The rc-circuit X is a homo-
logy manifold if and only if the diagonal cycle A in X x X is Poincare dual to a cocycle
with support A (Theorem 1). If X is a smooth manifold, this cocycle represents the
Thorn class of the tangent bundle of X. The homological properties of Thorn classes
have been studied by Milnor [13; §11] and Spanier [14; Chapter 6]. The proof is
based on their techniques.

A corollary of this proof is that an w-circuit X satisfies Poincare duality if and only
if there is a class U dual to the diagonal which has a certain symmetry with respect to
the canonical involution T on XxX; namely U-^V = U^T*V for all V
(Proposition 1). Furthermore, for any ^-circuit X, the diagonal cycle is dual to some
cocycle U, if coefficients are in a field (Proposition 2). Thus U\(XxX—A) is the
" obstruction " to X being a homology manifold. Propositions 1 and 2 have been
obtained independently by P. Holm [8].

The ideas of Lefschetz about intersection theory and the topology of algebraic
varieties have been my constant guide (cf. [15]). Theorem 1 can be interpreted in
terms of the intersection pairing (Theorem 3).

This paper is a revised version of part of my doctoral thesis at Brandeis Uni-
versity [11], written under the supervision of Professor Jerome Levine. I have also
been helped by the questions and suggestions of P. Lynch, D. Stone, A. Landman,
and especially D. Sullivan. My viewpoint has recently been influenced by the work
of I. Fary [3].

Homology will be singular homology throughout, with integer coefficients in
§§1 and 2, and field coefficients in §§3 and 4. Sign conventions for products are
those of [14].

1. Thorn classes

In this section, all spaces X will be assumed to be triangulable. That is, X is
homeomorphic with the geometric realisation of a locally finite simplicial complex.

An n-circuit is a pair (X, [X]), where X is a compact space and [X] eHn{X), such
that X is purely ^-dimensional, with singularities of codimension at least two, and [X]
restricts to an orientation for the non-singular part of X. These conditions can be
made precise using the local homology groups of X at a point xeX, defined by
Hi(X)x = Hi(X, X — {x}). The space X is purely n-dimensional if and only if
Hi(X)x = 0 for i > n and all xeX, and {xeX,Hn(X)x ^ 0} is dense in X. The
homological singularity set SX is the closure of {x e X, H^X^ g H^R"^ for some /} .
The set SX is a sub-complex of every triangulation of X, since Hj(Z)x ^ Hi(X)y if
x and y are points in the same simplex of a triangulation [3]. For X to be an n-circuit,
the dimension of SX must be less than or equal to n — 2, and the orientation class
[X]eHn(X) must restrict to a generator of Hn(X)x for all xeX-SX.

Received 21 September, 1976; revised 22 February, 1977.
Supported in part by NSF grant MCS76-09817.

[J. LONDON MATH. SOC. (2), 16 (1977), 149-159]



150 CLINTMCCRORY

For example, let X be a complex projective variety of pure complex dimension k.
Since the complex structure of X determines a canonical orientation, X is a 2A>circuit.
Circuits were introduced by Lefschetz around 1930, principally for this reason
[10; Chapter VII]. (For a simple proof that a complex variety is triangulable, see
[6] or [7].)

The /z-circuit X is irreducible if X is not the union of two /z-circuits unequal to X.
Any /z-circuit can be uniquely expressed as a union of irreducible /z-circuits. An
irreducible /z-circuit is the same thing as Lefschetz's " oriented simple n-circuit"
[10; p. 46], or Brouwer's "oriented pseudomanifold" [14; p. 150].

The space X is a homology n-manifold \iHi{X)x = #;(Rn)o for all i and all xe X.
Thus, the /z-circuit X is a homology manifold if and only if SX is empty. My purpose
here is to discuss global properties of (compact, oriented) homology manifolds which
characterize them among all circuits.

For an /z-circuit X, the duality morphism

is defined by 3>x{
a) = a^ [X], where ^ is the cap product [14; p. 254]. Thus

£^x(if'(.X)) c Hn_i(X). If X is a homology manifold, 2X is the Poincare duality
isomorphism.

