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UNIFORM POLYHEDRA

SERGEY A. MELIKHOV

Abstract. We develop a theory of metric polyhedra, including locally infinite dimen-

sional ones. Motivated by algebraic topology, we focus on their uniform properties (i.e.,

those preserved by homeomorphisms that are uniformly continuous in both directions)

but in doing so we also study their metric and Lipschitz properties. On the combina-

torial side, (the face posets of) simplicial or cubical complexes do not suffice for this,

and we have to rework some basic PL topology into a purely combinatorial machinery

(with all homeomorphisms eliminated in favor of combinatorial isomorphisms) based on

posets and their canonical subdivision (which is just the poset of all order intervals of

the given poset, ordered by inclusion). Antecedents of this approach to PL topology are

found in van Kampen’s 1929 dissertation and in modern Topological Combinatorics.

Our main results establish, in particular, close but troubled relations between uni-

form polyhedra and uniform ANRs, and appear to provide a satisfactory solution to

an open-ended problem raised by J. R. Isbell in a series of publications in 1959-64.

1. Introduction

Here is a brief summary of the main results; a more informal discussion follows.

We consider three notions of geometric realization of a countable poset (in particular,

of a simplicial or cubical complex) by a separable metrizable uniform space: one coming

from an explicit embedding into the unit cube of the functional space c0 (generalizing a

construction of Shtan’ko–Shtogrin [38]), another obtained by gluing together standard

simplices via quotient uniformity (akin to the usual geometric realization of a simplicial

set which involves quotient topology), and a third employing path metric (resembling

geometric polyhedral complexes used in Geometric Group Theory). All three notions

are shown to be equivalent (Theorems 3.6 and 3.11). The geometric realization of a

locally infinite dimensional poset (even a simplicial complex) may fail to be complete;

however the remainder is uniformly a Z-set in the completion (Lemma 3.29).

Geometric realization is promoted to a functor from monotone maps between count-

able posets to uniformly continuous maps between uniform spaces, which is shown to

preserve pullbacks and those pushouts that remain pushouts upon barycentric subdivi-

sion (Theorem 3.18). In particular, the functor respects joins, and mapping cylinders of

simplicial maps. Here the join of posets can refer to any of the two well-known distinct

notions, and the join and mapping cylinder of metrizable uniform spaces are as in [32].

To have arbitrary pushouts one has to deal with preposets, which are a non-transitive

generalization of posets, also known as acyclic digraphs. Fortunately, up to uniform

homotopy, everything boils down to posets and even to complete quasi-lattices, that is,
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posets where every set has either the least upper bound or no upper bound whatsoever

(Theorem 4.5).

We construct a countable poset whose geometric realization is not a uniform ANR

(Example 4.23), and a countable preposet whose geometric realization is not even uni-

formly locally contractible (Example 4.2). Nevertheless, geometric realizations of com-

plete quasi-lattices are shown to be uniform ANRs (Corollary 4.20), and these are what

we call uniform polyhedra. This is arguably the hardest result of the paper; the case of

simplicial complexes is somewhat easier (Theorem 3.32). Conversely, if X is a uniform

ANR (for instance, the loop space of a compact polyhedron), we show that X × R is

uniformly homotopy equivalent to a uniform polyhedron (Theorem 4.34). We also show

that a separable metrizable uniform space is a uniform ANR if and only if it is uniformly

ε-homotopy dominated by a uniform polyhedron for each ε > 0 (Theorem 4.33; in this

case, geometric realizations of simplicial complexes do suffice).

Among other results, every separable metrizable complete uniform space X is uni-

formly homeomorphic to the limit of an inverse sequence of uniform polyhedra (Theorem

4.30), and if X is a uniform ANR, the bonding maps may be chosen to be (non-uniform)

homotopy equivalences (Theorem 4.36).

Remark 1.1. An examination of the proofs reveals that uniform polyhedra endowed with

the path metric are in fact Lipschitz ANRs. We do not know whether uniform polyhe-

dra, and especially geometric realizations of simplicial complexes, could be 1-Lipschitz

ANRs with respect to some compatible metric. At the very end of the paper we in-

clude a sketchy argument towards the conjecture that every Lipschitz ANR is uniformly

homotopy equivalent to a uniform polyhedron (no crossing with R involved here).

1.A. What is going on in this paper

It should be emphasized that since topological and uniform notions agree on compact

spaces (recall that continuous maps with compact domain are uniformly continuous),

the theory of uniform polyhedra is not supposed to say anything new about compact

polyhedra.1 Moreover, there is nothing deep about finite-dimensional uniform polyhedra:

no matter how one tries to define them, he will most likely succeed, and end up with

just an equivalent form of what Isbell himself did in a few pages in [21].

A key difficulty in the infinite-dimensional case can be seen from the following example.

Let ∆n be the standard n-simplex in Rn+1, that is the intersection of the first octant

with the hyperplane
∑

xi = 0. Then ∆n has a constant (i.e. independent of n) edge

length in Euclidean, or l1, or l∞ metric. However, the distance from the barycenter of

∆n (at ( 1
n+1

, . . . , 1
n+1

)) to the barycenter of a facet of ∆n (at (0, 1
n
, . . . , 1

n
)) tends to zero

as n→∞, in either metric.

1The combinatorial techniques whose development it forces (see §2) do have applications to compact
polyhedra in other contexts (see e.g. [33; §2]).
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Thus barycentric subdivision does not work uniformly; whether there exists any uni-

form subdivision into simplices (whose iterations have arbitrarily small simplices) seems

to be a difficult geometric problem, perhaps most interesting for the l1 metric.

1.2. From simplicial complexes to preposets. We take a detour: the basic idea is

to use the “canonical subdivision” which when applied to simplicial complexes produces

cubical complexes (versions of this construction are well-known in Geometric Group

Theory and in Topological Combinatorics), and then use the l∞ metric one each cube.

This yields a combinatorially controlled uniform structure, since when applied again to

cubical complexes, the canonical subdivision still produces cubical complexes. It however

takes some effort to resolve the apparent conflict of this “cubical” uniform structure

with some basic PL constructions such as cone, join and mapping cylinder, which are

manifestly “non-cubical”. To this end we further subdivide the cubes into simplices,

without introducing new vertices. These simplices are asymmetric, but come with a

natural order on their vertices; every such simplex is isometric to the “standard skew n-

simplex” for some n, by which we mean the subset {(x1, . . . , xn) | 0 ≤ x1 ≤ · · · ≤ xn ≤ 1}
of Rn with the l∞ metric. One can now use the asymmetric simplices as separate building

blocks, making sure their vertex orderings agree whenever they overlap; globally, this

amounts to having a dagged simplicial complex, that is a simplicial complex whose 1-

skeleton is endowed with the structure of a dag (=directed acyclic graph, that is a

directed graph with no directed cycles). The binary relation on the vertices of a dag

determined by the directed edges of the dag is a generalization of partial order; its

transitive closure is a partial order, and for this reason we call such relation a pre-partial

order.

Unfortunately, dagged simplicial complexes are plagued by the very same problem

that we intended to avoid: for each ε > 0 there exists an n such that every point of the

standard skew n-simplex is ε-close to some point in its boundary (see Example 3.34).

To avoid this problem, it is natural to consider those dagged simplicial complexes

that are flag complexes (i.e., where every subcomplex isomorphic to the boundary of

a simplex of some dimension d > 1 lies in an actual copy of the d-simplex). Note

that these are determined by their 1-skeleton. On the other hand, the vertices of every

simplex in a dagged simplicial complex are totally ordered by the underlying pre-partial

order relation.2 Thus a flag, dagged simplicial complex can be alternatively described

as the dagged order complex (consisting of all nonempty finite chains) of a preposet (i.e.

a pre-partially ordered set). It is well-known that a finite poset generally cannot be

reconstructed from its usual order complex; however, every preposet (so in particular

every poset) is trivially reconstructible from its dagged order complex. Moreover, the

dagged order complex construction constitutes an isomorphism between the category

of preposets and their order-preserving maps, and the category of dagged simplicial

2Indeed, let us consider sinks in the dagged simplex, that is vertices whose all incident edges are directed
inwards. If there were no sinks, we could start at any vertex and move along directed edges until we
exhaust all vertices in the simplex and thus find a cycle — which cannot be. Given any sink, we consider
the simplex spanned by the remaining vertices and argue by induction.
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complexes and their simplicial maps restricting to direction-preserving maps on the 1-

skeleton. For this reason we may work with preposets themselves instead of their dagged

order complexes.

Dagged order complexes of finite posets are essentially the same as star complexes

of van Kampen’s dissertation [26] and cone complexes of McCrory [30] (see also [1]).

While most topologists are scarcely aware of the existence of this alternative language

for PL topology, it is in fact widely known and used, in a disguised form, in Topological

Combinatorics, dating back at least to Björner [6].

1.3. From preposets to CQLs. We find it convenient to distinguish the combina-

torial notion of the order complex of a preposet (which is just a simplicial complex,

without any metric or topology) from the geometric realization of a preposet, which is

the (rectilinear, rather than abstract) order complex endowed with the uniform structure

obtained by gluing together the standard skew simplices. (The reader who is not very

comfortable with uniform structures may assume for the purposes of this subsection that

the geometric realization is endowed with a specific metric, namely, the path metric.)

Unfortunately, preposets do not quite live up to our expectations, as it turns out that

there exists a preposetX whose geometric realization is not uniformly locally contractible

(more specifically, for each ε > 0 it contains an essential loop of diameter ≤ ε), and in

particular it is not a uniform ANR (see Example 4.2).

Restricting to posets helps but not too much. The geometric realization of every poset

P is uniformly locally contractible, that is, for each ε > 0 there exists a δ > 0 such that

every two δ-close uniformly continuous maps from an arbitrary metric space into |P |

are uniformly ε-homotopic with values in |P | (Theorem 4.1). On the other hand, there

exists a poset Y whose geometric realization does not satisfy the Hahn property (more

specifically, for each ε > 0 it contains an embedded sphere of some dimension that is

essential in |Y |, but null-homotopic in the ε-neighborhood of |Y |, which we assume to

be embedded in some uniform ANR), and in particular |Y | is not a uniform ANR (see

Example 4.23).

The more surprising is that the geometric realization of CQLs, that is posets which are

complete quasi-lattices, and in particular of (the posets of nonempty faces of) simplicial

and cubical complexes do turn out to be uniform ANRs (Corollary 4.20). Note that

this excludes some simplicial posets, also known as pseudo-complexes in the sense of

Hilton–Wylie (where each simplex is embedded, but different simplices may have more

than one face in common in the geometric realization) as well as some cubical posets.

Recall that our original reason to subdivide the l∞ cubes into skew simplices was to

make sure that the class of our complexes is closed under basic operations such as join

and mapping cylinder (or, to put it bluntly, under finite homotopy colimits). We must

now admit that the mapping cylinder of a monotone map between CQLs need not be a

CQL — nor even a poset (Corollary 3.23). While the mapping cylinder of a simplicial

map between simplicial complexes, or more generally of a closed map between posets, is

a poset (Corollary 3.23), monotone maps that arise naturally in practice, for instance,
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as approximations to uniformly continuous maps (Theorem 4.22) or as bonding maps

between nerves of covers (see 4.16 and Lemma 4.31) are normally not closed. Besides,

the homotopy colimit of closed maps between CQLs need not be a CQL (for instance,

the double mapping cylinder of the diagram pt← pt ⊔ pt→ pt).

However, geometric realizations of finite homotopy colimits of monotone maps be-

tween CQLs are uniformly homotopy equivalent to geometric realizations of CQLs (see

Theorem 4.5). This is really good news, because the geometric realization of the poset Y

is not uniformly homotopy equivalent to the geometric realization of any CQL (see The-

orem 4.24), and the geometric realization of the preposet X is not uniformly homotopy

equivalent to the geometric realization of any poset (see Theorem 4.3).

1.B. Isbell’s problem

We include some quotes from Isbell’s book and his earlier papers.

“Research Problem B2. Infinite-dimensional polyhedra. There is a large prob-

lem here, namely the systematic investigation of topological and uniform realizations of

abstract simplicial complexes. One important paper in the literature (Dowker [1952])

has examined this problem, not from a categorical viewpoint. Dowker’s work tends to

confirm, what many successful applications suggest, that for topology J. H. C. White-

head’s realization by CW-complexes has strong claims to preference. Its definition is

as simple as could be: [...] But Dowker’s work highlights the point that the suitability

of CW-complexes for homology and homotopy is not conclusive; many realizations are

topologically distinct but homotopy equivalent.

By now substantial experience in uniform spaces supports the pretensions of uniform

complexes, in the finite-dimensional case only. (In any case they are homotopy equiv-

alent (topologically) with CW-complexes; Dowker [1952].) In general they are not

satisfactory, e.g. because they lack subdivisions. One can save the subdivisions, or any

sufficiently narrow requirement, by tailoring a definition to fit. (Kuzminov and Švedov

[1960] define a realization for which IV.6 [the covers by the stars of vertices in iterated

barycentric subdivisions form a basis of the uniformity] is always valid; but all their

applications are in the finite-dimensional case.) The real problem holding up progress

is, what applications can be made of infinite-dimensional polyhedra in the general the-

ory of uniform spaces? It would probably be beside the point to carry out a formal

investigation of realizations with no specific applications in mind.” [23] (1964)

Comments: (i) As stated, the problem is quite vague, but some clarification on what

kind of infinite-dimensional uniform complexes are sought here can be inferred from

Isbell’s previous comments in his earlier papers (quoted below).

(ii) The covers by the stars of vertices in iterated canonical subdivisions do form a

basis of the uniformity of our uniform polyhedra (see Theorem 3.12).

(iii) We note that another reason for the widespread acceptance of the CW topology

was Milnor’s theorem [34] (1959) that spaces of maps between CW-complexes are homo-

topy equivalent to CW-complexes. We do now have a polyhedral version of this result
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(see [32; Theorem 4.22] and Theorem 4.34); moreover, it is almost (i.e. after crossing

with R) up to uniform homotopy.

“It should be noted that the theorem [that Isbell’s finite-dimensional uniform simplicial

complexes are complete uniform ANRs] as stated is trivially false for arbitrary uniform

complexes, since some of them are incomplete. It is false for many complete ones also.

It seems likely that strong results might be gotten by using some suitable uniformity

for a complex, different from the one defined by max |xα − yα|, though not necessarily

different for finite-dimensional complexes.” [21] (1959)

Comments: indeed, with our adjusted uniformity, the theorem is now extended to

infinite-dimensional simplicial complexes (Theorem 3.32).

“I should like to repeat the remark from [[10] and [21]] that the uniform complexes are

clearly not the right concept for the infinite-dimensional case. The finite-dimensionality

in 7.2 [that every residually finite-dimensional complete uniform space is an inverse

limit of finite-dimensional uniform simplicial complexes] and 7.3 [that every residually

finite-dimensional complete uniform ANR is uniformly homotopy dominated by a finite

dimensional uniform simplicial complex] may very likely appear for no better reason

than that we do not have the right uniformity for the complexes.” [22] (1961)

Comments: indeed, with our adjusted uniformity, the two mentioned results are now

extended to infinite-dimensional simplicial complexes (Theorems 4.30 and 4.32).

1.C. Motivations

The author’s basic reason for starting out this project was that he could no longer

afford being ignorant of algebraic topology of Polish spaces, for it holds back progress

in geometric topology of compacta, including some questions about manifolds. Spaces

of interest include:

(i) BZp and the homeomorphism group of a manifold (to be discussed in a moment);

(ii) the space of topological knots in R3 (cf. [31; §1.A, (1)]);

(iii) the loop space of a compactum (cf. [31; Remark to Corollary 8.8]);

(iv) the 2-point configuration space of a compactum (cf. [31; §1.A, (2)]).

Another basic source of motivation for understanding the topology of Polish spaces comes

from foundations of mathematics (homotopy type theory and positive set theory).

To be a bit less speculative, let us mention some applications of the results of the

present paper that are expected to appear elsewhere.

1.4. The difficulty of the Hilbert–Smith Conjecture is caused, in the first place, by the

lack of appropriate invariants. In particular, it is well-known that the additive group Zp

of p-adic integers has cohomological dimension ≤ 2 with respect to Čech cohomology,

either ordinary or extraordinary [43]. However, there is a notion of a classifying space

of a topological group that is well-defined up to uniform homotopy equivalence, and

it is not hard to compute3 that Zp has infinite cohomological dimension with respect

3and this is how one can make sense of the more interesting of the two mutually contradictory calcula-
tions mentioned in [43]
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to Pontryagin complex K-theory. The latter is defined as follows. We show (Theorem

4.30) that every Polish (=separable metrizable complete) uniform space X is the limit,

in the category of uniform spaces, of an inverse sequence of uniform polyhedra Pi (which

cannot be chosen finite-dimensional in general!), and since these uniform polyhedra are

uniform ANRs (Theorem 3.32 suffices here), it follows from [32; Theorem 5.14] that

the Pontryagin cohomology hn(X) := dirlim hn(Pi) is well-defined for every cohomology

theory h∗.

1.5. Expected applications to Polish topological spaces include:

(i) a computation of the “commutator” of direct and inverse limits for cohomology

groups of nerves Pij of compacta Ki in a locally compact Polish topological space —

with applications to embedding theory (cf. [31; §1.A, (2)]);
(ii) a theory of very strong shape of Polish topological spaces which aims to ‘correct’

strong shape (only in the non-compact case) by using non-discretely indexed families

of nerves, so as to replace non-separable simplicial mapping telescopes by ones with a

Polish topology. The effect of very strong shape is that it eliminates the dependence

of the uncountable lim1 and higher derived limits on postulates independent of ZFC,

and appears to provide an adequate solution (for Polish topological spaces only) to

Skliarienko’s problem of shape invariance of the Steenrod–Sitnikov homology for para-

compact topological spaces, which in his own opinion “will be a test... for the strong

shape theory itself” [39].

1.D. Acknowledgments
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A. Gaifullin, S. Illman, E. V. Shchepin, A. Skopenkov, M. Skopenkov, D. Stepanov and
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2. Combinatorics of combinatorial topology

2.A. Cone complexes

2.1. Binary relations and preposets. By a preposet we mean a set P endowed with

a binary relation ≺ that is strictly acyclic in the sense that there exists no sequence

x0, . . . , xn ∈ P, with n being a nonnegative integer, such that x0 ≺ x1 ≺ · · · ≺ xn ≺ x0.

In particular, ≺ is anti-reflexive (i.e. x ⊀ x for any x ∈ P). We also write x ≺ y as

y ≻ x.

For an anti-reflexive relation ≺, its inclusive counterpart � is defined by x � y iff

x ≺ y or x = y; it is reflexive (i.e. x � x for each x ∈ P). For a reflexive relation �,

its exclusive counterpart ≺ is defined by x ≺ y iff x � y and x 6= y; it is anti-reflexive.

The operations of inclusive/exclusive counterpart constitute mutually inverse bijections

between the set of all reflexive relations on a set P and the set of all anti-reflexive

relations on P.
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The inclusive counterpart � of a strictly acyclic relation ≺ is characterized by being

reflexive and acyclic in the sense that if x0, . . . , xn ∈ P, with n being a nonnegative

integer, satisfy x0 � x1 � · · · � xn � x0, then x0 = · · · = xn. In particular, � is

anti-symmetric (i.e. x � y and y � x imply x = y for each x, y ∈ P). By the above, a

preposet may be equivalently viewed as a set P endowed with a binary relation � that

is reflexive and acyclic.

The transitive closure of a binary relation ≺ on a set P is the relation ≺≺ on P

defined by x ≺≺ y iff there exist z1, . . . , zn ∈ P for some nonnegative integer n such that

x ≺ z1 ≺ · · · ≺ zn ≺ y; it is transitive (i.e. x ≺≺ y and y ≺≺ z imply x ≺≺ z).

A binary relation < on a set P is called a strict partial order if it is anti-reflexive and

transitive. It is easy to see that < is a strict partial order iff its inclusive counterpart

≤ is a partial order, that is, is reflexive, anti-symmetric and transitive. A set endowed

with a (strict or non-strict) partial order is called a poset.

It is easy to see that a binary relation is (strictly) acyclic iff its transitive closure is a

(strict) partial order. Thus every poset is a preposet, and for every preposet P = (P,≺),
its transitive closure 〈P 〉 := (P,≺≺) is a poset. So one may view preposets not just as

a generalization of posets, but more specifically as posets endowed with an additional

structure.

Given a poset P = (P,≤), one defines the covering relation ≺ on P by p ≺ q if p < q

and there exists no r ∈ P with p < r < q. Clearly, ≺ is the minimal strictly acyclic

relation whose transitive closure is <.

2.2. Conical maps. Let P = (P,≤) and Q = (Q,�) be preposets. An order preserving

or conical map between them is a map f : P → Q such that v ≤ w implies f(v) � f(w)

for all v, w ∈ P. It is called a conical embedding if the converse implication holds as well.

Every conical embedding is obviously injective, but not every injective conical map is a

conical embedding. An isomorphism of preposets is a conical bijection whose inverse is

conical, or equivalently a surjective conical embedding.

We say that Q is a subpreposet of P (or a subposet of P if P itself is known to be a

poset), and write Q ⊂ P , if Q is a subset of P and the inclusion Q →֒ P is an embedding

of Q into P .

The dual of a preposet P = (P,≤) is the preposet P ∗ := (P,≥).

2.3. Unary operations: cone, dual cone, boundary, coboundary. Let P be a

preposet. The cone CP over P is obtained by adjoining to P an additional element,

denoted 1̂, which is set to be greater than every element of P . The dual cone C∗P :=

(C(P ∗))∗ is obtained by adjoining to P an additional element, denoted 0̂, which is set

to be less than every element of P .

The (co)boundary ∂P (resp. ∂∗P ) of P is defined if P has a greatest (least) element.

