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Homology Fibrations and the ¢ Group-Completion”’
Theorem

D. McDuff (York) and G. Segal (Oxford)

A topological monoid M has a classifving-space BM, which is a space with a
base-point. There is a canonical map of H:=spaces M -—»QBM from M to the space
of loops on BM, and it is a homotopy-equivalence if the monoid of connected
components n,M is a group. The “group-completion” theorem ([2-4, 6, 97])
describes the relationship between M and QBM in general. Let us regard n=n,M
as a multiplicative subset of the Pontrjagin ring H,(M), using singular integral
homology. The map M—QBM induces a homomorphism of Pontrjagin rings,
and (because n,(QBM) is a group) the image of = in H,(QBM) consists of units.

Proposition 1. If 7 is in the centre of H (M) then
H, (M)[z '] H (QBM).

Although several proofs of this theorem have appeared its importance for the
process of “Quillenization™! perhaps justifies our publishing the present one,
which is simple and conceptual. We shall prove, moreover, a stronger statement
than Proposition 1 in the two respects described in Remarks ! and 2 below.
Our method was suggested by Quillen’s second unpublished proof, and by
conversations with him for which we are very grateful. The use of homology
fibrations arose from [5]. We have listed some examples and applications of the
theorem at the end.

Remark 1. In Proposition 1 one need not assume that n is in the centre of
H,(M), but only that H (M)[n '] can be constructed by right fractions. Recall
that if 7 is a multiplicative subset of a ring 4 one says that A[n '] can be con-
structed by right fractions if every element of it can be written ap ' with aeA,
pen, and if a,p; ' =a, p,' if and only if a, p; =a, p; and p, p; =p, p, for some
Py, PhET. A typical example is when 7 consists of the powers of an element xeA
such that ax=xa(a) for all ac A4, where « is an endomorphism of A. This arises
as the Pontrjagin ring of the monoid of all maps §"— 8" whose degrees are powers
of a prime p, as we shall see below.

' This word is due to 1. M. Gel'fand.
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We shall prove Proposition 1 by constructing a space M, whose homology
is obviously H, (M)[z '], and a homology equivalence M, —QBM. The basic
example is the case when M = [ [ BZ,, where Z, is the n'™ symmetric group, and

nz0
the monoid structure of M comes from juxtaposition X, x Z,,— 2%, . .. Then M,
will be Z x BX .

Remark 2. To say that a map f: X — Y is a homology equivalence may have at
least two meanings. The weaker one is that f induces an isomorphism of integral
homology. The stronger is that f,: H (X; f*A) = H(Y; A) for every coefficient
system A of abelian groups on Y. The map M _—QBM we shall construct will
be a homology equivalence in the stronger sense. Thus Q BM, whose components
have of course abelian fundamental groups, is a “Quillenization” of M,.. The
advantage of allowing twisted coefficient systems is that one can conclude that
Mwam is a homology equivalence as well as M_ — QBM, where QBM is
the universal covering space of QBM, and M, is its pull-back to M_. This means
that the fundamental group of M, must be perfect, and so our method incor-
porates a general proof that the commutator subgroup of n;(M,) is perfect. If
isolated this would reduce to Wagoner’s argument in [11].

Everything we say below is true if homology equivalence is given either of
the above meanings. Nevertheless it will be convenient to adopt a middle definition,
allowing only abelian coefficient systems 4 on Y, i.e. those such that for each ye Y
the group of automorphisms of the coefficient group A4, at y induced by the
action of n,(Y, y) is abelian. Of course any system coming from QBM is abelian.

Our main idea is that of a homology fibration. In [5] a homology fibration was
defined as a map p: E— B such that for each be B the natural map p~'(b)— F(p, b)
from the fibre at b to the homotopical fibre at b is a homology equivalence.
(F(p, b) is defined as the fibre-product B, x zE, where B, is the space of paths in B
beginning at b.) In this language to obtain a homology equivalence M, — QBM
it is enough to produce a homology fibration E—» BM with E contractible and
with fibre M, at the base-point.

If M is a topological group which acts on a space X one often considers the
space X,, fibred over BM with fibre X, associated to the universal bundle
EM — BM. But the construction of X ,; makes sense even if M is only a topological
monoid, for X,, can be described as the realization of the topological category
whose space of objects is X and whose space of morphisms is M x X, a pair (m, x)
being thought of as a morphism from x to mx. (Here, and in constructing BM also,
we use the “thick ” realization of simplicial spaces, denoted by || || in the appendix
to [9])

Our main result is

Proposition 2. If M is a topological monoid which acts on a space X, and for
eachme M the map x—mx from X to itself is a homology equivalence, then X ,— BM
is a homology fibration with fibre X.