If AT is an /z-circuit, X x X is a 2/z-circuit with orientation class [XxX] = [X] x [X].
Let d : X -*• X x X be the diagonal embedding d(x) = (x, x), and let A = d(X), the
diagonal of XxX. The class d*[X]eHn(XxX) is the diagonal homology class of
XxX.

A diagonal cohomology class for the /i-circuit X is a class U eH"(X x X) such that

THEOREM 1. The n-circuit X is a homology manifold if and only if X has a diagonal
cohomology class U which is supported by the diagonal; i.e., the restriction of U to
XxX—A is zero.

Proof. If the w-circuit X is a homology manifold, then the 2«-circuit X x X is
also a homology manifold, so @XxX is an isomorphism. Therefore X has a unique
diagonal cohomology class U eHn(X x X). The restriction of U to X x X — A is zero
if and only if there is a class U' eHn(X xX,XxX-A) such that j*U' = I/, where
j : (X x X, (f>) -> (X x X, X x X — A) is the inclusion. Consider the commutative
diagram

H "(X x X) ^ > Hn(X x X)

j *

H"(X xX,XxX-A) > Hn(A)

where i: A-+XxX is the inclusion and D is the duality isomorphism (cf. [14;
6.2.17]). Let U'= D-^A]. Then ®Xxxj*U'= i*DU'= i*[A] = d*[X], so
j*Uf = U.

To prove the converse of this theorem, I will first state an equivalent theorem,
using the class U'.
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Let X be an arbitrary n-circuit. A Thorn class for X is a class

U'eHn(XxX,XxX-A)

such that, if Ux is the restriction of U' to

Hn({x}xX,{x}xX-{(x, x)}) = H"(X, X-{x}),

and [X]x is the restriction of [X] to Hn(X,X-{x}), then <[7X\ [X]x} = 1 for all
xeX — SX. A Thorn class is a generalization of a "cohomology orientation" in
the sense of Spanier [14; p. 294].

LEMMA 1. Let X be an n-circuit, and let

UeH"(XxX) and U'eHn(XxX, XxX- A)

be arbitrary cohomology classes withj*U' = U, where

j : (XxX,(f))^(XxX,XxX-A)

is the inclusion. The following conditions are equivalent:

(1) U is a diagonal cohomology class for X;

(2) V is a Thorn class for X;

(3) U/[X] = 1, where / is the slant product [14; p. 287].

Proof. (1)^(3). By [14; 6.1.6], (U/[X])~ [X] = (Pi)*(U~ [XxX]), where
pt : XxX -> X is projection onto the first factor. Thus U^[XxX] = d*[X]
implies U/[X] = 1. The converse follows from the fact that U <^[XxX] is in the
image of d*.

To see this, let N be a neighbourhood of A in X x X such that A is a deformation
retract of N. (For example, let N be the stellar neighbourhood of A in a sufficiently
fine triangulation of (X x X, A).) Let i: (N, N - A) -> (X x X, X x X - A), and
V : N -*• X x X be the inclusion maps. Now

i* : H*(N,N-A) -> H*(X xX,XxX-A)

is an isomorphism, by excision. Let [XxX]' = (i^)~1j^.[XxX]. Then, by [14;
5.6.16],

U~[XxX]=j*U'~[XxX] = U'~

So 17 - [X x X] e Image (/*') = Image (d*).

(2) o (3). If x e X, let / x : X -• X x X be the map fx{y) = (x, j;). Let ieH0(X)
be represented by the 0-cycle {x}. Then

<U/[X], i> = <l/, ix [Z]> = <C7, ( / J J Z ] ) = <(fx)*U, [X}>,

so 17/[Z] = 1 if and only if <(/e)*C7, [*]> = 1 for all xeX. Since (/x)*t7 is the
restriction of U to {x} x X, the conclusion follows.

THEOREM 2. T/?e n-circuit X is a homology manifold if and only if X has a Thorn
class.
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Lemma 1 implies that Theorem 2 is equivalent to Theorem 1, since the restriction
of U to X x X — A is zero if and only if there exists a class U' with j*U' = U.

