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PREFACE

This text is a somewhat expanded version of lecture notes written dur-
ing, and directly after, a course at MIT in the Spring of 1991. Most of
the participants had attended a course the preceding Fall on pseudodif-
ferential operators on compact manifolds without boundary, including the
Hodge theorem and the construction of the fundamental solution for the
wave equation. Approximately this level of sophistication is assumed of
the reader. The intention of the second course was to embed the Atiyah-
Patodi-Singer index theorem in an analytic framework analogous to that
provided by the theory of pseudodifferential operators for the Atiyah-Singer
theorem. Since this treatment leads to a variety of current research topics
it 1s presented here in the hope that it will be of use to a wider audience.

There are many people to thank. Foremost I am grateful to the members
of the audience of the course for their tolerance and enthusiasm. I am
especially grateful to Paolo Piazza for his comments during the course and
also as a collaborator in work related to this subject. Others from whom I
have learnt in this way are Xianzhe Dai, Charlie Epstein, Dan Freed, Rafe
Mazzeo and Gerardo Mendoza. To the last of these I would like to take this
opportunity to apologize for my part, whatever that was, in the somewhat
mysterious non-appearance of the paper [64] on which a considerable part
of Chapter 6, and indeed the general ‘b-philosophy,” is based.

More generally I am happy to acknowledge the influence, through con-
versation, on my approach to this subject of Michael Atiyah, Ezra Getzler,
Lars Hormander, Werner Muller, Bob Seeley, Iz Singer and Michael Tay-
lor. T am indebted to Antonio sa Barreto, Xianzhe Dai, Charlie Epstein
and Maciej Zworski who tolerated my neglect of other projects during the
process of writing, to Tanya Christiansen, Xianzhe Dai, Andrew Hassell,
Lars Hormander, Gerd Grubb, Rafe Mazzeo, Paolo Piazza and Lorenzo
Ramero for comments on the manuscript and especially to Jillian Melrose
for her forbearance. To Judy Romvos special thanks for turning my rather
crude scrawlings into the original lecture notes.

Danville, Vermont. March 8, 1992
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Introduction and the proof

The Atiyah-Patodi-Singer index theorem (APS theorem) is used in this
text as a pivot (or maybe an excuse) to discuss some aspects of geometry
and analysis on manifolds with boundary. This volume does not contain a
general treatment of index theorems even though they are amongst the most
basic analytic-geometric results one can find. The power of such theorems
in applications largely lies in their simplicity and generality. In particular
the statement of the APS theorem is quite simple. In practice a great deal of
effort, by many people, has gone into simplifying the proofs. This has lead
to, and been accompanied by, a much wider understanding of the analytic
framework in which they are centred. In fact, from an analytic perspective,
index theorems can be thought of as much as testing grounds, for methods
and concepts, as ends in themselves. The Atiyah-Singer theorem, which is
the boundaryless precursor to the APS theorem, is intimately connected to
the theory of pseudodifferential operators. This volume ¢s intended to place
the APS theorem in a similar context, the ‘6’ category and related calculus
of b-pseudodifferential operators on a compact manifold with boundary.

The basic approach adopted here 1s to ‘state’ and ‘prove’ the APS theo-
rem immediately, being necessarily superficial on a variety of points. The
subsequent nine chapters consist largely in the fleshing out of this proof.
Just as the initial discussion is brief, the later treatment is discursive and
aims at considerably more than the proof of the index theorem alone. The
proof given here is direct in two senses. The written proof itself is quite
straightforward, given some conceptual background, and in particular the
terms in the final formula come out directly in the course of the proof. The
model here is Getzler’s proof ([35]) of the Atiyah-Singer theorem for Dirac
operators on a compact manifold without boundary.

The second sense in which the proof is direct is closely connected to the
main thesis of this text. Namely that the APS theorem s the Atiyah-
Singer theorem in the b-category, which is to say the category of compact
manifolds with boundary with metrics having complete cylindrical ends.
These metrics are called here (exact) b-metrics. This is by no means a
radical position (since it is at least implicit in the original papers) but it is
a position taken with some fervour. One consequence of this approach is
the suggestion that there are other such theorems, especially on manifolds
with corners. It is hoped that the context into which the APS theorem is
placed will allow it to be readily understood and, perhaps more importantly,
generalized. Of course extensions and generalizations already have been
made, see in particular the work of Bismut and Cheeger [16], Cheeger [26],
Moscovici and Stanton [69], Miller [70] and Stern [85]; see also Wu [91]
and Getzler [36].



2 INTRODUCTION AND THE PROOF

A review of the proof below, annotated with references to the intervening
chapters to make it complete, can be found in §9.1. Towards the end of
this Introduction there is an outline of the content of the later chapters.

1. The Atiyah-Singer index theorem.

Consider the Atiyah-Singer index theorem on a compact manifold with-
out boundary. The version for Dirac operators is necessarily proved along
the way to the APS theorem. It can be written in brief ([11])

(In.1) ind(ﬁg) = /AS.

X

Here 5;'52 is a twisted Dirac operator, with coefficient bundle E, on the
compact even-dimensional spin manifold X and AS is the Atiyah-Singer
integrand. This is the volume part (form component of maximal degree)
of the product of a characteristic class on X, the A genus, and the Chern
character of E :

(In.2) AS = Evaim x (Q(X) : Ch(E)) .

Here Evgim x evaluates a form to the coefficient of the volume form of the
manifold which it contains. A fundamental feature of (In.1) is that the left
side 1s analytic in nature and the right side is topological, or geometric.
One point in favour of Getzler’s proof of the index formula is that it is
not necessary to understand the properties of (In.2) independently, i.e. the
theory of characteristic classes is not needed to derive the formula (although
it certainly helps to understand it). The left side of (In.1) is, by definition,

ind(ﬁg) = dimnull(ﬁg) — dimnull(d%)

where 5;'52 and 0 act on C* sections of the appropriate bundles, 0 being
the adjoint of 5;'52, and the finite dimensionality of the null spaces follows by
ellipticity. The direct proof of (In.1) simplifies the original proof of Atiyah
and Singer ([11], [12], [72]) and the modifications by Patodi ([73]), Gilkey
([37]) and Atiyah, Bott and Patodi ([5]). Full treatments of proofs along
these lines can be found in Berline, Getzler and Vergne [20], Freed [33],
Hoérmander [48], Roe [77] and Taylor [88].

2. The Atiyah-Patodi-Singer index theorem.

The APS theorem ([8]-[10]) is a generalization of (In.1) to manifolds
with boundary. There are two, complementary, ways of thinking about a
compact manifold with boundary. The most familiar way is to think of
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X as half of a compact manifold without boundary by doubling across the
boundary. The other approach is to think of the boundary as at infinity
or at least impenetrable. The latter approach is the one adopted here,
whereas in [8]-[10] both approaches are used and the celebrated Atiyah-
Patodi-Singer boundary condition (see the discussion in §3 below) comes
from the interplay between them. More precisely this means that

5;'52 is a twisted Dirac operator with
(In.3)

respect to an exact b-spin structure on X2".

The reason that X is assumed to be even-dimensional is that in case dim X
is odd and 0X = (§ the index vanishes. There is an index theorem in the
odd dimensional case but, for Dirac operators, 1t is relatively simple. For
the moment, the notion of a spin structure 1s left undefined, as 1s the Dirac
operator associated to it.

The exact b-metrics on a compact manifold with boundary are complete
Riemann metrics on the interior which make the neighbourhood of the
boundary into an asymptotically cylindrical end. More precisely, an exact
b-metric is a Riemann metric which takes the form

(In.4) g= (df)z +h

near 0X, with h a smooth 2-cotensor which induces a Riemann metric on
the boundary and z € C*°(X) a defining function for the boundary. Tt is
important to emphasize that this notion of a b-metric is taken seriously
below. For example, the frame bundle of a metric of this type is a smooth
principal bundle up to the boundary. An exact b-spin structure is simply a
spin structure for an exact b-metric, i.e. a refinement of the frame bundle
to a principal Spin bundle, where Spin(2n) is the non-trivial double cover
of SO(2n).

One important property of an exact b-spin structure (which exists pre-
cisely when a spin structure exists) is that it induces a spin structure on
the boundary. The corresponding Dirac operator on the boundary will be
denoted g g. A useful assumption, which will be removed later, is

(In.5) Oo,p is invertible.

In fact 0y g is elliptic and self-adjoint so (In.5) just means that its null
space reduces to {0}. As a consequence of (In.5), 8} is Fredholm on its
natural domain (the Sobolev space defined by the metric) and the APS
theorem states that

(In.6) ind(ﬁg) :/AS_%U(60,E)~



4 INTRODUCTION AND THE PROOF

Here the Atiyah-Singer integrand, AS, is the same as before, manufactured
from differential-geometric information in the spin structure and auxiliary
bundle by local operations. On the other hand the p-invariant is a global
object constructed from Ty g, so fixed purely in terms of boundary data.
In fact it is a spectral invariant of 8y g. This decomposition into a ‘local
interior’ and a ‘global boundary’ term is fundamental to the utility of the
result.

3. Boundary conditions versus b-geometry.

The boundary of a compact manifold with boundary always has a collar
neighbourhood, i.e. a neighbourhood of the form [0, r), x X, say for r > 1.
An exact b-metric (In.4) is (or gives the manifold) a cylindrical end if, on
the collar, h is simply the pull-back of a metric on 9X. Often (although
not so often here) the end is considered as unbounded in that ¢t = log# is
introduced as a variable, putting the boundary at { = —oo. The manifold
X1 = X\ ([0,1] x 9X) is diffeomorphic to X.

The spin bundles £S5 on X can be identified on the collar neighbourhood
of the boundary, since they can be identified over the boundary, by an
isomorphism with the spinor bundle of the boundary. Then (see §3.11) the
Dirac operator becomes

d
(In.7) ot =m-t. (xﬁ_x + 50) My,

where My are the isomorphisms between the spinor bundles £S5 on the
collar and Sy, the spinor bundle of M and and Ty is the Dirac operator
on the boundary. The null space of 3t acting on distributions on the collar
can then be examined in terms of the eigen-decomposition for Gy, which
is self-adjoint. Thus the solutions of 3tuy = 0 are superpositions of the
special solutions

u= x_ZM_Iflv, Ogv = zv.

This solution is square-integrable with respect to the metric if and only if
z < 0.

The APS boundary condition for the Dirac operator restricted to the
region ¢ > 1,1.e.t > 01s

(In.8) Q4 (Myuje=1) =0,

where Q4 is the orthogonal projection onto the non-negative eigenspace of
do. This projector is a pseudodifferential operator and 9 with the bound-
ary condition (In.8) can be considered as an elliptic boundary problem. In
particular there is an associated Fredholm operator and the analysis can
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be carried out using the theory of elliptic boundary problems introduced
by Calderén ([25]) and developed further by Seeley [81] (see also Boutet de
Monvel [21] and Grubb [41]).

With the APS boundary condition, the appearance in (In.6) of the eta
invariant is a little less striking, since it represents just a part of the in-
formation in the projection Q4. The condition (In.8) reflects the square-
integrability of an extension of the solution into ¢ < 0, i.e. to the whole
of the original manifold X. It will not be encountered below'. As already
noted, the invertibility of the operator 3T, which in general for an exact
b-metric is not quite as simple as (In.7), is attacked directly and its gener-
alized inverse and the associated heat kernels are shown to be elements of
the appropriate space of b-pseudodifferential operators.

4. Preliminaries to the proof.

Let £S be the two spinor bundles over the compact, even dimensional,
exact b-spin manifold, X. The idea, used already in [5] and in a related
manner by McKean and Singer [58] and dating back, in other contexts, at
least to Minakshisundarum and Pleijel [68] is to consider the heat kernels

(In.9) exp(—t050}), exp(—to5oR),
where the Dirac operator 1s
0L C¥(X;TS@E) — C®(X; 7S @ E)

and 07 is its adjoint. Suppose for the moment that X = @ and consider the
Atiyah-Singer theorem. Both 5;35}5 and 5;5;3 are elliptic, self-adjoint and
non-negative so the heat kernels (In.9) are, for ¢ > 0, smoothing operators.
The fact that 0 is an isolated spectral point of both means that

(Tn.10) Jlim exp(=t050%) = Tounsy,)
n. . —
Jim exp(—t050%) = 7,152

where my is orthogonal projection onto the finite dimensional subspace
N C L*(X; L), for the appropriate bundle L. The convergence in (In.10)
is exponential, within smoothing operators. The trace functional, just the
sum of the eigenvalues of a finite rank operator, extends continuously to
smoothing operators, so from (In.10) it follows that

(In.11) tliglo Trlexp(—t050}) — exp(—t3405)] = ind(5}).

I The expunging of the APS boundary condition, in explicit form, is a ‘feature’ of this
proof which is fundamental, although not universally welcomed.
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The extension of the trace to smoothing operators is described by Lid-
skii’s theorem. Namely smoothing operators are those with C*° Schwartz
kernels ([79]), i.e. they can be written as integral operators

Ku(z) = /K(x,x/)u(x/) with K € C*.
X

Then

(In.12) TrK = /K(J:,x).

The single most important property of the trace functional is that it van-
ishes on commutators:

(In.13) Tr[Ky, K2] = 0,

as follows readily from (In.12). This remains true if K; is a differential
operator, provided K5 is smoothing.
At least formally consider (since the operators act on different bundles)

d _ _
E(exp(—lﬁEﬁE) - eXp(—t5;55E))
(In.14) = — (3505 exp(—1055}5) — exp(—t5555)5557)

= —[05, 0F exp(—t050%)].
Here the identity
(In.15) exp(—t0}05)0% = 0F exp(—t050}),
which follows from the uniqueness of solutions to the heat equation, has
been used. With the trace taken in (In.14), (In.13) and (In.11) together
give the remarkable identity of McKean and Singer
(In.16) ind(0%) = Tr [exp(—t050%) — exp(—t0505)] V¢ > 0.
The formulae (In.1) and (In.2) arise from a clear understanding of the be-
haviour of the heat kernels as ¢ || 0, i.e. from the local index theorem (proved

by Gilkey [37] and Patodi [72]):

(In.17) AS(z) = ltiféltr (exp(—tﬁgﬁg) — exp(—tﬁgﬁg))(l‘, z),
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where the ‘little’ trace, tr, is just the trace functional on the bundles £5 @
E. The direct proof of (In.17) is Getzler’s rescaling argument. The final
formula (In.1) arises by applying (In.12) to (In.17).

So, to prove (In.6), in which the n-term should appear as a defect, it is
natural to look at the heat kernels (In.9) when 0X # 0. The fundamental
problem with the generalization of the proof outlined above is that, when

0X # 0 in the ‘b-" setting,
exp(—t0,0}), exp(—t0505) are not trace class.

Indeed the Atiyah-Patodi-Singer boundary condition was introduced to re-
place these by trace class operators. There is however a direct general-
ization of the statement that these exponentials are smoothing operators,
which they still are in the interior. Namely there 1s a calculus of pseudodif-
ferential operators ([61], [64], [47, §18.3], [66]), denoted here W}*(X; L1, L»)
for any bundles Ly, Ls, which captures appropriate uniformity of the ker-
nels up to the boundary. The assumption (In.3) implies that the Dirac
operator 1s in the corresponding space of differential operators

0L €DIffy(X;TS® E,7S®@ F) C ¥ (X;TS® E, 7S @ B);

it 1s elliptic. It follows from constructions essentially the same as in the
standard case that

exp(—t050%) € ¥, = (X; 7S 0 b)

(In.18) o . B
exp(—t0505) € ¥, 7 (X;"SQE)

mt>0.

As already noted, these conditions do not mean that the operators are
trace class. Despite this there is an extension of the trace functional to a
linear functional

b-Tr,: ¥, (X;L) — C.

This extension depends on v, a trivialization of the normal bundle to
9X, and is defined simply by regularization of (In.12), as in the work of
Hadamard [43]. If # € C*°(X) is a defining function with dz - v = 1, the
b-trace is

(In.19) b-Tr, (K) = lim / tr K (2, 2) 4 loge - Tr(K)

r>e€

The logarithmic term removed in (In.19) is precisely what is needed to
regularize the integral and this fixes the coefficient Tr(K).
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The appearance of the defect in the index formula is directly related to
the failure of (In.13) for the b-trace. There is an algebra homomorphism in
the calculus

(In.20) WP (X3 L, L) 23 00X Ly, L),

where the image space consists of the pseudodifferential operators on the
boundary acting on the restrictions of the bundles to the boundary. This
map 1s defined by restriction:

Agu = Aﬂ[ax ifae COO(X;Ll), ﬂ[ax = u.
The homomorphism (In.20) can be extended by noting that the calculus is

invariant under conjugation by complex powers of # (a boundary defining
function)

VP (X, L) 3 A a” A € UP(X; L.
Then
(In.21) I(AX) = (27 Ax™), € W™ (0X; L)

1s an entire analytic family of pseudodifferential operators, the indicial fam-
tly of A. Moreover

K e W, (X;L)is trace class <= I(K,X) =0

and

I(K,A\) =0 = b-Tr,(K) = Tr(K).
The coefficient of the singular term in (In.19) is actually given by

Tr(K) = %/Tr (I(K,\)) dA.

The fundamental formula for the b-trace is:
(In.22) bTr (A, B]) = - /Tr(@AI(A, A) o I(B,\))d\.
T

The integral on the right converges absolutely. This formula follows directly
from (In.21), (In.19) and the definition of the b-calculus, i.e. it is elementary.
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5. The proof.
First some bald facts, which need to be interpreted slightly but are ‘true’
enough. In terms of (In.21):
I@F,A) = MZ'(ix + B 5) M4
(In.23) I(07,A) = M{' (=i + Oo,5) M_
I(exp(—tdz0%),A) = M_Ifl exp(—t(A? + 5%7E))M+.
Here My are isomorphisms of £S5 restricted to 0X and Sy, the spinor bundle

over 0.X, with M_lflM_ being Clifford multiplication by ida /2. The identity
(In.14) still holds, so now taking b-traces it follows from (In.22) that

%b Tr, (exp(—t050%) — exp(—t3403))

_ 21 Te [0 1(05, \) o 1(5% exp(—t55%), A)] dA.
e

(In.24)

Using the fact that 7 is a homomorphism and (In.23), the right side of
(In.24) can be rewritten

(In.25) —% / Tr [(l/\ +0o,r) exp(—t(A? + 5%))] dX

— 00

The A integral can be carried out, replacing the integrand by its even part
and changing variable to {2, to give

1
(In.26) _W_t 3 Tr(ﬁoyE exp(—tﬁgyE)).

Ast — oo (In.11) still holds in case X # @, with Tr replaced by b-Tr,
(the limit is independent of v because the limiting operator is trace class).
Similarly Getzler’s scaling argument carries over to this setting to give
(In.17), uniformly in #. Finally a similar scaling argument applies to (In.26)
(as shown by Bismut and Freed [18], [19]). This allows (In.24) to be inte-
grated over (0, 00) giving the limiting formula:

tlg& b-Tr, (exp(—t050F) — exp(—td505))
- lim b-Tr, (exp(—t0570%) — exp(—t3403))
(In.27)

/t 2 Tr (3o, exp(— tﬁgyE)) dt.

0
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This then gives (In.6) provided the eta invariant is defined to be

17,
(In.28) (0o, r) = \/_F/t_i Tr(ﬁoyE exp(—tﬁgyE))dt,
0

where absolute convergence follows from the scaling argument. This is one
of the ‘standard formulae’ for the n-invariant, so the ‘proof’ is complete.
6. Weighting.

In this setting there is no explicit boundary condition on the Dirac op-
erator 5;'52. Rather it is, precisely when (In.5) holds, a Fredholm operator
on the Sobolev space fixed by the metric. In fact all exact b-metrics are
quasi-isometric, so these Sobolev spaces are intrinsic to the compact man-
ifold with boundary and are denoted H["(X; L), for sections of a vector
bundle L.

To prove the APS theorem 1t is illuminating to embed the index problem
in a one-parameter family. Namely the Sobolev spaces extend to weighted
spaces, ° H*(X; L), for s € R, where # € C™(X) is a defining function for
the boundary. Then

0L 2 Hy (X;TS@ F) — 2*H)(X; 7S E)

is Fredholm <= —s is not an eigenvalue of 9q g.

(In.29)

The eigenvalues of 0y g form a discrete subset spec(dp g) C R, unbounded
above and below, so inds(ﬁg) is defined for —s € R\ spec(Jg g). It is
convenient to extend the definition of the index, even to the case that the
operator 1s not Fredholm by setting

(In.30) ind, (3t) = ISE}% [ind,_ (55) + ind1e (3F)] -

The parameter, s, can be absorbed into the operator by observing that the
weighting factor, 2®, can be treated as ‘rescaling’ (in the sense of Chapter 8)
of the coefficient bundle F to a bundle E(s).

Thus the conjugated operator, 5;(5) = x_sﬁgajs, is again the positive
part of a (twisted) Dirac operator, however the new total Dirac operator is
not self-adjoint; its negative part is 05 (s) = ¢~ *0g2°. All of the discussion
above applies, provided 0 is replaced throughout by (5;)*, except for the
local index theorem, which no longer holds. The Atiyah-Singer integrand
can still be defined as

AS(s) = The constant term as ¢ | 0 in

(In.31) tr(exp(—t050}) — exp(—t0505)) (z, z)
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and similarly the modified eta invariant? is given by the regularized integral
(In.32) 75(do 5) = % /Oot—% Tr ([G0, 5 + 5] exp(—t[Jo & + 5]?) dt, s € R.
0
The meaning here is the same as in (In.31): as ¢ | 0 the integral
€ /Oot_% Tr ([0, + 5] exp(—t[0o,r + s]?) dt
v c

has an expansion in powers of € and 7, (0y g) is the coefficient of the constant
term. The APS theorem then can be written in weighted form

(In.33) 1}1?18(6;) = /AS(S) — %775(50719) VselR.
X

The proof outlined above only applies directly in the Fredholm case, when
s ¢ —spec(Jp,g). However only the discussion as ¢ — oo needs to be
modified to give (In.33) in general.

In fact ﬁfds (5;'52) is locally constant on the open set of Fredholm values of
s. Its jump at a point s € —spec(Jg g) can be computed using the relative
index theorem discussed in §6.2 or from the direct analysis of n,(Jp g) in

§8.14:

_ limind, (8,) + 3 dimnull(@o,z + 5)
ind, (O =5
(Oo,e) limind, (3o, g) — % dimnull(3o g + 5).

rts

This allows the value of 1}1?10(6;) to be computed explicitly as

— 1

indo(ﬁg) = dimnull(ﬁg) —dimnull_ (35) + 3 dimnull(0y ).
Here null(d}) is the null space of 3} on L?(X;*S ® E) and

null_(05) = ﬂ {u €' L} (X;"S® E);0zu = 0}
s<0

2 This is not to be confused with the eta function of 607E which is discussed in Chapter 9.



12 INTRODUCTION AND THE PROOF

is the ‘extended L? null space.” This gives the familiar form of the index
theorem in general, from [8], even when (In.5) is not valid:

1
dimnull(ﬁg) —dimnull_ (3;) = /AS ) [7(30,r) + dimnull(dy £)] .
X

The integer on the left, which is just the index on z*L*(X;*S @ E) for
small s > 0, is sometimes called the extended L? index.

The absence of the local index theorem in the weighted case means that
the form of the integrand, AS(s), in (In.33) cannot be so easily computed.
However 1t 1s a polynomial in s. The removal of the non-constant terms
allows the general formula to be recast as

(In.34). ind, (3t) = /As_%n(z\soﬂ) — N(Bo., 5)-
X

Here N(ﬁoyE,O) =0 and for s £0
(In.35) sgn(s) x N(ﬁoyE, s) = Number of eigenvalues of — ¥y g in [0, s],

where eigenvalues are counted with their multiplicity and an eigenvalue at
an endpoint of [0, s] is counted with half its multiplicity.

7. Outline.

As already noted the remaining chapters are intended to place the proof
outlined above on a firm basis and in context. First, in Chapter 1, the one-
dimensional case, or rather analogue, of the theorem is discussed, although
it 1s not proved. This discussion is not used later but serves to indicate the
different ways of viewing a cylindrical end and introduces the power law be-
haviour of solutions, and fundamental solutions, which underlies the later
analysis. Chapter 2 consists of a brief introduction to Riemannian geom-
etry, the Levi-Civita connection and Riemann curvature tensor, presented
in order that the extension to b-metrics should be straightforward. Again
the point of view taken is that these metrics correspond in the category of
compact manifolds with boundary to Riemann metrics in the boundaryless
case. For example, they are fibre metrics on a vector bundle, the b-tangent
bundle, which is not quite the ordinary tangent bundle but is a perfectly
satisfactory replacement for it. The notion of a b-differential operator is
introduced, as is the notion of ellipticity in this setting. In Chapter 3 the
discussion is extended to examine the Clifford algebra and spin structures.
It is shown that the Dirac operator associated to an exact b-spin structure
is an elliptic b-differential operator.
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The analytic part of the investigation begins, very geometrically, in Chap-
ter 4, with a discussion of the b-stretched product of manifolds with bound-
ary. This is the replacement for the ordinary product that it is convenient
to use in the inversion of elliptic b-differential operators and it leads di-
rectly to the definition and basic properties of the small b-calculus. In
particular the normal homomorphism underlying (In.23) and the product
formula are then derived. As noted in the discussion of the composition for-
mula, there is a more elegant, and general, approach using somewhat more
differential-geometric machinery (see [63]). Some parts of this approach
are introduced in the exercises but it is eschewed here in favour of a more
elementary treatment. An effort is made to emphasize the structural prop-
erties of the b-calculus. One important feature is the b-trace functional.
The commutator identity for this functional, (In.22), plays an important
role in the proof in that it replaces otherwise cumbersome manipulations
of the heat kernel on the cylindrical end, as carried out in [8] and in other
versions of the theorem such as [85].

The small calculus of b-pseudodifferential operators reduces to the ordi-
nary calculus of pseudodifferential operators when the compact manifold
has no boundary. Philosophically there are two main uses for the ordinary
calculus. Tt is used as an investigative tool (in microlocal analysis) and also
to invert elliptic operators. The fact that the same space of operators serves
both purposes, when X = ), is somewhat fortuitous. For a manifold with
boundary this is no longer the case and to invert elliptic b-differential op-
erators it is necessary to enlarge the calculus. For this purpose, both the
‘calculus with bounds’ and the ‘full calculus’ are introduced in Chapter 5.
Here the additional boundary terms which appear in the (generalized) in-
verse are described. The full calculus is applied to the examination of the
mapping, and especially Fredholm, properties of elliptic b-differential op-
erators. In Chapter 6 the calculus is further used to establish the relative
index theorem and to describe the holomorphy properties of the resolvent
family of a self-adjoint operator of second order. The boundary behaviour
of the resolvent is also related to scattering theory. As an application of the
relative index theorem, using an idea of Gromov and Shubin (see [40]), the
Riemann-Roch theorem for surfaces is deduced. This chapter also contains
a Hodge theoretic discussion (of course from the point of view of b-metrics)
of the cohomology of a compact manifold with boundary.

In Chapter 7 the heat kernel of a second order operator is described.
This 1s done in a manner consistent with the treatment of the b-calculus,
i.e. using a blown-up ‘heat space’ to define the class of admissible kernels.
This approach is very similar to the calculi described by Beals and Greiner
n [14], by Taylor in [89] and more recently in [31]. Here the geometric
structure i1s made explicit and this has the important consequence that the
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melding of the heat and b-calculi, to yield a detailed description of the heat
kernel of a b-differential operator (such as 5;3525) is straightforward. The
discussion of the resolvent in Chapter 6 is used to analyze the long-time
behaviour of the heat kernel.

Getzler’s rescaling argument is formalized in Chapter 8 in the notion
of the rescaling, at a boundary hypersurface, of a vector bundle. The
weighting of the Sobolev spaces in (In.29) and the b-tangent bundle are
both examples of this general procedure. The local index theorem then
follows directly from this rescaling, the fundamental observation of Berezin
and Patodi on the structure of the supertrace functional on the spin bundle,
Lichnerowicz’ formula for the difference between the Dirac and connection
Laplacians and a generalization of Mehler’s formula for the heat kernel of
the harmonic oscillator, found by Getzler.

Finally in Chapter 9 the proof of the APS theorem outlined above is
reviewed and completed by annotation with references to the intervening
material. In fact the theorem 1s actually proved in the wider context of
the Dirac operators on Hermitian Clifford modules (with graded unitary
Clifford b-connections) on manifolds with exact b-metrics. The application
to the signature formula given in [8] is then explained. Tt is also shown
how the application of the b-calculus allows many of the standard analytic-
geometric objects, such as the zeta function, the eta invariant and the
Ray-Singer analytic torsion to be transferred to the b-category.



Chapter 1. Ordinary differential operators

The basic analytic tool developed below to carry out the proof of the
APS theorem is the calculus of b-pseudodifferential operators. This allows
the mapping, especially Fredholm, and spectral properties of 5;'52 to be
readily understood. As motivation for the analytic part of the discussion
the one-dimensional case will first be considered, although the result is not
proved in detail. This case is ‘easy’ for many reasons, not least because
the dimension is odd, which means there is no interior contribution to the
index, and the boundary dimension is zero, so the boundary operator is a
matrix, i.e. has finite rank. However, from an analytic point of view the
one-dimensional cases serves as quite a good guide to the general case.

1.1. Operators and coordinates.

In one dimension there is no spin structure to be concerned about. The
only connected one-dimensional compact manifold with non-trivial bound-
ary is the interval X = [0,1]. In particular all bundles are trivial. Of
course one should bear in mind that the boundary has two components. So
consider a first-order linear differential operator acting on %k functions

(1.1) P:A(x)%—l—B(x), A, B € C™([0,1]; Mc(k)),

where Mc¢(k) ~ C** is the algebra of k x k complex-valued matrices.
The operator should be elliptic in the interior, so det(A(x)) # 0 for
€ (0, 1). Tt should also be of ‘b’ type at the end-points. This means that
P should have regular-singular points at 0 and 1 :

(1.2) A(x)=2(1 —2)E(x), FE e€C™([0,1]; Mc(k)), det E # 0 on [0, 1].
To analyze the index of P consider the adjoint, P*, and set

(1.3) ind(P) = dimnull(P) — dimnull(P*)

or find some space on which P is Fredholm:

a) P: Hy — Hy continuous, Hy, Ho Hilbert spaces
b) null(P) C H; finite dimensional

c) range(P) C Hj closed

d) range(P)* C H, finite dimensional

and then set

(1.4) ind(P) = dimnull(P) — dim(range(P)*).

15
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If P is Fredholm these two definitions of the index are the same.
What is a reasonable space on which P can be expected to be Fredholm?
Consider the simple case

(1.5) Pc:x(l—x)%—l—c, ceC.

There are two transformations of the independent variable which yield even
simpler operators. First

o

S l-=z 1+1¢
and then s = logt = logz — log(1 — z), (—00,00) 3 s —>t = ¢® € (0, 00).
Notice that

(1.6) t ([0,00) 3t — = €[0,1)

dt 1 dt
— = — =1 tz —:s:t
dx (1—z)? (+)’ds € ’
i d i d
it
-n) =TT ~ta
d d
- -4
x( x)dx ds

Thus P, in (1.5) becomes
d i .
pP. = ta + ¢, R™-invariant on (0, o0)

P. = — + ¢, translation-invariant on R.

ds
Certainly then P, is easy to analyze. Acting on any reasonable class
of functions, distributions or even hyperfunctions, P. has at most a one-
dimensional null space, given in the three coordinates systems by

ar”°(1 — x)°

(1.7) Pu=0=—=u=< at™° acC

ae—CS

Then the only question 1s whether or not this solution is in the domain of
P..

Suppose P is taken to be the adjoint with respect to Lebesgue measure,
|ds|, on R

d
Pr = 7 +c.

Thus (1.7) applies to P¥ = —P_¢. It is reasonable to take the domain of
P. to be

(1.8) HAE) = {u e 17(B) v € I2(R)),

the standard Sobolev space.
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EXERCISE 1.1. Check that if the domain of P is defined by

Dom(P}) = {u € LZ(}R);Hl(R) Jvr— /umds
extends by continuity to L*(R)}

then Dom(P}) = H*(R).
1.2. Index.

Now notice that
(1.9) exp(—ecs) ¢ L*(R) Vee(,

since the exponential is always too large in one direction or the other (or
both if ¢ € iR). Thus, with domain (1.8) and definition (1.3), it is always
the case that

(1.10) ind(P.) =0,

which is not too interesting!
The constant in P. can be changed by conjugating by an exponential

(1.11) e_as(%—i—c)easu: (%—i—m—l—c))u.

5

Since the function e®® is real when «a is, the adjoint changes to

d d
e <_E +c)e ¥ = <_E + (¢ + a)).
This corresponds to replacing the Sobolev space (1.8) by the exponentially
weighted space
e HY(R) = {u € L (R);e~*u € H'(R))},

where LZ (IR) is the space of locally square-integrable functions on R. Cer-
tainly (1.10) still holds on these spaces, but somehow not quite for the
‘same’ reason in that the part of infinity which causes (1.9) may have
changed. This suggest that a less trivial result may follow by looking at
spaces which are weighted differently at the two infinities, i.e. boundary
points.

Recall that H\L_(0,1) is the space of locally square-integrable functions
on (0,1) with first derivative, in the distributional sense, also given by a
locally square-integrable function.
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DerFINITION 1.2, For o, B € IR set
v (1 —x)? Hy([0,1])

On passing to the variable s on R, these conditions can be written in
terms of w € HL_(IR) as the requirements

2 dr

(1 —2)” Pu < 00,

(1 =) ( (l—x);lz)

0

/ / ds < 00
(1.12) - .
s d dw|?
/ e di: ds, /‘6ﬁsd—l: ds < oo.
—o0 0

Thus in terms of the variable s these spaces are exponentially weighted at
infinity, with different weights.

EXERCISE 1.3. Check that in terms of the variable ¢ the spaces in Defi-
nition 1.2 become

(1 —2)? HL([0,1]) +—

{vem.o oo>>;/w\<%+t>‘“<1 +0)7

/‘ “(141)° (t%v)

ProOPOSITION 1.4. The operator P, in (1.5) is Fredholm as an operator

(1.13) P.: z®(1 —2)P HL([0,1]) — (1 — )’ LZ([0, 1])
if and only if
(1.14) a# —Ree, §# Reg;

its index is
1 a < —Rec, < Ree

(1.15) ind(P;) =< 0 a>—Rec, B<Recora< —Rec,f>Rec
—1 a>—Ree, > Rec.
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ProorF: Certainly P. is always a continuous linear map (1.13) as follows
directly from the definition of these spaces. To study the Fredholm prop-
erties, it is enough to wnvert P and then see how the inverse is affected by
the weighting. Using (1.11) the constant ¢ can be removed since

()7 @ (1= 2) B, 1) 4 2R (1 — )P ¥R ([0, 1]

for any ¢ € C and

(1.16) (1f$)cPc(1f$)_c:x(l—x)%.

This reduces the problem to the special case ¢ = 0.
Now 1t is convenient to work in the translation-invariant picture, where
P = d/ds. An inverse is given by integration, say from 0 :

(117) @as) = [9r)dr = 5.Q9(s) =

Suppose f € 2*(1 —z)?L2([0,1]) and g € L (R) is its expression in terms

loc

of the coordinate s. From (1.12) it follows that

< 2
b <0—= / e PQ'g(s)| ds < oo
0
Y 2
a<0— / e=**Q'g(s)| ds < oo.

Thus if Qf 1s Q’'g expressed in terms of the coordinate x,
a,8<0=Q: x*(1—xz)?L([0,1]) — (1 — x)? H}([0, 1]).

In this case P. 1s surjective, so certainly Fredholm. From the definition,
(1.4), of the index and the fact that the null space is spanned by

1€zl —2) HY[0,1])if e <0, <0,

the validity of the first case in (1.15) follows.
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_—_- - - = - - - —X% =

Figure 1. The index of P..

Suppose > 0, then (1.17) does not give a solution correctly weighted
at infinity, unless [ g(s)ds = 0. However taking instead
0

5

d
(1.18) Qg = /g(r)dr = EQ’g =g,

since if f € z%(1 — z)? L then g is integrable near s = +oc. In this case
a <0, 8>0= P is surjective, ind(P) = 0,

since 1 is no longer in z%(1 — z)” Lg. The same argument applies if o > 0,
G < 0 by replacing & by 1 — z, and hence s by —s.

Finally if @ > 0, 8 > 0 then (1.18) is still correctly behaved near infinity
but

Qf € x™(1 —2)PL([0,1]), o, B> 0 iff /f(x)ﬁzo.

Certainly the constant solution is not in the domain so ind(P) = —1.
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This completes the proof of the proposition except for the part of (1.14)
which states that P, is not Fredholm as an operator (1.13) if

(1.19) a=—Recor f=Rec.

This 1s left as an exercise:

EXERCISE 1.5.  Show that if @« = Rec or 8 = —Rec then P in (1.13) is
not Fredholm because the range is not closed. [Hint: Find a sequence of
functions in L#(IR) of the form duy /ds, uy € H'(R)such that dug/ds — 0
in L? but |Jug||zz — oo. Use this to show that there exists f € L*(IR)
which is in the closure of the range but f # du/ds, for any u € H'(R).]

1.3. General statement.

Proposition 1.4 can be interpreted informally as saying that the operator,
P., is Fredholm unless there is an element of the null space (on distribu-
tions) which is almost in the domain, but is not in the domain. Notice also
that in Figure 1 the index increases by 1 (the dimension of this null space)
every time one of the lines in (1.19) is crossed downward. These two ideas
will reappear in the higher dimensional setting below.

Now consider the extension of this result to the general case, (1.1) subject

o (1.2). This is the prototype for the Dirac operator.

THEOREM 1.6.  The operator P in (1.1), subject to (1.2), is always a
continuous linear operator

P oa®(1—2)Hy([0,1;C) — 2®(1 = 2)? L ([0,1; ), a, f € B,
which is Fredholm if and only if

o # Re ) for any eigenvalue A of — E(0)™'B(0)

(1.20) , 5
3 # Re A for any eigenvalue A of E(1)™" B(1)

and then its index is
. 1
(1.21) ind(P) = =3 (ng +13),

where if Gé\ are, for « = 0,1, the eigenspaces with eigenvalue A of the
matrices (—1)!(E(i)) ™1 B(i),

(1.22) =Y dimGi— > dimG.

ReA>—r Re A< —7r
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EXERCISE 1.7. Try to prove this result. It is not too hard, using standard
results on solutions of ordinary differential equations, as in [28]. It is also
illuminating to follow the lines of the proof outlined in the Introduction in
this case.

Consider how the formula (1.21) reduces to (In.6). First note that the
Atiyah-Singer integrand, AS, vanishes identically because the dimension is
odd. Tt is worth noting the relationship between (1.22) and (In.28). From
(In.23) it is reasonable to expect that

Jo «— E(0)~1B(0).

To make this correspondence more exact, suppose that 3y = F(0)~! B(0)
is a self-adjoint matrix and @ = 0. Then

(1.23) tr 0o exp(—t03) = Z /\e—tv’

eigenvalues

where the eigenvalues are repeated with their multiplicity. By the assump-
tion (In.5), or equivalently the condition (1.20), 0 should not be an eigen-
value. Then, inserting (1.23) into (In.28) gives

1 00_
(00) == sen(h) [ P AR R
0

elgenvalues

= Z sgn(A),

eigenvalues
00
/ 6_
0

Thus n(dg) = 7§ in terms of (1.22). This shows the relationship between
(In.6) and (1.21). Tt also suggests that the eta invariant measures the
spectral asymmetry of the operator, 1.e. the difference between the number

since

of positive and the number of negative eigenvalues.
EXERCISE 1.8. Check the relationship between (1.21) and (In.33).
1.4. Kernels.

To finish this look at the one-dimensional case, consider again the trivial
case (1.5). For o << 0, b >> 0 the solution operator to P. is obtained
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Figure 2. Blow-up of X2, X =[0,1].

using the conjugation (1.16), the change of coordinates (1.6) and the in-
tegration formula (1.18). Consider this inverse in terms of the compact,
x-representation. Then it can be written

/f 1—x>

Undoing (1.16) gives the inverse to P, as

¢ e . dz'
/ =) )y

This can be written as an integral operator

= /K(x, x/)f(x/)ld(fil:ld),

where the Schwartz kernel 1s

(1.24) Ke(z,2') = — =2 @) H(z' — ),

H () being the Heaviside function.

Consider the structure of K.. There are, in principle, five singular terms,
with singularities at # = 0,2 = 1,2’ = 0,2’ = 1 and « = &’ (except that
those at ' = 0 and « = 1 happen to vanish). The singularities are simple
power type, except that at the two corners x = 2’ = 0 and ¢ = 2’ = 1
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two singularities coincide and things look nasty. It is exactly such kernels
that will be analyzed below. To do so, 1t is convenient to introduce polar
coordinates around x = ¢’ =0 and x = 2’ = 1.

Actually, to carry out this process of blowing up, it is simpler to use the
singular coordinates (near z = 2’ = 0)

xr—zx

1.25 = d = .
( ) r=zxz+zx', 7 pp

Then # = 1r(1 4 7), &/ = £7(1 — 7). Inserting this into (1.24) gives

(1.26) Ke(z,2') = % X H(=7) x C* near z = 2’ = 0.
—

Notice what is accomplished by this maneuver. The kernel now has singu-
larities at two separated surfaces, 7 = 0 and 7 = —1. This trick is the basis
of the b-calculus.

EXERCISE 1.9. Write out the relationship between the coordinates r, 7

in (1.25) and polar coordinates p,6 where # = pcosf, ' = psiné and
0 € [0,17]. Check that the map p,# — (r,7) is a diffcomorphism from

[0, 00) x [0, 7] onto [0, c0) x [-1,1].

ExErcIsE 1.10.  Find formulee similar to (1.26) for the Schwartz kernel
of a generalized inverse to P, in the other cases in (1.15).



Chapter 2. Exact b-geometry

Much of this chapter is geometric propaganda. It is intended to convince
the reader that there is a ‘category’ of b-Riemann manifolds in which one
can work systematically. This b-geometry can also be thought of as the
geometry of manifolds with asymptotically cylindrical ends. There are
other geometries which are similar to b-geometry (see [55], [54], [56], [32],
[31] and [63] for a general discussion).

Following the definition and discussion of the most basic elements of
(exact) b-geometry, the Levi-Civita connection is described ab initio. The
notion of a b-connection is introduced and its relation to that of an ordi-
nary connection is explained. Finally a brief description of characteristic
classes 1s given. For the reader familiar with differential geometry, the main
sections to peruse are §§2.2, 2.3, 2.4, 2.13, 2.16 and 2.17.

2.1. Manifolds.

It is assumed below that the reader is familiar with elementary global
differential geometry, 1.e. the concept of a manifold. However at various
points later, the less familiar notion of a manifold with corners is encoun-
tered so, for the sake of clarity, definitions are given here. These have been
selected for terseness rather than simplicity or accessibility!

A topological manifold of dimension N is a paracompact Hausdorff (con-
nected unless otherwise noted) topological space, X, with the property that
each point p € X is contained in an open set O C X which is homeomor-
phic to BY = {z € RV; |z| < 1}. These open sets, with their maps to B
are called coordinate patches.

The algebra of all continuous functions, real-valued unless otherwise
stated, is denoted CY(X). A subalgebra F C C°(X) is said to be a C™
subalgebra if for any real-valued g € C*°(IR¥), for any k, and any elements
fi,..., fx € F the continuous function g(fi,..., fx) € F. The subalgebra
is said to be local if it contains each element g € C°(X) which has the
property that for every set O, in some covering of X by open sets there
exists g, € F with g = g, on O,,.

A manifold (meaning here always an infinitely differentiable, shortened
to C*°, manifold) is a topological manifold with a real, local, C* subalgebra
C*(X) C CY(X) specified with the following property: X has a covering by
open sets Oy, a € A, for each of which there are N elements f7*,..., f{ €
C®(X) with F* = (f{, ..., fy) restricted to O, making it a coordinate
patch and f € C™(X) if and only if for each o € A there exists go €
C>° (BN ) such that f = g, 0 F® on O,

EXERCISE 2.1. Show that this definition is equivalent to the standard
one involving covering by compatible infinitely differentiable coordinate

25
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systems. [Hint: Show that the O, in the previous paragraph form such a
covering. To do so first check that if ¢ € C2°(BY ) is a C* function vanishing
outside a compact subset of BY then for fixed «,

f_{goFo‘ on O,
Lo on X\ O,

is an element of C*(X) — this argument uses both the C* algebra and
locality properties of C*°(X). Use this in turn to show that the coordinate
patches are C* compatible since, under the transition maps, C* functions
of compact support pull back to be C*.]

Open subsets of manifolds are naturally manifolds. A map f: X — Y
between manifolds is smooth, i. e. C*=, if f*g = g o f € C*=(X) whenever
g € C®(Y). A map is a diffeomorphism if it is C* and has a C*, two-
sided, inverse. A finite set of real-valued functions f1,..., fy € C*(X), is
independent at p if there exist ¢g1,...,gn_g, where N = dim X, such that
F={(fi,.., fs,91,-..,gN—k) restricts to some neighbourhood of p to a
diffeomorphism onto an open subset of RY.

In the sequel we are most involved with manifolds with boundary. A
topological manifold with boundary is defined exactly as for a topological
manifold, except that each point is only required to have an open neighbour-
hood homeomorphic to either BY or to BY = {z € RY;|z| < 1,2, > 0}.
Since these spaces are not themselves homeomorphic, the two cases are
distinct and the subset of X consisting of the points with neighbourhoods
homeomorphic to }BJ_IY constitutes the boundary, 9.X.

EXERCISE 2.2. Show that the interior, X \ X, and the boundary of a
topological manifold with boundary are both topological manifolds.

Infinitely differentiable manifolds with boundary can be defined quite
analogously to the boundaryless case. However we give instead a more ex-
trinsic definition of manifolds with corners and then specialize. A manzfold
with corners (always by implication C*) is a topological manifold with
boundary with a local C* subalgebra C*°(X) C C°(X) specified with the
following property: there is a map into a manifold )~(, X — )?, for
which C*(X) = *C™ ()?) and a finite collection of functions p; € C*° ()?),

i € I, for which «(X) = {ye)?;pi(y) ZOViEI} and for each J C I the

p;, for j € J, are independent at each point p € X at which they all vanish.
The manifold X is an extension of X.

This definition forces the boundary of a manifold with corners to be a
union of embedded hypersurfaces. A direct local coordinate definition (with
coordinate patches modeled on {x € RY;|z| < 1,2; > 0,i = 1,...,k})
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does not automatically ensure this. See [63] for a discussion of this point.
Smooth maps are defined as before.

EXERCISE 2.3. Show that the product of two manifolds with corners 1s a
manifold with corners.

A manifold with boundary 1s the special case of a manifold with corners
when [ can be taken to have one element. The boundary of a manifold
with boundary is necessarily a manifold without boundary.

A (real) vector bundle of rank p over a manifold with corners, Y, consists
of a smooth map f: X — Y of manifolds with corners where the fibres
J~1(y) C X have linear structures (of dimension p) which vary smoothly in
the sense that the subspace F C C*®(X) of C* functions which are affine
linear on the fibres generates the C* structure. This last condition means
that C>°(X) is the smallest local C* subalgebra of C°(X) containing F and
furthermore f*C*(Y) C F is exactly the space of fibre-constant smooth
functions.

EXERCISE 2.4. Not only check that this reduces to your favourite defini-
tion in case Y (and hence X) has no boundary, but show that such a vector
bundle can always be obtained as the restriction of a vector bundle from
an extension of Y to a manifold without boundary.

2.2. The b-tangent bundle.

Let X be a compact C* manifold with boundary. The differential geom-
etry of X will be developed by straightforward extension from the bound-
aryless case, which is first recalled succinctly. The space X comes equipped
with its algebra of C* functions, C*°(X). Localizing this leads to the cotan-
gent bundle. Thus, if p € X let

Z,(X) = {u € C*(X);u(p) = 0}

be the ideal of functions vanishing at p and define the cotangent space at p
by Ty X =17, /Ig where Ig 1s the linear span of products of pairs of elements
of Z,. Clearly Ty X has a natural linear structure inherited from Z,. In

1

local coordinates z', ..., 2" based at p any element of 7, is of the form

Zj\f:l a;z/, modulo Ig. The constants a; therefore give linear coordinates
in 757 X. The dual space is the tangent space at p, 7, X = (7 X)*. Both
the cotangent and the tangent spaces combine to give C* vector bundles

over X, including in the case of a manifold with boundary:

TX = | | T,x, T"X=|]|T;X.
pEX pEX
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Any C™ function on X defines a section, df : X — 77X, of T* X where
df(p) = [f — f(p)] € T; X. The space of all C*° sections of 7™ X is just the
span
C*(X;T*X) = span {df; f € C™(X)}.
c=(X)

Over the boundary of X there is a natural subbundle of TX, namely
(2.1) TOX — ToxX = | | T,X.
pESX

This is defined by noting that the conormal space to the boundary
NyoX ={df(p); f € C™(X), frox =0} CT X, pedX

is a line in 77X such that 0 — N*0X — T5x X — 170X — 0 is
a short exact sequence, where the projection is given by pull-back to the
boundary. Then (2.1) follows by duality, with 7,0X the annihilator of
NyoX.

The space of all C* sections of T'X is the Lie algebra of vector fields; it
acts on C*(X) :

Co(X;TX)=V(X)3V, V:C®(X) —C7(X)
VI(p) = df(p)(V(p).-
The Lie bracket is fixed by
VW f=VWf-WVf V¥V fel”X).

Now the inclusion (2.1) allows one to define the subspace of vector fields
tangent to the boundary

(2.2) Vi(X) = {V € V(X); Viax € CP(0X;TIX)}.

It is a Lie subalgebra of V(X). The fundamental point leading to b-geometry
is that V, (X)) is itself the space of all C* sections of a vector bundle:

(2.3) V(X)) = C=(X;'TX).
The bundle *T'X, defined so (2.3) holds, is called the b-tangent bundle.
LEMMA 2.5. For each p € X (including boundary points) define the
vector space
(2.4) "X = Vo(X) /T, - Vo (X).
Then there is a unique vector bundle structure on

'TX = | | X

pEX

as a bundle over X such that (2.3) holds in the sense that, under the natural
vector bundle map *TX — TX, V,(X) pulls back to C*(X;°TX).
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Proor: By definition
L, - Vo(X) = {VEVX);V = > [iVi,V; € V(X), fj € T(X)}.
finite

This is certainly a linear space for each p € X. The first thing to check is
that the dimension of the quotient, (2.4), is constant. Of course over the
interior, essentially by definition,

"T,X ~T,X =V(X)/Z, - V(X), pe€ X\oX.

Near any boundary point local coordinates x,y1,...,yn, where dimX =
n+ 1, can always be introduced which are adapted to the boundary, in the
sense that

>0, 00X ={x=0}nearp

and which all vanish at p. Then a C*™ vector field can be written in terms
of the local derivations

0 u 0
X = =a— E b, —
V( ) 5V V[o a@l‘ —I—jzl ‘733/]"

where O C X 1s the coordinate patch and the coefficients are elements of

C*(0). From (2.2) it follows that
VeV (X) = ajox = 01e. a=za, with a € C*(X),
0

a n
=ax— bj——.
=V ozxax-l-; Ty

(2.5)

This indeed is the main content of the lemma, that #0/0x and the 9/0y;,
for j = 1,...,n form a local basis for °*7TX in any adapted coordinates
(which will just be called coordinates from now on). So prX always has
dimension equal to dim X, even for p € 9X. It remains to check that the
transition matrix between representations (2.5), for different coordinates,
is C°. If 'y}, ..., y, are new coordinates then

' = vA(z,y) with A(0,0) > 0 and
. aY;
y; = Yj(x,y) with det —2(0,0) £ 0.
Yk

Thus
x@A , 0 x! ay; o
o = U+ 35007 5 zZa—a— and
(2.6)
Y; 0

0 _ 104, 0 Za
o _1 S
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This shows that the transition matrix is C*°, so *7T'X is a well-defined vector
bundle over X and (2.3) holds.