In that case P is of the form CQ (resp. C∗Q), and ∂P (resp. ∂∗P ) is set to be equal

to Q. It is easy to see that if the (co)boundary exists, then it is unique — not just

up to isomorphism but as a subpreposet of P . The notion of (co)boundary is directly

related to (co)boundary in (co)homology, cf. [14; figure on p. 26]. It also agrees with a
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notion of combinatorial manifold with (co)boundary, which arises in combinatorial PL

transversality (in the sequel to this paper).

Example 2.4 (2S and ∆S). Let S be a set (possibly infinite). The relation of inclusion

on the set 2S of all subsets of S is a partial order. The resulting subset poset 2S = (2S,⊂)

is isomorphic to its own dual (by taking the complement). The poset ∆S of all nonempty

subsets of S will be called a (combinatorial) simplex or the S-simplex, or the n-simplex

(notation: ∆n) in the case where S is [n + 1] := {0, 1, . . . , n}. If T ⊂ S is non-empty,

∆T is called a face of ∆S. Faces that are 0-simplices (i.e. singletons) are also called

vertices, and faces that are 1-simplices are also called edges. Note that ∂∆S = ∂(∂∗2S)

is isomorphic to its own dual.

Example 2.5 (face poset of polytope). Let B be a convex polytope in some Euclidean

space Rd; that is, B is the convex hull of a finite set of points. The relation of inclusion

on the set FB of all (non-empty) faces of B is a partial order, so we have the face poset

FB = (FB,⊂). If σ is a rectilinear simplex in Rd, that is, the convex hull of an affinely

independent set S of points, then Fσ is isomorphic to the combinatorial simplex ∆S from

the preceding example. If two convex polytopes are affinely equivalent, clearly their face

posets are isomorphic; but not vice versa.

The boundary face poset ∂FB of the convex polytope B is well-known to be dual to the

boundary face poset ∂FB⋆ of the polar B⋆, provided that the interior of B contains the

origin (see [20], [44]). The polar is defined by B⋆ = {x ∈ Rd | (x, y) ≤ 1 for all y ∈ B},

where (·, ·) denotes the inner product in Rd; if B contains the origin, B⋆ is a convex

polytope such that (B⋆)⋆ = B (see [20], [44]). We recall that the polar of a (rectilinear)

n-simplex is an n-simplex; the polar of an n-cube is an n-cross-polytope; the polar of an

icosahedron is a dodecahedron; in R4, the polar of a 24-cell is a 24-cell, and the polar of

a 120-cell is a 600-cell (see [20], [44]).

Example 2.6 (rectilinear simplicial complex). Let K be a rectilinear simplicial complex,

that is, a finite set of rectilinear simplices in some Rd such that

(i) if σ ∈ K and τ is a face of σ, then τ ∈ K;

(ii) if σ, τ ∈ K then σ ∩ τ ∈ K.

The simplices of K form a poset K = (K,⊂) with respect to inclusion. It is not hard to

see that two rectilinear simplicial complexes K and L are isomorphic (i.e. are related by a

simplicial bijection) if and only if the posets K = (K,⊂) and L = (L,⊂) are isomorphic.

Example 2.7 (rectilinear cone complex). Let P be a rectilinear cone complex4, that is,

a family of subcomplexes of a rectilinear simplicial complex K such that

(i) for each σ ∈ P, all maximal simplices of σ (i.e. those simplices of σ that are not

faces of other simplices of σ) share a common vertex vσ;

(ii) for each σ ∈ P, the set ∂σ of all simplices of σ disjoint from vσ is a union of

elements of P;

4These objects arose in van Kampen’s dissertation [26] and also in the work of M. M. Cohen and E.
Akin (see [1; p. 456]) and were further studied by McCrory [30].
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(iii) if σ, τ ∈ P and vσ = vτ , then σ = τ .

The cones (i.e. the elements) of P form a poset P = (P,⊂) with respect to inclusion.

McCrory’s observation that every finite poset is isomorphic to a poset of this form

will be reviewed in Proposition 2.25(a) below. For now, let us confine ourselves to

face posets of convex polytopes. If B is a convex polytope in Rd, then there exists a

rectilinear simplicial complex B♭ in Rd such that each face of B is a union of simplices

of B♭. Namely, B♭ has one vertex vσ in the interior of each (nonempty) face σ of B,

and for to every nonempty chain σ1 ⊂ . . . ⊂ σn of faces of B, the rectilinear simplex

with vertices vσ1
, . . . , vσn

is contained in B♭. Now the family of all subcomplexes of B♭

triangulating the (non-empty) faces of B is a rectilinear cone complex P, and the poset

P = (P,⊂) is isomorphic to FB.

Proposition 2.8. Let P be a rectilinear cone complex.

(a) If σ ∈ P, then every vertex of σ is vρ for some ρ ∈ P with ρ = σ or ρ ⊂ ∂σ.

(b) For all σ, τ ∈ P, either σ = τ , or σ ⊂ ∂τ , or τ ⊂ ∂σ, or else σ ∩ τ ⊂ ∂σ ∩ ∂τ .

(c) For all σ, τ ∈ P, the intersection σ ∩ τ is a union of cones of P.

This will follow trivially from Proposition 2.25(a), but a direct proof contributes to

our understanding of rectilinear cone complexes.

Proof. (a). If v 6= vσ, then v ∈ ∂σ. By (ii), there exists a cone ρ of P contained in ∂σ
and containing v. By finiteness we may assume that ρ contains no other cone with this

property. Then v /∈ ∂ρ by (ii). Hence v = vρ. �

(b). We will show that either τ = σ, or τ ⊂ ∂σ, or else σ ∩ τ ⊂ ∂τ . If vτ = vσ, then

τ = σ by (iii). If vτ 6= vσ and vτ ∈ σ, then by (a), vτ = vρ for some ρ ∈ P, ρ ⊂ ∂σ. Then

τ = ρ by (iii), hence τ ⊂ ∂σ. Finally, if vτ /∈ σ, then σ ∩ τ ⊂ ∂τ . �

(c). By (b) we may assume that σ ∩ τ ⊂ ∂σ ∩ ∂τ . Let A be a simplex of σ ∩ τ . Similarly

to the proof of (a), A is contained in some cone λ of P contained in ∂σ such that A /∈ ∂λ,

and in some cone µ of P contained in ∂τ such that A /∈ ∂µ. Then by (b), λ = µ. �

Example 2.9 (rectilinear cone precomplex). A family P of subcomplexes of a rectilinear

simplicial complex K is said to be a rectilinear cone precomplex if

(i) K is a flag complex, that is, every subcomplex of K isomorphic to the boundary of

a simplex of some dimension d > 1 is contained in a subcomplex of K isomorphic

to the d-simplex;

(ii) each σ ∈ P is a full subcomplex of K, that is, if σ contains the boundary of some

simplex τ of K, then σ contains τ ;

(iii) there exist a bijection v : P → K(0) between elements of P and vertices of K and

a function µ : K(0) → N = {0, 1, . . . } such that for each σ ∈ P, the vertices of K
that lie in σ are precisely v(σ) along with all vertices w of K connected to v(σ)

by an edge in K and satisfying µ(w) < µ(v(σ)).

The cones (i.e. the elements) of P form a preposet P = (P,�) with respect to the

relation σ � τ iff v(σ) ∈ τ . We show in Proposition 2.25(b) below that every finite
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preposet is isomorphic to a preposet of this form. The function µ has its origins in PL

Morse theory.5

2.10. Cones. Let P = (P,�) be a preposet. The cone ⌈p⌉ (resp. the dual cone ⌊p⌋)

of the element p of P is the preposet (C,≤), where C is the subset of P consisting of

all q ∈ P such that q � p (resp. q � p), and r ≤ s iff r � s. The duality is expressed

by ⌊p⌋ = (⌈p
∗
⌉)

∗. We may also write ⌈p⌉P and ⌊p⌋P to emphasize the preposet P . The

definitions of ⌈p⌉ and ⌊p⌋ are in agreement with the previously defined cone and dual

cone over a poset; namely, ⌈p⌉ is the cone over ∂⌈p⌉, and
⌊p⌋ is the dual cone over ∂∗⌊p⌋.

If P is a rectilinear simplicial complex and � is the inclusion relation (see Example

2.6), the cone of a rectilinear simplex σ ∈ P is the face poset Fσ, viewed as the poset

of all simplices of the subcomplex of P triangulating σ (in fact, this subcomplex does

happen to be a ‘cone’ in the terminology of Rourke–Sanderson [36; 2.8(7)]); whereas the

dual cone of σ is isomorphic to what is known as the ‘dual cone’ of σ in PL topology

(see [36; 2.27(6)]).

2.11. Cone complexes and precomplexes. By a cone complex we mean a countable

poset where every cone is finite. A cone precomplex is a preposet whose transitive closure

is a cone complex. A cone precomplex P such that the dual preposet P ∗ is also a cone

precomplex is called locally finite.

Remark 2.12. Cone precomplexes other than cone complexes arise in practice as triple

deleted prejoins of cone complexes and as mapping cylinders of non-closed conical maps

between cone complexes (see Corollary 3.23); the non-closed conical maps in turn arise

in practice as diagonal maps P → P×P and more importantly as bonding maps between

nerves of coverings.

Lemma 2.13. (a) Every preposet injects conically into a simplex.

(b) A preposet is a poset iff it is isomorphic to a subposet of a simplex.

Proof. (b). Since every simplex is itself a poset, every preposet embedded into a simplex

is a poset. Conversely, every poset P = (P,≥) is isomorphic to the poset of cones of P

ordered by inclusion of their underlying sets, which is a subposet of 2P \ {∅}. �

(a). This follows from (b) since every preposet injects conically into its transitive closure.

�

2.14. Subcomplex. Let P = (P,�) be a preposet. A subprecomplex (resp. dual

subprecomplex) of P is a subpreposet Q = (Q,�) of P such that p ≺ q ∈ Q (resp. p ≻
q ∈ Q) implies p ∈ Q. When P itself is known to be a poset, we shorten ‘subprecomplex’

to subcomplex. Note that if Q is a subprecomplex of P , then 〈Q〉 is a subcomplex of

〈P 〉.

5Our motivating sources include [5] and [30; Example on p. 275]. For comprehensive treatments of
PL Morse theory see Kearton–Lickorish [27] (along with references to Kosiński and Kuiper therein),
Forman [17] (along with elaborations in [35] and [28]) and Bestvina [4].
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On the other hand, every subpreposet Q of P (dually) generates the subpreposet

⌈Q⌉ (resp. ⌊Q⌋) of P with underlying set consisting of
⋃

q∈Q ⌈q⌉ (resp.
⋃

q∈Q
⌊q⌋). If P

is a poset, ⌈Q⌉ and ⌊Q⌋ coincide with the smallest subcomplex and the smallest dual

subcomplex containing Q.

From now on we often do not distinguish between a preposet P = (P,�) and its

underlying set P (by an abuse of notation).

2.15. Complete quasi-lattice. A complete quasi-lattice (CQL) is a poset P such that

every non-empty Q ⊂ P that has an upper bound in P (i.e. a p ∈ P such that Q ⊂ ⌈p⌉)

also has a least upper bound in P (i.e. an upper bound p ∈ P such that ⌊p⌋ contains all

upper bounds of Q in P ).

Lemma 2.16. A poset P is a CQL iff every non-empty subset of P that has a lower

bound in P also has a greatest lower bound in P .

Proof. By symmetry, it suffices to prove the ‘only if’ assertion. If P is a CQL and a

subset Q ⊂ P has a lower bound in P , then the set L of all lower bounds of Q in

P is nonempty and has an upper bound in P (specifically, any element of Q will do).

Then there exists the greatest lower bound u of L in P , that is, ⌈u⌉ contains L and ⌊u⌋

contains all upper bounds of L, in particular, all of Q. By definition, u is the greatest

lower bound of Q. �

Corollary 2.17. (a) Every simplex is a CQL.

(b) Every subcomplex of a CQL is a CQL.

Proof. (a). The greatest lower bound of a set of A of nonempty subsets Sα ⊂ S is their

intersection
⋂

α Sα, if it is nonempty; else A has no lower bounds. �

(b). Let P be a CQL and Q its subcomplex. If the greatest lower bound of a subset

S ⊂ Q exists in P , then it belongs to Q, since Q contains all its lower bounds. �

2.18. Atoms. An element σ of a poset P is called an atom of P , if ⌈σ⌉ = {σ}. The set

of all atoms of P will be denoted A(P ). A poset P is called atomic, if every its element is

the least upper bound of some subset of A(P ). It is easy to see that A(⌈σ⌉) = A(P )∩⌈σ⌉.

Hence every element σ of an atomic poset is the least upper bound of A(⌈σ⌉).

In the case of atomic posets Lemma 2.13 admits an amplification:

Lemma 2.19. If P is an atomic poset, then the formula σ 7→ A(⌈σ⌉) defines an embed-

ding of P into ∆A(P ).

Proof. It is easy to see that the formula defines a conical map f : P → 2A(P ). Since each

σ ∈ P is the least upper bound of A(⌈σ⌉), the latter is nonempty (whence the image

of f is in ∆A(P )). If A(⌈τ ⌉) ⊂ A(⌈σ⌉), then the least upper bound σ of A(⌈σ⌉) is an

upper bound of A(⌈τ ⌉). Hence its least upper bound τ satisfies τ ≤ σ (whence f is an

embedding). �
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Lemma 2.20. An atomic poset P is a CQL if and only if every R ⊂ A(P ) that has an

upper bound in P has a least upper bound in P .

Proof. Only the “if” direction needs a proof. Suppose we are given an S ⊂ P that has

an upper bound in P . Then so does R := A(⌈S⌉). Hence by our assumption R has

a least upper bound ρ. Since P is atomic, every p ∈ S is the least upper bound of

A(⌈p⌉) = A(⌈S⌉)∩ ⌈p⌉. Since ρ is an upper bound of R, it is an upper bound of its subset

A(⌈p⌉) for each p ∈ S. However p is the least upper bound of the same set, so ρ is an

upper bound p. Thus ρ is an upper bound of S. If ρ′ is another upper bound of S,

then ρ′ is an upper bound of A(⌈S⌉). But ρ is the least upper bound of the same set, so

ρ′ ≥ ρ. Thus ρ is the least upper bound of S. �

2.21. Simplicial complex. A simplicial poset is a CQL where every cone is isomorphic

to a simplex. (Compare [3].) A simplicial cone complex is abbreviated to a simplicial

complex. The cones of a simplicial complex K are thus called its simplices. Clearly,

every simplicial complex is atomic.

Theorem 2.22. A poset is simplicial iff it is isomorphic to a subcomplex of a simplex.

In particular, it follows that a cone complex is a simplicial complex iff it is isomorphic

to a subcomplex of a simplex.

Proof. The ‘if’ assertion is straightforward. Every cone of a simplex is a simplex. A

subcomplex of a simplex is a CQL by Corollary 2.17.

Conversely, let K be a simplicial complex. Let us consider the embedding f : K →

∆A(K) constructed in Lemma 2.19. If T ⊂ A(⌈σ⌉), then the least upper bound σ of

A(⌈σ⌉) is an upper bound of T , hence its least upper bound τ exists and satisfies τ ≤ σ.

Therefore A(⌈τ ⌉) = A(K) ∩ ⌈τ ⌉ contains T , moreover τ is the least upper bound of

A(⌈τ ⌉), as well as of T . Since ⌈τ ⌉ is isomorphic to a simplex, this implies T = A(⌈τ ⌉).

So f(τ) = T , whence the image of f is a subcomplex of ∆A(K). �

If K is a finite simplicial complex, it is isomorphic to a subcomplex of a finite-

dimensional simplex by the proof of Theorem 2.22. The latter is in turn isomorphic

to the poset of nonempty faces of some rectilinear simplex ∆ in some Euclidean space

(see Example 2.5). Hence K is isomorphic to the poset of simplices of some rectilinear

subcomplex of ∆. We have proved

Corollary 2.23. Every finite simplicial complex is isomorphic to the poset of inclusions

of simplices of some rectilinear simplicial complex.

2.24. Barycentric subdivision. Let P = (P,�) be a preposet. A chain in P is a

Q ⊂ P that is a totally ordered by ≺ (that is, for each p, q ∈ Q either p ≺ q or p � q;

note that this already implies that � is transitive on Q). The poset P ♭ of all nonempty

finite chains of P ordered by inclusion is a subcomplex of ∆P and so a simplicial poset

(a simplicial complex if P is countable); it is called the barycentric subdivision of P .
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Proposition 2.25. (a) [30] Every finite cone complex is isomorphic to the poset of cones

of a rectilinear cone complex.

(b) Every finite cone precomplex is isomorphic to the preposet of cones of a rectilinear

cone precomplex.

Proof. (a). Let P = (P,�) be the given cone complex, and let p ∈ P . The poset ⌈p⌉
♭

of all nonempty finite chains of P contained in ⌈p⌉ is a subcomplex of the barycentric

subdivision P ♭. In turn, P ♭ is a subcomplex of ∆P . The latter is isomorphic to the poset

of nonempty faces of some rectilinear simplex ∆ in some Euclidean space (see Example

2.5). Hence P ♭ is isomorphic to the poset of simplices of some rectilinear subcomplex K

of ∆. Then the rectilinear subcomplexes of K corresponding to ⌈p⌉
♭, p ∈ P , under this

isomorphism, clearly form a rectilinear cone complex, whose poset of cones is P . �

(b). Let P be the given cone precomplex, and let us inject it into a finite simplex ∆n by

the proof of Lemma 2.13(a). Then P ♭ is embedded in (∆n)♭. Every vertex v of (∆n)♭ is

a chain {σv} of length one, where σv ∈ ∆n. Let µ : (∆n)♭ → [n+ 1] = {0, 1, . . . , n} send
v to the dimension of the simplex σv. Then for σ, τ ∈ P , if σ ≺ τ then µ({σ}) < µ({τ}).

Also it is easy to see that P ♭ is a flag complex for every cone precomplex P . The rest of

the proof repeats that of (a). �

2.26. Flag complex and full subcomplex. Let P be a preposet. A subcomplex Q of

P is called full in P if ∂⌈q⌉ ⊂ Q and ∂⌈q⌉ 6= ∅ imply q ∈ Q. A flag complex is a simplicial

complex K such that every subcomplex of K that is isomorphic to the boundary of a

simplex of dimension > 1 is the boundary of some simplex of K. Obviously, every full

subcomplex of a flag complex is a flag complex.

It is easy to see that the barycentric subdivision of every cone precomplex is a flag

complex; and that if Q is embedded in P , then Q♭ is a full subcomplex of P ♭. Using

these facts, it is easy to prove

Proposition 2.27. Let K be a simplicial complex and L a subcomplex of K♭.

(a) L is a flag complex iff it is the barycentric subdivision of some cone precomplex

injected in K.

(b) L is a full subcomplex of K♭ iff it is the barycentric subdivision of some cone

complex embedded in K.

2.28. Simplicial maps. A map f between simplicial posets is called simplicial if

it takes each simplex ⌈σ⌉ onto (not just into) ⌈f(σ)⌉. Clearly, every isomorphism of

simplicial posets is simplicial. Every map of sets f : S → T induces a simplicial map

∆f : ∆S → ∆T . If K is a subcomplex of ∆S and L is a subcomplex of ∆T , it is easy to

see that every simplicial map K → L is a restriction of ∆f for some f : S → T .

If f : P → Q is a conical map between preposets, it sends every nonempty finite chain

of P into a nonempty finite chain of Q. The resulting map f ♭ : P ♭ → Q♭ is the restriction

to a subcomplex of the simplicial map ∆f : ∆P → ∆Q, so it is simplicial.



UNIFORM POLYHEDRA 15

2.B. Some basic PL topology

Let P = (P,≤) and Q = (Q,≤) be preposets.

The prejoin P + Q is the preposet (P ⊔ Q,�), where p � q iff either p ≤ q and both

p, q ∈ P ; or p ≤ q and both p, q ∈ Q; or p ∈ P and q ∈ Q. Clearly, the prejoin of two

posets is a poset. Note that CP ≃ P + pt and C∗P ≃ pt+ P .

The product P × Q is the preposet (P × Q,�), where (p, q) � (p′, q′) iff p ≤ p′ and

q ≤ q′. It is easy to see that 2S × 2T ≃ 2S⊔T naturally in S and T .

The join P ∗Q := ∂∗(C∗P × C∗Q) is obtained from (C∗P )× (C∗Q) by removing the

bottom element (0̂, 0̂). Thus C∗(P ∗Q) ≃ C∗P ×C∗Q, whereas P ∗Q itself is the union

C∗P ×Q ∪ P × C∗Q along their common part P ×Q.

From the above, ∆S ∗ ∆T ≃ ∆S⊔T naturally in S and T . It follows that the join

of simplicial complexes K ⊂ ∆S and L ⊂ ∆T is isomorphic to the simplicial complex

{σ ∪ τ ⊂ S ⊔ T | σ ∈ K ∪ {∅}, τ ∈ L ∪ {∅}, σ ∪ τ 6= ∅} ⊂ ∆S⊔T .

The join and the prejoin are related via barycentric subdivision: (P +Q)♭ ≃ P ♭ ∗Q♭.

Indeed, a nonempty finite chain in P + Q consists of a finite chain in P and a finite

chain in Q, at least one of which is nonempty. Note that in contrast to prejoin, join is

commutative: P ∗Q ≃ Q ∗ P . Prejoin is associative; in particular, C(C∗P ) ≃ C∗(CP ).