I have already shown that if the w-circuit X is a homology manifold, then X has a
Thorn class. There are three steps in the proof of the converse, (a) If X has a Thorn
class, then 2lx is an isomorphism. For field coefficients, this is due to Milnor [13; §11].
(b) If 3)x is an isomorphism, then X cannot have isolated homological singularities.
This was apparently first observed (for " locally irreducible " spaces) by L. Kaup
[9; Kor. 4.3]. (c) If X has a Thorn class, then a " generic hyperplane section " of X
also has a Thorn class. This was suggested to me by Sullivan. Therefore, if X could
have a Thorn class without being a homology manifold, using (c) several times would
produce a subspace Y of X with isolated singularities and a Thorn class. Then <2)Y

would be an isomorphism by (a), which would contradict (b).
The following lemmas justify the principles (a), (b) and (c).

LEMMA 2. / / the n-circuit X has a Thorn class, then Q)x is an isomorphism.

Proof. I will show that U/- : H*(X) -> H*(X) is the inverse of 2)x = • ~ [X]
(up to sign).

Let T : X x X -• X x X be the involution T(x, y) = (y, x). Then

so (— 1)" T*U is a diagonal class.
Let N be a neighbourhood of A in X x X as in the proof of Lemma 1. Let

oteHk(XxX),k^n. By the proof of Lemma 1, JJ^ce. = i Y ( W — a'), where
a' = (i#)~1j*a. Now let p2 be the projection of XxX to the second factor. As
Pil A = p2\&, and A is a deformation retract of N, it follows that pt o i' is homotopic
with p2 o V. Therefore,

So if a€Hi(X), then

(U/a)~ [X] = (pj*(U~([X]xa)) [14; 6.1.6]

= {-\yi(pl)*(T*U~{ax[X]))

= (-ir(T*U/[X])~a [14; 6.1.6]

= (-\)n+nia.

Similarly, an argument of Milnor [13; 11.8] shows that if beH'(X), then
(lxb) = U~(bxl); so

[X]) = (U~(lx b))l[X] [14; 6.1.5]

[14; 6.1.4]

= ( - ly'b.
Remark. The second half of the proof can be omitted by appealing to Lemma 8

below.
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LEMMA 3. Let X be an n-circuit with dim (SX) < 0. If' 2)x is an isomorphism, then
SX is empty.

Proof. The set SX must be finite, since it is a subcomplex of any triangulation of X.
Suppose that SX a {xl5 ..., xv}. For each j , let Nj be the open star of xj} in a tri-
angulation fine enough so that NinNj = 0 for i # j . Let N = Nt u ... uNv,
M = X—N, L = M nN, and Lj — MnJVy, the link of Xj. Now M is a homology
n-manifold with boundary L (that is, M — L is a homology «-manifold and L is
collared in M). Thus L is a homology (n — l)-manifold. I will show that if Bx is an
isomorphism, Lj has the homology of an (n— l)-sphere for each), so SX is in fact
empty.

For each integer i, there is a commutative diagram

Ht(X)

Ht(M)

(M,L) : >Hm-f(X)

where Q)M is the Poincare-Lefschetz duality isomorphism for M. The map/; is induced
by inclusion, gt is the composition Ht(X) -> H((X, SX) ^ H,(M, L), and hi is the
composition Hn~l(M, L) s H"~'(X, SX) -> fl""'(X). The map gf is an isomorphism
for i > 1, and a monomorphism for i = 1.. The map /zf is an isomorphism for
i < n— 1 and an epimorphism for i = n — 1. Thus, since Q)x is an isomorphism, f{ is
an isomorphism for 1 < i < n — 1, and if n > 2, /,• is a monomorphism for i = 1 and
an epimorphism for i = » — 1. Therefore, the long exact sequence of the pair (M, L)
implies that H^L) = 0 for 0 < i < « - 1 (if n > 2).

Finally, I shall show that Lj is connected for j = 1, ..., v. Therefore Lj is a
homology (« - l)-sphere, and Hi(X)XJ £ Hi(R")0 for) = 1,..., v and all i.

An ^-circuit Y is irreducible if and only if Hn(Y) has rank one. As the map
gn: Hn(X) -* Hn(M, L) is an isomorphism, it follows that the inclusion of M in X
induces a bijection between the components of M and the irreducible ^-circuits con-
tained in X. But since <%)x : H°(X) -*• Hn(X) is an isomorphism, each component
of X is irreducible, so each component of X contains a unique component of M.