A more general version of this construction of *7'X, from 7'X, is described
in Chapter 8 as the rescaling of vector bundles. For a discussion of *7'X in
case X is a manifold with corners see [66] and [63].

EXERCISE 2.6. Show that there is a natural vector bundle map from the
cotangent bundle of X, 7% X, to the dual bundle to *7°X, denoted *7™ X,
and that this map is an isomorphism over the interior of X. Near any
boundary point show that ®*7*X has a coordinate basis which pulls back
under this bundle map to

d
(2.7) Sy, j=1,...n.
X

2.3. Exact b-metrics.

Now, by b-geometry is meant the analogue of Riemannian geometry for
the b-tangent bundle, °TX. Thus a b-metric on a compact manifold with
boundary is simply a metric on the fibres of ?7°X. Over the interior of X,

"Txvox X ~ Tx\ax X,

so a b-metric is a Riemann metric on the interior of X with special uni-
formity properties at the boundary. Indeed, using Exercise 2.6, in local
coordinates at the boundary a b-metric can be written in the form

_ dx - de . - ok
(2.8) 9= aoo(?) + QZGOj?dy] + Z ajrdy’ dy”,
j=1 7,k=1
where the coefficients are C*° and the form is positive definite:
agoA? + QZaojnj/\ + Z ajpnime > (A +yP) YA ER, e R™
j=1 7,k=1

In practice it is convenient to further restrict the class of metrics. First
note some of the intrinsic structure of *7'X. From (2.6) the element z9/0x
18, at a boundary point, completely invariant:

(2.9) xai € 1, X is well-defined at p € 0X.
x

Hence its span *N9X C *T5x X is a canonically trivial line subbundle.
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EXERCISE 2.7. Show that there is a short exact sequence of vector bundles
(2.10) 00— "NOX — "Thx X — TOX — 0

where the projection is given by restriction to the boundary.

Now (2.9) shows the condition (agg)jax = 1 on (2.8) to be meaningful
independent of coordinates. This restriction will be strengthened further:

DEFINITION 2.8. An ezact b-metric on a compact manifold with boundary
is a b-metric such that for some boundary defining function z € C*°(X)

d
(2.11) g= (f)ﬁg’, g €C®(X;T"X @ T*X).

That is, for some choice of z, agy = 1 + O(2?) and ag; = O(z) in (2.8).

EXERCISE 2.9. (An intrinsic characterization of exact b-metrics.) From
one point of view (2.11) is rather forced since it just demands the exactness
of g. It 1s possible to do a little better. First notice that one can just require
that, for some boundary defining function =z,

(2.12) (a00)jox =1, (ag;)jax = 0.
This means that there may be an additional singular term, 'ya:(d?x)z n
(2.11). However setting &' = x + %71‘2 eliminates this term, without cre-

ating any new singular terms. Thus it is only necessary to characterize
(2.12). The first condition

d
(2.13) 9= (=) on'NOX
x
has already been discussed.
Consider the subbundle which is the g-orthocomplement of *N9X :
(2.14) (*NOX)" C Tyx X.

Going back to (2.4) observe that C* (3X; bTaXX) = Vo(X)/2Vs(X). More-
over, as already noted, V4 (X) is a Lie algebra and furthermore 2V, (X) C
Vu(X) is an ideal. Thus the quotient, C*°(0.X;°Tyx X), is also a Lie algebra.
From (2.14) the condition

(2.15) C®(0X;(*NoX)*t) C C®(0X;"Tyx X) is a Lie subalgebra

can be imposed. A metric satisfying (2.13), (2.15) might well be called a
closed b-metric. Why? Check that these conditions do not quite ensure
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(2.12), because such coordinates need only exist locally. Observe however
that, given (2.15),
("NoxX)*
1
0X

becomes a bundle with a flat connection. Show that g is exact if and only
if the connection 1s a product connection, i.e. has trivial holonomy.

An exact b-metric fixes a section of N*0X, namely dz, up to a global
constant multiple on each component of 9X by demanding that (2.11) hold.
Indeed if 2’ is another such boundary defining function then (dz’/z')? —
(dz/r)? must be a C* quadratic 1-form. Writing 2’ = ¢z, with ¢ > 0
and C, this difference is 2d¢dx/x¢ + (dg/d)? so it follows that dé = 0
on JX. Thus ¢ restricts to X to be locally constant and positive. Such
trivializations are useful at various points below and the first coordinate in
any coordinate system at the boundary will be taken to correspond to one.

2.4. Differential operators.

Next elementary differential geometry will be developed in this b-context,
starting with forms and exterior differentiation. Let ?A* X = A* (bT* X) be
the k*P exterior power of *T* X, i.e. the totally antisymmetric part of the
k-fold tensor product. As always there 1s a canonical isomorphism

(2.16) "Wivox =~ Axvox-

The de Rham complex on any manifold (including a manifold with bound-
ary) is

00 d 00 1 d d 00 N
(2.17) 0=>C®(X) =2 C*(X; A7) > - =2 C(X;AY) =0,
where N = dim X. The two main features to note are
(2.18) d € Diff'(X; AF AR @ = 0.

Recall what the first of these means, that d is a first order differential
operator. The simplest definition is just to say that P € Diﬂk(X; V, W) if
in any local trivializations of V' and W over an open set P is given by a
matrix of differential operators of order at most k. For the form bundles
local trivializations are always induced from local coordinates and

u= Z Uadz® —
|| =k
(2.19) N

du = Z dug AN dz* = Z Zgj?dszdz“.
|

|Oc|:k: oc|:k:j:1
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Thus d is a first order differential operator, as stated in (2.18).

The fact that the order of a differential operator 1s well defined depends
ultimately on the fact that V(X) = C*(X;TX) is a Lie algebra. Thus for
V = W = C a differential operator of order %k acting on functions is just
the sum of up to k-fold products of vector fields:

Diff* (X) = span V(X)7, V(X)° = C=(X).
0< <k
Using the corresponding Lie algebra in the b setting, V4 (X), the same def-
inition leads to b-differential operators.

DEFINITION 2.10. For any manifold with boundary, the space Diffy (X)
of b-differential operators of order k consists of those linear maps P :
C®(X) — C™(X) given by a finite sum of up to k-fold products of ele-
ments of V4 (X) (and C* (X))

(2200 P= > ag Vig.. Vi, Vi € Vi(X), ag) € C(X).
LE'(D)<k

If VW are vector bundles then Diﬂ’lg (X;V,W) consists of the operators
P C®(X;V) — C®(X; W) which are local (i.e. decrease supports) and
given in any common trivialization of V' and W over an open subset of X
by a b-differential operator.

The formal point is that the de Rham complex (2.17) over X\9X lifts
to the ‘b’ version of the de Rham complex:
b b b

d d d
(2:21) 0= C®(X) = CZ(X;%) — .. = ¥ (XA = 0,

where dim X = n+1 and % is just the lift of d to an operator on the b-form
bundles using (2.16). In fact % € Diﬂ’é(X; AR AR+ for all k. To see this,
start with the formula (2.19) and the basis (2.7) and observe that near the
boundary

d
= COO(X;bAk) — u = Z U dy® + Z uix—x A dy®,
|| =k la|=k—1 v
with the coefficients C*° and then

bdu:z<3aua dx A dy +ZZ dy]/\dy

lo|=k la|=k j=1

8 d
at ;/\dy]/\dy

|oc|k1]1
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For reasons of sanity-preservation it is better to set ‘d = d again.

An element of V4 (X) can be viewed in several ways. In particular it
can be viewed as an element of Diff} (X). It can also be considered as an
element of C°°(X;°TX) and hence as a linear function on the fibres of the
dual bundle, i.e. as an element of P[k](bT*X), the space of C* functions
on YT X which are homogeneous polynomials of degree k on the fibres, for
k=1.Let boy (V) € P[l](bT*X) denote the image of ¢V € V(X)) in this
sense. The factor of ‘7’ is inserted so that Dy, and x D, have real symbols,
where D, = —id/dy;, €D, = —ixd/0x corresponding to normalization of
the Fourier and Mellin transforms. Since V,(X) is a Lie algebra the map
defined by taking the leading terms in (2.20):

(2.22)
Difff (X) 3 P — Yoy (P) =
> apor(Vig) - -Por (Vi) € PPICTX)
LE (D)=k
is defined independently of the choice of presentation (2.20).

In the interior of X where *T'X is identified with 77X and *7*X with
T* X this gives the symbol in the usual sense. In adapted local coordinates
at the boundary
(2.23) PEDIffy(X) <= P= > pjalz,y)(eD,) DS

Jtlel<k
and then the symbol becomes, in terms of the basis (2.7),
(2.24) bak(P) = Z Pjale, y)/\jno‘.
jtlal=k
Here X and 7 are the linear functions on °7* X defined by the basis, i.e. a
general element of *7™* X is written

dz "
A— s dy; .
. +;n y

An operator P € Diffg(X) is said to be elliptic (really b-elliptic) if Yoy (P) #
0 on YT X 0.

For an operator P € Diﬂ’g (X;V,W), between vector bundles, the co-
efficients in (2.24) become local homomorphisms from V' to W. Thus the
symbol is a well-defined element of the space of homomorphisms from the
lift of V to ®7*X to the lift of W and is a homogeneous polynomial of
degree k on the fibres:

(2.25) bop(P) € PHIOT* X, V, W), P e Difff (X;V,W).

Such an operator is elliptic if ®o4(P) is invertible on *7* X 0.
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EXERCISE 2.11.  Show that the symbol of d € Diff(X; %A% bAF+1) at
CePT*X is

(2.26) Yoy (d) (&) =i A

2.5. Levi-Civita Connection.

Having dealt with the most elementary parts of differential geometry,
consider next the fundamental notions in Riemannian geometry, especially
the Levi-Civita connection and Riemann curvature tensor. As above this
will be developed with an eye to the generalization to the case of a b-metric.
If X is a C® manifold, then a Riemann metric on X is just a positive-
definite fibre metric on the tangent bundle. Since it is non-degenerate,
such a metric, g, fixes an isomorphism

TX i>T*X, Gv)(w) =gp(v,w) Yv,w e T, X VpeX.

This means that the metric can be transferred to the dual bundle, T* X.

An obvious question to ask is the extent to which the metric can be
simplified by choice of local coordinates. The metric ¢ is said to be flat
near p if it reduces to the Euclidean metric in some local coordinates. How
close to flat 18 a metric? A metric is always flat up to second-order terms
in Taylor series around any point. This is the origin of the Levi-Civita
connection.

Certainly for any point p € X there are local coordinates based at p
(meaning in which p is mapped to the origin), z*, 22 ..., 2"V, such that

(2.27) gp = (dz1)2 4 -+ (d2V)2 on T, X.

In fact any basis of 77 X is given by the differentials at p of some coordinate
system, so one can just as well look at the space of orthonormal bases of
Ty X with respect to g, :

N
Fp=1¢=1(¢",...,0");¢' €T;X and g, = Z(¢j)2
j=1
Notice that if ¢ = (¢',...,¢") is one element of F, and O € O(N) is an

orthogonal matrix, i.e. a real N x N matrix with inverse O!, then

N
(2.28) v= . N) € By W) =) Ogget,
k=1
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Every element of F}, arises in this way from a fixed element and O can be
recovered from ¢ and ¢. The action of O(N) on F, given by (2.28)

(2.29) A F, xO(N) — Fp, (6,0) — 60 =4
is simple and transitive. The action is on the right:
A(A(9,0),0") = A(¢,00"), ie. (¢0)0" = ¢(00').

As p varies locally in X the metric 1s reduced to the Euclidean metric by
a smoothly varying basis of 7% X. Thus the space

F=||F-5x
pEX

is itself a C* manifold such that the basis is a smooth section and the
O(N) action, given by (2.29) on each fibre, is C*°. In fact F' is just the
orthonormal coframe bundle of the Riemann manifold X with metric g; it
is a principal O(N)-bundle. The map (2.29) will be written as

Ao :F— F Y O e€O(N).

It is also useful to consider the closely related map Ly: F, +— O(N), fixed
for each p € X and each ¢ € F}, by

(2.30) Ly() = O if Ape = .

Going back to the question of simplifying the metric, choose any coordi-
nates based at p in which (2.27) holds. Thus, near p, the metric is of the
form

N
(231)  g=(d") 4+ (@) + Y giedsdI 4 O(I),
i,j,k=1
where g;; 1 = 3gij/3zk at p is a constant matrix satisfying
(232) 9ijk = 9jik Vi,j,k’: 1,...,N.

The coordinates can be modified, without changing the basis at p, by adding
quadratic terms:

N
. 1 e
(2.33) w]:z]—l—ilg_l'y{kzz,j:l,...,N,
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where the coefficients are arbitrary except for the symmetry condition
(2.34) Y =7 Vi kL
The inverse of this transformation is, near p, of the form:

N
. 1 .
2 =w — 2 E yew'w® + O(|w]?).
lk=1

Inserting this into (2.31) the metric becomes
(2.35) g = (du) 4t (™) + Offul?)

if and only if the linear terms in z cancel, i.e.

N N
E gijykdzldz]zk = E 'y{k(dz]zldzk + dz]dzlzk).
i,7,k=1 7Lk=1

This is a symmetric form in dz, so, using (2.34), the condition can be
written in terms of the coefficients as

(2.36) T+ = giin Yk L

LEMMA 2.12.  The linear map 'y{k — ¢i;.k given by (2.36) is an isomor-
phism of matrices subject to (2.34) onto matrices subject to (2.32).

PRrROOF: The inverse of (2.36) can be computed explicitly as
j 1
(2.37) Ve = 5 ikt + gjtk — ik}

This means that once the basis ¢ € F}, is chosen there is a unique way of
choosing the coordinates, up to cubic terms, so that ¢ = (dw!,... dw™) at
p and (2.35) holds. This information is elegantly encoded in the concept of
a connection on F. If w', ..., w" are the coordinates constructed so that
(2.35) holds then the coordinate basis

dw' dw™

goee ey

can be orthonormalized, near p, by the Gram-Schmidt procedure and this
only changes it by quadratic terms. Thus there is a local orthonormal
coframe ¢!, ..., ¢" of the form

N
(2.38) ¢ =duw +Y " ajedw®, az, = O(lwl).
k=1
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Figure 3. The orthonormal frame bundle and connection.

If the ¢/(p) are a given orthonormal basis of Ty X then the @7 are deter-
mined by (2.38) up to quadratic terms at p. This defines an N-plane in the
tangent space to F' at each point (p, ¢) :

(2.39) Cpe C Tip,s) F, ¢ EF,.

The uniqueness of the planes C}, 4 shows that the differential of the O(N)-
action intertwines the spaces

(2.40) (A0)«(Cp6) = Cp oo Y O € O(N)

and clearly

(2.41) Cpo®Toly =T b Vo

since C) 4 1s the tangent plane to a local section of . These are precisely

the conditions defining a connection on F. That is:

DEFINITION 2.13. A connection on a principal O(N)-bundle is a smooth
N-dimensional distribution, i.e. assignment of an N-plane (), 4 at each
point (p, ¢) of the bundle, satisfying (2.40) and (2.41).

Thus the discussion above just leads to the Levi-Civita connection:

LEMMA 2.14. The prescription (2.39) fixes a connection (the Levi-Civita
connection) on the orthonormal coframe bundle of any Riemann manifold.

An orthonormal coframe ¢' is said to be covariant constant at p if the
tangent space at (p, ¢(p)) to the section of I defined by it is C} 4(,)-
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2.6. Riemann curvature tensor.

Cartan’s reformulation of this notion of a connection is based on the
observation that, for each ¢ € F),, the identification Ly in (2.30) maps ¢ to
the identity in O(N), so if the tangent space to O(N) at Id is taken as the
Lie algebra, so(N), then

(Lg)s : TyFp ¢« s0(N).
Therefore there is a well-defined 1-form with values in so(n)
(2.42) w € C™(F; A'F @ s0(N)),
which is to say N? 1-forms
wij ECP(F;A'FY st wij+wji =0 Vij=1,...,N,

fixed by the condition that at each point of F

(2.43) w(v) = (Lyp)sv, v € TyF,, ¢ € F,
and
(244) (.J[CP)(b =0.

That this fixes the connection form, w, uniquely follows from (2.41) and
then from (2.40) if follows that

(2.45) (Ao)"wij = > _ 0i0jqwpq ¥ O € O(N)

p,q

gives the transformation law under the O(N)-action. Conversely if a 1-form
(2.42) satisfying (2.43) and (2.45) is given and the planes C}, 4 C T, 4 F are
defined to be the null spaces of w, so (2.44) holds, then the C} 4 define a
connection on F.

There is another way to look at the connection forms w;;, more in keeping
with the method of moving frames. There are N natural evaluation maps
2,1 FF— T X, just sending an orthonormal coframe to its ith element.
The cotangent bundle carries a tautological form, «, given at any point
(p,B) € T*X by the pull back of 3 under the projection from T*X to X.
Thus F' has N such tautological forms, a; = Efa, ¢ = 1,..., N. These
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forms vanish when restricted to any fibre but are everywhere independent.
The first structure equation® of the connection is:

N
(2.46) doi + Y wip Ay = 0.

p=1

Notice that this actually determines the w;;.

To prove (2.46) at a general point (p,¢) € F consider an orthonormal
frame as in (2.38), near p, taking the value ¢ at p. This gives an identifica-
tion over a neighbourhood U of p :

F[U =U x O(N)
(2:47) (0 ¥) = (/. 0), ¥ =3 Opj6"
k

as in (2.28). Then the tautological forms are just a; = >, Oy ¢'. Moreover,
d¢! vanishes at p so do; = >, dOy; A ¢! at p x O(N). Inverting (2.47) and
noting that the covariant constancy of the basis means that

Wi = ZOqiquj at p x O(N) = Fp;
q

it follows that
do; = ZdOlz A ZOlqaq = qui Nag.
l q q

This gives (2.46) at (p, ¢) and hence in general.
The second structure equation for the connection is given by computing
the exterior differential of the connection form.

ProPOSITION 2.15.  The Levi-Civita connection form, w, defined by (2.43)
and (2.44), satisfies

(2.48) dw;j + Zwiq Nwgj = Qij
q

3 The convention used here for the exterior product is fixed by demanding

1
fl /\~~~/\£N(’U1,...,’UN) = ﬁdet(fj(vk)) ij E/T;AX7 2 ETPX
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where Q;; € C*°(F; A>F) annihilates T4 F, at each point, I.e.
(2.49) Qv,w) =0 ifv € Ty oy I, w € Ty Fy.

ProoF: Any tangent vector v € T F' can be extended to a vector field, V,
near Fy,. If v € Ty F), the vector field V' can be chosen to be vertical, i.e.
tangent to the leaves of F| near p and to have

(Ly)V =2 = (Lg)uv V ¢ € Fy,

so constant in s0(N). This means that V' generates a 1-parameter subgroup
of the O(N)-action.

Suppose first that v,w € Ty F, are both vertical. Then, by Cartan’s
formula for the exterior derivative,

(2.50) dw(V, W) = % [Vw(W) = Ww(V) —w([V,W])].

Taking V, W to be generators of 1-parameter subgroups of the O(N)-action
as above makes w(V') and w (W) constant, so the first two terms on the right

n (2.50) vanish. Evaluated at (p, ¢), using (2.43), the third term in (2.50)

becomes
w([V, W) =(Ly)([V, W])
=[(Lg):V, (Lg)- W]
=w(V)w(W) —w(W)w(V)
since the commutator in so(N) is just matrix commutation. This gives
(2.49) when both vectors are vertical.

Suppose next that v € Cp 4. Then, using (2.40), the extension can be
chosen to be O(N)-invariant and must take values in C,  for all ¢ € F).
Thus w(V) = 0 on F,,. With W a generator of the O(V)-action the first two
terms in (2.50) again vanish. Now [W, V] is the Lie derivative of V along

the 1-parameter group generated by W, so vanishes on F}, and hence the
third term in (2.50) also vanishes at ¢. This completes the proof of (2.49).

From (2.49) the form @ at (p, ¢) € F is determined by its restriction to
Cp 4. By (2.41) projection to X gives an isomorphism of T, X and C), 4, so
one can define

Qfﬁ € AZZ,X by Qfﬁ(v, w) = Qi; (v, w'),
vow' € Cp g, (V) = v, (w') = w.

Then consider the 4-cotensor at p :

(2.51)
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The notation here indicates that
R(p) e XX © X

is independent of the choice of ¢ € F, involved in (2.51). This indeed is a
consequence of the transformation law for @ in (2.48) which follows from

(2.45):

(2.52) (40)*Qij = > 0ip0;4@pq

p,q

and the transformation law (2.28) for the ¢*. Thus
R€C™(X;A’X @ A*X)

is well defined by (2.51). Tt is the Riemann curvature tensor. Notice that,
as a consequence of Proposition 2.15, R also determines Q.

THEOREM 2.16. If the Riemann curvature tensor vanishes near a point p
then the metric is flat nearby in the sense that there are local coordinates
based at p in terms of which

g =(dz)? 4+ -+ (dzN)? near p.

PROOF (BRIEF): By Proposition 2.15 and the remarks above the vanishing
of R is equivalent to the vanishing of @) in a neighbourhood of F}, in F' and
hence to

dw = —w Aw near Fj.

This in turn means that the subspaces C}, 4 C T{, 4yF form a foliation
near [}, i.e. the space of vector fields tangent to them at each point is
closed under commutation. So, by Frobenius’ theorem, through each point
¢ € I, there is, at least locally, a smooth submanifold, X, such that
Tipr ) Xe = Cpr y for each (p', ) € Xy. The transversality condition (2.41)
means that 7 : X4 — X is a local diffeomorphism, so X is a section of F'
passing through (p, ¢), i.e. an orthonormal basis ¢'(p’) for g at each point
p’ near p. The tangency of Cp , to X, means that each ¢(p') is actually a
closed 1-form, so locally exact and this gives the coordinates in which the
metric is flat.

So this is the elementary theory of the Levi-Civita connection and Rie-
mann curvature of a Riemann manifold. Before considering the changes
needed to handle b-metrics, recall the identification of the tensor bundles
as associated bundles to the coframe bundle and the extension of the con-
nection to these bundles in the guise of covariant differentiation.
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2.7. Associated bundles.

Suppose that F is a vector space with an O(N)-action, L: O(N) 3 O —
Lo € GI(E). For example consider the standard action on RY :

N
(253) Lo(l‘l,...,l‘N)I(yl,...,yN), yjIZO]’kl‘k.
k=1

Given any such linear action consider the space F' x E with the action:
(2.54) FxE€(p¢,u)— (p,Aoé, Lgtu) € F x E.

The quotient is a vector bundle over X, which can be denoted temporarily
as Iy, .

(Er)p = {[(p, ¢, w)]ip, ¥, ') € [(p, &, w)] iff 3O € O(N)
with ¢ = Ap¢ = ¢O, v’ = L5 u}.
The linear structure on (Eyr), comes from the linearity of the action on E,
the C* structure projects from F' x E.

Any such associated bundle has a connection induced from F. With Cj, 4
the N-planes defined above consider

Cryu=CpoxECTysu(F xE)Y (p,¢,u)€F x I,

where the identification of the tangent space of a vector space with the
vector space itself is used. Now from (2.40) and the fact that Lo acts

on, i.e. preserves, F the differential of the action (2.54) maps C'pL¢ . onto
CpL,¢O,L51u' Thus the spaces CpL,¢,u project to well-defined N-planes in

TipvyEL, which can again be denoted

Cow CTp)Er, v € (EL)p, p € X.
The transversality condition (2.41) certainly persists so
(2.55) Cow @ Ty(EL)p =Ty B Y (p,v) € EL.

EXERCISE 2.17. Check carefully that if the representation of O(N) is
taken to be (2.53) then the associated bundle is canonically isomorphic to
T* X where the isomorphism is given by mapping (p, ¢, u) to

Zu]’¢>j S T;X
J
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2.8. Covariant differentiation.

It is more usual to rewrite the information (2.55) in terms of a differential
operator. A section, g € C*(X; Er), is said to be covariant constant at p
if its graph

Gr(u) = {(p', u(p")) € Er;p" € X} has tangent plane C,, () at (p, u(p)).

More generally any section, at any point, can be compared to a covariant
constant section. Since

Ty, u(py) Gr(p) © Tuipy (EL)p = Tip,u(ry) L

there is a well-defined projection Vyi(p): Cp py — Tu(p)(EL)p. Since the
projection to the base identifies Ci, () with 7, X and the tangent space to
the fibre can be identified with the fibre this means that Vu(p) is a linear
map T,X — (Er), fixed by p. Equivalently it can be thought of it as an
element

Vulp) €T, X @ (EL)p.

Clearly this construction varies smoothly with p so defines the covariant
derivative of any smooth section of any associated bundle:

(2.56) V:C®(X;EL) = C*(X;T"X @ Er).

LEMMA 2.18. The map (2.56) is a first order linear differential operator.

ProOOF: The tangent space to the section only depends on the first deriva-
tives of the section in local coordinates, so certainly Vyu(p) only depends
on the first derivatives, and the value, of i at p. To see that the depen-
dence is linear observe that, by definition, if ¢ is any section of F' near p
then a local section p, of Ep, determines and is determined by a map f
from a neighbourhood of p in X into E by u(p') «— [(¢(p"), f(¥'))]. If ¢ is
covariant-constant at p, i.e. has graph tangent to ), 4(,), then the covariant
derivative of u is just

(2.57) Vulp) = df(p) € T; X @ (EL)y,
where E 3 e — [(¢(p),¢)] identifies E and (Er),. The linearity is then
clear from (2.57).

Directly from the definition, the zero section of the vector bundle is
covariant constant, which is to say that at the zero section C), g = T, X
is the tangent plane to the zero section. Note that the tangent space to
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the vector bundle has a natural decomposition T, o &' =T, X @ Ep. If p is
any smooth section and f € C*(X) vanishes at p then the graph of the
section fu has tangent space {df(p) = 0} @ span(u) at p. It follows that
the covariant derivative of such a section, at p, is just df (p) ® p(p). More
generally

(2.58) V(fp)=df op+fVp ¥V feC®(X), pel™(X;E).

Indeed this follows, at a general point p, by writing fu = f(p)u+(f—f(p))p.

DEFINITION 2.19. A connection on a vector bundle, E, is a first order
linear differential operator

V:C®(X;E) — C°(X;T"X @ E)

satisfying (2.58).

The Levi-Civita connection on T*X is certainly a connection (an affine
connection) in this sense.

EXERCISE 2.20. Show that for any connection on a vector bundle over
X and each e € E,, p € X, there is a section p € C(X; E) with u(p) =e
which is covariant constant at p, i.e. Vu(p) = 0. [Hint: choose any section
through e at p then add to it ), fiu;, where the p; are a local basis of
sections and the f; € Z,. Use (2.58) to choose the f; so that the covariant
derivative vanishes at p.] Use this to show that a connection is equivalent to
a C* distribution of tangent planes C', oy C T{p )£ which project isomor-
phically onto 7, X and satisfy a linearity condition which can be written

Cipey + Cipery = Cpreqery ¥ €, = E, peX.

Thus if E/ has a connection and p € X one can always find a local basis
of sections of /| e;, which are covariant constant at p. Any other such basis
1s necessarily of the form

(2.59) € = Zajkek + ijkek, aj, constant and f;x € Ig.
k ik

If V/ and V" are both connections on F and ¢ € C*(X) then V =
éV' + (1 — ¢)V" is also a connection. Of course it is only necessary for
V'’ to be defined in a neighbourhood of the support of ¢ and similarly
for V”. This allows one to show that any vector bundle has a connection.
For a trivial bundle, £ = X x R" a connection is defined by d acting
on the coefficients. Since any bundle is locally trivial, this means that
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a connection exists in an open neighbourhood of each point. If O; is a
covering of X by such neighbourhoods with V; a connection on E over O;
and ¢; is a partition of unity subordinate to the cover then V = Zj o;V;
is a connection on E.

The covariant derivative can always be evaluated on a vector field (in the

factor of 7*X in T*X ® F). Thus if V € V(X)
Vy :C®(X;E) — C* (XS E), Vep=Vu(V, )V peC®(X; E)

1s always well defined.

LEMMA 2.21. Every C* bundle has a connection. If the bundle has a
fibre metric then the connection can be chosen to be orthogonal in the sense
that

(2.60) (Vvp, i)+, V') = d(p, p') Y pp' € C (X5 E)

for all C*° vector fields V.

ProoF: Using the same superposition argument it suffices to construct an
orthogonal connection locally, assuming the bundle to be trivial. Then one
can simply demand that some orthonormal basis be covariant constant.

If F has a connection then the dual bundle £’ has a natural connection
given by demanding that a section €’ of E’ be covariant constant at p if
and only if its pairing with any section of E which is covariant constant at
p has vanishing differential at p. That is, in terms of the pairing

(2.61) d{e, e’y = (Ve e) + (', Ve).

Indeed if e; is a covariant constant basis at p and e"i is the dual basis of
E’ at p then e"i must be covariant constant. This fixes the connection on
E' and it is independent of the choice of basis since another choice, (2.59),
clearly gives the same covariant constant sections at p.

Similarly the tensor product of two bundles £ and F with connections
has a unique connection for which e ® f is covariant constant at p if ¢ and
f are covariant constant at p as sections of £ and F. It is determined by

the identity
(2.62) Viea f)=(Ve)@ f+ex (V).

EXERCISE 2.22. Prove these assertions carefully, in particular showing
smoothness of the induced connections.
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EXERCISE 2.23. Show that if £ and F' are bundles associated to a prin-
cipal O(N)-bundle then F ® F is also an associated bundle, corresponding
to the tensor product representation. Check that the tensor product of the
connections induced on F and F, as in (2.62), is the induced connection on
E®F.

The Levi-Civita connection therefore defines covariant differentiation act-
ing on tensors on X. Actually this connection arises in two ways, directly
because the tensor bundles are associated to the orthonormal coframe bun-
dle and also through the tensor product construction from the connections
on the tangent and cotangent bundles; by Exercise 2.23 these are the same.
Various properties of the Levi-Civita connection are important later. First
since g, the metric, can be considered as a section of T*X ® T*X (a sym-
metric one to be sure) its covariant derivative is defined. In fact Vg = 0.
Indeed this follows from (2.57) and the original definition of the connection,
since if ¢ is represented in terms of an orthonormal basis which 1s covariant
constant at p it 1s given, by definition, by the Euclidean form up to second
order.

EXERCISE 2.24. For any form bundle, antisymmetrization gives a projec-
tion Ay : T*X @ AFX — A*+1X. Show that composition with covariant
differentiation gives, for the Levi-Civita connection,

Agp1 0V =d: C(X; AF) — € (X; AR

for every k.

EXERCISE 2.25. Using Exercise 2.24 make sense of, and prove, the fol-
lowing formula for any (local) orthonormal coframe ¢! with dual frame
(2

(2.63) dp =" 6" AVyp,
j=1
where p1s a C* k-form.

2.9. Christoffel symbols.

The construction above can be reinterpreted in terms of the full coframe

bundle . Thus
Fy={¢=1{6",...,¢"} is a basis of T/ X} .

The N-plane C}, 4 can be defined at all points of F, using (2.40), i.e. a
general frame is covariant constant at p if and only if it is of the form
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Zj hé»qu, where ¢/ is an orthonormal frame which is covariant constant at
p and h; is an invertible matrix with dh‘g =0 at p. In a general coordinate
system, not assumed to give an orthonormal basis for 77X, the formula
generalizing (2.37) for the coefficients 7Yjr to make the coordinate basis
defined by (2.33) covariant constant at p is

N
(2.64) Tk = 5 > 0" {gpih + Gpkg — Gikp} s
p=1

where g% is the inverse matrix to gij. Then from (2.37) it is easy to deduce
the local coordinate expression for the covariant derivative of a 1-form.
Namely by writing

N N N N
(2.65) o= Z Z (dz' + Z Yk dz? 2F) Z ai'y;kdzjzk
i=1 i=1 7,k=1 1,5,k=1

and using (2.57) the familiar expression

N

N
(2.66) Z Z ai'y}:kdzj @ dzF

Jj=1 1,5,k=1

results. The 'yj»k are called the Christoffel symbols and are defined in any
local coordinate system by the identity

(2.67) 2. dz] = Z'y]kdz

They are not the coefficients of a tensor.

EXERCISE 2.26. Show that the formula for covariant differentiation of a
p-form is determined by

p N
—ZZ I’dxh Sdrtr AdeF A deT A - A de e
=1 k=1

The identity (2.58) for covariant differentiation means that if V' and W
are C™ vector fields on X then for any connection on a vector bundle

Vv, Vwl(fu) — Vi (Fe) = £ (Vv, Ve — Vivwz)
Vel (X),pel™(X;E).
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Thus

(2.68) Ke(V,Wn = (Vv V] - Vi) s

is actually a differential operator of order 0, that is Kg(V, W) is a section

of the homomorphism bundle of E. It is called the curvature operator.
For the Levi-Civita connection acting on 1-forms, observe from (2.66)

and (2.67) that the curvature operator evaluated on a coordinate basis is

a 0
921" 6’“)d

9 9
== (@’Yiq - 37’%) d="+ 3037 (it = il ) 4
q r q

[\Al( 2P

(2.69)

If the coordinates are chosen so that (2.35) holds then the coefficients 'y}:k
vanish at p and

§ R 9 9
Enlpi gz gt = 2 (37752 - w’yiq) =
q

LEMMA 2.27. The curvature operator on T* X of the Levi-Civita connec-
tion is

0 3
(2.70) A,p(p,a . 3,2 dz' = Z g"° Rjngsdz?,

s,q=1

where R is the Riemann curvature tensor.

Proor: Consider the local section of ®: u — F given by the orthonor-
malized coordinate differentials, ¢/ in (2.38),i.e. ®(x) = (¢',...,¢"). Let
Vij = <I>*w” be the pull-back of the connection forms under this section, so

Vij = Z 'y]kq/)k Recalling that the ¢/ are equal to the dz/ up to quadratic
terms at p, the pull-back of the structure equation (2.48) then shows that

df’?ij = Z Riqudzp Adz?.
rq

Since the pull-back of the form «; is just ¢/ it follows from (2.46) that
(2.70) holds in this case since g(p) is the Euclidean metric. As both sides
of (2.70) are tensors it must hold in general.
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EXERCISE 2.28. Find the curvature operator of the Levi-Civita connec-
tion on the tangent bundle in terms of the Riemann curvature tensor.

Combining (2.69) and (2.70) gives a formula for the Riemann curvature
tensor, at any point p, computed in coordinates in which (2.35) holds,
namely:

1 ( g 0 0 0 g 0 g 0 )

IR 0z 0z Gki + 0z 3zkg ot Ozt 9t ki Ozt Ok git

This shows that the curvature tensor has the following symmetries.
LEMMA 2.29. The Riemann curvature tensor satisfies the identities:
Rijri = —Rjin
Rijri = Rpaij
Rijnt + Rini; + Rijr =0 (1st Bianchi identity).

Since they are coordinate-invariant they hold in any coordinates.

2.10. Warped products.

For later application the connection and curvature for a simple warped
product will be computed.

Thus let M be a Riemann manifold with metric h and let ¢ € C*(S?) be
a real-valued function on the circle. On X = S' x M consider the metric

(2.71) g =do? + e,

where # is the standard variable on S'. Let ¥ be the covariant derivative,
acting on 1-forms, on M. We shall also let ¥V denote the covariant derivative
on the product when ¢ = 0 since then, with respect to the decomposition

T*X =T*S*eT"M
the covariant derivative with respect to /98 just acts on the coefficients

and the covariant derivative with respect to a vector field on M acts through
the connection of k.

LeMMA 2.30. The Levi-Civita connection, %, of the metric g in (2.71) is
given in terms of the product connection through

d¢

Vaedgzo, Vaeﬁz—a—gﬁ
~ 6¢
2.72 — 72
( ) Vvd9 696 s
~ 0
V= Vvl S0 ()0

for any C* 1-form  on M and C™ vector field V on M, with u the dual
form to V, ie. p = h(V,-).
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ProoF: From (2.64) the Christoffel symbols ¥ for g can be computed for
coordinates z° = 6 and 27, j = 1,...,n = dimM in M in terms of the
Christoffel symbols, 7, of h :

~i i d¢

Vik = Vkr Tk = —%62%]’!@
~ 0¢

%k = Yko = a_gélia :781@ = 7180 = 780 =0.

(2.73)

From these formula, and (2.67), (2.72) follows directly.

LEMMA 2.31. The curvature matrix R of the metric (2.71) is given in
terms of the curvature of M through

R B ¢ 99
g =0, Fagor = hys (o8 = (227
d¢

Ryjpq = €”* Rijpg + (3_9)264¢ (hiphjqg — highjq)

(2.74)

where j, k,p,q=1,...,n =dim M.
ProoF: This follows by assiduous use of (2.70) and Lemma 2.30.

2.11. Curvature formulse.

If £’ is the dual bundle to F then the transpose of a linear map defines
an isomorphism

hom(FE) = hom(E’), A+ A"

Applying (2.61), repeatedly, shows that the curvature of the connection on
the dual bundle satisfies

Vupel®(X;E),u el (X;F).
It follows easily that the curvature operator satisfies
(2.75) Kp = —Kg

(which provides a solution to Exercise 2.28). Similarly if £ and F' are two
vector bundles with connections then (2.62) fixes a connection on E @ F.
The homomorphism bundle of the tensor product is

hom(F @ F) = hom(E) ® hom(F).

In terms of this isomorphism a similar computation shows the curvature
operator to be

(2.76) Kgorp = Kp @ 1d+1d ©Kp.
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As a special case the homomorphism bundle of F itself acquires a connec-
tion through the identity

(2.77) V(Au) = (VA)u + A(Vu).

This is the same as the connection induced by the identification hom(FE) =
E ® E'. As an operator on hom(F), the curvature is therefore given by

(2.78) Knom(e)(V, W) = Kg(V,W) - —- Kp(V, W),

for any vector fields V, W, where the dots indicate that the two terms act
by composition on the left and right respectively, i.e.

Komey(V,W)A =Kg(V,W)A — AKg(V, W)
=[Kg(V,W),A] ¥ A€ hom(E).
It is also important later to consider the ‘big’ homomorphism bundle,
Hom(F), since this arises whenever operators on sections of E are con-
sidered. If E is a bundle over X this is the bundle over X? with fibre

hom(FEy, Ey) at (x,2’). This is sometimes called the exterior tensor prod-
uct:

(2.79) Hom(F) = ER E over X?,

meaning that E should be pulled back to X? from the left factor of X and
E’ from the right, i.e.

. om =7 X over
(2.80) Hom(E) =} E@ i E' X2

where 7y, and 7g are the two projections from X? to X onto the left and
right factors.

Recall that the pull-back of a bundle £ over Y under a smooth map
[ X — Y is always a bundle over X with fibre at x just Ey(,). A section
of B, p € C*®°(Y; E), defines a section of f*FE, namely f*u = po f. In fact
every section of f* E 1s locally a sum of products of C*° functions on X and
these pulled-back sections:

(2.81) Co(X; f*E)=C™(X) - frC(Y; E).
This allows a connection on E to be pulled back to a connection on f*F

simply by defining
Vyemp =Y _(dh; @ fu; + i f* (Vp;))

J

if =" hif s, hy €C(X), pj €C¥(Y;E).
)

(2.82)

Thus sections covariant constant at y € Y pull back to be covariant constant
at each x € f~1(y).
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LEMMA 2.32. Iff: X — Y is aC™ map and E is a bundle over Y with
connection and curvature operator Kg then the action of the curvature
operator of the pulled-back connection on f*FE is

[(f*E(V’ W)/’L = [{E(f*va f*W)/J € Ef(x) = (f*E)x
VV,WeT, X, pe(f E)y,
ie. if K is regarded as a section of A?X @ hom(F) then K+ = f*Kg.

(2.83)

Proo¥F: It suffices to compute the curvature operator acting on covariant
constant sections at a given point # € X. In fact it is enough to consider
sections f*u' with p' € C*(Y; F) covariant constant at f(z). The second
term in (2.68) is therefore zero at x and the first evaluates at z, using
(2.82), to f*([Vy, Vylpt'), where v, w are any C™ vector fields on Y with
v=f.Vand w= f.W at x. This gives (2.83).

The decomposition (2.80) of Hom(F) shows that it has a natural con-
nection. Applying Lemma 2.32, (2.76) and (2.75) shows that the curvature
operator for this connection is

(2.84) Kpom(p)(V,W) = Kg((7L)V, ()W) -— Kg((7r):V, (Tr) W);
again the dots indicate that the terms act as operators on the left and right.

EXERCISE 2.33. Check that the connection on Hom(F) is consistent with
that on hom(FE) in the following sense. Let :: A — X? be the embedding
of the diagonal, the set of points (z, z). Projection onto either factor of X
gives the same diffeomorphism A = X. Thus pulling back Hom(FE) under ¢
gives a bundle over X. Show that this bundle is canonically isomorphic to
hom(F) and that the pulled-back connection is the one defined above.

2.12. Orientation.

As noted already, the coframe bundle, a principal bundle with structure
group GI(N,R), of any compact manifold has a reduction to a principal
O(N)-bundle; namely the orthonormal coframe bundle, F, for any Riemann
metric. In fact they were defined above in the other order. Each fibre, F,,
has two components. The manifold is orientable if and only if F' itself has
two components (assuming X to be connected). In this case either of the
components gives a reduction of the structure group to SO(N). Thus an
orientation, ./’ C F,is simply a subbundle of the orthonormal frame bundle
which is a principal SO(N)-bundle, this subbundle is then the bundle of
oriented orthonormal frames.

If a Riemann manifold is orientable and is given an orientation then
the Riemann density becomes a form of maximal degree. Thus if ¢/, j =

1 N

is an oriented orthonormal frame in /), then

v=¢" A AN € ATV (X)

goee ey 5
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i1s the volume form at p. It is independent of the choice of oriented or-
thonormal frame. The choice of orientation also fixes the Hodge (star)
isomorphism:
o N
*: Ag(X) — 4, (X)),

for each p € X and each j. If ¢7 is an oriented orthonormal frame then
(2.85) KO A A GH) = apl A A

where o is the sign of the permutation (1,...,N) +— (d1,...,in). The
forms on the left give a basis for Ai(X), so x is defined by extending it
linearly. The spaces A7(X) carry fibre metrics derived from the metric,
on T*X, by demanding that ¢' A --- A ¢/ should have length 1 for any
orthonormal basis of 77 X. In terms of this inner product on the form
bundles, the operator (2.85) satisfies

(2.86) (Gew, v)v = w A v.

In fact this shows that it 1s uniquely determined, independent of choice of
oriented frame. It is therefore a C* bundle map.
Moreover it follows from (2.85) that

(2.87) *2 = (=1)?0=9) on A (X).
The identity (2.86) makes % useful in analyzing the adjoint, §, of d. The
adjoint is defined by requiring

/<5w,v>v = /(w,dv>v, Y w e C™®(X;A), vel™(X; A,

b'e b'e

Using Stokes’ theorem and (2.86) twice gives, for any C* k form u and
N —k —1 form v,

/(*dw, Vv = /dw Av = (=1)F! / wAdv = (—1)F1 /(w, dv)v.

X X X X

Then using (2.87) it follows readily that
(2.88) § = (—1)NIFTNFL o d % on € (X; A).

Whilst the Hodge star operator is real it is useful to consider, in the even
dimensional case, the complex operator

(2.89) =@ UmD¥h (X)) — API(X), dim X = 2k.

By direct computation one then finds:
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LEMMA 2.34. Ifdim X = 2k is even then t is an involution, 7% = Id, and
m(d+3d)+ (d+ )7 =0.
In the odd-dimensional case there is a similar operator,
=0T Ry (X)) — AITI(X)), dim X = 2k — 1,

where R4 1s the parity involution

(2.90) R { 1 on A"
' A7 =1 on A0dd,

2.13. b-connections.

The connection on F can be recovered from (2.66) by noting that a frame
1s covariant constant at a point p if and only if each element of it is covariant
constant. Then (2.67) can be used to extend the discussion to b-metrics.
If g is a general b-metric on a manifold with boundary the problem is to
determine what happens to the C}, 4 as p approaches the boundary. In the
interior, but near the boundary, local coordinates

(2.91) 2O =logz, 2/ = yi, J>1,

can be used, where @, y1, ..., y, 18 a coordinate system up to the boundary
and the dimension 1s now taken to be N = n + 1. By definition the metric
is smooth (in z,y) and non-degenerate with respect to the induced basis of
b= X

n Do dr . ]
(292 g= Y guleydsidsd, d = sl = dy;, > 1.

7,7=0

Using the formulae (2.64) for the Christoffel symbols, noting that J,0 =
x0/0x while 0,5 = 0y, for j > 1 and (2.66) for the covariant derivative
gives:

LEMMA 2.35. The covariant derivative for a general b-metric on a mani-
fold with boundary, X, extends from the interior to a first order differential
operator:

PV L0 (X; Y — (XX @AY,
(2.93) bV € Diff} (X; AL P T X @ AL
Y(fp) =V df op Y fECT(X) e (X;ITTX).



56 2. EXACT b-GEOMETRY

In the last equation in (2.93), df should be interpreted as a b-form, really
bf.
ProOF: Applying (2.67) to the coordinates (2.91) gives

"Vd = — Z'yfkdzi @ dzF,
ik

where the Christoffel symbols are given by (2.64). Since g;; in (2.92) is
non-degenerate, g;;0 = x0¢;;/0x, and g;;; = 0gi; /0y for I > 0, the 'y{k
are indeed C*® down to # = 0. Thus the *Vdz/ are smooth sections of
bT* X @Al over the coordinate patch. The third part of (2.93) then follows
by continuity and in turn leads to the other two parts.

Reversing the arguments above shows that an affine b-connection in the
sense of (2.93) fixes the condition that a general b-frame, i.e. smoothly
varying basis of ®7* X, should be covariant constant at a point. Let

bpctp

be the orthonormal coframe bundle for the b-metric as a subbundle (a
principal O(n 4+ 1)-bundle) of the general b-coframe bundle. Thus bﬁp
consists of all the bases of *T*X and pr all the orthonormal bases. Both
are manifolds with boundary and °F is compact if X is compact. It follows
that the (n + 1)-planes C, . extend smoothly from the interior to define

*Cpy C bT(p,¢)bF YV (p,¢) €F

"Coo €T, F Y (0, 9) €F.
This is the more sophisticated formulation of the metric, i.e. Levi-Civita,
b-connection, where (2.40) (and its generalization to Gl(n + 1,R)) and the

analogue of (2.41):
PCpp ® Ty Fy = "T(p, )" F

continue to hold by continuity.

EXERCISE 2.36. Show that the structure equation as in (2.48) holds
with @ € C*°(°F;%A%F ® so(n + 1)) and that in consequence the Riemann
curvature tensor becomes

R e C™(X;"%’X @ 'A%X).

Of course the symmetry properties in Lemma 2.29 continue to hold by
continuity.
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Now what happens if the metric is assumed to be an exact b-metric?
Taking local coordinates (2.91) in which (2.11) holds, the metric tensor

satisfies 00 )
goo, g =14 0O(x7)

goi, g% =0(x), i=1,... n.

Then for the Christoffel symbols, with respect to the coordinates 2’ intro-
duced above, (2.64) implies that

Yio=0(x), i,j=0,...,n.
This means that (2.66) can be rewritten as

(2.94)
Va= Z Opc;dzt @ de + Z Z 3zjozidzi @ dz?
i=0

i=0j=1

— Z ai(é)'yjodzjdx— Z Z%’Y}kdzjdyk

7,7=0 1,j=0k=1

and so proves:

PropPoOSITION 2.37. For an exact b-metric the Levi-Civita connection ex-
tends by continuity to a connection on the b-frame bundle, and equivalently
to a covariant derivative
(2.95)

V0™ (XY — (X T X @A), Ve Difft (X; A1, T X @ "AL).

EXERCISE 2.38. Does the Levi-Civita connection of an exact b-metric
define a b-connection on 7* X7 Does 1t define a connection on 7™ X7

Consider 1n a little more detail exactly what happens at the boundary
in the case of an exact b-metric. The b-1-form da/x is well-defined at 9X
as the section of length one of the orthocomplement in *77%, X to T*9.X.
If F(0X) is the orthonormal frame bundle for the metric h induced on the
boundary by the exact b-metric (2.11) then extending an orthonormal basis
by adding dz/« to it gives the embedding

F(0X) — "Fax(X).
This means that the structure group of ®F(X), the orthonormal frame

bundle, reduces to O(n) at 9X. It is important to see the properties of the
curvature of the b-metric which follow.
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First note that the form da/x, always the one appearing in (2.11) for the
exact b-metric, satisfies

d
by (—96) —0in"T"X @PT*X at 0X.

X

Indeed this follows from (2.94). Furthermore, from (2.95),
Veea=0in"T"X @ "T"X at 9X ¥V a€C®(X;"T*X).

Combining these observations with the commutation properties of vector
fields tangent to the boundary easily gives:

ProprosiTION 2.39. The Riemann curvature tensor of an exact b-metric
is a C*° tensor in the usual sense:

ReC™(X; A% @ A%

and has the property that its restriction to the boundary (in all arguments)
is the Riemann curvature tensor of the induced metric on the boundary.

In this sense exact b-metrics correspond to truly cylindrical ends. The
problem of the extension of all the discussion above, and the APS theorem
itself, to the case of non-exact b-metrics is quite analogous to the recent
discussion by Grubb [42] and Gilkey [38] of the extension of the more stan-
dard ‘elliptic’ formulation of the APS theorem to the case where the metric
is not a product near the boundary.

ProOF: The commutator of any vector field tangent to the boundary with
a vector field vanishing on the boundary also vanishes on the boundary,
so the curvature operator on 1-forms vanishes at 0.X if either argument is
x£d/0x. This, and the symmetry properties, show that the curvature tensor
is smooth in the ordinary sense, since any term containing dz/x vanishes
at 0X. It follows immediately from the definition as the curvature operator
on 1-forms that the pull-back to the boundary of the Riemann tensor of
the b-metric 1s the Riemann tensor of the boundary metric.

In general a b-connection on a vector bundle E is given by a first order
differential operator *V & Diﬂ%(X; E,*T*X @ E) which is a connection in
the interior. Tt therefore satisfies (2.58) and so by continuity

(2.96) "V(fp)y=df o+ V), fECT(X), n€CT(X;E),

where df is, as in (2.93), interpreted as a section of ®7T* X. As for the Levi-
Civita connection of an exact b-metric, one way to get such a b-connection
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1s just to start with an ordinary connection and restrict its action to tan-
gent vector fields. To characterize such connections amongst general b-
connections, consider the dual sequence to (2.10):

0— T70X — "T3x X — PN*0X — 0.

Here ®*N*0X is a canonically trivial bundle over X, with dx/x a section
independent of the choice of defining function . Projection onto this line
therefore defines a differential operator, namely bvw/ax evaluated at 0X.
The identity (2.96) shows that this is actually of order zero:

(2.97) PV,0/00 € hom(Eax).