Remark 2.29. In the case where P and Q are finite simplicial complexes, the above

mentioned isomorphism

P ∗Q ≃ C∗P ×Q ∪
P×Q

P × C∗Q

can be regarded as a combinatorial form of the well-known (cf. [40; 4.3.20]) homeomor-

phism

X ∗ Y ∼= (pt ∗X)× Y ∪
X×Y

X × (pt ∗ Y ),

where X = |P | and Y = |Q|. However it does not quite fit in the familiar simplicial

realm even in this case, for C∗P and P ×Q are no longer simplicial complexes.

2.30. An explicit embedding. We illustrate the above by describing an explicit

embedding of any n-polyhedron P in R2n+1, which seems to have appeared only recently6

[33]. Given a triangulationK of P , let Si be the subposet ofK consisting of all i-simplices

(thus every pair of elements in Si is incomparable). The conical map K → S0+ · · ·+Sn

is clearly an embedding. Then we also have an embedding K♭ →֒ S0 ∗ · · ·∗Sn. The finite

set |S0| embeds in the unit interval |pt ∗ pt|, so P embeds in |pt ∗ pt ∗ S1 ∗ · · · ∗ Sn| =

|C(pt ∗ S1 ∗ · · · ∗ Sn)|. We have C(pt ∗ S1 ∗ · · · ∗ Sn) = C(pt)× CS1 × . . .× CSn. Each

|CSi| embeds in |C(pt ∗ pt)|, and C(pt ∗ pt) = C(pt) × C(pt). Thus P embeds in the

(2n+ 1)-cube |C(pt)|2n+1.

6We note that there is a well-known explicit embedding of an n-polyhedron in R2n+1 based on the fact
that every set of at most m+1 distinct points on the “moment curve” γ(R) ⊂ Rm, γ(t) = (t, t2, . . . , tm),
is affinely independent – which fact is proved using the Vandermonde determinant.
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2.31. Star and link. If P is a preposet and σ ∈ P , we define the star st(σ, P ) = ⌈⌊σ⌋⌉
and the link lk(σ, P ) = ∂∗⌊σ⌋. Thus if P is a poset, st(σ, P ) is a subcomplex of P and

lk(σ, P ) is a dual subcomplex of P .

If K is a simplicial complex and σ ∈ K, then lk(σ,K) is isomorphic to the subcomplex

of K consisting of all τ ∈ st(σ,K) disjoint from σ; indeed, an isomorphism is given by

σ ⊔ τ 7→ τ . It follows that st(σ,K) ≃ ⌈σ⌉ ∗ lk(σ,K) for every simplicial complex K.

Given σ ∈ P and τ ∈ Q, clearly ⌊(σ, τ)⌋P×Q ≃ ⌊σ1
⌋ × ⌊σ2

⌋; applying the coboundary,

we obtain

lk((σ, τ), P ×Q) ≃ lk(σ, P ) ∗ lk(τ, Q).

Remark 2.32. In the case where P and Q are finite simplicial complexes, the latter

isomorphism can be regarded as a combinatorial form of the well-known (cf. [40; 4.3.21])

homeomorphism

lk((x, y), X × Y ) ∼= lk(x,X) ∗ lk(y, Y ),

where |P | = X and |Q| = Y are compact polyhedra. However it does not quite fit in the

familiar simplicial realm even in this case, for P ×Q is no longer a simplicial complex.

2.33. Canonical subdivision. If P = (P,≤) is a preposet and a, b ∈ P are such that

a ≤ b, the interval [a, b] is the subposet ⌊a⌋∩ ⌈b⌉ = {c ∈ P | a ≤ c ≤ b} of P . We say that

an interval [a, b] is pre-included in an interval [c, d] and write [a, b] ⋐ [c, d] if a ∈ [c, d]

and b ∈ [c, d] When P is a poset, this is just the usual inclusion relation. In general, ⋐

is a reflexive acyclic relation on the set of all intervals of P (the latter set is really just

the relation ≤ which officially is a subset of P ×P). We define the canonical subdivision

P# of P to be the preposet of all intervals of P ordered by pre-inclusion.

We note that the canonical subdivision of every poset is an atomic poset. If P is a

CQL, then so is P#. Clearly, (P ∗)# ≃ P# and (P ×Q)# = P#×Q# for all preposets P

and Q. It follows that (C∗(P ∗Q))# = (C∗P )#× (C∗Q)# and in particular, (P ∗Q)# =

(C∗P )# ×Q# ∪ P# × (C∗Q)#.

Remark 2.34. In the case where P is a poset, the operation of canonical subdivision

is known (under different names) in Topological Combinatorics (see Babson, Billera

and Chan [3] and references there, and Živaljević [45; Definition 7]), as well as in pure

Combinatorics (see [29] and references there). Geometric versions of this construction,

mostly restricted to the case where P is a simplicial complex, are also known in algebraic

topology (see [15]), in combinatorial geometry (see [8]) and in geometric group theory

(see [5]).

2.35. Cubical complexes. The poset IS := (2S)# is called a cube or the S-cube; or

the n-cube (notation: In) if S = [n]. Note that

IS = (C∗∆S)# ≃ (C∗(∗
S
∆0))# = (

∏

S

C∗∆0)# =
∏

S

(C∗∆0)# =
∏

S

I1.

In particular, IS⊔T ≃ IS × IT by an isomorphism natural in S and T .

A cubical poset is a CQL where every cone is isomorphic to a cube. (Compare [3].) A

‘cubical cone complex’ is abbreviated to a cubical complex. Cones of a cubical complex
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are thus called its cubes. By the above, the product of two cubical complexes is a cubical

complex. Every cubical complex is atomic, since every cube is.

In contrast to Theorem 2.22, not every cubical complex is isomorphic to a subcomplex

of a cube. For instance, the simplicial complex ∂∆2, which also happens to be a cubical

complex, is not isomorphic to any subcomplex of any cube, as it contains ‘a cycle of odd

length’.

Lemma 2.36. (a) If K is a simplicial complex, then (C∗K)# is a cubical complex.

(b) If Q is a cubical complex and σ ∈ Q, then lk(σ,Q) is a simplicial complex and

st(σ,Q) ≃ ⌈σ⌉ × (C∗ lk(σ,Q))#.

Proof. (a). By Theorem 2.22, K is isomorphic to a subcomplex of some simplex ∆S.

Then (C∗K)# is isomorphic to a subcomplex of the cube (C∗∆S)# ≃ IS. �

(b). Given a τ ∈ lk(σ,Q), we have (⌈τ ⌉, ⌈σ⌉) ≃ (IT , IS) for some sets S ⊂ T . Then

lk(σ, ⌈τ ⌉) can be identified with the poset, embedded in IT and consisting of all intervals

strictly containing [∅, S] — that is, of all intervals [∅, S ∪ R], where ∅ 6= R ⊂ T \ S.

Hence it is isomorphic to ∆T\S.

We have st(σ, ⌈τ ⌉) ≃ ⌈σ⌉ × I
T\S, whereas IT\S ≃ (C∗∆T\S)# ≃ (C∗ lk(σ, ⌈τ ⌉))

#. The

resulting isomorphism st(σ, ⌈τ ⌉) ≃ ⌈σ⌉ × (C∗ lk(σ, ⌈τ ⌉))
# is natural in τ , which implies

the second assertion.

To complete the proof of the first assertion, we note that each cone of lk(σ,Q) is of

the form lk(σ, ⌈τ ⌉), which in turn has been shown to be isomorphic to a simplex. Now

lk(σ,Q) is a dual subcomplex of the CQL Q, and hence itself a CQL. �

2.37. Van Kampen duality. The definition of join: C∗(P ∗Q) = C∗P × C∗Q, along

with (C∗P )∗ ≃ C(P ∗) imply that C((P ∗Q)∗) ≃ (C(P ∗)× C(Q∗)), or equivalently,

P ∗Q ≃ (∂(C(P ∗)× C(Q∗)))∗

for any preposets P and Q. In the case where Pλ are posets, this formula was known

already to E. R. van Kampen (1929), cf. [30; Proposition 1.2]. It implies, for instance,

that the boundary of the n-cube is dual (as a poset) to the boundary of the n-cross-

polytope (compare Example 2.5):
n

∗
i=1

∂I1 ≃ (∂In)∗.

Theorem 2.38 ([3] (see also [13], [7; 5.22], [25; Fig. 2]; compare [19])). If K is a

finite simplicial complex, there exists a finite cubical complex Q such that lk(v,Q) is

isomorphic to K for every vertex v of Q.

The ‘mirroring’ construction of Theorem 2.38 has a complex analogue, where the

(Z/2)n symmetry is replaced by an (S1)n symmetry; it is known as the ‘moment-angle

complex’ (see [8]). Both constructions are special cases of the ‘polyhedral product’ [11].

Proof. K can be identified with a subcomplex of the (n − 1)-simplex ∆[n] for some n.

Then C∗K is identified with a subcomplex of 2[n]. The ‘folding’ conical map f : I → 2[1]
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can be multiplied by itself to yield a conical map F : In → 2[n]. Let Q = F−1(C∗K).

Then Q is a subcomplex of In and contains the set F−1(0̂) of all vertices of In. For each

vertex v = [S, S] in this set, define Jv : 2
[n] → In by T 7→ [T \ S, T ∪ S]. Then Jv is a

conical map, Jv(2
[n]) = ⌊v⌋, and the composition 2[n]

Jv−→ In
F
−→ 2[n] is the identity. Hence

F |⌊v⌋ is an isomorphism. Therefore lk(v,Q) ≃ lk(0̂, C∗K) = K. �

2.39. Simple complexes. A simple poset is a CQL P such that for every σ ∈ P

and every τ ∈ lk(σ, P ), the poset lk(σ, ⌈τ ⌉) is isomorphic to a simplex. This includes

simplicial and cubical posets as special cases.

Lemma 2.40. (a) If K is a simplicial poset, then C∗K is a simple poset.

(b) If P is a simple poset, σ ∈ P , then lk(σ, P ) is a simplicial poset.

(c) If P is a CQL, then it is a simple poset iff P# is a cubical poset.

(d) If P is a simple poset, then P ∗ is a simple poset.

A version of the ‘only if’ implication in (c) is found in [3].

Proof. (a). Since K is a CQL, then so is C∗K. If τ ∈ C∗K, then either τ ∈ K or τ = 0̂.

If further σ ∈ lk(τ, C∗K), then lk(τ, ⌈σ⌉C∗K) is isomorphic to the simplex lk(τ, ⌈σ⌉K) in

the first case and to the simplex ⌈σ⌉ in the second case. �

(b). Similar to the proof of the first assertion of Lemma 2.36(b). �

(c). Given a σ ∈ P , by (b), ⌊σ⌋ ≃ C∗K for some simplicial poset K. Hence ⌊σ⌋# is a

cubical poset by Lemma 2.36(a). Thus cones of P# are cubes, and each ⌊σ⌋# is a CQL.

Now suppose that P# contains a lower bound for a collection of intervals [σλ, τλ]. Since

P is a CQL,
⋂

λ
⌊σλ

⌋ = ⌊σ⌋ for some σ ∈ P . Hence
⋂

λ[σλ, τλ] =
⋂

[σ, τλ], which is an

interval since ⌊σ⌋# is a CQL. Thus P# is a CQL.

Conversely, suppose that P# is a cubical poset. Since P is a poset, ⌊σ⌋# is a subcom-

plex of P# for each σ ∈ P , and in particular a cubical poset. Then by Lemma 2.36(b),

each lk([σ, σ], ⌊σ⌋#) is a simplicial poset. On the other hand, it is isomorphic to lk(σ, P )

since P is a poset. Thus P is simple. �

(d). Both the hypothesis and the conclusion are equivalent to saying that P is a CQL

and every interval [σ, τ ] ∈ P considered as a subposet is isomorphic to the dual cone

over a simplex (⇔ the cone over the dual of a simplex). �

2.41. Affine polytopal complexes. An affine polytopal complex (compare [4; last

remark to Definition 2.1]) is a countable complete quasi-lattice K where to every σ ∈ K

there is associated an isomorphism of ⌈σ⌉ with the poset of non-empty faces of a convex

polytope Pσ (compare Example 2.5) so that every face inclusion ⌈τ ⌉ ⊂ ⌈σ⌉ is realized by

an affine isomorphism between Pτ and the face of Pσ corresponding to τ . This includes

cubical and simplicial complexes as special cases. Every affine polytopal complex is

atomic since the poset of nonempty faces of every convex polytope is. Affine polytopal

complexes are not equivalent to ‘cell complexes’ in the sense of Rourke–Sanderson [36],

who additionally require linear embeddability into some Euclidean space. For instance,
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the cubulation of the Möbius band into 3 squares is an affine polytopal complex (and a

cubical complex) but not a cell complex in the sense of [36] (see [8]).

A convex d-polytope is called simple if every its vertex is incident to precisely d

edges (which is the minimal possible number). In particular, this includes all finite-

dimensional simplices and cubes. Every k-face of a simple d-polytope is clearly itself a

simple k-polytope (by downward induction on k); hence it is incident to precisely d−k of

(k+1)-faces (by counting their edges). Hence its link in the d-polytope is the boundary

of a (d−k−1)-polytope with d−k vertices, which can only be the simplex. Thus every

affine polytopal complex whose polytopes are simple is a simple poset. In particular,

Lemma 2.40(c) has the following consequence:

Theorem 2.42. If K is an affine polytopal complex whose polytopes are simple, then

K# is a cubical complex.

This is a combinatorial form of a well-known geometric construction (see [8]).

2.43. Infinite product and join. Similarly to the case of two factors one defines the

product
∏

λ∈Λ

Pλ of an arbitrary family of preposets Pλ. Similarly, their join is defined by

∗
λ∈Λ

Pλ = ∂∗
∏

λ∈Λ

C∗Pλ. Note the van Kampen duality ∗
λ∈Λ

Pλ ≃ (∂
∏

λ∈Λ

CP ∗
λ )

∗.

If we are given some basepoints bλ ∈ Pλ, there is the pointed weak product
w
∏

λ∈Λ

Pλ,

which is embedded in
∏

λ∈Λ

Pλ and is the union of (
∏

λ∈Φ

Pλ) × (
∏

λ∈Λ\Φ

{bλ}) over all finite

Φ ⊂ Λ. It also has the basepoint (bλ)λ∈Λ.

The weak join
w

∗
λ∈Λ

Pλ is by definition ∂∗(
w
∏

λ∈Λ

C∗Pλ), where all the basepoints are taken

at 0̂. Thus the weak join is the union of all finite subjoins. It can be identified with
⋃

λ∈Λ

(Pλ ×
w
∏

κ∈Λ\{λ}

C∗Pκ). The weak van Kampen duality reads
w

∗
λ∈Λ

Pλ ≃ (∂
w
∏

λ∈Λ

CP ∗
λ )

∗,

where all basepoints are taken at 1̂.

The weak Λ-simplex ∆Λ
w := ∗w

Λ ∆0 is identified with the poset ∂∗2Λw of all nonempty

finite subsets of Λ; it has no greatest element whenever Λ is infinite. Neither has the

weak Λ-cube IΛw := (2Λw)
# ≃

∏w
Λ I

1, where all basepoints are taken at [0̂, 0̂]. In contrast,

the co-weak Λ-cube IΛc :=
∏w

Λ I
1, where all basepoints are taken at [0̂, 1̂], has a greatest

element. Moreover, by virtue of the weak van Kampen duality, ∂IΛc ≃ (SΛ
w)

∗, where

the weak Λ-sphere SΛ
w = ∗w

Λ ∂I
1. Somewhat reminiscent of the mirroring construction

(in the proof of Theorem 2.38), SΛ
w contains copies of ∆Λ

w, and therefore (IΛc )
∗ contains

copies of 2Λw. In particular, (IΛc )
# ≃ ((IΛc )

∗)# contains copies of (2Λw)
# = IΛw .

3. Geometric realization

3.A. Geometric realization via embedding

Rectilinear geometric realization of a finite preposet has been described in Proposition

2.25. Lemma 2.13 yields a realization of an arbitrary preposet within some combinatorial
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simplex. This however avoids the issue of sensible geometric realization of the simplex

itself. Let us now address it. In the case of finite simplicial complexes, the following

construction yields essentially the same result as in [38]. (The author found it while

being unaware of [38].)

3.1. Geometric realization. If S is a set, the functional space [0, 1]S of all maps

f : S → [0, 1] is endowed with the metric d(f, g) = sups∈S |f(s) − g(s)|. Note that

the underlying uniform space of [0, 1]S is just U(S, [0, 1]), where S endowed with the

discrete uniformity. The subset {0, 1}S of [0, 1]S may be identified with the power set

2S, by associating to every subset T ⊂ S its characteristic function χT : S → [0, 1],

defined by χT (T ) = 1 and χT (S \T ) = 0. Note that if S is finite, [0, 1]S is just the usual

|S|-dimensional cube with the l∞ metric, and {0, 1}S is the set of its vertices.

Let us recall the embedding of a poset into a simplex given by Lemma 2.13(b). Given

a poset P = (P,≤), we identify every p ∈ P with the cone ⌈p⌉, viewed as an element of

2P = {0, 1}P ⊂ [0, 1]P . Then the geometric realization of P is a subspace |P | ⊂ [0, 1]P ,

defined to be the union of the convex hulls of all nonempty finite chains of P . Note that

the cube vertex at the origin, {0, 0, . . . } is never in |P | since ⌈p⌉ is never empty.

More generally, given a preposet P = (P,≺), following Lemma 2.13(a) we inject it

into its transitive closure 〈P 〉 = (P,≺≺), and identify every p ∈ P with the cone ⌈p⌉≺≺
in the transitive closure, viewed again as an element of 2P = {0, 1}P ⊂ [0, 1]P . Then

the geometric realization of P is a subspace |P | ⊂ [0, 1]P , defined to be the union of the

convex hulls of all nonempty finite chains of P . Every chain of P is a chain of 〈P 〉, hence

|P | ⊂ | 〈P 〉 |.

Since [0, 1]P is complete, the closure |P | of |P | in [0, 1]P is uniformly homeomorphic

to the completion of |P |. Note that each convex hull in the definition of |P | is compact,

and therefore separable. Hence if P is countable, |P | is separable; consequently |P | is a

Polish uniform space, that is, a separable metrizable complete uniform space.

3.2. Generalized geometric realization. Let P be a preposet, and fix an injection

j : P → 2S for some S. The underlying set 2S of the poset 2S is identified, as before,

with {0, 1}S ⊂ [0, 1]S. Then the geometric j-realization of P is a subspace |P |j ⊂ [0, 1]S,

defined to be the union of the convex hulls of the j-images of all nonempty finite chains

in P . We note four basic examples:

• The injection jP of Lemma 2.13 yields the standard geometric realization |P |jP = |P |.

• If P has a least element, then there is a more economical embedding j′P : P →֒ 2∂
∗P ,

p 7→ ⌈p⌉ ∩ ∂
∗P . We call |P |′ := |P |j′

P
the reduced geometric realization of P .

• On the other hand, if P is an atomic poset, then Lemma 2.19 yields a more econom-

ical embedding aP : P →֒ ∆A(P ). We call |P |• := |P |aP the atomic geometric realization

of P . Note that aP : ∆
Λ → ∆Λ is the identity.

• Finally if P = C∗Q, where Q is an atomic poset, then aQ extends to a′P : P →֒ 2A(P ).

We still call |P |• := |P |a′
P
the atomic geometric realization of P . Note that a′2Λ : 2

Λ → 2Λ

is the identity.
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3.3. Geometric realization of cone precomplex. If P = (P,≤) is a cone complex,

then P is countable, and the cone ⌈p⌉ of every p ∈ P is finite. Then jP (P ) ⊂ ∆P lies in

the weak P-simplex ∆P
w , that is the set of all nonempty finite subsets of P (see 2.43). If C

is a finite chain of ∆P , its convex hull lies in [0, 1]supC ×{0}P\supC . Consequently, |∆P
w |

•

lies in q0 := ([0, 1], 0)(P
+,∞), where P+ = P ∪ {∞} is the one-point compactification

of the discrete space P. Since q0 is complete, |∆P
w |

• also lies in q0. More generally, if

P is a cone precomplex, its transitive closure 〈P 〉 is a cone complex, and |P | lies in

| 〈P 〉 | ⊂ |∆P
w |

• ⊂ q0.

It is not hard to see that q0 itself is identified with |2Pw|
•. On the other hand, note

that |∆N
w|

• $ |∆N|•, since |∆N|• includes convex hulls of finite chains of infinite subsets

of N. In fact, since there are uncountably many of infinite subsets of N, |∆N|• is not

separable.

If P is a cone complex that is Noetherian, i.e. contains no infinite chain (which could

only be ascending since all cones are finite), then |P | is closed in [0, 1]P and hence

complete. It follows that |P | is complete also for every Noetherian cone precomplex P ,

that is a preposet whose transitive closure is a Noetherian cone complex.

Example 3.4. If P is a poset and j : P → 2S is an injection but not an embedding,

then |P |j need not be isometric to |P |. Indeed, let P be the subposet of 2{a,b,c} with

elements ∅, {a}, {a, b}, {a, b, c}, {c}. Let j : P → 2{a,b,c} re-embed {c} onto {b} and

fix the other elements. Let C be the chain {∅, {a}, {a, b}, {a, b, c}} and let D be the

chain {∅, {c}, {a, b, c}} in P . A point x ∈ |C| ⊂ |P | has coordinates (xa, xb, xc) for some

numbers 1 ≥ xa ≥ xb ≥ xc ≥ 0, and a point y′ ∈ |D| has coordinates (y1, y2) for some

numbers 1 ≥ y2 ≥ y1 ≥ 0. Then the image y of y′ in |P | has coordinates (y2, y2, y1), and

the image yj of y
′ in |P |j has coordinates (y2, y1, y2). Setting (xa, xb, xc) = (3

4
, 1
2
, 1
4
) and

(y1, y2) = (3
4
, 1
2
), we obtain d(x, y) = 1

2
and d(x, yj) =

1
4
.

