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INVARIANT KNOTS AND SURGERY 

IN CODIMENSION 2 

bv Santiago LOPEZ DE M E D R A N O 

In the first part of this paper we study the problem of finding an invariant knot 
for an involution of a homotopy sphere 24*. By an involution (T, 2") we unders
tand a fixed point free involution T : 2" -* 2" , smooth or p.l., of a homotopy 
sphere 2 " . Reference [17] contains the properties of these involutions that will 
be needed. In the second part we use the experience obtained in the study of in
variant knots to suggest the lines along which future research in the study of codi
mension 2 problems could be carried out, and we state a few results, which are only 
the initial steps in this direction. 

Conversations with Drs. F. Gonzalez Acufla and Mauricio Gutierrez were very 
helpful in the elaboration of the ideas presented in this paper. 

1. Invariant Knots. 

An invariant knot for an involution (T, 2") is an embedded (locally flat, in the 
p.l. case) homotopy sphere 2W~2 C 2 " which is invariant under 7Xi.e. T (2"~2) = 
S " ' 2 ) , 

2" -2),and a trivial invariant knot is one that is trivial as a knot, i.e. one that bounds an 
embedded disc Dn~l C 2W. In this last definition no relation between D and Tis 
required, but it can be assumed that D fi TD = 2 n ~ 2 if n > 6, by the fibering 
theorem ([5]). 

We want to consider the problem of finding an invariant knot for a given invo
lution (T, 2"). For n > 1, n not a multiple of 4, this can be solved using the 
Browder-Livesay theory and its developments ([6], [17]), and for n > 7 we can 
solve the problem of finding trivial invariant knots. Browder and Livesay defined 
an invariant a(T, 2") which lies in the following groups : 

for n = 3 mod. 4 

for n = 1 mod. 4 

for n even. 

and using this invariant and some of its properties, another invariant p (T, 2W) 
can be defined for n # 4 with values in the groups 

( Z , for n = 3 mod. 4 
p ( 7 \ 2 " ) G 2 

< 0 for n = 3 mod. 4 
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The results are : 

THEOREM 1. ([17]). — For n>l, w # 0 (mod. 4), (T, 2") admits an invariant 
knot if, and only if p(T ,2") = 0. For n>l, (T, 2") admits a trivial invariant 
knot if, and only if, a(T, 2") = 0 and p(T, 2n) = 0. 

Ail values of the invariant a can be realized both in the p.l. and in the smooth 
cases, and all values of the invariant p can be realized in the p.l. case and for n odd 
in the smooth case, but known examples with non-zero value of p in the smooth 
case are scarce for n even. In any case, this shows that there are plenty of examples 
of involutions that do not admit invariant knots, and, for n = 3 mod. 4, of invo
lutions that admit invariant knots but do not admit trivial ones. 

The case n = 4k is the only one that cannot be reduced to the Browder-
Livesay theory, and is the one that we shall study in this section. We shall present 
all the ideas and proofs, including a direct definition of the invariant p for this 
case, so that only ocassional references to the theory of involutions are needed. 
These ideas appear also in [17], but have been refined and simplified for this pre
sentation to make it as self-contained as possible, and in view of the generalization 
given in section 2. 

So far we know that (T, 2 4 Ä ) admits a trivial invariant knot if, and only if, 
p (T, 2 4*) = 0. The general form of Theorem 1 suggests that this condition is 
also necessary for the existence of an invariant knot, but it could still be possible 
that (T, 24fc) admits an invariant knot, even if it doesn't admit a trivial one, just 
as in the case mentioned above of an involution (T, x4k+3). We shall see what 
happens. 

It is convenient to rephrase the problem in terms of the quotient spaces : if 
(T, 2") is an involution, the quotient Qn = 2M/77 is called a homotopy projective 
space. As the terminology suggests, it can be shown ([17], IV.3.1) that Qn is 
homotopy equivalent to real projective space Pn, and the homotopy equivalence 
is essentially unique. We can reformulate the problem of finding an invariant 
knot as follows : given a homotopy projective space Q", find an embedded ho
motopy projective space Qn~2 C Qn

9 such that the embedding induces an isomor
phism of fundamental groups. From Levine's unknotting theorem ([13]) it follows 
that the problem of finding a trivial invariant knot for (T, 2 n ) is equivalent to that 
of finding an embedded Qn~2 C Qn so that the complement Qn — Qn~2 has the 
homotopy type of Si

9 as is case for the standard embedding Pn~2 C Pn. 