ProOPOSITION 2.40. A b-connection on a bundle E over a compact man-
ifold with boundary is (induced by) a connection if and only if the homo-
morphism bvw/ax of Esx vanishes identically.

ProoF: Certainly if °V is induced by a connection V then bvw/ax =
2V, where for some choice of defining function & the C% vector field N
satisfies No = 1 at 9X. The homomorphism (2.97) then vanishes. Con-
versely if this homomorphism vanishes and N is such a normal vector field,
any C* vector field on X can be written in the form

W=V4+[fN, feC?(X), VeV(X).

The covariant derivative of a section e of E can then be defined by
_b fo
Vwe = Vv—l-;( va)~

This defines a connection on E which induces the b-connection V.

Note that if the homomorphism bvw/ax is non-zero then the b-connec-
tion does not induce a connection on the boundary.

EXERCISE 2.41. Show that a section of ®7* X over X with the property
that its restriction to dX projects to the zero section of *N*9X is just a
C™ section of T*X. Use (2.96) to show that the difference between two
b-connections is given by the tensor product with a C* section of 7™ X.

Combine these two observations to give an alternative proof of Proposi-
tion 2.40.

Even when the homomorphism (2.97) for a b-connection is non-zero, it
1s still possible for the curvature operator to be a smooth form in the
ordinary sense, rather than just a smooth b-form. Notice that *Vyu,
for V€ € (0X;*TX) and u € C*®(dX; E), is a well-defined element of
C>(0X; E). From the discussion in §2.11 it follows that ®Vy F is similarly
well defined if F' € C*°(9X; hom(FE)).
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LEmMMA 2.42. If X is a manifold with boundary and F is a vector bundle
over X with b-connection then the curvature operator Kp € *A? ® hom(F)
is a smooth form, i.e. Kg € A? @hom(FE) if and only if the homomorphism
(2.97) is covariant constant on the boundary in the sense that

(2.98) "V (*Vis/00) =0V V € Thx X.
PRrROOF: The b-connection on hom(F) satisfies (2.77), so if A = bvw/ax
(299) (bvxa/axA)u = bvxa/ax(Au) - Abvxa/axu.

Thus bvw/axA = [A, A] = 0. So (2.98) only depends on V € V(9X). In
fact (2.99) just corresponds to Kg(xd/0x,x0/Jx) = 0, by antisymmetry.
More generally if V' € 5Ty x X then

Kg(28/02,V)u ="V ,5,5."Vvu — "Vv'Veis o0t — "Vips)oe vt
=— ("VyAu

since [£d/dz,V] = 0 as a section of *Tyx X. Thus (2.98) implies that, at
0X, Kg(x9d/0x,-) = 0 and hence Kg € A? ® hom(F) and conversely.
2.14. Characteristic classes.

No attempt is made to give a full treatment of characteristic classes here.
However a brief discussion of the Weil homomorphism is included so that
the integrands in (In.1) and (In.6) can be understood. See in particular
[27] and [20]. Suppose that

(2.100) h: so(N) — C

is a function on so(N') which is invariant under the adjoint action of SO(N),
le.

(2.101) h(GAG™') = h(A) VY A €s0(N), G €SO(N)

(or if X is not orientable under O(N).) The assumption that h is invariant,
i.e. (2.101), means that the derivative satisfies

(2.102) (A, [A,B]) =0V A, B € so(N).

where h'(A, B) = dh(A+tB)/dt at t = 0.

Consider the curvature form @ in (2.48) for X a compact manifold with-
out boundary. Tt is a 2-form on F which takes valuesin so(N). Alternatively
it can be considered as an element of so(N), the space of antisymmetric
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real 2 x 2 matrices, with entries which are 2-forms on F. The important
point to note is that the exterior multiplication of 2-forms 1s commutative.
Thus if h is a polynomial there is no ambiguity in evaluating 2(Q) as a
form on F. In fact the wedge product of more than N/2 2-forms vanishes,
so even if h is a smooth function, A(Q) is well defined as a 2-form on F
by replacing h by at least the first N/2 terms in its Taylor series at 0. The
point of the assumption, (2.101), of invariance of h is that (2.52) shows
that

(A0)"h(Q) = h(0QO") = h(Q)
is actually invariant under the action of SO(N). A form on F' which is
invariant under the SO(N) action and vanishes if any one of its arguments

is tangent to the fibre of m: F' — X is the lift of a uniquely defined form
on the base.

EXERCISE 2.43. Show that if ¢: U — F' is a section over some open set
of X and h € C®(F; A*F) is invariant, A5h = h for all O € O(N), and
h(v,-,---,) = 0if v € Ty(p) F, then v = ¢™h is a smooth form on U which
is independent of the choice of ¢ and is such that h = 7*~.

Thus there is a well-defined form A(R) on X such that
Q) = =" (h(R)),

m: F — X being the bundle map. This form on the base represents the
characteristic class associated to the invariant polynomial A and to the
metric.

EXERCISE 2.44.  Show that the notation here is a reasonable one, in
that h(R) expressed with respect to any orthonormal coframe ¢ is just h

evaluated on > Rijpq¢f A ¢9.
Pq

The structure equation (2.48) has the important consequence:

LEMMA 2.45. The form h(R) defined by an invariant polynomial (2.100)
1s always closed.

PrOOF: Since wedge product of 2-forms commutes with all forms, in partic-
ular 3-forms, the exterior derivative of A(Q) can be written unambiguously
as

(2.103) dh(Q) = 1'(Q,dQ),

where the derivative of h, h'(Q, A), is a linear functional in A € so(N).
From (2.48)

dQij =Y [dwiq Awqj — wig A dwy] =Y [Qig Awej — wig A Qs -

9 9
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since the terms with three factors of w cancel. This is just the commutator
in the Lie algebra so(N) so

(2.104) dQ = [Q,w] (2nd Bianchi identity).
Inserting (2.104) in (2.103) and using (2.102) shows that h(R) is indeed a

closed form.

The classic case of this construction gives the Pontriagin forms. These
arise by taking the invariant polynomial

A
h(A) = det(Id +7_);

the invariance being a consequence of the multiplicativity of the determi-
nant. The kth Pontrjagin form is the term of degree 4k in A(R); it is easy
to see that the terms of degree 4k 4 2 all vanish.

The de Rham theorem allows h(R) to be interpreted as a cohomology
class on X. It 1s important to note that this class is independent of the
choice of metric. Indeed any two metrics, ¢° and ¢!, can be connected
by a smooth one-parameter family of metrics ¢°. The construction of the
connection is clearly smooth in the parameter, so the forms w' and Q'
depend smoothly on ¢. Differentiating the structure equation gives:

t

d dwt .
ij zy zq t 97
- = +§ [ Awhy + wig A —2

Consider the one-parameter family of closed forms h(Q") on F :

dh(Qt) Q!
dt

(Qtd )

dw . dwt . dw?
The first term here can be written d [h'(Q; dw/dt)] since Q" is closed. The
second term is O(N)-invariant and only w' is non-zero on vertical vectors,

so evaluated on v € T, F,, with A = w'(v),
t t

, .dwt dw L . dw _
WUQY S At it A S (0,) = W(QY [, AD() = 0

by (2.102). Since it also vanishes with w?, i.e. on the connection planes,
this second term vanishes identically and hence

1
(2.105) R(QY) — R(Q°) =dT, T = /h’ Qt, dt
0
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This transgression formula shows that the de Rham class of A(R), i.e. its
equivalence class up to exact forms, is independent of the choice of metric
used to define it. It therefore corresponds to a cohomology class.

The nilpotence of the exterior action of a 2-form means that to define
h(R) it suffices for the polynomial h to be obtained as the Taylor series
of a function which is just defined near the origin in so(N), provided it
is invariant there. Such examples arise directly in the computation of the
index form. In particular the g—genus:

(2.106) A(X) = det® (&%)

is a well-defined form, depending only on the metric and orientation. Here
det? is the positive square root of the determinant of a matrix. It is defined
near the identity and is invariant under conjugation by O(N). Its argument
1s a formal power series with first term the identity matrix, so the square
root of the determinant is a well-defined invariant formal power series.

EXERCISE 2.46. Show that g(X) can be expressed in terms of the Pon-
trjagin forms.

Similarly the L-genus of Hirzebruch is

(2.107) L(X) = det* (ﬂ%) '

It arises in the signature formula (see §9.3).

2.15. Hermitian bundles.

So far we have been dealing mainly with real bundles. In practice many
of the examples below are complex. A connection on a complex bundle is
automatically assumed to be complex, 1.e. C-linear. The existence of such
a connection follows as in the discussion leading to Lemma 2.21.

A complex bundle is Hermitian if it carries a sesqui-linear inner product.
A connection on the bundle is unitary (or Hermitian) if it satisfies (2.61)
with respect to this pairing, i.e.

(2.108) Vie, /) =(Vve, f)+{e, Vv )

for all real vector fields V.

EXERCISE 2.47. Show that the proof of Lemma 2.21 also implies that
any Hermitian bundle has a unitary connection.
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For Hermitian bundles with unitary connections there is a similar con-
struction of characteristic classes as in the real case, leading to the Chern
classes. The curvature operator

Ke(V,W) =[Vv,Vw] = Vivw € C*(X;hom(E))

takes values in the subbundle, u(E) C hom(FE), formed by the Lie algebras
of the unitary groups of the Hermitian structures. An invariant polynomial

h:u(m) — C, h(GAG*) = h(A) ¥ A € u(m), G € U(m),

where m is the fibre dimension of F| fixes a bundle map C™(X;u(F)) —
C*(X). Regarding Kg as a 2-form with values in u(E) it follows, as in the
discussion above, that h(Kg) is a well-defined closed form on X. Necessarily
it has only terms of even degree.

For example the Chern forms, cc;(E), of the bundle are the terms of
degree 2j in the total Chern form

Kg
E)=det [ Id+i— ).
ce(E) e ( +1i 5 )
There is a similar transgression formula showing that cc;(E) is well defined
as a cohomology class independent of the choice of Hermitian structure and
unitary connection on E. The Chern character of the bundle is defined as
the characteristic class

(2.109) Ch(E) = tr [exp (Z;TE) ).

The term which is homogeneous of degree k in A € u(2k) in the trace of
the exponential

1 d*

trexp(rA)

is an invariant polynomial called the Pfaffian. It occurs in the Gauss-
Bonnett formula (see §9.2).

The combination of (2.106) and (2.109) means that the Atiyah-Singer
integrand in (In.2) is now defined. The integral in (In.1) picks out the
term of maximal form degree, dim X, and integrates it over the oriented
manifold X.
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2.16. de Rham cohomology.

Before briefly discussing the extension of the construction of characteris-
tic classes to the ‘0’ setting, first consider the various forms of the de Rham
theorem on a compact manifold with boundary. The standard complex,
(2.17), yields the ‘absolute’ de Rham spaces:

(2.111)  Hegaps(X) = {u € (X5 4%);du = 0} /dC™ (X; A5,
On the other hand the operator d also defines maps
d: C(X; AF) — C°(X; AR T,

where for any vector bundle E over a manifold with boundary (or corners)
Ce° (X;E) C C™®(X;E) is the subspace of section vanishing to all orders
at the boundary. Thus u € c™® (X; E) if it is the restriction to X of some
section u’ € C* ()?, E) which vanishes on X \ X, for some extensions of X
and E. The relative de Rham spaces are

(2112) Mg (X) = {u € € (X5 4% du = 0} fdC (X 4571),

THEOREM 2.48. The absolute and relative de Rham cohomology spaces
of a compact manifold with boundary are canonically isomorphic to the
(singular) cohomology spaces of the interior, with arbitrary and compact
supports respectively.

There is also a natural b-de Rham space. Namely one can take the
cohomology of the complex (2.21):
(2.113)  Higp(X) = {w € C=(X; A7) du = 0} /dC™ (X; A1),

where the notation ¥ is only briefly resuscitated for emphasis.

PrROPOSITION 2.49. (*) The b-de Rham spaces of a compact manifold de-
compose canonically:

(2.114) %QR,b(X) = MR (0X) @ /HfiR,abs(X)'

PrROOF (BRIEF): There is an obvious map at the level of forms from
%QR,abs(X) into %QR,b(X) since closed smooth sections of A*X are natu-
rally closed smooth sections of 24 X. At the level of forms the map from
Hﬁf_{l(@X) is given in terms of a collar decomposition of X near 90X, a

4 Unpublished joint result with R.R. Mazzeo.
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boundary coordinate # and ¢ € C*™(R) with ¢(0) = 1 and ¢(«) supported
in the collar by

(2.115) C®(0X; AR Ba'—>¢>(x)d—x/\a€C°°(X;bAk).
xr

At the level of cohomology these maps give (2.114). The inverse to (2.115)
is given by contraction with d/dx € rax X

d
Hip,o(X) 3 00— Bla—.) € Hig ' (9X).

2.17. b-characteristic classes.

Consider the alterations which must be made to the treatment of charac-
teristic classes in §2.14 and §2.15 in the case of a b-metric or a b-connection.

The formulae in §2.14 are local in nature and so continue to hold when
interpreted as involving b-forms. In particular, with R the curvature tensor
of a b-metric and h an invariant polynomial, h(R) is a well-defined smooth
closed b-form on X, which is now a compact manifold with boundary. Ap-
plying Proposition 2.49, such a form defines both an absolute cohomology
class on X and a class on JX. If the metric is an exact b-metric then R is
a smooth form and the second term vanishes, so A(R) defines an absolute
cohomology class.

On the other hand observe what happens in the transgression formula
(2.105). In the case of a general b-metric the form T is a smooth b-form on
F but, because of the presence of dw'/dt, is not necessarily a smooth form.
If the deformation is through exact b-metrics then the connection form is
always smooth, so T will in fact be smooth. In any case it follows that the
characteristic classes give well-defined absolute cohomology classes on X.

Thus the first term in (In.6) is defined as the integral over X, a com-
pact manifold with boundary, of the volume form component of AS, given
by (In.2). As distinct from the boundaryless case, this does not have di-
rect topological significance, since it does not correspond to a pairing in
cohomology (as absolute cohomology classes pair with relative homology
classes). In particular under a deformation of the metric the two terms
in (In.6) need not be separately preserved. The variation of the first
(and hence of the second) can be obtained from the transgression formula,
(2.105), and Stokes’ theorem. This is discussed in more detail in §8.15.



Chapter 3. Spin structures

The twisted Dirac operators involved in the APS theorem, as stated in
the Introduction, are defined in terms of a spin structure on the manifold.
This 1s now discussed, as is the more general notion of a Dirac operator
associated to a Clifford module with connection. Needless to say these
concepts are extended to the case of compact manifolds with boundary
equipped with b-metrics.

3.1. Euclidean Dirac operator.

Dirac, wanting to quantize the electron, looked for a first-order differen-
tial operator with square the d’Alembertian, i.e. the wave operator. This
is just the Laplacian for a metric of signature +,—, — — and one can as
well do the same thing for the ordinary Laplacian. The question is: Does

there exist a matrix-valued constant coefficient operator

- 10
(3.1) 5+=Z’YJDJ, Dj:ga—xj
j=1
such that
(3.2) @) ot => Dj=47
j=1

Here the adjoint is the usual matrix adjoint and the operator adjoint with
respect to Lebesgue measure, 1.e. D7 = Dj. Clearly (3.2) holds if and only
if the matrices satisfy

In one and two dimensions it is easy to solve (3.3). If n = 1, taking
v1 =i gives 0t = d/dx. If n = 2, then vy = i, 2 = —1 are 1 x 1 matrix
solutions. So for n = 2 the “obvious” solution (leading to complex analysis
and hence a good part of nineteenth century mathematics) is

+_5_ 0
0 —3—(ax+zay)
= (o1)* :—6:_(_a —zi) A=_§d=75t"agt.
dxr Oy’

Following Dirac, (3.3) can be solved with 2 x 2 matrices for n = 4. Taking
~v1 = t1d, as seems reasonable, the remaining conditions become

(3.4) V=, v =, Ay =0, jEk jk>2

67
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Thus the remaining matrices are self-adjoint anticommuting involutions. It
is then easy to guess a solution, for example

1 0 0 1 0 =2 .
(3.5) Y2 = [0 _1] ) Y3 = [1 0], Ya = [—i 0] = i7273.

ExXercISE 3.1.  Check that these Pauli matrices do solve the problem
(3.1), (3.2) for n = 4.

As will be shown below there is a solution of (3.1), (3.2) for n = 2k
amongst 287! x 28~ matrices. Of course having found a solution for any
one n, it works for smaller values, simply by dropping some of the matrices.
Note that the original idea was to find d so that 82 = A-1d. If y; = ild
and the v; for j > 1 satisfy (3.4) then 1 = —¢Id and ~; also satisfy (3.3).
So setting 0~ = 0% , the operator

0= [5(2" 60_] satisfies 92 = A -1d, * = 8.

It will therefore follow that for n = 2k, 2k 4 1 there 1s a self-adjoint solution
of (3.1) and (3.2) amongst operators with values in 2¥ x 2% matrices (and
no smaller).

The construction of solutions to (3.1), (3.2) in general will be through the
Clifford algebra. To see how this arises, suppose 0 is a p X p matrix-valued
operator satisfying 8?2 = A -Id. The symbol of § is a matrix depending
linearly on & € R™ :

o(0) =Y vk
i=1
If Mc(p) is the algebra of complex p x p matrices then ¢(9) is a linear map
(3.6) R” 3 €&+ o(0)(€) € Mc(p),

such that ¢(8)(¢) - o()(¢) = |¢|*1d .
This must be true for all £, so replacing & by & 4+ i and expanding gives

(3.7) a(0)(€) - o(8)(n) + o (0)(n) - o(0)(§) = 2(&,m) 1d.

This identity, derived for a linear map (3.6), makes perfectly good sense for
a linear map

(3.8) c:Vaér—clé)eA

if VV is a (finite dimensional) vector space with an inner product {,) and A
is an associative algebra with identity.
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Any linear map, (3.8), extends to a map from the j-fold tensor product

7 factors

Ten; (V) =V®---@V — A,
Z @i, i;6i, Q- Qe — Z Qi i cles,) .. cl(es,).

Thus such a map extends to the full tensor algebra
(3.9) ¢ Ten(V) = @ Ten; (V) — A.
j=0

The identity (3.7) means that under (3.9) the ideal

(3.10) Za(V)={ > ta(ba @ o+ N0 © &a — 2(Ea; Na) 1d)va;

finite
oy Na € Vg, 04 € Ten(V)}
should be mapped to zero. Thus the quotient algebra
(3.11) CL(V) = Ten(V)/Zcr(V)
has the universal property that any linear map (3.8) satisfying®
(3.12) cl(€) -cl(n) +cl(n) -cl(€) = 2(E. p) 1d
extends to an algebra homomorphism
é: Cl(V)y — A

3.2. Clifford algebra.

This makes it natural to study the Clifford algebra of V (with inner
product (,)) defined by (3.10), (3.11). The Clifford algebra is filtered by

the order gradation from the tensor algebra:
k
(3.13) CA¥(V) = qu e Cl(V);T v e @ Ten;(V), u=[v]
j=0

Thus the order of an element of Cl(V) is the minimum order of a repre-
sentative in the tensor algebra. Note that the relation, (3.12), equates the

5 Many authors use a different sign convention, so that the square of an element of V' of
unit length is — Id. This corresponds to replacing the matrices v; by iv;.
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symmetric part of an element of order 2 with an element of order 0. Thus
the quotients are naturally identified:

(3.14) 1™ (v)/ ¥ =Dy = A¥(V), A, QAB(V) — AR(V), Yk

The map here 1s just the usual total antisymmetrization map, which means
for example that if ¢1,¢o € V then

1 1
As(cren) = Az(i(ﬁ ceate-er)+ 5[61,62]) =c Nea.

The null space is the ideal generated by E @ n+n® &, E,ne V.

Let €1, ..., e, be an orthonormal basis of V. As a consequence of (3.14)
the Clifford algebra Cl(V) has a basis given by the products in strictly
increasing order:

€y "Gy gy, 11 iy <<y, j=0,...,n=dimV.
In particular
(3.15) dimg CI(V) = 24m V",
Thus every element of Cl(V) has order at most n = dimV :
R-1d=ClOWV)caPv)c...c ™) = cyv).
From (3.15) the dimension of CI(V) is equal to that of the exterior algebra

dim V
AV = P AV
k=0

In fact the exterior algebra arises as the Clifford algebra when the inner
product is taken to vanish identically. From the form of the relation (3.12)

(3.16) AYWVy=ve ®-1d) =V & ClO(V).

There is another close relationship between ClI(V) and A"V, namely an

action of Cl(V) on A*V :
(3.17) ¢: Cl(V) — hom(A*V).
In (3.16), the identity is mapped under (3.17) to the identity whereas

(3.18) cl(€) = ifext(é) —int(&)] : A'V — A*V.
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The contraction or inner product with £, int(£), is defined by evaluation on
the vector dual to &,

ve €VT, o ve(w) =({w) Vwel

Then a € A*V can be identified as a totally antisymmetric multilinear map

and if
a: Ve VY —R,

(8.19) int(&)a = kla(ve, ..., ) e Ay

The exterior product ext(£) is just wedge product (on the left) with ¢ :
ext(é)a =& Aa.

EXERCISE 3.2.  Show, using (2.70), that the action of the curvature op-
erator of the Levi-Civita connection on the exterior algebra can be written
in terms of the Riemann curvature tensor as

(3.20) Z dzt A dZ Z Rijix ext(dzk) int(dzl).
ij ki

Clifford multiplication, (3.18), extends to an algebra homomorphism
(3.17) since, essentially by definition, it extends to the tensor algebra, as a

map into the algebra hom(A*V) and from (3.18), (3.19)

cl(€) - cl(€) = ext(&) int(€) + int(€) ext(€) = |¢]*.

Thus ¢ projects to (3.17).
So far the coefficients in the Clifford algebra have been real, i.e. the tensor
product in (3.9) is over R. Even when V itself is real, it is useful to consider

the complexified Clifford algebra
(3.21) Cl(V) = Cer CI(V).

This just arises by taking complex coefficients in the definition of the tensor
algebra and the ideal. Since the coefficient matrices, ~;, are expected to be
complex it is reasonable to consider (3.21). In any case the structure of the
complexified algebra is simpler.

3.3. Periodicity.

For each integer k > 1 let Cl(k) be the Clifford algebra generated by R*
with the Euclidean inner product, so Cl(k) is its complexification. Similarly,
Mc(r) denotes the complexification of M (r), i.e. the algebra of complex rxr
matrices. The fundamental periodicity result is:
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LEmMMA 3.3. For any k € N
(3.22) Cl(k +2) ~ Cl(k) ® Mc(2).

PROOF: Let £1,..., &40 be the natural basis of R*+2 It certainly suffices
to show that there is a linear map

RF2 5 C(k) © Mc(2)

which extends to give the isomorphism (3.22). Since &1, ..., &, can be taken
as the canonical basis of R”, it makes sense to define

(3.23) Gr— & @y, j=1,..k

and for the last two generators to take the other Pauli matrices:
Ery1 — Id @3
Ekt2 > 1d @7,

with the v; fixed by (3.5). Of course Id € Cl(k + 2) is to be sent to
Id € Cl(k) ® Mg(2). Since it is defined on the generators this gives an
algebra homomorphism Teng(R¥*+2) —s Cl(k) @ M¢(2). To check that it
descends to Cl(k + 2) consider the generating relations. Certainly from

(3.23)

goly el A =ealy V] dmnen

The remaining relations follow from the properties of the Pauli matrices in
(3.4). This gives an algebra homomorphism

(3.24) Cl(k +2) — Cl(k) © Mc(2).

To see that this map is surjective, notice that off-diagonal elements can
be obtained as follows

[0 1
ae'€k+1'—>ae® :|

[0 1
@, '€k+1 — Q, ® :|
(3.25) -
0
Qe+ €k+2 —r Qe ® . :|

[0
ao'€k+2'—>ao® . Z:|,
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where a, is a sum of multiples of products of even numbers of the elements
&1, ..., & and similarly a, 1s a sum of multiples of products of odd numbers
of these basis elements. Similarly the diagonal elements can be obtained
by noting that

A — Qe R

Wy — Ay @

1T 1T 1
O = O

(3.26) .
Qe g1 Epga > Qe @ ! ]

[— 0
Qo g1 Erpr— o @ ! ]

This also shows the injectivity of the map (3.24), proving the lemma.

As a direct consequence of this isomorphism

(3.27) Cl(2k) ~ M (2F)
(3.28) L2k + 1) ~ Mc(2F) @ Mc(2F).

Indeed the block decomposition of matrices shows that
M@(T) ® M@(?) = M@(?T) Y or.

So to get (3.27) and (3.28) it suffices to observe that
01(2) ~ Mo(2)

Cl(1) ~ Ca C.

The first of these follows from the proof of Lemma 3.3. The second is given
by the explicit isomorphism

Cl(1) = span{1,£} — span {ﬂ, 5} :
C C 2 2

The proof of Lemma 3.3 also shows the importance of considering the

Zo-grading of Cl(k) (or Cl(k))

(3.29) Cl(k) = AT (k) @ C1~(k),
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where C17 (k) and C1~ (k) are respectively the sums of multiples of products
of even and odd numbers of the generators. More generally

C]+(V) = éTenzk(V)/ (ICl(V) N éTenzk(V))

CIm(V) = @TenzkH(V)/ (ICI(V) N @TenzkH(V)) ,

where (3.29) follows from the fact that Z¢ is graded, i.e. it is the sum of
its even and odd parts, since the relation in (3.10) respects parity. It is
particularly important that (3.29) is a grading of the algebra:

crt(v) - crt(v) c art(v)
Cl= (V) -Cl= (V) c CIt (V)
CIt(V)-Cl= (V) c CI7 (V)
CI™ (V) -CIT(V) c CI= (V).

The Zo-grading defines, and is determined by, an involution, i.e. a linear
map

Rey: CI(V) — CI(V)
given by the obvious sign reversal:
Rer [ CIT(V) = 1d, Rey [ CI7(V) = —1d.

Next note how the relationship between the two cases (3.27), (3.28) can
be understood directly. Suppose that V' is a real vector space with a Eu-
clidean inner product. On V x R take the obvious extension of this

{(v,7), (V7)) = (v, v") + rr'.
Then the map, at the level of the tensor algebra

Teng 25(V) 3 a — « € Teng 24 (V X R)

(3.30) .
Tenc ok +1(V) 3 e — ia @ 7 € Teng ap42(V X R),

where 7 = (0,1) € V x R, projects to an isomorphism
(3.31) CUV) «— TV x R).

EXERCISE 3.4. Prove that (3.31) is an isomorphism of algebras.
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3.4. Clifford bundle.

So far a general solution to (3.1)—(3.3) has not been obtained. Before
doing so, consider how to transfer the notions above to a general Riemann
manifold; eventually this will lead to the notion of a (generalized) Dirac
operator. Certainly if X is a Riemann manifold then 7T X is, for each x €
X, a vector space with Euclidean inner product. So Cl,(X) = Cl(T;X),
Cly(X) = CUT;X) fixes the real and complex Clifford algebra at each

point. These spaces combine into bundles of algebras over X

(3.32) CX) = | | Cl(X), C(X)= | | ().

reX zeX
If O € O(V) is an orthogonal transformation on V then O extends to
Ten(V) as the sum of the tensor actions. The ideal Z¢y C Ten(V) is invari-
ant under this action, since (Ov, Ov') = (v, v’} by definition. Thus CI(V)

has a natural O(V)-action consistent both with the inclusion V' C CI(V)
and the algebra structure, i.e.

Oa - 0B = O(a - p).

In this way Cl(X) is identified as a bundle associated to the orthonormal
frame bundle:

(3.33) CI(X) = (F x CI(N))/ O(N), dimX = N.
As discussed in Chapter 2 this means that CI(X) has a natural Levi-Civita
connection,

V € Diff'(X; CI(X), T* X @ CI(X)).

Notice also that Clifford multiplication, defined by (3.18), is consistent with
the O(V) action on A*V] i.e.

c(0€) - Oa = O(cl(é) - ).

This means that the same formula, (3.18), extends to define Clifford mul-
tiplication on the manifold:

C®(X;T(X)) x C°(X;A"X) 3 (p, ) — cl(p) - € C(X; A" X).

This is a tensorial operation.
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3.5. Clifford modules.

The exterior algebra, A* X is an example of a Clifford module over X.
In general a vector bundle F — X is a Clifford module® if there is a
pointwise action, i.e. linear map

(3.34) cl: Cly(X) — hom(E,)
such that the resulting tensorial operator is C*, i.e.
C¥(X;ClX)) x C®(X; B) — C® (X, E), (a,€) —> cl(a)e.

Usually the bundle E will be a complex bundle and the action that of the
complexified Clifford algebra. By convention the Clifford action is assumed
to be non-trivial.

By (3.27), in the 2k-dimensional case, the complexified Clifford algebra
is isomorphic to a full matrix algebra. It follows that for any (non-trivial)
Clifford action (3.34) the subspace of invariant elements, E, C E, is of
dimension dim E, — 2. Choosing a complementary space £/ on which the
algebra acts (simply by taking the span of the orbit of an element outside
E!l) gives the decomposition

(3.35) E, = Ell & B!, = hom(E,) = Cl, @ hom, (E,),

where hom{y (E;) C hom(E,) is the space of linear operators commuting
with the Clifford action. Whilst the decomposition of the space is not
unique, that of the homomorphism bundle 1s. It follows that the corre-
sponding decomposition of the bundle hom(E) is smooth.

Suppose that F has a connection V. The obvious compatibility condition
to demand for V to be a ‘Clifford connection,’ is

(3.36) Vv (cl(a)e) = cd(Vya)e + cl(a)Vye, ¥V V € V(X),
where Vya is the Levi-Civita connection on CI(X).

EXERCISE 3.5. Show that any Clifford module has a Clifford connection.
[Hint: See Lemma 3.24.]

LEMMA 3.6. If dimX is even then the homomorphism bundle of any
Clifford module over X decomposes smoothly as the tensor product

(3.37) hom(E) = C1(X) @ homg, (E).

If F has a Clifford connection then the curvature operator on E also de-
composes as

(3.38) Khom(py = Ko @ Id+1d @ Kyom? ().

ProoF: The identity (3.37) has already been proved. Applying (2.76) to
it gives (3.38).

6 One should perhaps call these bundles of Clifford modules, but that is too clumsy.
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DerFINITION 3.7. If F — X is a Clifford module over a Riemann man-
ifold X the generalized Dirac operator associated with a connection on ¥
is

(3.39) Op = —i¢ -V € Diff (X; E),
given by composing the connection with —i¢ where
(3.40) EC(X5T' X QFE) — CC(XGE), e€—cl(f) -e.

Notice that by taking a local orthonormal coframe, ¢’, and the dual
frame with respect to the metric, v;, for TX the definition (3.39) becomes

(3.41) Ope =Y cl(¢?)Viy,.

J

EXERCISE 3.8. Check directly that (3.41) is independent of the choice of
orthonormal basis.

The pure imaginary factor is included in the definition so that Og is at
least a symbolic square root of the Laplacian. More generally, if E is an
Hermitian bundle, i.e. has a smoothly varying positive-definite sesquilinear
inner product on the fibres, then a Clifford action 1s said to be Hermitian
(or unitary) if

A€ =cl(¢) YeEeTX.

ProposiTiON 3.9. If E is a Clifford module over X then the generalized
Dirac operator satisfies

(3.42) c1(0p)(€) =cl(é) VEeT X.
If the bundle and Clifford action are Hermitian then
(3.43) o2 (0R0p)(€) =67 VEeT X

and if the connection is unitary and a Clifford connection then O is self-
adjoint.

ProoF: The symbol map is a homomorphism so the symbol of O is given
by the composite of the symbol of the connection, which is the tensor
product with ¢£, and —i¢, i.e. at £ € TF X

Eroer—e@ér—cl)- e
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which gives (3.42). If F is Hermitian then the adjoint of g, using the
Riemann density on X, is well defined and has symbol given by the adjoint
of the symbol, i.e. cl(€)*. If the Clifford action is Hermitian this reduces to
cl(€¢) and hence (3.43) follows from the multiplicativity of the symbol map
and the definition of the Clifford algebra.

The inner product on £ induces a natural inner product on 7*X @ F
given by the usual tensor product formula

E@enaf)=&mlf)

This has the property that if £ € C°(X;7*X) is real and V € V(X) is the
dual vector field then

(Ve, 6@ )y = (Vve, ).

If the connection on F is unitary, i.e. (2.108) holds, then it follows that the
adjoint of the connection is

(3.44) V' (€®e)=—Vye+ (divV)e.

Here divV is the metric divergence of V' defined as the difference of the
adjoint of V € Diff* (X) and —V. Similarly if the Clifford action is Hermitian
then the adjoint of (3.40) satisfies

(e, @ f) = (e,cl(§) - f) = (cl(§) - €, f).

Thus ¢ (e)(v;) = cl(¢?)e if ¢/ and v; are dual local orthonormal bases of
T*X and TX respectively, i.e.

&(e) =3 ¢ @cl(¢l)e.

Combining this with (3.44), and using (3.36), this shows that with respect
to such a basis

Ope =iy _ Vi [cl(¢’) -]
J

= —ich(qu)VUj e+ ZZ div(v;) cl(¢?) - e + ic Z Vo, ¢ | e
J J

J

The first sum on the right is just 9ge. The remaining part vanishes since it
must be independent of the choice of orthonormal basis and the basis can
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be chosen covariant constant at any given point, in which case both div(v;)
and V,, ¢’ vanish at that point. Thus 9 is self-adjoint as claimed.

Particularly in the even-dimensional case it is natural to consider Clifford
modules which are graded. Thus the bundle has a decomposition

E=FEtq@E~

such that
Qf: B — Ef Q;  EF —EfvzreX.

From the formula (3.41) and Proposition 3.9 one easily deduces:

COROLLARY. If X is an even-dimensional Riemann manifold and FE is
a graded Hermitian Clifford module with a connection which is unitary,
Clifford and preserves the grading then the Dirac operator is graded in the
sense that

0 0f x -
6E:<5}5 69),(6}5) =0g.

3.6. Clifford bundle of °T'X.

The definitions above extend directly to the case of a b-metric. Thus
(3.32) and (3.33) serve just as well to define the Clifford bundle, over
any manifold with boundary, associated to a b-metric, now of course with
Cl,(X) = C1(*T; X). The Levi-Civita connection of the b-metric extends
to a b-connection on °Cl(X). If the metric is an exact b-metric then Propo-
sition 2.37 shows that the b-connection is actually a connection on *7™ X,
and hence on CI(*7T*X). Simply by continuity the consistency condition
demanded of a b-Clifford connection should be

bV(cl(a) e) = cl(bVoz) e+ cl(a) Ve

Then the proof of Proposition 3.9 applies, essentially verbatim, to give the
b-analogue:

ProrosiTiON 3.10. If E is a Clifford module for an exact b-metric on a
compact manifold with boundary, X, the generalized Dirac operator *0g €
Diff} (X; E) satisfies %oy (°0g) (&) = cl(€) for € € °T*X and if the bundle
and Clifford action are Hermitian then o5 (°0%%0p) = [¢|? for £ € *T* X,
with Y0 self-adjoint for a unitary Clifford connection.

EXERCISE 3.11. Go through the proof of this Proposition carefully to
make sure that you understand why this generalization to the b-metrics is
immediate!
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Certainly the Corollary to Proposition 3.9 also extends by continuity to
the case of a generalized Dirac operator associated to a graded Hermitian
Clifford module over an even-dimensional exact b-manifold when the con-
nection on the module is graded, Clifford and unitary. It is not necessary
to assume that the connection is a true connection, only that it is a b-
connection. This is especially convenient because it allows the weighting
discussed in §6 to be incorporated in the general case. The assumption that
the metric is an exact b-metric and that the connection is Clifford means
that the part of the connection on the Clifford factor in (3.37) will always
be a true connection.

3.7. Spin group.

Naturally the question arises as to the existence of Clifford modules. One
way these arise is through the notion of a spin structure and the associated
spinor bundles. This leads to the definition of ‘the’ Dirac operator and more
generally the twisted Dirac operators which appear in the APS theorem of
the introduction. They were introduced in this degree of generality by
Atiyah and Singer [13].

The first thing to consider is the relationship between the Clifford algebra
and the orthogonal group of a Euclidean vector space. Recall that there
is a natural embedding V' < CI(V). Consider the elements of V' of unit
length as elements of CI(V'). The anticommutation relation

Entn-&=2Emid, &neV
can then be rewritten
(3.45) En—(—n+2&mE) - £=0, [¢]=1,
since £2 = Id . Notice that
n=1n-2(n¢ = Ren
is the reflection of 5 in the plane orthogonal to . Thus forany £ € V| |£| =1
(3.46) Rev=v -2 v)§ VYveV

is an element of O(V').
The anticommutation relations amongst these orthogonal involutions are:

(3.47) Re Ry =Ry Re, n=Ren, [¢]=n|=1
as follows directly from (3.46). Since these are the same relations as (3.45)

(noting that R = R_¢) and are the only relations amongst these involu-
tions, it follows that the map

(3.48) eV CcClV); |Inl=1} — O(V)
can be extended multiplicatively. That is, setting
Pin(V)={a € Cl(V);a=m ... n, for some p,n; € V, |n;] = 1}

leads to
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PROPOSITION 3.12. The map generated by (3.48) is a group homomor-
phism

(3.49) Z: Pin(V) — O(V)

which is a 2-1 covering of the orthogonal group, with kernel +1d € CI(V).

ProOF: First observe that Pin(V) is a group, since it has an associative
product and the inverse of 5y .. .7 is just ng ... 71. Consider (3.48) another
way. Namely the orthogonal transformation R, can be written

Vovr— Rpv=—n-v-y, |n=1neV

in terms of Clifford multiplication. Indeed if v = an + bnt, (n,nt) = 0,
then

(3.50) n-v=a—byt-n=n-v-n=an—bnt = —R,v.

This shows directly that (3.49), given by (3.46), is a group homomorphism.

It remains to show that the map Z is surjective and to find its kernel.
Any orthogonal transformation can be written as a product of reflections,
in fact a product of at most dim V' reflections.

EXERCISE 3.13. Recall how to prove this. If O € O(V) then O is unitary
(being real O* = O' = O~!) so has a spectral decomposition

0=> NP,
J

where the P; are complex projections onto the eigenspaces associated to
the A;. The A;’s all have modulus 1 and, since O is real, come in complex-
conjugate pairs, or are real, and similarly for the P;’s. This decomposes V'
into a sum of one and two dimensional orthogonal spaces

V=V
J

which O preserves. This reduces the problem to the one and two dimen-
sional cases, where it is easy enough.

IfO =Ry, -...- Ry, with || =1, €V, then O = Z(dn1...m) as is
clear from (3.50). This shows the surjectivity.

Clearly Z(£1d) = Id. Conversely suppose Z(a) = Id, a € Pin(V). From
(3.50) this means that if a = ny...n € Cl(k)(V)

Mmoocomev=(=D)Fump ..oy Ywev.
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Thus a must satisfy
(3.51) a-v=(=1fv-a aeCFW).

Now decompose a into its unique presentation as a sum over the basis of the
subspace of Cl(k)(V) of the same parity as k, given by products e;, .. .¢e;,

11 < 1y < --- < 4,1 =k modulo 2, where the e¢; € V form an orthonormal
basis:
a = Z Cr€iy .. . €4y
=k mod 2

Applying (3.51) for each j, v = e;, shows that ¢; = 0 if {, = j for some r.
Thus @ = ¢y Id and then (3.51) can hold if and only if ¢g = +1, k = 0. This

proves the proposition.

The orthogonal group has two components:
O(V) =SOo(V)u O™ (V), dimV > 2,

where

0 €SO(V) <= 0 € O(V) and det(0) = 1.

Since a reflection has determinant —1, O € SO(V) if and only if it is a
product of an even number of reflections. Thus, in (3.47),

Spin(V) & Z=1(SO(V)) = Pin(V)) N CIH (V).

LEMMA 3.14. IfdimV > 3, the group Spin(V) = Pin(V) N CIT (V) is the

unique simply-connected double cover of SO(V').

ProOF: Since SO(V) is connected and 7 is a double cover, Spin(V) can
have at most two components.

EXERCISE 3.15.  Show that SO(V) is connected. Choose an orthonormal
basis of V so that the problem is reduced to V = RY SO(V) = SO(N).
Given O € SO(N) let f/ = O(e’) be the image of the standard orthonormal
basis. Tt is easy to check that SO(2) is connected. Using a rotation in the
first two variables it can be arranged that f? L e'. Similarly a rotation
in the first and third variables allows one to arrange f3 L e'. Thus O is
connected in SO(N) to an element O’ such that the corresponding basis
(f)% Leb, j > 2. This means f! = #e!, so by a further rotation in the first
two variables it can be assumed that f! = e'. Now proceed by induction.
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To show that Spin(V) is connected it therefore suffices to check that —1
is connected to 1. If £ L n, with |¢| = |n| = 1, then

Engn = —&&nm = —1.

Since, for dimV > 2, the sphere is connected, a path & in V with [&] =1,
& =1, &1 = &, can be chosen and then &;né&;n connects 1 to —1. In fact a
similar argument shows that if dim V' > 3 then Spin (V') is simply connected.
In this case the unit sphere in V' is simply connected. Any curve in Spin(V)
can be approximated closely by a curve of the form & (t) - &2(2) -.. .- En (1),
where N = dimV or dimV — 1, as dim V' is even or odd. Each of these
&;(t) are curves on the unit sphere so can be contracted to a fixed element.
Since SO(N) is connected this shows that the double cover

(3.52) Z: Spin(V) — SO(V)
is non-trivial, and in fact yields the well-known result that the fundamental
group of SO(V) is Zs, if dimV > 3.

The spin group of the Euclidean vector space V has been defined as a

submanifold of the vector space CIT (V), so the Lie algebra must be a linear
subspace. In fact

LEMMA 3.16. The Lie algebra of Spin(V) C CIT(V) is the linear span of
antisymmetric products:

(3.53) sn(V) = span {£€' — £'6;€,¢ € V} C CIH(V).

ProoFr: Let £ € V be a unit vector and choose & L & with |¢/| = 1. Then
setting

(354) & =(1—s))3E+s €V, [&]=1=> c(s) = &, € Spin(V).

Moreover & = & so ¢(0) = Id. Thus the tangent vector at s = 0 to the
curve ¢(s) is an element of sn(V), it is just

d(0)=¢' = %(ffl —&'¢) since € L ¢,

Taking linear combinations, it follows that the subset of the space on the
right in (3.53) with & L & is contained in sn(V). Since ££ = 1, sn(V)
contains the vector space in (3.53). The dimensions being the same, this
proves the lemma.
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The double covering (3.52) gives a canonical identification of the Lie
algebras, s6(N) of SO(N) and sn(N) of Spin(N). Since the former is also
naturally identified with the linear space of antisymmetric real matrices,
(3.53) gives a natural map

(3.55)
so(n) = {A;; Aij+ Aj; =0, 4,j=1,...,n} —
span {£€' — €'6;¢,6' € V} = sn(n) C C1F (n).

LEMMA 3.17. The natural identification (3.55) is

1 & o
(3.56) Ay —> 1 Z Aijo'e’.
i,7=1
with € = ¢* and & = ¢7. It

ProoF: Consider the curve (3.54) in Spin(NV)
(3.46) and (3.47) its image as

has tangent vector %((/)qu] — ¢7¢") at 0. By
an orthogonal transformation is

v v — 2(v, eg)es — 2(v, e Vet +4(v, es) e, el ey = (1 — 52)%¢i + s¢d.
The tangent vector at s = 0 to this curve in SO(N) is just
v — —20;¢7 + 2vjqbi.

This is the correspondence (3.56).

3.8. Spin representations.

Next the embedding Spin(V') < CI(V') will be used to find the spin rep-
resentations, which are representations of Spin(V) but not representations
of SO(V). In fact (3.26) already gives a representation of Cl(V). Thus, if
dimV = 2k, there is an identification CI(V') ~ Cl(2k) and then

(3.57) c: Cl(2k) «— Mg(2F).

This gives a representation

(3.58) Pin(V) — GL(2F,C), dimV = 2k.

Moreover (3.58) must be irreducible, since the C-linear span of Pin(V) is
Cl(V') which certainly has no invariant subspace (by (3.57).)

So consider what happens when (3.58) is restricted to the connected
component of the identity, i.e. Spin(V).
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LEMMA 3.18. IfdimV = 2k, the restriction of (3.58) to the spin subgroup:
(3.59) SR: Spin(V) — U(2F)

Is a unitary representation which is the direct sum of two irreducible rep-
resentations

(3.60) SRE: Spin(V) — GL(%S), ¥ =S="15a 5.

Proor: From (3.31) it follows that Cl17(2k) = CI(2k — 1). Then (3.28)
shows that this is isomorphic to two copies of M¢(2*~!). The restriction
of the representation (3.58) to C1*(2k) therefore decomposes into two rep-
resentations, where dimtS = dim =S = 2*~!. Since the C-linear span of
Spin(2k) is C1T (2k), it follows that these two representations are irreducible
and (3.60) holds.

Notice that the combined representation is in fact unitary. This can be
seen directly from the discussion leading to (3.28). In Cl(2k) there is a
natural involution, defined as the identity on V" and 1 and extended to be
conjugate-linear and product reversing:

* * —
67 :E Créj, * €, —> & = E Crég; =+ €.

I I

From (3.27) and (3.28) it follows that the isomorphism (3.24) is a *-
isomorphism, with the usual adjoint operation on M¢(2). Since the ele-
ments of Spin(V') are unitary, in the sense that S* = S~ if S € Spin(V),
the representation (3.59) is unitary.

The odd-dimensional case is even simpler.

LEMMA 3.19. If V =R the restriction of the representation
(3.61) CIT(V) «— C1(2k) «<— hom(C?")

to Spin(V) is an irreducible unitary representation.

ProoF: The first identification in (3.61), given by (3.31), is a *-isomor-
phism, so restriction to Spin(V) gives a unitary representation. Since
Spin(V) spans CI*(V), which is to say M¢(2¥), over C the representation
1s necessarily irreducible.

Alternatively the spin representation in the odd dimensional case, V' =
RZk+1 can be obtained from (3.31) as the identification

CHV) +— CIT(2k 4 2),
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allowing either of the spin representations of Spin(2k+2) to be restricted to
Spin(V) where they give equivalent irreducible representations, also equiv-
alent to that above. This is discussed in more detail in §3.13 below.

These two lemmas fix the spin representations of Spin(IR™) and solve the
problem posed at the beginning of this chapter. Namely if n = 2k the
2F=1 x 28=1 matrices

v =iSRT(¢ 8, j=1,...,2k

defined by the representation satisfy (3.4), with v; = ¢Id. This gives 0%
defined by (3.1) satisfying (3.2). In fact, just taking the v; to be SR T ()
gives a solution of (3.3). As the notation indicates the representation of
the Clifford algebra in (3.57) is generally written as Clifford multiplication:

cl(a) € hom(S), & € Cl(2k).

Then the full Dirac operator can be written

2k

d=> cl(¢')D;.

j=1

EXERCISE 3.20. Check that 8% = AId.

3.9. Spin structures.

To transfer this construction to a Riemann manifold requires the intro-
duction of the notion of a spin structure. As discussed in §2.12 an orienta-
tion on X corresponds to a reduction of the structure group of the coframe
bundle to SO(N). Similarly one can ask when the bundle of oriented or-
thonormal frames can be extended to a principal Spin(V)-bundle.

DeFINITION 3.21. A principal Spin(/N)-bundle which is a double cover
s: s — oF is called a spin structure if the Spin(/N) action is consistent
with the SO(N) action, i.e. if A € Spin(N) and 7(A4) € SO(N) is its image
then the diagram

stL’st

(3.62) SJ Js

OFI‘ OFI‘
m(4)

commutes.
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EXERCISE 3.22. Recall, for example from [67], the definition of the Stie-
fel-Whitney classes w; € H(X,Z3) of (the tangent bundle of) an oriented
manifold. Show that the existence of a spin structure on X is equivalent
to the vanishing of ws.

The fact that the covering map, s: sF — ,F, is discrete means that
the Levi-Civita connection on F| which certainly restricts to ,F when the
manifold is oriented, lifts to a unique, compatible, connection on  F. The
compatibility condition is just the requirement that the image of the con-
nection on I be that on ,F under s,.

The existence of a spin structure on X allows the spin bundles to be
defined as bundles associated to the principal Spin(N)-bundle ;F. Thus the
fibre at any point x € X is just

(3.63) Sy = (Fy x S(N)) /SR, N = dim X,

where SR: Spin(N) — hom(S(N)) is the spin representation on S(N).
That is,
S =(sF xS(N))/SR

is a complex vector bundle over X of dimension 2¥ where n = 2k or n =
2k 4 1. In the even dimensional case the splitting of the spin representation
gives a global splitting of the bundle:

(3.64) S=%5g S, dim X = 2k.

Since the spin representations are unitary the spin bundles are Hermitian,
i.e have a natural positive definite Hermitian form on their fibres.

The Levi-Civita connection on ;F(X) induces a connection on the spin
bundles, and this connection is unitary. It is also clear that the spin bundles
are Clifford modules. Certainly the spin group Spin(7; X') acts on each fibre
Sy and by definition the spin representation extends to a representation
of Pin(7; X) and to a representation of Cl(7;X). Indeed this is how the
spin representations were defined in the first place. It is important to
notice for later reference that, again directly from the definition, in the
even-dimensional case the action of Cl(7;X) on S, actually gives all linear
transformations.

LEMMA 3.23. If X is an even-dimensional spin manifold then
(3.65) CHTrX) «— hom(S;) YzreX

gives an isomorphism of the Clifford bundle and the homomorphism bundle
of the spinor bundle.
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This is a special case of Lemma 3.6.

3.10. Clifford connections.

The spin bundle of a manifold with spin structure is an Hermitian Clifford
module. To see that the Levi-Civita connection on it is a unitary Clifford
connection it remains only to show that (3.36) holds. This follows directly
from the definitions, since if o € C*(X;A!) and s € C*(X;S) are both
covariant constant at a point p then so is cl(a)s. Using these examples we
can now easily prove:

LEMMA 3.24.  Any Clifford module over an even-dimensional manifold
has a Clifford connection and any Hermitian Clifford module has a unitary
Clifford connection.

PRrROOF: Suppose first that X is even dimensional. Lemma 3.6 and (3.65)
can be used to decompose the given Clifford bundle as a tensor product
S ® (G locally near any point, with S the spin bundle for a spin structure
near that point. This shows that there i1s always a Clifford connection
locally; superposition using a partition of unity gives a globally defined
Clifford connection. If the Clifford bundle is Hermitian this also allows the
connection to be chosen unitary.

EXERCISE 3.25. Extend Lemma 3.24 to the odd-dimensional case.

For later computations it is also useful to have an explicit formula for
covariant differentiation of sections of the spin bundle, analogous to (2.66)
for 1-forms and its extension to higher forms in Exercise 2.26. Let ¢ be
an oriented local orthonormal coframe, i.e. a local orthonormal basis of
T* X which defines a local section of ,F, and let v; be the dual orthonormal
basis of TX near some point p. Then define, by analogy with (2.67), the
Christoffel symbols for this frame by

N
(3.66) V¢! == vl,6".
k=1

Suppose f? is a local section of ./ which covers ¢'; there are two possible
choices by (3.62). Then a section s € C*°(X; S) of S, the spinor bundle, is
locally reduced to map a s¢ into S(N), the spinor space for RN by definition
in (3.63).