Now let x and y be the points in Lj. Since x and y are in the same component of
X, they are in the same component of M. Combining an arc from x to y in M with
the cone from Xj on {x, y} yields a 1-cycle c in X. Since /?i (defined above) is onto,
Hi(M) -> # i P 0 is onto, so c is homologous to a cycle in M. Consequently, x and y
lie in the same component of Lj. (There is a similar geometric proof that H((L) = 0
for 0 < i < n—l, using "geometric cocycles"; cf. §5 below.)

Y is a stable subspace of X if there is a neighbourhood U of Y in X such that the
pair ([/, Y) is homeomorphic with (YxRk, Y x {0}) for some k.

LEMMA 4. / / Y is a stable codimension k subspace of the n-circuit X, then Y is an
(n — k)-circuit, with S Y = Y n SX. If X has a Thorn class, so does Y.
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Proof. Since Y is a stable subspace of X, we have

Hi(Y,Y-{y}) = Hi+k(X,X-{y})

for all yeY. Therefore, as X is purely n-dimensional, it follows that Y is purely
0*-/:)-dimensional. As dim(SX) ^ n-2, it follows that dim (SY) < n-k-2.
Clearly SY = YnSX. Let N be a closed neighbourhood of 7 in X so that (AT, Y)
is homeomorphic with (7x1) ' , 7 x {0}), and let £ be the frontier of N in X Let
[7] be the image of [X] under the composition

Hn(X) - //„(*, X-JV) « #„(#, B) £ Hn_k(7).

Then [ 7] is an orientation for 7.
Now consider the following diagram:

Ux'eH"(XxX,XxX- Ax) • H"({y} x(X,X- {y}))

H"(YxN,YxN- Ay) > Hn({y} x(N,N- {y}))

/ j II g \ II
UY'eHn-k(YxY, 7x7-A y ) >Hn-k({y}x (Y, Y-

The map / is the composition

#n- f c (7x75 7 x 7-A y )

£ Hn(Y x 7 x D\ (7 x 7 x (Dk-{0}))u ((7 x 7-A y ) x D

, YxN-Ay).

The map g is the suspension isomorphism, and all the other arrows are restriction
maps. Let UY' be the image of the Thorn class Ux' of X. Since [X]y corresponds to
[7], under the isomorphism Hn(X, X-{y}) s Hn_k{Y, 7-{3;}), we have

<(UY')y, [Y],y = «UX% [X)y> = 1
for all y e Y-SY.

LEMMA 5. Let X be an n-circuit such that SX is non-empty. There is a stable
subspace 7 of X such that 7 n SX is a non-empty set of isolated points.

Proof. Let k = dim (SX). If k = 0, let 7 = X. If k > 0, triangulate X, and let
/ : X -> RN be an embedding which is linear on each simplex of X. Let Q be a A>plane
in RN so that if n : RN -> Q is orthogonal projection, the map nf collapses no
fc-simplexes of X. Subdivide the triangulation of X so that nf is simplicial, and
choose q e Q in the interior of nf(o) for some fc-simplex a of SX. (Recall that SX
is a subcomplex of any triangulation of X.) Let 7 = (nf)~l{q). Then Y r\ SX is
finite and non-empty by construction, and 7 is a stable subspace of X by [13; 20.5].
Note that/(7) is the intersection off(X) with the (n-A;)-plane through q orthogonal
toQ.

Remarks. Theorems 1 and 2 can be generalized in several ways. The conditions
of orientability (and compactness) can be dropped in the definition of an n-circuit, in
which case Theorem 2 is true with twisted coefficients. If n-circuits and homology
manifolds are defined with coefficients in an arbitrary commutative ring with unit,
Theorems 1 and 2 still hold, with the same proofs.
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2. Symmetry of diagonal classes

This section is an elaboration of the proof of Lemma 2. A Poincare duality space
of formal dimension n is a pair (X, [X]), where X is a space (not necessarily tri-
angulable) and [X]eHn(X), such that • -^ [X]: H*(X) -*• H*(X) is an isomorphism
[1]. For simplicity, I assume that X has the homotopy type of a finite CW complex.