Browder's embedding theorem 

The best way to attack the problem is to use the methods of the proof of 
Browder's embedding theorem (in fact, there is a theorem that says that this is 
the best possible way : [17], Theorem VI. 1) which we proceed to describe. 

Let Mm be a closed manifold (smooth or p.l.) and Nn C Mm a submanifold 
with normal bundle £. Then, given a homotopy equivalence / : M' -> M we would 
like to find inside M' a manifold N' homotopy equivalent to N. We have to state 
this problem in a more precise form, and sometimes we have to consider also the 
complements of the submanifolds. For this purpose, it is natural to introduce the 
following definitions : 
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DEFINITION. — Let / : M' -* M be a homotopy equivalence and N a submanifold 
of M. We say that / is weakly h-regular at N if 

(i) / is /-regular at N, and 

(ii) if N' = f~1(N),f\N' : N' -+ N is a homotopy equivalence. 
If, further, we have 
(iii) f\M' — N' : M' — N' -* M — N is a homotopy equivalence, then we say 

that / is strongly h-regular at N. 

("Homotopy equivalence" will mean "simple homotopy equivalence", whenever 
the distinction is relevant). 

The problem now is, when is a homotopy equivalence / : M' -» M homotopic 
to one that is weakly, or strongly, ft-regular at Nl If we make / /-regular at N, and 
we consider the map g = f\f1(N) : / " *(N) -> N, it is easy to see that gis a normal 
map in a natural way, whose normal cobordism class depends only on the homo
topy class of /, and defines a surgery obstruction d (g) in the appropriate group. 
6 (g) is the obstruction to obtaining a homotopy equivalence, normally coborant 
to g, so 8 (g) = 0 is a necessary condition for making / weakly ^-regular at N. 
Browder's embedding theorem says that, under some circumstances, this condition 
is sufficient for making / strongly /z-regular at N. 

Browder*s Embedding Theorem ([3]). Assume that both M and M — N are 
\-connected and n > 5. Then, if 0(g) = 0, / is homotopic to a map strongly 
h-regular at N. 

Actually a more general situation is covered by this theorem, where instead of 
the pair (M, N) one gives only the homotopy theoretical information which is 
called a "normal system" or a "Poincaré embedding", and the manifold N' can 
be specified from the begining within its normal cobordism class. Also, if instead 
of assuming 6(g) = 0, one assumes that g is normally cobordant to a homotopy 
equivalence to cover the small dimensions, we only have to ask m > 5. Wall has 
generalized this theorem to the case where irl(M — N) « iri(M) (induced by the 
inclusion), which is always the case when m > n -I- 3, and has described the obstruc
tion groups in the general situation ([21]). In all these results, the final conclusion is 
strong ^-regularity, which is more than we can hope for in our problem when 
p=£0. 

We describe the proof of this theorem only for m — 4k, for simplicity, the 
other cases requiring only minor modifications. Since 0(g) = 0, g is normally 
cobordant to a homotopy equivalence^gx : N* -*N._If G : V -> N is thejnormal 
cobordism, we can glue M' x I and £(G*£) along £(#*£) x {1}, where E(G*%) 
denotes the total space of the closed disc bundle of G* £, etc., and where E(g* £) x {1} 
has been identified with a tubular neighborhood of f~*(N) x {1} in M' x {1}, thus 
obtaining a normal cobordism between / and a new normal map fx : M[ -+ M, 
such that f~l(N)=N'. (This trick will be refered to as the normal cobordism 
extension lemma). 

Now /j restricts to the homotopy equivalence ^ : N' -> N, but is not itself a 
homotopy equivalence. We correct this by doing surgery on the complement of 
N' in M[. Let X = M — U, where U is an open tubular neighborhood of N in M 
and X[ = M[ — U', where U' is an open tubular neighborhood of N' in M[. 

file:///-connected
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Since we can assume that fx sends U[ onto U as a bundle map, and X[ onto X, 
we have a normal map h = fx \X[ : Zj -> A!", and since ft | (UfJ is a homotopy equiva
lence, we can try to make h a homotopy equivalence, by doing surgery on the in
terior of X[. The obstruction to doing this, being the index of the intersection 
form on ker hm, can be identified with the obstruction to making/! a homotopy 
equivalence. But this obstruction is 0, since fx is normally cobordant to the homo
topy equivalence /. Therefore we can find a normal cobordism, rei. boundary, 
between h and a homotopy equivalence, and this cobordism, together with U[ x I, 
gives a normal cobordism between fx and a homotopy equivalence f2 : M'2 -+ M 
which is strongly -̂regular at N. Since / and f2 are normally cobordant and the 
normal cobordism is odd dimensional, we can turn it into an /z-cobordism, and 
therefore Mr = M2 and / is homotopic to f2, so the theorem is proved. 

