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Abstract of the Dissertation
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by
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Mathematics

Stony Brook University

2015

The first story begins with a question of Steenrod. He asked if the product
in the cohomology of a triangulated space, which is associative and graded
commutative, can be induced from a cochain level product satisfying the same
two properties. He answered it in the negative after identifying homological
obstructions among a collection of chain maps he constructed. Using later
language, his construction could be said to endow the simplicial chains with
an E∞-coalgebra structure.

The second story also begins with a question: when is a space homotopy
equivalent to a topological manifold? For dimensions greater than 4, an
answer was provided by the work of Browder, Novikov, Sullivan and Wall in
surgery theory, which in a later development was algebraically expressed by
Ranicki as a single chain level invariant: the total surgery obstruction.

After presenting the necessary parts of these stories, the goal of this work
will be to express the total surgery obstruction associated to a triangulated
space in terms of comodules over the E∞-coalgebra structure build by Steen-
rod on its chains.



a los árboles en que estas ideas se escribieron
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Introduction

The goal of this dissertation is to relate the theory of algebraic surgery de-
veloped predominantly by Andrew Ranicki, with that of E∞-structures on
chain complexes.

Steenrod’s construction of higher chain approximations to the diagonal
inclusion has been encoded, by several authors, as a functor from simplicial
sets to their normalized chains enriched with the structure of a coalgebra
over an E∞-operad. The first section of Chapter 1 presents the definition of
an algebraic operad as well as the less common notions of coalgebra over an
operad and comodule over one such coalgebra. The second section presents
the specific E∞-operad S related to Steenrod’s construction following the
work of McClure-Smith [25], Berger-Fresse [4] and others. In the last section
of Chapter 1, the first of the two main technical results of this dissertation
is presented as Theorem 1.3.5. It has as a corollary that the category of
based ordered simplicial complexes embeds as a full subcategory into the
category of S-coalgebras. Similar results have been obtained at the level of
the homotopy category by Mandell [20], Smirnov [38], Smith [39] and others.

The first section of Chapter 2 revisits the theory of sheaves and cosheaves
over posets, see [8], [37] or [14] for other sources. It uses the connection be-
tween posets and Alexandrov topological spaces, extended in Lemma 2.1.5 to
a duality preserving equivalence, to emphasize the symmetry between sheaves
and cosheaves over posets. This section closes with some homological algebra
of such sheaves and cosheaves with values in an abelian category. In the sec-
ond section of Chapter 2, the sheaf theory developed in the previous section is
specialized to posets associated to ordered simplicial complexes. The notion
of tensor product of functor is used to define the Ranicki duality functors of
complexes of sheaves and cosheaves, whose geometry is made apparent by
the pair subdivision sheaf and cosheaf. The pair subdivision sheaf is also
used to define the visible symmetric complex of a regular pseudomanifold,
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see Construction 2.2.18, which plays a central role in the application of the
theory to manifold existence and uniqueness problems. The third section of
Chapter 2 contains, as Theorem 2.3.4, the second main technical result of
this work. It states that the category of complexes of sheaves over an ordered
simplicial complex X with values in Ab embeds, as a full differential graded
subcategory, into the category of comodules over the S-coalgebra C•(X).
This theorem is used to relate the algebraic surgery theory of Ranicki with
comodules over E∞-coalgebras. In particular, Theorem 2.3.13 and Theorem
2.3.15 provide existence and uniqueness statements for ANR homology man-
ifold structures and topological manifold structures on the homotopy type
of a Poincaré duality regular pseudomanifold, in terms of comodules on its
S-coalgebra of chains.
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Chapter 1

Simplicial sets and S-coalgebras

Convention. The term chain complex will be reserved for a homologically
graded differential graded abelian group. The category of chain complexes,
denoted by Ab•, is enriched over itself, i.e. HomAb•(C,C

′) ∈ Ab• for every
pair C, C ′ ∈ Ab•. In terms of this enrichment, chain maps correspond to
0-degree cycles, while chain homotopy equivalent morphisms correspond to
homologous chains.

1.1 Operads, coalgebras and comodules

In this section, the definition of an algebraic operad is presented as well as
the less common notions of coalgebra over an operad and comodule over one
such coalgebra.

Definition 1.1.1. (Operad [22]) An (algebraic) operad consists of a collec-
tion of chain complexes O(n), n ≥ 0, a collection of chain maps

γ : O(k)⊗O(j1)⊗ · · · ⊗ O(jk)→ O(j1 + · · ·+ jk),

a chain map η : R→ O(1) and an action of the symmetric group Σk on O(k)
satisfying the following conditions.

O1: (Associativity) The following diagram commutes, where
∑k

s=1 js = j,∑j
r=1 ir = i, gs = j1 + · · ·+ js and hs = igs−1+1 + ..+ igs for 1 ≤ s ≤ k:
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O(k)⊗
( k⊗
s=1

O(js)
)
⊗
( j⊗
r=1

O(ir)
) γ⊗id //

shuffle

��

O(j)⊗
( j⊗
r=1

O(ir)
)

γ

��
O(i)

O(k)⊗
( k⊗
s=1

(
O(js)⊗

js⊗
q=1

O(igs−1+q)
))

id⊗(⊗sγ)
// O(k)⊗

( k⊗
s=1

O(hs)
)
.

γ

OO

O2: (Unit) The following diagrams commute:

O(k)⊗Rk ∼= //

id⊗ ηk
��

O(k)

O(k)⊗O(1)k,

γ

88
R⊗O(j)

∼= //

η⊗id

��

O(j)

O(1)⊗O(j).

γ

88

O3: (Equivariance) The following diagrams commute, where σ ∈ Σk, τs ∈
Σjs , the permutation σ(j1, . . . , jk) ∈ Σj permutes k blocks of letters as
σ permutes k letters, and τ1 ⊕ · · · ⊕ τk ∈ Σj is the block sum:

O(k)⊗O(j1)⊗ · · · ⊗ O(jk)
σ⊗σ−1

//

γ

��

O(k)⊗O(jσ(1))⊗ · · · ⊗ O(jσ(k))

γ

��
O(j)

σ(jσ(1),...,jσ(k))
// O(j),

O(k)⊗O(j1)⊗ · · · ⊗ O(jk)
σ⊗σ−1

//

γ

��

O(k)⊗O(jσ(1))⊗ · · · ⊗ O(jσ(k))

γ

��
O(j)

σ(jσ(1),...,jσ(k))
// O(j).

Definition 1.1.2. (Coalgebra) Let O be an operad. An O-coalgebra is a
chain complex C together with chain maps

θ : O(j)⊗ C → Cj

satisfying the following conditions.
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cA1: (Associativity) Let
∑k

s=1 js = j, then the following diagram commutes:

O(k)⊗O(j1)⊗ · · · ⊗ O(jk)⊗ C
γ⊗id //

id⊗θ

��

O(j)⊗ C
θ
��
Cj

O(j1)⊗ · · · ⊗ O(jk)⊗ Ck
shuffle

// O(j1)⊗ C ⊗ · · · ⊗ O(jk)⊗ C.
θk

OO

cA2: (Unit) The following diagram commutes:

R⊗ C
∼= //

γ⊗id
��

C

O(1)⊗ C.
θ

::

cA3: (Equivariance) Let σ ∈ Σj, then the following diagram commutes:

O(j)⊗ C σ⊗id //

θ
��

O(j)⊗ C
θ
��

Cj
σ

// Cj.

A morphisms of O-coalgebras is a chain map commuting strictly with
all the above structure. The category of O-coalgebras will be denoted by
coAlgO.

Definition 1.1.3. (Comodule) Let O be an operad and C an O-coalgebra.
A C-comodule is a chain complex D together with chains maps

λ : O(j)⊗D → D ⊗ Cj−1

satisfying the following conditions.
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cM1: (Associativity) Let
∑k

s=1 js = j, then the following diagram commutes:

O(k)⊗O(j1)⊗ · · · ⊗ O(jk)⊗D
γ⊗id //

id⊗λ

��

O(j)⊗M
θ
��

D ⊗ Cj−1

O(j1)⊗ · · · ⊗ O(jk)⊗D ⊗ Ck−1
shuffle

// O(j1)⊗D ⊗ · · · ⊗ O(jk)⊗ C.

λ⊗θk−1

OO

cM2: (Unit) The following diagram commutes:

R⊗D
∼= //

γ⊗id
��

D

O(1)⊗D.
θ

::

cM3: (Equivariance) Let σ ∈ Σj−1 ⊂ Σj, then the following diagram com-
mutes:

O(j)⊗D σ⊗id //

θ
��

O(j)⊗D
θ
��

D ⊗ Cj−1
id⊗σ

// D ⊗ Cj−1.

A morphisms of C-comodules is a homeomorphism of abelian groups
commuting strictly with all the above structure. The category ofO-comodules
is enriched over Ab• and will be denoted by coModOC .

Example 1.1.4. The operad A has A(j) = Z[Σj] with unit map equal to
the identity and product maps dictated by the equivariance formulas. An
A-coalgebra C is the same thing as a coassociative coalgebra. The operad
product encodes all of the iterates and permutations of the coproduct of the
coalgebra. A C-comodule D in the operadic sense is an C-bicomodule in the
classical sense.

Definition 1.1.5. (E∞-operad [13]) An operad O is said to be an E∞ operad
if it satisfies:

E1: (Unital) O(0) = Z.
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E2: (Σ-free) Each Σj acts freely on O(j).

E3: (Contractible) Each O(j) has the homology of a point.

1.2 The operad S
This section collects results related to an E∞-operad studied by several re-
searchers, whose combinatorial nature and explicit coaction on normalized
chains makes it suitable for the applications of this work.

The coaction goes back to Steenrod construction in [40] of a chain ap-
proximation to the diagonal inclusion of triangulated spaces. The definition
of an operad for which this coaction give rise to a natural coalgebra structure
on the normalized chains of simplicial sets, appears in the proof of Deligne’s
conjecture by McClure-Smith [24] and is treated under the name “sequence
operad” by the same authors in [25], where they present a filtration of it
by En-suboperads. Work by Berger-Fresse in [4] uses the same operad with
the name “surjection operad”. Jonathan Potts’ thesis [28] describes this op-
erad with the name “step operad” and Jones-Adamaszek relate it to join
operations of augmented symmetric simplicial sets in [1].

The definition of this E∞-operad, which will be denoted S to stand for
Steenrod, sequence, surjection or step, will be presented below together with
its filtration by En-suboperads and its natural coaction on the normalized
chain complex of simplicial sets.

Chain complex of S. Let S(r)d be the free abelian group generated by
all functions from {1, . . . , r + d} to {1, . . . , r} quotiented by the submodule
generated by all non-surjective functions and the surjections u for which
there exists i ∈ {1, . . . , r + d − 1} so that u(i) = u(i + 1). Set S(0)0 = Z
and S(0)d = 0 for d > 0. The module S(r)d is free and any of the generators
u : {1, . . . , r + d} → {1, . . . , r} will be identified with its ordered image
(u(1), . . . , u(r + d)), which will be referred to as the coordinates of u.

To study examples a diagrammatical representation of the surjections
proves useful, as an illustration that generalizes one has that (1, 2, 1, 3, 2) is
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represented by

.

Define ∂ : S(r)d → S(r)d−1 by

u 7→
r+d∑
i=1

εui · (u(1), . . . , û(i), . . . , u(r + d))

with εui a sign to be specified. In order to determine εui , separate the co-
ordinates of u into disjoint sets each characterized by one of the following
properties:

a) The value of the coordinate equals the value of a coordinate to its right
i.e. u(i) = u(i+ j) for some positive j.

b) The value of the coordinate is different from all coordinates to its right
but equal to one on its left i.e. u(i) 6= u(i+ j) and u(i) = u(i− k) for all
j and some k positives.

c) The value of the coordinate is different from all other coordinates i.e.
u(i) 6= u(j) for any i.

Consider the set {u(i1), u(i2), . . . } of coordinates satisfying a) indexed so that
j < j′ implies ij < ij′ . Define for them εuij = (−1)j−1. For coordinates u(i)
satisfying b) define εui = −εuij with u(ij) = u(i) satisfying a) and u(ij′) 6= u(i)
for all j′ > j. Coordinates u(i) satisfying c) need no definition of εui since

(u(1), . . . , û(i), . . . , u(r + d)) = 0.
For example if u = (1, 2, 1, 3, 2) then u(1) and u(2) satisfy a), u(3) and

u(5) satisfy b) and u(4) satisfy c) so

∂ = − +

.
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Operadic composition of S. The maps

◦k : S(r)d ⊗ S(s)e → S(r + s− 1)d+e

are defined as follows. Let u⊗v ∈ S(r)d⊗S(s)e and let {i1, . . . , in} = u−1(k).
For any splitting π of the coordinates of v into n subsequences(

v(l0), . . . , v(l1)
) (
v(l1), . . . , v(l2)

)
· · ·

(
v(ln−1), . . . , v(ln)

)
(1.1)

set the coordinates of a new surjection u ◦πk v to be obtained from those of u
by first replacing u(ij) by the j-th subsequence of v, adding k − 1 to those
coordinates and then adding s− 1 to the coordinates u(i) which are greater
than n. Define

u ◦k v =
∑
π

επk · (u ◦πk v)

with επk a sign to be specified. In order to do so, notice that u−1(k) =
{i1, . . . , in} induces a collection of subsequences

· · ·
(
u(ij−1 + 1), . . . , u(ij − 1)

)(
u(ij)

)(
u(ij + 1), . . . , u(ij+1 − 1)

)(
u(ij+1)

)
· · ·

(1.2)
and that in order to do the replacements in the definition of u ◦πk v we can
think of passing the subsequences from (1.1) across those from (1.2). The
sign επk will then be computed following the Koszul sign rule after defining
the notion of degree for subsequences of coordinates.

Let w be an arbitrary surjection and

· · ·
(
w(mt−1 + 1), . . . , w(mt)

)(
w(mt − 1), . . . , w(mt+1)

)
· · ·

be the partition of w into (consecutive and disjoint) subsequences determined
by the coordinates w(mt) satisfying a). The degree of a general subsequence
is then defined to be one less than the number of these subsequences that it
overlaps with.

For example, to compute u ◦2 v = (2, 1, 3, 2, 1) ◦2 (1, 2, 1) we first com-
pute the degrees of the relevant subsequences, which requires the counting of
overlaps with (2)(1)(3, 2, 1) for subsequences of u and with (1)(2, 1) for those
of v. Placing the degree as a subindex one obtains

(1)0(1, 2, 1)1

(2)0(1, 3)1(2)0(1)0 ; (1, 2)1(2, 1)0

(1, 2, 1)1(1)0.
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Therefore,

◦2

equals

+ − −
.

