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Simplicial structures and
transverse cellularity’

By MARSHALL M. COHEN

1. Introduction

To every simplicial mapping f: K — L, we associate two structures, the
simplicial mapping cylinder C;, and the dual structure induced on K by f. We
investigate these structures and the relationship between them. One outcome
of this investigation is that we can give an answer to the question which first
prompted it: Which simplicial mappings of combinatorial manifolds pre-
serve piecewise linear structure? (i.e., when is f(M) = M?). The answer is
that the transversely cellular mappings do this. In a sense to be described,
this is the best possible result.

The simplicial mapping cylinder C, is defined (§ 4) as the top half of
Whitehead’s cylinder. It is a subcomplex of the join of K’ and L, where K’
denotes a first barycentric subdivision of K,

The dual structure induced on K by f is introduced and the basic prop-
erties of the duals are derived in §5. If « is a simplex of L, then D(«, f),
the dual to o with respect to f, is a subcomplex of K’ which is most easily
defined as the inverse image under f of the subcomplex of L’ dual to «. The
duals are closely related to the point inverses f~'(x). If b(«) denotes the
barycenter of «, and if D(«, f) is finite, then D(«, f) collapses simplicially
to f~'b(a). But the duals often behave better than the point inverses in that
D(a, f) may be collapsible when f—'b(«) is not, and in that D(«, f) is a com-
binatorial (n — 7)-manifold whenever K is a combinatorial n-manifold and «
is an i-simplex in the range of f.

If M is a combinatorial n-manifold, the simplicial mapping f: M — L is
called p.l. cellular if f—(x) is compact, and the regular neighborhood of f—'(x)
in M is a combinatorial n-ball, for each « in | L |. For example, the collapsible
simplicial mappings (each f~'(z) is collapsible) are p.l. cellular.

It is natural to conjecture that p.l. cellular mappings of manifolds with-
out boundary preserve combinatorial structure. A topological theorem of
R. Finney [5], combined with the Hauptvermutung in low dimensions [10], [11]

* Work on this paper was supported by an NSF Cooperative Graduate Fellowship and
NSF Grant GP 2440.
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does indeed show this to be true for closed manifolds of dimension n < 3.
Also, T. Homma has elegantly demonstrated [7] (in work done independently
of and concurrently with the present work) that, for any =, collapsible sim-
plicial mappings of closed manifolds preserve combinatorial structure. How-
ever, we prove (Proposition 6.1) that, if » = 5, there are p.l. cellular mappings
of the n-sphere onto complexes which are not combinatorial manifolds. The
examples given essentially depend on the fact that, although f is p.l. cellular,
the regular neighborhood of f~'(x) in a certain submanifold of M may fail to
be a ball. This reveals the inadequacy of p.l. cellularity, and motivates the
definition of transverse cellularity given below. On the other hand, Propo-
sition 6.3 asserts that, if n < 4 and M is a combinatorial n-manifold without
boundary, then the p.l. cellular maps f: M — L coincide with the transversely
cellular maps. Also, collapsible mappings of manifolds without boundary are
clearly transversely cellular.

Definition. Let M be a combinatorial n-manifold, and let f: M — L be
a simplicial mapping. Then f is dual-collapsible if and only if D(«, f) is a
combinatorial (n — ¢)-ball, for each i-simplex a of L. f is tramsversely
cellular if both f and f|dM: 6M — f(0M) are dual-collapsible.

The main theorems of this paper are Theorems (7.1) and (8.1). Let M be
a combinatorial n-manifold (finite or infinite, with or without boundary), and
let f: M — L be a simplicial mapping. Suppose that K is a subcomplex of M
such that f| K is an isomorphism and K = f~'f(K).

THEOREM (7.1). If f is dual-collapsible then there exists a p.l. homeo-
morphism h: (M x I, M x 0)— (Cs, M') such that h|M x 0 =1, If f is
tramsversely cellular, there exists a p.l. homeomorphism

(M x I, Mx1 Mx 0)— (C;, L, M")
such that h | K x 1 =fand h | M x 0 =1,

This gives a sharp answer to our original question. It is the best possible
answer in the sense that the converse of each part of (7.1) is true. In fact we
have the following.

THEOREM (8.1). If C; is a combinatorial (n + 1)-manifold and L < 6C,
then f is dual-collapsible. If, further, L is itself a combinatorial n-manifold,
then f is transversely cellular.

These results are used (§9) to derive the basic properties of simplicial
mapping cylinders. Three applications are given in §10. We show that the
transverse cellularity of a mapping does not depend on the triangulation
chosen. We prove a theorem about the topological quotient space of a com-
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plex K induced by a simplicial mapping of a subcomplex of K. (This applies
in an interesting fashion to a ‘‘figure-eight decomposition’’ of S*.) And we
prove the following join-cobordism theorem,

THEOREM (10.4). If V is an (n + 1)-dimensional combinatorial manifold,
M, and M, are disjoint n-dimensional combinatorial submanifolds of oV, and
every simplex of V is the join of a simplex of M, and a simplex of M,, then
there is a p.l. homeomorphism h: (M, x I, M, x 1, M, x 0) — (V, M,, M,).

(We stress that M, and M, may be infinite and may have non-empty
boundary.)

We turn finally to simplicial mappings for which the inverse image of
each point is contractible. Theorem 11.1 is a Vietoris theorem which states
that such a simplicial mapping of one finite complex onto another is a simple
homotopy equivalence. Theorem 11.2 implies that such mappings of one closed
combinatorial j-manifold onto another necessarily preserve piecewise linear
structure for all 7 < n if and only if the Poincaré conjecture is true for all
Jj=mn.

This paper is an extension of my doctoral thesis, written at the University
of Michigan under Professor Morton Brown. I am grateful to Professor Brown
for his generous expenditure of time and energy on my behalf,

2. Background and notation

Simplexes and complexes. By a complex we mean a countable rectilinear
simplicial complex in some euclidean space R?. The assertion L < K signifies
that L is a subcomplex of the complex K. A partition of K is a complex K,
covering the same point set such that each simplex of K is the union of finitely
many simplexes of K.

If K is a complex, then | K|, the polyhedron determined by K, is the
topological space obtained by giving the weak topology to the point set
covered by K. A homeomorphism (=piecewise linear homeomorphism)
h: K, — K, is a topological homeomorphism 4: | K, | — | K, | such that, for each
finite complex L < K, there is a partition L, of L and a complex L, such
that A4: L, — L, is a simplicial isomorphism. If such a homeomorphism exists,
we write K, ~ K,, and say that K, and K, are homeomorphic or combina-
torially equivalent. For example, if | K,| = | K,|, (same point set, same
topology) then the identity map is a homeomorphism of K, onto K,.

Lower case Greek letters represent (closed) simplexes unless otherwise
stipulated. Thus ¢ < K means that ¢ is a simplex of the complex K; ¢ is the
boundary of o. The symbol ¢ denotes the empty simplex, and it is understood
that @ < K for every complex K.
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Joins. Two simplexes ¢ = v, -+ v, and 7 = a2, -+ @, in R? are said
to be joinable if {v,, v, «++, v, %, + -+, 2,} is a set of m + n + 2 linearly inde-
pendent points. The join of ¢ and 7, written oz, is the (n + m + 1)-simplex
spanned by this set of vertices. We define @o = 0@ = o.

More generally, two complexes K and L are joinable if

(1) forevery 0 < K and v < L, ¢ and 7 are joinable, and

(2) (o0)N (o) = (6 No)rcnrzy), for all ,0, < K and 7,7, < L.
The join of K and L, written KL, is defined as {07 |0 < K, ¢ < L}. Given
complexes K and L, one can always find isomorphic complexes K, and L,, in
some R", which are joinable, Whenever we speak of a subcomplex of KL, we
mean a complex isomorphic to a subcomplex of K,L,.

Notational schemes. If L < K and @ # a < K, we define:

NIL,K) ={o < K|3t<K-3:0<tandtNL=+# Q},

NL,K) ={o < NIL,K)|onL = @},

Lk(a, K) = {t < K| a and 7 are joinable, ar < K},

St(a, K) = {t < K|a < 7}.

In order to avoid awkward descriptions of complexes, such as those given
above, we shall use two different schemes. At times, we use the Alexander
notation [2], K = 0P + Q, where K is written as the sum of its principal
simplexes, 0 < K, P = Lk(o, K) and ¢ ¢ Q. At other times, we use the fact
that a complex is given once any set containing all principal simplexes is
given. For example we may define N(L, K) by stipulating that it is a complex
and writing

N(L,K)={c < K|onL=+ o}.

Barycentric subdivision. If o is a simplex, then b(c) denotes the bary-
center of o, a distinguished interior point. If ¢ < \ < -+ < 7 (all distinct),
then b(a)b(\) + - - b(7) is the simplex spanned by the barycenters of these sim-
plexes., Whenever a simplex b(a)b(B) - - - b(v) is written, it is understood that
B < e

If L < K, then B(K/L), the barycentric subdivision of K modulo L, is
defined by

B(K/L) = L 4 {ab(0) -+ b(r) |a < Lo ¢« Lia <o < --- <t < K} .