The invariant p. 

We want to consider the case M = P ,N = P . In this case ir1(M)= Z2 

and X = M — U is a closed tubular neighborhood of the Pl that links p*k~2 in 
P4k. Therefore X is the total space of the non-orientable (4k — l)-disc bundle 
over S1 = P1, so it is non-orientable and itx(X) = Z. In another description, X 
is the mapping torus of the orientation reversing diffeomorphism D4k~1 -*Z)4fc_1. 

Let / : Q4k -> P4k, k > 1, be a homotopy equivalence, /-regular at p*k~2 and 
g = f\f~\P*k~2). It is shown in [17], Theorem 1, IV.3.3, that 0(g) = 0 (andthis 
is the only place where we shall use the Browder-Livesay theory ; there is a coho-
mological proof of the same fact in [20]), so we can apply the normal cobordism 
extension lemma to obtain a normal map fx : Mi -> P4k, normally cobordant to 
/, such that/" 1(P4fc"2) = G4fc-2 andgl =/1 |Q4 f c-2 : Q4k~2 -> P4k~2 is a homo
topy equivalence, and such that fx sends a tubular neighborhood Ux of Q*k~2 in 
Mx onto U as a bundle map, and Xx = Mx — Ux onto X. Let h = fx \XX. To carry 
out the next step in the proof of Browder's embedding theorem in our case, we 
should have 6(h) = 0, but this will not always be the case. Therefore, we defi
ne. 

p(Q*k) = d(h) 
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To show p is well defined, let f[ : M[ -* P4k be another normal map with the 
same properties as fx, and let h' be the corresponding map. If F : W -> P4k is a 
normal cobordism between fx and f[, /-regular at P4k~2, and V = F~l (P4k~2),we 
can turn F\V into an ft-cobordism because LAk^x(Z2,— ) = 0 ([20] , [21]). But, 
by the normal cobordism extension lemma (for manifolds with boundary this 
time) we can assume that V itself is an ft-cobordism, by changing F through a normal 
cobordism, rei. boundary. Since we can further assume that F sends a tubular neigh
borhood of V in W onto U by a bundle map, and Y, the complement of that 
neighborhood, onto X ,F\Y : Y -+ X is a normal cobordism, rei. boundary, bet
ween h an ft', so 6(h) = ö(ft') and p is well defined. 

Therefore, if p (ß4*) = 0 we can proceed as in the proof of Browder's embedding 
theorem, and obtain a homotopy equivalence f2 : Q4k -*• P4k winch is normally 
cobordant to / and strongly ft-regular at pAk~2. Since L4k + x(Z2,—) = 0 ([20] , 
[21]) we can turn a normal cobordism between /and /2 into an ft-cobordism, and 
therefore Q4k = Q4k and /2 is homotopic to /. In other words, (7", 24*) admits 
the trivial invariant knot Q4k~2. It is not difficult to see that a trivial inva
riant knot for (T, 24fc) induces a homotopy equivalence / : Q4k -+ P4k, strongly 
ft-regular at P4k~2 ([17], Theorem VI.l) and therefore p(T, 24k) = p(Q4k), being 
the obstruction to strong ft-regularity, is the obstruction to the existence of a trivial 
invariant knot for (T, 24fc). We have then proved the second part of Theorem 1 
for n = 4k with our new definition of p, and also that this definition must coincide 
with the original one. To study the case p =£ 0 we need a detailed description of the 
surgery obstruction 6 (ft). 

The surgery obstruction. 

The surgery obstruction 6 (ft) can be described using the methods of [2] (see also 
[21]). Let ft : Xx -• X be a normal map such that h\bXx is a homotopy equiva
lence, and let D = D4k~l be a fibre of X -+ S1. By the fibering theorem ([5]) 
we can assume that ft-1 (BD) is a homotopy sphere. Make ft /-regular at D and let 
W = h~l(D). 