Example 3.5. Here is a simpler example of the same kind. Let P be the subposet of

2{a,b} with elements ∅, {a} and {b}. Let j : P → 2{a,b} re-embed {a} onto {a, b} and fix

the other elements. Let C be the chain {∅, {a}} and let D be the singleton chain {{b}}

in P . Let x ∈ |C| ⊂ |P | have coordinates (xa, xb) = (0, 1
2
); then its image xj in |P |j has

coordinates (1
2
, 1
2
). The point y ∈ |D| = {y} has coordinates (1, 0). Hence d(x, y) = 1

and d(xj, y) =
1
2
.

Theorem 3.6. If P is a poset and j : P → 2S is an embedding, then |P |j is isometric

to |P |.

This trivially implies that if P is a preposet and j : P → 2S is an injection that factors

through an embedding of the transitive closure, then |P |j is isometric to |P |.

Proof. We first consider the case where P is the totally ordered n-element poset [n] =

({1, . . . , n},≤), where ≤ has the usual meaning. To avoid confusion, we consider the

standard embedding j[n] of [n] in 2{1,...,n}, that is, j[n](i) = {1, . . . , i}. Then each j[n](i) ∈
2{1,...,n} is identified with the vertex (0, . . . , 0, 1, . . . , 1) (n−i zeroes, i ones) of the simplex

|[n]| ⊂ [0, 1]n. Similarly each Pi := j(i) ∈ 2S is identified with a point of {0, 1}S ⊂
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[0, 1]S. Then jj−1
[n] extends uniquely to an affine map Φj : |[n]| → |[n]|j. A point x =

(x1, . . . , xn) ∈ [0, 1]n lies in |[n]| if and only if 1 = x1 ≥ x2 ≥ · · · ≥ xn ≥ 0. Let us write

x̂ = Φj(x). It is easy to see that x̂(s) = xi for each s ∈ Pi \ Pi−1, where P0 = ∅, and
x̂(s) = 0 for s /∈ Pn.

Given another point y ∈ |[n]|, since each Pi\Pi−1 is nonempty, it follows that d(x̂, ŷ) =

sups∈S |x̂(s) − ŷ(s)| equals maxi∈[n] |xi − yi| = d(x, y). Thus Φj is an isometry, which

completes the proof of the case P = [n].

We now resume the proof of the general case, where P = (P,≤) is an arbitrary

poset. Given a finite chain C in P , we may represent C as the image of the poset [k],

where k is the cardinality of C, under the (unique) isomorphism c : [k] → C. Consider

the compositions c : [k]
c
−→ P ⊂ 2P and jc : [k]

c
−→ P

j
−→ 2S. These extend to the

isometries Φc : |[k]| → |[k]|c ⊂ |P | and Φjc : |[k]| → |[k]|jc ⊂ |P |j. The compositions

|[k]|c
Φ−1

c−−→ |[k]|
Φjc

−−→ |[k]|jc agree with each other for different c, and thus combine into a

map Φj : |P | → |P |j that is an isometry on the convex hull of every finite chain of P .

To complete the proof, it suffices to show that all x, y ∈ |P | satisfy d(Φj(x),Φj(y)) =

d(x, y). This will follow once we prove that d(Φj(x),Φj(y)) does not depend on j. We

may assume without loss of generality that P has the least element 0̂ and the greatest

element 1̂; for if P has no least (resp. greatest) element, then S /∈ j(P ) (resp. ∅ /∈ j(P )),

and therefore j extends to an embedding of CP (resp. C∗P ) in 2S defined by 1̂ 7→ S

(resp. 0̂ 7→ ∅). Let A (resp. B) be some chain in P containing 0̂ and 1̂, whose convex hull

contains x (resp. y). We consider the (unique) isomorphisms a : [m]→ A and b : [n]→ B,

where m is the cardinality of A and n is the cardinality of B. Thus a(1) = 0̂ = b(1) and

a(m) = 1̂ = b(n).

Let ≺ be the covering relation of the subposet A ∪ B of P . (That is, x, y ∈ A ∪ B
satisfy x ≺ y iff x < y and there exists no z ∈ A ∪ B such that x < z < y.) Let

(k1, l1), . . . , (kr, lr) be all pairs in [m] × [n] such that either a(ki) = b(li) or a(ki) /∈ B,

b(li) /∈ A and a(ki) ≺ b(li), where each ki ≤ ki+1. Let Z ⊂ [r] be the set of indices i such

that a(ki) = b(li). It is easy to see7 that each ki < ki+1 and each li < li+1. Similarly let

(k′1, l
′
1), . . . , (k

′
r′, l

′
r′) be all pairs in [m] × [n] such that either a(k′i) = b(l′i) or a(k

′
i) /∈ B,

b(l′i) /∈ A and a(k′i) ≻ b(l′i); we may assume that each k′i < k′i+1 and each l′i < l′i+1. Let

Z ′ be the set of indices i such that a(k′i) = b(l′i). We note that k1 = l1 = k′1 = l′1 = 1,

kr = k′r′ = m and lr = l′r′ = n.

7Indeed, suppose that ki = ki+1 (and li 6= li+1). The cases (1) i, i+ 1 ∈ Z; (2) i ∈ Z and i+ 1 /∈ Z; (3)
i /∈ Z and i+1 ∈ Z are ruled out for trivial reasons. In the remaining case (4) i, i+1 /∈ Z we have either
li < li+1 or li > li+1. Then either a(ki+1) = a(ki) < b(li) < b(li+1) or a(ki) = a(ki+1) < b(li+1) < b(li).
Hence either a(ki+1) ⊀ b(li+1) or a(ki) ⊀ b(li), which is a contradiction. Thus ki < ki+1. Next suppose
that li ≥ li+1. Then a(ki) < a(ki+1) ≤ b(li+1) ≤ b(li), so i /∈ Z. Hence a(ki) < a(ki+1) < b(li+1) ≤ b(li),
so a(ki) ⊀ b(li), which is a contradiction.
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It is easy to see8 that a(ki + 1) � b(li+1 − 1) for each i. Let us write Ai = ja(i)

and Bi = jb(i). Since j is an embedding, we obtain that Aki+1 6⊂ Bli+1−1. On the other

hand, since ki < ki+1, we have Aki+1 ⊂ Aki+1
⊂ Bli+1

; and similarly Aki ⊂ Bli+1−1. Thus

Aki+1 \Aki has a nonempty intersection with Bli+1
\Bli+1−1. In other words, the set Σ of

all pairs (κ, λ) such that Aκ \Aκ−1 has a nonempty intersection with Bλ \Bλ−1 includes

the set ∆ of all pairs of the form (ki + 1, li+1). By symmetry, Σ also includes the set ∆′

of all pairs of the form (k′i+1, l
′
i + 1).

We claim that for each (κ, λ) ∈ Σ there exist a (k, l) ∈ ∆ and a (k′, l′) ∈ ∆′ such that

k ≤ κ ≤ k′ and l′ ≤ λ ≤ l. Indeed, if a(κ) ≤ b(λ − 1), then Aκ ⊂ Bλ−1; in particular,

(κ, λ) /∈ Σ. If a(κ) and b(λ−1) are incomparable, let i be the maximal number such that

κ > ki. Then κ ≤ ki+1, so λ− 1 < li+1. Finally, if a(κ) > b(λ− 1), let i be the maximal

number such that κ > ki. We claim that still λ−1 < li+1. Suppose on the contrary that

λ − 1 ≥ li+1. Then a(κ) > b(λ − 1) ≥ b(li+1) ≥ a(ki+1). On the other hand, κ ≤ ki+1

by our choice of i, and so a(κ) ≤ a(ki+1), which is a contradiction. This completes the

proof of the assertion on (k, l); and the assertion on (k′, l′) is proved similarly.

We have x = Φa(α) and y = Φb(β) for some α = (α1, . . . , αm) ∈ |A| and some

β = (β1, . . . , βn) ∈ |B|. Let us denote Φj(x) = Φja(α) by α̂ and Φj(y) = Φjb(β) by β̂.

We have d(α̂, β̂) = sups∈S |α̂(s)− β̂(s)|. Here α̂(s) = ακ for each s ∈ Aκ \ Aκ−1 (where

A0 = ∅) and α̂(s) = 0 for s /∈ Am; similarly, β̂(s) = βλ for each s ∈ Bλ \ Bλ−1 (where

B0 = ∅) and β̂(s) = 0 for s /∈ Bn. Hence d(α̂, β̂) = max(κ,λ)∈Σ |ακ − βλ|.

Next we recall that 1 = α1 ≥ α2 ≥ · · · ≥ αm ≥ 0 and 1 = β1 ≥ β2 ≥ · · · ≥ βn ≥ 0.

In particular, k ≤ κ ≤ k′ implies αk ≥ ακ ≥ αk′ ; and l
′ ≤ λ ≤ l implies βl′ ≥ βλ ≥ βl.

Hence αk−βl ≥ ακ−βλ ≥ αk′−βl′ , which implies |ακ−βλ| ≤ max{|αk−βl|, |αk′−βl′ |}.
Thus

d(α̂, β̂) = max
(k,l)∈∆∪∆′

|αk − βl|.

The right hand side does not depend on j; therefore so does the left hand side, that is,

d(Φj(x),Φj(y)). �

Corollary 3.7. If Q is a subpreposet of a preposet P , then |Q| admits a natural isometric

embedding in |P |.

Proof. If P and Q are posets, then by Theorem 3.6, |Q| = |Q|jQ is isometric to |Q|j ⊂

|P |jP = |P |, where j is the composition Q ⊂ P
jP−→ 2P .

In the general case, the transitive closure 〈Q〉 is a subposet of 〈P 〉, and it is easy to

see that the image of the isometric embedding |Q| ⊂ | 〈Q〉 | → | 〈P 〉 | lies in |P |. �

Corollary 3.8. If P is a preposet, |P ∗| is isometric to |P |.

8Indeed, if a(ki + 1) = b(li+1 − 1), then ki + 1 = kj and li+1 − 1 = lj for some j; hence i < j < i + 1,
which is a contradiction. Suppose that a(ki + 1) < b(li+1 − 1). Since < is the transitive closure of ≺,
there exist κ ≥ ki + 1 and λ ≤ li+1 − 1 such that a(κ) ≺ b(λ). If a(κ) ∈ B, then ki < κ = kj for some
j such that b(lj) = a(kj) = a(κ) < b(λ). Hence lj < λ < li+1, and therefore i < j < i + 1, which is a
contradiction. Thus a(κ) /∈ B, and similarly b(λ) /∈ A. Hence ki < κ = kj and li+1 > λ = lj for some
j; hence i < j < i+ 1, which is a contradiction.
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Proof. First assume that P is a poset. By Theorem 3.6, there exists an isometry

Φj : |P | → |P |j, where j : P → 2P is defined by j(p) = P \ ⌊p⌋. The isomorphism

ϕ : 2P → (2P)∗ defined by ϕ(S) = P \ S extends to a self-isometry Φ of [0, 1]P , taking

|P |j onto |P ∗|. Indeed we have ϕj(p) = jP ∗(p∗), where jP ∗ : P ∗ → 2P is the standard

embedding, jP ∗(p∗) = ⌈p
∗
⌉ =

⌊p⌋∗.

If P is a preposet, we apply the above construction to its transitive closure 〈P 〉. Given

a finite chain of P , viewed as an embedding c : [n] → 〈P 〉 ⊂ 2P , we have |[n]|c ⊂ |P | ⊂

| 〈P 〉 |. Clearly, the isometry | 〈P 〉 | → | 〈P 〉 |j → | 〈P 〉
∗ | = | 〈P ∗〉 | takes |[n]|c onto

|[n]∗|c∗. �

Remark 3.9. We recall that 2Pw is identified with a subcomplex of (IPc )
∗ (see 2.43). The

completed geometric realization |IPc | therefore contains an isometric copy of |2Pw |. The

latter is in turn isometric to the completed atomic geometric realization |2Pw |
• = q0. This

isometry extends to an isometry between |IPc | and Q0 := ([−1, 1], 0)(P
+,∞).

Theorem 3.10. Let P and Q be preposets.

(a) |P ×Q| is uniformly homeomorphic to |P | × |Q|.

(b) |P +Q| is uniformly homeomorphic to |P | ∗ |Q|

In particular, |CP | and |C∗P | are uniformly homeomorphic to C|P |.

(c) |P ∗Q| is uniformly homeomorphic to |P | ∗ |Q|.

Proof. (a). The injections P → 2P and Q→ 2Q as in Lemma 2.13 yield |P | ⊂ [0, 1]P and

|Q| ⊂ [0, 1]Q, where P = (P,�) and Q = (Q,≤). The injection P×Q→ 2P×2Q ≃ 2P⊔Q

yields |P × Q| ⊂ [0, 1]P⊔Q. Meanwhile, |P | × |Q| lies in [0, 1]P × [0, 1]Q, which may be

identified with [0, 1]P⊔Q. To see that |P × Q| = |P | × |Q| under this identification, it

suffices to consider the case where P and Q are nonempty finite totally ordered sets.

This case (and the more general case where P and Q are finite) follows using that a

chain in 2P × 2Q = 2P⊔Q lies in P × Q if and only if it projects onto a chain in P and

onto a chain in Q. �

(b). Consider the injection P + Q→ 2P⊔pt⊔Q defined by σ 7→ ⌈σ⌉ if σ ∈ P , and by σ 7→

⌈σ⌉∪pt if σ ∈ Q. This yields |P +Q| ⊂ [0, 1]P⊔pt⊔Q, so that |P | lies in [0, 1]P×{0}×{0}

and |Q| in {1}× {1} × [0, 1]Q. It is easy to see that |P +Q| is the union of |P |, |Q| and

all straight line segments with one endpoint in |P | and another in |Q|. (Beware that

these segments alone cover |P +Q| only if both P and Q are nonempty.) Thus |P +Q|

is the independent rectilinear join of |P | and |Q|, as defined in [32; §3.B]. Hence by

[32; Theorem 3.19], |P +Q| is uniformly homeomorphic to |P | ∗ |Q|. �

(c). From definition, P ∗Q is the subpreposet C∗P ×Q ∪ P × C∗Q of C∗P ×C∗Q. By

the proof of part (b), |C∗P | is the rectilinear cone c|P |, as defined in [32; §3.B]. Then

by part (a), |C∗P × C∗Q| is uniformly homeomorphic to c|P | × c|Q|; whereas |P ∗ Q|
is uniformly homeomorphic to its subspace c|P | × |Q| ∪ |P | × c|Q|. Write |P | = X and

|Q| = Y for the sake of brevity. Then, Lemmas 3.18, 3.16 and 3.11 in [32] yield uniform
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homeomorphisms

cX × Y ∪X × cY → cX × Y ∪
X×Y

X × cY → CX × Y ∪
X×Y

X × CY → X ∗ Y,

where each of the amalgamated unions in the middle is defined as a pushout in the

category of uniform spaces (and so is endowed with the quotient uniformity). �

3.B. Geometric realization via quotient

Given a collection of preposets Pα = (Pα,≤), their disjoint union
⊔

α Pα is their coprod-

uct in the category of preposets; more explicitly, it is the preposet (
⊔

αPα,�), where
pα ∈ Pα and pβ ∈ Pβ satisfy pα � pβ iff α = β and pα ≤ pβ. We note that disjoint union

does not commute with geometric realization unless the index set is finite, because every

infinite disjoint union of non-discrete uniform spaces is easily seen to be non-metrizable.

Theorem 3.11. Let P be a poset, and let P⊔ be the disjoint union of all nonempty finite

chains of P . Let π : P⊔ → P be determined by the inclusions C ⊂ P , where C ∈ P ♭.

Then

(a) |π| : |P⊔| → |P | is a quotient map (in the category of uniform spaces);

(b) if d is the standard metric on |P⊔|, then

d∞(x, y) = inf
n∈N

inf
x1,...,xn−1∈|P |
(x0:=x, xn:=y)

n−1
∑

i=0

d(π−1(xi), π
−1(xi+1))

is a metric on |P |.

Theorem 3.11(a) implies that |P | is a quotient space of |P⊔| (in the category of uniform

spaces). This is reminiscent of the definition of geometric realization of semi-simplicial

sets, and of the well-known characterization of the topology of a CW-complex as the

topology of a quotient (in the category of topological spaces!) of the disjoint union of

its cells.

Theorem 3.11(b) is reminiscent of the definition of geometric polyhedral complexes

used in metric geometry and in geometric group theory (see [7], [9]).

Proof. This is based on the technique of quotient maps of finite type (see [32; §3.A]) and

on the proof of Theorem 3.6 above.

Write q = |π|, and let d stand for the usual metric on |P⊔| and on P . Clearly, q

is surjective. Given x, y ∈ |P |, let dn(x, y) = infx=x0,...,xn=y

∑

d(q−1(xi), q
−1(xi+1)) and

d∞(x, y) = infn∈N dn(x, y). It is easy to see that d∞ is a pseudo-metric on |P | (while

each dn need not satisfy the triangle axiom) and that the identity maps (|P |, dn)
id
−→

(|P |, d∞)
id
−→ (|P |, d) are uniformly continuous for each n. If (|P |, d)

id
−→ (|P |, dn) is

uniformly continuous for some n, then on the one hand, d∞ is uniformly equivalent to

d, and on the other hand, by [32; Lemma 3.2(d′)], d∞ induces the quotient uniformity

on |P |. Thus it suffices to show that (|P |, d)
id
−→ (|P |, d3) is uniformly continuous.
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Suppose that P = (P,≤), and let P̂ := C∗CP (with additional elements 0̂ and 1̂).

The standard geometric realization |P | ⊂ 2P lies in the reduced geometric realization

|P̂ |′ ⊂ 2P∪{1̂} (where 0̂ is identified with ∅ ∈ 2P∪{1̂}).

Pick some x, y ∈ |P |, and let A ⊂ P and B ⊂ P be any chains whose convex

hulls contain x and y respectively. We have unique isomorphisms a : [m] → Â and

b : [n] → B̂, where a(1) = 0̂ = b(1) and a(m) = 1̂ = b(n). Let (k1, l1), . . . , (kr, lr) and

(k′1, l
′
1), . . . , (k

′
r′, l

′
r′), and Z and Z ′ be as in the proof of Theorem 3.6. We also recall the

notation αi = x(s) for some s ∈ a(i) \a(i−1), and βj = y(t) for some t ∈ b(j) \ b(j−1),

where 2 ≤ i ≤ m and 2 ≤ j ≤ n. Observe that this does not depend on the choices of s

and t.

We now define an ‘intermediary’ chain C ⊂ P , viewed as an isomorphism c : [q]→ Ĉ.

The inductive construction starts with c(1) = 0̂, and in the event that c(i) = 1̂ it

terminates with q = i. Suppose that c(i) = a(k) for some k < m; if k 6= kj for any j,

then let c(i+1) = a(k+1); if k = kj for some j /∈ Z, then let c(i+1) = b(lj). Similarly,

suppose that c(i) = b(l) for some l < n; if l 6= l′j for any j, then let c(i+1) = b(k+1); if

l = l′j for some j /∈ Z ′, then let c(i+ 1) = a(k′j). Finally, if c(i) = a(k) = b(l) < 1̂, then

we are free to set either c(i+ 1) = a(k + 1) or c(i+ 1) = b(l + 1).

Next we define an x′ ∈ |A′|a′ and a y′ ∈ |B′|b′, where A
′ = A ∩ C and B′ = B ∩ C,

viewed as isomorphisms a′ : [m′] → Â′ and b′ : [n′] → B̂′. Given an s ∈ P, we have

s ∈ a′(m′) = ⌈1̂⌉ = P ∪ {1̂}, and s /∈ a
′(1) = ⌈0̂⌉ = ∅. Hence s ∈ a′(i) \ a′(i− 1), where

2 ≤ i ≤ m′. Pick some hi ∈ [m] so that a′(i − 1) ≤ a(hi − 1) and a(hi) ≤ a′(i). We

must be more specific for i = 1 and i = m, and we set h2 = 2 (which is the least among

all possible choices) and hm′ = m (which is the greatest among all possible choices).

Since hi ≥ 2, we may set x′(s) = αhi
. Let α′

i = x′(s) for any s ∈ a′(i) \ a′(i− 1), where

2 ≤ i ≤ m′; clearly this does not depend on the choice of s. Thus α′
2 = α2 and α

′
m′ = m.

Since x ∈ |A|a, we have α2 = 1 and αm = 0. Therefore α′
2 = 1 and α′

m′ = 0, whence

x′ ∈ |A′|a′. We can similarly define a y′ ∈ |B′|b′ and consequently β ′
j where 2 ≤ j ≤ n′.

Let us estimate d(x, x′) from above. Suppose that s ∈ a′(i)\a′(i−1), where 2 ≤ i ≤ m′.

If both a′(i) and a′(i− 1) belong to Ĉ, then x′(s) = x(s). Else we have a′(i− 1) = a(kj)

and a′(i) = a(k′j′), where 1 ≤ j < r and 1 < j′ ≤ r′. Moreover, by the construction of C

we have l′j′−1 < lj ≤ l′j′ < lj+1. By definition, both x(s) and x′(s) belong to [αkj+1, αk′
j′
].

Since l′j′−1 + 1 ≤ lj+1, we have αk′
j′
− αkj+1 ≤ αk′

j′
− βl′

j′−1
+1 + βlj+1

− αkj+1. However

|αk′
j′
−βl′

j′−1
+1| ≤ d(x, y) and |βlj+1

−αkj+1| ≤ d(x, y) by the proof of Theorem 3.6. Thus

|x(s)− x′(s)| ≤ 2d(x, y). We have proved that d(x, x′) ≤ 2d(x, y).