LEMMA 3.26. With this notation for a section s of the spinor bundle
1 ol .
(3.67) (Vu8)y = visg(¢) — 7Ti(2)s, Ti(2) = DAk,
k,j=1

where T;(z) € Cl, acts by Clifford multiplication on the fibres of S.
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Proor: It suffices to prove (3.67) at each point p. If the basis ¢ happens
to be covariant constant at p then the Christoffel symbols vanish at that
point, the spin frame f? is also covariant constant and so (3.67) holds at
p. In general a frame v equal to ¢’ at p and covariant constant at p can
always be found. Indeed

Y= ZOij(l‘)¢i, Oij = dij + Aij (=),

j=1

where 4;;(p) = 0. The associated frame of ,F’
n
g = Z O;;(x) f? is covariant constant at p.
j=1

Thus if s is the map into S(N) representing s with respect to this frame
then

(Vvls)f/ = ViSypr.
Since Oij (p) = (Sij

(V0.)1 (p) =(Vaus)p () = visg: (p)
=0 (SR(O())37) (p) = sy + 1G's;.

Here Lemma 3.17 is used to write the action of the Lie algebra, so

G= Z Gpgd? &7

Pgq

1s acting by Clifford multiplication, where G;q = v;Apg. To find the Gﬁj n
terms of the Christoffel symbols, simply use the same computation for the
connection on 7T* X :

Vi (p) = Vi, 0t*(p) = D (0i0jk) 8" (p) = Y vidjo”.
k=1 k=1 k
Comparing this with (3.66) gives the formula (3.67).

As a direct consequence of this computation we can deduce a formula for
the curvature of the Levi-Civita connection on the spin bundle:
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LEMMA 3.27. For the Levi-Civita connection on the spin bundle on a
spin manifold

(3.68) Kg(v,w) = —%clR(v,w).

3.11. Twisted Dirac operators.

Definition 3.7 fixes the Dirac operator & € Diff* (X;S) whenever X is
a spin manifold, i.e. an oriented Riemann manifold with spin structure.
This operator is often considered to be the Dirac operator. More generally
suppose that E is any other C°° Hermitian bundle over X with a unitary
connection. Then on the bundle S ® E there is both a unitary connection
and a Clifford action (acting purely on S). Again using Definition 3.7 this
gives the ‘twisted Dirac operator’ 8p € Diff' (X;S @ E).

ProrosiTION 3.28. The twisted Dirac operator on a compact spin man-
ifold (without boundary), X, for an Hermitian coefficient bundle, F, with
unitary connection is a formally self-adjoint operator which, if the dimen-
sion is even, decomposes into a sum:

(3.69) o = ( 0 55) , dim X = 2k,
5t 0

where

oL e DIff(X; %5 @ B, TS @ E).

ProOOF: The self-adjointness is a special case of Proposition 3.9. If dim X
is even then the connection restricts to £S since both are associated bundles
to the spin bundle. The connection is therefore graded and the Corollary
to Proposition 3.9 applies.

3.12. Spin structure for a b-metric.

Finally having defined the notion of a twisted Dirac operator on a spin
manifold consider the case of a b-spin manifold. Thus let X be a compact
manifold with a b-metric. Again the orientability of X is equivalent to the
existence of a subbundle

YF C °F, with structure group SO(N).

Further consider the existence of a b-spin structure, meaning a principal
Spin(N) bundle which double covers F and is consistent with it, as in

(3.62).

EXERCISE 3.29. Show that a b-spin structure exists if and only if a spin
structure exists in the ordinary sense.
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The Levi-Civita connection, a b-connection, lifts to a connection on the
spin frame bundle which will be denoted %F. Of course over the interior
of X these notions just reduce to those discussed above. Thus the Dirac
operator, or more generally the twisted Dirac operator for a coefficient
bundle E with b-connection, is defined as a differential operator over the
interior of X. More precisely

LEMMA 3.30.  The twisted Dirac operator Og for a bundle with b-connec-
tion over a b-spin manifold is an element of Diff}(X;S @ E).

PROOF: As in Definition 3.7, T is just the composite of the b-connection
and Clifford multiplication:

'V:C®(X;E) — C™(X;"T*X @ E), °V € Diff)(X; E,"T" X @ E)
& CP (XM T* X @ B) — C°(XGE), e @& s cl(€) -e.

EXERCISE 3.31. Show that for any Hermitian bundle, £, with unitary b-
connection over a b-spin manifold X (compact with boundary) the twisted
Dirac operator defines a formally self-adjoint element *dg € Diﬂ% (X;S0F)
with a splitting (3.69) if the dimension is even.

The general case considered in Chapter 9 is covered by the following
consequence of this discussion:

LEMMA 3.32. Let E be an Hermitian Clifford bundle over a compact
manifold with boundary with an exact b-metric. Suppose further that E has
a b-connection which is Hermitian and Clifford. Then the Dirac operator in
the sense of Definition 3.7 is a self-adjoint element of Diffy(X; E). If F =
Et @ E~ is graded, the manifold is even-dimensional and the connection
preserves the Zo-grading then the Dirac operator is of the form (3.69).

3.13. Boundary behaviour.

It 1s of fundamental importance to examine the behaviour of the Dirac
operator at the boundary.

First note that there is no completely natural way that a general b-
connection induces a connection on the boundary. This corresponds to
TOX being a quotient of ®Ty x X rather than a subbundle. However an exact
b-metric (see Exercise 2.9) gives an embedding (as the orthocomplement to
2dy) TOX — "T5x X which induces a Lie algebra homomorphism on
the spaces of sections, so ngXX — T*0X can be taken as orthogonal
projection. If V € C®(0X;TOX) let Ve C®(0X;°TX) be the image of

V. Then if ®V is a b-connection on some bundle E set
Vye = bV;e, e € C*(0X; E).

This defines the induced connection on §.X, corresponding to the choice of
an exact b-metric.
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EXERCISE 3.33. Check that if ®*V is actually a true connection this in-
duced connection on the boundary is the usual one. More generally show

that a different choice of exact b-metric changes the induced connection by
a homomorphism (ef. (2.97))

d’l/) @ bvxa/ax, 1/) € c” (aX)

As in (3.41) the action of Og can be written in terms of any local or-
thonormal frame, v; and dual coframe ¢/ :

(3.70) Opu=—iY cl(¢7)"V,u.

J
Recall that over the boundary the spin bundle in the even dimensional case
splits as the direct sum of two copies of the induced spin bundle. In fact
using the identification (3.30) of the Clifford algebra over the boundary
with the positive part of the Clifford algebra of the manifold, restricted to
the boundary

dx

(3.71) Cl(OX) — ClEy X, ¢ — ig? - —

the spin bundle over the boundary, Sy, can be identified with *S)5x . Denote
this identification
M_|_ : +S[3X — So.

Then the other half of the spin bundle can be identified with Sy through
Clifford multiplication:

d
]\4__1 = —Cl(if)M_ltl: So — _S[ax.

Thus MZ'M, = —icl(d%). As an operator on tTSj5x one then finds

n

MM = dcl(¢d) cl(

j=1

d—x)ij, N=n+1.

z

LEMMA 3.34.  With these identifications, the restriction to the bound-
ary of the twisted Dirac operator 0y for an even-dimensional exact b-spin
manifold and coefficient bundle with (true) connection is given in terms of
the twisted Dirac operator for the induced spin structure and connection
on the boundary by

0 M0, pM_
62 s = (g ) e

for all u € C*(X;S @ F).
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ProoF: Asusual the orthonormal basis should be chosen with first element
reducing to xd, at the boundary. The assumption that the connection on
F is a true connection means that bvwz vanishes at §X and then (3.72)

follows directly from (3.70) and (3.71).

In the case of a general b-connection on E formula (3.72) becomes

0 M8y g M_
51 e = (g ) en).

Indeed the same approach works in the case of a graded Hermitian module.
Define
.
Eo = Efyx,

with Clifford action given by (3.71). Then the b-connection induces a con-
nection on EFy and:

COROLLARY. The same result, (3.73), holds for the case of the general-
ized Dirac operators in Lemma 3.32 provided O¢ g is the generalized Dirac
operator induced on the boundary Clifford module Ej.

EXERCISE 3.35. Check the details of the proof of this corollary.

Later this result will be extended somewhat, once the indicial homomor-
phism has been defined, to arrive at the first two parts of (In.23).

3.14. Dirac operators of warped products.

We proceed to compute the form of the Dirac operator on a warped
product, as considered in §2.10.

Consider the product case. Thus suppose that M is an odd-dimensional
spin manifold, with metric A and spinor bundle Sy, and consider the even-
dimensional manifold X = S! x M with the product metric df* + h. The
discussion in the preceding two sections applies with minor changes. So
X has a spin structure the spinor bundle of which can be identified with
So® Sy, where M : +tS = Sy is regarded as an equality and M_: =S «— Sy
is given by M_ = —iMy cl(df). Clifford multiplication, cly, on Sy and
S = *S @ ~S are related as in (3.71), i.e.

(3.74) clp(n) = —icl(df) cl(n),

where in the right n € T*M is regarded as a 1-form on X. The Dirac
operator on X then becomes

0 ¢\190 0 1
a5 o= (% )20 s,



94 3. SPIN STRUCTURES

To generalize this formula to the metric (2.71) we first need to identify
the spin bundle over X with the bundle in the product case. To define the
spin structure for the metric ¢, the orthonormal coframe bundle of ¢ can be
identified with that in the product case. If the n; fori = 1,...,2k —1 are a
local orthonormal frame for i on M then d6, n; is a local orthonormal frame
for X with the product metric and df,e®n; an orthonormal frame for g.
This gives a local identification of the orthonormal coframe bundles; since it
is independent of the choice of the 7; it extends globally. This identification
extends to define a spin structure for ¢ by identifying the spin (structure)
bundle of it with the product case. Since the spinor bundles are associated
bundles of these principal bundles they too are identified. Thus the Dirac
operator for the metric ¢ acts on the same bundle as (3.75), so the two
operators can be compared.

To find the form of the Dirac operator we simply compute expressions
for Clifford multiplication cl and covariant differentiation, V for the metric
g, on the bundle S = Sy & Sy. Since Clifford multlphcatlon is defined
algebraically

cl(n) = cl(e™*n), n € C=(M;T" M),
cl(de) = cl(de).

Now consider a point p € M and fix local coordinates 27 near p for which
the differentials are orthonormal at p and covariant constant there, all with
respect to the metric . Then combining (3.67) and (2.73)

(3.76)

% 68 Qk -1 8(;5

698 = an

(3.77) ) 6 s T
Vis=V;s+ Za_ae¢ cl(dz7) cl(d).

Inserting these formulee into the definition of the Dirac operator gives:

LEMMA 3.36. With the identification above of the spinor bundle for the
metric (2.71) on X = S* x M with the spinor bundle in case ¢ = 0 the
Dirac operator becomes

(3.78) %:(_OZ. 0){%%+F(9)}+e‘¢(? 3)60,

where F(6) is a function of §.

This formula is used in Chapter 8 in the proof of the absolute convergence
of the integral defining the eta invariant.

EXERCISE 3.37. Show that
i(2k — 1) 0¢

(3.79) F(0) = 1 a9( —1).



Chapter 4. Small b-calculus

The next major topic is the calculus of b-pseudodifferential operators,
since this allows the analytic properties of elliptic b-differential operators
to be examined. The treatment starts very geometrically. In particular
Figure 2 of Chapter 1 will be explained. Recall from (1.24) and (1.26) that
the kernels of the inverses of operators such as 651654_ + 1 can be expected
to be simplest when expressed in terms of the singular coordinates (1.25).
In the one-dimensional case this is rather a minor issue. In the higher-
dimensional examples of interest here it is more significant, as there will
be a countably infinite superposition of terms like (1.26), with different
constants c. To handle these systematically the properties of the coordinate
change (1.25) will be examined with some care.

4.1. Inward-pointing spherical normal bundle.
Let X be a compact manifold with boundary. The first goal is to define

X?, obtained from X? by the introduction of singular coordinates, so that

xr—zx

x4+

€ C7(X}),

with  and z’ are defining functions for the boundary of X lifted from the
respective factors, x from the left and z’ from the right. The space will
come equipped with a surjective smooth blow-down map

(4.1) By X2 — X2

To construct X7 as a set (i.e. independent of the choice of coordinates)
assume that JX is connected and consider

(4.2) B=0Xx0X={zx=2"=0}C X*

This is the manifold which should be replaced by a bigger set in which
some information concerning the direction of approach to B is included.
Directions are associated to curves, so consider all C* curves with only
their endpoint on B and which are not tangent to B at that point:

(4.3) x:[0,1] — X?, x(t) e B<=1t=0, ¥'(0) ¢ T\(0)B.
This space, although not linear, has a natural topology as a subspace of

the space of all C* curves in X?, corresponding to uniform convergence of
all derivatives on compact subsets of coordinate patches.

95
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The equivalence relation placed on these curves is:
X1~ X2 <= x1(0) = x2(0) = p, X1 (0) = ax5(0) (mod T,B), a € RT.

This identifies two curves if they correspond to the same end point, in
B, and have derivatives at that point which are multiples, up to a term
tangent to B. Thus the set of equivalence classes is the inward-pointing
unit (or really spherical) normal bundle to B :

(4.4) S¢Np(B) = {x in (4.3),x(0) = p}/~

and then
SeN(B) = || S48, (B)
peB
gives a bundle over B with fibre diffeomorphic to [—1, 1]. This will be proven
directly by constructing coordinates on S N(B).

LEMMA 4.1. Ifz € C*(X) is a defining function for 0X and & = njx,
&' = mha denote its lifts to X? from the left and right factors then for any
curve (4.3) the limit

(45) r(x]) = lim ( - )

tl0 r+

exists and depends only on [x] € Sy N(B). This function gives an identifi-
cation

(4.6) StN(B) 3 x] — (p = x(0), 7([X])) € B x [=1,1].

Another choice of x determines, through (4.6), a diffeomorphism of the
form

(4.7) Bx[-1,1]3 (p,7) — (p, = %) € B x[-1,1],
where A € C*(B) is given by
(4.8) A(p):M, p=(y,¥) €0X x 90X, 0 < a € C®(0X).

a(y) +a(y')

ProoF: If # and &’ are the elements in C*°(X?) indicated then at each

point p € B, dT and d#’ are linear coordinates in the two dimensional
space N, B =T, X?/T,B. By definition, in (4.4),

SN, (B) = {0# v e N,B; di(v) >0,di (v) > 0}/RY.
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Si Ny (B)

Figure 4. The spherical normal fibre.

Thus there 1s an 1dentification

St Ny (B) =~ {v € N,B; d&(v) >0, dz'(v) > 0,dz(v) + dz'(v) = 1}.

With this identification the function (4.5) is just r(v) =
[—1, 1]. Under change of the defining function from z to #
0 < a€l?(0X), the new function (4.5) is

Yl (—) a(@)(l+7)—aly)(1-7)

10

This gives (4.7) and (4.8).
Thus not only does Sy N(B) have a C* structure, given by (4.6), but
the fibres have a projective structure. Indeed if o € [—1,1] then
oa+T
14+ ar

(4.9) My: SpN(B) — Sy N(B), Mot =

1s independent of the choice of projective coordinate 7, since

, A4 a+ 71 A+ M,T

T 1—|—AT/:>1—|—OH'/_ 14+ AM, 7

Using the coordinate

(4.10) 5= 1“ € (0,00) on Sy N(B\I(SLN(B))
R
the action (4.9) becomes
11—«
s—> fBs, [B= T a € (0, 00).

That is, the interior of each fibre of S; N(B) has a natural (0, co)-action.
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.
x! x!
+1 I'b
bf X X
v o B
(x]
-1 B x x

Figure 5. fBp: X7 — X2.

4.2. The b-stretched product.

If 90X is connected the b-stretched product is obtained by replacing B by
Sy N(B) in X2 ie.
X? =Sy N(B)U(X*\B).

This is certainly well-defined as a set and (4.1) arises by letting 3, act as
the identity on X?\B and taking it to be the projection from S; N(B)
to B, Bo([x]) = x(0) € B. It remains to show that X? has a natural C*°
structure with respect to which 3, is C*. Fix the topology on X7 by noting
that each curve x in (4.3) defines a map

X [0,1] — X7, X(1) = x(t), t >0, X(0) = [\].

A subset U C X7 is open if it meets X? \ B and S; N(B) in open sets
and provided that whenever x is a curve, as in (4.3), such that y(0) € U
there exists € > 0 and a neighbourhood of y amongst such curves for which
f(t) € U for all 0 < ¢ < ¢ and for all curves u in the neighbourhood. Tt
would actually be enough to take the C! topology on curves to get the same
topology on X7. Notice in particular that the function r = (z — #')/(z +
#') on X?\B, extended to SyN(B) by (4.5), is in C°(X?). Then define
C®(X?) C C°(X?) as consisting of those functions which can be expressed
locally near each point of Sy N(B) in the form F(r,&,§,%, ¢'), with F a
C function, i.e. C*(X?) is generated locally by 7 and 8;C* (X?). As in
the discussion above, under a change of defining function to & = a(z, y)x,
0 < a€C®(X), 7 is transformed to

A, g2 y)+7
1+ Az, 9,7, §)r

T =
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where

a(Z,g) —a(@, )

a(z,9) +a(@,y)

Thus 7 € C*°(X?) and the definition is indeed independent of the choice
of z. As illustrated in Figure 5 there is a neighbourhood of Sy N(B) in X?
of the form [—1,1] x [0,¢) x 0X x 9X. In fact for any boundary defining
function # € C*(X) the set G = {# + &’ < ¢} is, for small € > 0, such a
neighbourhood. The functions 7 and & + &’ on G give the desired decom-
position. It follows that X7 is a compact manifold with corners (just as
is X?) with the blow-down map, 3 in (4.1), C*°. The construction of X?
from X? by blowing up B in (4.2) is a special case of the general process
of (real) blow-up of a submanifold. In the notation of [63] or [31]

A&, 9,2,7) =

X7 =[X?%B]

but the general construction is not needed here.

So far the construction has been carried out under the assumption that
0X consists of one component manifold. If the boundary has several com-
ponents:

(4.11) X =Y, UYsU---UY,

then set

(4.12) B=||(¥;xY;) COX x0X.
j=1

The b-stretched product X? is defined by blowing up B, i.e. by blowing up
each of the components of B in (4.12).

EXERCISE 4.2. Make sure that you understand that ‘blow-up’ is just the
introduction of polar coordinates around the submanifold. In particular
check that 7 = (&2 + (#')?)% and 6 = arctan(i/&') are C* functions on X7.
How would you express the naturality of the C* structure on X? from this
point of view, 1.e. what would you have to do to prove it?

4.3. Submanifolds of Xg.

It is important to gain a clear understanding of the geometry of X7,
which will be the carrier for the Schwartz kernels of the operators in the
b-calculus. The boundary hypersurfaces of X7 will be denoted lb, rb and
bf, where

(4.13) bf(X?) = S; N(B)
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is the ‘new’ or ‘front face’ replacing B. The left and right boundary faces,
Ib and rb, are just the ‘old” boundary faces:

(4.14) b(X2) = cl(B7 19X x X)), tb(X2) = cl(87 (X x X)) in XZ.

V]
Notice that 0X x X = (90X x X)\ B. The lift is defined in this way, as the
closure in X7 of the part of the submanifold (in this case Ib(X?) = X x X)
outside B, rather than just the preimage because

By (Ib(X?)) = bE(XF) UTB(XE)

and the front face 1s not to be thought of as part of the left boundary.
Indeed the main idea is to separate the left and right boundaries. Observe
that (provided 90X is connected)

Ib(XZ) Nrb(X?) = 0.

There is another submanifold of primary importance in the analysis of
differential operators, namely the diagonal

A={(pp)eX’ peX}~X.
The lifted or b-diagonal is defined, as in (4.14), by setting
(4.15) Ay = cl(B; 1 (A\B)) in XZ.

LEMMA 4.3.  The lifted diagonal is an embedded, closed submanifold of
XZ which is diffeomorphic to X under 3, and which meets the boundary
of X2 only in bf(X?), which it intersects transversally.

ProoF: Of course in X2\ B nothing has been changed, so it is only nec-
essary to consider a neighbourhood of bf(X?). From the definition of 7 =
(z — #)/(% + &') in X?\B it follows, by continuity, that 7 = 0 on A,.
Similarly 4 = % on A, for any local coordinates in X. This gives dim X
independent defining functions and shows that A, is an embedded sub-
manifold. The local coordinates x, y lift to local coordinates &, y on Ay, so
Op: Ap 4— X 1s a diffeomorphism. Notice that

bf(X2) = {r=0}, r=3+& € C™(X}).
Since dr = 2d% on Ay is non-vanishing,
bf(XZ) h Ay =
{IX] € SeN(B);([x]) =0, p=x(0) € Apx CIX x 9X}.

This also completes the explanation of Figure 2 in Chapter 2.
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4.4. Lifting vector fields.

What has been accomplished by the introduction of X2Z?7 Later it will
be seen to lead to a simplification of the Schwartz kernels of b-differential
operators and this simple characterization makes the definition of the b-
pseudodifferential operators reasonably obvious. The main step in doing
this is to see what happens to the elements of V;,(X) when they are lifted
to X?, to act just on the left factor, and then are further lifted to X7. In
general one cannot lift a vector field under a C* map, however:

ProPosSITION 4.4.  Each element of Vy(X), as a C*° vector field on the
left factor of X in X?, lifts to a C* vector field on X7.

PROOF: As already observed, near each point of bf(X?) the coordinates
r—x

/ /
r=x+=zx
l‘—i—l‘/’ + Y Y

(4.16) =

can be used, where (z,y) are coordinates in the left factor and (#,y’) are
coordinates in the right factor, with # = 2’ € C*°(X). From now on the
rather heavy-handed tilde notation used above to distinguish between a
function on X and the lift to one of the factors of X? will be dropped. A
general element of V4, (X) is of the form

d d
V=oagz—+ o=,
0" O ; 7 Oy,

with the coefficients, a;, C* functions in local coordinates. Since the coef-
ficients certainly lift to be C*° and the 9/0y; lift to 8/0y; only the lift of
£d/0x needs to be examined. From (4.16),

o 0 20’ 0 1 0 1 5 O
(4.17) xa_l’_$§+m37_§(l+T)r§+§(l_T)6_7'

which 1s C*°, proving the proposition.

Notice what has happened in (4.17). The vector field x3d/0x vanishes
at 1b(X?), i.e. {x = 0}. When lifted to X7, near bf(X?), it again vanishes
at 1b(X72), but not on bf \ 1b. Indeed the lifts of the 9/dy; and xd/dx are

independent at each point of Ay and no non-trivial linear combination of
them 1s tangent to Ay. This can be reexpressed in the form:

LEMMA 4.5.  The lift to X? of Vy(X) from the left factor of X* is a Lie
subalgebra of V,(X?) which is transversal to Ay,.
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At each point of A the normal space is
(4.18) Np(Ap) = T, X2 /Ty Av, p € Ay

Thus the values at p of the elements of V,(X) define a subspace of T, X?
of dimension equal to that of X. By Lemma 4.5 this space is transversal to
Ap and can be identified with *T, X, where B,(p) = (g, q). Thus

(4.19) T, X2 =T,Ay @ "T, X, Bo(p) = (q,9), p € Ay

Combined with (4.18) this gives:

LEMMA 4.6. The normal bundle to Ay in X7 is naturally isomorphic to
TX and dually

(4.20) N*A, =T X,

This turns out to be important in the discussion of the symbol mapping.

EXERCISE 4.7. Prove (4.20) directly, in the spirit of b-geometry (see [63]
for more details). First show that the composite map FZyL =7} B Xf —
X, where 77: X? — X is projection onto the left factor, is a b-map,
meaning that if p is a defining function for the one boundary hypersurface
of X then

* e(bf) e(rb) e(lb
(4.21) (w2 1) p = pet™ ™ ™

where the pp’s are defining functions for the various boundary hypersur-
faces of X7. In this case e(bf) = 1, ¢(rb) = 0 and e(lb) = 1. The reason for
considering such a condition as (4.21) is that it implies that under pull-back
smooth b-forms become smooth b-forms. In this case
(4.22) (w2 )7 90 = deor | o,

’ P Pot Plb
Use this to see (4.20).

Having gone this far it is probably worthwhile to introduce the most
important notion described in [63] for maps between manifolds with corners,
namely the notion of a b-fibration. This will not be used below (but makes
for a much cleaner proof of the composition formula, etc.) For b-maps the
differential extends, by continuity from the interior of the manifold, to a
b-differential

(4.23) (nip)e: "1 X0 — "1, X, g =73 1(p).
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Indeed this is just the dual statement to the pull-back on ®7*X? which
is expressed by (4.22). There are two properties of (4.23) which are not
possessed by general b-maps. First

(4.24) The b-differential is surjective,

which is easy enough to check. A map with this property is called a b-
submersion. So check that ngL is a b-submersion. In addition there is
another, independent, condition satisfied by FZyL. Recall that at each point
of ¢ € X? (or any manifold with corners) the b-normal space to the bound-
ary is a well-defined subspace of quXg, just given by the values at that
point of the vector fields which vanish at the boundary in the ordinary
sense (i.e. is spanned by xd/0z at a boundary point of X.) It is easy to
see that the b-differential of a b-map must always map the b-normal space
at any point into the b-normal space at the image. The map is said to be
b-normal if

(4.25) The b-differential is surjective as a map between b-normal spaces.

Check that FZyL has this property too. A b-map with the two proper-
ties (4.24) and (4.25), i.e. a b-submersion which is b-normal, is called a
b-fibration in [63]. Thus FZyL is a b-fibration. Why should you care? Part
of the answer to this can be found in Chapter 5 (or [62], better, in [63] of
course). Roughly speaking a b-fibration has properties analogous to that
of a fibration, especially as regards the push-forward of distributions.

Check that the blow-down map § is a b-submersion which is not b-
normal, hence not a b-fibration. Give an example of a b-map which is not
a b-submersion but is b-normal.

So far only the lift of V,(X) from the left factor has been examined.
To avoid accusations of ‘handism’ (oddhandedness??) simply consider the
natural involution on X2 :

I: X235 (p,p)— (p/,p) € X°.

This fixes each point of B and (therefore) lifts to a diffeomorphism, I, of
X?. Indeed, in the local coordinates (7,7, y,y’) near bf(X?)

Ly Xp — X7, Ii=1d, r=-rLr=rLy=y.

Of course I, interchanges 1b and rb and shows that the discussion of the
lift from the left extends immediately to the lift from the right.
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EXERCISE 4.8. Show that the same isomorphism, (4.20), arises by using
the decomposition analogous to (4.19) with V,(X) the lift from the right
factor.

EXERCISE 4.9. Justify the ‘therefore’ in parenthesis above by checking
that under the blow-down map of a submanifold (or just for 8) any C*
vector field tangent to the submanifold blown-up (in this case B) lifts to
be C* on the blown-up manifold (see also [63]).

The simultaneous lift from left and right 1s also something to consider.
If V and W are vector bundles over X let V ®I W be the exterior tensor
product, namely the bundle over X? with fibres V, @ W, over (p,q) € X?.
Then it is clear that

TX ROTX ='T(X?)

is a vector bundle on X? with the property analogous to that for which
T X was defined in the first place:

Vy(X?) = {V € C™(X?;TX);V is tangent to rbUlb}
>~ (X% PTX).
Another way of seeing this is to note that the sum of the lifts from left and
right of V,(X) spans V,(X?) over C*(X?).
LEMMA 4.10. The lift to X? of Vy(X?) spans
Vu(XZ) = {V € C™(X};TX});V is tangent to IbUrbUbf}
over C*(X?) and therefore

(4.26) Vo (X2) = C® (X, TXE) with *TXZ = 67 (°TX?).

ProOF: Away from bf(X7?) there is nothing to show because 3, is a dif-
feomorphism there. Consider local coordinates ,y in the left factor and
#’,y" in the right factor of X and corresponding coordinates (4.16) near the
front face of X;. Then the tangential vector fields 9/dy; and 9/dy} lift to
the same vector fields; the lift of 20/8x is given by (4.17) and similarly

0 0 2’ 0 1 g 1 0
4.2 e S -y
(420 @ ox' ~ " ar (x + 22 0r 2( T)rﬁr 2( T )87'
The sum of (4.27) and (4.17) is r8/07r so the span of the lifted vector fields

1s the same as that of

B , 0 9 B
r—r, (1—7' )8—7—, a—yjand @

Since these vector fields clearly span Vy,(X7?), locally, this proves the lemma.
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EXERCISE 4.11. Extend Lemma 4.5 to show that elements of Diff}’(X?)
lift from X? to X7 under B, defining a map

(4.28) By Diff]’ (X?) — Diff]" (X72).
Show further that the range of this map spans Diffy' (X7?) over C*(X?).

4.5. Densities.

The b-stretched product just discussed is the starting point for the de-
scription of the b-calculus on a compact manifold with boundary, i.e. the
calculus of b-pseudodifferential operators. This calculus is designed to in-
clude the generalized inverses of elliptic b-differential operators and not too
much more. The term calculus is used to indicate that the b-pseudodiffer-
ential operators do not form an algebra. However, when composition of
two such operators is possible the composite is in the calculus. The first
step 1s to define the small calculus of b-pseudodifferential operators which
s an algebra.

First a few words about densities, and in particular b-densities. As a
general principle, from now on almost all analytic discussion will be carried
out for operators acting on b-half-densities; in order to reduce the book-
keeping overhead associated with bundles. The extension to the general
case 1s then mainly a matter of notation. Recall that if V is a vector space
of dimension n then the space of s-densities on V is, for s € R,

QV = {u: APVA\A{0} — Ry u(ta) = |t u(a) Y ae APV* ¢ £0}.

Thus g € Q°V is fixed by its value at any one 0 # o € A®V* and so
Q*V is always a one-dimensional vector space with an orientation, fixed by
u(a) > 0. Directly from the definition there are canonical isomorphisms:

VoV =0TV VsteR
(4.29) QV =R
= Q7°'V = (Q°V)".
Similarly if V' and W are any finite dimensional vector spaces there is a
canonical isomorphism

(4.30) CVaW)=Q' (V)0 QW) Vs eR;

this just arises from A"t (V* ¢ W*) = A"V* @ A™W* if dimV = n and
dimW = m.
If X is a compact manifold (with or without boundary) then the spaces

Q= Q (T X)

form C* bundles over X. Note that, being oriented line bundles, the density
bundles are always trivial. Only for s = 0 is ° canonically trivial.
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EXERCISE 4.12. Show that
ox =]
rzeX
1s a bundle associated to the coframe bundle of X.

Most importantly 1-densities, usually just called densities with Q! de-
noted simply as €2, can be integrated. The integral is then a well-defined
linear functional

(4.31) /: Co(X;0) — R.

EXERCISE 4.13. Local coordinates in X induce a basis of T,y X, hence the
basis element 9y, A -+ A0y, in A (T, X). Show that

|dx|s(aal71 A /\axn) = |a|s’ selR

is a local basis element of €° X. Use this to show that (4.31) can be defined
as the Riemann integral in local coordinates. Thus if f € C*(X;Q) has
support in a coordinate patch, so f = g(x)|dxz| in terms of the coordinate
trivialization with ¢ a C°° function, then

(4.32) /f:/g(m)dx.

R~

Check that (4.32) is independent of the coordinate system containing the
support of f and hence that there is a unique functional (4.31) extending
(4.32) by linearity.

The most important fractional densities here are the half-densities. From
(4.29) there is a product

(4.33) C®(X;Q%)-C™(X;Q7) — C=(X; Q).

This extends to complex sections (i.e. sections of the complexified bundles)
and hence gives a sesquilinear pairing;:

(4.34) (u,v) = /UU, u,v € COO(X;Q%).
X

If C=(X; Q%) is completed with respect to this pairing the result is the
Hilbert space of square-integrable half-densities, L?(.X; Q%). For example



4.5. DENSITIES 107

the Hilbert-Schmidt operators (which will be useful later) can be easily
described. Thus:

K€ L*(X%0%) = Ag: L*(X;Q%) — L*(X;Q%),
(4.35) Agu(z) = /K(J:,y)u(y).

X

Here if ¢ € LZ(X;Q%)

(Agu, @) = /K(x,y)qS(x)u(y) =(K,¢ K u)

X2

using the (fairly obvious) form of Fubini’s theorem
LY(X;Q3) R L} (X;Q%) C L*(X?;Q3).

This can be generalized to operators on distributions. The pairing (4.33)
invites the definition of the space of distributional half-densities as consist-
ing of the continuous linear maps

(4.36)
u: C°(X; Q%) — C continuous and linear <= u € C~°(X]; Q%).

Here continuity is with respect to the topology of uniform convergence of
all derivatives of the half-density on compact subsets of coordinate patches.
Then the pairing (4.33) gives an inclusion

C™(X;Q7) — C~%(X;Q7)

and in fact the range is dense in the weak topology. For a general vector
bundle, F, over X define

CT™(X;E) = (C*(X; B o Q)

where E' is the dual bundle. This is consistent with (4.36) since (Q%)/ =
Q~ % from (4.29) so (Q%)/ ©0 =03,

The general case of a continuous linear operator
(4.37) A:C®(XG E) — CT(Y, F),

where F 1s a C*° vector bundle over X and F' i1s a C*° vector bundle over
Y, 1s covered by Schwartz’ kernel theorem:
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THEOREM 4.14. (Schwartz) The continuous linear maps (4.37) are in 1-1
correspondence with the distributions

KeC™ (Y x X;FR[F @ Q(X)]),
where A +— K if
(Au,¢) = (K, ¢Ru) Yuel®(X;E), ¢ €C(Y;F').

Quite straightforward proofs of this result are now available (using the
Fourier transform) see [46].
For E = F = Q% this simplifies as in (4.35), i.e.

{A: C”(X; Q%) — CT(Y; Q%); continuous and linear}
(4.38) )
— {Kec™™(y x x;0%)}.

The fact that only half-density bundles appear throughout here is one rea-
son for working with them.

4.6. The space of pseudodifferential operators.

Now recall, for later generalization, the definition of the space of pseu-
dodifferential operators on X, X = (). These spaces were defined by
Hoérmander in [44] and by Kohn and Nirenberg in [49] although closely
related singular integral operators had been used before. These operators
can be defined in terms of their Schwartz kernels, using (4.38):

(4.39) U (X;07) > (X2, A; Q7).

On the right is the space of conormal distributional sections of Q7 of order
m associated to A C X?. In fact I™(Z,Y;E) C C~°(Z;F) is defined
for any closed embedded submanifold Y C Z, any m € R and any vector
bundle E over Z (see [45]).

DeFINITION 4.15.  The space I"™(Z,Y; E) C C~°°(Z; E) consists of the
distributional sections of F satisfying

(4.40) Kipy €C(Z\Y; E)

and such that in any local coordinates z, ..., z, in Z with respect to which
Y ={z1=---=z, =0} and on the coordinate patch, O, over which E is
trivial,

(4.41) Kio = (2n)77 [ &' ¢a(a” g)de.

Re
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where &' = (z1,...,24), 2" = (2g41,...,2p) and a = (a1,...,a,), taking
values in " where E1p = O x 7, satisfies

| D% DY ai (", €)| < Cap (1 + [€)™ 717,

(4.42) . ) .
e K CCOEeRi=1,... 1

here m' = m —¢/4+n/2, n = dim Z.

The estimates (4.42) are the symbol estimates on the amplitude a, intro-
duced in this form by Hérmander [44]. Tt is important that the combination
(4.41), (4.42) is coordinate invariant, see [47]. Thus, given (4.40), if (4.41)
holds in a covering by coordinate patches it holds in any other coordinate
patch.

There are more refined classes of operators than those with symbols
just satisfying the estimates (4.42). Namely the class of one-step polyho-
mogeneous operators corresponds to symbols having complete asymptotic
expansion with integral step:

(4.43) a;i ~ Y a(a”, €€
k=0

Here the coefficient functions a;; are C*° in £ # 0 and homogeneous of
degree zero and the meaning of (4.43) is that for each N the difference

a; vy (2",€) = ai (2", €) = Y ag(a”, €)[€[™
k<N

satisfies the estimates (4.42) in |£] > 1 with m’ replaced by m’ — N. Again
the existence of such an expansion is a condition independent of coordi-
nates.

WINn(Z,Y,E) C I™(Z,Y; E), the subspace of one-step polyhomogeneous
conormal distributions, is used in (4.39) the result is what is often called the
‘classical” algebra of pseudodifferential operators on a compact manifold:

U (X;07) s I (X2, A; Q7).

The algebra of pseudodifferential operators can be considered as the mi-
crolocalization of the algebra of differential operators. Thus for &k € N

DIff* (X; Q%) c ¥* (X;Q%).

The kernels of differential operators are the smooth Dirac half-densities
supported by the diagonal (as discussed in §4.8). The passage from smooth
Dirac sections to conormal sections can be viewed as the process of microlo-
calization. It is the space ¥ (X; Q%) which is to be generalized to compact
manifolds with boundary, by this same process of microlocalization.
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4.7. Distributions.

To carry out the generalization, first briefly consider distributions on
these spaces. TFor a fuller treatment see [63]. As before the discussion
1s initially restricted to half-densities, but in this case it is preferable to

consider b-half-densities. Thus for any s € R the oriented vector spaces
®Qs X = Q* (T} X) combine to form the C> bundles

X = | | fax.
rzeX

There is a very simple relationship between these bundles and the bundles of
s-densities in the ordinary sense, which are also well-defined over a manifold
with boundary. Namely:

vE COO(X;st) — 2'v € C(X;Q%).
In particular it follows from this that if
(4.44) ce® (X; F) = {u € C*(X; E); u vanishes to all orders at dX}
for any vector bundle E then

(4.45) C®(X;%Q°) = € (X; Q).

Using (4.45) the integral (4.31) can be transferred to Ce° (X;%Q). The
product map (4.33) also extends to

C=(X;°Q7) x €% (X;"Q7) — C°(X;'Q)

since if one of the factors vanishes to infinite order at the boundary so does
the product. Then the pairing (4.34) extends to

(4.46) € (X)€% (X:0%) 3 (6,0) — [ 60
X

It turns out to be rather important to note that this bilinear form does
not extend directly to the whole of the product of C*(X; bQ%) with itself,
since the integral in (4.31) does not extend directly to all of C(X;°Q).
Certainly

J

C¥(X;Q) = 2C®(X;°Q) 5 R
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but in general if u € C*°(X;°Q) the local integral diverges logarithmically
near the boundary. This is actually the reason that the trace functional is
not defined on the operators in (In.18) and why the b-trace functional is
introduced below.

Part of the reason that the b-densities are convenient to deal with is that
there is a natural restriction map. Recall that there is a canonically trivial
b-normal line subbundle *N9X C *T5x X, spanned in local coordinates by
xd/0x, and the quotient is naturally

"Tox X/°NOX = TOX.

EXERCISE 4.16. Check that (4.30) is also valid when V' C U is a subspace
in the sense that there 1s a natural isomorphism

QU) = (V) Q(U/V).
Thus for any s € R
POy X = Q70X @ Q°("NOX).

Since the b-normal bundle is canonically trivial, by (2.9), so is its density
bundle, hence there is a natural restriction map:

(4.47) C= (X:°0°) X e~ (ax, 0°).
EXERCISE 4.17. Show that in local coordinates x, 1, . . ., y, near a bound-

ary point the map (4.47) is just
de s
(4.48) a(z, y)|—dy|" — a(0, y)|dyl".

The subspace C> (X;E) C C®(X; E) given by (4.44) is closed. As a
result there are two natural spaces of distributional half-densities:

1 2 1 !
C™™(X;%Q2) = (Coo (X; b(ﬁ)) (extendible distributions)
(4.49) . ,
C_OO(X;bQ%) = (Coo (X;bQ%)) (supported distributions).

The second space includes distributions supported on the boundary, the
second does not. For the most part, only the spaces of extendible distribu-
tions occur below. The pairing (4.46) gives an identification of C*° (X; Q%)
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as a subspace of the space of extendible distributions, as in the boundaryless
case:

C=(X;°Q%) 30— v € CT°(X;07),

@)= [vo, o C=x:03),
X
As usual there is rarely any point in distinguishing between a C* density
and the distribution it represents.

The corresponding construction for manifolds with corners is also needed
to a limited extent. To avoid a detailed discussion it is enough to note
that they behave locally as products of manifolds with boundary. Then
spaces such as C*°(X; E) can be defined by reference to any local product
decomposition. For more details see [63]. For a general vector bundle ¥
over a compact manifold with corners, X, define

C(X; E) = (COO(X;E’ ®bQ))/.

This reduces to the first case of (4.49) when F = bQ%. The Schwartz
kernel theorem extends readily to manifolds with boundary in terms of
these spaces:

THEOREM 4.18. (Schwartz ) There is a 1-1 correspondence between con-
tinuous linear maps

(4.50) C¥(X;E) — C™=(Y; F),

where X and Y are compact manifolds with boundary and F and F are
vector bundles over them, and the space C~°(Y x X; F R [E* @ °Q]); the
correspondence is given by

A— K = (46,4) = (K, B )

(4.51) : ; ,
Vo eCT(X;E), Y eC™(Y; F" e Q).

Actually this result is not really used below. Rather it is of philosophical
importance, since it shows that questions about operators can always be
reduced to questions about distributions. It is worth noting the general
approach to understanding operators that underlies this discussion. As
seen in Chapter 1, the kernels of operators related to b-differential operators
tend to have rather complicated singularities at the corner of the manifold
X? = X x X. The stretched product X? has been introduced, since the
kernels are simplified when lifted to it. Observe that the blow-down map
has the property

(4.52) (B2): € (X2,PQ7) +— C®(X2:%Q7).
EXERCISE 4.19. Check (4.52) in local coordinates.
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Therefore, by duality,
(4.53) (B2).: C™°(X2:%07) «— €™ (X2, 207).

Thus, nothing is gained by blowing up the corner! Of course that is not
the point. The idea is that, by (4.53) and its extension to sections of other
bundles, one can just as well examine the kernels of operators (4.50) on X/
as on X?. There are ‘more’ C* functions on X7, so more kernels will be
considered as admissible than on X?2.

A useful combination of (4.53) and Theorem 4.18 in the special case that
X =Y is:

LEMMA 4.20. IfE and F are C*° vector bundles over a compact manifold
with boundary X then the continuous linear operators

C®(X;E) — C™%(X; F)

are in 1-1 correspondence with the elements of the space of distributional

sections C~°°(X2; (82)*(F R [E' @ *Q))), where
(4.54) A k= (A, ¥) = (, (8]) [0 B ¢]).

In particular if # = F = bQ%, which will be assumed until §4.16, then
FR[E @ 'Q] = *Q2(X?2). Moreover it follows from the discussion above
that there is a natural isomorphism (ef. (4.26))

(4.55) (B2)°[PQ= (X)) = Q7 (X7).

Thus, finally, operators on distributional densities can be identified with
the lifts of their kernels to X7 :
(4.56)

{AK: C(X;0%) — C_OO(X;"Q%)} — {KA € C‘w(Xg;bQ%)}.

4.8. Kernels of b-differential operators.

Consider (4.56) applied to the identity operator on b-half-densities. The
action of the identity is given in local coordinates by

Id(¢ d—xdy ) = /6(x —2)o(y — v)o(2, v )da' dy d—xdy
x x

Thus the kernel in the sense of (4.51) is

dz' =, dz 3

(4.57) K =2'd(x —2")o(y —¢) ?dy'?dy
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By a smooth Dirac section of order (at most) & of bQ%, with respect to
Ay, is meant k € C~(XZ; bQ%) which has support contained in Ay and in
local coordinates takes the form

Z ap o, y) D2 (s — 1)D;‘5(y -y
ptlalek

where the coefficients are C*°. One expression of the utility of X7 is

LEMMA 4.21. Under the isomorphism (4.56) the space Diﬂ’lg(X;bQ%) is
mapped isomorphically onto the space of all smooth Dirac sections of order
k, with respect to Ap.

ProOF: Lifting to X7, where only a neighbourhood of A needs to be
considered, the coordinates ' and z/#' = s can be used. Thus (4.57)

becomes .
ds . dx' H

8(s =)oy =) | —dy—-dy

Writing P = P oId for a general element of Difff (X;°Q2) and using (4.28)
it follows that the lift is a smooth Dirac section and conversely that all such
sections arise in this way.

Thus the degeneracy of the kernels on X? is removed by the lift to X7.
The space of kernels is then much the same as in the boundaryless case and
the process of microlocalization can be applied directly.

4.9. The small space of b-pseudodifferential operators.

After all this preparation the (small) space of b-pseudodifferential oper-
ators can now be defined.

DEFINITION 4.22. The (small) space, U7 (X; bQ%), of b-pseudodifferential
operators of order m, acting on b-half-densities, consists of those continuous
linear operators which under (4.56) correspond to conormal sections of
order m associated to the lifted diagonal and vanishing to all orders at

IbUurb :
(458) WP (X;PE) e {n e 1M (X7, A PQF);m = 0 at IbUTh .

Here = means equality of Taylor series at the indicated set.

Often (4.58) will be treated as an equality. Of course the precise meaning
of the space on the right in (4.58) still needs to be explained. As noted
in Lemma 4.1, the lifted diagonal is an embedded C*° submanifold, of di-
mension dim X, which meets the boundary of X? only at the front face,
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bf(X7?). Thus the vanishing conditions in (4.58) make sense since all ele-
ments of I™ (X7, Ay; bQ%) are C* in a neighbourhood of IbUrb, this being
disjoint from As.

So consider this definition in a little more detail. The meaning of (4.58)
is that the kernel, x, must have the following properties:

|

(459) K|X§\Ab e Cc™ (Xg\Ab;le)
k=0 at Ilburb

(4.60) k(z,2") = (271')_"_1/ei(z_zl)ca(z/,C)dC|dzdz/|% near Ag\ bf

If(?“, v, y/) — (271')_”_1 /6i7A+i(y—y’)~nb(r’ y/’ /\’ U)d/\dﬁ
4.61 1
( ) dr e
—drdydy
r

X near Ap N bf.

In (4.60) zg,...,2zn and z,...,z, are the same coordinates in the two
factors of X? ~ X7? near Ay\ bf ~ A\(9X)? and in (4.61) if z,y,2',y are
the local coordinates with the usual conventions then 7 = (z —2')/(z + '),
r = x+x'. The amplitudes a and b are also required to be symbols of order
m, as in (4.42). If the symbols have full asymptotic expansion as in (4.43)

then the ‘classical’ or one-step polyhomogeneous class results:

(4.62) WP (X;PQF) {n € I (X2, Ap;PQ3) ik = 0 at lbl_lrb}.

b,os

For the most part the various properties of these conormal spaces (includ-
ing coordinate-invariance) will be taken for granted, since that is precisely
what is covered in a standard treatment of pseudodifferential operators (on
manifolds without boundary). A little enlightenment may be gained from
the exercises starting at Exercise 4.24 below. A safer alternative for the
uninitiated is to consult [47, Chapter 18] or one of many reasonable intro-
ductions to pseudodifferential operators (for example [83], [88]). Another
possibility is [65].

4.10. Symbol map.

One particular property of conormal spaces is that they have symbol
mappings delineating their order filtrations. Let S (bT*X) denote the
space of C* functions, on *7X\0, which are homogeneous of degree m.
Summarizing the invariance discussion in the exercises leads to:
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PropPosITION 4.23. The local symbols in (4.60), (4.61) together fix the
symbol map, giving a short exact sequence

(4.63) 0 — WIL(X;P0H) s W (X0 ) 228 Sl (e x) 0.

b,os b,0s

EXERCISE 4.24. Check that if & is defined by (4.60) or (4.61), where a
or b satisfies the estimates of (4.42), then it satisfies (4.59). [Hint: These
integrals are inverse Fourier transforms. Show that if m < —¢ — N for
the order in (4.42) then & is CV. Then use the standard identities for the
Fourier transform of 7« and (y — y');x to show that if |7|* + |y — y/|* # 0
then & is in CV for each N.]

EXERCISE 4.25.  Use Exercise 4.24 to show that if ' C X7 is a preassigned
neighbourhood of Ay and & satisfies (4.59) — (4.61) for some covering of Ay
by coordinate patches then k& = k1 + K2, where &1 € C* (Xg;bQ%) satisfies
(4.59) and k4 has support in U and still satisfies (4.59) — (4.61) with respect
to the same coordinate covering.

EXERCISE 4.26. Use Exercise 4.25 to show that & satisfies (4.59) — (4.61)
for a particular covering by coordinate patches if and only if x = ' + k",
where k' i1s C*° and ' is a sum of terms, each supported in one coordinate
patch and satisfying (4.60) or (4.61) in those coordinates.

EXERCISE 4.27. For distributions supported in the coordinate patch check
directly that (4.48) and (4.61) are invariant under changes of coordinates
on X7 which are linear in z — 2’ or y —y' and 7 but arbitrary in 2’ or r and
y'. Show that under such transformations the symbol a or b projects to a
well-defined element of S (*T* X), i.e. the leading part is unchanged.

EXERCISE 4.28. Finally (this is the trickiest part) show that under coor-
dinate transformations which induce a trivial transformation on NAy the
form of (4.60) or (4.61) is preserved and the symbol is fixed in SU™ (7% X).
Now check that you understand where (4.63) comes from.

The utility of the algebra of pseudodifferential operators on a compact
manifold without boundary is closely linked to the symbol homomorphism.
This is a map into a commutative algebra (really a family of maps into a
family of algebras) which determines the leading part of an operator. Using
this symbol map one can readily construct parametrices for elliptic opera-
tors. For the (small) calculus of b-pseudodifferential operators there are two
such “normal homomorphisms.” The first, in (4.63), is a direct extension of
the standard symbol map and has similar properties. The second, indicial,
homomorphism discussed below, takes values in a non-commutative algebra
and is therefore somewhat different. Both homomorphisms are involved in
the construction of parametrices.
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4.11. Elementary mapping properties.

By (4.53) b-pseudodifferential operators do indeed correspond to linear
operators

(4.64) C=(X;°Q7) — €™ (X;"Q7),

but they have much better properties than this. To exploit the properties
of the kernel it is useful to have a representation of its action, as in (4.54),
which uses the lift of the kernel to X7?. The operator can be written out in
terms of its kernel on X?

(4.65) A¢(z) = /K(z,z/)qb(z/).

X

Suppose that ¢ € Ce° (X; bQ%) has support in a small, product, neighbour-
hood of the boundary where « is a defining function for the boundary. Then
(4.65) can be written

dz d 1
(4.66) (z,9) //A (z,y, 2",y )o(2, y)—dy|—xdy|5, r <€,
08X

where the density factors have also be written explicitly.
In (4.66) only the properties of the kernel near # = 2’ = 0 are involved.
For simplicity assume that

supp(K) C [0,¢] x 0X x [0, €] x 0X.
Then the coordinate 7 from (4.16) can be used to lift from X2 to Xg :

1
1—7 1—7 dr dr , 1
A = K T yyea—Ly dyf | Zdy|*.
o) = [ [ Kot ole ) |

—-10X

Since the lift of the kernel to X7 is by definition

1—7 dx’
_ - _d 2
. )I dy—-dy'|?,

d 1
&(r, Ty, )] 1 _:_2 drdydy'|z = K(z,y,

this can be written as

B 2x , 1l—7 , dr adr 1
(107) Ao(en) = [ [l m e Yola ) |yl
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In the form (4.67) it can be seen directly how the properties of the kernel
demanded in (4.58) will be reflected in the properties of the operators.
However it is usually clearer to look at the kernel as a function of the
improper variables s,z or ¢, #', where s is given by (4.10):

1
s = +T:£andt:1.
1—7 2 s
The coordinates s,z fail near rb and IbNbf since s = oo at rb and at

IbNbf # = spyp, where pyp, is a defining function for 1b(X?), has vanishing
differential. On the other hand ¢, 2’ fail as coordinates at Ib and rb N bf . (Of
course in all cases local coordinates y, y’ in the two factors of 9.X are also
needed.) However, by definition in (4.58) the kernel & is C* and vanishes
rapidly at s = 0 and s = oo, which are just Ib and rb. Thus s can be used in
place of 7in (4.67) without having to worry about convergence problems.
This leads to the two useful representations:

ds

d
Z ay | = dy|?,
S x

(4.68) Ad(x,y) ://ﬁ/(x,s,y, y)o(x/s,y)

0 o0X

ds

d
2y =y,
S x

(4.69) A(/)(J:,y):///f”(x/s,s,y,y/)qS(x/s,y/)

0 o0X

where ' stands for the kernel expressed in terms of z,s,y,y’, k" for the
kernel expressed in terms of 2/, s, v,y and ¢ € C°([0, €) x IX; bQ%). These
representations will be used immediately to improve (4.64):

PropPosITION 4.29. FEach A € (X bQ%) defines a linear operator
(4.70) A: C™(X;PQ7) — C(X;°Q7).