W is a framed manifold with boundary ft"1 (òD), so it is framed cobordant, rei. 
boundary, to a disc D', and by the normal cobordism extension lemma we can 
assume that h~*(D) = D'. Let Xx and X be the manifolds obtained from Xx and 
X by cutting along (i.e. by removing a tubular neighborhood of)£>' and D, respec
tively. Then ft induces a normal map ft : Xx -* X.^ Since X is a disc, 6(h) = 
1/8 (Index Xx). We claim that the mod. 2 class of 6(h) is the surgery obstruction 
of ft. This is because : 

(a) 6 (ft) mod. 2 depends only on the normal cobordism class of ft. For if 
H : y -+ Jf is a normal cobordism, rei. boundary, between ft and another normal 
map h' \ X[-+ X such that h'~1(D) is a disc, we can again assume that H~l (bD) 
is an ft-cobordism. If V = H~l(D) and Y is obtained from Y by cutting along V, 
then Y can be considered as a (normal) cobordism, rei. boundary between X[ and 
V U Xx U V. (V gets the same orientation twice, because Y is non-orientable). 
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Therefore 6 (h') = 6(h) + 20 (H\ V). 

(b) If 6(h) is even ft is normally cobordant, rei. boundary, to a homotopy 
equivalence. This is because we can construct a cobordism like the above Y with 
any value of 6 (H\ V) (using the normal cobordism extension lemma), and by 
choosing it properly we can assume 6 (ft') = 0. But that means that we can perform 
surgery on the interior of X[ to obtain a disc, which amounts to performing sur
gery on the interior of X[ to make it homotopy equivalent to X. 

(c) If ft is a homotopy equivalence, then 6 (ft) = 0. Because we can assume from 
the beginning that h~l(D) = D', by the fibering theorem ([5]), and then Xx is a 
disc. 

We can further say that a normal map with non-zero obstruction is normally 
cobordant to one with Xx = X # M0 (connected sum along the boundary), 
where MQ is the Milnor manifold obtained by plumbing along EB ([4], [10]). 

Now let / : ß4fc -> P4k be a homotopy equivalence, weakly ft-regular at p4fe_2. 
Q4k — f-l(j>*k~2) is not necessarily homotopy equivalent to X, i.e., to S^but 
anyway it must be quite simple ; in particular, it must have the same homology 
groups as X. The question now is whether such a simple manifold can carry a 
non-zero surgery obstruction or not ; or in other words, whether we can or cannot 
"simplify" X # M0 enough. Now, the fact that the surgery obstruction of anormal 
map Xx -> X doesn't change if we add to Xx two copies of M0 can be interpreted 
as follows : we can move one of the copies around an orientation reversing loop, 
and it will come back as — MQ, so we can cancel it with the other copy of MQ by 
surgery. For the map X # M0 -> X, if we could somehow split M0 into two equal 
parts, and move one of the parts around the loop so it comes back with the opposite 
orientation, we could expect to simplify X # M0 by surgery, and hopefully get 
something that looks like the complement of a Q4fc_2 in a ß4fc. This is in principle 
what we shall do next. 

Cracking. 

We now describe a process that is, in a sense, the opposite of plumbing. Recall 
([4], [10]) that by the process of plumbing we can associate to a weighted graph, 
such as 

and 

2 2 2 2 

2 2 2 2 2 2 2 
• • • • • • • 

* 2 
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a parallelizable 4fc-manifold with boundary, as follows : for every vertex (with 
weight 2) take a copy of the tangent closed disc bundle of S2k, and plumb two of 
these copies together if the corresponding vertices are joined by an edge in the 
graph. This plumbing of two copies consist in identifying product neighborhoods 
D2k x Z)2fc-onein each bundle, and disjoint from any other such neighborhoods 
where plumbing has been done at a previous stage — with each other by an identifi
cation that interchanges the base and fibre factors. The manifold constructed from 
AA will be denoted by A^ again, and the one constructed from E% is, by definition, 
the Milnor manifold M0. Let L = bA 4, and W the manifold obtained from L by 
removing an open disc. 2 0 = bM0 is the generator of 64k~1(bïï). The homology 
groups of these manifolds can be computed : Ht(AA) = 0 for / # 2k, andH2k(AA) 
is free on 4 generators, represented by the 0-sections of the bundles, with respect 
to which the intersection form has as matrix 

which has index 4 and determinant 5. This last fact implies that 

#„_,(£) « # „ _ ! (HO =ZS. 