B(K/L) is a partition of K, and hence B(K/L) ~ K. If L = ¢, we write
B(K/L) = K'.

If 0 < K then the dual to o in K, written D(o, K), and its subcomplex
D(o, K) are defined by:

D(o, K) = {b(y) -+ b(r) [0 < ¥ < +++ <T < K} <K',
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D0, K) = {b(y) -+~ b(@) [0 S 4 < - <7< K} <K'
Clearly D(o, K) = b(o)D(o, K). It is a classical fact that
D(o, K) = Lk(s, K)' ,
under the isomorphism taking b(ca)b(cB) - - - b(oy) onto b(a)b(B) - -+ b(V).

Manifolds and collapsibility. By an n-ball (n-sphere) we mean a complex
K which is homeomorphic to an n-simplex (the boundary of an (n-+1)-simplex).
We write K =~ B"(K ~ S"). The complex M is an n-manifold (=combinatorial
n-manifold) if Lk(a, M) is an (n — 7 — 1)-ball or sphere for each i-simplex
a < M. We let oM denote {¢ < M| Lk(o, M) is a non-empty ball}. By a poly-
hedral n-manifold, we mean a polyhedron X = | M| where M is an n-manifold.
If X =|M|=|K|is a polyhedral n-manifold, then it follows that K is an
n-manifold. (See [16, Lem. 9], and beware of the different terminology.)

We shall assume the theory of collapsibility and regular neighborhoods
as developed by Whitehead [14] and expounded by Zeeman [16]. In particular,
K\, L and K¢ L denote the facts that K collapses to L, and K collapses
simplicially to L.

Functions. We call f: X— Y compact, contractible, or collapsible if
f~Y(=) is compact, contractible, or collapsible for each « in Y.

3. Stellar neighborhoods and standard extensions
of simplicial mappings

This section contains some useful preliminary lemmas.

Collapsing reduced joins. Recall that L < K is full in K if every simplex
of K having all its vertices in L lies completely in L. In this situation every
simplex of N(L, K) can be uniquely written in the form ¢z where ¢ < L and
t < N(L, K).

If K and L are complexes, then a reduced join from K to L is a complex
N < KL such that (1) K < Nand L < N and (2) Every principal simplex of
N meets L. Notice that K and L are both necessarily full in N.

Example 1. If L is a full subcomplex of P, then N(L, P) is a reduced
join from N(L, P) to L. (Actually N(L, P) is isomorphic to a reduced join,
but we ignore this distinction.)

Example 2. If L is a full subcomplex of P, and if 6 < N = N(L, P),
then Lk(c, N) is a reduced join from Lk(g, N) to Lk(e, N) N L.

Example 3. If f is a simplicial mapping of K onto L then we shall see
(§4) that C, is a reduced join from K’ to L and from L to K.

LEMMA (8.1). If N is a reduced join from the finite complex K to the
fimite complex L, and if Lk(o, N) N L\, 0 for each 0 < K, then N\ L.
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Proor. This lemma is identical with [14, Th. 2], except that the latter
theorem assumes that Lk(og, N) N L™ 0, and concludes that N3 L. The
main lemma used by Whitehead in proving Theorem 2 is the following:

() If K=0P+ Q is a finite complex, P+ @, and P> 0, then
K™ 6P + Q.

Our assertion can be proved exactly as Whitehead proved his theorem, once
we show that () is true when we replace simplicial collapse by collapse.

Suppose K = oP + Q is a finite complex, P+ ¢, and P\,0. By
[16, Th. 4], there is a partition #(P) 2 0. Then o#(P) is a partition of ¢P and,
by [16, Lem. 3], this can be extended to a partition 7= of K. Thus

n(K) = (6P + Q) = on(P) + n(Q) ,
where 7(P) = Lk(g, ©(K)) 2, 0. Hence () implies that
m(K) 6n(P) + n(Q) = (6P + Q) .
Therefore K \,6P + Q, q.e.d.
COROLLARY (3.2). If N is a reduced join from K to L such that Lk(o, N)
18 finite and Lk(o, N) N L\, 0 for each 0 < K, then
Lk(o, N) \ Lk(g, N) N L\, 0

for each 0 < K.
ProOOF. As pointed out in Example 2, Lk(g, N) is a reduced join from
Lk(o, K) to Lk(s, N) N L. But if = < Lk(o, K), then

“k(z, Lk(g, N)) N [Lk(g, N) 0 L] = Lk(oz, N) N Lk(o, N) N L
= Lk(ot, N)N L .

The latter collapses to 0 because oz < K. Hence by (3.1),
Lk(o, N) \ Lk(g, Ny N L\, 0, q.e.d.

Standard extensions. We say that the subcomplex L of K is well situated
wn Kif Lis full in K, and if, further, Lk(c, K) N L is a simplex for each sim-
plex ¢ < N(L, K).

Example. If L is full in K, then L is well situated in B(K/L). For L is
clearly full in B(K/L), and if A < N(L, B(K/L)), say A = b(0) - - - b(z), then
Lk(A, BIK/L)) N L = o N L. The latter is a simplex because L is full in K.

Suppose that L is well situated in K = N(L, K) + P, and that f: L — L,
is a simplicial mapping. (We assume that L, and K are joinable.) Then the
standard extension F of f is the mapping F: K — NL, + P defined by the
conditions
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(1) FIL=f,

(2) F|P+ N(L, K) =1,

(8) F is simplicial.
Thus F(c) =cifoNL=Q and F(o7) = of(r) if 0 < N,z < L and o7 < K.
The usefulness of standard extensions is due to the following lemma.

LEMMA (3.3). Assume that L is a well-situated subcomplex of
K=N({L,K)+ P,

that F: K — K, is the standard extension of f: L — L, and that ye|F(K)|.
Then F~(y) = f~(y) ifye | L.|, F(y) = y if y € | P+ N(L, K) |, and F~(y)
18 a convex cell otherwise.

PRrROOF. The first two assertions are immediate. Thus we must prove that
F-\(y) is a convex cell when ye F(|N(L, K)| — | N(L, K)| — | L|).

Let « be the carrier of y in F'(K); that is, the unique simplex containing
y in its interior. Then @ = o7 where ¢ < N(L, K),t < L,, 0 # @ # 7. Con-
sider any point z € F'-'(y). Carrier x = 67 where ¢ < N (L, K), T < L. But
6f(#) = F(6%) = F(carrier x) = carrier F(x) = carrier y = or. Therefore 0 = ¢
and x € 0%, where £ < Lk(g, K) N L = 7, a simplex. Thus F(z) = y implies
x € oy, so that F~'(y) = (F'|on)~'(y). Since o7 is a simplex, this is a convex
cell, q.e.d.

Neighborhoods in manifolds. We now state

LEMMA (3.4). If L is a full non-empty subcomplex of the m-manifold
M, then

(1) N= NL', K') is an n-manzfold;

(2) 6N = NI/, K') + N(L' N 6K’, 6K");

(3) NI/, K’) and N(L' N 0K', dK') are (n — 1)-manifolds, if they are
not empty;

(4) ON(L', K') = N(I’ N 0K’, dK') = ON(L' N 6K’, 8K") .

This is a consequetice of the more general Proposition 5.6, and the remark
which follows the proof of that proposition.

4. Simplicial mapping cylinders

Suppose that f is a simplicial mapping of K into L. Whitehead [14] defined
the simplicial mapping cylinder (at least for finite complexes) as follows:

(1) Triangulate the cell complex K x I by starring, in order of increasing
dimension, the convex cells o x I at their centroids b(c) x 1/2.

(2) Thinking of K x I and L as disjoint formal complexes, identify each
simplex ¢ x 1 with f(o).
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An argument by induction on the dimension of K shows that the result
of this process is the complex

W; =@ x 0)(b(2) x 1/2) -+ (b(t) X 1/2) [0 < 7 < -+ < p1 < K}
+ {f)(b(z) x 1/2) -+ (b(p) x 1/2) |6 < T < - < p < K} + L,

Essentially we define our simplicial mapping cylinder, C +, as the upper
half of W,. This change simplifies the notation, but it is not very significant
since we shall prove (9.4) that C, ~ W,.

Definition. Suppose that f is a simplicial mapping of K into L where
K and L are joinable in R*. Let L’ be the standard barycentric subdivision
of L and let K’ be a barycentric subdivision of K chosen so that f is also
simplicial with respect to K’ and L’'. Then C < K'L 1is defined by

C;={abo) ---b(r) |a < fl0),0 < +++ <T < K}+ L
={f(bo) -+ b@) Iy <o < -+- <T<K}+ L.