Symmetric action on S. Define an action of Σr on S(r)d by

σ · u =
(
σ(u(1)), . . . , σ(u(r + d))

)
.

For example,

(123) =

Lemma 1.2.1. The structure defined above makes S = {S(r)•} into an
E∞-operad (see Definition 1.1.5).

Proof. The action of Σr on S(r)• is free since it is free on the first coordinate
of any surjection. The proof that S(r)• has the homology of a point is part
(c) of Theorem 2.15 in [25].

Filtration of S by En-operads Consider a surjection u in S(r)• and a
pair i < j ≤ r. Define uij to be the sequence obtained from the sequence of
coordinates of u by removing all elements different from i and j. For example,
if u = (2, 1, 3, 1, 2) then u12 = (2, 1, 1, 2), u13 = (1, 3, 1) and u23 = (2, 3, 2).
To each such sequence assign the number of pairs of distinct consecutive
coordinates and name it the change number. Using the previous example
one sees that the change number of all uij is 2. For any u define its filtration
weight to be the largest change number among all possible uij and define
Sn to be the suboperad generated by all surjections whose filtration weight
is less than or equal to n.

The following appears as Theorem 3.5 in [25].
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Lemma 1.2.2. The constructions above defines a filtration by suboperads

S1 ≤ S2 ≤ · · · ≤ S∞ = S

with Sn an En-operad.

S-coalgebra structure on normalized chains. Let ∆ be the simplicial
category as described in Definition A.17 and recall from Example A.22 the
functor C• : ∆→ Ab• whose left Kan extension along the Yoneda embedding
defines the normalized chains of simplicial sets. The purpose of this section
is to construct a compatible collection of maps

S(k)⊗ C•[0, . . . , n]→ C•[0, . . . , n]⊗k,

indexed by k, n ≥ 0, determining a functor represented as a dotted arrow in
the following commutative diagram

coAlgS

forget
��

sSet
C•
//

::

Ab• .

Let [i1, . . . , il] be the image of an order preserving function [0, . . . , l] →
[0, . . . , n]. This function induces a chain map C•[0, . . . , l]→ C•[0, . . . , n] and
the image the top dimensional generator of C•[0, . . . , l] will be identified with
the generator [i1, . . . , il] in C•[0, . . . , n] if ij 6= ij+1 for all j, being 0 otherwise.

Let u ∈ S(r)d be a surjection and [0, . . . , n] ∈ ∆. Let π stand for a choice
of (r + d− 1) elements of {0, . . . , n} satisfying

0 = n0 ≤ n1 ≤ · · · ≤ nr+d−1 ≤ nr+d = n

and associate to this choice π a collection of generators of C•[0, . . . , n]{
[ni−1, . . . , ni]

}r+d
i=0

with consecutive vertices. Such generators will be referred to as intervals.
For k ≤ r define Lπ(k) to be 0 in case there exists a pair of intervals

[ni−1, . . . , ni] and [nj−1, . . . , nj] with u(i) = u(j) = k and a common vertex,
or define Lπ(k) to be the generator in C•[0, . . . , n] whose set of vertices is the
union of the vertices of all intervals [ni−1, . . . , ni] with u(i) = k.
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For every choice of π define an element in C•[0, . . . , n]⊗r by

uπ[0, . . . , n] = Lπ(1)⊗ Lπ(2)⊗ · · · ⊗ Lπ(r)

and set
u[0, . . . , n] =

∑
π

εu,π · uπ[0, . . . , n]

with εu,π a sign to be specified.

Example 1.2.3. If u = (1, 2), the value of u[0, 1, .., n] is equal to

[0, 1, . . . , n] =
∑

i [0, . . . , i]⊗ [i, . . . , n]

=
0
0 1 . . . n

+
0 1

1 . . . n
+ · · · +

0 1 . . . n
n,

with signs computed to be all positive in Example 1.2.4.

Signs of the S-coalgebra structure In order to specify the sign εu,π one
distinguishes between two types of intervals.

a) Internal intervals [ni−1, . . . , ni] satisfy u(i) = u(i+j) for some positive j.

b) Final intervals [ni−1, . . . , ni] satisfy u(i) 6= u(i+ j) for all positive j.

Define the degree of an interval [ni−1, . . . , ni] to be ni − ni−1 + 1 if it is
internal or ni − ni−1 if it is final.

Consider the permutation taking

(u(1), u(2), . . . , u(r + d)) 7→ (1, . . . , 1, 2, . . . , 2, . . . , r, . . . , r)

and obtain, by Koszul’s rule, a sign εperu,π from the induced permutation of the
graded intervals(

[0, . . . , n1], [n1, . . . , n2], . . . , [nr+d−1, . . . , nr+d]
)
.

Consider all internal intervals [ni−1, . . . , ni] to be the indexing set of the
sum

∑
ni. Let this sum be the exponent of a sign εposu,π and set

εu,π = εperu,π · εposu,π.
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Example 1.2.4. Let u = (1, 2) as in Example 1.2.3. For any [0, . . . , n] and
any π, all signs εu,π are positive since every [ni−1, . . . , ni] is final, so εposu,π = 1,
and εperu,π = 1 because (1, 2) is already in the correct order.

Example 1.2.5. Let u = (. . . , 2, 1, 2) be one of the two generators of S(2)d
and consider [0, . . . , d] ∈ ∆ of the same dimension as the degree of u.

In order to compute the coaction of u on [0, . . . , d], thought of as one of
the generators of C•[0, . . . , d], one notices that the only choice for π

0 = n0 ≤ n1 ≤ · · · ≤ nr+d−1 ≤ nr+d = d

leading to a non-zero uπ[0, . . . , d] satisfies ni 6= ni+1 for all i = 1, . . . , d. Be-
cause of the relation between the degree of the surjection and the dimension
of the simplex, this choice is unique and given by ni = i−1 for all i = 1, . . . , d,
in other words

0 ≤ 0 < 1 < 2 < · · · < (d− 1) < d ≤ d,

so up to a sign εd one has

· · ·
(

[0, 1, . . . , d]
)

= εd ·
0 1 . . . d
0 1 . . . d

= εd · [0, 1, . . . , d]⊗ [0, 1, . . . , d].

In order to determine the sign εd notice that only the last two intervals
[d − 1, d] and [d, d] are final with degrees 1 and 0 respectively. All other
intervals [i − 1, i] are internal and have degree 2 except for [0, 0] which has
degree 1. Therefore, a permutation contributes with a negative sign if and
only if it exchanges [0, 0] and [d− 1, d]. Consequently, the permutation

(. . . , 2, 1, 2) 7→ (1, 1, . . . , 2, 2)

induces the permutation sign εperd = (−1)d. The position sign εposd , deter-

mined by the internal intervals, is equal in this case to
∑d−1

i=0 i so

εd = εperd · ε
pos
d = (−1)d ·

d−1∑
i=0

i = (−1)d(d+1)/2.
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Example 1.2.6. Let u = (1, 2, 3, 1) and [0, 1, 2] ∈ ∆, this example will
compute u[0, 1, 2]. A choice of

π : 0 = n0 ≤ n1 ≤ n2 ≤ n3 ≤ n4 = 2

leads to a non-zero term uπ if and only if n1 6= n3. The following table
summarizes for such possible choices the degrees of the associated internal
and final intervals, as well as the resulting permutation and position signs.

n1 n2 n3 |[n0, . . . , n1]| |[n1, . . . , n2]| |[n2, . . . , n3]| |[n3, . . . , n4]| εper εpos

0 0 1 1 (i) 0 (f) 1 (f) 1 (f) -1 1
0 0 2 1 (i) 0 (f) 2 (f) 0 (f) 1 1
0 1 1 1 (i) 1 (f) 0 (f) 1 (f) -1 1
0 1 2 1 (i) 1 (f) 1 (f) 0 (f) 1 1
0 2 2 1 (i) 2 (f) 0 (f) 0 (f) 1 1
1 1 2 2 (i) 0 (f) 1 (f) 0 (f) 1 -1
1 2 2 2 (i) 1 (f) 0 (f) 0 (f) 1 -1

Therefore,

[0, 1, 2]

equals
0 1 2

− 0
0 1

0 2
+ 0

0 1 2

0 1 2
− 0 1

1

0 2
+ 0 1

1 2

0 2
+ 0 1 2

2

0 1 2
− 1

1 2

0 1 2
− 1 2

0 2.

Lemma 1.2.7. The maps define above

S(k)⊗ C•[0, . . . , n]→ C•[0, . . . , n]⊗k
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determine a functor which is represented by the dotted arrow in the following
commutative diagram

∆ //

C• ##

coAlgS

forget
��

Ab• .

Proof. This follows from part (b) of Theorem 2.15 in [25], see also part (b)
of Remark 2.16 in the same reference.

Definition 1.2.8. As in Definition A.19, a functor can be constructed by
taking the left Kan extension along the Yoneda embedding of the functor
of Lemma 1.2.7. Such functor is represented by the dotted arrow in the
following commutative diagram

coAlgS

forget
��

sSet
C•

//

::

Ab•

and the image of any simplicial set X by this functor will be referred to as
the S-coalgebra structure on C•(X).

For any 1 ≤ k ≤ ∞, let Sk(2) denote the suboperad generated by the arity
2 part of the k-level of the filtration described in Lemma 1.2.2. Composing
the above functor with the forgetful functor one has

coAlgS

forget

��
sSet

C•
//

C•
99

coAlgSk(2),

and the image of any simplicial set X by this functor will be referred to as
the Sk(2)-coalgebra structure on C•(X).

Notation 1.2.9. Let X be a simplicial set and consider the S-coalgebra
structure on C•(X). For every surjection u ∈ S(k)• one has an abelian group
homomorphism

C•(X)→ C•(X)⊗k.

For u = (. . . , 2, 1, 2) one of the generators of S(2)d, the associated map will
be denoted

∆d : C•(X)→ C•(X)⊗ C•(X).
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1.3 Simplicial sets and S-coalgebras

In this section, the first of the two main technical results of this work is
presented as Theorem 1.3.5. It follows from it that the category of based
ordered simplicial complexes embeds into the category of coalgebras over
the E∞-operad S, see Corollary 1.3.8. It also implies that the category of
pointed small categories fully embeds into the category of coalgebras over
the E2-operad S2, see Corollary 1.3.10.

Similar results at the level of the homotopy category of simplicial sets
have been obtained by Mandell [20], Smirnov [38], Smith [39] and others.

Lemma 1.3.1. Let X, Y ∈ sSet and σ ∈ Xn. If f : C•(X) → C•(Y ) is a
homomorphism satisfying (f ⊗ f) ∆n σ = ∆n fσ, then either

fσ = 0 or fσ ∈ Yn.

Proof. Identifying non-degenerate simplices with their corresponding chains,
Example 1.2.5 shows that for any n-dimensional simplex ρ one has ∆n ρ =
(−1)εnρ⊗ ρ. In particular, the condition on f implies that fσ =

∑
i ai τi for

some τi ∈ Yn. Therefore,

(f ⊗ f) ∆n σ = ∆n fσ

implies ∑
i

ai τi ⊗
∑
i

ai τi =
∑
i

ai τi ⊗ τi.

From which it follows that

ai aj = 0 if i 6= j and a2
i = ai.

The only way these equations are satisfied is if all but possibly one of the
coefficients ai are zero, with the possible exception being equal to 1. It follows
that fσ = 0 or fσ = τi for some τi ∈ Yn.

The next definition comes from [23].

Definition 1.3.2. The following are three properties that a simplicial set X
might have.

(A) X has property A if every face of a non-degenerate simplex of X is
non-degenerate.
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(B) X has property B if the n+ 1 vertices of any non-degenerate n-simplex
of X are distinct.

(C) X has property C if for any set of n + 1 distinct vertices of X, there
is at most one non-degenerate n-simplex of X whose vertices are the
elements of that set.

Definition 1.3.3. (Based simplicial sets) A simplicial set is said to based
if it comes with a chosen vertex ∗. A based simplicial map between based
simplicial sets is a simplicial map of the underlying simplicial sets preserving
the base point. Denote the category of based simplicial sets by sSet∗ and let
(−)+ : sSet→ sSet∗ be the functor adding a disjoint base point. Notice that
C•(X+, ∗) is isomorphic to C•(X) as S-coalgebras.

Terminology 1.3.4. A functor F : C → C ′ is said to be faithful, respec-
tively full, if for every a, b ∈ C the function

HomC(a, b)→ HomC′(Fa, Fb)

is injective, respectively surjective.

Theorem 1.3.5. Let sSet(n)
∗ denote the full subcategory of n-dimensional

based simplicial sets as described in Definition A.17. Let Sk be the En-
suboperad of S which is the k-th level of the filtration described in Lemma
1.2.2, see also Definition 1.2.8.

1. The functor C•(−, ∗) : sSet∗ → Ab• if faithful.

2. The functor C•(−, ∗) : sSet(1)
∗ → coAlgS2(2) if full.

3. The functor C•(−, ∗) : sSet(2)
∗ → coAlgS3(2) if full when restricted to

simplicial sets satisfying property A.

4. The functor C•(−, ∗) : sSet(3)
∗ → coAlgS4(2) if full when restricted to

simplicial sets satisfying property B.

5. The functor C•(−, ∗) : sSet(n)
∗ → coAlgSn+1(2) if full when restricted to

simplicial sets satisfying properties B and C.

To improve the readability of this work, the proof of Theorem 1.3.5 will
be postponed until after a few corollaries are drawn from it.
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Definition 1.3.6. (Ordered simplicial complexes) An ordered simplicial
complex X = (V, S) is a pair consisting of a partially ordered set V and
a collection S of nonempty subsets of V with each s ∈ S inheriting a total
order, such that

∀v ∈ V, [v] ∈ S and s′ ⊂ s ∈ S ⇒ s′ ∈ S.

A map of ordered simplicial complexes (V, S) → (V ′, S ′) is an order
preserving map F : V → V ′ such that

[v1, ..., vk] ∈ S ⇒ [Fv1, ..., Fvk] ∈ S ′.

This category is denoted SC and its based version is denoted SC∗.

Remark 1.3.7. The functor sending an ordered simplicial complex to the
simplicial set whose non-degenerate n-simplices correspond to subsets in S
of cardinality n− 1, and whose degenerate simplices are freely generated; is
a full and faithful functor whose essential image is the full subcategory of
simplicial sets satisfying properties B and C. See [25] for more on this. The
categories SC and SC∗ will be identified with their essential image.