This should be compared with the fact that if x+—xm is a homotopy equivalence
for each m then X ,,— BM is a quasifibration. (When M is discrete this is a partic-
ular case of [7] (Lemma p.98); in general it is a particular case of [9] (1.5).)
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Notice that in the basic example the left action of M= [ BZ, on M,,=Z x By
nz0

is essentially the “shift” maps BX,—BZX, induced by embedding X in 5

as the permutations of {n,n+1,...}. These are homology equivalences but n(;

homotopy equivalences, even though they induce the identity on [K; BX ] for

any compact space K. They would not be homology equivalences if we hag

allowed non-abelian coefficient systems,

To see how the group completion theorem follows from Proposition 2 let y
begin with the case when nyM is the natural numbers N. Choose meM in the
component 1e€N, and let X be the telescope M, formed from the sequence
M—M-—M->--., where each map is right multiplication by m. The homology
of M, is the direct limit of )

H, (M)— H (M) - H (M),

which is precisely H, (M)[n '] because we have assumed the latter can be formed
by right fractions. For the same reason the action of M on M, on the left is by
homology equivalences. The space (M), is the telescope of a sequence of copies
of M,,, which is canonically contractible. (It is the standard EM of [8].) So (M,),,
is contractible, and the homotopical fibre of (M), — BM is QBM, and Proposi-
tion 2 yields Proposition 1.

The general case of Proposition 1 reduces at once to that where oM i
finitely generated, for both H (M)[n '] and H,(Q2BM) are continuous under
direct limits. But if {s,,...,s} generate n then H, (M)[n '1=H, (M)[s™'],
where s=s,;s, ... s,, and the preceding argument applies, defining M_ as the
telescope generated by multiplication by any element m in the component s.

We come to the proof of Proposition 2. For technical convenience we shall
adopt a stronger definition of homology-fibration than that of [5]. It is appropriate
only for base-spaces B which are locally contractible in the sense that each point
has arbitrarily small contractible neighbourhoods. But if M has this property
then BM has; and restricting to such M is immaterial for our purposes, as both
H,(M) and H,(QBM) are unchanged if M is replaced by the realization of its
singular complex.

Definition. A map p: E— B is a homology-fibration if each be B has arbitrarily
small contractible neighbourhoods U such that the inclusion p~'(b")— pYU)
is a homology-equivalence for each b" in U.

To justify this definition we must show that such a map is a homology-fibration
in the earlier sense. This will be done in Proposition 5 below.

The advantage of the new definition is that it makes the following proposition
obvious. (Cf. [5](5.2).)

Proposition 3. If
E, Eq E,

l

po

p1

|
l l
By e~ Bo——
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is a commutative diagram in which py, p;, p, are homology-fibrations, and py '(b)—
pi M(fi(b)) is a homology-equivalence for each be By, then the induced map of double-
mapping-cylinders

p: cYl(E; « Eq — E;) — cyl(B, < By — B,)
is a homology-fibration.

Proof. Each point of the lower cylinder has arbitrarily small neighbourhoods U
in the form of mapping-cylinders of maps V, — V; (i=0, 1 or 2), and p "(U) is the
mapping-cylinder of py 1(V,) — p; {(V)).

Exactly as in [9](1.6) one deduces

Proposition4. If p: E— B is a map of simplicial spaces such that E,— B, is a
homology-fibration for each k=0, and for each simplicial operation 0: [k]— [I]
and each be B, the map p~'(b) — p~Y(6*b) is a homology-equivalence, then the map
of realizations |E||— | B| is a homology-fibration.

Proof. This follows from Proposition 3 because the realizations | E| and | B||
can be made up skeleton by skeleton, and ||BJ|, is the double-mapping-cylinder
of (|| Bl| 41y« 4* x B,— 4* x B,), and so on.

Proposition 2 is a particular case of Proposition 4, for X,, and BM are the
realizations of simplicial spaces E and B such that E,= X x B, and B, = M*.

To conclude we need the following justifying proposition.

Proposition 5. If B is a paracompact locally contractible space, and p: E— B
is a homology-fibration, then p~'(b)— F(p, b) is a homology-equivalence for each
beB.