We have d3(x, y) ≤ d(x, x′) + d(x′, y′) + d(y′, y). By the above, d(x, x′) ≤ 2d(x, y),

and similarly d(y′, y) ≤ 2d(x, y). By the triangle axiom, d(x′, y′) ≤ d(x′, x) + d(x, y) +

d(y, y′) ≤ 5d(x, y). Hence d3(x, y) ≤ 9d(x, y). Thus (|P |, d) → (|P |, d3) is uniformly

continuous. �

Corollary 3.12. If P is a preposet, then |P#| is uniformly homeomorphic to |P | by a

homeomorphism h : |P#| → |P |.
Moreover, if P is a poset, then d∞(x, y) = 2d∞(h(x), h(y)) for all x, y ∈ |P#|.
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Proof. Consider the map of sets f : P# → |P | = |P |jP defined by sending an element

[σ, σ] ∈ P# into the vertex |{σ}|jP of |P |jP , and an element [σ, τ ] ∈ P# with σ < τ into

the central point of the straight line segment connecting the vertices |{σ}|jP and |{τ}|jP .

A finite chain C of P# is of the form [σ1, τ1] ⋐ · · · ⋐ [σn, τn], where σ1 ≤ · · · ≤ σn ≤

τn ≤ · · · ≤ τ1. By collapsing all the equality signs in the latter string of inequalities we

obtain a sting of strict inequalities, which represents a chain C̃ of P (of length ≥ n).

Then f(C) ⊂ |C̃|jP ; hence f extends by linearity to a map h : |P#| → |P |.

It is not hard to see that h is a bijection (note that this appears to be known in the

case where P is a poset [3], [45]). Indeed, for every chain D of P , f−1(|D|jP ) can be

identified with D#. So the assertion reduces to the case P = [n], which can be checked

directly.

To show that h is a uniform homeomorphism we may assume that P is a poset by con-

sidering the transitive closure. Then it suffices to prove that d∞(x, y) = 2d∞(h(x), h(y))

for all x, y ∈ |P#|. By the definition of the d∞ metrics (with respect to the usual metrics

d on P⊔ and (P#)⊔; see the statement of Theorem 3.11(b)), it suffices to prove this when

x, y ∈ |D#| for some chain D of P . So the assertion again reduces to the case P = [n],

which can be checked directly. �

Corollary 3.13. Let P be a poset, and let P� be the disjoint union of all intervals of

P . Let ρ : P� → P be determined by the inclusions Q ⊂ P , where Q ∈ P#. Then

|ρ| : |P�| → |P | is a quotient map (in the category of uniform spaces).

Proof. Consider the commutative square

(P�)⊔ −−−→ P�

π′





y

ρ





y

P⊔
π

−−−→ P.

Here π′ is trivially a quotient map, and π is a quotient map by Theorem 3.11(a). Hence

ππ′ is a quotient map, and therefore so is ρ. �

Remark 3.14. Corollary 3.13 is, in a sense, easier than Theorem 3.11, for it can also

be proved as follows. One first shows that |rX | (defined in §3.C below) is uniformly

continuous without using Corollary 3.13; this can be done by writing an explicit formula

for |rX | in coordinates. Next one observes that |r#X | : |P
##| → |P#| takes any pair of

sufficiently close points onto a pair of points contained in |⌈q⌉| for the same interval

q ∈ P#. It then remains to use [32; Lemma 3.2(d′)] in the same way as it is used in the

proof of Theorem 3.11.

Remark 3.15. Corollary 3.13 suffices to show that h : |P#| → |P |, as defined in the

proof of Corollary 3.12, is a uniform homeomorphism. Indeed, writing P = (S,≤), the

usual metric on |P | is induced from that on |2S|• via the usual embedding P →֒ 2S,

and similarly the usual metric on |P#| is induced from that on |(2S)#| (see Lemma

2.13 and Corollary 3.7). So it suffices to show that h : |(2S)#| → |2S|• is a uniform

homeomorphism. Let Q = (2S)#. By Corollary 3.13, (|Q|, d) is uniformly homeomorphic
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to (|Q|, d∞), where d denotes the usual metric on |Q| and on |Q�|, and d∞ is as in the

statement of Theorem 3.11(b). On the other hand, it is easy to see that (|Q|, d∞) is

isometric to (|2S|•, 2d), where d is the usual l∞ metric on the cube |2S|•. Hence (|Q|, d)

is uniformly homeomorphic to (|2S|•, d).

Remark 3.16. If P is a simple poset (see 2.39), then it is easy to see that the usual

metrics d on |P⊔| and on |P�| lead to the same d∞ metric on |P |. So Theorem 3.11 for

such P can be recovered from Corollary 3.13.

3.17. Geometric realization of a conical map. Given a conical map f : P → Q

between posets, it extends uniquely to a map |f | : |P | → |Q| that is affine on every

convex hull of a chain. In fact, |f | is clearly 1-Lipschitz on every convex hull of a chain.

On the other hand, f lifts uniquely to a conical map f⊔ : P⊔ → Q⊔. Then |f⊔| is 1-

Lipschitz (globally), and in particular, uniformly continuous. Since q : |Q⊔| → |Q| is

uniformly continuous, so is the composite arrow in the commutative diagram

|P⊔|
f⊔
−−−→ |Q⊔|

p





y

q





y

|P |
f

−−−→ |Q|.

By Theorem 3.11(a), p : |P⊔| → |P | is a quotient map; in other words, the uniformity of

|P | is final with respect to p. Hence |f | is uniformly continuous. We call it the geometric

realization of f .

It is easy to see that geometric realization of posets and of conical maps determines

a functor (also called the geometric realization) from the category of posets and conical

maps to the category of metrizable uniform spaces and uniformly continuous maps.

Theorem 3.18. The geometric realization functor preserves pullbacks, as well as those

pushouts that remain such upon barycentric subdivision.

Proof. The assertion is equivalent to the preservation of finite products, finite coproducts

(which always remain finite coproducts upon barycentric subdivision), embeddings, and

those quotient maps that remain quotient maps upon barycentric subdivision. Finite

products were considered in Theorem 3.10(a) and embeddings in Corollary 3.7. The

preservation of finite coproducts is obvious.

Finally, let f : P → Q be a quotient map of posets such that f ♭ : P → Q is also a

quotient map. In particular9, f ♭ is surjective, so every chain in Q is the image of a

chain in P . Then |f⊔| : |P⊔| → |Q⊔| is a uniformly continuous retraction, and therefore

a quotient map. By Theorem 3.11(a), also q : |Q⊔| → |Q| is a quotient map. Then the

composite arrow in the preceding commutative diagram is a quotient map. The assertion

now follows from and the fact that if a composition X → Y
f
−→ Z is a quotient map,

then so is f . �

9In fact, if the simplicial map f ♭ is surjective, then f ♭ and f are quotient maps.
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Theorem 3.18 yields an alternative proof of Theorem 3.10(b,c):

Corollary 3.19. If P and Q are posets, then |P ∗Q| and |P +Q| are uniformly home-

omorphic to |P | ∗ |Q|.

Proof. P∗Q is the pushout of the diagram P×Q×I ⊃ P×Q×∂I → P×{{0}}⊔Q×{{1}},

where I = ∆{0,1}; P+Q is the pushout of the diagram P×Q×[2] ⊃ P×Q×({1}⊔{2})→

P × {1} ⊔ Q × {2}, where [2] = ({1, 2},≤); and X ∗ Y is the pushout of the diagram

X × Y × [0, 1] ⊃ X × Y ×{0, 1} → P ×{0} ⊔Q× {1}. Since |I| and |[2]| are uniformly

homeomorphic to [0, 1], the assertion follows from Theorem 3.18. �

3.20. Adjunction preposet and mapping cylinder. Let P be a poset, A a subposet

of P and f : A→ Q a conical map. We define the adjunction preposet P ∪f Q to be the

pushout of the diagram P ⊃ A
f
−→ Q in the category of preposets.

Given a conical map of posets f : P → Q, the mapping cylinderMC(f) = P×[2]∪f1Q
and the dual mapping cylinder MC∗(f) = P × [2] ∪f2 Q, where fi is the composition

P × {i} ≃ P
f
−→ Q. Note that MC∗(f) ≃ (MC(f ∗))∗ and that there are natural conical

bijections (which are not embeddings) MC(f)→ Q+ P and MC∗(f)→ P +Q.

3.21. Open and closed maps. We call a map of preposets f : P → Q closed (resp.

open) if f(⌈p⌉) = ⌈f(p)⌉ (resp. f(⌊p⌋) = ⌊f(p)⌋) for every p ∈ P . If P and Q are

posets, this is equivalent to saying that f is conical and takes (dual) subcomplexes onto

(dual) subcomplexes, or that f is continuous and closed (open) with respect to the

topology whose open sets are the dual subcomplexes. Clearly, a map between simplicial

complexes is closed iff it is simplicial. An example of a non-closed conical map is given

by the diagonal map of the 1-simplex ∆1 into ∆1 ×∆1.

Lemma 3.22. Let P ⊃ A
f
−→ Q be a partial conical map of posets.

(a) If A is a subcomplex of P and f is closed, then P ∪f Q is a poset.

(b) Dually, if A is a dual subcomplex of P and f is open, then P ∪f Q is a poset.

Proof. Let p ∈ P , a ∈ A and q ∈ Q. Suppose that p > a and f(a) > q. If f is closed,

then q = f(b) for some b < a, whence p > b; and if A is a dual subcomplex of P , then

p ∈ A, and so f(p) > q.

Now suppose that p < a and f(a) < q. If f is open, then q = f(b) for some b > a,

whence p < b; and if A is a subcomplex of P , then p ∈ A, and so f(p) < q. �

Corollary 3.23. Let f : P → Q be a conical map of posets. Then MC(f) is a poset iff

f is closed; dually, MC∗(f) is a poset iff f is open.

Proof. If f is closed, thenMC(f) is a poset by Lemma 3.22. If f is not closed, there exist

a p ∈ P and a q < f(p) such that q 6= f(p′) for any p′ < p. Then (p, 2) > (p, 1) = f(p) >

q but (p, 2) ≯ q in MC(f). The dual assertion follows from MC∗(f) ≃ (MC(f ∗))∗. �
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3.C. Second canonical neighborhood and uniform ARs

3.24. Handle decomposition. Let X be a poset. Then [σ, τ ] < [ρ, υ] in X# iff ρ ≤ σ

and τ ≤ υ. The dual cone ⌊[σ, τ ]⌋ is the poset of all such intervals [ρ, υ]; clearly, it

is isomorphic to (⌈σ⌉)
∗ × ⌊τ ⌋. Then every cone ⌈[σ, τ ]

∗
⌉ = (⌊[σ, τ ]⌋)∗ of the dual poset

h(X) := (X#)∗ is isomorphic to the product ⌈σ⌉ × (⌊τ ⌋)∗ = ⌈σ⌉ × ⌈τ
∗
⌉.

The maximal cones of h(X) (i.e. those cones that are not properly contained in other

cones) are of the form ⌈[σ, σ]
∗
⌉, where σ ∈ X , and are called the (canonical) handles hσ

of the poset X . Each hσ is isomorphic to the product of the cone ⌈σ⌉ of X and the cone

⌈σ
∗
⌉ of X

∗. These cones are called the core and cocore of the handle hσ.

When σ < τ , the intersection hσ ∩ hτ is clearly the cone ⌈[σ, τ ]
∗
⌉ of h(X). However,

when σ and τ are incomparable in X , it may be that hσ ∩ hτ is nonempty (namely, it is

nonempty iff both ⌈σ⌉ ∩ ⌈τ ⌉ and ⌊σ⌋ ∩ ⌊τ ⌋ are nonempty). This distinguishes canonical

handles from the familiar ones (which are defined in the literature as subcomplexes of

the second barycentric subdivision of a simplicial combinatorial manifold).

3.25. Collapsing handles onto cores. Let X be a poset. The canonical subdivision

map X# → X is defined by [λ, κ] 7→ κ. Let us consider the composition X# jX−→

(X∗)#
#
−→ X∗, where the isomorphism jX : X# → (X∗)# is given by [σ, τ ] 7→ [τ ∗, σ∗].

Then the dual map rX : h(X) → X to this composition is given by [σ, τ ]∗ 7→ σ. The

restriction of rX to the cone ⌈[σ, τ ]
∗
⌉ ≃ ⌈σ⌉ × ⌈τ

∗
⌉ is the projection onto the first factor

⌈σ⌉. We note that the projection onto the second factor ⌈τ
∗
⌉ is given by the composition

r̄X : h(X)
(jX)∗

−−−→ h(X∗)
rX∗
−−→ X∗. We also note that hσ = r−1

X (⌈σ⌉) and hτ = r̄−1
X (⌈τ

∗
⌉).

Lemma 3.26. Let K be a poset.

(a) |MC(rK)| is uniformly homeomorphic to |MC(idK)| by a homeomorphism that is

the identity on K and extends the homeomorphism |h(K)| → |K#| → |K| given by 3.8

and 3.12.

(b) |MC∗(rK)| is uniformly homeomorphic to |MC(idh(K))| by a homeomorphism that

is the identity on h(K) and extends the homeomorphism |K| → |K#| → |h(K)| given

by 3.8 and 3.12.

Here MC∗(rK) ≃ (MC(r∗K))
∗, where r∗K is the composition K# jK−→ (K∗)#

#
−→ K∗.

(a). We define f : |MC(rK)| → |MC(idK)| as required on the top and bottom, and

extend it linearly to the convex hull of every chain. A chain of MC(idK) = K × [2]

is of the form B + A, where A = (α1 < · · · < αn) is a chain in the domain, and

B = (β1 < · · · < βm) is a chain in the range, with βm ≤ α1. From the similar description

of chains of MC(idh(K)) we deduce that a chain of MC(rK) is of the form D+C, where

C is a chain of h(K) of the form [σ1, τ1]
∗ < · · · < [σr, τr]

∗ and D is a chain of K of the

form ρ1 < · · · < ρs, with ρs ≤ σ1. It is easy to see that f sends |h(B) +A| onto |B +A|

via the join of the uniform homeomorphism |h(B)| → |B| with id|A|. It follows that f is

a uniform homeomorphism. �
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(b). We define f : |MC∗(rK) → |MC(idh(K))| as required on the top and bottom, and

extend it linearly to the convex hull of every chain. A chain ofMC∗(idh(K)) = h(K)× [2]
is of the form A+B, where A = (α1 < · · · < αn) is a chain in the domain, and B = (β1 <

· · · < βm) is a chain in the range, with αn ≤ β1. It follows that a chain of MC(rK) is of

the form C +D, where C is a chain of h(K) of the form [σ1, τ1]
∗ < · · · < [σr, τr]

∗ and D

is a chain of K of the form ρ1 < · · · < ρs, with [σr, τr]
∗ ≤ [ρ1, ρs]

∗. It is easy to see that

f sends |C +D| onto |C + h(D)| via the join of id|C| and the uniform homeomorphism

|D| → |h(D)|. It follows that f is a uniform homeomorphism. �

Theorem 3.27. Let K be a poset and L a subcomplex of K. Then |L| is a uniform

neighborhood retract of |K|.

Proof. Clearly |⌈h(L)⌉h(K)| is a uniform neighborhood of |h(L)| in |h(K)|. By 3.8 and

3.12, it corresponds to a uniform neighborhood of |L| in |K|. On the other hand, let

∂N(L) = ⌈h(L)⌉ \ h(L) ⊂ h(K), and let N(L) = L ∪MC∗(rK |∂N(L)) ⊂ MC∗(rK). The

conical map MC∗(rK)→MC∗(idK)→ K is a retraction, and sends N(L) into L; hence

it restricts to a retraction N(L)→ L. Thus |L| is a uniform retract of |N(L)|.

Finally, let f be the composition of the uniform homeomorphism |MC∗(rK)| →

|MC∗(idh(K))| from Lemma 3.26(b), with the geometric realization of the projection

π : MC∗(idh(K)) → h(K). Then f restricts to the identity on |∂N(L)| and to the uni-

form homeomorphism |L| → |h(L)| on |L|. A chain of MC∗(rK |∂N(L)) is of the form

C + D, where C is a chain of ∂N(L) ⊂ h(K) of the form [σ1, τ1]
∗ < · · · < [σr, τr]

∗

and D is a chain of L ⊂ K of the form ρ1 < · · · < ρs, with [σr, τr]
∗ ≤ [ρ1, ρs]

∗. Since

∂N(L) is disjoint from h(L), it is easy to see that f sends |C+D| homeomorphically onto

|C+h(D)| via the join of id|C| and the uniform homeomorphism |D| → |h(D)|. It follows

that f restricts to a uniform homeomorphism between N(L) and |⌈h(L)⌉h(K)|. �

3.28. Relative canonical subdivisions. Let K be a poset and let L be a subcomplex

of K. In the notation of the proof of Proposition 3.27, let h(K,L) denote N(L)∪(h(K)\

h(L)). Then by the proof of Proposition 3.27, |h(K,L)| is uniformly homeomorphic to

|h(K)| and hence to |K|.

Dually, let K#
L = MC∗(r∗K) \ (

⌊L⌋ ∪ ⌊(K \ L)#⌋). This contains L# and K \ L, and

|K#
L | is uniformly homeomorphic to |K| similarly to the above (using part (a) of 3.27).

Note that (P +Q)# ≃ (P ∗ ∗Q)#P ∗∗∅∪∅∗Q, which yields an alternative proof that |P +Q|

is uniformly homeomorphic to |P ∗Q|.

We recall from [32] that a uniform space is called homotopy complete if there exists

a homotopy ht : |P | → |P |, where |P | is the completion of |P |, with h0 = id and

ht(|P |) ⊂ |P | for t > 0.

Lemma 3.29. Let P be a countable poset. Then |P | is homotopy complete.

Proof. We first consider the case P = 2Nw. The atomic geometric realization |2Nw|
• is a

dense subspace of q0 = |2Nw|
• consisting of all functions that are nonzero in only finitely

many points. Define ht : I → I, t ∈ I = [0, 1], by Ht(s) = max{0, 1−(1−s)(1+t)}. Next
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define a homotopy ht : I
N → IN by ht(f) = Htf . Clearly Ht is uniformly continuous,

h0 = id, and ht(q0) ⊂ |2
N
w|

• for t > 0. (We may identify q0 with a subspace of IN using

the inclusion N ⊂ N+.)

In the general case, we note that |P | is uniformly homeomorphic to |P#|, and P# is

atomic. Thus we may assume without loss of generality that P is atomic.

Let R be the composition MC(rP ) → MC(idP ) → P (extending the map rP ), and

let H : |MC(rP )| → |MC(idP )| be the uniform homeomorphism of Lemma 3.26(a).

Define hP : |P | × I → |P | to be the unique extension of |R|H−1 over the completion,

where |[2]| is identified with I = [0, 1] by the affine homeomorphism sending {2} to

1. Further let h•P be defined similarly to hP but using atomic geometric realizations

throughout, provided that P is either atomic or the dual cone over an atomic poset.

Then it is easy to check that h•2Nw
coincides with the homotopy ht constructed above.

On the other hand, the definition of |P | is based on the embedding of P = (P,≤) in

∆P
w , and hP is the restriction of h•∆P

w
, which in turn is the restriction of h•2Pw . Hence

hP (|P | × (0, 1]) ⊂ |2Pw |
• ∩ |P | = |P |. �

Lemma 3.30. |2Nw| is a uniform AR.

Proof. By Theorem 3.6, the completion of |2Nw| is isometric to |2Nw|
• = q0, which is known

to be a uniform AR (see [32; Corollary 4.10(a)]). By Lemma 3.29 |2Nw| is homotopy

complete, hence by [32; Theorem 4.19] it is itself a uniform AR. �

Remark 3.31. Since 2Nw ≃ C∗(∆N
w), by Theorem 3.10(b) (or alternatively by Corollary

3.19), |2Nw| is uniformly homeomorphic to a cone, and therefore is uniformly contractible.

Thus asserting that it is a uniform AR is equivalent (see [32; Lemma 4.35]) to asserting

that it is a uniform ANR.

Theorem 3.32. If P is a simplicial complex, then |P | is a uniform ANR.

The finite-dimensional case is due to Isbell [21; 1.9], [23; VI.15].

We give two proofs: one based on Theorem 3.27 and another based on the uniform

version of Hanner’s criterion of ANR’ness [32; Theorem 4.31(b)].

Both proofs start by recalling that by Theorem 2.22, P is isomorphic to a subcomplex

of the simplex ∆N
w. Hence P

# is isomorphic to a subcomplex of (∆N
w)

#, which in turn is

a subcomplex of (C∗∆N
w)

# = (2Nw)
#.

Proof by infinite process. For each n ≥ 1 we further have that P#n is isomorphic to a

subcomplex of Q#n, where Q denotes 2Nw. Hence the conical map rQ#n : h(Q#n)→ Q#n

(see 3.25) sends ⌈h(P
#n)⌉ onto P#n. Clearly |⌈h(P

#n)⌉| is a uniform neighborhood of

|h(P#n)| in |h(Q#n)|, namely the 1-neighborhood in the d∞ metric. Let rn denote the

composition

|Q|
hn+1
−−−→ |Q#(n+1)|

H
−→ |h(Q#n)|

|r
Q#n |
−−−−→ |Q#n|

h−1
n−−→ |Q|,

where hn is the uniform homeomorphism in Corollary 3.12 and H is the uniform home-

omorphism in Corollary 3.8. Then rn sends the 2−n-neighborhood h−1
n+1H

−1(|⌈h(P
#n)⌉|)
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of |P | onto |P | and is 2−n-close to the identity. Moreover, rn||P | is uniformly 2−n-

homotopic to the identity with values in |P |, because for every poset K, the composition

|K|
h1−→ |K#|

H
−→ |h(K)|

rK−→ |K| is uniformly 1-homotopic to the identity (the homotopy

is constructed in coordinates in the proof of Lemma 3.29 and combinatorially in Lemma

3.26(a)). Since by Lemma 3.30, |Q| is a uniform ANR, we infer from [32; Theorem

4.31(b)] that so is |P |.10 �

Combinatorial proof. By Theorem 3.27, we have that |P#| is a uniform neighborhood

retract of |(2Nw)
#|. Hence by Corollary 3.12, |P | is a uniform neighborhood retract of

|2Nw|. Since |2
N
w| is a uniform ANR by Lemma 3.30, so is |P |. �

From [32; Lemma 4.22] we infer

Corollary 3.33. If (Y,B) is a pair of metrizable uniform spaces and (P,Q) is a pair of

simplicial complexes, then U((Y,B), (|P |, |Q|)) is a uniform ANR.