Remarks. (1) fis not usually simplicial with respect to K’ and L’ if
barycenters in K’ are chosen as centroids (e.g., take K = o*, L = ¢'). How-
ever if, for each 0 < K, b(0) is chosen as an interior point of the convex cell
f 0)—1b( f(o)), then f: K’ — L' is simplicial. Notice then, that for a < L we
have

F(0(@) = {b(o) -+ b(x) ' flo) = +-- = f(r) = a, v < K} .

(2) Since K and L are joinable in R?, K’ and L are joinable, and | KL | =
| K'L|. In fact, if 7(K) is any partition of K, and if C is any subcomplex of
KL, then 7(K) and L are joinable and

m(C)={0BIB < L,da<K-3:0 < n(a)and aB < C} < m(K)L
is a partition of C. (The proof is tedious but straight-forward.) We shall use
this fact again later, considering (L) = L, C; < K'L and 7,(C;) < K'L'.

LEMMA (4.1). If f: K— L is a simplicial mapping, then C; is a reduced
join from K’ to L. If f is onto then C, is also a reduced join from L to K'.

LeEmMMA (4.2). If f: K— L is simplicial, then L is well situated in C,.

Proor. If ANL = @, then A < K’. Let A = b(o) --- b(z). Then

Lk(4, C)) n L = f(o) , g.e.d.

LEmMA (4.3). If K x I is triangulated as C.p, then the simplicial pro-
gection w;: (K x I)— C; given by w(yb(c) -+ b(z)) = f(4)b(0) - - b(T) is the
standard extension to K x I of f: K— L.

For, K = K x 11is well situated by (4.2). This is just the definition of
standard extension.
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3. The dual structure determined by a simplicial mapping

In this section, we define the duals determined by a simplicial mapping
and give their basic properties. We assume throughout that f: K— L is a
simplicial map, that f: K’'— L’ is also simplicial, and that @« = &’ is an
i-dimensional simplex of L, (i = 0).

Definition. D(a, f), the dual to o with respect to f, and D(a, f) are
defined by

D(a, f) = {b(0) - -+ b(z) | @ < f(0),0 < --+ < T < K},
D(a, f) = {b(o) --- b(z) |a = f(0),0 < --+ <T < K}.
ProprosITION (5.1). D(«, f) = Lk(e, C;) N K'.
This follows directly from the definitions of the sets.
PROPOSITION (5.2). D(a, f) = f~'D(a, L) and D(a, f) = f~'D(a, L).
ProoF. Suppose that A = b(o) --- b(z) < D(a, f). f: K'— L' is sim-
plicial. Hence

F(A) = £(b(9) - -+ £(b(2)) = b(f(0)) « -+ b(f(7)) = b(B) - -+ b(¥)

where ¢« < 8 < --- < v < L. Therefore f(A) < D(a,L) and A < f~'D(«a, L).
On the other hand, suppose that

A=bB) -+ blv) <D, L) . .
If b(o) - - - b(r) < f~'(A), then b(B) precedes (or equals) b( f(c)) in A. Therefore

B < f(o) and @ < B. Thus a < f(0), so b(ag) --- b(7) < D(«, f).
The second assertion is proved similarly, q.e.d.
COROLLARY (5.3). D(e, gf) = f~'D(a, g) and D(«, gf) = £~ D(«, g).
ProposITION (5.4). If o' < o, then
(i) f(b(a?)) is a full subcomplex of D(ai, f)
(ii) D(@,f) = N(f(b(@), D@, /)
(i) D(at, f) = Ngf—l(b(ai)), D(a~, ).
(Weset a™' = @ and D(a™, ) = K').
ProoF. Recalling that

F7(b(a))) = {b(o) - -+ b(z) | flo) = -+ = [f(r) = '},
we see that f~(b(er’)) < D(«', f) < D(ai, f).
Because f: K’ — L' is simplicial, f~'(b(a)) is full in K’, and a fortior: it
is full in D(ai, f). This proves (i).
If A= b(o) - b(r)is a simplex of D(a', f), then a’ < f(0). Therefore
o = f(v) for some face + of o. Then b(y-)b(o) - - - b(7) is a simplex of D(ai, f)
meeting f~'(b(c)). Hence D(c, f) < N(f~'b(a’), D(ai, ).
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On the other hand, suppose that A = b(g) - - - b(z) is a simplex of D(a'~, f)
meeting f~'b(a’). Then some vertex of A, say b(), lies in f~'b(c’). It follows
that a~' = f(o) < f(pt) = ', so f(0) = a*. Hence A < D(a‘, f). This proves (ii).
The proof of (iii) is similar, q.e.d.

ProposITION (5.5). If D(c, f) is finite, then D(at, f)\, f~'b(a?).

PROOF. D(c, f) is a reduced join from D(a’, f) to f~b(c’) by the previous
proposition. This assertion will follow from (3.1) if we show that

Lk(A4, D(a', f)) N f~b(a) \, 0
for each A < D(a, f). Let A = b(0) --- b(z). f(0) = . Then

Lk(A, D(a?, f)) N f~'b(a)
={b(pt) «+- b)) [ f(pt) = +-+ = f(v) = &, v < 0}
= (flo)"b).
The latter is a convex cell and so it is collapsible, q.e.d:

ProposiTION (5.6). If K= K" is a combinatorial m-manifold and
at < f(K), then

(1) D(at, f) is a combinatorial (n — ©)-manifold,

(2) aD(a, f) = D(&, f) + D(', f| 6K),

(3) D(, f) is empty or is an (n — 1 — 1)-manifold. D(ct, f|0K) is
an (n — 1 — 1)-manifold if & < f(OK), and is empty otherwise,

(4) oD(f, f) = D@, f|9K) = D(, f) N 6K’ = aD(cc, f | 0K).

ProoF. We proceed by induction on %, the result being trivial if » = 0.
Suppose n > 0 and the result is true in dimensions less than =.

We prove (1) and (2) by considering a simplex A = b(a,) --- b(g,) of
D(c, f), and showing that Lk(A4, D(a?, f)) is always an (n — ¢ — 1 — 1)-ball
or sphere and that it is a ball if and only if A < D(af, f) + D(c, f| 6K).
Let n; = dimension ;.

Case I. Assume AN f7'b(a’) = @, i.e., &' = f(0,). A typical simplex in
Lk(A, D(a%, f)) is composed of a sequence of vertices which precede b(c,),
followed by a sequence of vertices which may be interspersed between the
vertices of A, followed by a sequence of vertices which follows b(c,). Thus

Lk(4, D(c, f)) = {b(0) -+ - b(z) | & = f(0) = -++ = f(z), T < G}D(0,, G))
«++ D(a,_, 6,)D(0,, K)
= [(f16)~0(@)]D(ay, 6)) - -+ D(o,, 6,)D(0,, K).
Since f(0,) = &, (f| d,)7'b(«?) is the boundary of the convex (n, — )-cell
(f1o)7'b(c?). Thus the first term in the above join is an (n, — ¢ — 1)-sphere.
D(o,_,, 6;) = Lk(o,_,, 6;) is an (n; — m,_, — 2)-sphere. Finally Do, K) =
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Lk(o,, K)' is an (n — n, — 1) ball or sphere according to whether or not o,
(and hence A) is in the boundary of K.

Thus if AN f~'b(a) = @, we see that Lk(A4, D(«, f)) is a ball or sphere
depending on whether A < 6K’ or not; i.e., depending on whether

A < D@, f)N oK' = f—D(a¢, L) N 0K’
= (f10K)"D(a, L) = D(e', f| 0K) .

As the join of ¢ + 2 complexes whose dimensions add up to » — ¢ — 29 — 2,
this link has dimension n — ¢ — ¢ — 1.

Case II. Assume A N f~'b(a’) = @. Thus A < D(ai, f). Reasoning as
before,

Lk(4, D(a, f)) = {b(0) - -- b(?) | &' < f(0), T < 6} M
= D(@, fl6)M,

where M is a sphere or a ball of the appropriate dimension. But by induction
hypothesis D(a’, f| d,) is a manifold, and by (5.5) this collapses to (f | G,)'b(ct’).
But f(o,) = o, so

(f160)70(er') = (f | 70)7"b(e))

is a convex cell. Thus D(«a’, f|d,) is a ball, being a collapsible manifold.

Hence if A < D(«, f), we see that Lk(4, D(«, f)) is a ball. This com-
pletes the proof of (1) and (2).

If & ¢ f(0K), then D(c?, f| 0K) = @. Thus D(c, f) is either empty or
is an (n — ¢ — 1)-manifold without boundary, by (2). In this case, (3) and (4)
are trivially satisfied.

If & < f(0K) then, by induction hypothesis, D(«, | 0K) is an (n—1—1)-
manifold with 6D (a, f | 6K) = D(a’, f| 0K). But

oD(a, f) = D(«@, f) + D(&', f | 9K)
and .
D(', f) N D(@, f|9K) = D(e, f) N D', £) N 3K’
= D(@, f)NoK' = D(a, f| oK) .
Since the complement in a j-manifold without boundary of a j-manifold with

boundary is again a j-manifold with the same boundary, we see that D(a’, f)
is empty or is an (n — i — 1)-manifold with 0D («, f) = D(, f | 6K), q.e.d.