Corollary 1.3.8. The functor

C•(−, ∗) : SC∗ → coAlgS(2)

is full and faithful.

Proof. Notice that an S(2)-coalgebra map is in particular an Sk(2)-coalgebra
map for every k > 0. By part 1 of Theorem 1.3.5, C•(−, ∗) : SC∗ → coAlgS(2)

is faithful and by part 5 it is full.

Remark 1.3.9. A consequences of this corollary is that the category of based
simplicial complexes fully embeds into that of coalgebras over an E∞-operad.

Corollary 1.3.10. Let Cat∗ be the category of pointed small categories, N
the nerve functor as described in Example A.23, and π(1) the functor project-
ing to the 1-dimensional skeleton. The composition

Cat∗
N // sSet∗

π(1)
// sSet(1)

∗
C• // coAlgS2(2)

is a full and faithful functor.
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Proof. The composition π(1) ◦ N is a full and faithful functor, while the
functor C• : sSet(1)

∗ → coAlgS2(2) is faithful and full by parts 1 and 2 of
Theorem 1.3.5.

Remark 1.3.11. A consequences of this corollary is that the category of
pointed small categories fully embeds into that of coalgebras over an E2

operad.

Proof of Theorem 1.3.5 The proof of the five parts of Theorem 1.3.5 will
be parcelized into three independent groups, beginning with part 5 followed
by part 1 and finished with the remaining three parts. This choice is made
to increase the readability of this work by presenting the less computational
proof first, followed by the increasingly tedious case-by-case analysis involved
in the other proofs.

Proof of 5. Let X(n) = (V, S) and Y (n) = (V ′, S ′) be n-dimensional based
ordered simplicial complexes and consider an Sn+1(2)-coalgebra map

f : C•(X
(n), ∗)→ C•(Y

(n), ∗).

Identifying simplices with their corresponding chains, Lemma 1.3.1 implies
for any σ ∈ S that fσ = 0 or fσ ∈ S ′. In particular, for vertices one has
that f [v] = 0 or f [v] is a vertex of Y (n). Define a F : V → V ′ by

Fv =

{
fv if fv 6= 0,

∗ if fv = 0 or v = ∗.

It needs to be shown that this is a morphism of based ordered simplicial
complexes inducing f . This directly follows from establishing the next claims:

Claim 1. If f [v1, ..., vk] 6= 0 then f [v1, ..., vk] = [Fv1, ..., Fvk] satisfying that
Fvi < Fvi+1 for all i.

Claim 2. If f [v1, ..., vk] = 0 then Fvi = Fvi+1 for some i or fvi = ∗ for all i.

Proof of Claim 1. For vertices it holds trivially. Assume it holds for simplices
of dimension (k − 1) and let f [v1, ..., vk] = [w1, . . . , wk]. Since f is a chain
map one has∑

(−1)i[Fv0, . . . , F̂ vi, . . . , Fvk] =
∑

(−1)i[w0, . . . , ŵi, . . . , wk]
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and the induction hypothesis proves the claim.

Proof of Claim 2. For vertices it holds trivially. Assume it holds for simplices
of dimension (k − 1). Since f is a chain map one has∑

(−1)if [v0, . . . , v̂i, . . . , vk] = 0.

If f [v0, . . . , v̂i, . . . , vk] = 0 for all i, then the induction hypothesis finishes the
proof. If not, there must exist a pair i < j so that f [v0, . . . , v̂i, . . . , vk] =
f [v0, . . . , v̂j, . . . , vk] 6= 0. By Claim 1. that implies

[Fv0, . . . , F̂ vi, . . . , Fvk] = [Fv0, . . . , F̂ vj, . . . , Fvk]

so Fvi = Fvi+1.

The next two groups of proofs rely on the standard identities, listed below,
satisfied by the degeneracy and face maps of simplicial sets. These identities
will be used without comment throughout the proofs.

i) didj = dj−1di if i < j,

ii) disj = sj−1di if i < j,

iii) disj = id if i = j or i = j + 1,

iv) disj = sjdi−1 if i > j + 1,

v) sisj = sj+1si if i = j.

Proof of 1. Let F, F ′ : X → Y be based simplicial maps inducing the same
chain map f . Identifying non-degenerate simplices with their corresponding
chains, for any simplex σ, if fσ 6= 0 then Fσ = fσ = F ′σ. Since there are no
degenerate 0-dimensional simplices, F and F ′ agree on X0. Assume for an
induction argument that F and F ′ agree up to a certain skeleton Xk−1 and
let σ ∈ Xk. If σ = siρ is degenerate then, using the induction hypothesis,

Fσ = Fsiρ = siFρ = siFρ = F ′siρ = F ′σ.

The case fσ 6= 0 was already treated so assume σ is non-degenerate with
fσ = 0. There must exist i, j and ρ, ρ′ such that Fσ = siρ and F ′σ = sjρ

′

with this data satisfying one of the following possibilities:
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a) If j = i then ρ = ρ′ since ρ = diFσ = Fdiσ = F ′diσ = diF
′σ = ρ′. It

follows that Fσ = siρ = siρ
′ = F ′σ.

b) If j = i + 1 then ρ = sidiρ
′ and ρ = ρ′ since ρ = diFσ = Fdiσ =

F ′diσ = diF
′σ = disi+1ρ

′ = sidiρ
′ and ρ = di+1Fσ = Fdi+1σ = F ′di+1σ =

di+1F
′σ = ρ′. It follows that Fσ = siρ = sisidiρ

′ = si+1sidiρ
′ = si+1ρ

′ =
F ′σ.

c) If j = i + k with k > 1 then ρ = si+k−1di+1ρ
′ and ρ′ = sidi+k−1ρ since

ρ = di+1Fσ = Fdi+1σ = F ′di+1σ = di+1F
′σ = di+1si+kρ

′ = si+k−1di+1ρ
′

and ρ′ = di+kF
′σ = F ′di+kσ = Fdi+kσ = di+kFσ = di+ksiρ = sidi+k−1ρ

′.
Applying di+1 to the ρ′ = sidi+k−1ρ gives di+1ρ

′ = di+k−1ρ. It follows that
Fσ = siρ = sisi+k−1di+1ρ

′ = si+ksidi+1ρ
′ = si+ksidi+k−1ρ = si+kρ

′ = F ′σ.

Proof of 2, 3 and 4. Lemma 1.3.1 will be use throughout this proof without
mention, as will be the identification of non-degenerate simplices with their
corresponding chains. Given a morphism f between the appropriate coalge-
bras, the following case-by-case procedure constructs a based simplicial map
F with C•(F, ∗) = f :

σ ∈ X0:

a) fσ 6= 0: set
Fσ = fσ.

b) fσ = 0 or σ = ∗: set
Fσ = ∗.

σ ∈ X1:

a) fσ 6= 0: set
Fσ = fσ.

Since (f ⊗ f) ∆0 σ = ∆0 fσ and ∆0 σ = d1σ ⊗ σ + σ ⊗ d0σ one has

fdjσ = djfσ for j = 0, 1.

·) If fdjσ 6= 0 then Fdjσ = fdjσ = djfσ = djFσ for j = 0, 1.

·) If fdjσ = 0 then djfσ = 0, therefore djFσ = ∗ = Fdjσ for j = 0, 1.
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b) fσ = 0: set

Fσ = s0Fd0σ
(

= s0Fd1σ
)
.

Since ∂fσ = f∂σ one has fd0σ = fd1σ.

·) d0Fσ = d0s0Fd0σ = Fd0σ.

·) d1Fσ = d1s0Fd0σ = Fd0σ = Fd1σ.

σ ∈ X2: (assuming Y has Property A)

a) fσ 6= 0: set
Fσ = fσ.

By Property A, djFσ is non-degenerate for all possible j. It follows that

djfσ 6= 0 for j = 0, 1, 2.

Since (f⊗f) ∆0 σ = ∆0 fσ and ∆0 σ = d1d2σ⊗σ+d2σ⊗d0σ+σ⊗d0d0σ,
one has in particular that fd2σ ⊗ fd0σ = d2fσ ⊗ d0fσ. It follows that

fd2σ = d2fσ and fd0σ = d0fσ.

Since (f ⊗ f) ∆1 σ = ∆1 fσ and ∆1 σ = d1σ⊗ σ− σ⊗ d0σ− σ⊗ d2σ, one
has in particular that

fd1σ = d1fσ.

Therefore, djFσ = djfσ = fdjσ = Fdjσ for j = 1, 2, 3.

b) fσ = 0:

Since f∂σ = ∂fσ implies fd0σ − fd1σ + fd2σ = 0 one has the following
possibilities:

i) fd0σ = fd1σ 6= 0 & fd2σ = 0: set

Fσ = s0Fd0σ.

·) d0Fσ = d0s0Fd0σ = Fd0σ.

·) d1Fσ = d1s0Fd0σ = Fd0σ = Fd1σ.

·) d2Fσ = d2s0Fd0σ = s0d1Fd0σ = s0Fd1d0σ = s0Fd1d0σ = s0Fd0d2σ =
Fd2σ.
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ii) fd0σ = 0 & fd1σ = fd2σ 6= 0: set

Fσ = s1Fd1σ

·) d0Fσ = d0s1Fd1σ = s0d0Fd1σ = s0Fd0d1σ = s0Fd0d0σ = Fd0σ.

·) d1Fσ = d1s1Fd1σ = Fd1σ.

·) d2Fσ = d2s1Fd1σ = Fd1σ = Fd2σ.

iii) fd0σ = fd1σ = fd2σ = 0: set

Fσ = s0Fd0σ.

·) d0Fσ = d0s0Fd0σ = Fd0σ.

·) d1Fσ = d1s0Fd0σ = Fd0σ = s0Fd0d0σ = s0Fd0d1σ = Fd1σ.

·) d2Fσ = d2s0Fd0σ = d2s0s0Fd1d0σ = d2s1s0Fd0d2σ = s0Fd0d2σ =
Fd2σ.

σ ∈ X3: (assuming Y has Property B)

a) fσ 6= 0:

By Property A, djFσ and djdiFσ are non-degenerate for all possible i, j.
It follows that

djfσ 6= 0 and djdifσ 6= 0 for all possible i, j.

Since (f⊗f) ∆0 σ = ∆0 fσ and ∆0 σ = d1d2d3σ⊗σ+d2d3σ⊗d0σ+d3σ⊗
d0d0σ + σ ⊗ d0d0d0σ, one has in particular that

fd0σ = d0fσ and fd3σ = d3fσ.

Since (f ⊗ f) ∆2 σ = ∆2 fσ and ∆2 σ = −d1σ ⊗ σ − d3σ ⊗ σ − σ ⊗ d0σ −
σ ⊗ d2σ, one has in particular that fd1σ + fd3σ = d1fσ + d3fσ and
fd0σ + fd2σ = d0fσ + d2fσ. It follows that

fd1σ = d1fσ and fd2σ = d2fσ.

Therefore, djFσ = djfσ = fdjσ = Fdjσ for j = 0, 1, 2, 3.
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b) fσ = 0:

The following observation will restrict the cases to be analyzed. For any
of the three specific pairs (i, j) = (0, 2), (0, 3) or (1, 3) one has

fdiσ 6= 0 or fdjσ 6= 0 imply fdiσ 6= fdjσ.

·) Assume fd0σ = fd2σ 6= 0. By property B d1d1Fd0σ 6= d1d0Fd0σ.
But d1d1Fd0σ = Fd1d1d0σ = Fd1d0d2σ = d1d0Fd2σ = d1d0Fd0σ. A
contradiction.

·) Assume fd0σ = fd3σ 6= 0. By property B d1d1Fd0σ 6= d1d0Fd0σ.
But d1d1Fd0σ = Fd1d1d0σ = Fd1d0d3σ = d1d0Fd3σ = d1d0Fd0σ. A
contradiction.

·) Assume fd1σ = fd3σ 6= 0. By property B d1d0Fd0σ 6= d0d0Fd0σ.
But d1d0Fd0σ = Fd1d0d0σ = Fd0d0d3σ = d0d0Fd3σ = d0d0Fd0σ. A
contradiction.

Since f∂σ = ∂fσ implies fd0σ − fd1σ + fd2σ − fd3σ = 0 one has the
following possibilities:

i) fd0σ = fd1σ 6= 0 & fd2σ = fd3σ = 0: set

Fσ = s0Fd0σ.

The faces of Fd0σ = Fd1σ are non-degenerate by property A. In
particular 0 6= fd0d1 = fd0d2 and 0 6= fd2d0 = fd0d3 implying that

Fd2σ = s0Fd0d2σ and Fd3 = s0Fd0d3σ.

·) d0Fσ = d0s0Fd0σ = Fd0σ.

·) d1Fσ = d1s0Fd0σ = Fd0σ = Fd1σ.

·) d2Fσ = d2s0Fd0σ = s0d1Fd0σ = s0Fd1d0σ = s0Fd0d2σ = Fd2σ.

·) d3Fσ = d3s0Fd0σ = s0d2Fd0σ = s0Fd2d0σ = s0Fd0d3σ = Fd3σ.

ii) fd0σ = 0 & fd1σ = fd2σ 6= 0 & fd3σ = 0: set

Fσ = s1Fd1σ.

The faces of Fd1σ = Fd2σ are non-degenerate by property A. In
particular 0 6= fd0d1 = fd0d0 and 0 6= fd2d2 = fd2d3 implying that

Fd0σ = s0Fd0d0σ and Fd3 = s1Fd1d3σ.

24



·) d0Fσ = d0s1Fd1σ = s0d0Fd1σ = s0Fd0d1σ = s1Fd0d0σ = Fd0σ.

·) d1Fσ = d1s1Fd1σ = Fd1σ.

·) d2Fσ = d2s1Fd1σ = Fd1σ = Fd2σ.

·) d3Fσ = d3s1Fd1σ = s1d2Fd1σ = s1Fd2d1σ = s1Fd1d3σ = Fd3σ.

iii) fd0σ = fd1σ = 0 & fd2σ = fd3σ 6= 0: set

Fσ = s2Fd2σ.

The faces of Fd2σ = Fd3σ are non-degenerate by property A. In
particular 0 6= fd0d3 = fd2d0 and 0 6= fd1d3 = fd2d1 implying that

Fd0σ = s1Fd1d0σ and Fd1 = s1Fd1d1σ.

·) d0Fσ = d0s2Fd2σ = s1d0Fd2σ = s1Fd0d2σ = s1Fd1d0σ = Fd0σ.

·) d1Fσ = d1s2Fd0σ = s1d1Fd2σ = s1Fd1d2σ = s1Fd1d1σ = Fd1σ.