Example 3.34. Consider the poset [n] = ({1, . . . , n},≤). Let Cn be the amalgamated

union of C# for all proper subchains C ( [n]. The canonical map jn : Cn → [n]# is an

injection, but not an embedding for n > 1. Consider the map j := ⊔n∈Njn, injecting

P :=
⊔

n∈NCn into Q :=
⊔

n∈N[n]
#.

Then the generalized geometric realization |P |j is not a uniform ANR. Indeed, it

follows from Corollary 3.12 that each |Cn|jn is uniformly homeomorphic to Xn :=
⋃

C([n] |C| ⊂ |[n]|. Now |[n]| = {(x0, . . . , xn) | 0 = x0 ≤ · · · ≤ xn = 1}, and Xn consists

of all (x0, . . . , xn) ∈ |[n]| such that xi = xi+1 for some i. But each (x0, . . . , xn) ∈ |[n]| sat-

isfies xi+1−xi ≤
1
n
for some i (by the pigeonhole principle). Hence the 1

2n
-neighborhood

of Xn in |[n]| is the entire |[n]|. Consequently, for each ε > 0 the ε-neighborhood of |P |j
in |Q| contains |

⊔

n∈N\[m][n]
#| for some m, and so does not retract uniformly or even

continuously onto |P |j.

4. Uniform polyhedra

4.A. Uniform local contractibility

Theorem 4.1. If P is a countable poset, then |P | is uniformly locally contractible.

Proof. Given x, y ∈ |P | with d(x, y) < 1, the proof of Theorem 3.11 above produces

x′, y′ ∈ |P | such that each of the pairs {x, x′}, {x′, y′}, {y′, y} lies in the convex hull

of a single chain of P , and d(x, x′) and d(y, y′) are bounded above by 2d(x, y). We

shall modify this pair of discontinuous maps (x, y) 7→ x′, (x, y) 7→ y′ into a pair of

uniformly continuous maps ϕ, ψ from the uniform neighborhood {(x, y) | d(x, y) < δ} of
the diagonal in |P | × |P | into |P | such that d(x, ϕ(x, y)) and d(y, ψ(x, y)) are bounded

above by ε
2
. Given δ-close maps f, g : X → |P |, we then define a homotopy ht : X → |P |

by h0 = f , h1 = g, h1/3(x) = ϕ(f(x), g(x)) and h2/3(x) = ψ(f(x), g(x)) and by linear

10A slightly more direct argument instead of Lemma 3.30 uses that the completion q0 of |Q| is a uniform
ANR (see [32; Corollary 4.10(a)]) and that by the proof of Lemma 3.29, rn extends to a map q0 → |Q|
which sends the completion of the uniform neighborhood of |P | into |P |.
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extension to the remaining values of t. Then h1/3 and h2/3 are uniformly continuous as

compositions of uniformly continuous maps, and are ε
2
-close to h0 and h1, respectively.

Since each of h1, h2/3 and h1/3 is ( ε
2
+ δ)-close to h0, we infer that ht is a uniformly

continuous ( ε
2
+ δ)-homotopy.

It remains to construct ϕ and ψ. Pick some x, y ∈ |P | with d(x, y) < δ, and let A ⊂ P

and B ⊂ P be some finite chains whose convex hulls contain x and y respectively.

Arguing as in the proof of Theorem 3.11, we may enlarge P to P̂ = C∗CP and consider

the unique isomorphisms a : [m] → Â ⊂ P̂ and b : [n] → B̂ ⊂ P̂ . Thus a(1) = 0̂ = b(1)

and a(m) = 1̂ = b(n). Let (k1, l1), . . . , (kr, lr) and (k′1, l
′
1), . . . , (k

′
r′, l

′
r′), and Z and

Z ′, and αi, βi be as in the proof of Theorem 3.6. We recall that αi = x(s) for any

s ∈ a(i) \ a(i− 1), 1 < i ≤ m, and βi = y(s) for any s ∈ b(i) \ b(i− 1), 1 < j ≤ n.

The basic problem with the original construction of x′, y′ in the proof of Theorem

3.11 is that they depend on the choice of A, B. But they should not if ϕ and ψ are to

be continuous; indeed, if A, B are taken to be the smallest chains whose convex hulls

contain x, y respectively, then a pair (x̃, ỹ) arbitrarily close to (x, y) can give rise to a

different pair of chains (Ã, B̃).

Let δ be such that δ ≤ ε
6
and N := 1

4δ
∈ Z. Let ui, u

′
i ∈ [m] and vi, v

′
i ∈ [n] be the

maximal numbers such that αui
≥ 1− 4iδ, αu′

i
≥ 1− (4i+ 1)δ, βvi ≥ 1 − (4i+ 2)δ and

βv′i ≥ 1− (4i+ 3)δ. Thus αu0
= 1 and u0 ≥ 2, whereas αuN

= αuN−1 = 0 and uN = m.

It is easy to see11 that for each κ ∈ [m] there exists a λ ∈ [n] such that a(κ) ≤ b(λ) and

βλ ≥ ακ − δ. Similarly, for each λ ∈ [n] there exists a κ ∈ [m] such that b(λ) ≤ a(κ)

and ακ ≥ βλ − δ. Hence each a(u′i) ≤ b(vi) and each b(v′i) ≤ a(ui+1). Thus we get an

‘intermediary’ chain C consisting of:

0̂ ≤ a(u1) ≤ a(u1 + 1) ≤ . . . ≤ a(u′1)

≤ b(v1) ≤ b(v1 + 1) ≤ . . . ≤ b(v′1)

≤ a(u2) ≤ a(u2 + 1) ≤ . . . ≤ a(u′2)

≤ · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(It should be noted that if ui ∈ Z, then the inequalities ui ≤ u′i ≤ · · · ≤ ui+k ≤ u′i+k

may all happen to be equalities for an arbitrarily large k. This is the only way that it

can happen, for it is easy to see12 that if a(κ) /∈ B, then ακ+1 ≥ ακ − 2δ.)

11Indeed, let i be the minimal number satisfying ki ≥ κ, and let λ = li. If i = 1 then βλ = ακ = 1.
Else κ > ki−1, hence βλ = βli ≥ αki−1+1− d(x, y) ≥ ακ− δ. (The first inequality was established in the
proof of Theorem 3.6.)
12Let i be the minimal number satisfying ki ≥ κ. By the hypothesis i 6= 1. Then κ > ki−1, hence
ακ ≤ αki−1+1 ≤ βli + d(x, y). Next let j be the minimal number satisfying l′j ≥ li. Then j 6= 1 due to

i 6= 1. Hence li > l′j−1, so βli ≤ βl′
j−1

+1 ≤ αk′

j
+ d(x, y). Thus ακ ≤ αk′

j
+ 2δ. Now if k′j > ki, then

k′j > κ due to ki ≥ κ. If k′j ≤ ki, then a(ki) ≤ b(li) ≤ b(l′j) ≤ a(k′j) ≤ a(ki), implying k′j = ki and i ∈ Z.

The latter implies ki 6= κ in view of the hypothesis. Then ki > κ, and so k′j > κ once again. Thus we
obtain that αk′

j
≤ ακ+1.



UNIFORM POLYHEDRA 35

If we use this chain C to construct x′ and y′ as in the proof of Theorem 3.11, the

result will no longer depend on the choice of A and B. However, the definition of C now

involves the maximum function, which is discontinuous; so an arbitrarily small change in

the coordinates of x can lead to a significant (even though bounded above by δ) change

in the coordinates of x′.

Thus we need a new construction of x′ and y′ that would compensate for the discon-

tinuity of the maximum function. We set x′(s) = 1− 4iδ for all s ∈ a(ui) \ a(u
′
i−1), and

(not entirely symmetrically) y′(s) = 1−4iδ for all s ∈ b(vi)\b(v
′
i−1). We shall define x′(s)

and y′(s) for the remaining values of s by distributing the total jump value 4δ (between

e.g. x′(s) and x′(t) for s ∈ a(ui) \ a(u
′
i−1) and t ∈ a(ui+1) \ a(u

′
i), provided that such s

and t exist) over all the jumps so as to best approximate the (continuous) uniform distri-

bution. Thus the jump value over a(j)\a(j−1) must be proportional to the step length

αj−1−αj for each j ∈ [ui+1, u′i+1]. The total horizontal length of the stairs is δ (from

1−4iδ to 1−(4i+1)δ, for instance). Therefore we set x′(s) = (1−4iδ)−4((1−4iδ)−αj)

for all s ∈ a(j) \ a(j − 1), for each j ∈ [ui + 1, u′i]. Similarly (but not entirely symmet-

rically) y′(s) = (1 − 4iδ) − 4((1 − (4i + 2)δ) − βj) for all s ∈ b(j) \ b(j − 1), for each

j ∈ [vi + 1, v′i]. We define ϕ(x, y) = x′ and ψ(x, y) = y′. We also define α′
j = x′(s) for

all s ∈ a(j) \ a(j − 1), where 2 ≤ j ≤ m, and β ′
j = y′(s) for all s ∈ b(j) \ b(j − 1),

where 2 ≤ j ≤ n (beware that this notation is not entirely analogous to that in the

proof of Theorem 3.11). Then α′
2 = α′

u0
= 1 and α′

m−1 = α′
uN

= 0, where u0 ≥ 2 and

uN = m, so x′ ∈ |A|a. Due to the non-symmetric definition of y′, also β ′
2 = βv0 = 1 and

β ′
n−1 = β ′

vN−1
= 0, where v0 ≥ 2 and vN−1 ≤ n, so y′ ∈ |B|b.

It is easy to check that x′ and y′ do not depend on the choice of A and B. When

s ∈ a(ui) \ a(u
′
i−1) we have x(s) ∈ [αui

, αu′
i−1+1] ⊂ [1 − 4iδ, 1 − (4i − 3)δ] whereas

x′(s) = 1 − 4iδ. When s ∈ a(u′i) \ a(ui) we have x′(s) − D = 4[x(s) − D], where

D = 1− 4iδ, so x′(s)− x(s) = [x′(s)−D]− [x(s)−D] = 3[x(s)−D] ∈ [0, 3δ]. In both

cases |x′(s) − x(s)| ≤ 3δ ≤ ε/2 as desired. Similarly (but not entirely symmetrically)

|y′(s)− y(s)| ≤ 3δ ≤ ε/2.

It remains to verify that ϕ and ψ are uniformly continuous, that is, for each ζ > 0

there exists an η > 0 such that d(x, x̃) < η and d(y, ỹ) < η imply d(x′, x̃′) < ζ and

d(y′, ỹ′) < ζ . By the proof of Theorem 3.11 for each θ > 0 there exists an η > 0 (namely,

η = θ/5) such that given x, x̃ ∈ |P | with d(x, x̃) ≤ η, there exist x∗, x̃∗ ∈ |P | such
that each of the pairs {x, x∗}, {x∗, x̃∗}, {x̃∗, x̃} has diameter at most θ and lies in the

convex hull of some chain of P . Given y, ỹ ∈ |P | with d(y, ỹ) ≤ η, we similarly get

y∗, ỹ∗. Therefore it suffices to consider the case where the pairs {x, x̃} and {y, ỹ} lie in

the convex hulls of some chains A and B, respectively. Since ϕ and ψ are well-defined,

we may assume that x′, x̃′, y′, ỹ′ are all defined using these A and B. In this case, we set

η = min(ζ/4, δ/2).

Thus suppose that d(x, x̃) < η. In other words, |αj(s) − α̃j(s)| < η for all s ∈ P.
Fix some j; by symmetry we may assume that αj(s) ≥ α̃j(s). Since η < δ, one of the

following four cases has to occur for some i:
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(i) 1− 4iδ > αj(s) ≥ α̃j(s) ≥ 1− (4i+ 1)δ;

(ii) 1− (4i− 3)δ > αj(s) ≥ α̃j(s) ≥ 1− 4iδ;

(iii) 1− (4i− 3)δ > αj(s) ≥ 1− 4iδ > α̃j(s) ≥ 1− (4i+ 1)δ;

(iv) 1− 4iδ > αj(s) ≥ 1− (4i+ 1)δ > α̃j(s) ≥ 1− (4i+ 4)δ.

In the case (i), we have α′
j(s) − α̃′

j(s) = 4(αj(s) − α̃j(s)). In the case (ii), both

α′
j(s) and α̃′

j(s) equal 1 − 4iδ. In the case (iii), α′
j(s) = 1 − 4iδ, whereas α̃′

j(s) ∈

[1 − 4iδ, 1 − 4iδ − 4η]. Similarly, in the case (iv), α̃′
j(s) = 1 − (4i + 4)δ, whereas

α′
j(s) ∈ [1− (4i+ 4)δ + 4η, 1− (4i+ 4)δ].

In all cases, α′
j(s)−α̃

′
j(s) ∈ [0, 4η]. This shows that d(x′, x̃′) ≤ 4η. Thus ϕ is uniformly

continuous; the uniform continuity of ψ is verified similarly. �

Example 4.2. Given a preposet P = (P,≤), we define the “co-deleted prejoin” P ⊞P ∗

to be the preposet (P ⊔ P∗,�), where P∗ = {p∗ | p ∈ P} is a just fancy notation for a

copy of P, and the relation is defined by

• p � q iff p ≤ q;

• p∗ � q∗ iff p ≥ q;

• p∗ � q never holds;

• p � q∗ iff either p ≤ q or p ≥ q

for all p, q ∈ P. Note that P ⊞ P ∗ need not be a poset even if P is.

Let us define j : P → (P⊞P ∗)# by j(p) = [p, p∗]. Obviously, j is a conical embedding,

i.e. p ≤ q if and only if j(p) � j(q). We claim that |j| is a homotopy equivalence.

Indeed, |j| is homotopic to the composition |P |
|i|
−→ |P |

h
−→ |P#|, where h is the uniform

homeomorphism. On the other hand, i♭ is split by the simplicial map r : (P⊞P ∗)♭ → P ♭,

defined on vertices by p, p∗ 7→ p. Given a chain σ = (p1 < · · · < pn) ∈ P ♭ we have

r−1(⌈σ⌉) = ⌈σ ⊞ σ̄⌉, where σ ⊞ σ̄ denotes the chain (p1 < · · · < pn < p∗n < · · · < p∗1) ∈

(P ⊞ P ∗)♭. Since r is simplicial, it follows that |r| : |(P ⊞ P ∗)♭| → |P ♭| has contractible

point-inverses, and therefore (or by Quillen’s fiber lemma) is a homotopy equivalence.

If k is a homotopy inverse to |r|, then k = k|ri♭| ≃ |i♭|, so |i♭| is also a homotopy

equivalence.

Let K0 be the preposet of the four sets 0, {0, 1}, {0, 2} and {{0, 1}, {0, 2}} ordered by

∈. Thus |K0| is homeomorphic to S1. LetKn+1 = Kn⊞K
∗
n. Finally letK = K0⊔K1⊔. . . .

We claim that |K| is not uniformly locally contractible (and in particular is not a

uniform ANR). Indeed, by the above we have an embedding fn : K0 → K#n
n such that

|fn| is a homotopy equivalence. In order to use the d∞ metric, which has been shown

to work only for posets, we consider the transitive closure. Let f ′
n be the composition

K0
fn
−→ K#n

n ⊂
〈

K#n
n

〉

⊂ 〈Kn〉
#n. Since f ′

n is conical, the image of |f ′
n| has diameter 1

in the d∞ metric on | 〈Kn〉
#n |, hence by Corollary 3.12, the image of the composition

|K0|
|f ′

n|−−→ | 〈Kn〉
#n |

hn−→ | 〈Kn〉 | has diameter 2−n in the d∞ metric on | 〈Kn〉 |. Since

id : (| 〈Kn〉 |, d∞) → (| 〈Kn〉 |, d) is 1-Lipschitz, the image of the composition |K0|
|fn|
−−→

|K#n
n |

hn−→ |Kn| has diameter at most 2−n with respect to the usual metric on |Kn|.

However this composition is not null-homotopic since it is a homotopy equivalence.



UNIFORM POLYHEDRA 37

We note that the preposet K in Example 4.2 satisfies the following property (P): For

each ε > 0 there exists an essential map S1 → |K| with image of diameter < ε. On the

other hand, since |K♭| is a uniform ANR, |K| is a non-uniform ANR, and in particular

satisfies the non-uniform homotopy extension property. It follows that every metrizable

uniform space that is uniformly homotopy equivalent to |K| satisfies (P) as well. In

particular, we get the following

Theorem 4.3. There exists a countable preposet whose geometric realization is not

uniformly homotopy equivalent to a uniform ANR, nor even to a uniformly locally con-

tractible metrizable uniform space.

4.4. Thickened mapping cylinder. Let f : P → Q be a conical map between count-

able posets. Let jP : P →֒ 2N be the usual embedding p 7→ ⌈p⌉, where the underlying

set of P is identified with a subset of N. Let F be the composition P × 2N → P
f×jP−−−→

Q × 2N of the projection and the joint map. Finally let TMC(f) be the transitive

closure 〈MC(F )〉. Note that TMC(f) contains canonical copies of P = P × {∅} and
Q = Q× {∅}.

Theorem 4.5. Let f : P → Q be a conical map between countable posets. Then

|TMC(f)| is uniformly homotopy equivalent to |MC(f)| relative to |P ⊔ Q|; and if

P and Q are CQLs, then so is TMC(f).

This follows easily from

Lemma 4.6. Let f : P → Q be a conical embedding between countable posets. Then

(a) if P and Q are CQLs, then so is 〈MC(f)〉;

(b) | 〈MC(f)〉 | uniformly deformation retracts onto |MC(f)|.

Proof. (a). Let S ⊂ 〈MC(f)〉. Then S = SP ⊔ SQ, where SP ⊂ P and SQ ⊂ Q. If S

has a lower bound which belongs to P then it has the greatest lower bound (since P is

a CQL). So we may assume that every lower bound of S belongs to Q. Then it is easy

to see that

(∗) every lower bound of S is also a lower bound of SQ ∪ f(SP ).

If S has a lower bound, then by (∗) so does SQ ∪ f(SP ). Hence SQ ∪ f(SP ) has

the greatest lower bound q (since Q is a CQL). By another application of (∗), q is the

greatest lower bound of S. �

(b). Since f is an embedding, we may identify 〈MC(f)〉 with a subposet of Q×[2]. Then

h(〈MC(f)〉) gets identified with a subposet of h(Q× [2]) ≃ h(Q× [2]∗). It is easy to see

that the conical map rQ×[2]∗ : h(Q× [2]∗)→ Q× [2]∗ (see 3.25) sends h(〈MC(f)〉) onto
MC∗(f). Using this, similarly to the proof of Theorem 3.27 one constructs a uniform

retraction of |h(〈MC(f)〉)| onto |h(MC∗(f))|, and by using Lemma 3.26 or similarly to

the proof of Lemma 3.29 one constructs a uniform homotopy from this retraction to the

identity. �
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4.B. Combinatorics of covers and approximation of maps

In this subsection we shall need basic operations and relations on covers as introduced

in [32; 2.5], as well as the following additional notation.

4.7. Nerve. We recall that the nerve of a cover C ⊂ 2S of a set S is the simplicial

poset N(C) ⊂ 2C , where a subset B ⊂ C is a simplex of N(C) iff
⋂

B (the intersection

of all elements of B) is nonempty. The notion of nerve was introduced by Alexandroff

[2]. We note that for a cover C,

• C countable and point-finite iff N(C) is a simplicial complex;

• C is countable and Noetherian iff N(C) is a Noetherian simplicial complex;

• C is countable and star-finite iff N(C) is a locally finite simplicial complex.

4.8. Simplex determined by subset. Given a nonempty T ⊂ S that is contained in

at least one element of C, let ∆C(T ) denote the element {U ∈ C | T ⊂ U} of N(C).

Given an s ∈ S, we write ∆C(s) = ∆C({s}). Note that every element of N(C) belongs

to some simplex of N(C) of the form ⌈∆C(s)⌉ for some s ∈ S.

4.9. Cover by open stars. If P is a poset, by the open star
◦
st(p, P ) of a p ∈ P we

mean | st(p, P )| \ | st(p, P ) \ ⌊p⌋|. (We recall that st(p, P ) = ⌈⌊p⌋⌉.)

If P is atomic with atom set Λ, we have the cover {
◦
st(λ, P ) | λ ∈ Λ} of |P |• by open

stars of vertices. It is easy to see that the open star of a vertex v ∈ Λ in |P |• is precisely

the set of points of |P |• ⊂ [0, 1]Λ whose vth coordinate is nonzero. On the other hand,

the set of points of |P •| whose vth coordinate equals 1 is precisely the dual cone |⌊v⌋| of

v. These dual cones of vertices form a cover of |P |•, and it follows that the cover of |P |•

by the open stars of vertices is uniform with Lebesgue number 1− ε for each ε > 0.

Lemma 4.10. Let X be a metrizable uniform space and C a countable point-finite

uniform open cover of X. Then there exists a uniformly continuous map ϕC : X →

|N(C)| that sends each x ∈ X into the interior of |⌈∆C(x)⌉|.