I shall use the terminology of §1 (orientation class, diagonal cohomology class,
etc.) in this more abstract setting.

LEMMA 6. A Poincare duality space has a unique diagonal cohomology class.

Proof. This follows from the fact that if (X, [X]) is a Poincare duality space, then
(X x X, [X] x [X]) is too. For coefficients in a field, if • ̂  [X] is an isomorphism
then ' *~*([X]x[X]) is an isomorphism by the Kunneth formula and the com-
patibility of cap and cross products [14; 5.7.21]. But if • ~ ([X] x [X]) is an isomor-
phism with coefficients in the rationals and the integers modulo any prime, then
• '-> ([X] x [X]) is an isomorphism with integer coefficients.

It is easy to construct an n-circuit with a unique diagonal cohomology class which
is not a Poincare duality space.

LEMMA 7. / / U is the diagonal cohomology class of a Poincare duality space, then
T*U = (-\)nU.

Proof. By the proof of Lemma 2, ( — 1)" T *U is a diagonal cohomology class for X.

MX is an w-circuit with a diagonal cohomology class U such that T*[/ = (— 1)" U,
then X is not necessarily a Poincare duality space. (See example 1.) However, the
stronger symmetry property of U used in the proof of Lemma 2 does characterize
duality spaces.

PROPOSITION 1. Let Xbea space, and let [X] eHn(X), and U eH"(X x X)for some
n, with U <~*([X]x [X]) = d%[X]. The following conditions are equivalent:

(1) (X, [X]) is a Poincare duality space;

(2) U~7Vx = (-l)nU~<xforall<xEH*(XxX);

(3) U^T*p = U^Pforall PeH*(XxX).

LEMMA 8. Let C be a chain complex of free abelian groups, and let C = Horn (C, Z)
be the dual cochain complex [14; p. 234]. Let D : C -*• C be a chain map such that
D : Cl -*• Cn_;. Suppose that C is of finite type. Then if the induced homology morphism
H(D) : H(C) -* H(C) is an epimorphism, it is an isomorphism.

Proof. This is an easy consequence of the universal coefficient theorem [14; 5.5.3].
The details are left to the reader.

COROLLARY. Let [X]eHn(X). If • ^ [X] is an epimorphism, then (X, [X]) is a
Poincare duality space.

However, • ^ [X] may be a monomorphism but not an isomorphism. (See
Example 2.)



156 CLINT MCCRORY

Proof of Proposition 1. (2) => (1). (2) implies that (U/a) - [X] = (-1)"+"' a for
all a e H^X), by the proof of Lemma 2. Thus • '-> [Z] is an epimorphism, so (X, [X])
is a duality space by Lemma 8.

(3)=> (1). (3) implies that U/{b~[X)) = (-l)nibfor aWbeH'iX), by the proof
of Lemma 2. Thus 17/• is an epimorphism, so it is an isomorphism by Lemma 8.
Therefore (X, [X]) is a duality space.

(1) => (3). Let PeH*(X x X), and let [X x X] = [X] x [X]. A short calculation
using [14; 5.6.18, 5.6.16] shows that (T*P~U)~[XxX] = (P~U)~[XxX],
so T*P^U = P^U, since • ~ [XxX] is an isomorphism.

(1) and (3)=> (2). Given ae t f^XxX) , let PeH*(XxX) be dual to a; that is,
P^ [XxX] = a. A calculation using [14; 5.6.18, 5.6.16] shows that

3. Existence of diagonal classes

In this section, all coefficients will be in a fixed field F. I again assume that X has
the homotopy type of a finite CW complex.

PROPOSITION 2. Le/ X be a space, and aeHn(X). There exists UEH"(XXX)
such that u^-(axa) = d*(a).

COROLLARY. Any n-circuit has a diagonal cohomology class (field coefficients).

The corollary is not true with integer coefficients. (See Example 2.)
Let au ...,ar be a basis for the F vector space H*(X), and let blt ...,br be the

dual basis for H*(X); that is, (bh a{} = du.

LEMMA 9. If aeHn(X), then d*(a) = Yi,j (J>iw bJ} a} a{ x a} - Y.j(bj ^a)x ay

Proof. If d*(a) = £6(J- at x aJ} then

bij = <bt x bj, rf*(a)> = <d*(6/ x bj), a) = <^ — 6,-, a>.