·) d2Fσ = d2s2Fd2σ = Fd2σ.

·) d3Fσ = d3s2Fd2σ = Fd2σ = Fd3σ.

iv) fd0σ = fd1σ = fd2σ = fd3σ = 0.

If fd1d1σ = fd1d2σ 6= 0 then in order to determine the values of Fd1σ
and Fd2σ one needs to know if fd0d1σ = 0 or not and if fd0d2σ = 0
or not. Since fd0d1σ = fd2d0σ and fd0d2σ = fd1d0σ this choice also
determines Fd0σ and shows one of the combinations is impossible,
namely fd0d1σ 6= 0 and fd0d2σ = 0. Since fd2d1σ = fd1d3σ and
fd2d2σ = fd2d3σ this choice also determines Fd3σ.

Similarly, if fd1d1σ = fd1d2σ = 0 then all fdidjσ = 0. Therefore,
one has the following possibilities:

iv-a. fd0d1σ = fd1d1σ = fd0d2σ 6= 0 & fd1d3 = 0: set

Fσ = s1s0Fd1d1σ.

·) Fd0σ = s0Fd0d0σ = s0Fd0d1σ = s0Fd1d1σ = s0d0s0Fd1d1σ =
d0s1s0Fd1d1σ = d0Fσ.

·) Fd1σ = s0Fd0d1σ = s0Fd1d1σ = d1s1s0Fd1d1σ = d1Fdσ.

·) Fd2σ = s0Fd0d2σ = s0Fd1d1σ = d2s1s0Fd1d1σ = d2Fσ.

·) Fd3σ = s0Fd0d3σ = s0s0Fd0d0d3σ = s1s0Fd0d0d3σ = s1s0Fd1d0d1σ =
s1s0Fd1d1d1σ = d3s1s0Fd1d1σ = d3Fσ.
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iv-b. fd1d1σ = fd2d1σ = fd0d2σ = fd0d3σ = fd2d0σ 6= 0: set

Fσ = s0s1Fd1d1σ.

·) Fd0σ = s1Fd1d0σ = s1Fd0d2σ = s1Fd1d1σ = d0s0s1Fd1d1σ =
d0Fσ.

·) Fd1σ = s1Fd1d1σ = d1s1s1Fd1d1σ = d1Fσ.

·) Fd2σ = s0Fd0d2σ = s0Fd1d1σ = d2s2s0Fd1d1σ = d2s0s1Fd1d1σ =
d2Fσ.

·) Fd3σ = s0Fd0d3σ = s0Fd1d1σ = d3s2s0Fd1d1σ = d3s0s1Fd1d1σ =
d3Fσ.

iv-c. fd1d1σ = fd2d1σ = fd2d2σ = fd2d3σ 6= 0 & fd1d0 = 0: set

Fσ = s1s1Fd1d1σ.

·) fd0σ = s0Fd0d0σ = s0s0Fd0d0d0σ = s0s0Fd0d1d1σ = d0s1s1Fd1d1 =
d0Fσ.

·) Fd1σ = s1Fd1d1σ = d1s1s1Fd1d1σ = d1Fσ.

·) Fd2σ = s1Fd1d2σ = s1Fd1d1σ = d2s1s1Fd1d1 = d2Fσ.

·) Fd3σ = s1Fd1d3σ = s1Fd1d1σ = s1d2s1Fd1d1 = d3s1s1Fd1d1 =
d3Fσ.

iv-d. fdjdiσ = 0: set
Fσ = s0s0s0Fd0d0d0σ.

Fdiσ = s0s0Fd0d0diσ = s0s0Fd0d0d0σ = dis0s0s0Fd0d0diσ = diFσ.
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Chapter 2

Abelian sheaves and
S-comodules

2.1 Sheaf theory of posets

This section is divided into three parts. The first part builds on a know
equivalence of categories between partially ordered sets and T0-Alexandrov
spaces. Each of these categories is equipped with a duality, opposite poset
and topology of closed sets respectively, and Lemma 2.1.5 shows that the
categorical equivalence is equivariant with respect to these dualities.

The second part uses the connection between posets and Alexandrov
spaces to relate the categorical definition of sheaves and cosheaves with the
topological one, presenting the close connection that arises between sheaves
and cosheaves over posets.

The third part specializes to sheaves and cosheaves over posets with values
in an abelian category and characterizes their projective objects, showing the
existence of enough projectives under suitable conditions.

Alexandrov spaces and partially ordered sets

Definition 2.1.1. (Alexandrov Spaces) A topological space (X, τ) is said
to be an Alexandrov space if an arbitrary intersection of open sets is an
open set. This extra condition allows for the definition of a new topology on
any Alexandrov space given by all closed sets of the original topology. This
topology will be called the dual topology an denoted τ c.
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The full subcategory of topological spaces given by Alexandrov spaces
satisfying the T0 separation axiom (i.e. for any pair of points there is an open
set containing one of them, but not both) will be denoted AT0. Notice that
(X, τ) ∈ AT0 if and only if (X, τ c) ∈ AT0.

Definition 2.1.2. Let (P,≤) be a poset. The set P can be made into a
topological space in two ways. Define the topology τ≥ in P to be generated

by the subsets b≥
def
= {a : b ≥ a} for all b ∈ P , and the topology τ≤ to be

generated by the subsets b≤
def
= {c : b ≤ c} for all b ∈ P .

Let (X, τ) be a T0-Alexandrov space. The set X can be made into a poset

in two ways. For any x ∈ X let Ux
def
=
⋂
x∈U∈τ U . Define X⊂ = (X,≤) with

x ≤ y if and only if Ux ⊂ Uy, and define X⊃ = (X,≤) with x ≤ y if and only
if Ux ⊃ Uy.

Lemma 2.1.3. The four assignments described above are functorial. More-
over, they define pairs of inverse functors

(−)≥ : Poset � AT0 : (−)⊂

and
(−)≤ : Poset � AT0 : (−)⊃.

Proof. Given an order preserving function f : P → P ′ one needs to prove that
f is continuous with respect to both topologies. Let c′≥ be a basis element of
τ ′≥ and consider f−1(c′≥). This set is open since it is straightforward to check
that

f−1(c′≥) =
⋃

{b: c′≥f(b)}

b≥.

Analogously, for a basis element a′≤ of τ ′≤ one has

f−1(a′≤) =
⋃

{b: a′≤f(b)}

b≤.

Given a continuous function f : X → X ′ one needs to prove that if
Ux ⊂ Uy then Uf(x) ⊂ Uf(y). To do so, notice that f−1(Uf(y)) is an open set
containing y and, since Uy is the smallest open set with that property, Uy ⊂
f−1(Uf(y)). The assumption Ux ⊂ Uy together with the previous observation
imply that

f(x) ∈ f(Ux) ⊂ f(Uy) ⊂ Uf(y),
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which, since Uf(x) is the smallest open set containing f(x), give the desired
Uf(x) ⊂ Uf(y).

Verifying these pairs of functors are inverse of each other follows directly
from noticing that in τ≥ one has Ub = b≥, while in τ≤ one has Ub = b≤.

Definition 2.1.4. The (covariant) functor associating to a T0-Alexandrov
space the T0-Alexandrov space with the dual topology is denoted by

(−)c : AT0 → AT0 .

The (covariant) functor associating to a poset the poset with the opposite
order is denoted by

(−)op : Poset→ Poset .

Lemma 2.1.5. The functors defined in this section are related by the follow-
ing identities:

1a. (−)≥ = (−)≤ ◦ (−)op.

2a. (−)≥ = (−)c ◦ (−)≤.

3a. (−)⊂ = (−)op ◦ (−)⊃.

4a. (−)⊂ = (−)⊃ ◦ (−)c.

1b. (−)≤ = (−)≥ ◦ (−)op.

2b. (−)≤ = (−)c ◦ (−)≥.

3b. (−)⊃ = (−)op ◦ (−)⊂.

4b. (−)⊃ = (−)⊂ ◦ (−)c.

Proof. Pairs of corresponding identities are equivalent since

(−)op ◦ (−)op = id and (−)c ◦ (−)c = id .

The third pair of identities follows from the first pair since

(−)≥ ◦ (−)⊂ = id and (−)⊃ ◦ (−)≤ = id .

The fourth pair of identities follows from the second pair since

(−)⊂ ◦ (−)≥ = id and (−)≤ ◦ (−)⊃ = id .

Proof of 1a. For any poset (P,≤) the topology τ≥ is generated by sets {a :
b ≥ a}, while the topology τ≤op is generated by sets {a : b ≤op a}. These
bases are equal so τ≤ = τ≥op .

Proof of 2a. Consider an arbitrary poset (P,≤). It will be shown first that
τ≥ ⊂ τ c≤. To do so, consider a generator {a : b ≥ a} of τ≥ and notice that

{a : b ≥ a} ⊂

 ⋃
{x : b�x}

{y : x ≤ y}

c

∈ τ c≤
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since b ≥ a and a ≥ x implies b ≥ x. Also, one has

{a : b ≥ a}c ⊂
⋃

{x : b�x}

{y : x ≤ y}

since x ∈ {a : b ≥ a}c implies x ∈ {y : x ≤ y} with b � x.
In order to show that τ≥ ⊃ τ c≤ consider an arbitrary open set of τ c≤ say(⋃
x∈I{y : x ≤ y}

)c
=
⋂
x∈I{y : x ≤ y}c. Since τ≥ is closed under arbitrary

intersections, it suffices to show that {y : x ≤ y}c is open in τ≥. This follows
from a computation similar to the one above showing that

{y : x ≤ y}c =
⋃

{b :x�b}

{a : b ≥ a} ∈ τ≥,

and concludes the proof.

Sheaves, cosheaves and their relationship over posets

Definition 2.1.6. (Presheaves and precosheaves) Let C and V be categories.
A presheaf, respectively precosheaf, on C with values on V is a contravari-
ant, respectively covariant, functor from C to V . A presheaf morphism,
respectively precosheaf morphism, is a natural transformation of such
functors.

Denote these categories respectively by PSh(C,V) and PcoSh(C,V), or if
V is understood from the context, simply by PSh(C) and PcoSh(C).

Definition 2.1.7. (Sites) A site is given by a (small) category C and a
set Cov(C) of families of morphisms with fixed target {Ui → U}i∈I , called
coverings of C, satisfying the following axioms:

S1: If V → U is an isomorphism then {V → U} ∈ Cov(C).

S2: If {Ui → U}i∈I ∈ Cov(C) and for each i ∈ I one has that {Vij →
Ui}j∈Ji ∈ Cov(C), then {Vij → U}i∈I,j∈Ji ∈ Cov(C).

S3: If {Ui → U}i∈I ∈ Cov(C) and V → U is a morphism in C then the
pullback Ui×U V exists for each i ∈ I and {Ui×U V → V }i∈I ∈ Cov(C).

Example 2.1.8. Let (X, τ) be a topological space. Think of τ as a category
with set of objects τ and

Homτ (V, U) =

{
{V → U} if V ⊂ U,

∅ if V 6⊂ U,
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and notice that this assignment Top → Cat is functorial. Define the set of
coverings of τ by

{Ui → U}i∈I ∈ Cov(τ) if and only if
⋃
i∈I

Ui = U.

The conditions for τ with this coverings to define a site are easily verified.

Remark 2.1.9. The functors (−)≥ and (−)≤ from Lemma 2.1.3 can be com-
posed with the functor described in the previous example. Abusing notation,
these resulting functors are denoted

(−)≥ : Poset→ Cat
(P,≤) 7→ τ≥.

&
(−)≥ : Poset→ Cat

(P,≤) 7→ τ≥.

Example 2.1.10. Given any (small) category, define a site by declaring
the coverings to be the identity morphisms only. In particular, since the
assignment that takes any poset (P,≤) to a category with set of objects P
and morphisms

HomP (x, y) =

{
{x→ y} if x ≤ y

∅ if x � y

is a full and faithful functor, any poset P can be thought of a site with trivial
coverings.

The following definitions use some of the examples of limits and colimits
described in Appendix A.

Definition 2.1.11. (Sheaves and cosheaves) Let C be a site, D ∈ PSh(C) and
E ∈ PcoSh(C). The presheaf D is said to be a sheaf if for all {Ui → U}i∈I ∈
Cov(C) the first arrow in the following diagram represents the equalizer of
the next two

D(U)→
∏
i∈I

D(Ui) ⇒
∏
i,j∈I

D(Ui ×U Uj).

The full subcategory of sheaves in PSh(C) will be denoted by Sh(C).
The precosheaf E is said to be a cosheaf if for all {Ui → U}i∈I ∈ Cov(C)

the last arrow in the following diagram represents the coequalizer of the first
two ∐

i,j∈I

E(Ui ×U Uj) ⇒
∐
i∈I

E(Ui)→ E(U).

The full subcategory of cosheaves in PcoSh(C) will be denoted by coSh(C).
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Example 2.1.12. Let (X, τ) be a topological space. Sheaves and cosheaves
on the site τ , defined in Example 2.1.8, agree with the usual topological
sheaves and cosheaves on X.

Example 2.1.13. If a site has coverings given by the identity morphisms
only, then the categories of sheaves and presheaves on such site agree; as
also do the categories of cosheaves and precosheaves on it. In particular,
following Example 2.1.10, for any poset (P,≤) one has Sh(P ) = PSh(P ) and
coSh(P ) = PcoSh(P ) over this indiscrete site.

Definition 2.1.14. Let (P,≤) be a poset and V a complete and cocomplete
category. From Remark 2.1.9 one obtains a covariant functor (−)≥ : P → τ≥
when P is regarded as a category. Define the functor

Lan : Sh(P,V)→ PSh(τ≤,V),

which assigns to any D ∈ Sh(P,V) the left Kan extension of D along (−)op
≥ ,

diagrammatically

P op D //

(−)op≥
��

V

(τ≥)op.

LanD

;;

The functor Ran : coSh(P op,V) → PcoSh(τ≤,V) is defined using the con-
travariant functor (−)≤ : P → τ≤ in a similar manner, diagrammatically

P op E //

(−)≤

��

V

τ≤.
Ran E

<<

Lemma 2.1.15. Let (P,≤) be a poset and V a complete and cocomplete
category. For any D ∈ Sh(P,V) the presheaf LanD is a sheaf and the functor

Lan : Sh(P,V)→ Sh(τ≥,V)

is an equivalence of categories. Similarly, for any E ∈ coSh(P op,V) the
precosheaf Ran E is a cosheaf and the functor

Ran : coSh(P op,V)→ coSh(τ≤,V)

is an equivalence of categories.
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Proof. One needs to verify that the presheaf LanD satisfies the sheaf condi-
tion. For any U ∈ τ≥, Lemma A.16 and Lemma A.7 provide a formula for
the left Kan extension

LanD(U) = eq
( ∏
y≥⊂U

D(y) ⇒
∏

x≥⊂ y≥

D(x)
)
,

which is exactly the sheaf condition for the finest cover of U . (Recall that
the collection {y≥ : y ∈ P} forms a basis of τ≥). The inverse functor of Lan
is given by restricting a sheaf on τ≥ to the basis {y≥ : y ∈ P}.