Furthermore, given a uniform cover D of X, a cover C ′ of X and a bijection C → C ′,

denoted U 7→ U ′, such that st(U ′, D) ⊂ U for each U ∈ C, then we can choose ϕC so

that each ϕC(U
′) lies in the dual cone |⌊U ⌋|.

Note that the first assertion implies that each U ∈ C is the preimage of the open star

of the vertex {U} of N(C).

Proof. Note that there always exist C ′ and D as specified. For instance, take D to be the

cover by all open ε-balls of radius ε, and take each X\U ′ to be the closed ε-neighborhood

of X \ U , where 3ε is a Lebesgue number of C. Then every subset of X of diameter ε

has its ε-neighborhood contained in some U ∈ C; and therefore is itself contained in the

U ′.

Let λ be a Lebesgue number ofD. Then each d(U ′, X\U) ≥ λ. For each U ∈ C define

fU : X → [0, 1] by fU(x) = min(λ−1d(x, X \U), 1). Let us consider ϕ =
∏

fU : X → lc∞.
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Then {U ∈ C | fU(x) > 0} = ∆C(x), and since C ′ is a cover, {U ∈ C | fU(x) = 1} 6= ∅.

Hence ϕ(X) ⊂ |N(C)|. Next, f−1
U (0) = X \ U , which implies the assertion on C, and

fU(U
′) = {1}, which implies the assertion on C ′. Finally, |fU(x) − fU(y)| ≤ λ−1d(x, y)

for each U ∈ C, so ϕ is uniformly continuous. �

4.11. Intersection poset and Venn diagram. Given a cover C of a set S, the

intersection poset IP (C) is the subposet of 2C consisting of all nonempty B ⊂ C such

that
⋂

B is not contained in any element of C \ B. The terminology “intersection

poset” derives from Lemma 4.12(a) below, which however characterizes IP (C) only up

to isomorphism, and not as a subposet of ∆C .

The Venn diagram V D(C) is the subposet of 2C consisting of all B ⊂ C such that
⋂

B

is not contained in
⋃

(C \B). This is a formalization of the intuitive notion of a “Venn

diagram”, also known as “Euler diagram”, from courses of “abstract mathematics”, for

it can be argued that V D(C) contains all the combinatorial information on containment

of points of X in elements of C (see Lemma 4.12(b) below) — and nothing else (see

Lemma 4.14(b) below).

Clearly, V D(C) ⊂ IP (C) ⊂ N(C) and ⌈V D(C)⌉ = ⌈IP (C)⌉ = N(C). Note that if

C is countable and point-finite, then IP (C) and V D(C) are cone complexes. Clearly

∆C(x) belongs to V D(C) for every x ∈ S; in contrast, ∆C(T ) belongs to IP (C) for

every T ⊂ S that is contained in at least one element of C.

Lemma 4.12. Let C be a cover of a set S.

(a) IP (C) is isomorphic to the poset consisting of arbitrary nonempty intersections

of elements of C, ordered by reverse inclusion. In particular, IP (C) is a CQL.

(b) V D(C) is isomorphic to the poset consisting of those intersections of elements of

C that are of the form
⋂

∆C(s) for some s ∈ S, ordered by reverse inclusion.

Proof. It will be convenient to work in a slightly greater generality. The definitions of

N(C), IP (C) and V D(C) generalize straightforwardly for any collection ϕ : C → 2S

of subsets of S (possibly with repeated subsets ϕ(U) = ϕ(U ′) and with
⋃

ϕ(C) not

necessarily covering the whole of S). It is easy to see that

• N(ϕ) = Φ−1(∆S), where Φ: ∆C → 2S is defined by D 7→
⋂

ϕ(D);

• IP (ϕ) = ∆ϕ(∆
S) \ {∅}, where ∆ϕ : ∆

S → 2C is defined by T 7→ ϕ−1(⌊T ⌋);

• V D(ϕ) = ∆ϕ(A(∆
S)) \ {∅}, where the subset A(∆S) = {{s} | s ∈ S} of ∆S should

not be confused with the element S of ∆S.

We note that the maps Φ and ∆ϕ are dual-conical, and restrict to mutually inverse

bijections between IP (ϕ) and Φ(∆C) \ {∅}. In particular, IP (ϕ) is isomorphic to

(Φ(∆C) \ {∅})∗, which implies the first assertion of (a). Similarly, V D(ϕ) is isomor-

phic to Φ(∆ϕ(A(∆
S)) \ {∅})∗, which yields (b). �

Remark 4.13. It follows from the proof that IP (ϕ) ≃ IP (Φ) and V D(ϕ) ≃ V D(Φ).

Lemma 4.14. Let P be a poset embedded in some ∆Λ. Let C be the cover {⌊λ⌋ ∩ P |

λ ∈ Λ} of the underlying set of P by the dual cones of vertices.
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(a) V D(C) ≃ P .

(b) IP (C) = V D(C) if and only if for every R ⊂ A(∆Λ), the set of all upper bounds

of R in P either is empty or is the dual cone in P of a single element of P .

Proof. (a). By Lemma 4.12(b), V D(C) is isomorphic to the poset consisting of the dual

cones ⌊p⌋∆
Λ

∩ P = ⌊p⌋P of all elements p ∈ P , ordered by reverse inclusion. The latter

is obviously isomorphic to P . �

(b). By Lemma 4.12(a), IP (C) is isomorphic to the poset of all nonempty intersections of

the form
⋂

σ, where σ ⊂ C, ordered by reverse inclusion. We have
⋂

σ = P ∩
⋂

λ∈Rσ

⌊λ⌋,

where Rσ = {{λ} | λ ∈ Λ, (⌊λ⌋∩P ) ∈ σ}. (The subset Rσ of ∆Λ should not be confused

with the element
⋃

Rσ of ∆Λ.) Thus IP (C) is in bijection with the set of all nonempty

intersections of the form P ∩ ⌊R⌋, where R ⊂ Λ. By the proof of Lemma 4.12, the same

bijection sends V D(C) onto the set of the dual cones ⌊p⌋P of all elements p ∈ P , and

the assertion follows. �

Corollary 4.15. Let P be an atomic poset, and let C be the cover of P by the dual

cones of its atoms. Then IP (C) = V D(C) if and only if P is a CQL.

It is not hard to see that the same assertion is true of the cover of |P | by the geometric

realizations of the dual cones of the vertices of P , and of the cover of |P | by the open

stars of these vertices.

Proof. Let us embed P in ∆A(P ) as in Lemma 2.19. Lemma 4.14(b) then says that

IP (C) = V D(C) if and only if every R ⊂ A(P ) that has an upper bound in P has a

least upper bound in P . This proves the “if” assertion, and the “only if” assertion now

follows from Lemma 2.20. Alternatively, the “only if” assertion follows from Lemma

4.14(a) and the second assertion of Lemma 4.12(a). �

4.16. Canonical bonding map. Let C and D be covers of a set S, and suppose that

C star-refines D. We define a map ϕC
D : N(C) → N(D)# by sending each σ ∈ N(C)

into [∆D(
⋃

σ),∆D(
⋂

σ)] ∈ N(D)#. Here ∆D(
⋃

σ) is non-empty by the star-refinement

hypothesis; every vertex of ∆D(
⋃

σ) is obviously a vertex of ∆D(
⋂

σ); and ∆D(
⋂

σ) ∈

N(D) since
⋂

σ 6= ∅.
Given a τ ≤ σ, we have

⋃

τ ⊂
⋃

σ, whence ∆D(
⋃

τ) ≥ ∆D(
⋃

σ); and
⋂

τ ⊃
⋂

σ,

whence ∆D(
⋂

τ) ≤ ∆D(
⋂

σ). Thus ϕC
D is conical.

Finally, recall that IP (D) contains every element of N(D) of the form ∆D(T ), where

T ⊂ S. Hence [∆D(
⋃

σ),∆D(
⋂

σ)] belongs to the isomorphic copy of IP (D)# inN(D)#.

Thus we may write ϕC
D : N(C)→ IP (D)#.

Remark 4.17. Let us discuss some motivation/geometry behind the definition of ϕC
D.

If V ∈ σ then {V } ≤ σ, so by the above ∆D(V ) belongs to [∆D(
⋃

σ),∆D(
⋂

σ)]. Hence

the map defined on vertices by {V } 7→ [∆D(V ),∆D(V )] extends uniquely to a conical

map N(C)→ N(D)# sending each simplex ⌈σ⌉ into the cube ⌈[∆D(
⋃

σ),∆D(
⋂

σ)]⌉.
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If C strongly star-refines D, then ∆D(st(V, C)) ∈ N(C), and it is not hard to see

that ϕC
D sends each st({V }, N(C)) into the canonical subdivision of the dual cone of

∆D(st(V, C)) in the subcomplex
⋃

{⌈∆D(x)⌉ | x ∈ V } of N(D).

Proposition 4.18. Let C and D be covers of a set S. If C strongly star-refines D,

there exists a simplicial map N(C)
g
−→ N(D) such that N(C)#

g#

−→ N(D)# is homotopic

to the composition N(C)#
(ϕC

D
)#

−−−→ N(D)## r#
−→ N(D)#, where r stands for either rN(D)

or r∗N(D), by a conical homotopy N(C)# × I → N(D)# sending each block of the form

⌈σ⌉
# × I into the star of [∆D(

⋃

σ),∆D(
⋂

σ)] in N(D)#.

Proof. Given a vertex {V } of N(C), the hypothesis furnishes a vertex {V ′} of N(D)

such that st(V, C) ⊂ V ′. For each σ ∈ N(C) and each V ∈ σ we have
⋃

σ ⊂ V ′,

and consequently {V ′} ∈ ⌈∆D(
⋃

σ)⌉. Hence V 7→ V ′ extends to a simplicial map

g : N(C)→ N(D) sending each σ onto some σ′ ⊂ ∆D(
⋃

σ) ⊂ ∆D(
⋂

σ). Then g# sends

each [σ, τ ] onto [σ′, τ ′]. The composition N(C)#
(ϕC

D)#

−−−→ N(D)## r#
−→ N(D)# sends it

onto [∆D(
⋃

σ),∆D(
⋃

τ)] when r = rN(D) and onto [∆D(
⋂

σ),∆D(
⋂

τ)] when r = r∗N(D).

The required homotopy is defined by sending each ([σ, τ ], {0, 1}) onto [σ′,∆D(
⋃

σ)] in

the first case and onto [σ′,∆D(
⋂

σ)] in the second case. �

Theorem 4.19. Let Q be a countable CQL. Then |Q| satisfies the Hahn property.

Proof. Given an ε > 0, let C ′ be the cover of |Q#n| by the open stars of vertices, where

2−n+1 < ε and n ≥ 1 so that Q#n is atomic. Since Q is a CQL, so is Q#n, and therefore

IP (C ′) = V D(C ′) ≃ Q#n. Let hn : |Q
#n| → |Q| be the uniform homeomorphism given

by Corollary 3.12, and let C = hn(C
′). Let δ be the Lebesgue number of C with respect

to the d∞ metric on |Q|.

Given a metric space X and a (γ, δ)-continuous map f : X → |Q| for some γ > 0, let

E be the cover of X by γ
4
-balls. Then E star-refines D := f−1(C). Let Φ denote the

composition

X
ϕE−→ |N(E)|

|ϕE
D
|

−−→ |IP (D)#| ⊂ |IP (C)#|
h
−→ |IP (C)| ∼= |Q#n|

hn−→ |Q|,

where ϕE is the uniformly continuous map given by Lemma 4.10 and ϕE
D is the canonical

bonding map. Given an x ∈ X , by Lemma 4.10 ϕE(x) ∈ |⌈∆E(x)⌉|. By the definition of

ϕE
D we have ϕE

D(∆E(x)) = [∆D(
⋃

∆E(x)),∆D(
⋂

∆E(x))] ⊂ ⌈∆D(
⋂

∆E(x))⌉ ⊂ ⌈∆D(x)⌉.

The latter is identified with ⌈∆C(f(x))⌉, where ∆C(f(x)) is an element of IP (C) ≃ Q#n,

and it follows that Φ(x) ∈ hn(|⌈∆C(f(x))⌉|). Now |⌈∆C(f(x))⌉| has diameter ≤ 2 with

respect to the d∞ metric on |Q#n|, so hn(|⌈∆C(f(x))⌉|) has diameter ≤ 2−n+1 with

respect to the d∞ metric on |Q|. Since this set contains both Φ(x) and f(x), we infer

that Φ is ε-close to f with respect to the d∞ metric on |Q|. �

We define a uniform polyhedron to be the geometric realization of a countable CQL.

Theorem 4.1, Theorem 4.19, and [32; Theorem 4.30] have the following

Corollary 4.20. Uniform polyhedra are uniform ANRs.
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Lemma 4.21. For each ε > 0 there exist an n and a δ > 0 such that for each γ > 0

there exists anM such that for each m ≥M the following holds. Let P be a preposet and

Q a CQL, and f : |P | → |Q| be a (γ, δ)-continuous map. Then there exists a conical map

g : P#m → Q#n such that the composition |P |
h−1
m−−→ |P#m|

g
−→ |Q#n|

hn−→ |Q| is ε-close to

f .

Proof. Let 2−n+1 < ε, n ≥ 1, let δ < 2−n−1, and let 2−M+1 < γ/4, M ≥ 1.

Let C ′ be the cover of |Q#n| by the open stars of vertices (using that Q#n is atomic due

to n ≥ 1). Since C ′ has Lebesgue number 1
2
with respect to the usual metric d on |Q#n|,

is also has Lebesgue number 1
2
with respect to the d∞ metric, due to d(x, y) ≤ d∞(x, y).

Then C := hn(C
′) has Lebesgue number 2−n−1 (and therefore also Lebesgue number δ)

with respect to the d∞ metric on |Q|.

Let E ′ be the cover of |P#m| by the open stars of vertices (using that P#m is atomic

due to m ≥ M ≥ 1). Then E ′ refines the cover of |P#m| by balls of radius 2 about every

vertex of P#m with respect to the d∞ metric on |P#m|. Hence E := hm(E
′) refines

the cover of |P | by balls of radius 2−m+1 (and therefore also that by balls of radius

γ/4) about all points of |P | with respect to the d∞ metric on |P |. We note that the

composition ϕ : |P |
h−1
m−−→ |P#m| ∼= |V D(E)| ⊂ |N(E)| satisfies ϕ(x) ∈ |⌈∆E(x)⌉|.

The assertion now follows by the proof of Theorem 4.19. �

From the preceding lemma we infer

Theorem 4.22. For each ε > 0 there exists an n such that the following holds. Let

f : |P | → |Q| be a uniformly continuous map, where P is a preposet and Q is a CQL.

Then there exists an M such that for each m ≥M there exists a conical map g : P#m →

Q#n such that the composition |P |
h−1
m−−→ |P#m|

g
−→ |Q#n|

hn−→ |Q| is ε-close to f .

Example 4.23. Let P1 = [2] and let Pi+1 = Pi + [2]. Finally let P =
⊔

n∈N P2n+1. We

claim that |P | does not satisfy the Hahn property (and in particular is not a uniform

ANR).

Indeed, let Qn = (P2n+1)
#n, and let Cn be the cover of |Qn| by the stars of atoms

of Qn. Then |V D(Cn)| ∼= |Qn| ∼= |P2n+1| is a 2n-sphere; but we shall now show that

|N(Cn)| is contractible.

If K is a poset, then K#n is isomorphic to the poset consisting of non-decreasing

sequences a = (a1 ≤ · · · ≤ a2n) of elements of K, where a ≥ b iff ai ≤ bi for all odd i

and bi ≤ ai for all even i. Such a sequence a represents an atom of K#n iff ai = ai+1

for all odd i; and a coatom of K#n iff ai = ai+1 for all even i < 2n, a1 is an atom

of K and a2n is a coatom of K. Thus the atoms of K#n can be identified with non-

decreasing sequences a = (a2 ≤ a4 ≤ · · · ≤ a2n−2 ≤ a2n) of elements of K, and the

coatoms of K#n with non-decreasing sequences s = (s1 ≤ s3 ≤ · · · ≤ s2n−1 ≤ s2n+1) of

elements of K, where s1 is an atom and s2n+1 a coatom of K; in this notation, a ≤ s iff

s1 ≤ a2 ≤ s3 ≤ a4 ≤ · · · ≤ a2n ≤ s2n+1. If C is the cover of |K#n| by the open stars of

vertices of K#n, then the vertices of N(C) correspond to the atoms of K#n, and a set
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of vertices of N(C) determines a simplex of N(C) iff the corresponding atoms of K#n

all belong to the cone of some coatom of K#n.

Consider the projection π : Pi = [2] + · · · + [2] → [1] + · · ·+ [1] ≃ [i]. By the above,

N(Cn) ⊂ 2A, where A is the set of all non-decreasing sequences a = (a2 ≤ a4 ≤ · · · ≤ a2n)

of elements of P2n+1, and N(Cn) consists of all S ⊂ A such that there exists a non-

decreasing sequence s = (s1 ≤ s3 ≤ · · · ≤ s2n+1) of elements of P2n+1, where π(s1) = 1

and π(s2n+1) = 2n + 1, and s1 ≤ a2 ≤ s3 ≤ a4 ≤ · · · ≤ a2n ≤ s2n+1.

Let Lk = {a ∈ A | π(a2i) ≤ 2i for all i ≤ k} and Rk = {a ∈ A | π(a2i) ≥ 2i for all i ≥

2n−1 + 1 − k}. Thus A = L0 ⊃ L1 ⊃ · · · ⊃ L2n−1 , and A = R0 ⊃ R1 ⊃ · · · ⊃ R2n−1 .

Note that L2n−1 ∩R2n−1 = {a ∈ A | π(a2i) = 2i for all i}, which lies in a single simplex,

as witnessed by any sequence s with π(s) = (1 ≤ 3 ≤ · · · ≤ 2n + 1). For i = 0, . . . , 2n−1

let Ni be the full subcomplex of N(Cn) spanned by Li, and for i = 2n−1 + 1, . . . , 2n let

Ni be the full subcomplex of N(Cn) spanned by L2n−1 ∩Ri−2n−1 . Thus N0 = N(Cn); on

the other hand, since N2n is a full simplex, |N2n| is contractible. We shall now construct

a deformation retraction of |Ni| onto |Ni+1| for each i = 0, . . . , 2n − 1.

We first define a retraction rk : Lk−1 → Lk by rk(a) = a if a ∈ Lk, and else by

rk(a) = b, where b2i = a2i for i 6= k and π(b2k) = 2k. (This leaves two possibilities

for b2k, among which we choose arbitrarily.) Let S ∈ Nk−1 be witnessed by a sequence

s = (s1 ≤ s3 ≤ · · · ≤ s2n+1) of elements of P2n+1, where π(s1) = 1 and π(s2n+1) = 2n+1.

If π(s2k+1) ≤ 2k, then all elements of S belongs to Lk, and so rk|S is the identity. Else

π(s2k+1) ≥ 2k + 1, and since all elements of S belong to Lk−1, we may assume that

π(s2k−1) ≤ 2k − 1 by modifying s if necessary. Then rk(S) is a simplex of Nk, and

furthermore S ∪ rk(S) is a simplex of Nk−1, as witnessed by the same sequence s. Thus

rk extends to a simplicial retraction Rk : Nk−1 → Nk, and furthermore we get a simplicial

map Hk : Nk−1 ∗Nk−1 → Nk−1 that restricts to the identity on the first factor and to Rk

on the second factor. It follows that |Rk| is a deformation retraction.

We next similarly define a retraction r′k : Rk−1 → Rk by r′k(a) = a if a ∈ Rk, and

else by r′k(a) = b, where b2i = a2i for i 6= 2n−1 + 1 − k and π(b2n+2−2k) = 2n + 2 − 2k.

(This leaves two possibilities for b2n+2−2k, among which we choose arbitrarily.) Then

r′k(L2n−1) ⊂ L2n−1 , and then the preceding argument goes through. This completes the

proof that |N(Cn)| deformation retracts onto a contractible subspace, and therefore is

itself contractible.

Suppose that |P | satisfies the Hahn property. (The following somewhat technical

argument can be somewhat simplified by using Lemma 4.31 below, modulo the proof of

that lemma.) Since |P | is uniformly locally contractible, there exits an ε > 0 such that

every two ε-close maps into |P | are homotopic with respect to the usual metric on |P |.
Let Dn be the cover of |P#n| by the open stars of vertices of P#n. Since P ≃ V D(D0)

is a subposet N(D0), we have an isometric embedding |P | ⊂ |N(D0)| with respect to

the usual metrics. We recall that the d∞ metric on N(D0) is uniformly equivalent to

the usual metric d. Let d′ denote the d∞ metric on |N(D0)| restricted over |P |. Let

δ > 0 be such that δ-close points in |P | with respect to d′ are ε-close with respect to
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d. By our assumption there exists a γ > 0 such that for every β > 0, every (β, γ)-

continuous map into (|P |, d′) is δ-close with respect to d′ to a continuous map. Now the
γ
3
-neighborhood U of |P | in |N(D0)| with respect to the d∞ metric on |N(D0)| admits a

discontinuous, (γ/3, γ)-continuous retraction onto (|P |, d′). Thus we obtain a continuous

map f : U → (|P |, d′) such that f ||P | is δ-close to the identity. Then by the above f ||P |

is homotopic to the identity.