REMARK. Suppose L is a full subcomplex of K = N(L, K) + P, and let
v = a’ be a vertex which is joinable with K. Let f: K— vN(L, K) + P be
the simplicial map such that f(L) = v and f| P + N = 1. Notice that
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D', f) = N(L', K') ,
D, f) = N(I/, K")
D, f|oK) = N(L' N oK', 6K") ,
and
D@, f|6K) = N(L' N oK', 3K") .
This shows that (3.4) is a special case of (5.6).

PROPOSITION (5.7). Suppose that L is a well-situated subcomplex of the
locally finite complex K, that f: L— L, is a compact simplicial mapping,
and that F: K — K, is the standard extension of f, then

(1) Ifa < K, and a < L, then D(a, F)\,0;

(2) If a < Ly, then D(ar, F)\,D(a, f).

PROOF. F'is a compact map by (8.3). K’ is locally finite and D(«a, F) =
N(F~b(a), D(at, F')) < K'. Therefore D(a, F) is finite.

If « & L,, then D(a, F)\, F~'b(x) \, 0 by (5.5) and (3.3).

If @« < Ly, then D(a, f) is a full subcomplex of the finite complex

D(a, F) = N(D(«a, f), D(a, F)) = N .
We shall show that Lk(4, N) N D(«, f)\, 0 for each simplex 4 < N.

Let A=1b(0)---b(r). Notethato N L # ¢, since a < F(0),and o N L = g,
is a simplex because L is full in K. Thus,

Lk(A, N) N D(e, f) = {b(ze) -+ b(v) | < f(pe), v < o N L}
= D(a, flo)) \O .
Therefore D(a, F')\, D(«, ), q.e.d.

6. P.1 cellularity and transverse cellularity

ProPosITION (6.1). If m = 5 there is a p.l. cellular map of the n-sphere
S* onto a complex K™ which is not a combinatorial manifold. (For the defi-
nition of p.l. cellularity see §1.)

Proor. Let Q"' be a compact contractible combinatorial manifold such
that Q"' x I =~ B" and 0Q"* is not simply connected. Such examples are
known to exist for n = 5. (See [4], [12].) Then S"~' ~ 2Q"~* (the double of
Q") and we triangulate S*' as S"*' = @, + Q,, where Q, ~ Q, =~ Q", @, is
well situated in S™' and N = N(Q,, S**) =~ Q,. Let S*' = N + P. Let F be
the standard extension of the mapping f: Q, — v where v is a single point.
F(S*') = vN + P where 7,N = 1. F~'(v) = @, and by (3.3) F~'(x) \,0 if
x = v. Notice that the regular neighborhood of F~*(v) in S is not a ball.

Now let (v, + v,)S™* = S" be the suspension of S, and let

S(F): (v + v)S™* — (v, + v)(wN + P) = K
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be the suspension of F. We claim that S(F') is p.l. cellular, but that K is not
a combinatorial manifold.

S(F)y™x,t) = F(x) x t (-1 <t<1). Thus if ® v or if ¢t = +1,
S(F)~(x, t) \, 0 and the regular neighborhood of S(F')~'(z,t) is a ball. On
the other hand, if —1 < ¢t < 1, then S(F')~'(v, t) has as regular neighborhood
N x [t —¢, t+¢] for some ¢ = &(t) > 0. Since Nx [ =Q x I=B", we
conclude that S(F) is p.l. cellular.

But K is not a combinatorial manifold since Lk(vv,, K) = N is not simply
connected, qg.e.d.

REMARK. It is not known whether K is a topological sphere.

In the above example the regular neighborhood of S(F')~'(v, t) in S™ is a
ball, but its regular neighborhood in S*~' x t is not. This indicates that we
should worry about regular neighborhoods in certain submanifolds. As pointed
out in the introduction this leads us to the duals, and we define f: M — L to be
transversely cellular if D(a’, f) ~ B"* for each a' < L and D(a’, f|0M) =
B! for each af < f(OM), (1 = 0).

Example (6.2). Assume that L is a well-situated subcomplex contained
in the interior of M, and f: L — L, is a mapping of L onto L, such that
D(a, f)\, 0 for each a < L. Then the standard extension F' of f is trans-
versely cellular. This is because D (B, F') = B"~ for every i-simplex 8 < F'(M),
by (5.6) and (5.7) and because F'| oM = 1;,.

PROPOSITION (6.3). If M" is a manifold without boundary, n < 4, and
fis a p.l. cellular simplicial mapping of M™ onto L, then f is transversely
cellular.

Proor. We give the proof for n = 4. If a° < L, then

D(a’, f) = N(f~(a’), M)
is a regular neighborhood of f~ (% in M by (5.5) and (5.6). Since f is p.l.
cellular, D(a’, f) = B*.

Suppose that a' < L, and choose a vertex a® < a'. Now f~'b(«’) is con-
tractible since its regular neighborhood in M is a ball. But from (5.4)-(5.6)
we see that D(a', f) is the regular neighborhood of f~'b(a') in the 3-sphere
D(a®, f). Thus D(a', f) is a compact contractible 3-manifold in S® Then
oD(a, f) =~ S, so by the 3-dimensional Schoenflies theorem [1], D(a, f) = B®.

Finally, if 1 = 2, D(«’, f) is a compact contractible (4 — 7)-manifold, so
D(af, f) = B, q.e.d.

7. Consequences of transverse cellularity

This section is devoted to the proof of
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THEOREM (7.1). Assume that M is an n-manifold, and that f: M — L s
simplicial. Then
(A,). If f is dual-collapsible, there exists a homeomorphism

hi(M x I, M x 0)—> (C,;, M")

such that h| M x 0 =1,

(B,). If f is transversely cellular, K < M, f | K is an isomorphism, and

Ff(K) = K, then there exists a homeomorphism
h(MxI,Mx0,Mx1)—s(C,, M’', L)
suchthat h|M x 0 =1, and h | K x 1 = f.

PROOF OF (A,) assuming (B, .,). Consider the canonical simplicial mapping
m;: M x I— C, defined in (4.3) where M x I is triangulated as C,,, and | M x 0 |
is triangulated as M’. Clearly n,| M’ =1 and n;'w(M’) = M’. Thus (A,)
will follow from (B, ,) once we show that r, is transversely cellular.

Since D(at, f) is an (n — 1)-ball for each a‘ < L, and 7, is the standard
extension of fto M x I, (5.6) and (5.7) imply that D(«’, 7,) is an (n — ¢ + 1)-
ball for each a < C;,. But M = M x 1 is well-situated in o(M x I), and
T |0(M x I) is the standard extension of f to o(M x I). Hence, by (6.2)
;| 0(M x I) is transversely cellular. Thus 7, is transversely cellular and
the result (A,) follows, q.e.d.

The proof that (B,) is true for all n proceeds by induction. If » = 0, M
is just a discrete set of points, and f is an isomorphism. So the proposition
is trivial.

We assume that n > 0 and the proposition is known for integers less
than n. The proof is rather long and will be given in a series of lemmas.
Throughout this section, M denotes an n-manifold and f denotes a simplicial
mapping.

LEMMA (7.2). If f: M — L and ©f A is a j-simplex of C; meeting both
M' and L then Lk(A, C;) is an (n — j) ball or sphere according to whether
A < Cjppy or not. ’

Proor. Let A = v,v, -+ v,b(d,) -+ b(g,) = v,b(0,)B. Let N = dimao,.
Notice that A < Cj,y if and only if D(s,, M) is a ball. But

Lk(4, C;) = Lk(4, Cy, )D(0,, M) .
Thus it will suffice to show that Lk(A4, C ri0,) 18 an (N — j)-sphere. Because
Lk(4, Cy,,) = Lk(B, Lk[vb(0,), C;,,]), our problem is reduced to showing
that Lk(v,b(a,), Cy,,) is an (N — 1)-sphere.

Let ¢t = (f|o,)(v,). Let v = Lk(, 0,). Notice that p =+ @ because
v, < f(o,). Therefore v is a simplex of ,. Now
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Lk(v,b(0,), Cyy0,) = {Bb(0) + -+ b(T) | 0,8 < f(0), T < 6.} + f(¥
={Bb(o) --- b(x) [B < flenNy), o Np+ @,T <0} + fV)
= {f(¥)b(a) -+ b(x) | <oNV, 0N+ D, 7<)+ f).
But notice that

B(Gy/v) = {yb(0) -+ b(@) [y < oNv,0Np+ 2,7 <} +v.
Therefore Lk(vb(o,), C;, ) is the image of the sphere B(d,/v) under the
standard extension of f|v. This standard extension is transversely cellular
by (6.2). Since the statement (By_,) is known by induction hypothesis, we
see that the link in question is indeed an (N — 1)-sphere, q.e.d.