All the other homology groups of L and W are trivial, except the top dimensional 
for L, being an orientable closed manifold. Similarly, H^MQ) = 0 for i ¥= 2 k, and 
H2k(MQ) is free on 8 generators ex,..., e8 with respect to which the intersection 
from has as matrix 

2 
1 
0 
0 
0 
0 
0 
0 

1 
2 
1 
0 
0 
0 
0 
0 

0 
1 
2 
1 
0 
0 
0 
0 

0 
0 
1 
2 
1 
0 
0 
0 

0 
0 
0 
1 
2 
1 
0 
1 

0 
0 
0 
0 
1 
2 
1 
0 

0 
0 
0 
0 
0 
1 
2 
0 

0 
0 
0 
0 
1 
0 
0 
2 

We want to show that M0 is the union of two copies of >44, glued along W. Sym
bolically, the proof of this can be viewed as the process of cracking the Es into 
two copies of A^, by breaking one of the links : 

• • • • 1 • • 

• • • • • • • 

In precise terms, let ex,. . ., e'8 be the elements of H2k(M0) given by 

e'f = ef i ¥" 5 



106 S. LOPEZ DE MEDRANO C 2 

e's = — ex + 2e2 — 3e3 + 4e4 — 5e s + 4ß6 2en 4- 3e« 

These elements do not form a basis of the group ; in fact they generate a sub
group of index 5 of H2k(MQ). The interesting thing about them is that the matrix 
of intersection numbers el. e\ is -

2 
1 
0 
0 
0 
0 
0 
0 

1 
2 
1 
0 
0 
0 
0 
0 

0 
1 
2 
1 
0 
0 
0 
0 

0 
0 
1 
2 
0 
0 
0 
0 

0 
0 
0 
0 
2 
1 
0 
1 

0 
0 
0 
0 
1 
2 
1 
0 

0 
0 
0 
0 
0 
1 
2 
0 

0 
0 
0 
0 
1 
0 
0 
2 

which is clearly equivalent to the block sum of two copies of the matrix of A4. 
That is, the link between the fourth and fifth rows and columns has disappeared ! 
If we represent these elements by embedded spheres whose only intersections with 
each other are those given by this matrix and are transversal, then a regular neigh
borhood of the union of the spheres representing e[,. .. , e\ is easily seen (by 
choosing an adequate Riemannian metric near the intersection points) to be diffeo
morphic to A^ (and we will call it ^44). So is a regular neighborhood of the spheres 
representing e's,. . . , e'8, and we will denote it by A\. We can assume ^44 and A4 are 
disjoint and contained in the interior of MQ, but we will take a small tube joining 
the boundary of A^ to the boundary of M0, and we will consider it as also forming 
part of A4. 

(This picture can be misleading ; the "tube" representing e's really goes all over 
MQ, but missing the "tubes" representing e\,.-.. , e4 and en). 

Let K = Mn A4. We now show that the inclusion A\CK induces an isomor
phism of homology groups, which implies that K — A 4 is an ft-cobordism and, every
thing being simply connected, that K is diffeomorphic to ^44. To prove this, first 
one can see, using Lefschetz duality, excision and universal coefficients, that 
H2k_x(K) = 0. Then the Mayer-Vietoris sequence of (MQ ;^44,X), 

0 -*tf2fcW4) *H2k(K) -*H2k(M0) ^H2k_x(W) -» 0 

shows that H^A^) © H2k(K) can be identified with a subgroup of H2k(MQ) of 
index 5. Since H^A^) © H2k(A'4) is contained in this subgroup, and has also 
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index 5 in H2k(M0), being the subgroup generated by the {e\}, it follows that 
these two subgroups are equal, and that the inclusion induces an isomorphism 
H2k(A\) « H2k(K). Since all other groups are trivial, this proves our assertion. 
Therefore M0 can be expressed as the union of two copies of AA, glued along 
W by an orientation reversing diffeomorphism d. 

We shall be interested in the mapping torus of d, which we shall denote by Xd, 
whose boundary is the mapping torus of a diffeomorphism of S4k~2 representing 
2 0 . We clearly have a normal map hd : Xd ->- X, obtained by collapsing the comple
ment of a collar neighborhood of bXd fibrewise to an S1. (There is no obstruction 
to making this map normal, because all the homology of Xd comes from S1 ; see 
below). Now X # MQ has the same boundary as Xd, and in fact it is normally 
cobordant, rei. boundary, to Xd, since the framed cobordism A4 from W to a disc 
induces, by the normal cobordism extension lemma, a normal cobordism, rei. 
boundary, from Xd to X # MQ (which now appears as the union of two copies 
of A4, joined by a tube, and then glued along W by d). 