The proof for cosheaves is analogous using Lemma A.16 and Lemma
A.12.

Definition 2.1.16. Let (P,≤) be a poset. Consider the contravariant func-
tor (−)c : τ c≥ → (τ≥) taking U c to U and recall from Lemma 2.1.5 that
τ c≥ = τ≤. Abusing notation, define the functor

(−)c : Sh(τ≥)→ PcoSh(τ≤)

which assigns to every D ∈ Sh(τ≥) the precosheaf Dc ∈ PcoSh(τ≤) defined
by the following commutative diagram

(τ≥)op D // V

τ c≥

(−)c

OO

τ≤ .
=oo

Dc

OO

Lemma 2.1.17. Let (P,≤) be a poset and V a complete and cocomplete cat-
egory where the sheaves and cosheaves under consideration take their values.
For any D ∈ Sh(τ≥) the precosheaf Dc is a cosheaf and the functor

(−)c : Sh(τ≥)→ coSh(τ≤)

is an equivalence of categories making the following diagram commute

Sh(P )

Lan
��

= // coSh(P op)

Ran
��

Sh(τ≥)
(−)c

// coSh(τ≤)
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Proof. It suffices to establish the commutativity of the diagram since Lan and
Ran are equivalence of categories. To do so, consider the following diagram
associated to any D ∈ Sh(P )

P op

D
||

(−)op≥

��

(−)≤

yy

(τ≥)op LanD // V

τ c≥
��

(−)c

OO

τ≤.//
=

oo

RanD

OO

(LanD)c

FF

Since (LanD)c ◦ (−)≥ = LanD ◦(−)c ◦ (−)≤ = LanD ◦(−)≥ = D, the uni-
versal property of right Kan extensions ensures the existence of a natural
transformation (LanD)c → RanD. The inverse natural transformation is
obtained similarly using the universal property of left Kan extensions and
the functor (−)c : Sh(τ≥)→ coSh(τ≤).

Abelian sheaves over posets

Definition 2.1.18. (Projective objects) Let A be an abelian category. An
object P ∈ A is called projective if it satisfies any of the following equivalent
conditions:

1. For any surjection f : C → B and any map q : P → B there exists
g : P→ C such that q ◦ g = f , diagrammatically

C

q
��

P

g
??

f
// B

��
0.

2. Any exact sequence

0→ A→ B → P→ 0
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splits, i.e. it is isomorphic to

0→ A→ A⊕ P→ P→ 0

with inclusion and projection maps.

Remark 2.1.19. The dual notion of an injective object will be omitted since
it is not used in this work.

Definition 2.1.20. (Elementary projective sheaves and cosheaves) Let P ∈
A be a projective object, (P,≤) a poset and y an element in P .

The elementary projective sheaf P≤y ∈ Sh(P,Ab) with value P over
y is defined by

P≤y[x] =

{
P if x ≤ y

0 if x � y,

with all non-zero morphisms equal to the identity.
The elementary projective cosheaf Py≤ ∈ coSh(P,Ab) with value P

over y is defined by

Py≤[z] =

{
P if y ≤ z

0 if y � z,

with all non-zero morphisms equal to the identity.

Terminology 2.1.21. A poset (P,≤) is said to be locally finite if for all
pairs x, z ∈ P the set {y ∈ P : x ≤ y ≤ z} is finite.

Lemma 2.1.22. Let A be a cocomplete abelian category and (P,≤) a poset.
A sheaf or a cosheaf over P with values in A is projective if, and if P is locally
finite, only if, it is isomorphic to a direct sum of elementary projective ones.

Proof. Only the proof for sheaves will be presented since small variations
adapt it for cosheaves. Notice that by the universal property of coprod-
ucts a direct sum of projective objects is projective. Explicitly, a morphism⊕

Pi → B defines a collection of morphism Pi → B by precomposing with
the respective inclusion. given a surjection A → B one gets a collection of
lifts Pi → A and therefore a lift

⊕
Pi → A.

A sheaf P≤y or cosheaf Py≤ is projective since it is straightforward to
check that

HomSh(P≤y,D) = Hom(P≤y[y],D[y])
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and
HomcoSh(Py≤, E) = Hom(Py≤[y], E [y]).

Let P be a projective sheaf and y an element of the poset. Notice that
by considering sheaves with support only on y one concludes that P [y] is a
projective object in A. By the local finiteness of the poset under consider-
ation every set {z : z > y} as a smallest element. Define the near star
of y, denoted nst(y), as the sub-poset containing all such minimal elements.
Notice that all pairs of elements in this sub-poset are not comparable.

Define the sheaf Qy by

Qy[z] =

{
P [z] if z ∈ nst(y)

0 if z 6∈ nst(y).

with all induced morphisms the zero map. The sheaf Q̃y is defined by

Q̃y[z] =


Py[z] if z ∈ nst(y)

0 if z 6∈ nst(y) and z 6= y⊕
z′∈ nst(y)

P [z′] if z = y

with non zero induced morphisms given by the inclusions

P [z]→
⊕

z′∈ nst(y)

P [z′].

There are obvious surjections represented by solid arrows below

Q̃y

��
P

g
??

// Qy

��
0

and the morphism g[z] is the identity for all z ∈ nst(y) and it is zero for all
z 6∈ nst(y) such that z 6= y. The collection of maps P [z]→ P [y] for z ∈ nst(y)
gives a map

⊕
z∈nst(y)P [z]→ P [y] fitting into the following sequence

0 −→
⊕

z∈nst(y)

P [z] −→ P [y]
g[y]−→

⊕
z∈nst(y)

P [z] −→ 0
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which is exact since, denoting the inclusion P [z] →
⊕

z∈nst(y)P [z] by ιz, for
every z > y one has

g[y] ◦ P [y < z] = ιz ◦ g[z] = ιz.

The above sequence splits by the projectivity of the objects involved, see
Definition 2.1.18, so there exists B(y) such that

P [y] ∼= B(y)⊕
( ⊕
z∈nst(y)

P [z]
)

iterating the argument one gets

P [y] ∼=
⊕
z≥y

B(z)

for every y and therefore

P =
⊕
y∈P

B(y)≤y

concluding the proof.

Remark 2.1.23. The condition in Lemma 2.1.22 that A be cocomplete is in
practice too restrictive. For example, the category Abf of finitely generated
abelian groups is not cocomplete. The conclusion of Lemma 2.1.22 remains
true if one restricts to appropriate subcategories of sheaves or cosheaves on
a poset where the relevant coproducts exist. Examples of such subcategories
are the following.

Definition 2.1.24. (Sheaves and cosheaves with compact support) Let P be
a poset and A an abelian category. Denote by Shc(X,A) the full subcategory
of Sh(X,A) whose objects satisfy D[x] 6= 0 for at most finitely many x ∈ P .
Define coShc(X,A) similarly.

Definition 2.1.25. (Enough projectives) An abelian category is said to have
enough projectives if for any object B ∈ A there exists a surjection

A→ B → 0

with A ∈ A projective.

Lemma 2.1.26. Let P be a poset and A an abelian category. If A has enough
projectives then Shc(P,A) and coShc(P,A) do so as well. If in addition A is
cocomplete, then Sh(P,A) and coSh(P,A) also have enough projectives.
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Proof. Assume A is cocomplete and let D ∈ Sh(X,A). The first step is to
construct a surjection of sheaves Q → D → 0 with Q[x] ∈ A projective for
every x ∈ P . Choose for each x ∈ P a surjection f [x] : Q[x]→ D[x]→ 0 with
Q[x] projective. For every pair x ≤ y there is a morphism D[y]→ D[x] whose
precomposition with f [y] : Q[y]→ D[y] is represented by the horizontal solid
arrow in the following diagram

Q[x]

f [x]

��
Q[y]

f [y]

��

<<

// D[x]

��
D[y]

<<

0.

The choice of a morphism realizing the dotted arrow for any pair x ≤ y
makes Q into a sheaf and f into a surjective morphism of sheaves. Define
P ∈ Sh(X) by

P [x] =
⊕
x≤y

Q[y]≤y.

This sheaf maps surjectively onto X, therefore onto D, and it is projective
by Lemma 2.1.22.

All other statements are proven in the same manner.

Notation 2.1.27. Let A be an abelian category. Denote by A+
• the cat-

egory of bounded below complexes whose objects are homologically
graded complexes which are zero below some degree. Notice that A+

• is
enriched over Ab•, and as usual one says that two morphisms are chain
homotopy equivalent if they are homologous.

The following are standard result in homological algebra, see for example
[45] section 5.7 for their proofs.

Lemma 2.1.28. Let A be an abelian category with enough projectives.

1. For any A• ∈ A+
• there exists a complex of projective objects P• ∈ A+

•
and a morphism P• → A• inducing an isomorphism in homology.

2. If P• and P ′• are projective and f : P• → P ′• induces an isomorphism in
homology, then there exists g ∈ HomA+

•
(P•,P ′•) ∈ Ab• such that f ◦ g

and g ◦ f are chain homotopy equivalent to the respective identities.
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2.2 Simplicial complexes and Ranicki duality

In this section, the theory developed in the previous one is specialized in
two ways. Only posets associated with simplicial complexes are considered
and the sheaves and cosheaves studied have values either in the category of
abelian groups Ab or its full subcategory Abf of finitely generated abelian
groups.

The notion of tensor product of functors is used to define the tensor
product of a complex of sheaves and a complex of cosheaves. In conjunction
with linear duality and a couple of special complexes, this tensor product is
used to define the Ranicki duality functors, whose geometric content is made
apparent by the pair subdivision sheaf and cosheaf.

The section closes with the construction, using the pair subdivision sheaf,
of the visible symmetric complex of a regular pseudomanifold.

Definition 2.2.1. Consider the category SC of ordered simplicial complexes
as presented in Definition 1.3.6. Define a functor

SC→ Poset

sending an ordered simplicial complex X = (V, S) to the poset (S,≤) with
σ ≤ τ if an only if σ ⊂ τ , i.e. if σ is a face of τ .

For any X ∈ SC, define the categories of sheaves and cosheaves on X,
denoted Sh(X) and coSh(X), to be the corresponding sheaves and cosheaves
categories on its associated poset.

The barycentric subdivision functor SC→ SC is defined as the com-
position of the functor defined above and the functor Poset→ SC sending a
poset (P,≤) to the simplicial complex with P as set of vertices and simplices
given by strictly ascending sets [σ0 < · · · < σn] of elements in P .

Definition 2.2.2. (Open star and closure) Let X be an ordered simplicial
complex and σ a simplex in X. The open star of σ, denote by stσ, is defined
as the subset of X formed by all simplices containing σ. The closure of σ,
denote by clσ, is defined as the subcomplex of X formed by all simplices
contained in σ. Notice that if σ ≤ τ then st σ ⊃ st τ and clσ ⊂ cl τ .

Definition 2.2.3. The complex of sheaves C• with values in Ab is defined
to assign to each simplex the chain complex of cochains on its open star, i.e.

C•[σ] =
(
C•(stσ), δ

)
,
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and to have induced morphisms given by inclusions.
The complex of cosheaves C• with values in Ab is defined to assign to

each simplex the chain complex of cochains on its closure, i.e.

C•[σ] =
(
C•(clσ), ∂

)
,

and to have induced morphisms given by inclusions.

The following definition is presented in level of generality suitable for the
purposes of this work. For a more general discussion see for example [35].

Definition 2.2.4. (Tensor products of functors) Consider a pair of functors
F : Cop → Ab and G : C → Ab. The tensor product of F and G over C
is defined by

F ⊗
C
G = coeq

( ⊕
f : c1→c2

F (c2)⊗G(c1) ⇒
⊕
c

F (c)⊗G(c)
)
,

and the tensor product of G and F over C is defined by

G ⊗
C
F = coeq

( ⊕
f : c1→c2

G(c1)⊗ F (c2) ⇒
⊕
c

F (c)⊗G(c)
)
.

Example 2.2.5. Let R be a ring thought of as a category enriched over
Ab with a single object. A right R-module corresponds to an Ab-enriched
functor A : Rop → Ab, while a left R-module corresponds to an Ab-enriched
functor B : R → Ab. The functor tensor product A ⊗R B agrees with the
usual tensor product of a left and a right R-module.

Definition 2.2.6. Given D ∈ Sh(X) and E ∈ coSh(X) define the sheaf
E �

st
D by

(E �
st
D)[σ] = E |stσ ⊗

stσ
D |stσ =

⊕
σ≤τ

E [τ ]⊗D[τ ]
/
∼

with
(
D[ι](e) ⊗ d

)
∼
(
e ⊗ E [ι](d)

)
for any ι : σ → τ , and morphisms being

induced by inclusions.
Analogously, define the cosheaf E �

cl
D

(E �
cl
D)[σ] = E |clσ ⊗

clσ
D |clσ =

⊕
ρ≤σ

E [ρ]⊗D[ρ]/ ∼
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with
(
E [ι](e) ⊗ d

)
∼
(
e ⊗ D[ι](d)

)
for any ι : ρ → σ, and morphisms being

induced by inclusions.
These assignments are functorial in both variables. The notation �st and

�cl will also be used for the extension of these bifunctors to complexes.

Remark 2.2.7. Fix an ordered simplicial complex X. Let Z be the constant
cosheaf on X with value Z. For any sheaf D the collection of maps(

Z �
st
D
)
[σ] =

(⊕
σ≤τ

Zτ ⊗D[τ ]/ ∼
)
→ D[σ]

sending 1τ ⊗ d to D[ι](d) with ι : σ → τ defines an isomorphism of sheaves.
Analogously, let Z be the constant sheaf. For any cosheaf E the collection

of maps (
E �

cl
Z
)
[σ] =

(⊕
ρ≤σ

E [ρ]⊗ Zρ/ ∼
)
→ E [σ]

sending e⊗ 1ρ to E [ι](e) with ι : ρ→ σ defines an isomorphism of cosheaves.

Notation 2.2.8. Let (−)∨ : Sh(X,Ab) → coSh(X,Ab) be the functor in-
duced from linear duality. Explicitly, for any D ∈ Sh(X,Ab) one has

D∨[σ] = (D[σ])∨ and D∨[ι] = (D[ι])∨ for all ι : σ → τ.