ProoF: Divide the kernel of the operator into three pieces, using a C™
partition of unity on X?. Namely

(4.71) A=Ay + As + As,

where As has kernel supported in & > ¢, A5 has kernel supported in z < 2e,
¥’ > x > ¢, and A; has kernel supported in z, 2’ < 2e.

Of the pieces, As is the most innocuous, since the support of its kernel
does not touch the diagonal in X2 and hence it is C*° on X? and vanishes
to infinite order at both boundaries. It is convenient to have a name for
such operators:
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Az
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|
¢ L —
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|
Ap !
I
€ 2

Figure 6. Decomposition in (4.69).

DEFINITION 4.30. The mazimally residual operators, in \I!_Oo’m(X;bQ%),
are those operators with kernels in C* (X bQ%) =(C* (Xg;bQ%).

The notation here is a precursor to that for the full calculus in Chapter 5.
The —oo refers to the absence of any singularity at the diagonal, while the
() means that the kernel vanishes to infinite order at all boundaries. The
absence of the, otherwise ubiquitous, subscript ‘6’ is also no accident; it
refers to the fact that these kernels are characterized directly on X?2.

Essentially from the definition of the action of an operator in terms of
its Schwartz kernel and the spaces involved

(472)  Ae U ®UX;PQ%) = A: C"7(X;PQ7) — (7 (X; Q7).

EXERCISE 4.31. Make sure you understand why the mapping property
(4.72) is a necessary and sufficient condition for an operator to be maxi-
mally residual.

Certainly then A, satisfies (4.70). Slightly more seriously consider As.
Removing another maximally residual term the kernel of A3 can be sup-
posed to have support contained strictly in the interior. From the definition
Agz 1s then simply a pseudodifferential operator, in the usual sense, on the

V] V]
interior X of X with kernel having compact support in (X)?. One of the
standard mapping properties of pseudodifferential operators is that they
preserve C* and taking into account the support property this means

(4.73) Ag: C(X;°Q%) — € (X;Q3).

Recall where this mapping property comes from. It is really a result on the
regularity of push-forwards of conormal distributions. More prosaically it
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follows from (and is essentially equivalent to) the fact that if K is a kernel
as in (4.60) (with compact support) then

(4.74) /K(z, 2)d2 e C™.

EXERCISE 4.32.  Show that (4.74) follows from (4.60), the properties of
symbols discussed in the exercises starting at Exercise 4.24 and integration
by parts.

So finally consider A;. Here the representation (4.68) can be used. The
kernel k vanishes to all orders at s = 0 and rapidly as s — oo, so it follows
that the product

K($a5aya y/)¢($/5ay/) is C* in |5 - 1| ;é 0

and vanishes rapidly as s — oo and as s | 0.

(4.75)

Indeed, when s # 1, & itself is C* and if s > 0 then so is ¢(z/s,y').
Since, by assumption, x vanishes rapidly as s | 0 so does the product;
the derivatives of ¢(x/s,y') being of at most polynomial growth as s | 0.
As s — oo both factors vanish rapidly (since # is bounded). This rapid
decrease at infinity compensates for the non-compactness of the domain of
integration, so the integral of (4.75) in s and y' behaves just as for (4.74).
Thus A1 is C*°. Since ¢(z',y') is assumed to vanish with all derivatives at
' =0,ie oz y) = (z')Non(2',y) the same argument can be applied to
k(z, 5,9,y )5 Non(z/s,y') and hence it follows that A;¢ € 2V C™(X; bQ%)
for any N. This proves (4.70) and therefore Proposition 29

EXERCISE 4.33. Using a (simple) duality argument show that
(4.76) AW (X;PQ7) = A: CT7(X;"Q7) — €~ (X;%Q7)

1s a continuous linear operator.

Essentially the same argument as used to prove Proposition 4.29 also
leads to

ProposITION 4.34. Each element A € ¥} (X;bQ%) defines a continuous
linear map

(4.77) A: C®(X;PQ7) — €7 (X;°Q7).

ProoF: Using the same decomposition (4.71) both As and As have the
property (4.77) as consequences of (4.72) and (4.73). So again it is enough
to consider A;. Notice that C*°(X; bQ%) is not dense in C*(X; bQ%) in the
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topology of the latter, but it is dense in the topology of C_OO(X;bQ%).
Thus the definition of the map in (4.77) follows from (4.76). Explicitly this

convergence follows by taking
ut) =1,t>1

n bl = bl bl E Coo 0’ bl
éule) = wlon)olo ), e e=(l0,00, { M 7 07

Inserting ¢, into (4.68) the integral remains, for > 0, absolutely conver-
gent as n — 00. Thus the remainder of the proof of Proposition 4.29 can
be followed since the rapid vanishing of ¢ is only used at the very last step.
Thus (4.77) holds.

4.12. Asymptotic completeness.

A companion property to the symbol map in (4.63) is the asymptotic
completeness of the space. Define

Uy (XP07) = () uy(X;P07).
Then, under (4.62), there is an identification
\I!b_OO(X;bQ%) — {K? € COO(Xg;bQ%);K =0 at lbl_lrb}.
EXERCISE 4.35. Show that, for any m € R,

Uy (X5P0%) = (U7 (X;°0%).
J

Give an example to make sure you understand that this space is a lot bigger
than \I!_Oo’m(X;bQ%).

Asymptotic completeness is a general property of conormal spaces. For
the one-step polyhomogeneous spaces it becomes:

LEMMA 4.36. If A; € \I!m_j(X;bQ%), j = 0,1,... then there exists an

b,os
asymptotic sum A € \IIZTOS(X; bQ%) such that
N-1
(4.78) A= A e N (X;PE) VN,
§=0

The relationship (4.78) is written
A~D 4
j=0

and determines A uniquely up to an element of ¥, ™ (X; bQ%).
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4.13. Small parametrix.

Of course there is one other important property that guided the definition
of the small calculus from the beginning. Namely

(4.79) Difff (X;°Q%) C Wf _(X;°Q%) V k € N,

b,os

This will be used with the following special case of a more general compo-
sition formula (Proposition 5.20) proved later:

LEMMA 4.37. Forany k€N, meR
DIffy (X;°Q7) o W', (X;°Q%) C W' (X;°07)

(4.80)
bam+k(P o A) = bak(P) . bam(A),

where %01 (P) is the symbol defined in (2.23) and o, (A) is from (4.63).
Since all these spaces are invariant under passage to adjoints, the same
result holds for the composite in the other order.

ProoF: To prove (4.79) the first thing to check is that
(4.81) Id € ¥  (X;°Q7).

This however is a direct consequence of Lemma 4.21.
Now (4.79) can be deduced from (4.81) by trivializing the density bundles

and recalling (2.20). Thus it is only necessary to show that if I/b% 1s a non-
vanishing b-half-density
(4.82) WP (X:PQ%) 5k — 12 Vi, 7k € UPEN(XP0Q7) YV € Wy (X).

b,os

Here V' acts on the left. The lift of these vector fields to X7 is described
by Proposition 4.4. Since the lifted vector field is C* on X7 and tan-
gent to the boundary, (4.82) holds, as can be seen directly from the local
representations of the kernels in (4.61). From this (4.79) and (4.80) follow.

These elementary properties of the small calculus allow the first para-
metrix construction to be made. Really a parametrix should be an inverse
up to compact errors; this is not achieved yet, as discussed below. How-
ever it 1s worth stretching the concept a little and thinking of this as a
parametrix construction:

ProposiTioN 4.38. If P € Diﬂ’lg(X;bQ%) is elliptic then there exists
G, e Uk (X;bQ%) such that

b,os
(4.83) Ry =1d—PoG, € ¥, (X;°Q7),

and Gy with this property is unique up to an element of ¥, ™ (X; bQ%).



4.13. SMALL PARAMETRIX 123

The subscript ‘s’ is intended to indicate that the element is in the small
calculus.

Proor: This is just the standard symbolic construction. The ellipticity of
P means that there exists

g€ STHOT*X) with ¢ -bo,(P) — 1 € S™°("T*X).

Indeed ¢ can be taken to be equal to 1/%04(P) outside any compact neigh-
bourhood of the zero section of ®T* X. Then the surjectivity in (4.63) shows
that there exists

GY e Uk (X;°07) with Po_(GO) = ¢.

b,os

From (4.80) it follows that P o G¢ € ¥ (X;bQ%) and

b,os
boo(PoGY) = 1.
Certainly ®oq(Id) = 1, so Yo (R}) = 0 if
(4.84) Rl=1d-PoGY.

From the exactness in (4.63), R} € ;! (X;°Q2). Moreover G? is deter-

b,os
mined up to the addition of an element of \I!b_is_l(X;bQ%). Now proceed
by induction. Suppose that

(4.85) G e w9 (X;207) is chosen for j < 1
so that
-1 )
(4.86) Ry=1d—Po [ Y GV | e v, (X;°Q%).
j=0

Then (4.63) can be used again to find Ggl) = \I!_k_l(X;bQ%) with

b,os
bO'_k_l<G£,l)) =4q- bO'_l(Ri,).
This means R, — P o Ggl) € \I!_l_l(X;bQ%), so the inductive hypothesis

b,os
(4.84), (4.85) is recovered.
Finally take

b,os

Gy~ G e wyk (X;P07%).
5=0
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Then from (4.78) and (4.86)
R, =1d—Pod, € ¥U;®(X;Q3);

this proves (4.83). The essential uniqueness follows from the fact that if
G € ;% (X;%Q3) is another solution then

Po(Gy—G) e ;= (X;03).

Proceeding inductively shows that Gy — G, € \I!b_k_j(X; bQ2) for all 7, i.e.
Gy — G € Uy (X;007).

A solution to
(4.87) R, =1d—G, 0 P € ¥;®(X;%Q7)

can be constructed by a similar argument. Moreover és, constructed to
satisfy (4.87), is essentially equal to 5. To show this requires a particular
case of Proposition 5.20, where m’ or m = —oo. Then,

Gy—Gy0R,=Gy0PoGy=G,—R.oG,.

EXERCISE 4.39. Show, directly from the definition, that ¥7* (X;bQ%) Is
invariant under passage to adjoints. Use this to show that a left parametrix,
as in (4.87), can be obtained from a right parametrix for the adjoint of P.

4.14. Non-compactness.
As already noted, the error terms in (4.83) or (4.87) are not really very
‘small’. In particular a general element of ¥, (X; bQ%) Is not compact on

LZ(X;bQ%) (so far it has not even been shown to be bounded, but it is).
To see why 1t 1s not compact, consider, for simplicity, the one-dimensional
case. Then if u = ¢(x)|dx/x|? has support near z = 0 in X = [0, 1],

(135) Aule) = [ wte 052 L)

Here s = 2/2’ and « can be assumed to have support in [0, 1] x [4,2], i.e
0<z<i,i<s<2
Now in (4.88) consider a sequence which converges weakly in L? :

z  dr 1
ut:¢>(?)|?|2 ast | 0w — 0.
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From (4.88) it follows that Au; = wt(%)|dx/x|51 if
7 z. ds
we(x) = /ﬁ(xt,s)qb(g)?
0
Thus, as ¢ | 0, wy converges in C™ to
7 z. ds
= 0 yes
wo(x) /Kj( ,5)(;5(8) .
0

It is straightforward to check that if w; — wg in C*° (][0, %]) then w:(%) =
Au; — 0 (converges weakly to 0) in L2(X;’Q2) but cannot converge

strongly to zero unless wo = 0.

EXERCISE 4.40. Show that if A is compact on L?(X; bQ%) then (0, s) =
0.

4.15. Indicial operator.

Thus for an element of ¥, % (X; bQ%) the whole of k | bf(X?) appears to
be (and is) an obstruction to compactness. This is not completely surprising
since, under 3, bf(X7?) gets mapped into B C A, so the kernel on X? is
singular at B if x [ bf # 0.

This suggests that this obstruction be looked at directly. To do so con-
sider the map

(4.89) UP(XP07) 3 A ke € I (B, A 0;°Q7).

Here Ap g =ApyNbf ={r=0,7=0,y =y}, and Q% is the restriction to
bf(Xg) of bQ%(Xg) (see (4.47)). In fact there is a canonical identification

(4.90) PQ3 (bf) o PQ7 (X7) ur(x2)-

EXERCISE 4.41. If r,7,y,y are the usual type of coordinates in X? near
bf, so bf = {r = 0}, show that

dr
1—72

dydy’

dr dr
1—72r

gives the canonical isomorphism
bQ(Xg)[bf(Xf) ~ "Q(bf(X7}))

and hence also gives (4.90).
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The apparent increase in order in (4.89), from m to m + %, is a figment
of the convention for the order of a conormal distribution, in particular of
its relation to the dimension. This convention, introduced by Hormander
in [45], may seem a little strange but it is very natural in terms of pull-back
and push-forward operations.

Recall, from (4.13), exactly what the front face is. A more primitive
version of (4.4) can be used to define a compactified normal bundle to X
itself (rather than the spherical normal bundle to B = §X x X in X?). If
p € 0X then

(4.91) N, (0X) ={v e, X;dz(v) > 0}/T,0X

is a closed half-line, forming a bundle over 0.X. Since it is reassuring to
keep things, compact consider instead the product X x [0,00) D X x {0}
and the space

(4.92) X, = [({v € T, X;dx(v) > 0} x [0,00)\{0}] /(10X x BF),

where the factor of BT acts multiplicatively on T), X.
This is very like (4.91), indeed

(4.93) +NOX 5] —[(v, )] € X,
embeds y N, 0X in )?p. Again it follows that
=%,
pESX

is a compact manifold with boundary, diffeomorphic to X x [—1, 1] with a
projective structure on its fibres; it is a natural compactification of L NOX.
It is useful to think of X as a model for X near dX. It has a natural
R *-action, induced by the multiplicative action on the fibres at N9 X. In
(4.92) the R*-action is therefore

(4.94) [(v, )] — [(sv,1)] s> 0.
The two pieces of the boundary will be denoted
0X ~ X x {1} 18X x {1} = (8 X) U (1 X).

The stretching construction described above can be carried out, leading to
the model stretched product X? = (X)Z.
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Figure 7. The blow-down map Sy : )?g — X2 (with R*-orbit).

LEMMA 4.42. The front face of )?g has two pieces,
(4.95) bf(X7) = bfo(X7) Ubfy(X?),
which are each canonically isomorphic to bf(X?).

ProOF: First observe that (4.93) gives a canonical identification of one
part of bf(X?) with bf([4 N9X]?). Thus it is only necessary to show that

bf (X72) = bf ([ NOX]2).
This in turn is clear from (4.13).

As already noted there is a natural Rt-action, M,, on )?, coming from
the multiplicative action on the fibres of 4 N9X. This is generated by a
naturally defined vector field, which will be denoted

0 ~
— X).
e € Vp(X)
The product X2 has the product action which, being generated by x9/0z+

x'0/0x' lifts to a C> Rt-action, M2, on )?g Observe that for an operator
the equivalence of the commutation property and R*t-invariance:

(4.96) MI(Au) = A(Miu) < (M2)*k =rk ¥V a € RT.

a

Thus X2 can be pictured as a square, suppressing the extra factor of (9.X)?.
The action of M2 has orbits passing from one of the ‘diagonal’ corners to
the other. Then )?g is the square with the two diagonal corners ‘cut off)’
i.e. blown up. The action of M2 is transversal to the front faces produced.
Notice that, by assumption, the kernels of elements of the small calculus
vanish to infinite order at boundary hypersurfaces other than the two front
faces. Let \IIZTIYOS()?;Z’Q%) C Wg?os()?;bQ%) be the subspace of invariant
elements in the sense of (4.96).
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PrOPOSITION 4.43.  Restriction to the first piece of the front face in
(4.95), as in (4.89), gives an isomorphism:

(4.97) WP, (X;P08) — {n € 1T (bty, AL PQE); k= 0 at lbl_lrb} .

Since the image space in (4.97) is exactly the same as for the restric-
tion map (4.89) (on one-step polyhomogeneous operators) this defines the
second ‘normal homomorphism’ which will be called the indicial homomor-
phism. Notice that the null space of (4.89) is exactly the space of kernels
of the form ppex, where k € (X bQ%) and ppr 18 a defining function for
bf(X7). Similarly for one-step polyhomogeneous operators:

PROPOSITION 4.44.  The restriction map (4.89) defines, using (4.97), a
map

(4.98) PL(XP0E) 5 A I(A) € U (X;P00)
which gives a short exact sequence

(4.99)
0— pbf\Ijg?os(X; bQ%) %\Ijgﬁ,bos(x; bQ%)
1 m v.bO
I \Ijb,I,os(X; 92) —0
where the first space in (4.99) is fixed by

P W s (X3 707) =

b,os

{“ € U (X;°Q%)i 8 = pfy G, G € W, (X;"Q%)}.

b,os
The indicial operator I(P) of P € \I!{)”OS(X;Z’Q%) is thus an operator,
which is R T-invariant, on the model space X . As will be shown eventually,
the Fredholm properties of P, given that it is elliptic, are captured by
I(P). Once again the map I is actually a homomorphism into the (non-
commutative) algebra ¥} ; _(X; bQ%). For the moment the full force of this
result 1s not needed, however it is useful to observe:

LEMMA 4.45. The passage to indicial operators gives a homomorphism
(4.100) I: Diff} (X;°Q%) — Diff} ,(X;%Q%)
such that if P € Difff (X;°Q%), and A € U (X;"Q3) then

(4.101) I(PA) = I(P) o I(A).
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ProOF: For the identity it is clear that I(Id) =1d. If »,y, 2', ¢ are coor-
dinates as usual and s = @/&’, r = « + &’ are projective coordinates near
the front face of X7 via the left action lifted to X7
0 g 0 . 0
s — —
dx ds ~ Or’ Oy dy;
The same is true for operators on X. Clearly then if A € ¥ (X bQ%) the

b,os
indicial operator satisfies

I(xa% o) = s L1y, (L oay= L)

By specializing A to the identity it follows that

P= > piale,y)(@D) D =

(4.102) Jtlal<k ’
I[(P)= %" pjal0.9)(sDs) Dy,
Jtlal<k

where the coordinates induced by #,y in X are used. This gives (4.100)
and (4.101) follows as well.

Consider for a moment where this map comes from ‘algebraically’. By
definition Diff}(X) is generated by C*(X) and V,(X) acting on C* func-
tions on X. For the ‘coefficients’ there is a natural map defined by restriction
and lifting:

(4.103) COO(X)—»C?O()?), qj)'—)(/)[ax'—)ﬂ*(qj)[ax)Ecoo()?),

where the subscript ‘I’ refers to invariance under the RT-action on X.
There is a similar map for V4 (X). Since all elements of V},(X) are tangent
to the boundary the subspace

2Vo(X) = {V EV(X);V = aW, W € V(X))

1s an 1deal:

Vy(X), 2Vb(X)] C 2V(X), [V, 2 W] = o fW + o[V, W], f = L%

z
It follows that the quotient is also a Lie algebra

C®(0X;°TX) = Vp(X)/2Vp(X).

In local coordinates this process is just freezing the coefficients at the
boundary. The resulting map is a Lie algebra homomorphism

(4.104) Vo(X) - €% (9XPTX).

The range space here can be reinterpreted:
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LEMMA 4.46. There is a natural isomorphism:
(4.105) C=(0X;°TX) =V, 1(X),

where X is the compactified normal bundle to 0X and be](j\(:) C Vb()?) is
the subspace consisting of the R*-invariant elements for the action (4.94).

ProoF: Use of a partition of unity on 90X reduces the question to a local
one, with coordinates z,y. Then both sides of (4.105) are locally spanned

over C*°(0X) by the basis vector fields 0/0x and 0/0y;. Moreover this
isomorphism is clearly independent of the choice of coordinates.

One can give a more invariant proof by noting that both sides of (4.105)
have subalgebras which are commutative and isomorphic to C*(9X). On
the left it is just the span of #d/dz, which is a well-defined section of
"T5x X, and on the right it is the subspace tangent to the fibres of X as
a [—1,1]-bundle over 3X. Both quotients are just C*°(0X;T9X) and the
actions giving decompositions as semidirect products are also isomorphic.

Thus (4.104) can be written

(4.106) I:Vp(X) — Vo s(X)

giving a Lie algebra homomorphism consistent with (4.103). The exten-
sion of (4.106) to the enveloping algebras gives the indicial operator in the
differential case:

(4.107) I : Difff (X) —» Diff} ;(X) ¥ k.

Clearly (4.102) just gives the local coordinate form of this map.

EXERCISE 4.47. Make sure that you can visualize these operations on X7
and that you can see why (4.107) is the same map as (4.100) except for the
density factor.

4.16. General coefficients.

The calculus of b-pseudodifferential operators has been developed purely
for operators acting on b-half-densities. This restriction is completely arbi-
trary and was made up to this point simply to limit the notational overhead.
The extension to the case of operators on sections of general vector bundles
involves nothing essentially new and is described here as much to give a
summary of the results proved so far for the small calculus (and a few not
proved until later) as from real necessity.

Let E/ and F' be vector bundles over a compact manifold with boundary.
Rather than repeat the definition by localization, one can take as the space
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of kernels the space of finite linear combinations of products of kernels in
the b-half-density case and smooth homomorphisms. If Hom(Z, F') is the
bundle over X? with fibres hom(E,, F,/) at the point (z,2’) € X? then

\Ijgjbos(X;EaF):
Pos (X5°08) O (x2) € (XE; 5 Hom(F ©°Q7 % E © ' F)).

b,os

(4.108)

For the case £ = F = Q% the second factor here is just C (X?), so
the definition reduces to the original one in that case. By localization to

neighbourhoods where the bundles are trivial it is easy to extend the results
above. Thus:

A€ (X, B, F) =
A:C™(X; E) — C®(X; F)
A:C®(X; E) — C (X, F)

A:CTF (X E) — C(X; F).
Composition of such operators makes sense, and the results in §5.9 extend
to give
bos (X3 GLF) 0 WP (X5 B, G) C UPE™ (X B, F).

The symbol map gives a short exact sequence

(4.109)
0 — UL(X, B, F) W (X, E, F) 22

b,OS b,OS

ST X, 7 hom(E, F)) — 0,

where hom(F, F) is the bundle over X with fibres hom(FE,, F;) at z € X
and 7: °T*X — X is the projection. Furthermore the symbol map is
multiplicative

bom+m/ (Ao B) = bom (A) - bam/(B),

(4.110) ,
Ae V] (X;G,F), BeW) (X;E;G).

It will be shown below that the indicial homomorphism extends to

) (X3 B, F) — Uy (X B, F),

b,os

where in the image £ and [’ are really the restrictions of E' and F' to the
boundary of X pulled back to the compactified normal bundle X by the
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natural projection from X to OX. The corresponding short exact sequence
is

0 — pU (X5 B, F) e U (X3 B, F)

b,os

— W (X B F) — 0.
This is also multiplicative
(4.111) I(Ao B)=1(A) o I(B),

as in (4.110). There is a connection between the symbol and indicial ho-
momorphisms:

bUm (A)[bTa*XX = bo-m (I(A))[bTa* Xf{
where JypX is one of the boundary faces of )?; this uses the the natural
identification of the b-cotangent bundles of X and X over their boundaries.

EXERCISE 4.48. Show that the definition of the indicial homomorphism
for differential operators, in (4.102), does indeed extend to a well-defined
map

I: Difff(X; E, F) — Diff} (X; E, F)
for any vector bundles E, F. Check that it has the composition property
(4.111). If E and I are Hermitian and X is equipped with a non-vanishing
b-density, v, then the adjoint of an operator is defined by

/<P*f,e>1/:/<f,Pe> VeEC'OO(X;E)’ fECOO(X;F),

X X

Show that the boundary value of v fixes a non-vanishing, R*-invariant,
b-density on X with respect to which the adjoint of a differential operator
satisfies

(4.112) I(P*) = [I(P)]".

4.17. Examples.

Having defined the indicial operator in general, at least for b-differential
operators, 1t is opportune to compute it for the examples considered so
far. Choosing a trivialization of NJX, i.e. the differential, dx, at 0X of a
boundary defining function, reduces X to [1,1] x 0X. Reverting to the
non-compact variable  on NOX, a general element @ € Diﬂ’g?l()?; EF)
is of the form

0 N
Q=>_ Qk(xﬁ_x)k’ Qr € Diff" " (0X; Ejox, Flax).

k<m
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Consider first the exterior differential in (2.21). The choice of trivial-
ization of the normal bundle fixes the section dz/z of *T% X which is
complementary to T*9X C ngXX and so gives a decomposition

d
bTee X = span(i) &T0X.
x
Taking exterior powers
d
(4.113) AR X = AFOX @ AFTIOX, w= o/ + 2 A,
x

Using this the indicial operator of d becomes a 2 x 2 matrix (except for

k=0 and k = dim X)
d 0
x% —d

where on the right d is the exterior differential on the boundary.
Applying Exercise 4.48 to the adjoint, 4, of d with respect to an exact
b-metric 1t follows easily that

=5 ),

provided the decomposition (4.113) is taken with respect to the form dz/x
defined by the metric. Here d on the right is the adjoint of & with respect
to the metric induced on the boundary.

For the Laplacian of an exact b-metric in b-forms it follows that

= (2P o)

where A is the Laplacian on the boundary.

Next consider the Levi-Civita connection of an exact b-metric, acting on
any associated bundle. Here the trivialization should be chosen so that the
metric takes the form (2.11) with respect to it. Then

— J L PO Y. 0o ¢ v bk
(4.114) I(V) = (5, Vo)1 € (X3 B) — C*(X; " T5x X @ )

=C®(X;E) @ C™(X;T*0X © E),
where Vj is the induced connection on the boundary.

EXERCISE 4.49. Prove (4.114).
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From (3.71) the indicial operator of the twisted Dirac operator on an
even-dimensional exact b-spin manifold can be found. It is an operator

I(0E): ¢ (X;%S) — C=(X;F9).

Recalling that over the boundary the spinor bundles are isomorphic to the
spinor bundle of the boundary,

My : £S5 +— Sy over 0X.

In terms of this

(4.115) 1(0%) = MZ" (ix% + 50) My

which is just as in (In.23).
EXERCISE 4.50. Prove (4.115).

This formula can be extended to the generalized Dirac operators con-
sidered in Lemma 3.32 and the Corollary to Lemma 3.34. Consider the
homomorphism (2.97) restricted to the boundary:

(4.116) Veasor € hom(Ejox).

By assumption this preserves the grading. Moreover since the connection is
assumed to be Clifford, it commutes with Clifford multiplication by de and
so induces an isomorphism on the induced Clifford module on the boundary;
denote this by 7. Since the extra term in the indicial operator, as opposed
to the boundary operator computed in (3.72), arises from —icl(df)vxa/ax
it follows that:

LEMMA 4.51.  For the generalized Dirac operators of Lemma 3.32 the
indicial operator is

1050 = (g )

where in place of (4.115)

o
1("0+,p) = Mz (:I:xa—x +7+ 60) My,

4.18. Trace class operators.
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Although it 1s clear from the discussion in §4.14 that a b-pseudodifferent-
1al operator of order —oo is compact only if its indicial operator vanishes,
it is very useful to extend the trace functional to these operators. Recall
that for N x N matrices the trace is the sum of the diagonal entries

N
N
(4.117) tr(A) = ai, A= (ay)
i=1
If A and B are N x N matrices then the commutator is traceless:
tr([A, B]) =0, [A, B]= AB — BA
(4.118) al
[A, Blij = Z (airbrj — birak;)
k=1
as follows directly from the definition. Thus if 7" is an invertible matrix
then

(4.119) tr(TAT™) = tr(4) VA4,
since TAT~! — A = [TA,T71]. The trace is therefore well-defined as a
linear functional on the space of (continuous) linear operators on any fi-

nite dimensional vector space. The Jordan normal form shows that if the
eigenvalues of A are summed with their multiplicities

m(\) = lim dimnull(4 — NF,odec
—00
then
(4.120) tr(A) = > m(MA,
AeC
where the sum is finite for a linear operator on a finite dimensional space.

On a Hilbert space, H, the finite rank operators are those with kernels of
the form

N
(4.121) A=>"¢ifj, e J;€H.

j=1
Conventionally they act through

N
Ap = (o, fi)e;,
j=1
and hence act on the finite dimensional subspace spanned by the e; and
f;. The trace, given by (4.120) on this subspace, is then
N
(4.122) tr(A) = ej, fj)-
j=1
EXERCISE 4.52.  Check that (4.122) holds and is independent of choices.
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The trace norm of A, of finite rank, is

N
(4.123) |Alle = sup > (A, €;)],

j=1

with the supremum taken over all pairs of orthonormal bases, {e;} and
{f;} of H. Again (4.118) and (4.119) hold for finite rank operators. If H
1s a Hilbert space the space of trace class operators on H is the closure of
the finite rank operators with respect to the norm (4.123).

ExXERcISE 4.53.  Check that (4.123) does indeed define a norm. Show
that, for finite rank operators,

[ tr(A)] < [[A]|7e

and hence conclude that the functional tr extends by continuity in the trace
norm to all trace class operators.

If A has finite rank and B is a bounded operator on H then both AB
and BA have finite rank and, from (4.118), tr[A, B] = 0. It can be shown
that

IAB|Te < || Al B

with || B|| the norm of B as a bounded operator. This and a simple conver-
gence argument lead to the following result:

ProrosiTION 4.54.  The trace class operators on a Hilbert space form
an ideal in the bounded operators with tr[A, B] = 0 if A is trace class
and B bounded and hence tr(TAT~1) = tr(A) if A is trace class and T' is
invertible.

The relevant Hilbert spaces here are Sobolev spaces, in particular spaces
of square-integrable functions. For compact manifolds without boundary
the following form of Lidskii’s theorem gives an alternative way of comput-
ing the trace.

ProrosiTION 4.55. On a compact manifold without boundary, X, the
smoothing operators are trace class and

(4.124) tr(A) = /KA(x,x), AeU™®(X;07).

By definition the kernel, K4, is a C* half-density on X?. Restricted
to A C X?, the diagonal, the half-density bundle of X? is canonically
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isomorphic to the density bundle on X so (4.124) makes sense. Thus

QF(X%)ja = Q3(A) @ Q4. (NA)
(4.125) = QT(X) ®Qfﬁbre (T'X)
=02 (X)®Q2(X)
= Q(X).

Here the isomorphisms for densities discussed in Chapter 2 are used suc-
cessively.

EXERCISE 4.56. Prove (4.124) following Hormander [46,47] (or other-
wise). Starting again with finite rank operators, on L%(X; Q%), consider
the Hilbert-Schmidt norm:

1
2

(4.126) IAllas = [ Y lai? | = Z/Iejlz/lf}l2
iJ I X X

in terms of (4.117), (4.121) respectively where, in the latter case it can
also be assumed that ey, ...ey and fi,... fy are (separately) orthogonal
families. Relate this to (4.123) by showing that for finite rank operators

Al < [|Bllus||Cllus, A = BC.

Show that defining the Hilbert-Schmidt operators as the closure of the
finite rank operators with respect to (4.126) gives an ideal which, for H =
L3 (X; Q%), is exactly the space of operators with square integrable kernels
and

1413 = / K (2, )"
X2

Show that if A = BC, with B and C Hilbert-Schmidt, then A is trace class,
and

(4.127) tr(A) = /KB(x,y)Kc(y, z).

Check that any B € ¥~%~¢(X; Q%), € > 0,n = dim X, is Hilbert-Schmidt.
From the composition formula for pseudodifferential operators (or other-
wise) show that any A € ¥~""¢(X; Q%) is trace class and deduce (4.124)
from (4.127).
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This is a lot of work, but i1t 1s important to get to the case of most interest
here, that of a compact manifold with boundary. As already observed the
direct generalization of Proposition 4.55 to the b-calculus does not hold,
namely the operators of order —oo are not in general trace class; they are
not even compact in general.

ProrosiTiON 4.57. If X is a compact manifold with boundary then an
operator A € ¥, % (X; bQ%) is trace class on L*(X; bQ%) if and only if

(4.128) I(A) =0
and then
(4129) TI'(A) = /([(A)[Ab'

Similar remarks apply here as in Lidskii’s Theorem, Proposition 4.55, but
with an important twist. The kernel, written K4 € C* (Xg;bQ%), can
be restricted to the lifted diagonal as a C* section of bQ%(Xg). Recall
that there is an isomorphism similar to that in (4.125). First, since Ay is
transversal to the boundary (by Lemma 4.3),

(4.130) PO (XD)1a, 2 QT (X) © QL (N A),

where the fact that Ay =2 X has been used. In Lemma 4.6 the normal
bundle to Ay is identified with *TX and clearly

O, ((TX) = P03 (X),
so from (4.130)
Q3 (X7)1a, = "QX).

Thus the restriction of the kernel to A defines a section
(4.131) (Ka)ia, € C7(X;°Q).

As discussed in §4.19 a general smooth section of *Q cannot be integrated
over X. However the condition (4.128) means that in (4.131) the section
vanishes at the boundary. So, given (4.128), (Ka)ja, € C®(X;Q) and
(4.129) is meaningful.

PrRoOF: The most important part is the sufficiency, that (4.128) implies
that A € \I!b_OO(X;bQ%) is trace class. From the boundedness properties
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of b-pseudodifferential operators, discussed in the next chapter, it follows
that

(4.132) A L2(X;P03) — H*(X;°Q3) ¥ A € U, (X;5Q3).

The vanishing condition (4.128) means precisely that A = B, where B
Is an element of \I!b_OO(X;bQ%). To prove that A is then trace class, it is
enough to use the obvious extension of (4.124) to manifolds with boundary.
Namely if p 1s large enough then

(4.133) K e C.p(XZ;Q%) — K is trace class and tr(K) = /K[A.
X

Of course the problem is that the kernel of A is certainly not this smooth,
just because of (4.128). However there is a trick to make it so.

Given a positive integer p and a boundary defining function p € C*(X)
for 90X, set

(4.134)

CP(Xp-1) ={u: X — Ciu = Flu,...,uqgp?),
U, .. ug € C7(X), F € 0™ (RITH}.

It is straightforward to check that this space of functions turns X into
a C* manifold, denoted X,-1. As a point-set X,-1 and X are identical.
Differentially however there are ‘more’ C* functions on X,-1; it is in fact
X with the boundary blown up to pth order. Directly from (4.134) the
trivial map

(4.135) Bp: Xp—1 — X is C°.

EXERCISE 4.58.  Show that, if p > 1, (4.135) is not an isomorphism.
However, show that X and X,-: are always isomorphic (but there is no
natural isomorphism).

Although (4.135) is not an isomorphism it does have many properties of
an isomorphism:

LEMMA 4.59. Under 8, each non-vanishing section of *Q(X) lifts to a
non-vanishing C* section Obe(Xp—l), also Vy(X) lifts into V,(X,-1) and
Bp induces an isomorphism

L L2(X;PQ7) «— L2(X,-1; Q3

Br: HE* (X;PQ%) s H®(X,p-1;"07).
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Proor: If p € C*(X) is a defining function for X then g;p = z¥, with
z € C®(X,-1) a defining function for 9X,-1. Thus g3;(dp/p) = pdz/z,
from which the statement about sections of *Q follows. If p,y1, ..., y, are
local coordinates near 9X then x y,...,y, are local coordinates in the
preimage, near 0.X,-1. Then

(6p)*($ax) = ppd,, (6}0)*(83/]') = ayj'

This shows that V,(X) lifts into (and spans) V4(X,-1). Then (4.136) is

immediate.

From (4.136) and the invariance of the trace class, trace class oper-
ators are the same on LZ(X;bQ%) and LZ(Xp_l;bQ%). From (4.132), if
Ae J:\I!_OO(X;bQ%) then

A: LZ(X;bQ%) — pHgo(X;bQ%) =

A: LH(X,-1;°Q7) — 2P H® (X,-1; Q7).
In fact it is easy to see that under 3,
(4.137) U, (X;P0%) — Uy (X, 000).

EXERCISE 4.60. Prove (4.137) by showing that the blow-down map &,,
acting on each factor, extends from the interior of (Xp—l)g to define a C™
map 65: (Xp-1)E — X2

Taking p sufficiently large, (4.133) applies to A € p¥, (X bQ%) as an
operator on X,-1 so A is trace class and the sufficiency of (4.128) for (4.129)
follows. The necessity in Proposition 4.57 will be discussed below.

There are more elementary ways to prove the sufficiency of (4.128). How-
ever this blow-up argument seems to be appropriate technology and also
Bp is an interesting example of a map which in the b-category is close to an
isomorphism.

EXERCISE 4.61. Show that 3, is a b-fibration in the sense of Exercise 4.7
and so 1s the map 65 of Exercise 4.60.

4.19. The b-integral.

Having observed that general elements of \I!b_OO(X;bQ%) are not trace
class it is nevertheless important for present purposes to define their traces!
To do this the first step is to define an extension of the integral, a b-integral
defined on C*(X;®Q). This is a regularization, in the sense of Hadamard,
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of the generally divergent integral. Recall that restriction to the boundary
1s a natural map

C®(X;%Q) 2 ¢ — ¢1ax €C™(0X;Q)
dx
Y- |?dy| — Yrax|dy|.

LEMMA 4.62. Let v € C*°(9X; 1 NOX) be a trivialization of the normal
bundle of a compact manifold with boundary and suppose # € C*°(X) is a
defining function for X with dz-v =1 at 90X, then

(4.138) /qS_hm /(/>—|-log€ /q/)

r>e€

exists for all ¢ € C*°(X;°Q) and depends only on ¢ and v. If v/ = av,
0 < a € C®(IX), is another trivialization then

(4.139) )Zfb— )Zszal loga - (¢1ax).

ProoF: Choose 6 > 0 small so that
{r <46} 20X x[0,0]..

Then, in o <6, ¢ =1 - Lp, p € C®(9X;Q), ¥ € C®(X), so

[o- [ | T

r>€ >4 X r=¢
J
1/)($")_1/)(0") Y
= o+ [—] de | p+ (log=) [ drax
Lo JUTS ]

since (0, ) = ¢ax. Clearly the terms on the right, except the last,
converge as € | 0, so the limit in (4.138) does exist.
If ' = a(x, y)x is another defining function then

/as—/qs:al

z'>e up g3

za(z,y)=¢

)
1/)—/1—) /qb ax loga(0,y) as € ] 0.

xr

This proves (4.139).
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EXERCISE 4.63. In §5.1 the indicial family of a b-pseudodifferential oper-
ator is introduced. For a b-differential operator it can be defined in terms
of the representation (4.102) by replacing #D, by the variable A :

L,(P, A) = Z p],oc(oay)A]D;Ca
Jtlel<k

where the suffix v refers to the choice of trivialization of the normal bundle
which 1s involved. Show that with this definition

14 14 . 1
/Pu~U—/u~P*v:—, ML (P,0)u-v
7
X

Vou,veC®(X;°Q7), P e Difff (X;°Q7).
4.20. The b-trace functional.

Having defined the regularized integral the b-trace can now be defined:

DEFINITION 4.64. If v € C*(0X; + NOX) is a trivialization of the normal
bundle then for A € ¥, ™ (X; bQ%)

v
b—TI'l,(A) = /A[Ab~
X

(4.140)

Now, from (4.138), observe that
/</> /¢> Y ¢ €C™(X;%Q), ¢rax = 0.

Thus from Proposition 4.57 it follows that
Ae T, 7 (X, bQ%)) trace class = b-Tr,(A4) = Tr(A4) V v.
This means that these b-trace functionals
(4.141) b-Tr,: W5 (X;"Q%) — C

are extenstons of the usual trace functional in the following sense. In the
short exact sequence (4.99) for m = —oo the trace functional is defined on
the first space; the b-trace functional is defined on the middle space and
vanishes identically on the space of R*-invariant operators in which the
indicial operator takes values. Thus the diagramme:

pbf\Ijg?OS(X;bQ;) —>\Ijb os( abQ%) ;’\Ijgjbf,os()?;bﬁé)

| = |

C C {0}

commutes.
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EXERCISE 4.65. Check this last statement that
b-Tr, (A) = 0¥ A € ¥; % (X;°Q%).

The trace of a commutator, for trace class operators, is always zero, so
it is reasonable to expect the trace of a commutator to be expressible in
terms of the indicial operators. The fundamental identity established in
§5.5 shows that the b-trace does not vanish on the commutator subspace
and so implies that is not really a trace functional.



Chapter 5. Full calculus

In Chapter 4 the small b-pseudodifferential calculus was used to carry
out the (‘symbolic’) construction of a parametrix. This gives an inverse
up to errors in the small-residual space, ¥, ™ (X; bQ%). The fact that these
operators are not generally compact shows that more needs to be done in
order to understand the mapping, especially Fredholm, properties of ellip-
tic b-differential operators. What is required is the inversion of the other
symbol, i.e. the indicial operator. The Mellin transform can be applied, so
reducing the question to the invertibility properties of the indicial family.
For this the symbolic construction is a convenient starting point.

The structure of the inverse of the indicial operator 1s used as a guide
to the extension of the calculus so that i1t includes a parametrix, up to
compact errors. The composition properties of the extended calculus are
then analyzed and the structure of generalized inverses is discussed.

The extensive discussion of the polyhomogeneous calculus in the latter
part of this chapter leads to a quite detailed description of the kernels of
such generalized inverses. Rather little of this is needed for a minimal proof
of the APS theorem. In particular nothing from §5.18 onward is required,
except for the extension, as in §5.24, of the calculus with bounds to general

bundles.

5.1. Mellin transform.

To examine the invertibility properties of I(P), the indicial operator of
an elliptic b-differential operator as in (4.102), or just an elliptic element

Qc Diﬂ’lgl(}?), it is natural to use the Mellin transform
i —ix dx 500 (¥

(5.1) upmp (A y) = [ u(a:,y)?, u € C™(X).
0

Here v : X < [—1,1]x0X is a (projective) trivialization of X and z is the
corresponding linear coordinate. Thus some defining function p € C*(X)

for 0X fixes v and z is just the linear function dp on the interior of X.
Since

u € Coo()?) < sup | DiTul < oo Y p€EZ,q€ Ny T € Diff"(8X),
X

the integral in (5.1) certainly converges absolutely. Indeed the Paley-
Wiener theorem characterizes the range:

144
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THEOREM 5.1. The Mellin transform, (5.1), is an isomorphism

Coo()?) Su—upy € {U :C — C™(0X) entire;
(5.2) '
sup |(1+ |/\|)k3‘§\TU| <ooVk,j,peENyTEe Diﬂ*(ﬁX)}

| Tm Xl <p

with inverse

1 R
(5.3) wew) =50 [ Punsndy

Im A=r

for any r € R.

EXERCISE 5.2. Review the proof of Theorem 5.1. First introduce s =
log z as coordinate so that (5.1) becomes

oQ

(5.4) uMyl,(/\,y):/e_i“u(es,y)ds.

— 00

Show that u € C® ()?) is equivalent to the faster-than-any-exponential
decay of all derivatives of v(s,y) = u(e®,y). Then recover (5.2) and (5.3)
by reference to the standard results for the Fourier(-Laplace) transform.

Clearly the Mellin transform satisfies the identities

(zDyu)pr,, = Auar, and

5.5
( ) (TU)M,V = TUM,V, T € Diff” (8)()

It follows that if @ € Diff} ;(X)
Q= > (@D D = (Qu)ar, = Quar,
Jtlal<k

where Q(/\) = Z ‘Jj,oc(y)/\ng'

Jtlel<k

(5.6)

If P € Diff} (X) is given by (4.102) then the operator
(5.7) L(PA)= > pia0,y)N Dy =1(P)
Jtlel<k

i1s the ndicial family of P, already introduced in Exercise 4.63. It i1s a
differential operator on 0X depending parametrically, and polynomially,
on A e C.
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5.2. Inversion of the indicial family.

Before proceeding to describe the basic result on the invertibility of the
indicial family, note that I, (P, A) depends a little on the choice of a trivial-
ization, v, of the normal bundle. Any other (oriented) trivialization, v/, cor-
responds to multiplication, on the fibres of N9.X, by some 0 < a € C*(9X),
i.e. ' = #/a. Directly from (5.1) it follows that

Li(P,X\) = a* (P, \)a~"

is given by conjugation with the complex powers. Thus invertibility results
will be independent of the choice of trivialization.

By the order of a pole of a meromorphic function, F, will be meant the
negative of the most singular power which occurs in the Laurent series
expansion around the singular point, i.e.

ord(z) = min {k € I; (A — 2)*F()\) is holomorphic near A = z} :

Thus
(5.8) F(\) = (A —2)77A; + Fo(N)

with Fy holomorphic near A = z. The residue at z 18 A;. On the other
hand, for a meromorphic function F(A), with values in a space of linear
operators, given as the inverse of a holomorphic family Q(A), the rank of
a pole is the dimension of the singular range in the sense that

ord(z)

rank(z) = dim{u =Y (-2,

j=1

(5.9)
u; € C*(0X); Q(A)u(A, y) is holomorphic near z}

Clearly ord(z) < rank(z). For a function with values in C the order and
rank are always equal.

ProposiTiON 5.3. IfQ € Diﬂ”gyl()?) is elliptic then there is a discrete set
spec, (@) = {/\ e Cj(/\) is not invertible on Coo(ﬁX)}

and the inverse is a meromorphic family

[C\ specy (Q)] 2 A — Q(N) ™t € U=F(9X)
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Figure 8. spec,(P), a ¢ —Imspec,(P).

with poles of finite order and rank, with residues finite rank smoothing
operators at points of specy,(Q) (the boundary spectrum) and furthermore

Aj € specy(Q), |Aj] — 0o = |Im A;| — 0.

In fact the proof will give slightly more than the statement in that conti-
nuity estimates on the inverse of the indicial family arise directly from the
discussion. Nevertheless, Proposition 5.3 captures the most important fact,
that the indicial family of an elliptic b-differential operator is invertible for
almost all values (all except a discrete set) of \. We shall also have occasion
to use a more precise version of spec,, :

(5.10) Spec, (@) =
{(/\, k); A € spec,(Q) and @(z)_1 has a pole of order k£ + 1 at /\} :
To prove Proposition 5.3 it is useful to extend the notion of the indicial

family to the small calculus of b-pseudodifferential operators. To do so (5.7)
can first be interpreted in terms of the indicial operator of P, thought of
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as the restriction to the front face of the Schwartz kernel. Recall that the
kernel, in the sense of (4.58), of the identity is given in local coordinates by

ds dr

(5.11) f1a = 3(s = 1)y — v/ )| ——~dydy/|*.

Thus the indicial family arises by taking the Mellin transform in s after
restricting to bf(X?),i.e.r=ax+2' =0

(5.12) L,(1d, \) = /S—Z%(Id)rbf—s =1d.
S
0

For a general element of Diﬂ’g (X; bQ%) the kernel at the front face i1s just
I(P) applied to (5.11). From (5.12) it follows that

(5.13) L(P,) = /S—MK(P)M—S.
S
0

Thus the indicial family, with respect to v, of elements of the small calculus
can simply be defined by (5.13) and this is consistent with (5.6).

LEmMa 5.4.  The indicial family of A € ¥ (X; bQ%) is an entire family
(5.14) C3A—s L(A N € U (IX;Q7)

which, if m < 0, satisfies the uniform continuity estimates:

L(AN): L(0X;Q3%) — H™™(0X;Q7),
1L (A, M lo,—m < Can, |[ImA|< N €N
L(AN): L*(0X;Q7) — L*(0X;Q7),
14, (A, Mllo,0 < Can(1+[A)™, [ImA] <N €.

(5.15)

(5.16)

EXERCISE 5.5. Write down (and prove) appropriate continuity estimates
when m > 0.

Proor: This follows from the representation (4.59) — (4.61) of the Sch-
wartz kernel of an element A € ¥™ (X;bQ%). In (5.13) only the kernel at
bf(X7) is of interest. Away from the lifted diagonal, it is C*° and vanishes
rapidly at the boundary. Thus, directly from Theorem 5.1 it follows that if
Ae T, ™(X; bQ%) then I, (A, A) is an entire family of smoothing operators
n \I!_Oo(ﬁX;Q%) with kernel rapidly decreasing, with all derivatives, as
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|Re A\| — oo in any region where |Im A| is bounded. Such an operator
certainly satisfies (5.15) and (5.16) for any m.

Thus 1t can be assumed that the kernel of A is supported in any small
neighbourhood of the lifted diagonal and, by taking a partition of unity, in
a coordinate patch. The representation (4.61) arises by taking as amplitude

) ) ) d
b(r,y', A, n) = /emogerm.(y_y k(r5,y.9/) = dy
S

since Ay is locally defined by logs = 0, y = ¢'. Since k has support in
s compact in [0, 00) it follows that b(r, ¢/, A, n) is actually entire in A and
satisfies the symbol estimates (4.42), with £ = (Re A, n), uniformly in any
strip where |Tm Al is bounded. In terms of the representation (4.61) the
kernel of the indicial family is just

(5.17) L(A N = (zﬂ)—"/ei<y—y’>~nb(o,y’,A,n)dn
]Rn

so 1s indeed an entire family of pseudodifferential operators of order m
on 9X. The continuity estimates on an operator (5.17) only depend on
the symbol estimates (and the C* estimates on the kernel away from the
diagonal) see [47]. If m < 0 the symbol estimates (4.42) on b :

DD DIb(0, o, A )| < i (L PN+ )" 71y € K co e
give the uniform estimates

D5 DIB(0, 5 A m)| < Cop i (14 )",y € K cc P
| D5 DFb(0, 5/, A, )| < Ca i (14 AN (14 Inl) 7171, o € K cc .

To get the corresponding continuity estimates (5.15) and (5.16), one should
treat I, (A, A) as an element of the space \I!m(ﬁX,Q%) and then as an
element of W°(9.X; Q%).

The indicial operators for the small calculus, given as the restriction of
the kernels to the front face of X7, satisfy

(5.18) I(P o A) = I(P) o I(A), P € Difff(X;?Q7).
From the definition, (5.13), of the indicial families it follows that

(5.19) I(PoA N =1,(P,A) o I,(A ).
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That is, the indicial family gives an entire family of maps
(5.20) TP (X;P0%) 3 A—s LL(A N € U7 (0X;Q7), Ae C

which are multiplicative over Diff} (X; bQ%). The maps (5.20) are actually
algebra homomorphisms, a fact which will not be used for the moment
but which allows the construction below of parametrices to be extended to
elliptic elements of the small calculus.

PrROOF OF PROPOSITION 5.3: A parametrix for P in the small calculus
was constructed in Chapter 4. Namely G5 € \I!b_k(X; bQ%) is such that

PoGy=1d—R,, R, € ¥;(X;"Q7).