Furthermore, <^ ̂  fcj, a) = <6i} 6j ̂  a}, so £^»y a£ x a} = Xjibj ^a)x aj.

If a = [X], the orientation class of the compact homology manifold X, this lemma
says that the coefficient matrix of the diagonal homology class in X x X is the inter-
section matrix of X (note that these two matrices are with respect to dual bases of
H*(X)), or equivalently that d*[X] = ^jXaJ} where {£,-} is the basis for H^X)
Poincare dual to {aj\; that is, a^aj = <5,7, where • is the intersection product. This is a
key step in the proof of the Lefschetz fixed point theorem [15].

Proof of Proposition 2. Choose a homogeneous basis {a,} for the graded vector
space H*(X) so that {al5 ..., as} is a basis for the image of the morphism • ̂  a. Let bt

be the dual basis of H*(X). If i > s, then bi~a = 0; for if beHk(X), then
<b,bi^ay = (b-^bi,d) = ±<Jbi^b,as) = ±<Jbi,b<^d). Now for each i < s,
choose a homogeneous element c,e//*(Z) with c^a = â . Let
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Then, by [14; 5.6.21],

«-(flXfl) = X ( f t r o ) x (c, - a) = £ (bi ~a)xai = 1Z {bt - a)xa, = ^(a) .

As a corollary of the proof, if w~* (a x a) = d*(fl), then (u^u,axd} = <w, d*(a)>
is the Euler characteristic of the image of • ^ a. (This is true for the class u chosen
above, and it is easy to check that <w, d*(a)y does not depend on the choice of u.)

A different proof is based on the calculation that if u — Y,i,jcijbi'xbj, then
u^(axfl) = d*(a) if and only if the matrix C = ((— l)"(deg ai)CjJ) is a quasi-inverse for
the matrix B = (6l7); that is, BCB = B. It follows that if integer coefficients are used,
and H*(X) has no torsion, then u exists if and only if the cokernel of • ^ a is torsion-
free. (Compare Example 2.)

4. Intersection pairings

In this section, all coefficients will be in fixed field F. By an intersection pairing

I shall mean simply a bilinear pairing defined for all i and j .

PROPOSITION 3. The space (X, [X]) is a Poincare duality space over afield F if and
only if there exists an intersection pairing «/ on the homology of X which is compatible
with cap product; that is, if aeH*(X) and beH*(X),

Proof. If X is a Poincare duality space, set ^(al} a2) = (bi^b2)^ [X], where
bt - [X] = a,. Then J{b, - [X], a2) = (b, ~ b2) ~ [X] = bt~ (b2 - [X]) = b^a2.
Conversely, if such a pairing J exists, and beH'(X), then b<~- [X] = 0 implies that
{b, «> = e(b~a) = eS(b~[X], a) = 0 for all aeH.t{X), so b = 0. (Here e is the
augmentation.) Thus • --> [X]: H'(X) ->//„_;(X) is a monomorphism for all i, so it
is an isomorphism, since H'(X) £ H^X).

The pairing / o n a Poincare duality space X is related to the diagonal cohomology
class U by the formula

J{au a2) = pJU - (at x a2)),

where p is projection to the first factor. For example, if X is a homology manifold,
the intersection pairing • satisfies the classical formula of Lefschetz,

«i'«2 = P*{d*[X] - fox a2)).

By the Kiinneth theorem, a bilinear pairing J : H^X) x Hj(X) -> Hi+J_n(X) can be
identified with a morphism Hk(X xX)-> Hk_n(X), k = i+j.

THEOREM 3. The n-circuit X is an F-homology manifold if and only if there is an
intersection pairing J on H^X), compatible with cap product, such that ./(a) = 0 for
all classes aeH^XxX) which are represented by cycles in the complement of the
diagonal.

For example, if a, beH*(X) are represented by disjoint cycles in X, then a x b is
represented by a cycle off the diagonal.
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Proof. By Proposition 3, X is a Poincare duality space. Let U be the diagonal
cohomology class. If cteHn(XxX), then (JJ, a> = e ./(a). Thus ./(a) = 0 for all
a eIm [Hn(X xX-A)-+Hn(Xx X)} if and only if

UeKer [Hn(XxX) - > # " ( * x I - A ) ] .