X* 

Therefore hd : Xd -> X represents the normal cobordism class with non-zero 
surgery obstruction. 

The only thing left to do is to see if Xd looks like the complement of a tubular 
neighborhood of a ß4fc~2 in a ß4fc. For this to be true it is necessary that the double 
cover Xd looks like the complement of a knot. Now Xd is the mapping torus of d2, 
so it can be described as the union of two copies of W x I glued along one end by 
d2 and along the other one by the identity. Therefore we have a Mayer-Vietoris 
sequence 

0-+H2k(Xd)^H2k_x(Wxî) -» H2k_x(W x I) © H2k_x(W x I) + H2k_x(Xd) -> 0 

Identifying both middle groups with Zs © Zs, it follows that the central homo
morphism has as matrix 

\dl 1 / 
so we have to compute d2,. d# itself must be multiplication by a certain numberm. 
Let x , y G H2k_, (W) be such that L (x , y) = 1, where 
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L:H2k_l(W)xH2k_1(W)-^Z5 

is the non-degenerate bilinear pairing given by linking numbers ([12]). Since d is 
orientation reversing we have 

1 = L (x , y) = — L (d*x, d*y) = - L (mx , my) = — m2L (x , y) = — m2 

Therefore d\ is multiplication by m2 = — 1, the above matrix in non-singular, 
and the central map in the Mayer-Vietoris sequence is an isomorphism. Therefore 
we have 

irx(Xd) = Hx(Xd) = Z 

Ht(Xd) = Q , i>\ . 

(and since m must equal ± 2, the same holds for Xd\ and also 7T/(ATd) = 0 for 
1 < i < 2k— 1. So we have shown that we can represent the normal map into 
X with non-zero surgery obstruction by Xd, which has very little homology, and 
looks like the complement of a ß 4 f c - 2 in a ß4 f c . In fact we can now prove : 

THEOREM 2. — Every involution (T, 2 4 f c ) , k > 1, admits an invariant knot. 
In fact, it admits one that is simple and equivarantly flbered. 

For the proof, we only have to do a weak version of the last steps of the proof 
of Browder's embedding theorem. We had arrived before at a normal map 
fx :MX -> P4k, such that fx

l(P4k~2) = Q4k~2,fx Iß 4*" 2 is a homotopy equiva
lence and fx \XX = ft : Xx -* X. The case 6(h) = 0 has already been considered. 
If 6 (ft) =t= 0, we know that ft is normally cobordant to hd : Xd -• X, rei. boundary, 
so we get a new normal map f2 : Qt4k -> Q4k, where Q' = Ux U Xd . Now 
ß ' = Ux U Xd is clearly a homotopy sphere, because it is simply connected and 
it is easy to see from the pioperties of Xd that it has no homology below the top 
dimension, so f2 is a homotopy equivalence, weakly ft-regular at p 4 f c _ 2 . The 
rest of the proof follows as in the case 6 (ft) = 0 : ß ' = ß4 f c and / is homotopic 
to f2, so (T, 24fc) admits the invariant knot ß 4 f c ~ 2 . The exterior of this knot is 
Xd, and since Kt(Xd) ^irt(S

l) for 1 <i <2k— 1, the knot is simple, by defi
nition ([14]), and XjT = Xd fibers over S1, which can be taken as a definition 
of an "equivariantly fibered" knot. 

Remarks. — The proof of this theorem gives us a direct geometric way of com
puting the surgery group Z4fc(Z2,—) = Z 2 , since it can be used to prove [17] 
Theorem 1, IV.3.3 without having to appeal to this computation. Also, it can be 
used to construct very simple examples of non-standard p.l. involutions : In P4k 

substitute X by Xd (their boundaries are p.l. homeomorphic) and the involution 
obtained has p ¥= 0. 

The decomposition M0 = A 4 ^dA\ is interesting in itself, since it shows that 
MQ (and also the closed p.l. manifold M0 , obtained from M0 by attaching to it the 
cone on its boundary) is a "twisted double". This is a case not covered by the 
theorems of Smale [18], Barden [1], Levitt [16] and Winkelnkemper [22], which 
show that under certain, quite general conditions, a manifold must be a twisted 
double. Our example is more twisted than any of those covered by these theorems, 
in the sense that d is orientation reversing. 
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The process of cracking can be applied to other situations. For example, the 
E8 graph can be cracked at other links, giving a decomposition of MQ as the 
union of the manifolds obtained by plumbing according to the subgraphs into 
which EB is divided. In the following diagram those links at which this cracking 
process can be carried out are labeled W(eak), and those at which it cannot be 
done are labeled Strong) : 

For the weak links, formulas giving the e\ are very similar to the ones we have 
given here. 