Let n be such that 2−n ≤ γ/3. Let Rn = ⌈V D(D0)
#n

⌉N(D0)#n . Then |Rn| lies in

the 1-neighborhood of |V D(D0)
#n| with respect to the d∞ metric on |N(D0)

#n|. Hence

the image of |Rn| under the homeomorphism |N(D0)
#n| ∼= |N(D0)| lies in the 2−n-

neighborhood of |P | with respect to the d∞ metric on |N(D0)|. Thus we obtain a

continuous map g : |Rn| → |P | whose restriction over P#n is homotopic to the home-

omorphism |P#n| ∼= |P |. Next, each Di+1 star-refines Di, so we have the canoni-

cal bonding map ϕ
Di+1

Di
: N(Di+1) → N(Di)

#. It is easy to see that the composi-

tion P#(n+1) ≃ V D(Di+1)
ϕ
−→ V D(Di)

#n ≃ P#n, where ϕ is the restriction of ϕ
Di+1

Di
,

is the identity map. By iterating we obtain a conical map ϕn : N(Dn) → N(D0)
#n

that extends the composition V D(Dn) ≃ P#n ≃ V D(D0)
#n. Since ϕn is conical and

N(Dn) = ⌈V D(Dn)⌉, the image of ϕn lies in Rn. Thus we obtain a continuous map

h : |N(Dn)| → |P | whose restriction to |V D(Dn)| is homotopic to the homeomorphism

|P#n| ∼= |P |. In particular, we obtain a continuous map k : |N(Cn)| → |P2n+1| whose

restriction to |V D(Cn)| is homotopic to the homeomorphism |Qn| ∼= |P2n+1|. This yields

a continuous retraction of the (2n + 1)-ball onto the boundary 2n-sphere, which is a

contradiction.

We note that the poset P in Example 4.23 satisfies the following property (Q): There

exist essential maps en : S
2n →֒ |P | such that for each ε > 0 there exists an n, a δ > 0

and a discontinuous, (δ, ε)-continuous extension of en over B2n+1. On the other hand,

since |P ♭| is a uniform ANR, |P | is a non-uniform ANR, and in particular satisfies the

non-uniform homotopy extension property. It follows that every metrizable uniform

space that is uniformly homotopy equivalent to |P | satisfies (Q) as well. In particular,

using that |P | is uniformly locally contractible, we get the following

Theorem 4.24. There exists a countable poset whose geometric realization is not uni-

formly homotopy equivalent to a uniform ANR, nor even to a metrizable uniform space

satisfying the Hahn property.

The remainder of this subsection is not used elsewhere in this paper, and could be of

interest primarily to the reader who is looking for a class of posets larger than CQLs

whose geometric realizations are uniform ANRs.

4.25. Hereditarity. We call a cover D of a metric space M hereditarily uniform, if

there exists a λ > 0 such that each E ⊂ D is a uniform cover of
⋃

E with Lebesgue

number λ. Any such λ is a hereditary Lebesgue number of the hereditarily uniform cover.

We say that a cover C of a set S hereditarily star-refines a cover D of S if for every

E ⊂ D, the cover C ∩ (
⋃

E) of the subset
⋃

E ⊂ X star-refines the cover E of
⋃

E.
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If D is a cover of M by sets of diameters < ε, and C is a hereditarily uniform cover

of M with a hereditary Lebesgue number 2ε, then clearly D hereditarily star-refines C.

Lemma 4.26. Let C and D be covers of a set S. If C hereditarily star-refines D, then

ϕC
D sends N(C) into V D(D)#.

Proof. The hypothesis implies that for every x ∈ C, every T ⊂ st(x, C) such that x ∈ T

satisfies the following property (∗): if T lies in
⋃

E for some E ⊂ D, then it lies in some

element of E. In particular, (∗) is satisfied by any T of the form
⋂

σ or
⋃

σ, where

σ ∈ N(C). On the other hand, every element of N(D) of the form ∆D(T ) where T

satisfies (∗) clearly belongs to V D(D). �

4.27. Construction of hereditary uniform covers. For a finite-dimensional atomic

poset P with atom set Λ, it is easy to construct a hereditarily uniform cover of |P |,

namely the cover by the sets Uλ =
⋃

σ≥λ |Hσ| composed of the barycentric handles

Hσ = ⌈ 〈σ〉
∗
⌉ ⊂ (P ♭)∗, where σ ∈ P . The hereditarity is due to the fact that |Hσ| and

|Hτ | are uniformly disjoint when σ and τ are incomparable and P is finite-dimensional.

This argument does not apply to canonical handles hσ = ⌈[σ, σ]
∗
⌉ ⊂ (P#)∗ because

hσ ∩ hτ can be nonempty when σ and τ are incomparable.

Clearly, the preimage of a hereditarily uniform cover under a uniformly continuous

map of metrizable uniform spaces is hereditarily uniform. Hence by using Lemma 4.10,

we infer that every uniform cover of a residually finite-dimensional metrizable uniform

space admits a hereditarily uniform refinement (in fact, one of a finite multiplicity). We

conjecture that the hypothesis of residual finite-dimensionality cannot be dropped here.

4.28. Weak hereditarity. We call a cover D of a metric space M weakly hereditarily

uniform, if there exists a λ > 0 such that for every F ⊂ D satisfying
⋂

F ⊂
⋃

(D \ F ),

the cover (D \ F ) ∩ (
⋂

F ) of the subset
⋂

F ⊂ X is a uniform cover of
⋂

F with

Lebesgue number λ. Any such λ is called a weak hereditary Lebesgue number of the

weakly hereditarily uniform cover. A hereditarily uniform cover is weakly hereditarily

uniform by considering E = D \ F ; and a weakly hereditarily uniform cover is uniform

by considering F = ∅ (in which case
⋂

F =M).

We say that a cover C of a set S weakly hereditarily star-refines a cover D of S if for

every F ⊂ D satisfying
⋂

F ⊂
⋃

(D \ F ), the cover C ∩ (
⋂

F ) of the subset
⋂

F ⊂ X

star-refines the cover (D \ F ) ∩ (
⋂

F ) of
⋂

F . Similarly to the above,

hereditary star-refinement ⇒ weak hereditary star-refinement ⇒ star-refinement.

It is easy to see that if D is a cover of M by sets of diameters < ε, and C is a weakly

hereditarily uniform cover of M with a weak hereditary Lebesgue number 2ε, then D

weakly hereditarily star-refines C.

Beware that the preimage of a weakly hereditarily uniform cover under a uniformly

continuous map f of metrizable uniform spaces need not be weakly hereditarily uniform,

because
⋂

F 6⊂
⋃

(D \ F ) does not imply f−1(
⋂

F ) 6⊂ f−1(
⋃

(D \ F )).

The proof of Lemma 4.26 works to establish
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Lemma 4.29. Let C and D be covers of a set S. If C weakly hereditarily star-refines

D, then ϕC
D sends N(C) into V D(D)#.

4.C. Approximation of spaces

Theorem 4.30. Every separable metrizable complete uniform space is the limit of a con-

vergent inverse sequence of geometric realizations of simplicial complexes and uniformly

continuous maps.

The compact case of Theorem 4.30 was proved by Freudenthal [18]; previously, Alexan-

droff [2] had obtained a close result, namely a version of the compact case of Proposition

4.31 below with mere refinement instead of the star-refinement in the hypothesis, and

with every thread, as a point of the inverse limit in the conclusion, replaced by the set

of the simplicial neighborhoods of its elements.

In the case of residually finite-dimensional spaces, Theorem 4.30 was proved by Isbell

[23; Lemma V.33] (see also [10; Lemma 1.6], [24; Lemma 14], [22; 7.2]), taking into

account that his geometric realization is uniformly homeomorphic to ours in the case of

a finite-dimensional simplicial complex. In the general case, we use a different notion of

geometric realization and different bonding maps, but otherwise our proof is modelled

on Isbell’s argument. 13

Theorem 4.30 follows from [32; Theorem 2.37] along with the following

Lemma 4.31. Let {Cn} be a basis of the uniformity of a metrizable complete uniform

space X, where each uniform cover Cn is countable and point-finite. Let Ni = |N(Ci)|,

and let pi : Ni+1 → Ni be the composition |N(Ci+1)|
|ϕ

Ci+1
Ci

|

−−−−→ |N(Ci)
#|

h
−→ |N(Ci)|, where

ϕ
Ci+1

Ci
is the canonical bonding map, and h is the uniform homeomorphism. Then the

inverse sequence . . .
p1
−→ N1

p0
−→ N0 is convergent, and its limit L is uniformly homeo-

morphic to X.

Proof. Let si(x) denote the simplex ⌈∆Ci
(x)⌉. Then each fi := ϕ

Ci+1

Ci
sends si+1(x) into

si(x)
# for each x ∈ X . Hence each pi sends |si+1(x)| into |si(x)|. Since fi is conical, |fi|

is 1-Lipschitz with respect to the d∞ metrics, and therefore pi is
1
2
-Lipschitz with respect

to the d∞ metrics. Since the diameter of |si(x)| is bounded above by 2 in the d∞ metric,

the diameter of pi+n
i (|si+n(x)|) is bounded above by 21−n. Since each |si(x)| is compact,

their inverse limit (with the restrictions of pi as the bonding maps) is nonempty, and by

the above it has zero diameter. Thus it is a single point λ(x) ∈ L.

Each Ni is the union of the |si(x)| over all x ∈ X , and every |si(x)| contains p
∞
i (λ(x)).

Hence every point of pi+n
i (Ni+n) is 21−n-close to a point of p∞i (L). Thus the inverse

sequence is convergent (see [32; Lemma 5.6(c)]).

13There is a minor error in the proof of step (2) in [23; Lemma V.33], as the Cauchy filter base considered
there might consist entirely of the empty sets. This can be remedied as shown in the last paragraph of
our proof.



UNIFORM POLYHEDRA 47

To see that λ : X → L is uniformly continuous, it suffices to show that every its

coordinate λi : X
λ
−→ L

p∞i−−→ Ni is uniformly continuous. Indeed, for each x ∈ X and each

j ≥ i we have λj(x) ∈ |sj(x)| = |⌈∆Cj
(x)⌉|. For each V ∈ Cj, every x ∈ V satisfies

V ∈ ∆Cj
(x). Hence λj(V ) ⊂ | st({V }, N(Cj))|. The diameter of | st({V }, N(Cj))| is

bounded above by 4, hence its image under pji has diameter at most 22−(j−i). Thus for

each ε > 0 there exists a j ≥ i such that λi(Cj) = pjiλj(Cj) refines the cover of Ni

by ε-balls. Since {Cj} is a fundamental sequence of covers of X , we infer that λi is

uniformly continuous.

Next, given x, y ∈ X at a distance ε > 0, there exists an n = n(ε) such that any two

elements of Cn containing x and y are disjoint. Then λn sends x and y into disjoint

closed simplices |sn(x)| and |sn(y)| of Nn. It follows that λ is injective and, using the

uniform continuity of each p∞n , that λ−1 is uniformly continuous.

Finally, if (qi) ∈ L is a thread of qi ∈ Ni, and σn is the minimal simplex of N(Cn)

such that qn ∈ |σn|, then fn(σn+1) ⊂ σ#
n , moreover, σn is the minimal simplex of N(Cn)

satisfying the latter property. Hence σn = ∆Cn
(
⋂

σn+1); in particular,
⋂

σn+1 ⊂
⋂

σn.

Let Sn be the closure of
⋂

σn. Then Sn lies in the closure of an element of Cn. Since

{Ci} is a basis of the uniformity of X , for each ε > 0 there exists an n such that

every element of Cn is of diameter at most ε. It follows that the inverse sequence

· · · ⊂ S1 ⊂ S0 is Cauchy (see [32; Lemma 5.6(d)]). Since X is complete, so are the

Si’s, hence · · · ⊂ S1 ⊂ S0 is convergent (see [32; Lemma 5.6(b)]) and therefore
⋂

Si is

nonempty (see [32; Lemma 5.6(f)]). Since the diameters of Si tend to zero,
⋂

Si must be

a single point q. Now q lies in the closure of
⋂

σn, and each q′ ∈
⋂

σn satisfies σn ⊂ sn(q
′)

and λn(q
′) ∈ |sn(q

′)|. Since λn is continuous, λn(q) lies in the closed subset |⌈
⌊σn

⌋
⌉| of

|N(Cn)|. Hence sn(q) ⊂ ⌈
⌊σn

⌋
⌉, or equivalently σn ⊂ ⌈

⌊sn(q)
⌋
⌉. Since λ(q) is also the

inverse limit of the simplicial neighborhoods |⌈
⌊sn(q)

⌋
⌉|, we conclude that λ(q) = (qi).

Thus λ is surjective. �

Lemma 4.32. Every separable uniform ANR is uniformly ε-homotopy dominated by the

geometric realization of a simplicial complex, for each ε > 0.

The following proof is based on Theorem 4.30; the reader who feels that this is a bit

of an overkill will easily devise a more elementary proof (cf. [23; proof of 7.3]) based on

Lemma 4.10 and [32; Lemmas 4.29(a) and 4.26(a)].

Proof. By [32; Theorem 4.19], the given uniform ANR is uniformly ε-homotopy equiva-

lent to its completion X , for each ε > 0. By Theorem 4.30, X is the limit of a convergent

inverse sequence of geometric realizations Pi of simplicial complexes, and uniformly con-

tinuous bonding maps pi. By [32; Corollary 5.17] there exists a k and a uniformly

continuous retraction r[k,∞] : P[k,∞] → X . For each l ≥ k let rl and r[l,∞] denote the

restrictions of r[k,∞] over Pl and over P[l,∞], respectively. Let p∞[k,∞] : X × I → P[k,∞] be

obtained by combining the maps p∞i : X → Pi. Then for each l ≥ k, the composition

r[l,∞]p
∞
[l,∞] : X × I → X is a uniformly continuous homotopy between X

p∞
l−−→ Pk

rl−→ X
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and idX . Moreover, for each ε > 0 there exists a k such that r[l,∞]p
∞
[l,∞] is an ε-homotopy.

Thus X is uniformly ε-homotopy dominated by Pl. �

From Lemma 4.32 and [32; Corollary 4.31] we immediately obtain

Theorem 4.33. A separable metrizable uniform space is a uniform ANR if and only if it

is uniformly ε-homotopy dominated by the geometric realization of a simplicial complex,

for each ε > 0.

Theorem 4.34. If X is a uniform ANR, then X ×R is uniformly homotopy equivalent

to a uniform polyhedron.

Proof. By Lemma 4.32 we are given uniformly continuous maps d : |K| → X and

u : X → |K|, where K is a simplicial complex, such that the composition X
u
−→ |K|

d
−→ X

uniformly homotopic to the identity by an homotopy h : X × I → X . We now perform

a uniform version of Mather’s trick (see [16]): X × R is uniformly homotopy equivalent

to the double mapping telescope of

· · · → X
du
−→ X

du
−→ X → . . . ,

which is in turn uniformly homotopy equivalent to the double mapping telescope of

· · · → X
d
−→ |K|

u
−→ X

d
−→ |K|

u
−→ X → . . . ,

which is in turn uniformly homotopy equivalent to the double mapping telescope of

· · · → |K|
ud
−→ |K|

ud
−→ |K| → . . . .

Since |K| is a uniform ANR, by [32; Lemma 4.26] it is uniformly locally contractible.

Then by Theorem 4.22, ud is uniformly homotopic to the composition |K|
h−1
m−−→ |K#m|

|f |
−→

|K#n|
hn−→ |K| for some conical map f : K#m → K#n, where m ≥ n for the sake of def-

initeness. On the other hand, we have the conical map #(m − n) : K#m → K#n (see

3.25), whose geometric realization is uniformly homotopic to the uniform homeomor-

phism hm : |K#m| → |K#n| (see Lemma 3.26). Thus X × R is uniformly homotopy

equivalent to the geometric realization of the double mapping telescope of

. . .
#(m−n)
←−−−−− K#n f

−→ K#m #(m−n)
←−−−−− K#n f

−→ . . . .

By Theorem 4.5, the latter is uniformly homotopy equivalent to the geometric realization

of the thickened double mapping telescope, which is a uniform polyhedron. �

Remark 4.35. Similar arguments (with double mapping telescopes not of individual

nerves but of their mapping telescopes) also show that if X is a complete uniform ANR,

then X × R is the limit of a convergent inverse sequence . . .
q1
−→ Q1

q0
−→ Q0 of geometric

realizations of countable preposets and uniformly continuous maps such that each qi is

a uniform homotopy equivalence.

Theorem 4.36. Every complete uniform ANR is the limit of a convergent inverse se-

quence . . .
q1
−→ Q1

q0
−→ Q0 of uniform polyhedra and uniformly continuous maps such that

each qi is (non-uniformly) a homotopy equivalence.
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Proof. Let X be the given complete uniform ANR. By Theorem 4.30, X is the limit

of a convergent inverse sequence . . .
p1
−→ P1

p0
−→ P0 of uniform polyhedra and uniformly

continuous maps. Suppose that we have constructed a finite sequence n0, n1, n2, . . . , nk

and a finite chain of uniform polyhedra and uniformly continuous maps Pnk
⊂ Qk

qn−1
−−→

. . .
q1
−→ Pn1

⊂ Q1
q0
−→ Pn0

⊂ Q0 such that the composition X
p∞ni−−→ Pni

⊂ Qi is a homotopy

equivalence for each i ≤ k.

Since Pnk
is uniformly locally contractible, there exists an ε > 0 such that every

two ε-close uniformly continuous maps Y → Pnk
are uniformly homotopic. Let δ be

such that p∞i sends δ-close points into ε/2-close points. Since the inverse sequence is

convergent and X satisfies the Hahn property (see [32; Lemma 4.29(a)]), there exists

an m ≥ n and a map r : Pm → X such that the composition X
p∞m−−→ Pm

r
−→ X is

δ-close to the identity. Then the composition X
p∞m−−→ Pm

r
−→ X

p∞nk−−→ Pnk
is ε/2-close

to p∞nk
. Since the inverse sequence is convergent, there exists an l ≥ m such that the

composition P l plm−→ Pm
r
−→ X

p∞nk−−→ Pnk
is ε-close to plnk

. Let d be the composition

Pl
plm−→ Pm

r
−→ X , let u = p∞l , and let f be the composition Pl

d
−→ X

u
−→ Pl. Then the

composition Pl
f
−→ Pl

plnk−−→ Pnk
is uniformly homotopic to plnk

. This yields a uniformly

continuous map F : MC(f) → Pnk
that restricts to plnk

on each of the two copies of

Pl in MC(f). Let nk+1 = l. Applying to the maps X
u
−→ Pl

d
−→ X the construction

in the proof of Theorem 4.34, we obtain the double mapping telescope Ql which is

the geometric realization of a preposet homotopy equivalent to X , via the composition

X
u
−→ Pl ⊂ Qk+1. The partial map Qk+1 ⊃ Pl

plnk−−→ Pnk
now extends (using F ) to a total

uniformly continuous map qk+1 : Qk+1 → Pnk
, and we are done with the inductive step.

The assertion now follows using that inverse limit is unchanged upon passage to an

infinite subsequence. �

Remark 4.37. In trying to prove (or disprove) that every uniform ANR X is homotopy

equivalent a uniform polyhedron, an obvious strategy would be to examine “Sieben-

mann’s variation on West’s proof that compact ANRs finite types” (as elaborated upon

by Edwards, Chapman and Ferry).

Let us discuss here another possible strategy: to replace R with a uniformly con-

tractible space such as |Z| (where Z is ordered in the usual way) or |∆Z
w|. This brings

in higher homotopies in the picture.

If d : |K| → X and u : X → |K| are as in the proof of Theorem 4.34, let f be the

composition |K|
d
−→ X

u
−→ |K|, and let H : X × I → X be a uniform homotopy between

X
u
−→ |K|

d
−→ X and the identity. Thus G : |K| × I

d×idI−−−→ X × I
h
−→ X

u
−→ |K| is

a uniform homotopy between f and ff . More generally, define Hn inductively to be

the composition X × In
h×id

In−1

−−−−−→ X × In−1 hn−1
−−−→ X , and let Gn be the composition

|K| × In
d×idIn−−−−→ X × In

hn−→ X
u
−→ |K|. For instance, G2 is a 2-homotopy bounded

by the two homotopies (G followed by G(f × idI); and G followed by fG) between f
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and fff , corresponding to the two bracketings (ff)f and f(ff). By Theorem 4.22, we

may approximate Gn by the composition |K × In|
h−1
λn−−→ |(K × In)#λn|

|Fn|
−−→ |K| for some

conical map Fn : (P × I
n)#λn → P .

Since λn is likely to be unbounded as n → ∞, we have to modify our X × |∆Z
w|

by replacing every X × |∆p|, p ∈ ∆Z
w (thus p is a nonempty finite subset of Z) with

Fp := (X × |∆p|)#λ|p| along with iterated mapping cylinders of partial maps Fp ⊃

F
#(λ|p|−λ|q|)
q → Fq, where the unmarked arrow is the 2λ|q|−λ|p|-Lipschitz identity map,

for each q < p; and X# is same as X but with the metric stretched by a factor of

2 (thus |P#| is isometric to |P |#, where both |P | and |P#| are endowed with the d∞
metric). For the uniform deformation retraction of X × |∆Z

w| onto X × {0} (using that

∆Z
w ≃ {0}∗∆

Z\{0}
w ) to remain uniform after the modification, the function λn must grow

linearly as n→∞; indeed if λn = λn, then the modified deformation retraction will be

2λ-Lipschitz.

But for λn to grow linearly, d, u and H must be Lipschitz. It can be seen from

the proof of Lemma 4.10 that u is indeed Lipschitz by construction (with values in the

usual, rather than d∞ metric). For d and H to be Lipschitz, X must be a Lipschitz ANR.

To avoid technical difficulties such as comparing the usual and d∞ metrics on geometric

realizations, by the Lipschitz category we understand what is sometimes called “Lipschitz

at small scale”, i.e. a map f between metric spaces is Lipschitz if there exist λ, µ > 0

such that d(x, y) ≤ µ implies d(f(x), f(y)) ≤ λd(x, y).

The above argument is likely to yield the following assertion; we leave the details to

the interested reader.

Conjecture 4.38. Every Lipschitz ANR is uniformly homotopy equivalent to a uniform

polyhedron.
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