This is equivalent to X being a homology manifold, by Theorem 1.
Proposition 3 and Theorem 3 can be viewed as negative results about the existence

of geometric intersection pairings on the homology of an w-circuit. But M. Goresky
and R. MacPherson have recently defined an interesting "intersection homology
theory ", which contains ordinary homology and cohomology, and which admits a
pairing extending the cap product pairing [5].

5. Examples

Let X be a stratified ^-circuit. (For example, a triangulation or a cellulation is a
stratification.) The class asH^X) is in the image of the duality map

if and only if a is represented by a cycle in X which is transverse to the strata [12;
Theorem 5.2]. In fact, the cohomology of X can be defined as the group of transverse
cycles (or geometric cocyles) in X, modulo transverse homologies. Cycles transverse
to a piecewise-linear cellulation of a polyhedron are Buoncristiano, Rourke and
Sanderson's mockbundles [2]. Cycles transverse to the strata of a Whitney stratified
space are Goresky's n-fibre subobjects [4].

In these terms, the corollary to Proposition 2 says that the diagonal A of an
/z-circuit is always homologous with a transverse cycle & (field coefficients). The proof
shows the reason to be that the class of the diagonal can be expressed in terms of
classes in the image of $)x.

Theorem 1 says that A can be chosen to be arbitrarily close to A if and only if X
is a homology manifold.

The following examples will illustrate these remarks. If X is an ^-circuit, I shall
write [A] = d*[X]eHn(X x X), suppressing the inclusion A c l x l .

Example 1. The pinched torus. LetZ be the complex projective curve x3 +y3 = xyz
in homogeneous co-ordinates [x, y, z\. The space X is a 2-circuit with an isolated
singular point p = [0, 0, 1]. It is homeomorphic with a torus with a meridian circle
pinched to a point, or a sphere with two distinct points identified. The homology and
cohomology groups of X are infinite cyclic in dimensions 0, 1 and 2. Let i eH0(X),
aeH^X), [X]eH2(X), \EH°(X), beHl{X), ^eH2(X) be generators, with
<i, 1> = 1, (b, fl> = 1, and (n, [X]} = 1. Then Q)x{\i) = i, 2)x(b) = 0, and
<2>xQ) = [X]- Thus [A] = (i x [X]) + ([X] x i), so X has a diagonal cohomology class
U = (fix 1) + (1 xft). (The class (nx\) + (bxb) + (lxn) is also diagonal.) Now
T*U = U, but U - (1 x b) * U - (b x 1) (cf. Proposition 1).

The space XxX has four intrinsic strata, whose closures are {(p,p)}, {p}xX,
Xx {p}, and XxX. The cycle A is homologous with the transverse cycle

K = ({x}xX)u(Xx{x}),

where x # p. Clearly, A is not a transverse cycle, since it contains (p, p).
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Example 2. The quadric cone. Let X be the algebraic surface x2+y2+z2 = 0 in
complex projective 3-space with homogeneous co-ordinates [x, y, z, w]. The space X

is a 4-circuit with an isolated singular point p = [0, 0, 0, 1]. It is homeomorphic with
the Thom space of the tangent bundle of the 2-sphere. Both the homology and
cohomology of X are infinite cyclic in dimensions 0, 2 and 4, and zero otherwise. If
aeH2(X) and beH2(X) are generators with (b, a} = 1, then Six{b) = 2a. (The class
b is represented by the zero section and a is represented by the fibre.) Thus

so X does not have a diagonal cohomology class U with integer coefficients (cf. the
remark at the end of §3). But U does exist with coefficients in the rationals Q or in
l/kl for k odd.

The local homology of X at the singular point p is HO(X)P = 0, H1(X)P = 0,
H2(X)P = 1/21, Hz(X)p = 0, HA(X)P = I. Thus X is an F-homology manifold for
F = Q or F = l/kl, k odd.

The quadric cone occurs as an example in Zeeman's thesis (1954, [16]). He
displays the relation between the local homology groups of X and the duality map
Q)x using a wondrous spectral sequence, which is further investigated in [11].
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