This gives several relations between the boundaries of the plumbed manifolds. 
For example, we have shown that L # 2 0 is diffeomorphic to — L. It is possible 
that this process could be exploited to complete the classification of highly con
nected odd dimensional manifolds up to diffeomorphism ([19]). 

Another remark can be made about the comparison with the situation of a 
knot 24fc~2 C S4*. It is proved in [11] that every such knot is cobordant to 
the trivial knot. If one tried to carry over the proof to the equivariant case, one 
would have to carry out Kervaire's proof, which can be done, and then apply 
some equivariant version of the engulfing theorem, as in [14] Lemma 4. But 
since we know that there are involutions (7", 24fc) which admit invariant knots, but 
do not admit trivial ones, it is not true that every invariant knot for a (T, 24fe ) 
is equivariantly cobordant (with the obvious definition of this term) to a trivial 
invariant knot. Therefore, there must be something wrong with equivariant engulfing 
(as could be expected from the fact that the connectivity conditions on the quo
tient spaces are as bad as possible). 

2. Surgery in Codimension 2. 

The proof of theorem 2 suggest the general philosophy for dealing with surgery 
problems in codimension 2 : do not insist on obtaining homotopy equivalences 
when you are doing surgery on the complement of a submanifold, be happy if 
you can obtain the correct homology conditions. This has relevance both in the 
existence problems, as in the existence of invariant knots, and in the classification 
problems, as in the cobordism classification of knots. 

In its simplest form, this approach suggests the following definitions and pro
blems : 

A map / : X -• Y is a homology equivalence (//-equivalence) if it satisfies the 
following conditions : 

(0 /* : itx(X) -+ irx(Y) is an isomorphism. 
(ii)/* : Ht(X) -> Ht(Y) is an isomorphism for all i. 

A cobordism (W ; MQfMx) is an //-cobordism if both inclusions Mt C W are II-
equivalences. Two //-equivalences ff \Mi -* M between manifolds are H-cobordant 
if they extend to a map F : W -> M, where W is an //-cobordism between the Mr 
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PROBLEM 1. — When is a normal map M' -> M normally cobordant to an in
equivalence ? 

PROBLEM 2. — When are two normally cobordant //-equivalences //-cobordant ? 

Problem 1 is equivalent to the question of which elements in the Wall group can 
be represented by //-equivalences, so this problem is in a certain sense simpler that 
the standard surgery problem, since its obstruction cannot be stronger than the 
standard surgery obstruction. On the other hand Problem 2 is much more complica
ted than the standard problem of obtaining ft-cobordisms, since in the only known 
non-simply-connected example, that of cobordism of knots, the obstruction groups 
are not finitely generated ([14]). 

In the applications the problems are more complicated to formulate. First of 
all, we are really interested in the relative case, where manifolds have a boundary, 
and the restrictions of the maps and cobordisms to the boundaries are homotopy 
equivalences and ft-cobordisms. This is the situation when we consider cobordism 
classes of knots : two knots are cobordant if, and only if, their exteriors are //-
cobordant, rei. boundary, when we consider them together with their normal 
maps onto the exterior of the trivial knot. This example also suggests that con
dition (i) in the definition of an //-equivalence could and should be weakened, if 
not totally forgotten, in the sense that the solutions to Problems 1 and 2 will 
probably be unaffected by this modification of the definitions. This also seems to 
be the case in other situations, like in the study of//-cobordism classes of homology 
spheres ([8]). 

The other complication has been already found in the proof of Theorem 2 : 
we had to make sure that the double covering of the map hd : Xd -» X, and not 
only hd itself, was an //-equivalence. In general we can say that / : X -> Y is an 
//-equivalence with respect to a subgroup G ofitx (Y) if the induced map / : X -> Y 
is an //-equivalence, where Y -> Y is the covering corresponding to G. (If G = 0, 
this means that / is a (weak) homotopy equivalence). In the applications G is the 
kernel of irx (M — N)-> TTX (M). Another interesting case is when G is the kernel of 
the orientation map. 