LemMA (7.3). If f: M— L, and if A is a j-simplex of M', then Lk(A, C,)
is an (n — 7)-ball.

If B is any non-empty simplex of M’, then Lk(B,C,) N L is non-empty
and collapsible by (4.2). Using this fact, the proof of (7.3) is the same as
the proof of (7.4).

LeMMA (7.4). If f: M — L is dual-collapsible then Lk(c?, C;) = B for
each o < L,

ProoF. We suppose the assertion is true for all simplexes of L of dimen-
sion greater than ¢ (a justified supposition if there are no such simplexes), and
prove the assertion for & by showing that Lk(«?, C,) is a collapsible (n — 1)-
manifold,

By hypothesis D(8, f) is a non-empty ball for each 8 < L. This implies
that f is onto, so C, is a reduced join from L to M’. It implies that Lk(8, C )
is finite for each 8 < L, and that Lk(8,C,)N M’ = D(B,f) \,0. Thus by (3.2),
Lk(«é, C;) \,0.

Suppose 87 < Lk(a?, C,). If 87 < L, then a’B’ is a simplex of L of dimen-
sion greater than 1, so Lk(8/, Lk(«’, C;)) = Lk(a'f3%, C,) is an (n — i — j — 1)-
ball. On the other hand, if 8 N M’ = @&, then

Lk(8?, Lk(c, C,)) = Lk(@'%, C,)

isan (n — 7 — j — 1)-ball or sphere by (7.2). Thus Lk(a‘, C,) is an (n — 1)-
manifold, q.e.d.

LEMMA (7.5). If f: M— L is dual-collapsible, then C, is an (n + 1)-
manifold and 6C;, = M’ + C;oy + L.

This is an immediate consequence of (7.2)-(7.4).

LEmMMA (7.6). If f: M"— L 1is transversely cellular, then L is an
n-dimensional submanifold of 6C;, and 6L = f(OM).
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ProoF. From the previous lemma, C, is an (n + 1)-manifold and oC, =
M’ + L + C,;y. By definition f|oM is transversely cellular; so (B,_,)
implies that C,,y ~ (0M) x I. Thus 6C, is an n-manifold without boundary,
M’ + C; oy is an n-dimensional submanifold of 0C,, 0C, = (M’ + Cay) + L
and LN (M + Cray) = F(OM) = oM’ + C,oy). It follows that L is an
n-manifold with oL = f(0M), q.e.d.

The reason that transversely cellular maps preserve structure and the
plan of attack can now be explained as follows., Since L is a combinatorial
manifold, {D(a, L) |a < L} U {D(«, 0L) | @ < oL} yields a decomposition of
| L| as a cell complex, where the cells are combinatorial balls. By the hy-
pothesis of transverse cellularity, {D(«, f) | a < L} U{D(«a, f|0M)|a < 6L}
gives a decomposition of M into combinatorial balls, These cell complexes
are isomorphic under the correspondence D(«, f) = f~'D(a, L), and this
1somorphism allows us to define a homeomorphism. C, is homeomorphic to
M x I in so mice a manner because, for each o < L, we can find an
(n — 1 + 1)-ball in | C,| stretching from D(at, f) to D(a?, L) which corre-
sponds precisely to the cell D(ad, f) x ITim | M x I|.

We assume for the rest of §7 that f: M— L is a transversely cellular
mapping. Let C* = C¥ be the partition induced on C, by barycentrically
subdividing L (see Remark 2 of §4), and if J < C,, let J* denote the corre-
sponding subcomplex of C*, Thus

C* ={b(8) + -+ b(Mb(o) -+ b(x) [3a < L3:7v < a < flo)} < M'L
= {b(B) -+ - b(Mb(0) + -+ b(z) | ¥ < flo), T < M} < M'L’ .

Define for each a < L, « = @, the following subcomplexes of C*:

Q(a, F) =A{b(B) -+ - b(Mb(o) - -+ b(z) | < B},
Qa, f) = {b(B) + -+ b(7)b(o) -+ b(z) | < B} .

LEMMA (7.7). The Q’s have these properties:

(a) Qi f) is a homogeneous (n — i + 1)-complex.

(b) Qa, f)N M’ = D(a, f) and Q(«, f) N L' = D(«, L).

Qa, )N M’ = D(«, f) and Q, f)n L' = D(a, L).

(¢) Qa, /NQKWB, f) = Qa-B, f), where a-B is the simplex of L
spanned by « and B, if there is one, a-B = @ otherwise, and Q(D, f) = @.

(d) C* =3{Q(a, f)|a < L}.

(e) Qa, f) = 2{QB, F) | < B

(f) Q, f) = b@|Q, f) + D(a, f)].

LEmMA (7.8)., If o' < L, then Q(&?, f) = B*+,
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ProoF. Let A* = b(a’) --- b(a’) be a maximal simplex of (a?)’. As a
partition of C,, C* is an (n + 1)-manifold, and since A C |9C, |, we see that
A" < 3C*, Hence Lk(A’, C*) =~ B*i. But Lk(4, C*) = Q(c’, f) + D(, f).
Therefore Q(a, f) = b(a’)Lk(A4!, C*) ~ B*+', q.e.d.

LEMMA (7.9). (1) 3Q(a, f) = Q(a, ) + Q(a, f|6M) + D(a, f) + D(a, L)

(2) Qa, f)NQa, f1oM) = Qe, f|oM).

Proor. If A is a simplex of D(«, f), then every principal simplex of
Lk(A, Q(a, f)) contains b(a). Thus Lk(4, Q(«, f)), being a ball or sphere by
(7.8), and a cone over b(«), is a ball.

If A=5QB)---b(y) < D(a, L), then

Lk(4, Q@, f)) N D(a, f) = D(v, ) \,0.
Since this is true for all A < D(«, L), it follows from (3.2) that
Lk(4, Q(a, /) \,0.
Hence this link is a ball.

If A=b(B)---b(v)b(o) - b(r) < Qa, f) meets both D(«, f) and D(«, L)

then, by our usual method of analyzing links, we see that
Lk(4, Q(a, f)) = D(«, B)(sphere) X(sphere)D(z, M),
where X consists of all simplexes which fit between b(v) and b(¢). That is

X = {b(v9,) + -+ b(v0,)b(fe) + -+ b(Y) | @ +# 6; < Lk(v, L), vo, < f(p0), v < 6}
+ D(v, f|6) + D(v, f(0)) .
We claim that X is a sphere. This implies that Lk(A4, Q(«, f)) is a ball if
and only if & # 8 or = < dM; that is, if and only if
A< Qa, f)+ Qa, floM),
and so completes the proof of (1). The proof of (2) is straight-forward.
To see that X is a sphere, notice that Lk(vb(o), C,,,) is a sphere by (7.2).
But we have
Lk(vb(c), C,)
= {6b(st) -+ b(v) | 6 < Lk(v, L), v0 < f(1), v < 6}
+ D(v, f|6) + Lk(v, f(0))
[Lk(vb(0), C;.)]*
= {b(d,) + -+ b(d,)b(fe) - -+ b)) | @ # 6, < Lk(v, L), 7o, < f(p), v < 6}
+ D(v, f|6) + Lk(v, f(9)) .
The correspondence which takes
b(v9;) =+ - b(v9,)b(£2) ++- b(Y)  to  b(,) - - b(d,)b(fe) -+ - b(V)
is an isomorphism of X onto the sphere [Lk(vb(o), C;,)l*, q.e.d.
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Let F', be the family of piecewise linear balls, each a subpolyhedron of
| M’ x I|, consisting of the elements D(«a, f) X I, D(a, f) x © (1 =0,1),
D(a, f10M) x I, and D(ex, f|0M) x © (i = 0, 1), where « ranges over L,

Let F, be the family of balls, each a subcomplex of C*, consisting of the
elements Q(«, f), D(«, f), D(«, L), Q(a, f|6M), D(«, f|0M), and D(a, oL),
where a ranges over L.

LEMMA (7.10). F}, is a polyhedral cell complex covering |C,|. Each cell
is a ball in | C;|. The intersection of two cells in F, is a cell in F, which
lies in the boundary of each. Moreover, the boundary of each i-cell in F, is
the union of cells in F, of dimension less than i. A similar statement holds
for Foand | M’ x I|. ;

Proor. This follows from (7.7)-(7.9) and (5.6).

The following assertion should be obvious,

LEMMA (7.11), If +: F,— F, s defined by
vI[D(e, f) X 0] = D(a, f)
vID(«, f) x 1] = D(a, L)
yvID(a, 1) x Il = Q(a, f)
v[D(a, f|oM) x 0] = D(«, f|oM)
Y[D(a, f1oM) x 1] = D(e, 0L)
w|D(a, f1oM) x Il = Q(ex, f|oM)
then + 1s an tsomorphism of cell complex:s.