Now, using (5.19) to pass to the indicial families, with respect to some
boundary defining function,

(5.21) L(PA) o1, (Gy, A) = Id—1, (R, A).

The remainder term, I, (R, A) is, by Lemma 5.62, an entire family of
smoothing operators which are rapidly decreasing at real infinity. From
(5.16) there is a real function F : [0, 00) —> [0, 00) such that Id —7,, (R, A)
is, as an operator on L(0.X; Q%), invertible for | Re A| > F'(| Im Al). Set

(5.22) (Id —L,(Rs,/\))_1 =1Id-S(A), |ReA| > F(|ImA]).
Then
(5.23) S(A) = L(Rs, \)+ L (Rs, Aol (Rs, \)+ I, (Rs,A\)oS(A)o I, (Rs, A)

from which it follows that S(A) is also a smoothing operator depending
holomorphically on A in the region (5.22) and satisfying the same type of
rapid decay estimates as I, (R, A) in this region.

5.3. Analytic Fredholm theory.

In fact by analytic Fredholm theory it follows that S(A) extends to a
meromorphic function on the whole of C, with values in the smoothing op-
erators. It is perhaps worthwhile to take the time to explain this well-known
idea. First fix any Ag € C at random. Since I, (Rs, Ag) is a smoothing op-
erator on a compact manifold the null space, Ny, of Id —I,,(R;, Ag) acting
on L?(0X; Q%) is finite dimensional and contained in C* (9X; Q%). Fur-
thermore the range of Id —I, (R, Ag) is closed with a finite dimensional
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complement of the same dimension as Ny, N1 C C®(9X; Q%). Thus the
operator [, (Rs, A) can be split into a 2 x 2 matrix:

Roo(/\) ROl(/\)

I (R, \) = Rio(A)  Rii(N)

acting on L?(9X; Q%) = N@N*, where N is a finite dimensional subspace
of C* (90X Q%), Id —Ry1(Ag) is invertible and all the entries are analytic
near Ag. Then solving

(5.24) [Id—I,(Ry,Nu=f € L*(0X:Q3), f=fn+f, u=un+u
is equivalent to solving
(525) [Id _ROO(A)]UN + Rm(/\)u/ = fN, Uy + [Id_Rll(/\)]U/ = f/,

If A is close to Ag then Id —R;1(A) must still be invertible, so «' can be
eliminated from (5.25) and the solvability of (5.24) reduces to that of

(5.26)  [Id —Rgo + Ripo (Id —Ry1)~Yun = fy — Rigo (Id —Ry1) "L f".

Here all the operators act on N, i.e. are finite matrices, depending holo-
morphically on A in |A — Ag| < €. Thus (5.26) is always solvable if and only
if the determinant

(5.27) det[ld —Rgo + Rigo (Id —Ry1) 1] # 0.

The set of A for which Id —7,, (R, A) is invertible near Ay is therefore ex-
actly the set at which the holomorphic function in (5.27) does not vanish.
Starting at the boundary of the set in (5.22) it follows that this must be
a discrete set, i.e. the determinant in (5.27) does not vanish identically.
From this discussion, and (5.23) as before, it follows that S(A) is indeed
a meromorphic operator with finite rank residues at the points where it 1s
singular. From (5.21) the inverse of I, (P, A) is also meromorphic since it
can be written
L(P,A)™ = L(Gs, \) o (Id —S(N)).

The composition properties of pseudodifferential operators on X show
that the residues of the poles of I,,(P,A)~! are also finite rank smoothing
operators.

Not only does this complete the proof of Proposition 5.3 but it allows
the inverse of the indicial family to be written

(5.28) L(PA)™ = L(Gs,\) + R'(\), Gy € U7 (X;4Q3),

with R/(A) a meromorphic family of smoothing operators having residues
of finite rank and decaying rapidly as |ReA| — oo in any region where
| Tm A] is bounded.



152 5. FULL CALCULUS

EXERCISE 5.6. Extend Proposition 5.3 to give a similar description of the
inverse of the indicial family of an elliptic element @ € U, (X bQ%).

5.4. Conjugation by powers.
There 1s a direct approach to the indicial family of a b-pseudodifferential
operator, as in (5.20), which is mentioned in the Introduction. First observe

that W}" (X;bQ%) is invariant under conjugation by complex powers of a
boundary defining function.

ProOPOSITION 5.7. Ifz € C*(X) is a defining function for the boundary
of X and z € C then
(5.29) UP(X:PQ3) 3 A — 277 Ax® € W (X Q)

1s an isomorphism

ProoOF: It is enough to show that the conjugated operator is in the space
U (X; bQ%) as indicated, since the inverse map is obtained by replacing z
by —z. The Schwartz kernel of £ =% Az* is (7) 7% K, where K is the Schwartz
kernel of A. Lifting to X7, the kernel in the sense of (4.54) is just

1—7,-2

5.30
( ) (1 + 7_) s
where & is the kernel of A as in Definition 4.22. Since the multiplier here is
C> and non-vanishing in X7, except at IbUrb, where however all deriva-
tives have polynomial growth, the product (5.30) satisfies (4.59) - (4.61)
too, i.e. (5.29) holds.

These observations can be used to obtain a result intermediate between
Proposition 4.29 and Proposition 4.34:

COROLLARY. Ifk € N then each A € ¥} (X;bQ%) defines a continuous
linear map

A: kaOO(X;bQ%) — kaOO(X;bQ%).
This in turn allows (5.20) to be defined very simply when A = 0. Namely
if 4 € C(0X;Q3) then
(5.31) Aot = Adax € C¥(0X;Q%), 6 € C®(X;°Q%), dlox = ¢

is independent of the choice of ¢. The operator Ay defined by (5.31) is
equal to I,(A,0) for any choice of trivialization v. This follows from the
representation (4.68), which was extended to elements of C* (X;bQ%) in
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the proof of Proposition 4.34. Restricting (4.68) to # = 0 shows that the

kernel of Ay is just
(o]

ds
/K(Oa 5, Y, y/)?

0

This corresponds to (5.13) for A = 0 as claimed.
More generally the indicial family of a b-pseudodifferential operator can
also be determined in this way:

ProPosITION 5.8. Ifz € C*(X) is a defining function for the boundary
and dx - v =1 then the indicial family, defined by (5.13) is also given by

(5.32) L(A,X) = [27* Ax],,

where the boundary operator is fixed by (5.31).

5.5. Commutator identity for the b-trace.

Now that the indicial family of a b-pseudodifferential operator has been
introduced in general, the formula for the b-trace of a commutator men-
tioned in §4.20 can be deduced.

PROPOSITION 5.9. If A, B € U, ™ (X;"Q3) then

oQ

(5.33) b-Tr, ([4, B]) = —% tr (01, (A, A) o I, (B, \))dA.

— 00

ProorF: Tt suffices to prove (5.33) for the elements of a subset the span
of which is dense in \I!b_OO(X;bQ%). Thus it can be assumed that both A
and B have kernels with small supports in X7? and disjoint from Ib(X?) and
rb(X7) (but not bf(X?) since this would not give a dense subset). Consider
first the product A o B. The b-trace is, by definition,

b-Tr, (Ao B) Ihﬁ)l / (AB)ja +loge -y
€
Tr>€
for the appropriate constant ~; here the kernels are again denoted as the
operators. In # > € the kernel is given by a convergent integral (since no
points near the corner of X? are involved):

(5.34) /(AB)rA = / QA(Z,Z')B(Z',Z)

r>e€



154 5. FULL CALCULUS

Let R: X? +— X? be the factor-exchanging isomorphism, R(z,z') =
(2',z). Thus R*A is the kernel of A*. Then (5.34) can be written

(5.35) /(AB)M: / A-RB.

T>€ {z>e}nX?

Here 2 is the boundary defining function lifted to the left factor. Since
x = 0 at bf(X7?), the lift of (5.35) to X7 is trivial and

(5.36) /(AB)M: / A-R*B.

T>€ {e>e}nX?

Of course the same discussion applies to B o A. Since R lifts to an isomor-
phism of X7 exchanging = and 2, the lift of the defining function from the
right factor gives

(5.37) /(BA)M: / B-R*A= / A-R*B.

T>€ {e>e}nX? {e/>e}nX?

The integrands in (5.36) and (5.37) are the same, only the domains differ.
To complete the computation introduce local coordinates (as can certainly
be done by assuming that the supports of the kernels are small). The
supports do not meet 1b(X?) or rb(X?), so projective coordinates can be
used:

ds d 3 ds d 3
x,szﬁ,,y,y’,Aza S aydy |, B =8| = Zdydy
X s T s T

Then the involution R is (x,s,y,y') +— (£,1/s,y',y). From (5.36) and
(5.37) it follows that

/ (AB — BA), 5

r>e€
T x dx ds
= / //a($a5aya y/)ﬁ (gal/say/ay) ??dydy/

X x8X 0 ¢

Here o, /5 have compact support in [0, 00) in s. Replacing a and 3 by their
values at # = 0 gives integrable errors which therefore disappear in the



5.5. COMMUTATOR IDENTITY FOR THE b-TRACE 155
limit € | 0, so

hHl ([(AB — [(BA)[A
el0
r>e€
o0 €s

1 dx ds
. / =) b ue /
(5.38) —Ej}} / //a(O,s,y,y)ﬁ(O,S,y,y) ——dydy

X x8X 0 €

T 1,
= / /IOgS ) OZ(O,S,y, y/)ﬁ(oa _ay/ay)_sdydy/
S S
X x8X 0

exists, without regularization.

The kernels «(0, s, y, y’)|%dydy’|% and 5(0,s,y, y’)|ds—sdydy’|% are, by
definition, those of the indicial operators. Using the inverse of the Mellin
transform they can be written in terms of the kernels of the indicial families
as

dS 1 1 - dS 1
/ 7 — A ! |z
a(O,s,y,y)l—S dydy'| —%/8 L (A X)(y, y')dA| . |

1

dS 1 1 AT TS Ny dS 1
505 ) Sy |} = 5 [ TER )N T

2

The Plancherel formula for the Mellin (i.e. Fourier) transform combined
with integration by parts, shows that

ds 1 . ds 1
(log s)e(0, s, y, y/)|?dydy/| =5 / 5”‘3>\L,(A, M (y, y/)d/\|?|5,
and so allows (5.38) to be rewritten as

lim ([(AB_[(BA)[A

el0
T>€
(5.39) X 0
= T om / /3AIV(A,A)(y,y’)~fu(B’A)(y"y)dA~
X XX —o0

The integrals over 90X just give the trace of the composite operator, so this
is precisely (5.33).

In fact it is most important to have (5.33) when one of the operators,
say A, is a b-differential operator. This is easily proved directly (see Ex-

ercise 5.11) but at this stage it is perhaps more enlightening to deduce it
from (5.33).
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Figure 9. The domains in X7 for (5.34), (5.35).

LEMMA 5.10. The identity (5.33) holds if A € Diﬂ’;n(X;bQ%) and B €
U, % (X;0073).

Proor: In fact, by continuity, (5.33) extends to allow A € ¥} (X;bQ%) if
B e W, (X;Q7).

EXERCISE 5.11. Give a direct proof of Lemma 5.10 by lifting the operator
A € Diff]" (X; bQ%) to an operator A € Diﬂ’;”(Xg;bQ%) from the left factor
and A' ¢ Difff" (Xg;bQ%) from the right factor and observing that the
kernel of [A4, B] is

A-Kg—A'"-Kg on X2

Restrict this to the (lifted) diagonal, in # > €, and integrate to get the left
side of (5.39) in this case. Now (for example working in local coordinates by
assuming that B has small support) show that integration by parts reduces
the integral over > € to one over & = € which, in the limit as € | 0,
becomes an integral over bf(X?). With a little manipulation this integral
can be brought to the form of the right side of (5.33).

5.6. Invertibility of the indicial operator.

The discussion above of the invertibility properties of the indicial fam-
ily of an elliptic b-pseudodifferential operator on a compact manifold with
boundary can be used to examine the mapping and invertibility properties
of the indicial operator itself. This in turn i1s the main step in obtaining an
understanding of the invertibility properties of the original operator.

Recall that the indicial family of P € U}’ (X; bQ%) is defined, in (5.13),
by taking the Mellin transform of the indicial operator, which is fixed by
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the kernel of P restricted to the front face of X7. To show the implications
of this for I(P), first consider some Sobolev spaces on which it should act.
The Mellin transform (5.1) extends by continuity to an isomorphism

(5.40) 1* (%;00%) Qo g2 (2 x 0 Jax 2 - 0F) .

Indeed this is just Plancherel’s theorem applied to (5.4). This isomorphism
can be used to define the b-Sobolev spaces of any order:

(5.41)
() = {“ € L*(X;°Q%);uar, € L2(R; H™(0X; %)),

(14 AP)™ ?upr, € L*(R x 0X; |dA|%Q%)}, m > 0.

EXERCISE 5.12.  Show that the space defined by (5.41) is independent of
the section v used to define the Mellin transform.

In fact this space is actually invariant under arbitrary diffeomorphisms
of X as a compact manifold with boundary and so can be transferred to
X itself. For present purposes it suffices to see this when m € Z. When
m € N, (5.41) can be directly formulated on an arbitrary compact manifold
with boundary as

(5.42)
HP(X;°Q%) ={u € L(X;"Q%);
Diff" (X;°Q%)u C L*(X;Q%)}, meN,

and the coordinate-invariance follows from that of L?(.X; bQ%).

It is convenient to have at hand the negative order Sobolev spaces as
well. For integral orders a similar, but dual, definition to (5.42) can be
used:

(5.43)
HP(X;°Q%) = L*(X;°Q%) 4 Diff; ™ (X;°Q?) - L*(X;°Q%), m € —IN,

The general case will be discussed later using the continuity properties of
b-pseudodifferential operators.

The elementary considerations of Chapter 1 underscore the importance
of considering weighted versions of spaces of this type. Let p; € C™(X)
for i = 1,...,J be defining functions for the bounding hypersurfaces (i.e.
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boundary components) of a compact manifold with boundary and for a =
(a1,...,ap) €RT set

gy (xite) = {ue e (xad)
(5.44)
w=pft - pGuv EHg”(X;bQ%)}, m € 7Z.

EXERCISE 5.13. There is a choice of ordering involved in (5.44) since, for
m > 0, it says exactly:

u € ptHPM(X;°Q7) <= Diff* (X; Q%) [p~ %] C L*(X;"Q7),

where p® is written for p{* - - - p77. Show that in fact the order is immaterial

and )
u € p*HMN(X;°Q%) =

Difff* (X; Q% )u C p°L(X;507) = p*HY(X; Q7).
If m < 0 show that similarly (5.44) is just
u € p*H" =
p~ % € L*(X;°Q%) 4 Diff; ™ (X;°Q%) - L*(X;°Q%), m € —Z,
and that alternatively
u € p*H)' —
u € paLZ(X;bQ%) + Diﬂ’b_m(X;bQ%) ~paL2(X;bQ%), m e —7.

As is to be expected b-differential operators are bounded on these spaces:
LEMMA 5.14. For any k € N each P € Diﬂ’g (X; bQ%) defines a continuous
linear map
(5.45) P p*HPY(X;P03) — p*H R (X;°07)

for any m € Z and any a € R’ where X has J boundary components.

Proor: If a € R7 then conjugation by p® gives an isomorphism (as in
(5.29))

Difff (X;°Q7) 5 P —s p"Pp~° € Difff (X;°Q7).
Thus 1t suffices to consider the case a = 0. First suppose m > k. Then if u €
HM(X;%Q%) and Q € Diff]" ™" (X;°Q%) certainly Q o P € Diffj" (X;*Q3),
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so Q(Pu) € LZ(X;bQ%) and hence Pu € Hg”_k(X;bQ%). Continuity is
immediate from the same argument, so (5.45) follows. The case m < 0 is
similar and if 0 < m < k then it is enough to use (2.20) to decompose P
into a finite sum

P =3 P.Q,, P €Diff" 7"(X;°Q%), Q. € Diffj’(X;"Q%)

since then each Q,u € Lz(X;bQ%), SO

Pu=>_ P(Qmu) € H'*(X;"Q7).

Recall that the boundary of the ‘model’ space, )?, is divided into two
parts. Each isisomorphic to 0.X, which will be assumed connected to reduce
the notational overhead. Let respective defining functions be py and po,
corresponding to the zero section of NJX and infinity in this vector bundle.
If o € R let p* HY ()?, Q%) denote the space with weighting factor pgp7?,
with ‘opposite’ weighing at the two boundary faces. From a functional
analytic point of view the main result concerning indicial operators is:

PROPOSITION 5.15. If € Diff} ;(X;°Q%) is elliptic then

(5.46) @Q: pO‘Hg”()?;bQ%) — pO‘Hg”_k()?;bQ%) iIs an isomorphism
for some (and equivalently all) m if and only if

(5.47) a ¢ —Imspec, (Q) ie. o €ER, o £ —ImA VYV X € spec, (Q).

ProoF: By conjugation it suffices to consider the case oo = 0; for simplicity
suppose also that m = k. Thus, under the assumption

(5.48) spec, (@) NR =0

it needs to be shown that () is an isomorphism from Hg”()?;bfﬁ) to

LZ()?; bQ%). From (5.6) it follows that, after Mellin transformation, @ acts
as the indicial family, @(A). Combining (5.40) and (5.41) it suffices to show
that

ve LB x AX;|d)|? - QF) =
(5.49) 1+ AP FQN) v eL*(R x 0X;|dA|7 - QF),
QN lv eL*(R; H™(9X;Q7)).
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Consider the decomposition of the inverse of the indicial family given by
(5.28). The first term is the indicial family of an element of \I!;is(X; bQ%),
so for this part the analogues of (5.49) follow directly from (5.15) and (5.16).
The second term in (5.28) is non-singular precisely because of (5.48) and
consists therefore of a family of smoothing operators on d.X, depending
smoothly on A and decreasing rapidly as |A| — co. This proves the propo-
sition when & = m. The general case is similar.

5.7. Kernel of the inverse of the indicial operator.

Although this is quite satisfactory from a functional analytic point of
view, 1t is important to see the specific nature of the Schwartz kernel of the
inverse of @ i. e. to consider the action of @' on Dirac delta “functions.” In
(5.13) and (5.28) the inverse of @ is presented as the sum of a term in the
small calculus (the parametrix constructed in Chapter 4) and the inverse
Mellin transform of the second term in (5.28). So consider the smooth
kernel, reverting to compact coordinates:

A
1 147 1de
(5.50) Rﬂg(r,y,y’):ﬁ / (1_7_) R’(/\,y,y’)d/\|dydy’|z|?| ,
ImA=—«

with (5.47) assumed so that the integral is defined.

LEMMA 5.16. For any o ¢ —Imspec,(Q) where @ € Diﬂ”gyl(f(;bQ%) is
elliptic, the integral (5.50), with R’ as in (5.28), gives Ry € C*((—1,1) x
(3X)2;bQ%) having asymptotic expansions at the boundaries T = 1 :

(150" [1og (7

1-— T)]kAzyk(ya y/)a

(5.51) Rg(r,u,y) ~ Z
2€spec, (Q)
k<ord(z)
+Imz>Fa

1—r7

where the coefficients A, i (y,y') are finite rank smoothing operators.

ProoF: Recall the meaning of the asymptotic expansion in (5.51). If ¢ €
C*(IR) takes the value 1 near 1 and vanishes near —1 then (5.51) just means
that for any N € N

o(+£7) [Rﬂs(ﬂ v,y )—

(5.52) 3 (1+T)iz[log(i—:) A k(y,Y)

1—71
N>+ Imz>Fa

e CN([-1,1] x (6X)?),
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1.e. the difference must be N times continuously differentiable with all N
derivatives vanishing at the boundary. The sum in (5.52) is still limited to
z € specy, (@) and k < ord(z). Of course the regularity statement is really

two separate statements, near 7 = 1 and 7 = —1. It is simpler to rewrite
(5.52) in terms of s near 7 = —1, corresponding to s = 0.
Thus it needs to be shown that
(5.53)
1 .
R/B(Saya y/) = o / SZAR/(Aaya y/)
27
ImA=—a
~ Z P [log(s)]kAzyk(y, y'), as s ] 0.
z€Espec, (Q)
k<ord(z)
Imz<—a

Simply estimating the integral near s = 0 gives
|D§Dg,y1R33(5a Y, y/)| < Cls|*7F, s < 1.

If o > N then R € €V ([0,1) x (8X)2). Since the integrand in (5.53) is
rapidly decreasing at real infinity, the contour can always be moved from
ImA = —a to ImA = —N — ¢, ¢ > 0, and hence ensure this regularity,
except that by Cauchy’s formula the residues at all the poles

z € specy (@), —a >Imz > —N

need to be added. These residues give precisely the sum in (5.53), by virtue
of the properties of R'(A) in (5.28). This shows the existence and form of
the expansion near s = 0, i.e. 7 = —1. Changing variable in the integral
from A to —A and replacing s by 1/s, the same argument can be applied to
give the expansion at 7 = 1, 1.e. s = oo. This proves the proposition.

Notice that the expansion at 1b(X?), corresponding to 7 = —1 arises
from the poles of R'(A), i.e the points of spec, (@), in ImA < —a, whereas
the expansion near rb(X?) corresponds to the poles in ImA > —a. One
can think of the choice of weight, i.e. the choice of a € R, as splitting the
A-plane in which spec, (Q) is defined, into the upper part, corresponding to
rb and the lower part, corresponding to 1b.

5.8. Index formula for invariant operators.
Using these results on the indicial operator a simple index formula in the
R *-invariant case can be derived. It is quite analogous to that for the half

line, as described in Chapter 1. Consider the space X and let po and peo
be defining functions for the zero section and co.



162 5. FULL CALCULUS

ProposiTiON 5.17. Let Q € Diﬂ’g?l()?;bQ%) be an elliptic differential
operator and suppose «, 3 € R satisfy

(5.54) o & —TImspec, (@), £ ¢ Imspec,(Q)
then
B> —a=>Q:pfpl HY (X;°Q7) — pfpl, HE ™ (X;°07)

(5.55) is injective with closed range of codimension Z rank(z)

z€specy (Q)
Im 2€[- o, ]

and
B<—a=Q:pspl H ( Xt 2) — pgpl HE™ m(X bQ%)
(5.56) 1s surjective with null space of dimension Z rank(z).

z€specy, (Q)

Imz€[3,—a]
In particular the index 1s, up to sign, the sum of the ranks of the points in
spec, () with imaginary parts between —a and 3 :

ind(Q) = sgn(a + 5) Z rank(z).
z€spec, (Q)
Im z€[~a,B]U[B,~ o]
ProorF: Consider (5.55) first. Since § > —a the weighting at infinity is
‘smaller’ than that at zero in the sense that

pi S HE(X;5Q%) C p* HE(X;PQ7),

where the space on the right 1s the one that appears in Proposition 5.15.
Thus the injectivity follows from (5.46). It remains then to show that
the range is closed and to compute its codimension. As in the proof of
Proposition 5.15, the Mellin transform and the inverse of the indicial family
can be used. To do so a characterization of the range of the Mellin transform
on the mixed-weight space is required. This is again a standard result of
Paley-Wiener type for the Fourier transform:

LEMMA 5.18. Ifa+( > 0 then the Mellin transform gives an isomorphism
(5.57)

pS Pl L3(X ;bQ%) — {uM: Rxi(—a,3) A — up(A) € Lz(ﬁX;Q%);

upr(A) is holomorphic in A and — sup  ||upr(- + ir,-)||12 < oo}
—a<r<f
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A similar result can easily be deduced for the Mellin transforms of the
weighted Sobolev spaces. Thus the range of (5.55) can be found, for sim-
plicity when m = k. Namely 1t consists of those elements in the range of
(5.57) which are of the form upy = Q(A)vas where v € pg‘pgng”()?;bQ%).
This means that

(5.58) var(A) = Q(A) " tuar(A) is holomorphicin —a < ImA < 3

since the regularity follows directly from the mapping properties of ()~}
as before. In fact (5.58) means that all the singular terms in Q(A) ™ ups(A)
must vanish. At each point A € spec, (@) with —av < Im A < 3 this imposes,
by definition, exactly rank(A) linearly independent conditions on wupr(A).
The conditions for different points in spec, (@) are independent. To see
this it is enough to show that there exists ups having a given finite Taylor
series at each of a finite number of points A;, which in turn follows by
superposition with polynomial coefficients, since one can always choose
u € COO([—I, 1]) with wps non-zero at a given point. So the range has the
finite codimension given in (5.55), and is closed.

Note that it could not be concluded that the range was closed if (5.54)
did not hold, and in fact it 1s not closed unless these conditions hold.

The other case, (5.56), can be analyzed by duality. The details are left as
an exercise. However, note that the null space in (5.56) can be computed
precisely in terms of the generalized null spaces of Q(A) for the appropriate
elements of spec, (@) :

{u € ppl, HY (X;PQ5); Qu = 0} =

{u = Z siz(logs)kuzyk;

(5.59) z€spec, (Q), k<ord(z)
—a<Imz< -8

k
ZDZZ)_TQ(Z)UZVP =0,0<r< k}
p=r
Moreover the range of @ in (5.55) can be written
{f € sl HY ™ (X:5Q%)0(f) = 0
YV v e pypsl Hi® (X ,"Q3) satisfying Q'v = 0}.
Here Q' is the transpose with respect to the intrinsic (real) pairing between

the spaces pg‘pgng()?; Q)7) and pao‘p;oﬁHb_k()?; bQ22). Thus (5.59) can be
used to express these linear constraints in a precise form.
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EXERCISE 5.19. Extend Proposition 5.17 to the pseudodifferential case,
i.e. to elliptic elements of 7%, (X, bQ%).

5.9. Composition in the small calculus.

An argument will now be given which proves; using the standard com-
position properties of pseudodifferential operators on compact manifolds
without boundary, the composition properties for b-pseudodifferential op-
erators already hinted at. It should noted, again, that there is a somewhat
‘better’” proof (see for example [63]) which is more geometric and which

generalizes more readily.”

ProrosiTION 5.20. If X is a compact manifold with boundary then
WP(X;P0E) 0 W (X;P03) C wt (X Pad),

ProoF: First it can be assumed that the operators, A € ¥}*(X; bQ%) and
B e \IJ{)”I(X; bQ%), have Schwartz kernels supported in a small neighbour-
hood of the corner of X?. Indeed this can be arranged by appropriately
decomposing

A:A/+A//, B:B/+B//

where A’, and B’ have the support property and A” and B’ have kernels
which vanish near the corner. Then A” and B’ have kernels which are
in a neighbourhood of the complete boundary of X%, X x X UX x dX. It
follows, as in (4.71), that they in turn are the sums of a pseudodifferential
operator, in the usual sense, with kernel supported strictly in the interior
of X? plus a smooth kernel vanishing to infinite order at the boundary
of X?. The latter maximally residual operator maps C_OO(X;bQ%) into
c™® (X;bQ%), and conversely this is a characterization of these operators.
From the standard theory of pseudodifferential operators, the product of
two b-pseudodifferential operators with kernels supported strictly in the
interior of X2 is of the same type. If either operator is maximally residual
then from the regularity properties of pseudodifferential operators so is the
product. Thus it follows that A” o B is the sum of a pseudodifferential
operator supported in the interior of X2 and a maximally residual operator.
In fact the same is true for the products A’ o B and A” o B’ since if B"
or A" is maximally residual, so is the product (using (4.70)) and if B or
A" has kernel supported in the interior then the kernels of A’ and B’ near
the corner are irrelevant, i.e. they can be replaced by kernels which vanish
near the corner. Since

(5.60) AoB = (A'+A")o(B +B") = AoB +AoB’'+A"oB +A"oB"

7 Such a proof can be based on the notion of a b-fibration discussed in Exercise 4.7 and
the construction of a stretched triple product.
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it remains only to consider the product A’ o B’.

Let @ be a boundary defining function. A neighbourhood of the boundary
of X can be identified with [0, €), x dX, and hence a neighbourhood of the
corner of X? with [0, €), x X x [0, €), x 0X. As discussed in Chapter 4 a
neighbourhood of the front face of X? can be identified with the closure of

(5.61) [0,00)s x [0,€)y x X x X, s =x/x’.

Then the kernel of A is, in view of (4.58), of the form
ds dz 1
R4qA = k($a5aya y/)|??dydy/|5a

where k is singular only at s = 1,y = % and is rapidly vanishing with all
derivatives as s | 0 or s 1 co.
The action of the operator can then be written, as in (4.68),

ds de 1
(5.62)  Ag¢(x,y |—dy|2 —// (s,2,y, ¢ )o(x/s,4)— . dy/|?dy|2.

0 8x

Writing ¢ in terms of its Mellin transform gives

(5.63)
d 1
Aol )| il = 5= [ [ barled e whons O ) |yl

R oX

where kps is the Mellin transform of & with respect to the variable s.
Using the variable 2’ in place of # in (5.61) for the kernel of B gives

G.6) Bole)| Tavlt = [ [ KGatss. i ola/sd) S| Tl

08X
Taking the Mellin transform this becomes
1 —i da’ 1
(5.65) (Bo)m (N, y)ldy|® = /k’Eu(l",A,y, Y)Y ) —dy |yl
X

Combining (5.63) and (5.65) expresses the composite operator as

oQ

de 1 ds de 1
ABo(e )| sl = [ [ ¥ eafsisu i Volefsf) S| Tyl

0 o0X
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where the kernel is

(5.66)

1 )
Ve os) = o [ [ ke Vi a A s Ay
R oX

In this integral x and ' are simply smooth parameters. From the prop-
erties of the indicial families, as in (5.14) and the composition formula for
pseudodifferential operators on compact manifolds without boundary ([47]),
it follows that k" is indeed the kernel of an element of \Ilgn"'ml(X;bQ%),
proving the proposition.

EXERCISE 5.21. Note that this analysis is directly modeled on one of the
standard methods of proof of the composition formula for pseudodifferential
operators on R™ by writing one of the operators in ‘left reduced’ form
and the other in ‘right reduced’ form. See if you can directly deduce the
composition formula from the composition properties of pseudodifferential
operators on R”, by introducing log z as a variable, and localizing in the
tangential variables.

COROLLARY. The product formula (5.18) extends to show that the map
(5.60) is a homomorphism; hence (4.101) also extends to show that (4.98)
1s a homomorphism.

It is useful to record an extension of the argument used to prove Propo-
sition 5.20; this will be rather helpful in handling remainder terms later.

LEMMA 5.22. There exists an integer p such that composition of operators
defines a bilinear map

CN(X2;%Q%) x €N (X2;%Q3) c CN P (X2 PQ3) Y N > p
\IIZ”(X;bQ%) X C.N(Xg;bQ%) C C.N_p_m(Xg;bQ%) YN>p+m.

ProOOF: See (5.62) - (5.66).

5.10. Polyhomogeneous conormal distributions.

It has been shown above that the inverse of the indicial operator of an
elliptic b-differential operator has a kernel which is the sum of a term in the
small calculus, plus a C* term which has a complete asymptotic expansion
at the boundaries of bf(X?). This can be taken as a strong indication of
the structure of the kernels of the generalized inverses of elliptic elements of
Diffy" (X bQ%). The notion of a b-pseudodifferential operator will therefore
be expanded accordingly. A parametrix, modulo compact errors, can then
be found in this enlarged calculus just using the inverse of the indicial
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operator. Subsequently it will be shown that a much finer parametrix can
be obtained by using iteration, but at some cost in terms of complexity.

Recall that X7 has three distinct pieces of boundary: the front face,
bf(X?), and the left and right boundary faces. The extra terms added to
the calculus (for the moment) will be C* sections of Q% up to bf(X7), but
having expansions at b and rb. These will be polyhomogeneous conormal
distributions with respect to the boundary. This notion will be considered
in some detail, first with respect to a boundary hypersurface of a compact
manifold with boundary, X.

If p € C*°(X) is a boundary defining function, define

(5.67) ue AL (X) = u~ D p(logp)a ..
(z,k)EE

Here the coefficients are smooth, ai , € C*°(X). The precise meaning of ~
is discussed below.
Consider first the conditions to be imposed on E. Clearly

(5.68) ECCxNy, No={0,1,...}

is a sort of ‘divisor’ (because it will correspond to the singularities of the
Mellin transform, see Proposition 5.27). In order for the sum in (5.67) to
be reasonably sensible it is surely necessary that

(5.69) E' is discrete.

Furthermore all but a finite number of terms should vanish to any fixed
order at p = 0. Thus it is natural to require

(5.70) (z5,k;) € E, |(25,k;)] — 00 = Rez; — 0.

Multiplying p by a positive C* function clearly produces from any power
of log p the lower powers of log p. Since the space is supposed to be inde-
pendent of the choice of p it is also natural to require

(5.71) (k) € E = (s,1) € , L€ o, 0 <1< k.

Generally the space is to be a C*°(X)-module, i.e. to be preserved under
multiplication by C*(X), and this will follow from:

(5.72) (z,k) e = (24 j,k) € E, j €Ny

DEFINITION 5.23. An index set (or sometimes a C* index set for empha-
sis) is a subset (5.68) which satisfies (5.69), (5.70), (5.71) and (5.72).
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The last condition, (5.72) appears because the coefficients in (5.67) are C™
functions. They therefore have Taylor expansions in powers of p. Thus
(5.72) might as well be imposed since it corresponds to the ‘lower order
terms’ in such an expansion. The discussion of the model problem above
takes place on a space (the normal bundle) with an R*-action. Then it
makes sense to choose a homogeneous defining function and demand that
the coefficients in (5.67) be homogeneous of degree zero. In that case it is
not necessary to impose the condition that the space be a C*°(X)-module,
and then (5.72) will be dropped. A set satisfying all the conditions except
this last one will be called an absolute index set. As will become clear below,
C™ index sets often arise simply by adding exponents to an absolute index
set to get (5.72). In doing so rather unpleasant complications arise with
(5.71). This is the conundrum of accidental multiplicities.
If F is an index set then (5.67) is to be interpreted as requiring

uc AL (X)iff Ja, 4 €C(X)V (2,k) €EE

phg
(5.73) st.V N, u— Z p*(log p)ra, € N (X),
(z,k)EE
Rez<N

where CN(X) is the space of functions which are N times differentiable on
X and vanish at X with all derivatives up to order N. The condition (5.70)
means that the sum in (5.73) is always finite. Clearly C*°(X) ~CN(X) =
CN(X) so indeed

€= (X) - B, (X) = AB(X),

phg phg
for any index set because of (5.72). Moreover the same definition can be
used for the space .Afhg(X; F), where F is any vector bundle F' over X
just replacing a, ; € C™(X) with a, 5 € C°(X; F).
It is reassuring to know that there are many functions with non-trivial
expansions and this is shown by a lemma of Borel which in present circum-
stances takes the form:

LEMMA 5.24. Let X be a compact manifold with boundary, let E be
an index set and suppose a, p € C™®(X) is given for each (z,k) € E then

there exists u € Afhg(X) satisfying (5.67) and if v’ € Afhg(X) is any other

element with the same expansion then u' — u € C*° (X).

ProoF: Choose p1 € C([0,00)) with p(z) = 1 on [0, 1]. Tt is straightfor-
ward to show that if ¢, , € (0, 1) are positive constants then for each N € N
the series

(5.74) Z w( L )p* (log p)¥a, 1 converges absolutely in CN(X)

(z.k)eE  F
Rez>N
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provided the ¢, ;. decrease fast enough. More precisely there is, for each WV,
a sequence eij\,;) such that (5.74) holds for that N provided

€k < 621\,;) Y Rez > N.

Since Rez < N eventually because of (5.70), all these conditions taken
together still reduce to only a finite number of conditions on each e, 4.
Therefore these constants can be chosen in such a way that (5.74) holds for
all N. Then the series converges,

u= S u2

(z.k)ee Ok

)pz (IOg p)kaz,k € Aghg(X)a

)

to an element satisfying (5.67).
The essential uniqueness of this asymptotic sum follows directly from the
definition and the fact that

¢ (X) = (e (x).

These polyhomogeneous conormal distributions are intimately associated
to the b-pseudodifferential operators, as will be seen below (see Proposi-
tion 5.59) since each element of the null space of a b-elliptic operator is
polyhomogeneous. For the moment consider the more prosaic fact that
the b-pseudodifferential operators act on the polyhomogeneous conormal
distributions:

ProrosiTION 5.25. If X is a compact manifold with boundary then for
any index set E each A € U} (X; bQ%) defines an operator

A AR (X;P0%) — AB(X;Pa).

ProOF: The proof of (4.70) in Proposition 4.29 actually shows that
A: C.N(X;bQ%) HC.NI(X;bQ%) where N — 0o as N — oo.

Thus it suffices to show that the structure of the finite sum in (5.73) is
preserved, 1.e.

Al x? Z(log )ay | =o° Z(log x)'by,
(5.75) k<l k<l

a; € COO(X;bQ%) — b € COO(X;bQ%).
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In case { = 0 (5.75) just reduces to
(5.76) 2P Art C°(X;P07) — € (X;PQ7)

and so follows from the invariance of U} (X; bQ%), for each m, under con-
Jjugation by complex powers of x, as shown in Proposition 5.7 and from the
fact that the elements of the small calculus preserve C* regularity, shown
in Proposition 4.34. The general case follows by differentiating (5.76) with
respect to z.

If X is a manifold with corners various extensions of .Afhg(X) can be
defined, although fortunately only particular cases occur here (see [63] for
the general case). Let Hy,..., H; be the boundary hypersurfaces of X.
By an index family for X is meant & = (E4,...Ey), where each E; is an
index set associated to H;. If all but one of the £; are the special index set
E ={(l,0);] € Ng}, which will simply be written ‘0’ and corresponds to

Aghg(X) = Aghg(X) =C™ (X)a
then the definition (5.73) can still be used, with p replaced by p,, corre-
sponding to the one non-trivial index set:

E=(Ey,...Ex),E;=0,j#p, thenue A5 (X) <
(5.77) 3 a5 ECP(X)VY (2,k) € Ep st un~ Z p;(logpp)kazyk.
(z,k)€Ep

In the definition, (5.73), of ~ the error term should be taken as the space
of functions which are N times differentiable and vanish to order N at Hp.
More generally the definition can be extended to the case of an index family
E = (F1, ..., Ey) with the property that the boundary hypersurfaces which
correspond to index sets other than 0 are all disjoint. That is,

E=(E1,...,Ey) where E; =0for j ¢ I C {l,... k}, and

(5.78) . .
kel j#k= H;NnH,=0.

The expansions at the ‘non-trivial’ boundary hypersurfaces are then inde-
pendent of one another. Choose a partition of unity

$; €C®(X), jeL, > ¢=1 onX
(5.79) jel

supp(¢;) NH, =0 ifj,pel, j#p.
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Then set

. . . 0 147,
&=EY, BV BD = { 7 foreach je .
Ej l = J-
This is an index family of the type (5.77) for each j € I, so the previous
definition applies and

u € A5 (X F) &= dju€ A (X;F)V j el

This is clearly independent of the choice of partition of unity satisfying
(5.79) since for another such partition, ¢}, (¢} — ¢;)u is always C* and
supported away from the boundary hypersurfaces H;, j € I. Later a case
where the index sets on two boundary hypersurfaces which meet are both
non-trivial will have to be considered.

If £ is an index family as in (5.78) for a manifold with corners, X, let
Y = H; be a boundary hypersurface with j ¢ I, i.e. the index set for
Y = Hj; is 0. Then each element of Aghg(X; F) is smooth up to Y. Now
Y is also a manifold with corners where each boundary hypersurface is a
component of the intersection of a boundary hypersurface of X with Y. Let
F be the index family for Y, which associates to each boundary hypersurface
the index set of the boundary hypersurface of X from which it arises.

LEMMA 5.26. If € is an index family satisfying (5.78) for X and Y = H;,
for some j ¢ I, is a boundary hypersurface of X with index set 0 then with
F defined as above,

(5.80) AL (X F) S ur— upy € AL (V3 F)

1s surjective.,

ProoF: The expansion for u;y required for (5.80) follows immediately

from that for u. To see the surjectivity first extend a given element v €
.Ag:hg(Y; F) off Y into X to be independent of a normal variable near Y.
Multiplying by ¢ € C*°(X) which is 1 near Y and has support sufficiently
close to Y clearly gives an element of Aghg(X; F) which restricts to Y to

give v.
5.11. Mellin transform and polyhomogeneity.

There 1s an intimate connection between the Mellin transform and poly-
homogeneity at a boundary. In Lemma 5.16 the Mellin transform of el-
ements of weighted Sobolev spaces on X was considered. By choosing a
trivialization of the normal bundle these are just results about the Mellin
transform of functions on [—1,1], x X in which X is really a space of
parameters. A useful characterization of polyhomogeneous conormal func-
tions is easily obtained. It has really already been used in the proof of
Lemma 5.14 and has therefore guided the definition of polyhomogeneity, so
should not come as a surprise:



172 5. FULL CALCULUS

ProrPosITION 5.27. Let Y be a compact manifold with corners and let
E=(FE,0,0,...,0) be the index family for [-1,1] X Y which assigns index
set E to {—1} x Y, the trivial index set ) to {1} x Y and the C*° index set
to all boundary faces of Y, then the Mellin transform

um (A, y) = /x_”‘u(

0

xr—1 dx

)

x—i—l’y s

gives an isomorphism from Aghg([—l, 1] x Y') to the space of meromorphic
functions with values in C*(Y) having poles of order k only at points
A = —iz € C such that (z,k — 1) € E and satisfying for each large N

(5.81)  fluar(A )l < On(L+[A)™ in [ImA] < N, [Re )| > Oy,

where || - ||y is a norm on CV (V).

The estimates (5.81) are consistent with the meromorphy of uys since there
are only finitely many poles in any strip ImA > —N.

Proor: If u € CV([~1,1] x V) vanishes with its first N derivatives at
{—1} xY and {1} x Y then the integral defining uss converges absolutely
for |[Im z| < N and, using the identities as in (5.5), satisfies (5.81) with N
replaced by N — 1. In particular the desired estimates hold if £ = §§ with
ups entire. It can therefore be assumed that u has support near {—1} x Y
and the variable  can be used, so that [—1,1] x Y is replaced by [0, 00) X Y,
with u supported in # < 1. The remainder terms in the expansion (5.77)
become arbitrarily smooth and vanish with their derivatives at @ = 0, so
to prove (5.81) it suffices to check the estimates, and the meromorphy, for
each term in the expansion.
Thus it is enough to suppose that u 1s of the form

u= 2" (loga)F(a)iy), v e Co(Y),

where ¢ € C°([0, o0)) takes the value 1 in z < % Then the Mellin transform
of u 1s just

upr(N, y) = if (a%) v (A +iz,y), v=0¢(x)Y(y).

Thus it 1s enough to show that vys has only a simple pole at A = 0 and
satisfies (5.81). The meromorphy property follows by writing the Mellin
transform as

1

o) = v+ [ o) S

1
2
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and noting that the second term is entire. The estimates (5.81) follow from
integration by parts, since

Avyr(A) = wyr(A), w(z) = —ix% (2)Y(y).

This shows that the range of the Mellin transform has the properties
indicated. Moreover u can be recovered from its Mellin transform by (5.3)
for » >> 0. Thus it suffices to show that u, given by this formula from wuss
with the meromorphy property and satlsfymg (5.81) is, in Aphg([ 1,1]1xY).
This is essentially a repetition of the proof of Lemma 5.14, with the terms
in the expansion arising from Cauchy’s formula, so the details are omitted.
5.12. Boundary terms.

With this preamble additional boundary terms can now be added to the
calculus. Let Ej, and Ey, be index sets associated to 1b(X?) and rb(X?)
and set & = (Flp, Frb, 0), corresponding to the ordering lb, rb, bf of the
boundary hypersurfaces of X?. Then define

I, —00,& def 1
(582) \Ijb 7 ( ) Aphg( 5;692)'

In this notation, & = (Ep,, Erb) is thought of as an index family for X2,
Ib=0X x X, rb = X x §X. This is only part of the full calculus; there is
still just a little bit more to come. A parametrix for an elliptic differential
operator will be found in the space

(5:83)  Wul(X:"QE) T W (XP03) + (X000,
Notice that an element A € \I!b Os( ;bQE), or rather its kernel, can be
characterized by taking a partltlon of unity
P1b, brb, da € C(X}), b + ¢ub + da =1
supp(¢) N [rb UA,]

supp(¢rb) N [lb I—IAb]
supp(¢a) N[lbUrb] =

0
0
0
and then _ .
Ae UM (X;P0%) =
PaA € WP (X;P07),

(Epb,0,0) L
b A € A0 (X203,

(0,E,0 2. b1
¢FbAEAphg 4 (Xba Q2)
From this it follows that the intersection of the small calculus and the extra

boundary calculus is just the residual space for the diagonal symbol:

TP (X;P07) N, 0 (X;007) = U °(X;007) YV om, £,
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it
Ay
By, m
By =0 P

Figure 10. Singularities of A € @?’E(X; b)),

5.13. True parametrix.

To get started on the parametrix construction recall what was shown
above about the inverse Mellin transform of the inverse of the indicial family
of an elliptic operator. Restating Lemma 5.16 in terms of the new notation
for polyhomogeneous conormal distributions

(5.84)
Qe Diﬂ”gyl()?;bQ%) elliptic, @ ¢ — Im spec, (@) =
R 1 IAA A — Ela 1
K(s,) = o SPQ)THAA = A+ B, B € ALY (bI(X7);"0%).
ImA=—a

Here A is just the ‘crude’ parametrix discussed in Chapter 4. The front
face bf(X7?) has a natural R*-action and the index family

£(a) = (B, Ewy) = (E¥ (), E™ ()
for bf correspondingly consists of two absolute index sets:

(5.85)
Ei(a) = {(Z,k’);Q(/\)_l has a pole at A = Fiz
of order at most K+ 1 and £ImA < :Fa},

~

Recall that the order of a pole is the least integer [ such that (A+iz)'Q(\)~!
is regular near A = —iz. Using this consider the smallest C*° index sets
containing F¥(a) :

(5.86) Ei(a) = {(z, k) € CxNg;(z —r k) € Ei(a) for some r € No} :
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A little more notation is also useful for the spaces of b-pseudodifferential
operators. Namely let

poe ¥y % (X;003) € Uy = (X003,

with a formal coefficient pyr, stand for the subspace of operators with kernel
of the form pps B, where B is in \Ifb_oo’g(X;bQ%).

ProposiTiON 5.28. If P € Diﬂ’g (X;bQ%) is elliptic then for each o € R
such that o ¢ —Imspec,(P) there exists

(5.87) Go € U RE (x;007),

where g(a) = (E"’(a),E‘(a)) consists of the index sets given by (5.86)
and

(5.88) PoGy=1d=R,, Ry € por¥; 5 (X;07).

Clearly it is necessary to analyze Po (G, where GGy is as in (5.87). Using
the decomposition (5.83) and (4.80), only the action on the new part of the
calculus 1s needed:

LEMMA 5.29. For any index family £ = (E, Frp) and P € Diﬂ’lg (X;bQ%)
composition gives

(5.89) U, F(X:P0%) 5 G —s Po G e Uy ™ F (X;0Q7).

PROOF: Since Difff (X) is generated by V3 (X) which lifts from the left
factor of X? into Vy(X?) (Lemma 4.3) it suffices to show that

Vb(Xg) Aghg(Xg) C Aghg(Xg)

which is rather obvious, since it amounts to the observation that if & > 1

xai (2 (log x)k) = za*(log )" + ka? (log #)*~!

x

and of course xda* /0x = z «*. This, by the way, is a good reason for having
the condition (5.71) on index sets.

Not only does this argument prove the lemma but it gives a little more.
Namely just as in (4.89) the indicial homomorphism can be defined for the
boundary terms by

(5.90)  T:W7(X;7Q2) 3 B Bipxz) € Afy (bE(X});°Q3),
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where on the right £ is interpreted as an index family for bf(X?). Then
I(PoB) =I(P)oI(B), PeDifff(X;’Q%), B e ¥, (X;'Q7),

Here the indicial operator of P is acting as a b-differential operator on the
front face of X7?. This is enough preliminary orientation to begin the

ProOF oF PROPOSITION 5.28: The subspace

pbf\flb_oo’g(a)(X; bQ%) C (I“,b—oo,s(oc)(X; bQ%)

is just the null space of the indicial homomorphism (5.90). Indeed the
extension result in Lemma 5.24 shows that

0 — pue Wy % (X;°07) =0, %F (X;007)

I 1
—— AL (bE(XF);°Q7) — 0

(5.91)

is exact. If A € \I!b_k(X; bQ%) is the ‘small’ parametrix of Proposition 4.38
then G = A + G’ satisfies (5.88) provided

I(P) o I(G') = Id —I(P) o I(A).

That this has a solution of the desired type is the content of (5.84), i.e. it
is only necessary to take I(G') = B, which is possible because of (5.91).

Lemma 5.29 can be extended to the case that P itself is a b-pseudo-
differential operator but to do so requires a further composition formula,
at least extending (5.89) to the case P € ¥ (X;%Q7). This is done in
Proposition 5.46 below.

5.14. Finitely residual terms.

In (5.42) the weighted b-Sobolev spaces were defined for a manifold with
boundary. The definition uses the Lie algebra of smooth vector fields,
Vp(X), in the form of its (filtered) enveloping algebra Diffy* (X ), and the
L? space of b-half densities. The elements are well defined on a manifolds
with corners, such as X? and X7. Replacing X by either of these spaces in
(5.42) defines the weighted Sobolev spaces, at least of positive order. The
blow-down map gives an isomorphism

(5.92) B LX(X%°Q7) «— L (X2;°Q7)

because of (4.55) and this extends to all regularity orders.
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LEMMA 5.30. The blow-down map (4.1) gives an isomorphism
(5.93) B HJY(X2;%Q3%) «— HM(X2;°Q%), ¥V m e M.
ProoF: This follows directly from (5.92) and Lemma 4.10.

EXERCISE 5.31.  Show that (5.93) extends to an isomorphism for all
meEZ.

Since X? has two boundary hypersurfaces (assuming that the boundary
is connected) and X7 has three, there is a corresponding variety of weighted

Spaces:
Pl H (X75007) =
{u € CTO(X%PQ% ) u = piyplv,v € H?”(XZ;"Q%)}

(5.94)

(5.95)
pﬁ‘)pfbpngg”(Xg;bQ%) =
{we e (x3:'0%)u = pi sl iy, v € B (X700},
where «, 3 and c¢ are real constants. Under the blow-down map
Bo b = prePibs By Prb = PotPrb,

so from (5.93), (5.94) and (5.95) it follows that
(5.96) B phpi, HYM (X% 0Q%) «— pit gl pid” HY (X7 507).

The elements of pﬁ‘)pfng” (X% bQ%) can be considered as operators. In
particular the remainder term in (5.88) is of this type. For an index set let

(5.97) inf E = min{Re z; (z,0) € E}

measure the smallest power which can occur, then:

LEMMA 5.32. For any index family €& = (B, Fyp,) for X2

pbf\fl;w’g(X;bQ%) C pﬁ;pfngo(Xz;bQ%) provided
a<inf By, 8 <inf By and a+ 3 < 1.

ProoF: If A is the kernel of an element of the space on the left in (5.98)
then

(5.98)

Diff} (X2;°Q%) A C pft p por L (X2;°27) provided
a < inf By, 6 < inf Epy.
For any ¢ > 0
Pl Pl PEe Lo (XE: Q%) C LP(XE;"Q%),
so A e pﬁ‘;ﬁpfb_ﬁpéfﬁ € H°(XE; ()7) and then (5.98) follows from (5.96).
By definition the space LZ(XZ;bQ%) consists of the Hilbert-Schmidt op-
erators on L?(X; bQ%). Conjugating by powers of p shows that
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LEmMaA 5.33.  The space pﬁ‘)pfngo (X2;%Q32) consists of Hilbert-Schmidt
operators on p® L*(X; bQ%), provided 3 > —a

In particular:

COROLLARY. In Proposition 5.28 the remainder term for the parametrix
satisfies

Ro € pft phy HE® (X 2;,%Q3) provided

(5.99) ) )
a<inf ET(a), B <inf E7(a), a+ 8 <1

and is therefore Hilbert-Schmidt on p®L2(X;"Q7).