When M is orientable, the best possible solution of Problem 1 would be that a 
normal map is normally cobordant to an //-equivalence if its, surgery obstruction 
lies in the kernel of the homomorphism Lm(irx (M)) -> Lm(Q) induced by the orien
tation map, that is, if its good old index or Kervaire invariant is 0. It this were true 
the weak ft-transversality problem in codimension 2 would be solved whenever 
the ambient manifold is simply connected. For other forms of Problem 1 there are si
milar conjectures with equally nice consequences. For the moment we can prove 
some of these conjectures when the fundamental group is Z, obtaining the follo
wing theorem on weak ft-regularity : 

THEOREM 3. — Assume (Mm,Nm~2) is such that irx(M — N) = Z and either 
irx(M)= 0 or irx(M)= Z2. Then, if m — 2 > 5, a homotopy equivalence 

f-.M'^M 

is normally cobordant to a homotopy equivalence weakly h-regular at N if and only 
if, the surgery obstruction 6 (g) = 0, where g = f\f~x(N). 
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The proof rests on the knowledge of a good number of examples from knot 
theory and the theory of involutions. When one is trying to do surgery to make the 
complement of the inverse image of N //-equivalent to M — N, one can make it a 
homotopy equivalence outside the inverse image of a tube representing a generator 
of 7Tj (M — N). Then one can use these examples to substitute this inverse image 
by something //-equivalent (with respect to the kernel of irx(M — N) -• irx(M)) 
to the tube, just as we did in the proof of Theorem 2. In this way we get a homo
topy equivalence, weakly ft-regular at N and normally cobordant to /. When 
irx(M)= Z2 there are a few cases when we cannot conclude that this homotopy 
equivalence is ft-cobordant (and therefore homotopic) to / , but under extra hypo
theses, which are probably irrelelevant, we can obtain this stronger result. When 
Tr j (M) = 0 there is no problem. 

About Problem 2 we have very little to say. One would hope that there are 
obstruction groups, similar to Levine's knot cobordism groups, and that these 
groups depend only on the fundamental group. If this were the case, there would 
be nice consequences again : many problems of classification of embeddings in 
codimension 2 up to concordance would be reduced in a large measure to knot 
cobordism theory, and there would be a geometric interpretation of the periodicity 
of Levine's groups. 

The methods of knot cobordism theory are in most cases too specific to be di
rectly helpful in the general situation. One such method is the use of engulfing to 
show that every knot is cobordant to a simple knot ([14], Lemma 4) since we have 
shown in particular that this method cannot work for the case of invariant knots. 
We have found a proof of this result that only uses surgery (similar proofs have 
been found independently by Kervaire and Ungoed-Thomas) which works also for 
invariant knots : 

THEOREM 4. — Every invariant knot for (7 , ,2W) is equivariantly cobordant to a 
simple invariant knot. 

The proof consists in constructing an (equivariant) //-cobordism between the 
complement of the knot and the complement of a simple knot, which gradually 
kills the homotopy groups. The general step goes as follows : If X is the comple
ment of the knot and if we assume TTX(X) « itx(S

l) for i < q and q is below the 
middle dimension, we can perform equivariant surgery on the generators of 
irq(X), obtaining a cobordism W between X and X\ rei. boundary. Now both X1 

and W have some unwanted homology in dimension q + 1. However, since 
*„ + i (*')"*#„+it*') i s onto> because Hq+1(Z) = 0 (See [7], p. 483) we can 
kill this homology by doing surgery on X', which kills automatically also the extra 
homology in W, thus obtaining an //-cobordism W' between X and X", where 
nt(X

n) = ^(S1) for i < q. This type of proof also works when we consider knots 
which are invariant under other group actions, and for links in codimension 2 ([9]). 

The next step would be to compute the equivariant cobordism classes of invariant 
knots, which means that we should identify the obstruction to doing the last step 
(the middle dimension) of the homology surgery process described above. There are 
further complications because there are in some dimensions examples of two trivial 
invariant knots which are not equivariantly cobordant ([17], VI.3, Corollary), 
and in the cases where there is no trivial invariant knot, we don't know if there 
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is a simplest invariant knot to which we could refer all the others. There is the 
nice circumstance, however, that the equivariant //-cobordism class of the exterior 
of an invariant knot, and the involution restricted to the invariant knot itself, de
termine completely the involution. 

There is another problem, even more difficult than Problem 2, namely that of~ 
deciding when two //-equivalences are ft-cobordant. This has to do with the problem 
of isotopy of embeddings, and one case has been solved in [ 15]. 
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