Proof. Let P be the space of paths in B beginning at b, and let f: P— B be the
end-point map, a Hurewicz fibration. Then f*E is F(p, b). Choose a basis # for
the topology of B consisting of contractible sets. Then there is a basis #* for the
topology of P consisting of contractible sets U such that f(U)e % and f: U— f(U)
is a Hurewicz fibration. #* consists of sets P(t,, ..., t; Uy, ..., U Vi, ..., Vo),
where O=t,<t; <---<t;,=1, and U, oV, cU,>V,c...cU, >V, belong to #;
a path o belongs to this set if a(t;)e V; and a([t;_,,t;])< U, fori=1, ..., k. Because
f: U—f(U) is both a homotopy-equivalence and a Hurewicz fibration when
Ue#*, the pull-back f*E|U is homotopy-equivalent to E|f(U). Thus f*E-—P
is a homology-fibration in our sense, and Proposition 5 follows from the partic-
ular case:

Proposition 6. If p: E— B is a homology-fibration (with B paracompact and
locally contractible ), and B is contractible, then p~1(b)— E is a homology-equivalence
for each be B.

Proof. Let # be a basis for B consisting of contractible sets U such that
p~1(b)—p~}(U) is a homology equivalence for each be U. There is a Leray spectral
sequence for the covering of E by the p~*(U). One obtains it as in [8] by forming
a space E, homotopy-equivalent to E which maps to the nerve || so that above
a point of the open simplex [Uy< U; =---<U,] of the nerve one has p~'(U).
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The spectral sequence comes from the filtration of E, by the inverse-images of
the skeletons of |4|. It is H {|%]; #,) = H(E), where H, is the local coefficient
system U—H,(p '(U)) on 4. But |4| is homotopy-equivalent to B, which is
contractible, so H,(|4|; #,)= H (E), as we want.

Examples. (i) If M is a discrete monoid whose enveloping group is G, and G
can be constructed from M as the set of formal fractions m;m, ' with m, and m,
in M, then Proposition 2 implies that BM ~ BG.

(it) The case M = ]_I BZX,, where X, is the n'™ symmetric group, has already

nz0
been mentioned. It is closely related to the basic example of algebraic K-theory,
where M =U B Aut(P), and P runs through the finitely generated projective
I 4

modules over a fixed discrete ring A4, and the composition law in M comes from
the direct sum of modules. Then M,. can be taken to be K(A4)x BGL_(A), as
one can form the telescope M—>M-—>M—--- by successively adding the free
A-module on one generator. As with X the shifts GL_(A4)—GL_(A) induce
homology isomorphisms because they are conjugate to the identity on each
GL,(A).

(iii) If M =[] G,(p"), where G,(p") is the space of maps S" ' -S" ! of degree p*

k=0

(for some prime p), and the composition is composition of maps, then one has an
example where z is not in the centre of H,(M). Each component of M is the
telescope of

Gn(l)—) Gn(p)HGn(pz)'_’-

where the maps are composition on the left with a standard map of degree p.
This telescope is the same up to homotopy as one component of the space of
maps from §” ! to the telescope " “'»5""1»S" ! ... whose maps have degree p,
i.e. as one component of Map(S"~'; 8" '[p ']), where S" [p ']is S" ! localized
away from p. Comparing homotopy groups one finds that M, can be identified
with Z x G,(1)[p~']. The right-hand action of M on M, is by homotopy equiv-
alences, so the homology fibration of Proposition 2 is actually a quasifibration,
and M_~QBM. Thus enlarging the monoid of homotopy equivalences of " !
to the monoid of maps of degree p* has the effect of localizing the classifying
space, a result essentially equivalent to the “mod p Dold theorem™ of Adams [1].

In this example because the right-hand action of M on M, is by homotopy
equivalences H,(M)[n '] can be formed by left fractions. But it cannot be
formed by right fractions. For example G,(p") is homotopically a circle, and
composition on the right with a map of degree p is a homotopy equivalence
G,(p") — G,(p** "), and the telescope formed from it is not local for the left action.

(iv) A closely related example is M= || BZx, where composition comes

kz0

from the cartesian product of permutations. Then M, ~Z x BIlI, where II=
lim X is the group of periodic permutations of Z whose period is a power of p.
But 2BM is Z x Q[p '], where Q is one component of 2 S*. This follows from
the Barratt-Priddy-Quillen homology isomorphism BX,—Q; for BX . has the
homology of Q up to a dimension tending to infinity with k, and in the telescope
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defining M, the map BX— BZX .. corresponds to multiplying by p in the
H-space structure of Q.

Examples (iii) and (iv) have been studied by Tornehave and Snaith in works
to appear.
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