Since the context will be clear enough to avoid confusions, the analogous
functor coSh(X,Ab)→ Sh(X,Ab) will be denoted by the same symbol (−)∨.

The same notation (−)∨ will be used for the extension of these functors
to complexes.

Definition 2.2.9. (Ranicki duality functors) Let X be an ordered simplicial
complex. Abusing notation, define respectively the Ranicki duality func-
tors T : Sh(X,Ab)• → Sh(X,Ab)• and T : coSh(X,Ab)• → coSh(X,Ab)•
as the following compositions

T(−) = (−)∨ �
st

C• and T(−) = C• �
cl

(−)∨.

Example 2.2.10. Notice that Z∨ ∼= Z and Z∨ ∼= Z, so by Remark 2.2.7 one
has TZ ∼= C• and TZ ∼= C•.
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Example 2.2.11. Let X be the interval an represent C• and C• by

C• : α
−1 ��

γ
+1��

β β? _oo � � // β

• •

C• : b−1
��

+1
��

a �
� // a c c? _oo

• •.

Their linear duals are represented by

(C•)∨ : b // // b boooo

a
��−1

c
�� +1

• •

(C•)
∨ : α αoooo γ // // γ

β
��−1 �� +1

• •.

The Ranicki dual of C• defined as (C•)∨ �
st

C• is represented by

T C• : bα
−1

}}
+1
  

bγ
−1
~~

+1

  
aα bβ bβ? _oo � � // bβ cγ

• •.

The Ranicki dual of C• defined as C• �
cl

(C•)
∨ is represented by

T C• : bα
−1

}}
+1
  

bγ
−1
~~

+1

  
aα �
� // aα bβ cγ cγ? _oo

• •.
Observe that in this example the collection of evaluation maps

(C•[σ])∨ ⊗ C•[σ]→ Z

induces a morphism of complexes of sheaves

ε : T C• = T2Z→ Z

with ε[σ] a homology isomorphism for every simplex σ.
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Similarly defined, the morphism

ε : T C• = T2Z→ Z

is a homology isomorphism over each simplex.

Definition 2.2.12. (Pair subdivision) For any finite ordered simplicial com-
plex define its pair subdivision sheaf PSh

• as the Ranicki dual of the com-
plex of sheaves C•. Explicitly, one has chain isomorphisms

PSh
• [ρ] ∼=

( ⊕
ρ≤σ,τ

τ ⊗ σ∗
)
/
(⊕
σ�τ

τ ⊗ σ∗
)

with maps PSh
• [ρ→ ρ′] : PSh

• [ρ′]→ PSh
• [ρ] given by inclusions.

Define the pair subdivision cosheaf similarly by

PcSh
• = T C• = C• �

cl
(C•)

∨.

Remark 2.2.13. The pair subdivision sheaf has a geometric interpretation
justifying its name. Let X be an ordered simplicial complex and X ′ its
barycentric subdivision as defined in 2.2.1. For any ρ ∈ X define the close
dual cone of ρ, denoted dc(ρ), as the subcomplex of X ′ containing all sim-
plices of the form [ρ1 < ρ2 < · · · ] with ρ ≤ ρ1. The chain complex PSh

• [ρ]
is chain isomorphic to the chain complex of a regular CW complex obtained
by gluing along common faces certain simplices of dc(ρ). Two simplices in
the closed dual cone are amalgamated along their common face if they have
the same dimension and are represented by ascending subsets with the same
initial and terminal simplices. For example, in the case of the (geometric
realization of the) 2-dimensional simplex the amalgamation map looks as
follows:

−→

The subdivision map, which is the inverse of the amalgamation one de-
fined above, induces a chain homotopy equivalence from PSh

• [ρ] into the chains
on the dual cone of ρ which are denoted D•[ρ]. Notice that D• defines a com-
plex of projective sheaves and, since PSh

• is also projective, the complexes
D• and PSh

• are chain homotopy equivalent be Lemma 2.1.28. In particular,
PSh
• [ρ] is contractible for all ρ ∈ X. See [36] for more on the pair subdivision

complex.
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The Ranicki duality functors T are not in general involutions, not even
up to homotopy. In order to have an involution-like property one needs to
impose some finiteness conditions. This is accomplished by restricting T to
Shc(X,Abf)• and coShc(X,Abf)•, i.e. the categories of complexes of com-
pactly supported sheaves, respectively cosheaves, with values in the category
of finitely generated abelian groups.

Lemma 2.2.14. There exist natural transformations

ε : T2 → idShc(X,Abf) and ε : T2 → idcoShc(X,Abf)

defined below, such that if P• stands for a complex of projective sheaves or
cosheaves then

1. The following pairs of complexes are chain isomorphic

T2P• ∼= P• �
st

PSh
• and T2P• ∼= P• �

cl
PcSh
•

2. The morphism εP• : (T2P•)→ P• is a chain homotopy equivalence.

3. The following diagram commutes

TP•
T(εP• )//

id ##

T3P•
εTP•
��

TP•.

Proof. Only the proof for sheaves will be presented since small variations
adapt it for cosheaves. For any simplex σ ∈ X denote its i-th face by ∂iσ
and by δiσ any simplex such that ∂iδ

iσ = σ, notice that if δiσ exists then it
is unique.

For any complex of sheaf D• one has TD•[ρ] =
(⊕
ρ≤σ

D∨• [σ]⊗ C•[σ]/ ∼
)

which equals
( ⊕
ρ≤σ≤σ′

D∨• [σ]⊗ C•[σ ≤ σ′]σ′∗/ ∼
)
. Using that

d∗σ ⊗ C•[σ ≤ σ′](σ′∗) ∼ D∨• [σ ≤ σ′](d∗σ)⊗ σ′∗

one sees that as graded abelian groups

TD•[ρ] ∼=
⊕
ρ≤σ

D∨• [σ]⊗ σ∗.
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This isomorphism can be improved to a chain isomorphism by setting

∂(dσ ⊗ σ∗) = ∂dσ ⊗ σ∗ + (−1)|dσ |
∑
δiσ

(−1)iD∨• [σ ≤ δiσ](dσ)⊗ (δiσ)∗.

Applying the previous observation twice and using the finite dimension-
ality of the abelian groups involved one has that as graded abelian groups

T2D•[ρ] ∼=
⊕
ρ≤σ≤τ

D•[τ ]⊗ τ ⊗ σ∗.

To describe the boundary making this into a chain isomorphism observe that
(TD•)∨[σ ≤ σ′] :

⊕
σ≤τ D•[τ ]⊗ τ →

⊕
σ′≤τ D•[τ ]⊗ τ is giving by projection.

The boundary in
⊕
ρ≤σ≤τ

D•[τ ]⊗ τ ⊗ σ∗ making it chain isomorphic to T2D•[ρ]

is therefore

∂(dτ ⊗ τ ⊗ σ∗) = ∂(dτ )⊗ τ ⊗ σ∗

+ (−1)|dτ |
∑
∂iτ

(−1)iD•[∂iτ ≤ τ ](dτ )⊗ ∂iτ ⊗ σ∗

+ (−1)|dτ |+|τ |
∑
δiσ≤τ

(−1)idτ ⊗ τ ⊗ (δiσ)∗.

The above formula conceptually simplifies if D• is projective. In that case
D[∂iτ ≤ τ ] is an inclusion map and the chain complex T2[ρ] becomes chain
isomorphic to D[ρ]⊗ PSh

• [ρ].
For any D• define εD• [ρ] : T2D•[ρ] → D•[ρ] by sending dτ ⊗ τ ⊗ σ∗ to

D•[ρ ≤ τ ](dτ ) · 〈τ, σ∗〉. Using the formula for the boundary it can be shown
this defines a morphism of complexes of sheaves. In case D• is projective
then εD• [ρ] : D•[ρ] ⊗ PSh

• [ρ] → D•[ρ] is the identity in the first factor and
contracts the second. It is therefore a homology isomorphism and by Lemma
2.1.28 εD• is a chain homotopy equivalence.

The proof of the third part becomes a straightforward computation. Let
P• be projective and consider any ρ ∈ X and (dσ ⊗ σ∗) ∈ TP•[ρ], then

(d∗σ ⊗ σ∗)
� T(εP• )[ρ] //



id

&&

d∗σ ⊗
(∑

σ≤τ τ
∗ ⊗ τ

)
⊗ σ∗

,
εTP•

uu
d∗σ ⊗

(∑
σ≤τ τ

∗ ⊗ 〈τ, σ∗〉
)
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Remark 2.2.15. For any projective complex P• of compactly supported
sheaves or cosheaves with values on Abf , the lemma above can be used to
endow the chain complex Hom(TP•,P•) with an action of Σ2 defined to send
f to (εP• ◦ Tf). This is an involution since

εP• ◦ T(εP• ◦ Tf) = εP• ◦ T2f ◦ T(εP•) = f ◦ εTP• ◦ T(εP•) = f.

Notation 2.2.16. Recall from Definition 1.1.5 that the arity 2 part of the
operad S carries a free action of Σ2 and has the homology of a point. For any
chain complex C with an action of Σ2, the chain complex of Σ2-equivariant
maps from S(2) to C will be denoted CΣ2 . Let ϕ ∈ CΣ2 and as in Example
1.2.5, let (. . . , 2, 1, 2) be one of the degree d generators of S(2)•. The image
of this generator via ϕ will be denoted ϕd, and if ϕ is a cycle then one has

∂ϕd+1 = (1− (−1)dT )ϕd.

Cycles in CΣ2 can be therefore thought of as homotopy fix points of the
Σ2-action on C, compare with Example A.10.

Remark 2.2.17. Applying Lemma 2.2.14 to the pair subdivision sheaf one
gets that εPSh•

: TPSh
•
∼= T2 C• → C• is a chain homotopy equivalence.

Recall that by definition C•[σ] is isomorphic to
⊕

σ≤τ τ
∗, the complex of

cochains on the open star of σ. The concept of dual cone can be used to
give another geometric interpretation for C•. Consider the amalgamation,
described in Remark 2.2.13, of the close dual cone of a simplex σ into a
subcomplex of the pair subdivision. The CW subcomplex corresponding to
the open part of the dual cone of σ is parametrized by simplices τ satisfying
τ ≥ σ, with a simplex of dimension k in the open star corresponds to a cell
of dimension k − |σ| in the amalgamated open dual cone. For example,

stσ

−→
dc(σ) \ ∂dc(σ)

This geometric correspondence induces a chain homotopy equivalence be-
tween C•[σ] and S−|σ|C•(dcσ, ∂ dcσ); the complex, suspended by |σ|, of rel-
ative cochains on the closed dual cone modulo its boundary.

Construction 2.2.18. The goal of this construction is to naturally obtain
a degree n cycle ϕ in HomSh(TPSh

• ,P
Sh
• )Σ2 when the base X is a regular
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n-dimensional pseudomanifold. This will be done taking the following steps.
First, a morphism

D•[−]→ HomSh(Σ|−|TPSh
• [−],PSh

• [−])Σ2

of complexes of sheaves will be constructed. Second, a collection of com-
patible homomorphism C•(X

′) → D•[σ] will be defined. third, the desired
cycle will be obtained by evaluating the fundamental cycle of C•(X

′) in their
composition.

Let X be an ordered simplicial complex and X ′ its barycentric subdi-
vision. Let D•, as in Remark 2.2.13, be the projective complex of sheaves
assigning to each σ in X the complex of simplicial chains in dc(σ), the dual
cone of σ; and to each pair σ ≤ τ the inclusion C•(dc(τ))→ C•(dc(σ)). Each
of this complexes is in a functorial manner an S-coalgebra and in particu-
lar an S(2)-coalgebra, so by the hom-tensor adjunction the S(2)-structures
define a morphism of complexes of sheaves

D•[−]→ HomΣ2

(
S(2),D•[−]⊗D•[−]

)
.

For every σ ∈ X one has

D•[σ]⊗D•[σ] ∼= Hom
(
C•
(
dc(σ) , X ′ \ dc(σ)

)
,D•[σ]

)
which is chain homotopy equivalent to

Hom
(
C•
(

dc(σ) , ∂ dc(σ)
)
,D•[σ]

)
.

This complex is by Remark 2.2.17 chain homotopy equivalent to

Hom
(
Σ|σ|TPSh

• [σ] ,PSh
• [σ]

)
,

so one gets a morphism of complexes of sheaves

D•[−]→ HomΣ2

(
S(2),HomSh

(
Σ|−|TPSh

• [−],PSh
• [−]

))
. (2.1)

For any chain in the simplicial chain complex of X ′ one can construct an
element in D• whose value in D•[σ] is computed by projecting the chain to
the dual cone of the smallest vertex of σ, followed by taking its boundary
and projecting it to the dual cone of the smallest edge of σ, and so on until
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reaching the projection to the dual cone of σ; in symbols if σ = [v0, . . . , vn]
one has

c 7−→ π[v0,...,vn] ◦ ∂ ◦ · · · ◦ π[v0,v1] ◦ ∂ ◦ π[v0](c)

with πσ denoting the projection from the simplicial chain complex of X ′ onto
D•[σ]. Notice that this construction decreases degree by |σ|.

LetX be a simply connected regular pseudomanifold, i.e. an n-dimensional
simplicial complex such that: each codimension 1 face is the boundary of
exactly two distinct n-dimensional simplices, the boundary of the star of
each simplex of codimension at least 2 is connected, and the sum of all n-
dimensional simplices, denoted [X], is a cycle. Passing to the barycentric
subdivision, let [X ′] denote the cycle corresponding to [X]. The image of
[X ′] in D• via the above construction is mapped by the morphism (2.1) to
an n-dimensional cycle ϕ ∈ HomSh(TPSh

• ,P
Sh
• )Σ2 . The pair (PSh

• , ϕ) will be
referred to as the visible symmetric complex of X.

2.3 Topological manifolds and S-comodules

In this section, as Theorem 2.3.4, the second of the two main technical re-
sults of this work is presented. It states that the category of complexes of
sheaves over an ordered simplicial complex X with values in Ab embeds as a
differential graded full subcategory of the category of comodules over C•(X)
as an S-coalgebra.

This theorem is used to relate the algebraic surgery theory of Ranicki with
comodules over E∞-coalgebras. In particular, Theorem 2.3.13 and Theorem
2.3.15 provide existence and uniqueness statements for homology manifold
structures and topological manifold structures on the homotopy type of a
Poincaré duality regular pseudomanifold, using comodules on its S-coalgebra
of chains.