5.15. Boundedness on Sobolev spaces.

To use the parametrix effectively it 1s important to know its boundedness
properties, particularly on the b-Sobolev spaces.

THEOREM 5.34. Any A € @?’E(X;bQ%), m € Z, is bounded as an
operator

A: pO‘HéW(X;bQ%) HpﬁHéw_m(X;bQ%), MeZ,

(5.100) , i )
provided 3 < «a, a+1inf Ey, > 0, inf By, > §.

ProoF: The operator can be divided into a part in the small calculus and
a part of order —oco. For the part in the small calculus the elegant symbolic
argument of Hormander ([46]) can be used. Since the small calculus is
invariant under conjugation by complex powers of defining functions, it
suffices to take & = # = 0 in this case and show that

(5.101) A€ UJ(X;’Q7) = A: HM(X;*Q%) — HM7(X;%Q3).

Hormander’s argument reduces (5.101) to the case m = —oo which will
be assumed for the moment, since it has to be checked separately anyway.
Since parametrices have been obtained for elliptic operators it is actually
enough to prove (5.101) for M = m = 0. Then a standard symbolic argu-
ment (see [46]) allows the extraction of an approximate square root, in the
sense that

(5.102) —A*A+C = B*B—R, BeU)(X;'Q3), Re ¥U;®(X;"Q3),

provided C' > 0 is large enough that the symbol of —A*A + C is strictly
positive near infinity (see Exercise 5.35). From (5.102) it follows that

(Au, Auy < Cl|ul]* + (Ru, u).
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Thus (5.100) needs only to be checked when m = —c0.
Using the general composition result it is enough to show that

(5.103) (Ru, u)| < Cllull?,u € € (X;°Q3),

for these operators. By multiplying the operator from both left and right by
powers, 1t also suffices to consider the case & = § = 0 with the assumption
on the index sets transformed to

inf Eu,, inf £y > 0.

If the kernel vanishes at bf(X7?) then Lemmas 5.32 and 5.33 apply. Thus it
can be assumed that the kernel has support near bf. It is also convenient
to divide it again into two parts, one with support away from rb and the
other with support away from lb. In fact it suffices to consider the first
one of these since the other is the adjoint of such an operator so will also
satisfy (5.103). Again using Lemma 5.32 the kernel can be supposed to
have support near bf and « in (5.103) can be supposed to have its support
in < €. Then the representation (4.68) can be used:

(Ru, u) // / s, Y,y Ju(x/s, y)ﬁd—xdydy

0 X x8X

This can be estimated by the Cauchy-Schwarz inequality, using some small

r>0:
ds dx
[(Ru, uy|* < // / 5,9,y )u (l‘,y)lzy?dydy’

0 X x8X

//L/wuwwnﬁ@@@

0 90X x0X

Both integrals on the right are bounded by the square of the L? norm, so
the theorem is proved.

EXERCISE 5.35.  Go through the construction of Bin (5.102). The symbol
of B should be ¢y = (C — O'(A)Z)%. Check that if C is large enough this

is well-defined as a symbol modulo S™°°. Find a self-adjoint operator By
with symbol ¢y and check that

Ry = B2+ A*A—C e ¥} (X;"Q7).



180 5. FULL CALCULUS

Next look for By = Bo+ By with By self-adjoint and or order —1. Deduce
that the symbol of By should satisfy

2600'_1(31) = 0'_1(R1).
Show that this has a self-adjoint solution and that the remainder term
Ry=Bi + A*A-C

is of order —2. Now give a similar argument which serves as the inductive
step to show that for every & € N there exists a self-adjoint By of order —k
such that

2

k
Riepr= |3 Bj| +A"A-C e 1 (X;PQ7).
7=0

Finally use asymptotic summation to construct B satisfying (5.102), mak-
ing sure that it is self-adjoint.

5.16. Calculus with bounds.

Although a considerable effort i1s expended below to keep rather de-
tailed information on the asymptotic expansions of kernels, it is convenient
for various purposes to have available operators satisfying only conormal
bounds. This is quite analogous, for the usual calculus of pseudodifferential
operators, to the relationship between the general symbol estimates (4.42)
and the polyhomogeneous symbolsin (4.43). Although the kernels will only
satisfy conormal bounds at Ib and rb, some smoothness up to bf(X?) will
be maintained.

Let W be the space of C* vector fields on X? which are tangent to
Ib and rb but may be transversal to bf . Choose a non-vanishing section
v e C®(XE; bQ%) and then consider
(5.104)

{K € p B (X2:7Q%) K = K'v, WWK' C i B (XF) Y p €N}

_1
The factor of p.*> is included so as not to force any vanishing of the

elements at bf(X?). Away from bf, (5.104) involves no further regular-
ity than H° (Xg;bQ%). Taking a product neighbourhood of bf with r a
defining function for it, the regularity in (5.104) just requires that K =
I((r,r,y,y’)|%|%, with

(5.105) K(r,-) € C®([0,¢]; H([—1,1] x (0X)%;°Q7).

EXERCISE 5.36. Show that (5.104) is equivalent to (5.105) together with
the condition that ¢ K € H°(XZ; bQ%) if ¢ € C>(X?) has support disjoint
from bf(X7).
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Now for «, 3 € R define A € \Tlgzj’a’ﬁ()(; bQ%) as consisting of the b-half-

densities on X7 such that for some ¢ > 0 (depending on A) pﬁ)‘)‘_ﬁpr_bﬁ_ﬁA
is in the space (5.104). The extra subscript oo is supposed to indicate that
the space is defined by bounds and the inclusion of € > 0 gives a little
‘room’ in the estimates. Notice that

a < inf By, 8 <inf By, <= ¥, 7 (X;°0%) C ¥, 27 (X;°Q3).

In fact the second part of the proof of Theorem 5.34 applies unchanged to
show that

Ae (I“,b—zz,oc,ﬁ(x; bQ%) defines a bounded operator

(5.106) ,
A:p* HY — p*H VY m, M ifo’ + 5> 0and a < o'

It suffices to have o’ + 3 > 0 because of the inclusion of € > 0 in the

definition of the kernels. Now the general calculus with bounds is the sum

of three terms:

ol (X003 =

b,08,00

P65 08) o W 227 (6508 o iy HE™ (X7 03).

b,os

(5.107)

The L? boundedness in (5.106) leads to the composition properties involv-
ing the action of the first two summands on the third:

ProrosiTiON 5.37. If o’ + 3 > 0 and a < o' then composition of
operators gives
1 1 ! 1 1 1
\Ijg?éziﬁ(X§bQQ) 'pﬁapfngo(X2§bQ2) C Pﬁ;ﬁfngo(X2§bQQ)~

ProoF: Multiplying on the left by p‘ﬁl it suffices to consider the case
3 =0. Any B € pﬁ‘;Hgo (X% bQ%) can be decomposed into

(5108) B= Bl + Bz, Bl = ¢(prb)B,

where pyp, is the pull-back of a boundary defining function, p € C*(X), from
the right factor and ¢(p) € C*°(X) takes the value 1 near the boundary
and has support in a collar neighbourhood. The support of By is therefore
disjoint from the right boundary of X2, so it is of the form of a C> function
of the right variables with values in the weighted Sobolev space:

By =by®@v, veE COO(X;bQ%), by € C.OO(X;pO‘IHgo(X;bQ%)).
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The composition can then be written as the action on the left
Ao By = A(by) @ v € C®(X; p° Hi® (X;707)) = pf pS HE® (X25°Q7)

using (5.106). To handle A o By, the product decomposition of the right
factor of X near the boundary and the Mellin characterization of (5.41) can
be used. Taking the Mellin transform in the normal variable of a product
decomposition near the boundary of the right factor allows b; to be written
as the inverse Mellin transform of

(5.109) biar € S(R x OX;p™ Hi* (X;°Q%)) @,

with v a b-half-density on the right factor as before. Here the notation
S stands for the space with all derivatives continuous into the target and
rapidly decreasing as the variable, A — oo. Now the same argument as
above allows A to be applied on the left, meaning in the image space in
(5.109). The result, by (5.106), is in the same space, with o' replaced by
«. Taking the inverse Mellin transform by (5.41) and noting the bound on
the support in the right variables; it follows that

Ao By € pf HE®(X2,507).

This completes the proof of the proposition.

There are obvious properties for the composition of the third summand
in (5.107) using this argument. In fact it is useful to prove a stronger
property. Let R be some ring and suppose I C R is a subring. Then 7
will be said to be a semi-ideal (sometimes called a bi-ideal, see [86], [87],
and also called a corner in [3] - the latter terminology being particularly
unfortunate in the present context) if

(5.110) ABel Xe R= AXBel

On a compact manifold without boundary the smoothing operators form
such a semi-ideal in the bounded operators on L?. An extension of this to
the case of manifolds with boundary is:

PRrROPOSITION 5.38. For any o € IR the subspace pfy p. " Hg® (X2;%Q7) is
a semi-ideal in the space of bounded operators on p*L*(X; bQ%).

PrOOF: As usual, by conjugation, it is enough to take o = 0. So consider
A, B e HrX (XZ;bQ%) and take a decomposition as in (5.108) for B and a
similar decomposition for A but with respect to the left variables (i.e. take
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such a decomposition of A*). Then the composite operator is a sum of four
terms, A; o X o By, for j, k =1,2. Now

As0X 0By € C.OO(XZ;bQ%)

1s very residual. The term A o X o Bs is the adjoint of a term of the type of
As0X o By, so it suffices to consider the latter. Using the Mellin transform
in the right variables, as in the proof of Proposition 5.37 this is easily seen
to be an element of pp° H® (Xz;bQ%). The last term, A; o X o By can be
handled similarly by taking the Mellin transform, and its inverse, in both
sets of variables. To do this, and so complete the proof, a characterization
of the Mellin transform as in (5.41) is needed in two sets of variables. This
is left as an exercise:

EXERCISE 5.39. Show that the double Mellin transform

dx dz’

x x

oo 00
wrt o (N, 1) = / / e )N (e, g, o, o)
0 0

defines, for any m € R, an isomorphism

W=

HY'(X7:°Q7) = {u € LA(X%20% ) upr, € LARE H™((0X)%Q3),

(L+ AP+ V™ Pu, € L(R? x (9X)%; |dA|%|dX|%Q%)},

5.17. Fredholm properties.

The basic Fredholm properties for elliptic operators on weighted Sobolev
spaces are now straightforward consequences of the continuity of the para-
metrix and the compactness of the error:

THEOREM 5.40. If P € Diﬂ’lg(X;bQ%) is elliptic on a compact manifold
with boundary X then for each o« € R and M € R the null space

{u € po‘Héw(X;bQ%);Pu = 0} C pO‘Hgo(X;bQ%)

(5.111)
is finite dimensional
and
(5.112) P p* HY'(X;7Q%) — p" HY'™F(X;°Q3) is Fredholm

<= a ¢ —Imspec,(P).
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A ‘relative index formula’ relating the index of the operator in (5.112) for
different values of the weight « is obtained in §6.2.

ProoF: The sufficiency of the condition o ¢ —Imspec,(P) for P to be
Fredholm follows from the existence of right and left parametrices. From
Lemma 5.4 it follows that P is bounded as an operator (5.112). Moreover
from Proposition 5.28 and the Corollary to Lemma 5.33, applied to P and
to its adjoint, there are bounded maps

Er,Er: pO‘HéV[_k(X; bQ%) — pHM(X; bQ%) s.t.
(5.113) PoFEr=1d—Rg, FL o P=1d—Ry,
Rg, Ry : pO‘Hg(X;bQ%) — p°‘+EH§°(X;bQ%).

It follows that P is Fredholm. First the null space in (5.111) is contained
in the null space of Id —Ry and is therefore finite dimensional, since Ry,
is compact. This proves (5.111) when o ¢ —Imspec,(P). However the
general case follows since the null space can only increase with decreasing
a. Similarly the range of P contains the range of Id —Rp which is closed
with finite codimension, because Rp is compact. Thus the range of P is
also closed and of finite codimension. It follows that P is Fredholm as
stated in (5.112).

So it remains only to prove that the condition on « is also necessary for
P to be Fredholm. Since this is a direct consequence of the relative index

formula proved in Theorem 6.5 below, the proof i1s deferred until after this
has been established.

EXERCISE 5.41. Make sure that you understand why Id — R is Fredholm
if R 1s a compact operator on a Hilbert space.

As a Fredholm operator P has a generalized inverse. Thus for each « ¢
— Imspec, (P) consider the map E, which is zero on the orthocomplement
of the range of P in (5.112) for M = k and maps each element f in the
range of P to the unique solution u of Pu = f which is in pO‘Hf (X; bQ%)
and 1s orthogonal to the null space with respect to the inner product on
pHY (X bQ%). This defines an operator

(5.114) Eo: p“HY(X;°Q7) — p* HF (X;°Q7)
which 1s such that
(5.115) PoEy=1d—Ily, Eqo P =1d—Ily,

where 1y and II; are the orthogonal projections in p® H{(X; bQ%) onto the
null space and orthocomplement to the range of P. The inner product on
the space p®H{ (X bQ%) depends on the choice of defining function for the
boundary and so this affects the definition of E, when a # 0 but otherwise
FE,, 1s well-defined.
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PROPOSITION 5.42.  The generalized inverse E,, in (5.114), (5.115) for an
elliptic element P € Difff (X;°Q%) and a ¢ — Imspec, (P) is an element of
the space of operators defined in (5.107):

(5.116) B, € U, hedaote . b

b,08,00
for some ¢ > 0.

ProoF: By conjugation it suffices to take a = 0 as usual. Consider the
left and right parametrices in (5.113). These satisfy

(5.117)

Ep—Ep=FEpo(PoEr+Rr)—(ELoP+Rp)oERr=FELoRr— RpoFEpg.

This shows that the difference is in the same space, as in (5.99), as the
error terms. Thus the left parametrix is also a right parametrix with the
same type of error term. Let F = Ep be the two-sided parametrix and Rg
and Rj the errors as a right and left parametrix.

Now consider the same computation but involving the generalized in-
verse, E,. Notice first that both IIy and II; are orthogonal projections
onto finite dimensional subspaces of p®H* (X;bQ%) for some € > 0. The
kernels of these operators are therefore sums of products of elements of this
space, so are in pf, po, H7® (X2;°Q7). Now using (5.115) and (5.117)

Eo—EF=FE,oRr—1IlgoF, E—FE,=Follyg— Ry o F,
from which it follows that
Ey,=E+FoRr—1Iljolk —FEollyo Rg+ Ry, o F, o Rpg.

All terms on the right are in the space in (5.116), with the semi-ideal prop-
erty of Proposition 5.38 used on the last term. This proves the proposition.

5.18. Extended index sets.

Although a parametrix for any elliptic b-differential operator has now
been obtained, the construction will be taken somewhat further, resulting in
a finer parametrix and thence a more precise description of the generalized
inverse. This finer description is used in the next chapter to show the
existence of a meromorphic continuation of the resolvent of the Laplacian
of an exact b-metric through the continuous spectrum. It is not used in the
proof of the APS theorem.

Most of the work has already been done, in analyzing the solvability
properties of the indicial operator. It remains to consider the perturbation
theory which will allow this to be used to improve the parametrix con-
structed in Proposition 5.28 by more carefully choosing the extension off
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the front face of X?. As will be seen below this is really the process of
relating a solution of the indicial operator to an approximate solution of
the operator itself.

In the construction of a finer parametrix the index sets in (5.86) will
have to be replaced by somewhat bigger ones which take into account the
horrors of accidental multiplicities, to wit

(5.118)
Ei(a) = {(z,k) € Cx Ng;3r € Ny, Re(z) > +a+r,

+i(z —r) €specy(P) and k+ 1< Zord(:l:i(z — j)}
7=0
To understand where this definition comes from, start with the absolute
index sets in (5.85). To get to (5.118) consider the shifts of these sets by
integral steps in the imaginary direction:
Ei(a) +r= {(z +rk); (2, k) € Ei(a)} , reN.
Then
(5.119) E (o) = | [E%(a) +7]
reNo
are the smallest C*° index set containing E*(a). On the other hand to
define (5.118) the ‘extended’ union of index sets is used:
(5.120) EUF = EUFU{(z,k);3 (z,lh) € E,(2,ls) € F, k=1, +1o + 1} .

Thus FUF = EU F unless ENF # §. The extra term in (5.120) just
consists of the points of £ N F with multiplicity increased to the sum of
the multiplicities, plus one. Since 0 already represents a pole of some
Mellin transform (see Proposition 5.27) this just arises from multiplying
meromorphic functions. The operation of taking the extended union is
commutative and associative. Then (5.118) is just

(5.121) E*(a) = E*(0)U[E* (o) + 1]JU[E* +1]T. . ..

These are the index sets which appear in the parametrix or the inverse
if P is invertible. If P has null space they need to be increased further to
(5.122) E*(a) = E*(0)UE* ().

ProposiTiON 5.43. If P € Diﬂ’lg(X;bQ%) is elliptic and o € R is not an
element of —Imspec,(P) there exists

pa ~—k,goc . 1
(5.123) Go € 0, (X500 st
0,

S.
Id _Eom Eoc S be\ﬁf’b_oo’( E_(OC))(X;bQ%)a

where g‘(a) = +(oz),E_(oz)), is defined by (5.121) or (5.118).
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Notice what is claimed here for the error term, as compared to R, in
(5.88). There is no improvement at bf(X7?); both R, and R, just vanish
there. The improvement is all at the left boundary, Ib(X?), where R, is to

vanish to all orders, i.e. has trivial expansion.
5.19. Formal solutions.

The main ingredient in the proof of Proposition 5.43 is a simple result
on the formal inversion of the operator P, i.e. relating to its action on
polyhomogeneous conormal distributions.

LEMMA b5.44. IfP € Diﬂ’é(X; bQ%) is elliptic and F is an index set then

for each f € Afhg(X;bQ%), there exists u € Aghg(X;bQ%) with

(5.124) Pu— f € C®(X;"Q%), F = EUE*(a),

using the notation of (5.97), provided inf £ > o.

ProOF: By definition f has an expansion (5.67). To solve away each term
in the expansion, a formal solution of

(5.125) Pu = 2*(logz)*v, v € COO(X;bQ%)

is needed for each A € C and each k& € Ny. Suppose for the moment that
k = 0. Then it is natural to look for u = 2*w, w € C* (X;bQ%), although
this will not quite work. From (5.32) it follows that, near 9.X,

(5.126) P(e*w) = 27 I, (P, —iz)w + z*1g(2),

where g(z) € C™(X; bQ%) is analytic in z. Here a product decomposition of
X =[0,¢€)y x 8X has been taken to allow I, (P, —iz) to act on w = w(«, ).
So as a first step towards (5.125) take

Of course there is a problem with this in that A = —iz might be a point
of spec,(P) in which case the inverse does not exist. However, in Proposi-
tion 5.3 it has been established that the inverse is meromorphic, so consider
instead the contour integral:

(5.127) up(x, ) = > ?f 2N+ i2) L (P N)] (0, ) dA,

v(z)
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where v(z) is a small circle with centre —iz traversed anticlockwise. Re-
placing the inverse of the indicial family by its Laurent series gives
ord(—iz)

Z z° (log x) uoj( ), uo; € Coo(ﬁX;Q%).

7=0
Here, as in §5.2, the order of a regular point is taken to be 0, in which case
there are no logarithmic terms. Let uy = ¢(x)uy, where ¢ € C*°(X) has
support in < € and ¢(z) = 1in # < %e. Applying P to (5.127) and using
(5.32) and (5.126) gives

ord(—

Pug = 2°v + Z 2" (log ) vlj( z), vlijCOO(X;bQ%).

Thus, in case £ = 0, (5.125) has been solved up to an error which is one
order lower (has a factor of #) but may have higher logarithmic order. If
k > 0 the same result can be obtained by observing that

. 9 .
2°(logx) v = (a—z)]x’zv,
assuming v to be independent of z. The general result then follows by
differentiating and proceeding inductively over the power of the logarithm.
Thus (5.125) has an approximate solution of the form
ord(—iz)+k '
w= 3 @ (loga)uos(), wey € CUX;QY),
7=0
in the sense that
ord(—iz)+k
Pug = 2*(log J:)kv + Z "t (log ) v ;(0), vy € COO(X;bQ%).
7=0

Of course this is the basis for an inductive solution of (5.125). Applying
the construction repeatedly, and in the end taking an asymptotic sum,
shows that (5.125) does indeed have a formal solution

(5.128)
Pu=z*(logz)*v+ f, u E.Aphg (X ;bQ%), fECOO(X;bQ%),

F(z)=q(+rpireNg p<k+ Z ord(—i(z + j))

0<j<r
—i(z2+4)Espec, (P)

To get the full result it 1s only necessary to sum asymptotically over the
points of E and observe that the resulting index set is given by (5.124).
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5.20. Finer parametrix.

This formal solution can be used to improve the error term at 1b(.X?)
from the parametrix.

PrROOF OF PROPOSITION 5.43: To get (5.88) it was only necessary to
choose G, as in (5.87) with indicial operator, i.e. kernel restricted to the
front face, being the inverse of the indicial operator of P. To get (5.123) the
extension off the front face, near 1b(X?), needs to be chosen a little more
carefully. Near 1b(X7?) take as a boundary defining function s = z/z’ and
then

Ib(X?) = 0X, x X,

where the factor of X is just the right factor of X in X?. Thus the action
of P € Difff (X;°Q%) on a kernel on X2 can be written near Ib as

(5.129) Pr(s,y, 2", y) = Z Pralt's,y)(sDs ) Dyk(s,y, ', y).
r4lo| <k

In particular, as a b-differential operator in s,y it depends smoothly on =’
as a parameter, in the strong sense that the indicial family is just 7, (P, A),
and is independent of x’. This is important because it means that the proof
of Lemma 5.44 applies uniformly, the indicial set and indicial family being
independent of the parameter.

Using this observation, Lemma 5.44 shows that (5.88) can be improved
with G, still given by (5.87). Near Ib(X?) one can use z’ as a defining
function for the front face. The normal operator of (G, is, by choice, a
solution of the indicial equation on bf(X?) near 1b(X?), since the kernel of
the identity is supported at Ay. Thus the extension off bf(X?) can simply
be chosen to be, near 1b(X?), of the form ¢(z')kq(s,y,y’), where ¢ has
small support and takes the value 1 near 2’ = 0. Then the the remainder
in (5.88) will improve at 1b(X?), i.e.

Ra € pori ™ B/ @ B™(@) (x b by

where E’(a) is the smallest C* index set containing E¥(a) N {Rez >
inf(E*(«)}, the leading terms at Ib being absent. Also the support of the
kernel of R, meets Ib(X?) only in a small neighbourhood of bf(X?).

Now apply Lemma 5.44 to (5.129), with ' and ¢’ as C* parameters.
The index set of the result is at worst E’(oz)UE"’(a) which is contained in
E"’(a). This gives a correction term

I, — 00 E+ o 1
# € ety TN (X b,
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with the index set as in the statement of the proposition and support near
bf(X7) N1b(X?), such that if G, is the corresponding operator then

(5.130) P oGl — Ry € pply, 0 () bq3)

since all the terms at Ib(X7?) have been eliminated. Finally then (5.123) is

satisfied by taking (A}OC = (G4 — G, This completes the proof of Proposi-
tion 5.43.

Why is this parametrix significantly better than the one in Proposi-
tion 5.287 The main reason is that an iterative argument can be used
to improve the remainder term even more. Consider the formal Neumann
series for the inverse of Id —ﬁa :

(5.131) Id+ (Ra).
Jj>0

Theorem 5.34 shows that the compositions in the series are all defined.
Of course the powers of Ea have to be examined to get much out of this.
It follows from Proposition 5.38 that the vanishing of the kernel of R,
to all orders at the left boundary makes the powers much better behaved
than just for R, in (5.88). This said, it should still be recognized that the
main reason that the series in (5.131) converges asymptotically at bf(X?),
which will now be shown, is that the kernel of Ea vanishes at bf(X?) and
this is already true for R,. The composition results above for the bounded
calculus will now be refined to show that the terms (Ea)j in (5.131) are
polyhomogeneous.

5.21. Composition with boundary terms.

The rather inelegant and piecemeal nature of the proofs of the series of
results leading up to the general composition formula for the full, polyhomo-
geneous, calculus is one reason why it is preferable to have more machinery
(as in [63]) which allows one to prove these sorts of results with equanim-
ity. Here a more elementary method is used but at the expense of some
obfuscation and the general composition result, (5.153) in Theorem 5.53,
is proved in stages.

First Proposition 5.25 needs to be extended to include boundary terms:

ProposiTION 5.45. If A€ \TI;OO’((D’E)(X; bQ%) and F is an index set with

(5.132) inf E+inf F >0
then
(5.133) A AL (X;0Q%) — AR (X007,
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IfrAe \TI;OO’(E’m)(X; bQ%) then for any index set

(5.134) A ALL(X50Q7) — ADYF(X;°Q7),
ProoF: Consider A € \T!;OO’((D’E)(X;"Q%). If #’ is the boundary defining
function on the right factor and M > inf F then multiplying the kernel

B=Ao("M eCN(X%Q0%), N+1< M —infE.

The operator B therefore maps C°(X ;bQ%) into C.N(X;bQ%). This takes
care of the remainder terms if u € Aphg(X; bQ%) is replaced by 1ts expansion
to very high order.

It is therefore enough to check that Au is polyhomogeneous when w is of
the form #*v with v € C*°(X). By conjugating the operator with the power
the problem is reduced to the action of A, with its index set shifted by z,
on C*(X; bQ%). That is if inf £ > 0 it has to be shown that

(5.135) A: C®(X;PQ7) — €7 (X;°Q7).

For terms in the small calculus this was shown in Proposition 4.34. Thus
it can be assumed that the kernel of A has support near rb(X?) and, by
localizing the support, can be taken to be in a coordinate patch where
t =a/a' x and y,y" are coordinates. Since a C* factor can be absorbed in
the kernel, it is enough to consider the action on the coordinate b-density
and hence just to consider the integral of the kernel:

7 de' [ dt

/ff x, ,y, dy’i,z/ﬁ(l‘t )dy—
it

0 0

The integral converges because of the assumption that inf £ > 0 and the
integrand is C*° in # and y, so (5.135) follows. This proves (5.133).

The proof of (5.134), when A € \TI;OO’(E’m)(X; bQ%) Is similar but a little
more involved. Using Proposition 4.34 it can be assumed that the kernel of
A 1s supported near the left boundary, and also that the support 1s small.
Then the coordinates s = x/2’, &’ and y, ¢’ can be used. The action of the
operator becomes:

dr . 1 dx’ dr = 1
Au(x,y)|?dy|2 = /ﬁ(x/,x/x/,y, y/)u(x/,y/)?dyﬂ?dyﬁ.

The kernel is C* in the first variable; is supported in s < 1, where s is
the second variable and has an expansion at s = 0. The integral certainly
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converges for z > 0. To show that the result is polyhomogeneous, Proposi-
tion 5.27 will be used. The Mellin transform of Awu is

oQ

7 _ dx’ dz
///l‘ Af‘f(w’,96/96’,y,y’)U(ﬂL",y’)?dy’?~
X

0 0

Changing variable of integration from z to s this becomes

0 00 ' ' i d
(5.136) ///S_M(x')_mﬁ(x/,s,y,y/)u(x/,y/)x—l;dy/?s.
X

0 0

Now (z', s,y,y') is polyhomogeneous at s = 0 and C*° in 2’, y, y'. Tt follows
from Proposition 5.27 that the s integral is meromorphic in A with poles
of order k 4+ 1 only at points A = —iz for (z,k) € E. This meromorphic
function takes values in C*° functions in #’,y,y’. This allows the z’ inte-
gral to be analyzed using Proposition 5.27 too, with the essentially trivial
extension that the polyhomogeneous conormal integrand is meromorphic
in the parameter A. The result is that the integral (5.136) is meromorphic
with poles only at A = —iz, where (2, k) € F or (z,1) € F' (which has been
normalized to 0). If z is a power in both asymptotic expansions then the or-
der of the pole is the sum of the orders. The normalization of the index set,
where (z,0) corresponds to a simple pole of the Mellin transform, means
that, now applying Proposition 5.27 in the reverse direction, the index set
of Au is at worst EUF. This proves (5.134) and Proposition 5.45.

The first composition result is for the small calculus and the operators

defined in (5.83).

PrOPOSITION 5.46. The transpose of operators defines an isomorphism
(5.137)
‘I’m’g(X;bQ%) T 2 (X;bQ%), &= (Ew, Ew), & = (Fw, En)

b,os b,os

and these spaces are two-sided modules over the small calculus:
Fm,E by m’ byt
\Ijb,(;s (X’ 92) O\Ijb,os(X; QQ);

(X P0E) 0 BE (X500E) € UE S (X ).

b,os b,0s

(5.138)

PRrROOF: The invariance under transpose, (5.137), just amounts to the ob-
servation that under the factor exchanging involution the appropriate poly-
homogeneous conormal spaces are mapped into each other. Using this ob-
servation, and the corresponding fact for the small calculus (Exercise 4.39),
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reduces (5.138) to either of the two cases. Since, in Proposition 5.20, the
composition properties in the small calculus have already been checked
from the definition, (5.83), it suffices to show that the operators of order
—oo form a module:

Wm

bos(X;°02) 0 W8 (X;°03) C W, ™ (X;°Q7).

It 1s again convenient to split the second factor into pieces so that one of the
representations (4.68) or (4.69) applies. Using the composition properties
of the small calculus, 1t suffices to check separately that

S5

(5.139) WP (X;°Q%) 0 ¥, < FV(x;00%) c ¥, PP (x;0

b,os ’
(5.140) W (X;°Q%) 0 Uy O (x, b0y ¢ ¥ 0 (x: b0

b,os ’

)
).

(NI
ey
ey

In either case it can be assumed that inf £ > 0 simply by conjugating by
a power of a boundary defining function. Thus the representations (4.68)
and (4.69) both apply and the kernel of the composite operator is given by
(5.66). Consider (5.139) since it is somewhat the easier of the two cases.
The kernel of the second factor, B, can be assumed to have support in a
coordinate neighbourhood near 1b(X?). Thus in the representations (5.65)
the kernel &, (z', A, y,¥') is C* in z’, y, ¥’ and meromorphic in A with poles
corresponding to the index set E. It follows that in (5.66) the composite
kernel ks of A in the small calculus is composed with a smoothing operator
in y. The result, &, is therefore the inverse Mellin transform of a smoothing
kernel with the poles corresponding to £ and rapid decrease in A. It follows
from Proposition 5.27 that k” is polyhomogeneous at b with index set E.
This is exactly what (5.139) states.

Now consider (5.140). The difficulty is that the support of the second
factor can be restricted to a neighbourhood of rb(X?) at which the coor-
dinates used in (5.64), namely @’ and s = #/z’, are not admissible. The
problem is 2’, since s can be replaced by ¢ = 1/s. This makes it difficult
to analyze the Mellin transform of the kernel. However the kernel can be
replaced by 1ts asymptotic expansion with error which is arbitrarily smooth
and vanishes to high order at rb(X?), so Lemma 5.18 can be used to han-
dle it. It is therefore enough to consider B with kernel of the special form
t*(logt)* ¢ () (z,y,y'), where ¥ is smooth, and has small support, and
¢ € C ([0, 00)) takes the value 1 near 0. As usual the logarithmic term can
be ignored because it can be recovered by differentiating in z. Then the
identity

(5.141) to(t) =1+t (1) — 1)



194 5. FULL CALCULUS

expresses B = By + By as a sum, the second term of which has already been
discussed in (5.139). The first term, By, has kernel which is a product of the
form (2')? 2~ %4 (x,y,y'). Then Proposition 4.34, applied with parameters,
shows that the kernel of the composite operator is

A o Bz == x_z,l/)/(xa lJa Y, y/)(x/)zﬁ

with ¢/ smooth. It follows that the kernel of A o B is polyhomogeneous,
with index set E at rb(X?). From this argument it might seem to have
additional singularities at Ib(X?) however it is clear that there are no such
terms away from bf(X?), so they must in fact vanish identically, i.e. there
1s cancellation between A o By and A o Bs. This completes the proof of
(5.140) and hence of Proposition 5.46.

Next consider composition between operators as in (5.83) but where the
non-trivial boundary behaviour is only on the ‘inside:’

PROPOSITION 5.47. For index sets E and F satisfying (5.132) with the
composite defined through Proposition 5.45

(5.142) W, (X008 0w TP (003 c w2 (x50,

b,os b,os

Proo¥F: Conjugating all operators by a power it can be assumed that
(5.143) inf £ >0, inf FF > 0.

Using Proposition 5.46 to handle terms where one factor is in the small
calculus, it is enough to consider A o B where the kernels of A and B are,
respectively, supported near tb(X?) and 1b(X7?). Using a partition of unity
the supports of the kernels can also be assumed to be small. Then the
formulee (5.62), (5.63), (5.64) and (5.65) can be used. Notice that these
representations depend on the fact that #, s = '/z, y and ¢’ are coordinates
near rb(X7?) and 2/, s, y and y’ are coordinates near 1b(X?). Now in (5.63),
using Proposition 5.27, kyr(z, A, y,¢') is C* in #,y,y and meromorphic
with rapid decay at real infinity in A and poles only at A = —iz, of order
k+1if (z,k) € E. Similarly k4,;(2', A, y,y') in (5.65) has poles only at
A = —iz of order { 4+ 1 if (z,]) € F. This results in (5.66) as the formula
for the kernel of the composite, expressed as the inverse Mellin transform
of the product of the Mellin transforms. The product kjrk}; has poles
corresponding to both index sets, with those from E in ImA > 0 and
those from F in Im A < 0. As in the proof of Lemma 5.44 the contour of
integration in the representation (5.66) can be moved off the real axis to
find the decay as s — 0 and s — oo of k”’. The conclusion is that k" has an
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expansion at Ib with powers from F' and at rb with powers from £. This is
just the content of (5.142), so the proposition is proved.

Next suppose the operators both have their non-trivial boundary terms
on the same face. Using the invariance under adjoints in (5.137) it is enough
to consider singularities on 1b(X?) :

PrROPOSITION 5.48. For any index sets E' and F'
(5.144) W, D (. bq)ol; ) (x bqry ¥y DDy bqby.

Proor: Conjugating by a power of a boundary defining function (5.143)
can again be assumed. Without loss of generality the two factors, A and
B, can be taken to have small supports near 1b(X?). The representation
(5.65) is therefore available for the second factor, but (5.63) is not directly
useful because the kernel 1s not supported in the region where & has non-
vanishing differential (on X7.) Initially the kernel k of A in (5.62) must be
treated as a function of ', s = z /2, y, y’ which is C*° in s > 0, has support
in s < 1,2’ < € and in a coordinate patch in y, v .

As before the dependence on 2’ is the problem. Let ¢ € C2°([0,>0)) be
such that ¢(z) and ¢(s) are both identically equal to 1 on the support of
k, so k can be replaced by ¢(x)¢(s)k. Then replace k by its Taylor series
at 2’ = 0, which is the front face, bf(X?). The individual terms are of the
form

(5.145) (@) kp (0,5, ,y)(x)(5), kp = (%) k

The support may be larger than that of k& but the explicit dependence on z’
has been removed. Let A, = A o(z')? be the operator with kernel (5.145).
The composite operator A, o B = A} o B (2')P, B, = (z)P¢(s)B(2')~F can
now be analyzed using (5.65), with k replaced by k,(0, s,y, v')¢(2) and &'
the kernel of le7' The poles of the Mellin transform, ks, arise from the
powers in F and those of k' from the powers in F shifted by k, hence also
from F. Thus the product of the Mellin transforms in (5.66) has poles from
both £ and F. At common poles the order is at most the sum of the orders
of the poles. It therefore follows from Proposition 5.45 that

Ao By e Uy PN (b)),

This is no less true when the extra factor of (#')P is applied to the right.
Thus the contribution to the product from the individual terms, (5.145),

in the Taylor series of the kernel of A at bf(X?) are all of the expected type.

So consider the remainder term. Thus it may be assumed that the kernel of
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A vanishes to some high order, N, at bf(X?). Now replace k in (5.62) by its
expansion at Ib(X?), up to terms which vanish to order N. The remainder
term therefore vanishes at bf and 1b to order N. Replacing N by 2N the
product from the remainder can be written A’ o B’ where, for the kernels,
B' = NV B and A’ vanishes to order N. Thus, remembering (5.143), both
factors now have kernels in C.N(Xg;bQ%). Lemma 5.18 therefore applies
and shows that the composite is increasingly smooth on X7 and vanishes
to high order at all boundaries.

Thus it is only necessary to consider the finite terms in the expansion of
the kernel of A. These can be taken to be of the form

(5.146) (&)Y 6 (x)g(s)s* (log ) v (y,v/'), (2.k) € F,

where 9 is C*°. As usual it suffices to take £ = 0 and differentiate with
respect to z to recover the general case. The identity (5.141) replaces
A, with kernel (5.146), by a sum, A’ + A”, where the kernel of A’ is
(&")YN(x/2")?¢(2)¥(y,y') and A” has support away from Ib(X?). Propo-
sition 5.47 applies to the composition A” o B. The explicit ' dependence of
the kernel of A’ can be removed, by absorbing the factor of (z/)" in B, so
the composite A” o B can be analyzed using (5.65). The conclusion then is
that all terms are polyhomogeneous on X7 and smooth up to bf(X7?). All
the terms in the expansion at Ib(X?) arise from FUF. There are spurious
terms at rb(X?) for the composite kernel, but these are certainly absent
since the kernel of the composite clearly has support disjoint from rb(X?).
This completes the proof of Proposition 5.27.

5.22. Residual terms.

These Propositions together handle composition of the operators defined
by (5.83) except when the first factor has singularities on 1b(X7?) and
the second factor on rb(X?). For this case see (5.154). However Propo-
sition 5.47 does cover the terms in the series (5.131). Applying (5.144)
repeatedly shows that

(Ra) € ey~ P (3 08),
where the index sets I; are defined inductively,
Ei=E (o), Ejy1 — 1= E;UE" (a) - 1).

Here, if (z,k) € F then (z — 1,k) € F — 1 and conversely. Tt is important
to note that these index sets stabilize as 7 — oo, indeed

Ej—>E_(oz) as j — oo
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~

meaning that eventually £, N K = E~ (o) N K is constant for any compact
set K. The series of kernels in (5.131) can therefore be summed as a Taylor
series at bf(X7) giving

Sy € pbf\i; _(Q))(X;bQ%) such that

5.147 P B ] 1
( ) SO( - Z(Rog)] S p{;;,l—l\llb_oo’(@’E (a))(X’bQE)

This in turn means that

(5.148) (Id —Ro)(1d +8,) — 1d € () plp ¥, >0 F D (x;bq%),
J>0
Here the error term is getting rather benign, so the composite operator

(5.149) G" = Gy o (Id+5,),

with (A}OC from (5.130), is a rather precise parametrix. Notice that in the
composition (A}OC 05, there are non-trivial index sets on the ‘outside,” mean-
ing on the left for the first factor and the right for the second factor. Such
compositions have not yet been considered. To fully understand them re-
quires a little extra work even though the fact that the error term will be
as in (5.148) is already established. This leads to the final extension of the
polyhomogeneous b-pseudodifferential operator calculus that will be made
in the elliptic setting.

To make this final extension, the discussion of polyhomogeneous conor-
mal distribution above needs to be expanded to include a special case where
the separation condition, (5.78), fails. Indeed the case is X? with its two
boundaries, 1b(X?) = X x X and tb(X?) = X x §X. Let £ = (E, F) be
an index family for X? with E the index set for Ib(X?) and F the index set
for rb . The objective is to define Al(ﬁng) (X?). The special case AI(D%;E)(XZ)
has already been defined and naturally the existence of an expansion

(5.150) un > piy(log pi)us g, us ik € ADD (X7)

(z,k)EE

is to be expected. However the meaning of this asymptotic expansion,
1.e. the nature of the remainder terms, needs to be specified carefully. The
spaces of polyhomogeneous conormal distributions have natural topologies,
given by C® norms on the coefficients and C"¥-norms on the remainders
in the expansions. Thus, using the fact that X? is a product, the space
CN(X;Aghg(X)) of N times differentiable functions on X with values in
.Aghg(X) and with all derivatives up to order N vanishing at the boundary
can be defined. These are the remainder terms allowed in (5.150):
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DEeFINITION 5.49.  The space Al(ﬁng) (X?) consists of those extendible
distributions on X? which have an expansion (5.150) with coefficients in

./41()%’;) (X?) in the sense that

u— > piv(log p) usp € CV (X5 AL (X)) ¥V N €I,

(z,k)EE
Rez<N

Certainly these spaces are local C*(X?)-modules, so it makes sense to
define the spaces of conormal sections of any vector bundle over X? as the
finite sums of products:

E.F 2, _ J(EF 2 2,
A (02 0) = AT () e (%)
E.F 2 2.
= A (X?) @ew(x2) € (X2 0).
Of course it would be reassuring to know that these spaces are invariant
under diffeomorphisms and are also independent of the choice of ordering
of the two boundaries. For a more detailed discussion of these niceties
the interested reader is referred to [63]. Tt is straightforward, just as in
the proof of Lemma 5.22, to show that any series of coefficients wu,; €

AI(D%;) (X?), (2,k) € E, can appear in the expansion (5.150) of an element
NS Al(ﬁj:) (X?) and that this expansion determines the sum uniquely up

to an element of

0, ,
AGD (x2) c ALD (x?),

this being the subspace with all derivatives vanishing on 1b(X?).

EXERCISE 5.50. Prove this asymptotic completeness result and use it
to prove that the space is indeed independent of the ordering of the two
hypersurfaces by showing that the elements always have an expansion ‘at
the other boundary.’

Now these spaces can be used to define the third part of the polyho-
mogeneous b-pseudodifferential calculus, although these kernels really have
nothing much to do with the ‘b0’ nature of the calculus but are rather uni-
versal residual terms:

_ 1 1
TH(X;P07) = AL L(XP°Q7), £ = (B, Ew).
This is consistent with the notation for the maximally residual operators
in Definition 4.30, provided the superscript @ is taken to mean that both
index sets are trivial. The ‘“full calculus’ is then the sum of the three terms
considered so far.
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DerFINITION 5.51. The ‘full calculus’ of (one-step polyhomogeneous) b-
pseudodifferential operators on a compact manifold with boundary corre-
sponding to an index family & = (E,, Ew,) for X? consists of the operators
of the form

(5.151)
TS (X P0%) = WP (X5 P0%) 4+ 0,07 (X PQ%) + 07208 (X °Q5),

with the three terms defined in Definition 4.22, (5.82) and Definition 5.49
respectively.

Notice that in terms of the bounded calculus

UE(X:PQE) C U (0, B) <= a < inf By, 8 < inf Eyp.

b,os b,08,00

5.23. Composition in general.

So far various pieces of the composition formula have been checked. Now
they can be put together, and extended somewhat, to arrive at the general
result. First consider the action of the operators:

PROPOSITION 5.52. If € is an index family for X? and F is an index set
for X with inf E, +1inf F > 0 then

(5.152)

A€ WE(X;P0%) = A AL (X;°Q7) — AT, (X;°Q%), G = E,0F.
PRrROOF: The operator A is a sum of three terms as in (5.151). The second
term is a sum of two terms to which (5.133) and (5.134) apply, so this part
satisfies (5.152). The first term is in an element of order m in the small
calculus to which Lemma 5.24 applies. This reduces consideration to an
element of the third, residual, space in (5.151). The expansion of the kernel
at the left boundary then gives the expansion, i.e.

Aeu o8 (X;PQ7) =

A: pO‘Hg”(X;bQ%) HAEQE(X;ZJQ%), a+inf Eyp >0, ¥V m.

This shows when composition is defined and then

THEOREM 5.53. If £ and F are index families for X? with inf By +
inf Fi, > 0 then
(5.153) WS (X PE) 0 W T (X5 P0%) C up i (X P,

Gy = EpUFy, G = EnpUFy.

ProOF: When the two operators are decomposed as in (5.151) nine terms
result. The number is however easily reduced. First note:
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LEMMA 5.54.  The space \I!ml’g(X;bQ%) is an order-filtered two-sided

b,os

module over the corresponding small calculus ¥, ™ (X; bQ%).

PrOOF: Proposition 5.46 takes care of the first two terms in the decompo-
sition (5.151), so it suffices to consider composition of the small and residual
terms. This follows from Proposition 5.25. In fact if A € ¥7*(X; bQ%) and
B ey~ E (X, bQ%) then expanding B at rb(X?) expresses it as a sum
of terms in Afhg(X;bQ%), with coefficients in Aghg(X;bQ%) on the right
factor of X and a remainder term which 1s smooth with values in the poly-
homogeneous space. Thus Proposition 5.25 shows that A o B has a similar
expansion so is also in ¥~ FF) (X bQ%).

Thus all the terms in (5.153) with one factor in the small calculus have
been controlled, leaving only four terms. Taking into account the behaviour
under adjoints, which allows the order of the factors to be changed, this
1s reduced to three types of terms. The terms where one factor is residual
can be handled as in Lemma 5.44, with Proposition 5.45 replacing Propo-
sition 5.46.

Taking into account Propositions 5.47 and 5.27 it only remains to con-
sider the case where the non-trivial expansions are on the outside and to
show that

5.154
( ) c \’I‘}b—oo,(E,F)(X;bQ%)+\Ij—oo,(E,F)(X;bQ%).

Note that the second, residual, term must be included here, as opposed to
(5.142) and (5.144).

To prove (5.154) it can further be assumed that the two factors have ker-
nels supported near the front face, and even near the appropriate boundary
hypersurface of the front face, left for the left factor and right for the right.
Proceeding as before the kernel of the right factor will be replaced by its
expansion, with remainder; at the right boundary. So choose a boundary
defining function and denote its lift from the left factor as & and from the
right factor #’, as usual. Let ¢ € C®(R) be equal to 1 near 0 so that
both kernels are supported in the region where ¢(z)¢(z') = 1. Now the
expansion gives

B =DBY + By + By
&'x, s, y,9) = &% (2, 1/s,y,y)

> () (log ) k(@ y y)0()6 () + iy (a5, 0. 1)).

Rez<N
(z,k)EF,

(5.155)
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Here the first term is supported near rb(X?), i.e. s = 0o, and is N times
differentiable with derivatives to order N vanishing at rb(X?). The sum
forming the second term is the expansion, extended as a power of s all the
way to the left boundary. The third term corrects the fact that the sum is
extended globally so in fact has support disjoint from rb(X?); its (finite)
index set at 1b(X7) reflects the fact that it has the negatives of the powers
from the right boundary 1n it,

Ky € Uy o@D (x: b3y Gy = {(z,k);—Rez > —N, (2, k) € Fu}.

The point of the decomposition (5.155) is that Proposition 5.47 can be
applied to the composition with the third term to see that

Ao B;\f € \igoo’(HN’m)(X;bQ%), Hy = EpUGKN.

For the second term the fact that the kernel is essentially a power of « /2’
can be used. This means that the variables ¥ can be regarded as parameters
and the composition treated as simply the action on a polyhomogeneous
conormal distribution, 7% with an appropriate logarithmic factor, using
Proposition 5.47, so

AoBy= Y. > C.u@)(loga’) o),

Rez<N 0<I<k

(z,k)EF,
AT (x2 b8y = BT (—2,
Zle phg ( ) )’ N = Lilb {( 2y )}

In particular this term is residual. Finally the first term in (5.155) con-
tributes a remainder term, in the sense of an N times differentiable function
with values in A hg( ;bQ%), to the residual kernel. This proves (5.154)
and hence completes the proof of Theorem 5.53.

5.24. General bundles and summary.

As for the small calculus, discussed in §4.16, the extension of both the
calculus with bounds and the full polyhomogeneous calculus to arbitrary
vector bundle coefficients is straightforward, and essentially only a matter
of notation. Thus the spaces themselves are defined as in (4.108) for an
index family & for X? and any two vector bundles F and F over X :

V(X B )=
(5.156) 1 1 :
Uy (X;7Q%) @ee (x2) CF (X33 B3 Hom(F © "Q72, E© P07 %)),

As before the shortened notation

V(X E) = (X B E)

b,os b,os
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1s used when the two vector bundles coincide. The calculus has the obvious
transformation property under the passage to adjoints with respect to inner
products on the fibres and a b-density on X :

(5.157) VS (XE F) 3 Ae— A" e W7 (X FLE),
&= (Ew, Ew), F=(Fuw, En).

Note that the behaviour of the index sets here depends on the fact that the
adjoint 1s taken with respect to a b-density on X.

EXERCISE 5.55.  Work out the behaviour of the general calculus under
conjugation by powers of a defining function and deduce what happens
to the index sets if the adjoint in (5.157) is taken with respect to a non-
vanishing density in the usual sense.

The definition, (5.144), is the same as requiring that on subdivision by
a partition of unity on X? subordinate to a covering on which the bundles
are trivial the kernels become matrices with entries in the space in (5.151).
This localization can be used to extend all the results above to the general
case. Thus Proposition 5.52 gives the action on polyhomogeneous conormal
distributions and Theorem 5.34 on weighted Sobolev spaces:
(5.158)

Ae Ul (X, B F) =

b,os

A AG (X5 B) — ALLL(X; F), if inf G + inf By, > 0, H = GUE,

A pHM (X5 B) — pPHM=™(X; F), if o+ inf By, > 0, 8 < inf Ey.

Notice that the b-Sobolev spaces are based on the L? space with respect to
a b-density on X.
The composition formula then follows by localizing Theorem 5.53:
V(X G F) o W T (X B G) € U 9(XL B F)

provided inf Ey, + inf Fiy > 0, G = (EwUF,, EmpUF ).

EXERCISE 5.56.  Strictly speaking the mapping property on Sobolev
spaces has only been proved for integral orders (including that of the opera-
tor). Thisis all that is needed in the discussion of the inverses of differential
operators but it is worthwhile to consider the general case, to see how the b-
Sobolev spaces fit with the calculus in the same way that ordinary Sobolev
spaces mesh with the usual calculus. Using the small calculus (correspond-

ing to the index family & = (§, 0)) :

UL B) = vy 00 (X B)

b,os
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one can set
(5.159)
p*H{M(X; E) = {u € p"H)(X; E); W' (X; E)u C p*H)(X; E)} m >0

b,os
pUHN (X B) = p H) (X B) + Vo (X5 B)p™ Hy) (X5 B) m < 0.

Using the part of (5.158) which has already been shown and the compo-
sition formula for the small calculus check that this is consistent with the
definition for integral m from (5.42) and (5.43). Deduce (5.158) in general.