Let us identify M’ x 0 = M’ < C; and consider f as a mapping of
M’ x 1 onto L', where K’ = K’ x 1 < M’ x 1, With these conventions the
conditions on 4 in the statement of (B,) make sense.

PROOF OF THE ASSERTION (B,). Let F' be the set of all cells of F; of
dimension less than or equal to ¢ (7 = 1, 2). We construct the required homeo-
morphism 4: | F,| — | F,| inductively on the i-skeleton of F'.

Let Ay | F?|— | F?| by hy(c’) = (¢’ for each 0-cell ¢’c FY. Note that
ho | FY N (M’ x 0) = 1 and A(c’) = f(c’) if ¢*e (K’ x 1) N FY (i.e., if ¢° is the
barycenter of an n-simplex of K or an (n — 1)-simplex of K N oM).

If @« < f(K) is an +¢-simplex, then f~'(«a) is also an i-simplex since
ff(K) = K and f| K is an isomorphism. Denote & = f~(«). Then

D(a, f) = b@D(a, f);  D(a, L) = b@)D(a, L) .
If &: D(a, f)— D(a, L) is a homeomorphism then, by the cone over h, we
mean the homeomorphism #4,: D(«, f) — D(«a, L) defined by

h(th(@) + (1 — t)x) = th(a) + (1 — t)h(x) .
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Suppose now that homeomorphisms %;: | FY | — | F/| have been defined
for 0 < 5 < 7 such that

(a) hic?) = (c?) for each ¢i e F/,

(b) ;|| F/|n(M x0) =1,

(¢) If a < f(K)and D(«, f) = D(a, f) x 1 < FY, then

h;: D(e, f)—> D(a, L)

is the cone over 4;_,: D(a, f) — D(«, L). Similarly %;: D(«, f| 0M)— D(«, L)
is the cone over k,;_:D(a,f|dM)— D(a, L), if a < f(3M) N f(K) and
D(a, f|0M) < FY.

(d) hy=hy || F7|if § < k.

Let ¢’ be an i-cell of F,. Notice that &;_,(d¢’) = y(3c’) = dv(c’), by con-
dition (a), (7.9), (5.6), and definition of . Define A;: | Fi| — | F}| as follows:

(1) If ¢ =D(a, f) x 0 < (M’ x 0) then (c¢’) = ¢* and h;_,|doc' =1,
Define 4, | ¢ = 1. Similarly if ¢! = D(a, f|0M) x 0.

(ii) (In this case the duals mentioned are subcomplexes of M’ x 1.) If
¢ = D(a, f|0M) where a < f(K) N L, then dc¢' = D(«, f| M) by (5.6) and
b(@) is an interior point of ¢’. Define 4;| ¢’ as the cone over %,_, | D(a, £ 0M).
We follow the same procedure if ¢! = D(«, f) where a < f(K) and « ¢ 6L.
Finally, if ¢! = D(a, f) where a < (8L) N f(K), then ¢ = b(@)D(«, f) and
oc¢t = D(a, f| M) + D(a, f) = b@D(e, f| 6M) + D(a, f). Again we define
h:| ¢’ as the cone over k;_, | D(a, f). We must check that A, |dc' = h,_, | dc'.
This is certainly true on D(a, f). Moreover ;| D(a, f | 0M) is the cone over
hi_y | D(a, f| M), and by inductive assumption (c), h;_, | D(«t, f| 6M) is the
cone over its restriction to D(«a, f | 6M).

(i) If ¢ is an i-cell of F, not covered in cases (i) or (ii), then ¢ and (c?)
are i-dimensional balls and %;_, is a homeomorphism taking dc' onto dqr(c?).
Choose h;|c* to be any extension of h,_, | dc' to a homeomorphism of ¢f onto
().

Now #; is a well-defined one-one function on | F{ | because the intersection
of distinct ¢-cells is contained in F—* and the images of their interiors are the
interiors of disjoint i-cells of F,. Also h; is onto because +(F}) = (F}). Thus
h;, being one-one and onto, is a homeomorphism because it is a homeomorphism
on each cell. It is clear that &, satisfies (a)-(d).

Leth = h,.. By @) h: (M’ x I, M’ x 0, M’ x 1)— (C;, M’, L). By (b),
h|(M'" x 0)=1. From (c) and (d), an easy inductive argument shows that
R||K|=f||K| q.ed.
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8. The assumption that C, is a manifold

THEOREM (8.1). Assume M is an n-manifold, and f: M— L is a sim-
plicial mapping. If C; is an (n + 1l)-manifold with L < oC,, then f is
dual-collapsible. If further, L is an n-manifold, them f is transversely
cellular.

PROOF. To prove the first assertion, suppose that &' < L, and it is known
that D(a?, f) = B* for each j > i, a’ < L. Since dim L < n and

dim Lk(a?, C;) = (n — 17) ,

we see that Lk(a¢, C;) N M’ = D(«, f) + @. Thus by (5.6), D(a’, f) is an
(n — 1)-manifold. But L < 4C; so Lk(«?, C;) = B, We show that

Lk(azy Cf) \ D(lei, f) .
It then follows from the uniqueness of regular neighborhoods that
D, f) = B .

By Example 2 of §3, Lk(a’, C,) is a reduced join from Lk(«‘, L) to

D(a’, f). Suppose @ =+ 87 < Lk(a, L). Then
Lk(57, Lk(e’, C))) N D(&, f) = Lk(aif?, C;) N M’
= D(@f, f) = B=~\,0,

using the induction hypothesis to get the combinatorial equivalence. By (3.1)
Lk(a?, C;) \, D(, f). This completes the proof of the first assertion.

Suppose now that L is an n-manifold and M = . We first show that
J(0M) = 6L. f is a contractible mapping since, as we have already seen,
D(«a, f) isaball for eacha < L. f| D(«, f)is a contractible mapping for each
a < L because D(a, H=r "ID(a, L). But contractible mappings preserve
homotopy type (by [13] or by (11.1) ahead), whence D(«, f) and D(«, L) have
the same homotopy type for each « < L. If « < 6L, D(«t,L) is a ball, so D(«, f)
is not a sphere. However 0D(a, f) = D(a, f) + D(«, | 5M). Therefore
D(a,f|0M)+ @ and a < f(0M). Conversely, if & < f(0M), D(a, f|0M) = &,
and this implies that éD(a, f) == D(«, f). Then D(a, L) is not a homotopy
sphere. Thus D(a, L) is a ball, and so & < L. This proves that f(0M) = oL.

0C; = L 4 Cioy + M', as we see from (7.5). Moreover

LN Croy =fOM) =4L.

Therefore C;,y is the closure of the complement of M’ + L in 4C,. It is thus
an n-manifold with boundary oM’ + 0L = oM’ + f(6M). By the first part of
this theorem, it follows that D(«, f| M) is a ball for each & < 8L. Therefore
f is transversely cellular, q.e.d.
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COROLLARY (8.2). If M, and M, are n-manifolds with boundary and
there exists a dual-collapsible mapping f: M, — M,, then M, and M, are
homeomorphic.

Proor. C; is an (n + 1)-manifold and M, < oC,, by (7.1) and (7.4).
Therefore, by (8.1), the assumption that M, is a manifold implies that f is
transversely cellular. Hence (7.1) implies that M, ~ M,, q.e.d.

9. The structure of simplicial mapping cylinders

In this section we derive some basic properties of simplicial mapping
cylinders. Many (perhaps all) of these facts have been part of the folklore,
but a unified listing with proofs has not been given. Since we will need these
results in the next section, the requirements of logic and exposition dictate
that we present them here.

Mappings of manifolds. We state

PROPOSITION (9.1). If f is a stmplicial mapping of the n-simplex o onto
the simplex t, then C, ~ B"*,

ProrosiTION (9.2). If M is an m-mantifold, f: M— L is a simplicial
mapping and A is a j-simplex of C, mesting M', then Lk(A, M) is an
(m—9)-ball tf A< M or A< Croy, and Lk(A, M) is an (n — j)-sphere
otherwise.

Proposition (9.1) is an immediate consequence of (7.1). Proposition (9.2)
is just a restatement of (7.2) and (7.3). E. C. Zeeman has informed the
author that these results were known to M. H. A. Newman ten years before
the author was born. Professor Newman’s proof of (9.1) is given in [16, Ch. 7].

Mappings of complexes. We state
ProposITION (9.3). If f: K— L is a simplicial mapping then
[N(K”,C%), K", N(K",C')] =~ [K x I, K x 0, K x 1] .

ProOF. Suppose o is a simplex of K. By (9.1), C;, ~ ¢ x I. Then it is
easy to see (or one can invoke (10.4)) that there is a homeomorphism of
N(e”, C';,) onto ¢ x I which takes ¢” onto ¢ x 0 and N(¢”, C’,,) onto ¢ x 1.
The cell complex consisting of the cells ¢”, N(¢”, C},,) and N(¢”, C;,,), with o

ranging over K, is isomorphic to the cell complex K x I, Using this isomor-
phism one builds, as in the proof of (7.1), the desired homeomorphism, q.e.d.