Notation 2.3.1. The tensor product over X with the complex of cosheaf
C• defines a functor from Sh(X,Ab)• to Ab•, see Definition 2.2.4 and Defini-
tion 2.2.3 for unfamiliar terminology. For D• a complex of sheaves, D•⊗X C•
is given by ⊕

σ∈X

D•[σ]⊗ C•[σ]/ ∼

with dτ ⊗ C•[σ ≤ τ ](cσ) ∼ D•[σ ≤ τ ](dτ ) ⊗ cσ and differential graded
structure induce from the tensor product of chain complexes. It is isomorphic
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as abelian group to ⊕
σ∈X

D•[σ]⊗ σ,

and elements of the form d ⊗ σ for some σ ∈ X will be referred to as
canonical representatives of elements in D•⊗X C•. Compare with the
proof of Lemma 2.2.14.

Notice that given F : D• → D′• a morphism of complexes of sheaves, the
induced morphism is given in terms of canonical representatives by

f(d⊗ σ) = F [σ](d)⊗ σ.

Lemma 2.3.2. The functor −⊗X C• lifts along the forgetful functor to the
category of comodules over the S-coalgebra C•(X). Diagrammatically,

coModSC•(X)

forget

��
Sh(X,Ab)• −⊗

X
C•
//

77

Ab• .

Proof. For every σ ∈ X the complex C•[σ] = C•(clσ, ∂) is an S-coalgebra
naturally, so the functor C• : X → Ab• can be lifted along the forgetful
functor to C• : X → coModSC•(X) with structure maps

S(k)⊗ C•[σ]→ C•[σ]⊗k → C•[σ]⊗ C•(X)⊗(k−1).

The functor tensor product D•⊗X C• inherits a S-comodule structure over
C•(X) from its second factor.

Remark 2.3.3. By forgetting structure, D•⊗X C• is also a comodule over
C•(X) thought of as an S(2) coalgebra, i.e. a coalgebra over the operad
generated by the arity 2 part of the operad S. The coaction of the generator
(. . . , 1, 2, 1) of S(2) of degree k will be denoted by ∇k and, according to
Lemma 2.3.2, it is defined for any class d⊗ c ∈ D•⊗X C• by

∇n(d⊗ c) = d⊗∆n(c),

with the notation ∆n introduced in 1.2.9.
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Theorem 2.3.4. The differential graded functor

− ⊗
X

C• : Sh(X,Ab)• −→ coMod
S(2)
C•(X)

is full and faithful.

Proof. Let F : D• → D′• be a morphisms of complexes of sheaves and as-
sume the morphism induced by the functor − ⊗X C• is 0. Using canonical
representatives, this implies that the abelian group homomorphism⊕

σ∈X

(F [σ]⊗ idσ) :
⊕
σ∈X

D•[σ]⊗ σ −→
⊕
σ∈X

D′•[σ]⊗ σ

is 0, hence F [σ] = 0 for each σ ∈ X, i.e. F = 0.
Given an S-C•(X)-comodule map f : D•⊗X C• → D′•⊗X C• one needs

to construct a sheaf map inducing it. Let dσ ⊗ σ be a canonical representa-
tive and write its image in terms of canonical representatives f(dσ ⊗ σ) =∑

τ∈X d
′
τ ⊗ τ . Since ∇n ◦ f = (f ⊗ id) ◦ ∇n one has for all n ≥ 0 that

dσ ⊗ σ � f //
_

∇n
��

∑
τ∈X d

′
τ ⊗ τ_

∇n
��

dσ ⊗∆nσ
�
f⊗ id

// (?)n ∼
∑

τ∈X d
′
τ ⊗∆nτ.

The above equation will be used to show that d′τ = 0 for all τ 6= σ. Let n be
the largest |τ | so d′τ 6= 0 and assume n > |σ|, then

(?)n = 0 ∼
∑
|τ |=n

d′τ ⊗ τ ⊗ τ

so d′τ = 0 for all τ of dimension n. Iterating this argument one has that
d′τ = 0 for all τ of dimension greater than |σ|. For n = |σ| one has

(?)n =
∑
τ∈X

d′τ ⊗ τ ⊗ σ ∼
∑
|τ |=|σ|

d′τ ⊗ τ ⊗ τ

so d′τ = 0 for all τ 6= 0. For each σ ∈ X define the chain map

fσ : D•[σ]→ D•[σ]
eσ 7→ e′σ.
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If the above collection of chain maps defines a morphism from D• to D′•
then it induces f , so it needs to be shown that for every ι : ρ → σ one has
D′•[ι] ◦ fσ = fρ ◦ D•[ι]. Assume for an induction argument that this holds
for all morphisms ι : ρ → σ with |σ| < n. For any simplex σ = [v0, . . . , vn]
denote its i-th face by σi = [v0, . . . , v̂i, . . . , vn] and ιi : σi → σ. The induction
assumption and the functoriality of sheaves imply that it suffices to show
that

D′•[ιi] ◦ fσ = fσi ◦ D•[ιi] (2.2)

for all simplices σ of dimension n and i = 0, . . . , n.
For any such σ ∈ X and d ∈ D•[σ] consider the following diagram

d⊗ σ � f //
_

∇0

��

fσ(d)⊗ σ
_

∇0

��
d⊗∆0σ

�
f⊗ id

// (?) ∼ fσ(d)⊗∆0τ.

(2.3)

Recall from Example 1.2.3 that ∆0[0, . . . , n] =
∑

i[0, . . . , i] ⊗ [i, . . . , n] so
projecting D′•⊗X C•⊗C•(X) onto D′•⊗X C•⊗ [vn−1, vn] makes the equation
in (2.3) be

f
(
d⊗ ιn•σn

)
∼ fσ(d)⊗ ιn•σn

which implies (
fσn ◦ D•[ιn]

)
(d) =

(
D′•[ιn] ◦ fσ

)
(d).

A completely analogous argument using T∇0 verifies equation (2.2) for i = 0.
For all 0 < i < n one consider the following diagram associated to ∇1

d⊗ σ � f //
_

∇1

��

fσ(d)⊗ σ
_

∇1

��
d⊗∆1σ

�
f⊗ id

// (?) ∼ fσ(d)⊗∆1τ.

(2.4)

Recall that ∆1[0, . . . , n] =
∑

i<j ±[0, . . . , i, j, . . . , n]⊗ [i, . . . , j] so projecting

D′• ⊗
X

C•⊗C•(X) onto D′• ⊗
X

C•⊗ [vi−1, vi+1] makes the equation in (2.4) be

f
(
d⊗ ιi•σi

)
∼ fσ(d)⊗ ιi•σi

which implies (
fσi ◦ D•[ιi]

)
(d) =

(
D′•[ιi] ◦ fσ

)
(d)

and completes the verification of equation (2.2).
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Remark 2.3.5. One can consider the functor tensor product over X of the
cochain functor C• and any E• ∈ coSh(X,A)•. The analogue of the results
above can be proven by similar arguments, but they will not be used in this
work. In particular, the category of complexes of cosheaves over X can be
thought of as a full subcategory of the category of modules on the S-algebra
of cochains on X.

L-theory for sheaf-like S-comodules

Definition 2.3.6. (Sheaf-like comodules and duality) An S-comodules D
over C•(X) is said to be sheaf-like if it is isomorphic to one of the form
D•⊗XC• with D• a projective complex of sheaves with values on the cat-
egory Abf of finitely generated abelian groups. The Ranicki duality func-
tor, Definition 2.2.9, induces by Lemma 2.3.4 a contravariant functor on
the subcategory of sheaf-like comodules. Explicitly, let D ∼= D•⊗XC• and
D′ ∼= D′•⊗XC• be sheaf-like and f ∈ HomcoMod(D,D′). By Lemma 2.3.4
there exists F ∈ HomSh(D,D′) so that F ⊗XC• = f . Define, abusing nota-
tion, Tf : TD′ → TD to be

(TF )⊗XC• : (TD′)⊗XC• → (TD)⊗XC• .

Remark 2.3.7. The natural transformation ε : T 2 → idSh of Lemma 2.2.14
induces an analogous natural transformation for the duality of sheaf-like
comodules. In particular, the chain complex HomcoMod(TD,D) has an action
of Σ2 given by f 7→ εD ◦ Tf . For any sheaf-like comodule D = D⊗XC•,
Theorem 2.3.4 gives a chain isomorphism

HomSh(TD,D)Σ2 ∼= HomcoMod(TD,D)Σ2 .

See 2.2.16 for the definition of these complexes.

Definition 2.3.8. (Connective sheaf-like and Poincaré comodules) A sheaf-
like comodule is said to be connective if it is chain homotopy equivalent, as
S-comodule, to one which equals 0 in negative degrees.

An n-dimensional weak Poincaré comodule is a pair (D,ϕ) with D a
connective sheaf-like comodule and ϕ a cycle of degree n in HomcoMod(TD,D)Σ2

such that ϕ0 is a homology isomorphism. (See Remark 2.2.16 for unfamiliar
notation.)

An n-dimensional strong Poincaré comodule is an n-dimensional
weak Poincaré comodule (D,ϕ) so that ϕ0 is a chain homotopy equivalence
of S-comodules.
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Notation 2.3.9. Let f : C → C ′ be a chain map between chain complexes.
Denote the mapping cone of f by Cone(f), i.e. the chain complex ΣC⊕C ′
with boundary defined by (Σ(c) + c′) 7→ Σ(∂(c)) + f(c) + ∂(c′), where Σ(−)
stands for suspension.

Definition 2.3.10. (Cobordism) A weak cobordism between n-dimensional
weak Poincaré comodules (D,ϕ) and (D′, ϕ′) consists of a connective sheaf-
like comodule E with a degree (n + 1)-chain φ ∈ HomcoMod(TE,E)Σ2 and a
couple of maps f : D → E and f : D′ → E satisfying:

1. ∂φ = (f ◦ ϕ ◦ Tf)− (f ′ ◦ ϕ′ ◦ Tf ′).

2. (φ/ϕ)0
def
=
(
φ0 + (ϕ0 ◦ Tf) + (ϕ′0 ◦ Tf ′)

)
: TE → Cone(f ⊕ (−f ′)) is a

homology isomorphism.

A strong cobordism between n-dimensional strong Poincaré comodules
(D,ϕ) and (D′, ϕ′) is a weak cobordism between them such that (φ/ϕ)0 is a
chain homotopy equivalence of S-comodules.

Example 2.3.11. The central example of a weak Poincaré comodule for
the applications of this work comes from Construction 2.2.18. Let X be a
simply-connected regular pseudomanifold which is an n-dimensional Poincaré
duality space. By Theorem 2.3.4 and Remark 2.3.7 the image by −⊗XC• of
the visible symmetric complex, denoted (P, ϕP), would be an n-dimensional
weak Poincaré comodule if (ϕP)0 induces a homology isomorphism.

To see this is the case, recall that by definition one has for any complex
of sheaves D• that D•⊗XC• =

⊕
σ∈X D•[σ]⊗C•[σ]/∼ and C•[σ] = C•(clσ).

Contracting each second factor one gets a chain map inducing an isomorphism
in homology

D•⊗XC• →
⊕
v∈X(0)

D•[v]/∼̂ (2.5)

with D•[v ≤ σ](dv) ∼̂ D•[v′ ≤ σ](dv′) for every σ ∈ X. This assignment is
functorial with a morphism of complexes of sheaf F : D → D′ inducing the
chain map

⊕
v∈X(0) F [v].

Recall from Remark 2.2.13 that PSh
• [σ] is chain homotopy equivalent to

the simplicial chains on the closed dual cone of σ, in symbols

PSh
• [σ]

che→ D•[σ] = C•(dc(σ));
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and from Remark 2.2.17 that TPSh
• [σ] is chain homotopy equivalent to the

relative simplicial cochains suspended by |σ| of the closed dual cone of σ
modulo its boundary, in symbols

TPSh
• [σ]

che→ Σ|σ|C•(dc(σ), ∂ dc(σ)).

By the previous two observations, the morphism (2.5) and the definition of
ϕP one has a commutative diagram

TPSh
• ⊗

X
C•

(ϕP)0 //

��

PSh
• ⊗

X
C•

��
C•(X ′)

−∩[X′]
// C•(X

′)

with vertical arrows representing homology isomorphisms. Since X ′ is a
Poincaré duality space, the morphism − ∩ [X ′] induces an isomorphism in
homology with a degree shift of n and therefore, the morphism (ϕP)0 does
as well.

Definition 2.3.12. An ANR homology n-manifold is a finite dimensional
absolute neighborhood retract X satisfying for every x ∈ X

Hi(X,X \ {x}) =

{
Z if i = n

0 if i 6= n.

Theorem 2.3.13. Let X be a simply-connected regular pseudomanifold which
is an n-dimensional Poincaré duality space with n > 4.

For any homotopy equivalence between an ANR homology n-manifold and
X, there exists a weak cobordism between a strong n-dimensional Poincaré
comodule and (P, ϕP). Conversely, for every weak cobordism between a strong
n-dimensional Poincaré comodule and (P, ϕP), there exists a homotopy equiv-
alence between X and an ANR homology n-manifold.

Two such homotopy equivalences are related by an h-cobordism relative
to boundary if and only if their corresponding strong Poincaré comodules are
related by a strong cobordism.

In order to obtain existence and uniqueness statements for topological
manifold structures on X one needs to “tame the fundamental group” of the
weak cobordisms involved.
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Definition 2.3.14. (Admissible cobordisms) Using the notation of Defini-
tion 2.3.10, a weak cobordism is said to be admissible if the the mapping
cone of (φ/ϕ)0 is chain homotopy equivalent as S-comodule to a sheaf-like
comodule which equals 0 in degrees less than or equal to 1.

Theorem 2.3.15. Let X be a simply-connected regular pseudomanifold which
is an n-dimensional Poincaré duality space with n > 4.

For any homotopy equivalence between a topological n-manifold and X,
there exists an admissible weak cobordism between a strong n-dimensional
Poincaré comodule and (P, ϕP). Conversely, for every admissible weak cobor-
dism between a strong n-dimensional Poincaré comodule and (P, ϕP), there
exists a homotopy equivalence between X and a topological n-manifold.

Two such homotopy equivalences are related by an h-cobordism relative
to boundary if and only if their corresponding strong Poincaré comodules are
related by a strong cobordism.

Remark 2.3.16. Starting with a homotopy equivalence in either of the the-
orems above, the weak cobordism obtained has the further property that the
morphism from each of its boundary components induces an isomorphism in
homology.

Also, in both theorems above, given a strong Poincaré complex weak
cobordant to (P, ϕP), there exist another strong Poincaré complex, which
is strong cobordant to the original one, and a weak cobordism between it
and (P, ϕP) such that the morphism from each of its boundary components
induces and isomorphism in homology.