COROLLARY (9.4). The simplicial mapping cylinder W, defined by
Whitehead ts homeomorphic to our mapping cylinder C,. (See §4.)

ProposITION (9.5). If f: K— L is a stmplicial mapping and if K, and
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L, are partitions of K and L such that f = f,: K, — L, is simplicial, then
(Cs,, K', L) =~ (C,,, K./, L,).

Proor. If o' = 0 < K, let 0, < K, be the subcomplex of K, underlying o.
Then f| 0, is a collapsible mapping so C,,, is an (¢ + 1)-ball whose boundary
is the union of ¢,’, f(o,) and the balls C, ., (r < 0), using (7.1) and (7.5). Thus
C;, is a cell complex whose typical cells are the balls ./, C;,, f(d,) and
a,(a < L). Similarly C; is a cell complex with typical cells o, C,,,, f(0) and
a(a < L). We construct the desired homeomorphism as before, q.e.d.

Mapping cylinders and stellar meighborhoods. Suppose that L is a
full subcomplex of K. We define two functions, g: N(L, K)— [0, 1] and
T:97'(1/2) — L.

g: N(L, K)— [0, 1] is the unique simplicial mapping such that g(L) = 0,
and g(M(L, K)) = 1. If ot < K, 0 < L, and = < N(L, K), then (g | a7)~*(1/2)
is a convex cell which is homeomorphic to ¢ x 7, and we denote it by ¢ x .
(9107)7'0, 1/2] is a convex cell of one higher dimension and we denote it by
D(o7).

If 2 € g7'(1/2), then z is uniquely expressible in the form z = (1/2)x + (1/2)y
where carrier x = ¢ < L, carrier y = 7 < N(L, K) and carrier z = or. We
define T((1/2)x + (1/2)y) = x. Notice that T'|¢ x t is linear, T'(¢ x 7) = 0,
and (T'|o x 7)"Y(x) ~ 7 for each x e 0.

T is piecewise linear. In fact, if we triangulate the convex cell complex
97'(1/2) without adding any new vertices, then T': g=(1/2) — L is simplicial.
(Such a triangulation is possible by the argument for [16, Lem. 1].) If
f: L — L, is simplicial, then let C,, denote the simplicial mapping cylinder
with respect to any partitions of ¢='(1/2) and L, such that f7T is simplicial.

In this context we can now state

ProrosITION (9.6). If f: L — L, is a simplicial mapping and F is the
standard extension of f to N(L, B(K/L)), where the barycenters of simplexes
of K — L have been chosen so that g~'[0,1/2] = | N(L, B(K/L))|, then there is
a homeomorphism

h: (Fg~10,1/2] + L,, Fg='(1/2), L) — (Cr, 97'(1/2), L) .

Proor. For any convex i-cell 0 X 7 < g='(1/2), it is clear that fT| (o x 7)
is a collapsible mapping. Hence C,; .. is an (¢ 4+ 1)-ball with the :-ball
o x 7 and f(0) in its boundary. Thus we may view C,, as a cell complex, the
typical cells of which are the balls C,;,.., 0 X 7, f(0), and the simplexes of L,.

On the other hand, F'| D(o7) = F'| N(0, B(ot/0)) is transversely cellular
since o is well situated in B(o7/0) and in B(d(c7)/o). Hence F(D(o7))is an
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(¢ + 1)-ball with ¢ x 7 and f(o) in its boundary. Thus Fg~'[0, 1/2] + L, may
be viewed as a cell complex made up of cells of the form (¢ x ) C g7'(1/2),
F(D(o7)), f(0) and the simplexes of L.

The natural correspondence between these cell complexes leads to the
desired homeomorphism, q.e.d.

Taking f = 1;, we get

COROLLARY (9.7). If L is a full subcomplex of K then

(NI, K"), N(L', K), L') = (Cy, N(L', K"), L) .

Relationship between the simplicial and topological cylinders. In
[15, §10], Whitehead proved the following.

PROPOSITION (9.8). If f: K— L is a simplicial mapping and M, is the
topological mapping cylinder of f, then there is a topological homeomor-
phism h: (M;, K, L) — (C;, K, L) such that (M, 0, f(0)) = (Cs., 0, f(0))
for each 0 < K, and such that h | (KU L) = 1,

10. Three applications

THEOREM (10.1). Suppose that X is a polyhedral n-manifold, Y is a
polyhedron, and f: X— Y. If f is transversely cellular with respect to one
pair of triangulations of X, Y, then it is transversely cellular with respect
to any other pair for which it is simplicial.

ProoF. Assume that M, and L, are triangulations of X and Y (i = 1, 2),
and that f = f;: M,— L, and f = f,: M,— L, are simplicial. If f, is trans-
versely cellular, then f is a compact mapping and

(Cy, M, L)) = (M, x I, M, x 0, M, X 1) .
Since f is compact and the complexes are locally finite, there are common
partitions M of M,, M, and L of L,, L, such that f: M— L is simplicial.

(This can be proved by modifying the arguments of [16, Lems. 1-6].) There-
fore, using (9.5),

(Cfl? Mlly Ll) = (Cf’ M,? L) = (szy M2,, Lz) .
This shows that C;, is an (n 4+ 1)-manifold and L, is an n-manifold in its
boundary. By (8.1), f, is transversely cellular, q.e.d.

If Ac Xand f: A—Y, we let X/f denote the decomposition space of X,
the elements of which are the sets {z} (x € X — A) and f~'f(a) (a € A).

THEOREM (10.2). If L is a full subcomplex of K, f: L — L, is a stimplicial
surjection, X = | K|, 7: X — X/f is the quotient mapping, F is the standard
extension of f to B(K/L), and B(K/L) = N(L, B(K/L)) + P, then there is a
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topological homeomorphism h: F(X)— X/f such that hF(x) = m(x) for all
we|L + P|. Moreover, h can be extended to a topological homeomorphism
H: (CF9 Xy F(X)) - (Mm Xy X/f)-

If we identify F'(X) with X/f by the homeomorphism %, then the con-
clusion of (10.2) can be stated in the following more useful form.

PROPOSITION (10.2)'. The quotient space X/f is triangulable. There is
a stmplicial mapping F: X — X/f such that F agrees with m on | P + L |,
and the only new inverse sets introduced by F are convex cells. Moreover,
(Cr, X, XIf) ~ (M., X, X|f) by a topological homeomorphism which is the
identity on X U X/f.

REMARK. If X is compact and ¢ > 0, we can, by taking fine enough
triangulations, make F' an ¢-approximation to 7.

PRrOOF OF (10.2). Define g: N(L, K)—[0,1], T: ¢~*(1/2) — | L |, ¢ X 7, and
D(o7) as in the previous section, and assume that g—'[0,1/2] = | N(L, B(K/L))|.
Let “~” denote topological homeomorphism. If ¢ < L, 7 < N(L, K), and
0t < K, then we claim that 7(D(o7)) = D(o7)/f| o is a topological (i + 1)-ball,
where ¢ = dim(s x 7). For

D(o7)/f|o~ (0 X © X DfT = Mipox- -

The claim follows because M,y ,x. &~ C/pox. by (9.8), and in the proof of (9.6)
it was demonstrated that C,,,,. =~ B,

Now (see [15, §8]) the quotient topology on mg~'[0, 1/2] is precisely the
weak topology on 7g~'[0, 1/2] considered as a cw-complex with closed cells of
the form n(¢ x 7), 7D(07), and 7(c). Each of these is a topological ball whose
boundary is the union of cells of lower dimension. Similarly Fg='[0, 1/2] is a
cell complex with closed cells of the form ¢ x 7 = F(o x 7), FD(o7), and
F(0). It was shown (9.6) that F'D(07) =~ Bt!, so each of these closed cells
is a topological ball. We can now build a topological homeomorphism

w': Fg=[0, 1/2] — w0, 1/2]

inductively on the skeletons, using the natural isomorphism between these
complexes. If at the i** stage we choose the homeomorphism %} on cells of
the form ¢ x v or F(o) to satisfy h/F(x) = m(x), then »’ will satisfy this
condition on | N(L, B(K/L)) + L|. We then extend %’ trivially to the desired
homeomorphism 4: F(X) — X/f.

The same argument will show that % has an extension to

H: (CF, X, F(X)) — (Mw Xy X/f)
once we prove that Cy 5., and M, .., are topological (i + 2)-balls, The first
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of these certainly is, since F'| D(o7) is transversely cellular, The second is a
topological ball because M, ,,,., = D(o7) X I/(f|o x 1). With respect to an
appropriate triangulation this is just the topological quotient space of the
(7 + 2)-ball D(o7) x I induced by the simplicial mapping of the simplex ¢ x 1
which is well situated in the ball and in its boundary. By the first part of the
theorem, this topological quotient space is topologically homeomorphic to the
image of D(o7) x I under the standard extension of f. This standard exten-
sion is transversely cellular, so the image is a ball, q.e.d.

A good example in this realm is the figure-eight decomposition of S*
given in [3]. Here K = S3 L is the union of two disks which meet in a
common radius, and f: L — [0, 1] is the simplicial mapping which takes the
boundary of one disk to 0 and the boundary of the other disk to 1. Bing
proves that S?/f ~ S?. We sketch a proof of the following corollary to (10.2),
which is both interesting and instructive.

COROLLARY (10.3). If S3®1s considered as the unit sphere in S*, with
L < S < S* then S*/f ¢ S*.

SKETCH OF PROOF. Let @ be a collar of S?in S*. Then Q/f is topologically
homeomorphic to two copies of M,, sewn along 7(S?). Let F: S*— S°/f be as
in (10.2)’. Q/f is topologically homeomorphic to two copies of Cr sewn along
F(S?. Let a* < a' = F(L). Then D(a!, F) is the regular neighborhood of
the figure-eight F'~'b(a) in the boundary of the solid torus D(a’, F'). Thus
D(al, F) is a 2-dimensional torus with a hole in it. Arguing as in the proofs
of (7.4) and (8.1), Lk(a', C;) is a 2-manifold which collapses to D (a', F'). Thus
Lk(a!, Cy) is a torus with a hole in it, the boundary of which is the 1-sphere
Lk(«!, F'(S?). Then Lk(a!, 2Cy) is a 2-sphere with two handles. Therefore
2C, is not a topological manifold, whence S*/f is not a topological manifold,
g.e.d.

THEOREM (10.4). (Jpin-cobordism theorem). If M, and M, are n-manifolds,
V < M,M, is an (n + 1)-manifold and M, < oV (i =0, 1), then there is a
homeomorphism

he (V, My, M\) — (M, x I, M, x 0, M, x 1) .

ProoF. Let g: V— [0, 1] be the simplicial mapping such that g(M;) = 0,
and g(M,) = 1. Let V' be a first barycentric subdivision of V' chosen so that

9710, 1/2] = N(M;, V') = N,
97'[1/2,1] = N(M{, V") = N, ,
and g~(1/2) = N, = N,. Let T: g=(1/2) — M, be defined as before.
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By (9.7), there is a homeomorphism &’: (N,, N,, M) — (Cp, N,, M;). But
(3.4) asserts that N, is an (n + 1)-manifold and N, is an n-manifold. There-
fore C, and N, have these properties. Thus by (8.1), T is transversely cellular.
Hence there is a homeomorphism of (C,, N,, M,) onto (M, x I, M, x 1, M, x 0).
Composing this with &’ we get a homeomorphism

ho: (Ny, Ny, M) — (M, x I, My, x 1, M, x 0) .
Similarly there is a homeomorphism
hy: (Ny, Ny, M}y —— (M, x I, M, x 0, M, x 1) .

Then h: V— M, x [0, 2] is a homeomorphism if we define it by:

(1) h|N,= h

(i) A(hi'(x,t)) = hohi'(x, 0) -+ (0, t) for all (x, t) e M, x I, where M, C R",
M, x [0,2]c R* x R*and (0,t)e 0 x R!, q.e.d.

COROLLARY (10.5). If M™ is a submanifold of 6V "', then
(N, vy, M7, NM”, V)= (M x I, M x 0, M x 1) .
11. Contractible mappings

We prove two results about contractible mappings.

THEOREM (11.1). If K and L are finite complexes and f is a contractible
simplictal mapping of K onto L, then f is a simple homotopy equivalence.

THEOREM (11.2). Let P; and Q; be the statements:

P;: If M’ is a closed combinatorial j-manifold with the same homotopy
type as S?, then M’ ~ S,

Q;: If M, and M, are combinatorial j-manifolds without boundary, and
if there exists a compact contractible simplicial mapping of M, onto M,,
then M, ~ Mz_.

Then P; is true for all j < n & Q; is true for all j < n.

REMARK. There are examples [6], [8] of pairs of closed manifolds M,, M,
which are of the same simple homotopy type, but which are not piecewise
linearly homeomorphic. It is coneeivable, by (11.1), that there is a contractible
simplicial mapping f: M, — M,. If this is so, then (11.2) implies that the
Poincaré conjecture is false in soms dimension, and indeed (as the proof will
show) there is a dual cell such that either it or its boundary is a counter-
example. Looked at the other way, if P; is true for all j, then no simple
homotopy equivalence f: M, — M is a piecewise-linear contractible mapping.
Theorem (11.1) already shows that no homotopy equivalence between the lens
spaces L,,, and L,,, is both piecewise-linear and contractible.
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ProoF oF (11.1). It suffices to show that | K| is a deformation retract of
M; and =(M,, | K|) = 0, where M, is the topological mapping cylinder of f
with the natural cw-structure, and 7(X, Y) denotes the torsion of the cw-pair
(X, Y). Using (9.8) and the fact that torsion is invariant under subdivision,
we may equivalently demonstrate this for the pair (| C*|, | K'|). Here C* is
the complex defined in § 7 which is gotten by barycentrically subdividing the
base of C,.

For each & < L let Q(a, f) and Q(«, f) be defined as in §7. Q(«, f) is a
“cell” stretching from D(a, f) to D(a, L). It is not a topological ball in
general, but Q(a, f) = b(@)[Q(a, f) + D(«, f )] is a cone, and we use these
“cells” as the simply connected blocks across which we deform |C*| back
onto | K'|. Define Int Q(t, f) = | Q(«, )| — | Q(«, f) + D(a, f)|. Notice that
properties (b)-(f) of (7.7) are true in this context.

We claim, for each a < L, that

(1) Q(a, f) + D(a, f) deformation retracts onto D(a, f).

(2) Q(a, f) + D(a, f) is contractible.

(3) Q(a, f) deformation retracts onto Q(«, f) + D(«, f).

D(a, f) is contractible by hypothesis and (5.5). Thus (1) = (2). (2) = (3)
because a compact contractible polyhedron is always a deformation retract of
the cone over it,

Suppose that « = & is an ¢-simplex, and (1)-(3) are known for each sim-
plex of L of dimension greater than 7. If & is principal then Q(«, f) = @ so
(1) holds trivially. If af is not principal, choose a maximal “cell” of Q(«, f).
This “cell” is of the form Q(a‘t!, f) where a' < a'*' < L. By induction hy-
pothesis this deformation retracts onto Q(ai*', f) + D(a'+!, f). This deforma-
tion extends to a deformation of Q(a, f) + D(c, f) onto

|Q(er, f) + D(er, £)| — Int Qi+, f)

because Int Q(a+!, ) does not meet any other “cells” in Q(, f) + D(a, f).
We repeat this process for each (¢ + 1)-simplex of L containing a’. Then we
deformation retract, in turn each “cell” Q(ai*2, f) onto Q(a*2, f) + D(ai*, f)
(af < a’** < L). Continuing in this manner we obtain, in a finite number of
steps, a deformation retraction of Q(«, f) + D(, f) onto D(a?, f). Thus
(1), (2) and (3) are true for all « < L.

Enumerate the simplexes of L, a, «,, - -+, «,, so that dim a; < dim «,,,.
Let X; =|C*| — Uj,s: Int Q(a;, f) where X, = |C*|, and X, = | K'|. By (3)
above, X;,, is a deformation retract of X;. Therefore | K’| is a deformation
retract of |C*|. Moreover X; — X,,, = Int Q(a;.,, f) is an open cone and so
is simply connected. Thus by [9, Lems. 7.1 and 7.2],
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T(| Cc* |7 [K’ |) = Er—l T(Xi; Xi+1) =0 ) q.e.d.

1=0

ProoF oF (11.2). We first show that Q; implies P;. Let = be a homotopy
j-sphere with principal simplex o. Let X cInt (% — Into) be a spine of
S — Into. Then (having taken appropriate triangulations) the standard
extension F, to =, of the map which takes X to a point, is a contractible
simplicial mapping. Since F'(Z) =~ S’ it follows from Q; that = = S,

We now show that P, (j < n) implies Q,. "For convenience we introduce
the assertion P; which is well known to be equivalent to P;.

P): Every compact contractible j-manifold with sphere boundary is a
j-ball.

Let f: M— My be a compact contractible simplicial surjection. If
at < My, then D(ai, f) is a compact contractible (n — ¢)-manifold with
boundary D(ai, f). Moreover D(ai, f) = f~'D(a, M). Thus f| D(c, f) is
a contractible mapping; so by (11.1), D(«’, f) is a homotopy (n — i — 1)-
sphere. By P,_; ,, it follows that D(ai, f) is a sphere. Hence P, ; implies
that D(a?, f) = B™*. Therefore f is transversely cellular, and M = M,
q.e.d.
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