Proof of Theorem 2.3.13 and Theorem 2.3.15. Both of the proofs are obtain
by relating to the algebraic surgery theory as developed by Ranicki in [30].

The differential graded category of connective sheaf-like comodules over
C•(X) with duality T is, by Theorem 2.3.4, equivalent to the category of
connective complexes of projective sheaves over X with Ranicki duality. This
category is equivalent to the category of connective complexes of X-based
modules defined in [30, p.63], see [33, p.169] for a proof, with the duality
defined in [30, p.75].

The weak Poincaré comodule (P, ϕP) represents, under the above identi-
fication, the “(1/2)-visible symmetric signature” of Ranicki, see Remark 16.8
[30, p.181]. Also under this identification, weak cobordisms, admissible weak
cobordism and strong cobordisms correspond to symmetric cobordisms in
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the algebraic bordism categories Λ〈0〉(Z, X), Λ〈1/2〉(Z, X) and Λ〈0〉(Z)∗(X)
respectively, as defined in pages 157, 164 and 158 of [30].

The statements now follow from Theorem 17.4, Theorem 18.5, Proposi-
tion 25.7 and Remark 25.13 of [30].
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Appendix A

Categorical Background

In this appendix the notions of limits, colimits and Kan extensions are col-
lected, emphasizing their use in constructions associated to simplicial sets.

Definition A.1. (Diagrams) A diagram in C indexed by I is a functor
I → C with I a small category.

Example A.2. (Constant diagrams) For any small category I and object c
in a category C, define the constant diagram indexed by I with value c by
declaring the image of any objet in I to be c and of any morphism to be idc.

Example A.3. Let G be a group and G be the category with one object ∗
and HomG(∗, ∗) ∼= G. A diagram G → C is the same data as and object in C
with a G action.

Limits

Definition A.4. (Limits) Let D : I → C be a diagram. The limit of D
consists of an object limID in C and a natural transformation ϕ from the
constant diagram indexed by I with value limID to D, satisfying the fol-
lowing universal property. For any constant diagram indexed by I provided
with a natural transformation φ to D, there exists a unique morphism f
from its constant value cone to limID such that for every i ∈ I one has
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ϕ(i) ◦ f = φ(i). Diagrammatically,

D(i)
D(i→j) // D(j)

limID

ϕ(i)
aa

ϕ(j)
==

cone

φ(i)

TT

f

OO φ(j)

JJ

commutes for every (i→ j) ∈ HomI(i, j).

Example A.5. (Orbits) Let C be a small category. Recall from Example
A.3 that an object in C with an action of a group G can be thought of as a
diagram D : G → C. Denote D(∗) = X ∈ C and notice that for any g ∈ G
one has the commutative diagram

X
g // X

limGD

__ ?? .

The universal property of limits implies that the limit of D equals the set of
orbits of the action, i.e. colimG D = XG.

Example A.6. (Initial objects, products and equalizers) Consider a diagram
in C with index category one of the following:

a) ∅ b)

Λ︷ ︸︸ ︷
• • ... • c) • ((

66 • .

If the limit of the diagram exists it is called respectively

a) The initial object. For example, the empty topological space or the zero
abelian group.

b) The product, which is denoted
∏

Λ or × ...×. For example, cartesian
product of topological spaces or tensor product of abelian groups.

c) The equalizer, which is denoted eq(−). For example, for spaces one has

coeq(X
f

⇒
g
Y ) = {x ∈ X : f(x) = g(x)}. For abelian groups, the equalizer

of a pair of maps where one of them is the zero map equals the kernel of
the other map.
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The following statement, whose proof can be found in [18, p.112], shows
that a category where all products and equalizers exist is such that the limit
of any diagram exists. Such categories are called complete.

Lemma A.7. Let D : I → C be an diagram in a complete category C. The
limit of D is given by

eq
(∏

i

D(i) ⇒
∏
i→j

D(j)
)

where one of the maps comes from projecting to the source of each morphism
and then applying the corresponding morphism induced byD, while the other
is induced from directly projecting to the target of each morphism.

Example A.8. (Pullbacks) The limit of a diagram in a cocomplete small
category of the form

•

��
• // •

−→
C

g
��

A
f // B

is according to Lemma A.7 equal to

eq
(
A× C ×B

p3×p3
⇒

f◦p1×g◦p2
B ×B

)
= {(x, y, b) : f(x) = g(y) = b}.

This limit will be denoted by A ×B C ∼= {(x, y) : f(x) = g(y)} and referred

to as the pullback of A
f→ B

g← C.

Colimits

Definition A.9. (Colimits) Let D : I → C be a diagram. The colimit of
D consists of an object colimI D in C and a natural transformation ϕ from
D to the constant diagram indexed by I with value colimI D, satisfying the
following universal property. For any constant diagram indexed by I pro-
vided with a natural transformation φ to D, there exists a unique morphism
f from colimI D to its constant value cocone such that for every i ∈ I one
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has φ(i) = f ◦ ϕ(i). Diagrammatically,

D(i)
D(i→j) //

ϕ(i)

##

φ(i)

  

D(j)

φ(j)

~~

ϕ(j)

{{
colimI D

f

��
cocone

commutes for every (i→ j) ∈ HomI(i, j).

Example A.10. (Fix points) Let C be a small category. Recall from Exam-
ple A.3 that an object in C with an action of a group G can be thought of as
a diagram D : G → C. Denote D(∗) = X ∈ C and notice that for any g ∈ G
one has the commutative diagram

X
g //

!!

X

}}
colimG D

.

The universal property of colimits implies that the colimit of D equals the
fix point set of the action, i.e. colimG D = XG.

Example A.11. (Terminal objects, coproducts and coequalizers) Consider
a diagram in C with index category one of the following:

a) ∅ b)

Λ︷ ︸︸ ︷
• • ... • c) • ((

66 • .

If the colimit of the diagram exists it is called respectively

a) The terminal object. For example, the topological space with one ele-
ment or the zero abelian group.

b) The coproduct, which is denoted
∐

Λ or t ...t. For example, disjoint
union of topological spaces or direct sum of abelian groups.

c) The coequalizer, which is denoted coeq(−). For example, for spaces one

has coeq(X
f

⇒
g
Y ) = Y

/
f(x) ∼ g(x). For abelian groups, the coequalizer

of a pair of maps where one of them is the zero map equals the cokernel
of the other map.
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The following lemma shows that a category where all coproducts and co-
equalizers exist is such that the colimit of any diagram exists. Such categories
are called cocomplete.

Lemma A.12. Let D : I → C be an diagram in a cocomplete category C.
The colimit of D is given by

coeq
(∐
i→j

D(i) ⇒
∐
i

D(i)
)

where one of the maps comes from the identity D(i)→ D(i), while the other
comes from the morphism D(i) → D(j) induced by D from the morphisms
i→ j.

Proof. This is a variation of the proof of the analogue statement for limits
in Lemma A.7.

Example A.13. (Pushouts) The colimit of a diagram in a cocomplete small
category of the form

•

��

// •

•
−→

B

g
��

f // C

A

is according to Lemma A.12 equal to

coeq
(
B tB

idt id

⇒
ftg

A tB t C
)

= A t C
/
f(b) ∼ g(b).

This colimit will be denoted by A tB C and referred to as the pushout of

A
g← B

f→ C.

Kan extensions

Definition A.14. (Kan extensions) Let F : C → A and E : C → B be
a pair of functors. The right Kan extension of F along E is a functor
RanE F : B → A and a natural transformation φ : F → RanE F ◦E satisfying
the following universal property. For any pair R : B → A and ψ : F → R◦E
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there exists a unique θ : R → RanE F such that ψ = φ ◦ θF with θF (c) =
θ(F (c)) for all c ∈ C. Diagrammatically,

C F //

E

��

CK
φ

A

B

RanE F

??

R

SS

[c

θ

The left Kan extension of F along E is a functor LanE F : B → A
and a natural transformation φ : LanE F ◦ E → F satisfying the following
universal property. For any pair R : B → A and ψ : R◦E → F there exists
a unique θ : LanE F → R such that ψ = θF ◦ φ with θF (c) = θ(F (c)) for all
c ∈ C. Diagrammatically,

C F //

E

��

φ

��

A

B

LanE F

??

R

SS

θ �#

Kan extensions need not exist. But if A is cocomplete then one can
prove the existence of the right Kan extension by exhibiting a formula. Cor-
respondingly, if A is complete then the left Kan extension exists and it is
also given by a formula, both of which are presented in Lemma A.16. One
begins by defining the following category.

Definition A.15. (Comma category) Let A S→ C T← B be a diagram of
categories. The comma category (S ↓ T ) has objects all triples (h, a, b)

with S(a)
h7→ T (b) and morphisms (f, g) : (h, a, b) → (h′, a′, b′) all pairs

satisfying

S(a) h //

S(f)

��

T (b)

T (g)

��
S(a′) h′ // T (b′).

When A is the category with one object ∗ and one morphism and S(∗) = c,
the category (S ↓ T ) will be denoted simply by (c ↓ T ). The category (S ↓ c)
is similarly defined.
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The following statement and a proof can be found in [18, p.237] and [18,
p.244].

Lemma A.16. Let F : C → A and E : C → B be a pair of functors.

1. If A is cocomplete then for any b ∈ B

RanE F (b) = colim
(E↓ b)

F.

2. If A is complete then for any b ∈ B

LanE F (b) = lim
(b ↓E)

F.

Definition A.17. (Simplicial category and simplicial sets) Let ∆ denote the
simplicial category whose objects are the finite non-empty totally ordered
sets, commonly denoted [0, 1, . . . , n], and whose morphisms are the order
preserving functions. Any such function can be obtained as a composition
of basic ones, called cofaces and codegeneracies, which insert or delete a
single element. The cofaces and codegeneracies will be respectively denoted
di : [n− 1]→ [n] and si : [n+ 1]→ [n] and they satisfy well know relations.

Define the category of simplicial sets to be

s Set = HomCat(∆
op, Set),

the category of contravariant functors from the simplicial category to the
category of sets.

For X ∈ sSet, the image of [0, . . . , n] will be denoted Xn and referred
to as the set of n-simplices of X. Simplices which are the image of lower
dimensional simplices are said to be degenerate and a simplicial set is said to
be n-dimensional if there exists a non-degenerate n-simplex and for m > n
all m-simplices are degenerate.

Remark A.18. (Yoneda) There exists a full and faithful functor from the
simplicial category ∆ into the category of simplicial sets given on objects by

∆ −→ s Set
[0, . . . , n] 7−→ Hom∆([0, . . . , n],−).

Such functor will be called the Yoneda embedding and the images of
[0, . . . , n] ∈ ∆ will be denoted by ∆n. Notice that for any X• ∈ s Set one has

Homs Set(∆
n, X•) = Xn,

a fact referred to as Yoneda lemma.
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Definition A.19. (Realization and nerve) Let C be a cocomplete category
and F : ∆ → C a functor. Denote the Yoneda embedding ∆ → s Set by
Y . The realization with respect to F is the right Kan extension of F
along Y . The nerve with respect to F is the functor defined on objects
by c 7−→

(
[0, . . . , n] 7→ HomC(F [0, . . . , n], c)

)
. Diagrammatically,

∆ F //

Y
��

C

xx
s Set .
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Remark A.20. It is a theorem of Daniel Kan [11] that the realization and
nerve with respect to a functor form a universal adjoint pair.

Example A.21. (Geometric realization and singular complex) Consider the
embedding ∆→ Top of the simplicial category into the category of topologi-
cal spaces sending [0, . . . , n] to the standard topological n-simplex |∆n|. The
realization with respect to this functor of any X• ∈ s Set can be described
by Lemma A.16 and Lemma A.12 as the coequalizer of∐

∆n ��

"" X•
∆k HH

|∆n| ⇒
∐

∆n→X•

|∆n|

or equivalently using the Yoneda lemma as

coeq
(∐
n≥0

Xn × |∆n|⇒
∐
n≥0

Xn × |∆n|
)
,

which utilizing the cofaces and codegeneracies di : [0, . . . , n− 1]→ [0, . . . , n]
and si : [0, . . . , n+ 1]→ [0, . . . , n] in ∆ can be expressed as∐

n≥0

Xn × |∆n|
/ d ∗i x× p ∼ x× di ∗p
s ∗i x× p ∼ x× si ∗p.

This topological space will be called the geometric realization of X• and
will be denoted by |X•|.

In this context, the nerve of a topological space X will be called the
singular simplicial complex of X and it is the simplicial set Sing•(X)
given by

[0, . . . , n] 7→ HomTop(|∆n|, X).
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Example A.22. (Normalized chain complex) Consider the embedding ∆→
Ab• of the simplicial category into the category of chains complexes sending
[0, . . . , n] to the standard chain complex C•(∆

n). As in the previous example
the realization with respect to this functor of any X• ∈ s Set can be described
as ⊕

n≥0

Xn ⊗ C•(∆
n)
/ d ∗i x⊗ c ∼ x⊗ di ∗c
s ∗i x⊗ c ∼ 0.

This chain complex will be called the normalized chain complex of X•.

Example A.23. (Nerve of a category) Consider the embedding ∆→ Cat of
the simplicial category into the category of small categories sending [0, . . . , n]
to the category n with one object for each i ∈ {0, 1, ..., n} and one morphisms
i → j whenever i ≤ j. The nerve of a category C ∈ Cat is the simplicial
set N•(C) defined as the nerve with respect to this functor. Explicitly N•(C)
is given by

[0, . . . , n] 7→ HomCat(n, C).
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Études Sci. Publ. Math., (47):269–331 (1978), 1977.

[42] Dennis Sullivan. 3d incompressible fluids: Combinatorial models,
eigenspace models, and a conjecture about well-posedness of the 3d
zero viscosity limit. Journal of Differential Geometry, 97(1):141–148,
05 2014.

[43] Dennis P Sullivan. Triangulating and smoothing homotopy equivalences
and homeomorphisms. In The Hauptvermutung book, pages 69–103.
Springer, 1996.

[44] Charles Terence Clegg Wall and Andrew Ranicki. Surgery on compact
manifolds, volume 1. Citeseer, 1970.

[45] Charles A Weibel. An introduction to homological algebra. Number 38.
Cambridge university press, 1995.

[46] Kenneth G Wilson and John Kogut. The renormalization group and the
ε expansion. Physics Reports, 12(2):75–199, 1974.

[47] Jonathan Woolf. Witt groups of sheaves on topological spaces. arXiv
preprint math/0510196, 2005.

69