The symbol sequence extends from (4.109) to give a short exact sequence
b
0 — WP VS (X B F) W) (X B F) 23
ST X, 7 hom(E, F)) — 0
for any index family, since the additional terms are smooth near the diag-
onal, at least in the interior. Similarly the indicial homomorphism extends
to give a short exact sequence:
0 — por U (XS B F) e WS (X, B, F) —

b,os b,os
m,E e
v (X E ) — 0
(5.161) provided if inf By + inf By, > 0

for each m. This is defined simply by restriction of the kernels to the front
face, with £ interpreted as an index set for X 2. The choice of a trivialization
of the normal bundle allows the indicial family to be defined by Mellin
transform of the restriction of its kernel to the front face. In this case

L(P,AN) e 90X, E,F)if inf B, +inf By, >0

is meromorphic in A € C with poles only at the points —iz, with order at
most k if (z,k—1) € By, or (—z,k — 1) € Eyp,. The residues are finite rank
smoothing operators. Notice that in general the indicial family does not
quite determine the indicial operator, since one has to decide which poles
correspond to 1b and which to rb. As already noted this splitting of the
complex plane amounts to a boundary condition. As before, the symbol
map and indicial operator both give multiplicative homomorphisms when
the composition of operators is defined.

(5.160)

EXERCISE 5.57. The normal homomorphism
(5.162) UPE(XS B F) — W (X B F)

b,0s
can be defined even without assuming (5.161), although at some expense
to continuity in the index family. To do this observe that ‘restriction of
the kernels to the front face’ can be interpreted as taking the coefficient
of pls in an asymptotic expansion around bf(X?). With this more general
definition interpret (5.162) and compute the range and null space.
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The extension of the calculus with bounds to the case of general bundles
1s completely parallel to this discussion and is therefore left as an exercise.
Since the b-trace is quite important in applications it is worth noting how
it extends to the general calculus with bounds. First, for each choice of
trivialization of the normal bundle,; the b-integral in Lemma 4.59 extends
directly to define a linear functional

v 1 1
(5.163) /:COO(X;"QE)—i—pO‘HgX’(X;bQE) — Cifa>0

since the additional term is integrable. Moreover (4.139) still holds. Since
the restriction to the diagonal of an element of \I!_Oo’(a’ﬁ)(X; E) is just an

b,08,00
element of C*(X;hom(E) @ °Q) + p**tP H° (X; hom(E @ °Q)), it follows
that the pointwise trace on hom(FE) with (5.163) defines the b-trace, just

as in (4.141):

b-Tr,: O, (X, E) — Cif o, 3> 0.
The continuity of this map in terms of the seminorms defining the calculus
with bounds is used in the treatment of the limit of the b-trace of the heat
semigroup as t — oo in §7.7.

EXERCISE 5.58. Extend Proposition 5.9 to this setting.

5.25. Parametrices and null space.

The constructions above can now be extended to the case of general
bundle coefficients. More importantly the composition in (5.149) can be
analyzed.

ProposiTiON 5.59. IfP € Diﬂ’g (X; E, F) is elliptic there exist paramet-
rices corresponding to any « ¢ —Imspec,(P)

By e wHEN BT @) (v p R

b,os

B e u N OE @) (x ),

b,os

where Ei(a) are the index sets defined by (5.121), E*(«) those defined
by (5.122) and the full polyhomogeneous calculus is given by (5.156), such
that

—00,(0,E™ (a))
b,os

PoFEr=I1d—Rg, Rr€p5;V¥ (X3 E)

ELoP=1d=Ry, Ry € p3w; BT (x: p

b,os
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as operators on p*H, *°(X; E). Moreover

(5.164) Er—Ep € U, 25 (X, F ).

b,os

ProOOF: The right parametrix is given by (5.149), extended to the case
of bundles, and its properties follow directly by applying the composition
formula. The left parametrix is just the adjoint of a right parametrix for P*
with respect to some inner product. That the difference of the parametrices
satisfies (5.117) and (5.164) follows from the composition formula.

In particular the proof of Theorem 5.40 extends immediately to give:

THEOREM 5.60. If X is a compact manifold with boundary any elliptic
P e Diﬂ’é(X;E,F) is Fredholm as an operator P: xaHf‘i'm(X;E) —
20" (X; F) if and only if a ¢ —Imspec,(P) and the index is independent
of m.

Observe that if P is an elliptic b-differential operator then the polyho-
mogeneity of Pu implies that of u.

ProposiTION 5.61. For any elliptic P € Diﬂ”g (X;E, F)
w€ p*HI'(X; E), Pue AS (X;F)

= ue Af (X, B), H = GUE*(a).

ProoF: If @ ¢ —Imspec,(P) apply the left parametrix from Proposi-
tion 5.59 and use (5.159). If o € —Imspec,(P) then apply the parametrix
for o — €, € > 0. Since the leading terms in the expansion of u correspond
to powers z with Re z = «, they must vanish by the assumption on u, thus
u € pf H™(X; E) for some 3 > « and the result follows in this case too.
As a simple consequence of this regularity result the precise form of
elements of the null space of P can be investigated. Namely
P e Diffy* (X; E, F) elliptic , u € p*H, *(X; E) and Pu =0
(5.165) B+ (o)
= uc Ay, (X E).
Define
null(P, o) = {u € pO‘Hb_OO(X;bQ%);Pu = 0}

:{u € pO‘Hgo(X;bQ%);Pu = 0}.

For an RT-invariant elliptic operator @ € Diﬂ’lgyl(f(; E) the generalized
null space associated to z € spec, (@) is

(5.166) F(Q,z)=<qu= Z x'z(logx)quj;Qu:O

0<j<p
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This is clearly independent of the choice of projective coordinate . More-
over

LEMMA 5.62.  For any elliptic @ € Diﬂ”;y,(f(; E)
(5.167) dim F'(Q, z) = rank(z), z € spec,(Q).
Proor: The ‘formal Mellin transform’

w— Y (2 —il) T (1) g,

320

identifies (@, z) with the space in (5.9) of which rank(z) is by definition
the dimension.

Now, suppose an identification of the compactified normal bundle to
the boundary with a collar neighbourhood of the boundary in X is fixed.
An element u € F((I(P), z) can be naturally identified with an element of

pO‘Hgo(X;bQ%)/pa_EHgo(X;bQ%) provided € € (0,1] and Im z € (—a, —a+
€).

PROPOSITION 5.63. If P € Diff]*(X;°Q7?) is elliptic and o/ > a > o/ — 1,
the leading part of the expansion of u € null(P, &) at 90X defines

(5.168) nll(Pa) — Y F(I(P),z)
—iz€spec, (P)
oc<Rez§oc'

with null space (| null(P, 3).
B>al

This map will be used in the proof of the relative index theorem.

5.26. Generalized inverse.
Finally we can give a detailed description of the generalized inverse of an

elliptic b-differential operator.

ProposITION 5.64.  For any P € Dift]"(X; E, I) elliptic, any weight
a ¢ —Imspec,(P) and any boundary defining function p € C®(X) the
generalized inverse to P, Go: p*H)(X; F) — p*H"(X; E) is an element
of \I!;(Z’g(a)(X; F, E) fixed by

PoGy=1d-TI,
Go o P =1d —TIy,
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where Iy and 11, are the orthogonal projections onto the null space and
off the range, in p®H{(X; E) and p* H)(X; F) respectively, and where

£(a) = (E¥(a), £7 ()

is the index family for X? defined by (5.122). If P is invertible then

~

(5.169) Go €U, "X, F E),

b,os

with the index set fixed by (5.121).

ProoOF: The generalized inverse differs from the parametrices constructed
in Proposition 5.59 by finite rank operators. Using Proposition 5.59 and
(5.165) to modify the remainders leads to (5.169).



Chapter 6. Relative index, cohomology and resolvent

In this chapter three applications of the construction of parametrices will
be made. The first result is the relative index formula, Theorem 6.5, re-
lating the index of an elliptic differential operator for different values of
the weighting of the b-Sobolev spaces. This was proved for pseudodiffer-
ential operators in [64] and allows the proof of the APS theorem to be
reduced to the Fredholm case. To illustrate the relative index theorem,
an idea from [8], extended recently by Gromov and Shubin [40], is used to
deduce the Riemann-Roch theorem, for Riemann surfaces, from it. Sec-
ondly the cohomology of a compact manifold with boundary is represented
in terms of harmonic forms. That is, the Hodge theory associated to an
exact b-metric is developed. Finally the resolvent of a second-order elliptic
and self-adjoint family of b-differential operators 1s analyzed. In particular
the resolvent kernel is shown to have an analytic extension to an infinitely
branched covering of the complex plane and this is used to give a detailed
description of the spectrum. The relationship between the extended L? null
space of a Dirac operator and its adjoint is also investigated. This applies
in particular to the Dirac Laplacian, 0%.

6.1. Boundary pairing.

A common feature of the proofs of the results in this chapter is that
they involve the determination of the dimensions of various null spaces or
the differences of such dimensions. We therefore start with some results
on the pairing of generalized boundary data which are helpful in these
computations. By generalized boundary data we mean the spaces, F'(P, z),
associated to z € specy (P) in (5.166). There is a basic relationship between
these spaces for P and its adjoint:

LEMMA 6.1. If E and F are vector bundles with Hermitian inner products
and v € C*°(X;°Q) is a non-vanishing positive b-density then the formal
adjoint, P*, of an elliptic element P € Diﬂ’é(X; E, F), has the property

(6.1) rank(P, ) = rank(P*,() V ¢ € spec, (P).

PRrROOF: The definition (5.32) and the identity (4.112) together show that

(6:2)  L(P,¢) = [a7 I(P)" 2™y = [(+7C1(P)r™) )5 = L,(P,)".
From this (6.1) follows.

It is useful to see (6.1) in a rather more constructive way, in terms of
boundary pairing. Since the indicial families at each boundary hypersurface
are unrelated it suffices to assume, for the moment, that 0X is connected.

208
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For simplicity of notation we also assume that £ = F = bQ%; the section
v is then not needed to define P*.

Choose a cut-off function ¢ € C*°(X), with ¢ = 1 near X and ¢ =0
near d1 X. Then consider the sesquilinear map

F(P,2') x F(P*,Z) 5 (u,v) —>
63) Bl = [ (1P)euF - @uTTE)

X

where F'(P,z) = F(I(P),z) C C_Oo()?; bQ%), the formal null space associ-
ated to z, is defined in (5.166). The integrand is a density with compact
support in the interior of )?, so the integral converges absolutely. Then
(6.1) also follows from:

PRrROPOSITION 6.2.  The sesquilinear form (6.3) is independent of the
choice of cut-off function and when z' = z gives a non-degenerate pair-
ing for each z € spec,(P). Moreover the same integral gives the trivial
pairing

B(u,v) =0 YueF(P?z) ve F(P*7),

6.4
(6.4) z, 2" € specy(P), 2 £ 7.

PrOOF: Suppose that z = 2’ and consider the first term in the integrand
n (6.3). Since w is annihilated by I(P), I(P)(¢u) is compactly supported
in the interior and ¢v has support bounded above with growth determined
by ¥ as z | 0. Set @ = — Im z then #~9¢(¢v) is square integrable if ¢ > 0.
Similarly for the second term, z%t¢¢u is square-integrable and I(P)(¢v)
has compact support in the interior. Plancherel’s formula for the Mellin
transform can therefore be applied, and gives

Bl = o [ [ [ non), e o

R oX

= (27" Pu)pr (A) (2= L(P)(¢v)) 5y (A) | dA.

Since (z*T€¢v)ar(A) = (¢v)ar (X + ia + ic), and similarly for the other
terms, this can be rewritten

B = g [ [ [P0 0= o it G wr i

R oX

— () (A — ia + i€) (T(P*)(6v)) 3y (A + i — i€) | dA.
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By assumption u is the product of z’* and a polynomial in logz. The
Mellin transform of ¢u is therefore defined in ImA > Im z and extends to
be meromorphic with a pole only at A = z such that I(P)(¢u) has an entire
Mellin transform given by I, (P, A)(éu) s (A). Similar statements hold for v,
so the second term can be written as a contour integral in { = A — ia — e
over Im{ = Im z+e¢€. The same reasoning allows the first term to be written
as a contour integral over Im{ =Imz — ¢ :

(6.5)
B =5 [ [ aPien), ©m©d

Im{=Imz—edX
! _
_ L / / unt (O (P) (0u)) o1 (C)dc.

271
Im{=Imz4edX
Now (I(P)(¢u))a(¢) = L (P,¢)(¢u)pr and similarly for the second term.
The rapid vanishing of the Mellin transforms at real infinity permits
integration by parts in the integral over §X and hence, using (6.2) and
reverting to the variable A, (6.5) becomes

(6.6)
Blu,v) = ?{ / (P.A)(6u)ar (A) (90) a1 (V)dA

Im( Imz—edX

_; ?{ / 1 (P, A)(6) 31 (\) (60) ar (V) dA

271
Im(=Im z+€e8X

Again the rapid vanishing of all the Mellin transforms at real infinity, and
the fact that the only poles are at A = z, means that (6.6) can be rewritten
as an integral over a finite contour:

61 Bluo) =5 § [ LRG0 @0 R

I' oX

where T is the simple closed contour on which |A — z| = ¢, traversed coun-
terclockwise.

If ¢ is replaced by another cut-off function, ¢’, then the difference be-
tween the two integrals in (6.7) can be written

2#1?{/ (6 = ¢")w)ar (A L, (P, A)(6v) ar (X)dA

QM?{/ (PN (@ u) (N)(6 — &) v)ar (VA

I' oX
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which vanishes identically since the integrands are entire. Thus B is inde-
pendent of the choice of ¢ and so is a well-defined form. Next we proceed
to show that it is non-degenerate in (6.3).

If (P, A)(¢u)ar () is replaced in (6.7) by an arbitrary function f(A)
holomorphic in |A — z| < 2¢, with values in C* (89X Q%) then the resulting
pairing certainly has no null space on F(P*,Z) since the vanishing of the

contour integral
?f / FO)(@0)ar (VdA

I' oX

for all f implies that (¢v)as is regular at z and hence that v = 0. On the
other hand if U(A) = (¢u)ar(A) is replaced by ﬁ(/\), just such a holomorphic
function, then the integral vanishes identically since it has a holomorphic
integrand. For e > 0, small enough, I,,(P,A\)~! has only a pole at A = z in
this disk, so any holomorphic function is of the form I, (P, \)[U(A) + ﬁ(/\)]
with U holomorphic and U = (¢u)pr(A) for some v € F(P,z). It follows
that B has no null space on F(P, z). Integration by parts allows (6.7) to
be written

Blut) = 5§ [ (@uar VL PR (60) a0 (N

I ax

so the same argument shows that there is no null space on F'(P*,%). Thus
B is non-degenerate, proving the first part of the proposition.
When z # 2’ the same type of argument leads to (6.4).

Now suppose that X 1s a general compact manifold with boundary, where
0X may have several components. Then if P € Diﬂ’é(X; E, F) is elliptic,
with E and F Hermitian and a positive section v € C*°(X;°Q) is speci-
fied the same argument applies to give a non-degenerate pairing for each
boundary hypersurface:

FJ(P’Z) X FJ(P*’E) e (u’v) —
(68)  Bjuv)= / (I (P) (6u), v) — (du, T (P*)(60))) v;.

X

Here v; is the density induced on 9; X. The analogue of (6.4) also holds.

EXERCISE 6.3. Go through the proof of Proposition 6.2 inserting inner
products and densities and so check that (6.8) is non-degenerate and inde-
pendent of the choice of ¢.
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Next observe that, in case 0X is connected, the bilinear form (6.3) can
also be obtained directly from P rather than in terms of I(P) as an operator
on X. Choose an identification of X with a collar neighbourhood of 9.X
and ¢ € C*(X) which is identically equal to 1 near 9X with support in
the collar. Using the collar identification, if u € F(P,z) then ¢u can be
identified with an element of x~!m?=¢[J2°(X; bQ%). Then

F(P z) x F(P*,7) 3 (u,v) —>
(6.9) Bluo) = ; [ (Powse - P iom) .

X

To see this it suffices to note that in the collar P = I(P) 4+ #P’, with
P’ € Diff" (X;°Q2). The extra vanishing at # = 0 means that integration
by parts is permissible, so replacing P by #P’ in (6.9) gives zero, proving
(6.9). In fact by the same reasoning if v’ € J:_Imz"'EHgo(X;bQ%) and
v € 2™ At 0 (X 20 7) then

F(P,z) x F(P*,Z) 3 (u,v) —>
1 — I
(6.10) Blu.o) = 5 [ (Plou+ o = (6w PG+ ).
X
If 0X has several components then B is the sum of the B; in (6.8).
For any r € —Imspec,(P) set

(6.11) G(Pr)=GI(P),r)= P F(P2).

zEspec, (P)
Imz=—r

The bilinear form B is therefore defined, by (6.9), as a sesquilinear map

(6.12) B:G(P,r)x G(P*,—r) — C V¥V r € —TImspec,(P).

For any r we shall use Proposition 5.63 with « = r — e and o/ = r + ¢,
¢ > 0 being chosen so small that » is the only point of —Imspec,(P) in
[, '], to define

(6.13) G'(P,r) = {u eG(Pr); 3 € xO‘Hgo(X;bQ%) with
Pu =0, v —¢uc J:O‘IHgo(X;bQ%)}

as the image of (5.168). Notice that G'(P,r) may very well depend on P,
not just I(P).
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LEMMA 6.4. Under the pairing B in (6.12), G'(P,r) and G'(P*, —r) are
annihilators of each other:

(6.14) G'(P,r)={ue G(P,r); Blu,v) =0V ve G (P, —-r)}.

ProoF: Conjugating by z” we may assume that » = 0. Now suppose u €
G'(P,0),i.e. u € G(P,0) and P(¢u) = P/, with v’ € xEHg(X;bQ%). Then
P(¢u) can be replaced by Pu' in the first term in (6.9). Integration by part
is justified since «’ € 2“H"(X; bQ%), so the integral reduces to

[ = swin.

X

Then if v € G'(P,0), i.e. P*(¢v) = P*(v') with v € xEHg”(X;bQ%) in-
tegration by parts is again possible, so the pairing vanishes. Conversely
suppose u € G(P,0). Then f = P(¢u) € J:EHgo(X;bQ%). The range of P
on z°H (X; bQ%) is the annihilator of null(P*, —¢), the null space of P* on
T HP (X;bQ%). Of course if w € null(P*, ¢) then (f, w) = 0, so it suffices
to check that (f,v) = 0 for w = ¢v—o' € null(P*, —¢), where v € G'(P*,0)
and v € z*H"(X; bQ%). This is exactly what the vanishing of B(u,v) for
v € G'(P*,0) shows, so (6.14) does indeed hold.

6.2. Relative index formula.

The dependence of the index of an elliptic element P € Dift;"(X; E, F)
on the parameters a € R?, in Theorem 5.60, will be considered next. Here
p is the number of boundary components of X. The index of a strongly
continuous family of Fredholm operators is constant, so the function

(6.15) ind(P, a) = dim {u € p*HM (X; E); Pu=0}
- codim{v € paHéw_m(X;F);v = Pu,u € pO‘Hg”(X;E)}

will be constant on each of the countably many open sets, all products of
open intervals, forming the components of

P
(R\ — Imspecbyj(P)) C R?,
=1

J

Recall that in (5.9) the rank of a zero of the indicial family, rank(z), z €
specy (P), was defined. This generalizes to the case where X has several
components, to define rank;(z) when » € spec, ;(P), as the integer in (5.8)
and (5.9), where F(A) is the inverse of the indicial family of P at the jth
boundary hypersurface.
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THEOREM 6.5. (Relative Index theorem) If P € Diff]" (X; E, F) is elliptic
and aj,a; ¢ —Imspec, ;(P), j = 1,...,p, then the index, as given by
(6.15), satisfies

P
(6.16) ind(P,a) — ind(P,a’) Z sgn(aj — a;) Z rank;(z)

Jj=1 zEspecb)j(P)
- Imze[aj,a;v]

If X is connected, so a = a, a’ = o’ are just real numbers, and a > o'
then (6.16) shows that ind(P, @) < ind(P, a’) and the difference is minus the
sum of the ranks of the points of spec, (P) between the two lines Imz = —a
and Im z = —a/, i.e. with —Im z in the interval [o’, «] or the open interval
(a’, &), since the end points cannot occur by assumption.

Proor oF THEOREM 6.5: Again it is convenient to prove the result first
under the assumption that §.X is connected and the bundles are both Jo

Clearly it suffices to prove (6.16) under the assumption that o > a.
Furthermore by dividing the interval [/, o] into small subintervals, with
no endpoints in — Imspec, (P), it can be assumed that o’ — « is small and
that in the interval (o, «) there is at most one point of —Imspec,(P).

Now,

ind(P, o) = dimnull( P, @) — dim null( P~ —a),

6.17 1 1
( ) null(P, &) = null (P: e HM(X;'0%) — xO‘Hg(X;bQ5)) .

From Proposition 5.61 it follows that if there is no point of — Imspec, (P) in
(a’, &) then null(P, o) = null(P, ') and similarly for P*. Thus ind(P, ) =
ind(P, ') in this case, as expected. So it may be assumed that o — o
is small and positive and that in the interval (o/, a) there is exactly one
point a” € —TImspec,(P). Of course this may arise from several points in
spec, (P). For notational simplicity the operator will be conjugated by J:O‘”,
so arranging that o’ = ¢, &« = —¢ and /' = 0, for some small ¢ > 0.

From (6.13), G'(P,0) C G(P,0) is the subspace of those u € G(P,0) such
that P(¢u) = Pu’ for some v’ € x°H" (X;bQ%). Thus

(6.18) dimnull(P, —€) = dimnull( P, €) + dim G’ (P, 0).
Now (6.14) in Lemma 6.4 shows that

(6.19)  dimG(P,0)+ dim G'(P*,0) = dim G(P,0) = dim G(P*,0).
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Applying (6.18) to P and P* shows that
(6.20)
[dimnull(P, —¢) — dimnull( P, €)] + [dimnull(P*, —¢) — dimnull(P*, €)]
=dimG'(P,0) + dimG'(P*,0) = dim G(P,0).

This is just (6.16) in this case, so (6.16) has actually been proved in the
case of a single boundary hypersurface and operators on b-half-densities.

The case of general bundles involves only notational changes. The same
is true if X has several boundary components, since the generalized null
spaces of the indicial operators at different boundary hypersurfaces pair to
zero under B in (6.9). Thus the theorem holds in general.

The discussion in §6.1 and this proof are quite robust. Since it is not
invoked below, the case of general b-pseudodifferential operators is left as
an exercise.

EXERCISE 6.6. Show that the proof above generalizes directly to give a
similar result for the index of any elliptic element A € ¥} (X; E, F). [Hint:
The main point at which the assumption that P is a differential operator
enters into the proof above is the conclusion that I(P)(¢u) in (6.3) has
compact support. This is important since it justifies the use of Plancherel’s
formula. Show that if P is pseudodifferential then this can be satisfactorily
replaced by the fact that I(P)(¢u) = O(Jz="™*+%|) for all 0 < § < 1, as
z 0]

The extended index function is defined, as in (In.30), by

(6.21) iﬂa(P, a) = %lﬁil%l [ind(P,a—¢€) +ind(P,a+ €],
where € is interpreted as a multiweight with the same entry in each compo-
nent. The relative index formula means that this extended index function
is determined by its value for any one multiweight a. To write the difference
law that results from Theorem 6.5 in a more compact form, consider the
‘incidence function’ for s, o, and o' € R :

s ¢ [a, ]
s=aors=ca

s € (o, ).

(6.22) inc(s; o, a’) = sgn(a’ — a) -

= o= O

Here if o = o then by convention sgn(a — of) = 0.

EXERCISE 6.7. Show that if [o, '] is considered as an oriented inter-
val (with the opposite of the standard orientation of R if o/ < «) then
inc(s; o, o) is the limit as € | 0 of Len((s —6,s+ €N, o/])/e, where Len
is the signed length.
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With this additional piece of notation, (6.16) becomes

(6.23) ind(P,a)—ind(P,a) =Y | > inc(Imz,df, a;) rank;(2)
J=1 [z€specy ;(P)

Note that Theorem 5 shows the necessity of (5.112). Indeed P is Fred-
holm on the weighted spaces in (5.112) if and only if P, = p~*Pp* is
Fredholm on the unweighted spaces. The P, vary continuously with «, so
if they were Fredholm for « in some open interval containing a point of
—Imspecy (P) then the index would be constant on that interval. Since
(6.16) shows that the index is not constant the family can not be Fredholm
if & € —Imspec,(P), since it is Fredholm everywhere else.

6.3. Riemann-Roch for surfaces.

One might be inclined to think that the relative index theorem is very
soft. To see that this is not so, consider a special case of an idea of Gro-
mov and Shubin (see [40]) which shows that one can get the standard
Riemann-Roch theorem for a compact Riemann surface as a corollary of
Proposition 5.59. In fact this is included as a remark in [8]. Of course the
usual proof of the Riemann-Roch theorem in this generality is not terribly
hard ... .

A compact Riemann surface, M is just a real two-dimensional compact
manifold with a complex structure. The complex structure on M is a cov-
ering by coordinate systems with transition maps which are holomorphic.
This implies that the complexified tangent bundle has a decomposition into
complex line bundles:

(6.24) CTM =T"M & T%'M, v € T)'M <= v € T)' M.
By duality there is a similar decomposition of the cotangent bundle:
(6.25) CT*M = AYOM & A% A,

which in turn gives a decomposition of the exterior derivative on both
functions and 1-forms:

d=0+0, 0: C*°(M) — C=(M; A1)
0 =don C®(M;AY), 0 =don C®(M; A%,

The operator 9 is an elliptic differential operator and the Hodge theorem
allows one to compute its index.
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Suppose that M is given a conformal metric, i.e. an Hermitian metric on
TOMM. Tt is therefore locally a smooth positive multiple of dzdz for any
holomorphic coordinate z. Consider the adjoints of 8 and 9 on 1-forms.
These are the middle-dimensional forms on an even-dimensional manifold
and it follows from (2.85) that the Hodge star isomorphism, which maps
1-forms to 1-forms, does not depend on the conformal factor in the metric.
For the local metric dzdZz the adjoint of d on C%(M; ALY is a multiple of
d, so from (2.88) this holds in the general case and hence

(6.26) =0+ 06=0, ¢€C°(M;A"")

and similarly for 9~ on (0, 1)-forms.
The null space of 9 on functions consists just of the constants. The
Laplacian on 1-forms is

A=(0+0)(0+0) + (0+0)(9+ D).

By integration by parts an harmonic 1-form is closed and coclosed, so is
of the form u = ¢ + v where ¢ € C®(M; AL%) and ¢ € C*(M; A%1) are
in the null space of § and 9 respectively. Conversely, from the discussion
above, any ¢ € C*®(M; AY%) which is holomorphic, i.e. satisfies d¢ = 0,
1s harmonic. Thus the space of harmonic 1-forms has even dimension, 2p,
where p is by definition the genus of M and the spaces of holomorphic
(1,0)-forms and antiholomorphic (0, 1)-forms both have dimension p. The
range of § on functions has as complement the null space of 5*, just the
space of antiholomorphic (0, 1)-forms. Thus on functions

ind(9) = 1 —p, 2p = dim Hy (M).

There is in fact precisely one (oriented) compact Riemann surface, up to
diffeomorphism, of a given genus, p > 0.

The Riemann-Roch theorem, in its most elementary form, is concerned
with the spaces of meromorphic functions and differentials (1-forms) with
given sets of zeros and poles. Let D be a divisor, i.e. a finite subset

D={(z1,m1),...,(cn,mN)} C M X Z

with the z; distinct. Associated to D is a compact manifold with boundary,
M’ obtained by blowing up each of the points in the projection of D onto
M. Let H; be the boundary circle added by blowing up z;,for j =1,..., N.
The complex structure, (6.24), lifts to a complex structure on the b-tangent
bundle of M’ since if z is a holomorphic coordinate near z = z; then the
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logarithmic differential d(z—z;)/(z —z;) is a smooth section of *T* M’ near
H;. Indeed in terms of polar coordinates

o d(z— z; d
(6.27) z— 2z = re'? M - + 1dd.
z— 2 r
This gives a decomposition extending (6.25):
CbT*M/ — bAl,O D bAO,l

where the second summand is the complex conjugate of the first.
The Cauchy-Riemann operator is an element %9 € Diﬂ%(M’; C, %A%, In
this sense it is elliptic with indicial family

55 oy — —i(Lg, 4 L
I.(°0, s)u = 2(239+25)u

at H;, with » in (6.27) used to trivialize the normal bundle. Thus the
indicial roots are easily computed. For each j the indicial family has only
simple zeros and these are all at imaginary integer points:

Spec, (°0) = Z = {(ik,0); k € Z} at each H;.

These just arise from the eigenfunctions of dy on the circle, or equivalently
the Laurent series at z; of meromorphic functions. Thus

65: pSHgn (M/) — pSHgn—l(M/; bAO,l)
is Fredholm whenever S = (S1,...,5n), S; ¢ Z VY j=1,...,N.
The relative index theorem gives
B B N
ind ("9, 5) —ind(*, 5) = 3 _([8] = [S5]);
(6.28) =
[S;] = inf{p € Z;p > S;}.
Now (6.28) is just a reformulation of the Riemann-Roch theorem. With
the divisor D one associates the weights

S](D) = m]' —(5

for any fixed § € (0,1). In particular for the trivial divisor, with all m; =0
and the same finite set of points in M, each S;(0) = —4. The degree of the

N
divisor is defined to be deg(D) = > m; and (6.28) becomes
j=1

(6.29) ind(%0, S(D)) — ind(°9, S(0)) = deg(D).
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Then it only remains to identify the index of %0 on the two weighted
spaces, using the elementary properties of analytic functions, to deduce
the Riemann-Roch formula.

For any divisor set

(6.30) ro(D) = dim{meromorphic functions with divisor D},
' r1(D) = dim{meromorphic differentials with divisor D}.

The convention for divisors is slightly different to that for index sets in (5.8).
A meromorphic function f has divisor D if (A — z;)™ f(A) is holomorphic
near A = z;. Thus m; = 0 corresponds to a regular point, whereas in our
convention for index sets a point (z,0) corresponds to a simple pole at z.
For meromorphic (1,0)-forms, which are just the complex conjugates of
antimeromorphic (0, 1)-forms, the m; correspond to the regularity of the
coefficients in terms of a local holomorphic 1-form dz. This means that
m; = —1 corresponds to holomorphy of the coefficients in terms of the
b-form d(z — 2;)/(z — z;).

From the discussion above the trivial divisor corresponds to
(6.31) ro(0) =1, 71(0) = p.

If — D is the conjugate divisor to D, i.e. =D = {(z;, —m;)} if D = {(z;,m;}
then:

LEMMA 6.8.  (Riemann-Roch) For any divisor on a compact Riemann
surface of genus p the dimensions in (6.30) are related by

(6.32) ro(D) = r(—=D) + deg(D) +p— 1.

ProoF: The Riemann-Roch formula (6.32) follows from (6.29) and (6.31)

once it is shown that for any divisor,
(6.33) ind(%0, S(D)) = ro(D) — r(—D).

This follows from the removability of singularities. Thus Proposition 5.61
shows that the null space of 9, {u € p " HP(M');%0u = 0}, is just the
space of meromorphic functions with divisor D since S; = m; — J. The
codimension of the range of ’9 on functions is equal to the dimension of
{u € p~ HM(M';°AY0); %ou = 0} . Since —5; = —m;+J, and recalling that
these are b-forms, this corresponds to the space of meromorphic differentials
with divisor —D.
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6.4. Hodge theory.

Consider next the Hodge cohomology of a compact manifold with bound-
ary, needless to say equipped with an exact a b-metric. For orientation the
case of X compact with 9X = @ will first be briefly recalled.

The first basic result is the de Rham theorem which gives an identification
of the de Rham cohomology spaces, the cohomology of the exterior complex

(2.17):
(6.34) HER(X) = {u € C™(X; AF);du = 0} /dC™(X; AP,

with the singular cohomology spaces (with complex coefficients) of the man-
ifold. If X is given a metric then the associated Laplacian leads to the
Hodge decomposition involving the Hodge cohomology, i.e. the space of
harmonic forms:

HE (X)) = {u EC_OO(X;Ak);AUZO} = {uECOO(X;Ak);du:(MZO}.

The second characterization follows by elliptic regularity and integration
by parts, for u € C=(X; A¥),

(6.35)  Au=0=>0=(u, Au) = ||du||* + ||6u|]* = du = du = 0.

PROPOSITION 6.9. On a compact Riemann manifold, X, without bound-
ary

C(X; AF) =dC™ (X; AF1) @ 5™ (X; A1) @ HEL (X)
(6.36) L3 (X AR) =dHY(X; A=Y @ 6 HY (X AR Y @ HE(X)
C™%(X; AF) =dC™(X; AP @ 60 (X; AP Y @ HfL (X).

Here the direct summation in the first and last cases just means that the
factors are closed with trivial intersections in pairs; in the middle case the
sum is orthogonal for the natural Hilbert space structure on L?.

Proo¥F: This follows directly from the knowledge that the generalized in-
verse of the Laplacian

A=di+dd = (d+9)*
is a pseudodifferential operator of order —2. The null space, HkHO(X), 18

closed and of finite dimension, consisting of the harmonic k-forms. The
range of A on C*°(X; A*) is closed and from the self-adjointness of A has
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complement Hf;_ (X). Then each of the decompositions in (6.36) arises in
the same way. Thus, for instance,

(6.37) € (X AF) = AC (X A%) & Hhyo(X)
. = d[6C° (X; AF)] @ 8[dC° (X A%)] @ HEL (X).

That d§C(X; A*) = dC*(X; A*~1) follows from (6.37) for k — 1 since
d3C™ (X; AF) € dC™ (X; AF=1) € dadC™ (X; AF~Y) € d6C™ (X ; AF)

and similarly for the second term, so this leads to the first case in (6.36).
The other cases are similar.

In fact (6.37) is often more useful than (6.36). Of course the main corol-
lary of this decomposition is the Hodge theorem (proved in this generality
by Weyl, [90]):

COROLLARY. For any compact Riemann manifold without boundary there
is a natural (Hodge) isomorphism H¥ (X) +— HEg (X) with inverse given
by projection onto the Hodge cohomology in (6.36).

ProOF: The map from H¥_ (X) to H:, (X) is well-defined since harmonic
forms are closed, by (6.35). From (6.37) the harmonic space is orthogonal
to the range of d, so the map 1s injective. To see that it i1s surjective, observe
from (6.37) that if u € C°(X; A*) then du = 0 if and only if the second
term, of the form dw, in the decomposition of u is closed. By (6.37) this
term is of the form dw with dw = 0, so ddw = 0 implies Aw = 0 and hence
implies that dw = 0. Thus a closed form is the sum of its harmonic part
and an exact form.

The same argument applies in the other two cases. For instance the
third, distributional, decomposition in (6.36) shows that the distributional
de Rham cohomology

(6.38) {ue C™(X; AF);du =0} /dC™>(X; AF1)
is canonically isomorphic to the C*° de Rham cohomology and to the Hodge
cohomology.

EXERCISE 6.10. Define the L?-de Rham cohomology of a compact mani-
fold without boundary as

{u € Lz(XQAk)SdU = 0} / {u € Lz(X;/lk);u =dv,v € Lz(X;Ak_l)} .

Show that this is defined independently of the choice of Riemann metric and
is canonically isomorphic to the C*° de Rham and to the Hodge cohomology
of any Riemann metric.
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Now to the case of more immediate interest, a compact manifold with
boundary. As already discussed in §2.16 there are two basic smooth de
Rham cohomology spaces:

Hi v (X) = {0 € € (X A%);du = 0} fdC™ (X; A1)

6.39 | .
( ) /HQR,I‘eI(X) = {U ec™ (X,Ak), du = 0} /dCOO(X’Ak—l)’

depending on whether smooth forms are required to vanish to infinite order
at the boundary or not. The de Rham theorem, Theorem 2.48, then asserts
the existence of natural isomorphisms with the absolute singular cohomol-
ogy and the relative singular cohomology respectively. Alternatively one
could take the position that the two spaces in (6.39) are the absolute and
relative cohomology spaces of the compact manifold with boundary.

The b-Sobolev spaces have been emphasized already and it is natural to
look for analogues of the regularity result showing that the distributional
de Rham space, analogous to that in (6.38), is isomorphic to H%g(X).
Consider the conormal forms:

(6.40) AXPAR) = A(X; A7) = | o Hy (X;045).

seR
Since d € Diﬂ% (X; A% =1 %A%) it acts on these spaces and there are corre-
sponding de Rham cohomology spaces:

(6.41) {u € A(X;AF);du =0} JdA(X; AR,
where the same space is obtained by replacing ?A* by A*.

LEMMA 6.11. The conormal de Rham cohomology space (6.41) is canon-
ically isomorphic to %QR,abs (X).

ProOF: Choose a real vector field V' € V(X) which is transversal to the
boundary and inward pointing, i.e. V& > 0at §X if & € C*(X) is a defining
function. Such a vector field certainly exists, since it can be taken to be
d/dx in a collar neighbourhood of the boundary and then cut off inside.
Integration of V' gives a 1-parameter family of C*° maps determined by:

Fy: X — X for s € [0, sg], so > 0 small, where
d
d—(Fs)*qb =(Fs)'Ve, Vo elC®(X)and Fy =1d.

s
The pull-back map F; commutes with d and, always for small s, induces
the identity on %ZR,abs(X)’ since for any form u € C*°(X; A*) Cartan’s
identity gives

5 5

d
Flu—u= / E(Ft)*udt = /(Ft)*[divu + iy du]dt,
0 0
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where 1y is contraction with V. Thus if u is closed
s
(6.42) Fru—u=dv with v = /(Ft)*ivu.
0
Now, simply l)ecause V' is inward pointing and transversal to the bound-

ary, Fy(X) C X for small positive s. Thus if u € A(X;%A*) then Fru €
C>(X; A¥) for small s > 0. This shows that pull-back under F; gives a
map from the conormal de Rham cohomology into the absolute de Rham
cohomology. On the other hand there is an obvious ‘inclusion’” map from
/HQR,abs(X) into the conormal cohomology. Using (6.42) these maps are
easily seen to be inverses of each other.

EXERCISE 6.12. Use this 1-parameter family of maps to show that the
de Rham space of smooth forms with compact support in the interior of X

{u € CSO()O(;A’“);du = 0} /dCSO()O(;Ak_l)
CSO()O(;AIC) = {u € COO(X;Ak);supp(u) C )0(}

is naturally identified with the relative de Rham cohomology.

Lemma 6.11 can be refined considerably. Observe that d acts on the
spaces z° Hg® (X;%A%) for any fixed s € R.

ProPOSITION 6.13. The (de Rham) cohomology of the complex

S T700 d S T700 byl d d s 7700 CbaAN
(643) 00— 2°H°(X) 5 *H*(X;AY) — ... = " H° (X;°4Y) = 0
is naturally isomorphic to Hjg ,1,.(X) if s <0 and to Hig . (X) if s > 0.

ProoOF: The proof of Lemma 6.11 applies unchanged in case s < 0. So
suppose s > 0. Choose a boundary defining function « and a cut-off function
¢ € C° (R) which is identically equal to 1 in a neighbourhood of 0. Choose a
collar decomposition of X near the boundary so that any u € «* H° (X AR
decomposes into tangential and normal parts:

(6.44)
xr
U=, +— Ay,
xr
uy, € 2 Hi? ([0, €) x 0X; AR (0X)), uy € 2 H([0,€) x 0X; AF~H0X)).

The conditions for u to be closed become, in this collar neighbourhood,

doxur; =0, T——u; = daxu,.

oz



224 6. RELATIVE INDEX, COHOMOLOGY AND RESOLVENT

Now the assumption that s > 0 means that the second of these equations
can be integrated from x = 0 to give

xr

d
Ur = /d(’)qu_x
xr

0
with the integral converging absolutely. So consider the map

(6.45) 2 H°(X;°A%) 5 ur— ¢(x)u+ ¢'(x)dx /\/uyd—x € C(X; AR,
/ x

This maps closed forms to closed forms and exact forms to exact forms so
projects to a map from the de Rham cohomology of (6.43) to HEg (X).
There is a natural map, given by inclusion, the other way and it is éasy to
see that these are inverses of each other, so the Proposition is proved.

Naturally this raises the question of what happens in the 0-weighted case.
This is just what is usually called the L? cohomology. The answer, justified
in Exercise 6.17 below, is that unless dimH; (0X) = dimH}; (0X) = 0
the L% cohomology, i.e. the cohomology of the complex (6.43) in case s = 0,
is infinite dimensional (and therefore not so interesting).

There 18 a natural map from the relative to the absolute cohomology,
given at the level of the de Rham spaces in (6.39) by inclusion:

(646) €. /HfiR,rel(X) — /HfiR,abs (X)
The image can therefore be represented, for any s < 0 as

{u € COO(X;Ak);du: 0}

(647) € [%QR,I‘GI(X):I = . .
{u €C®(X; AF);u=dv,v e J:ngo(X;/lk—l)}

This is of immediate interest because of the Hodge identification given in
[8].

Let the null space of the Laplacian, of an exact b-metric, acting on
HY(X;°A%), the metric L? space, be denoted H£ 5 (X). From Proposi-
tion 5.61 the elements of this space are polyhomogéneous conormal distri-
butions corresponding to index sets in the right half space, since z® for
Rez < 0 is not locally square-integrable with respect to the volume form.
Thus

(6.48) "HQHO(X) = {u € z°HJ(X;°A"); Au= 0} for ¢ > 0 small.
This means that integration by parts is justified so that
0= (u, Au) = ||dul|” + [|6ull*, u € HE po(X).

In particular the elements of %é,HO(X) are square-integrable d- and §-closed
forms.



6.4. HODGE THEORY 225

PROPOSITION 6.14. The null space, H 13.(X), of the Laplacian of an ex-

act b-metric on any compact manifold with boundary, acting on H? (X ; AR
is naturally identified with the de Rham space e {%QR,rel(X)} in (6.47).

One would expect to proceed as with the proof of the Corollary to Propo-
sition 6.9, using a decomposition analogous to (6.36), by looking at the
action of the Laplacian on H[*(X;%¥) for m = co, m = 2 or m = —o0
corresponding to the three cases in (6.36). However there is a problem,
since the fundamental point in the boundaryless case is that the range in
the appropriate space is closed. From the discussion of Fredholm properties
above this is the case for the Laplacian acting on HZ(X; A*Y if and only of
there are no real indicial roots.

So consider the indicial family of the Laplacian. The space of b-forms
splits at the boundary as in (6.44):

"Ayx = AF(0X) & AFTHOX)
C®(OX;°A") 5 u=u, + dx A Uy,
z
u; € C(0X; A7), u, € C®(0X; AR,

Here dz/x is the singular 1-form given by the exact b-metric. With respect
to this splitting the indicial operators of d and d, for the given metric, were
computed in §4.17:

(6.49) (d) = (x‘;i _Od), 1(6) = (3 _i?%)

acting from A% @ AR~ to AFH1 @ AF and to A¥~1@ A*~? over the boundary,
respectively. Here d and § also stand, somewhat ambiguously, for the exte-
rior differential and i1ts adjoint with respect to the metric on the boundary.
The corresponding indicial families are obtained by replacing x9/0x by i\.
Since the indicial homomorphism is just that, a homomorphism, this gives

A+ N2 0
(6.50) I(A ) = ( N /\2)

Thus the indicial roots of the Laplacian are exactly
specy,(A) = {:I:ia; o? is an eigenvalue of Aa} :

Furthermore the order and rank of these points is easily established. If
o # 0 then the order is necessarily 1 and the rank is just the dimension of
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the corresponding eigenspace of Ay acting on k& — 1 and k forms. However
the zero eigenvalue is special since, if Ay is not invertible on either & — 1
or k forms on 9X, 0 € spec,(A) represents a pole of order 2 with rank
twice the sum of the Betti numbers (the dimensions of the cohomology) in
these dimensions. This has a strong bearing on the behaviour of the Hodge
cohomology of the b-metric.

Notice that the only real indicial root that the Laplacian can have is 0.
So the Laplacian is Fredholm from HZ(X;%*) to HY(X;%A*), the L? space
for the metric, if and only of there 1s no cohomology for the boundary in
dimension k — 1 or k. Thus there are two obvious options, since
(6.51)

A: xiEHg” (X; %) — xiEHg”_Z(X;bAk) is Fredholm for € > 0 small.

PrOOF PROPOSITION 6.14 (BEGINNING): Consider the case of the ‘large’
spaces in (6.51), = <HZ(X;%*). The range is closed and has annihila-
tor, with respect to the continuous pairing between x_EHg(X;bAk) and
2 HY(X;%A") for small € > 0, precisely the null space %E,HO(X)~ Thus

(6.52) 2 H(X:AY) = A [Ga HY(X; )] @ HE o (X).

Here G € \Ifb_z’g(_ﬁ) (X;%4%) is the generalized inverse discussed in Chap-
ter 5, where £(—e) is the index set corresponding to the point —e ¢
—Imspec, (A4).

Applying (6.52) to c™® (X ;4% gives

Co(X;AK) = A |GC™ (X3 °A%) | & HY 4o(X)

ie u= Av+u,

(6.53)

where u' is just the LZ-projection of u onto HE z (X). If u = dw, with
w € 7 H(X;%4%~1) then the decomposition of u is just u = dw. So
u' =0 and by (6.47) this gives a map as desired:

(654) € [/HQR,I‘el(X)] — /ng,HO(X)'

The deformation (6.45) shows that any element of Hf ;; (X) can be ap-
proximated in L? by closed elements of C> (X;84%) s0 (6.54) is surjective.
To prove the injectivity we need to examine the decomposition (6.53), and
in particular the structure of the null space of the Laplacian, more closely.

In completing the proof of Proposition 6.14 and so giving an harmonic
representation for the image of the relative cohomology in the absolute
cohomology, it is natural to search for harmonic representatives for the
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absolute and relative cohomologies themselves. This leads inexorably to
the long exact sequence relating them:

(6.55)

T %Sf_{l(@X) — %QR,rel(X) — /HQR,abs(X) — %QR@X) 7.

The place to look for ‘more’ harmonic forms is in the null space

null’i(A) = ﬂ {u € x T HZ(X;F); Au = 0} .
e>0

By Proposition 5.61 this is just the null space of A on x~“H®(X; "),
for € > 0 sufficiently small. The discussion above of the structure of the 0
indicial root shows that there is a boundary data map:

(6.56)
mull® (X;%0%) 225 (341 (0X)) " @ (Mo (0X))

d
null’i (A) Su=1Up logx + U21—|—§ A [U12 logx + U22] + u'

Ui Urz I o erroory. Ak
— <U21 Uzz)’ u € x"Hy° (X; A%).
Thus the top row represents the coefficients of logz and the second row
the ‘smooth’ boundary values. Let L¥ = BDy (null® (A)) denote the image
of (6.56). By definition, in (6.48) %E,HO(X) is the subspace of null’i(A) for

which this boundary data vanishes so there 1s a short exact sequence:
(6.57) 0 — Hf o(X) = null® (A) — LF — 0

for each k. Clearly it is important to understand L.

The metric on X induces inner products, denoted (,), on the Hodge
cohomology on the boundary, so H#,(0X) is a Euclidean vector space.
This means that on the direct sum of two copies of this space there is a
natural symplectic form:

(1 (0X)]" & [HUo(0X)]" 3 (U1, U2), (U], U3)) —

(6.58)
w ((Ul’ U2)’ (U{’ Ué)) = <U1’ U£> - <U2’ U{> ceR.

That 1s, this bilinear form is antisymmetric and non-degenerate. Of course
it extends in the obvious way to the direct sum of the Hodge cohomologies
in dimensions £ — 1 and k.

LevMA 6.15.  The space IF C (HZ1(0X))" @ (HE,(9X))” is a La-
grangian subspace with respect to the symplectic form (6.58), i.e. has di-
mension equal to that of HEZ (0X) @ MYy (0X) and the symplectic form
vanishes identically on it.
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Proo¥F: Consider the bilinear form B in Proposition 6.2. Since P = A
is (formally) self-adjoint in this case, F'(I(P),0) = F(I(P*),0) is just the
sum of the boundary cohomology spaces in (6.58). Carrying out the contour
integral in (6.7) shows that B is —¢ times the symplectic pairing in (6.58).
From (6.14) this bilinear form vanishes identically on L*. The relative index
theorem itself, Theorem 6.5, shows that

ind(A, —¢) — ind(A, €) = 2 [dim H4 (X)) + dim My, (0X)] .
Since A is formally self-adjoint

ind(4, —¢) = dimnull® (A) — dimH} 11,(X),
ind(4, €) = dimH{ 1, (X) — dimnull® (A),

5o Theorem 6.5 becomes
dimnull? (A) — dim#H 5o (X) = dimHi (0X) + dim Hfy, (9X).
From the exactness in (6.57) this is just the statement that
dim L* = dim Hf ' (0X) + dim Hf, (0X).

Thus L* is Lagrangian, as claimed.

Consider the subspace

Ik = {(ul,uz) €M (0X) @ HELH(0X);u = (f f ) € Lk}
1 Uz
and the projection g from L* onto the top (logarithmic) row in (6.56)
Tog: LF — HYZH(0X) @ i, (0X).

Lemma 6.15 shows that the range of mqg is exactly the orthocomplement
of L*. Using the fact that A = (d + )2 there is a finer form of this result:

ProrosiTION 6.16. The subspace
(6.59) "ngbyHo(X) = {u e null® (A); Tloglt = 0}

is precisely the subspace of null® (A) which d+4 annihilates; it consists ex-
actly of the d- and d-closed elements of null® (A). Furthermore the subspace
of boundary data corresponding to "ngbyHo(X) splits:

(6.60) LF =Tk & Lf, Li_, CHISNOX), Lf C Hip(9X),
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so the ‘relative and absolute’ b-Hodge spaces, defined by

(661) /ng—rel,Ho(X) = {U € /Hl;b,Ho(X); BDk u € Eﬁ—l D {0}}

(6.62) b anm ol X) = {u € Ml o (X); BDy w € {0} & L }
satisfy

HE rot110(X) = Hi 110 (X) @ d [l ()]
(6.63)
s 10 X) = H 310 (X) @ 6 [mull ! ()|

and are such that

/Hl;b,Ho(X) = /ng—rel,Ho(X) + /ng—abs,Ho(X)’

(6.64)
/ng,Ho(X) = /ng—rel,Ho(X) n /ng—abs,Ho(X) .

Proor: If u € "ngbyHo(X), defined in (6.59), then du, du € x°H®(X;A¥)
as follows from (6.49). Thus the integration by parts in

(Au,u) = (d(0u), u) + (3(du), u) = [|dul|” + [|dul|* = 0

is permissible and it follows that du = du = 0. Conversely, again from
(6.49), for a general element of the formal null space of A on =€ H° (X ; *A¥)
and for € > 0 small

Uir Ups
BD = fr—
kit <U21 Uzz)

0 0 0 0
BDk+1(du) = (Ulz 0) s BDk_l(éu) = (0 —Ull) .

In particular if u € nullli(A), du = du = 0 implies mogu = (U11,U12) = 0
which shows that u € H’;byHO(X) and hence that H’;byHO(X) Is exactly the
subspace of the d- and d-closed elements in nall® (X).

(6.65)

With only slight abuse of notation, L¥ can be construed as the image
of H’;byHO(X) under BDy . The pairing between "ngbyHo(X) and "HéyHO(X),
given by continuous extension of the L? form, is non-degenerate when re-
stricted to "HéyHO(X), so the subspace

(1S 11o(X)] T = {0 € HE, g0 (X); (u, HE 1o (X)) = 0}
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is mapped isomorphically onto L* by BD, . To see that the latter space
L
splits consider the Hodge decomposition, (6.52), applied to {7—[’;6 HO(X)}

Since these forms pair to zero with "HéyHO(X), they are in the range of A :

(6.66) [HE 1o(X)] T 5 u= Av, v = Guea  H(X;%5).

From Proposition 5.61, v is polyhomogeneous with only non-negative pow-
ers in its expansion and the order of 0 as a point in its index set 1s at most
3 (since u has 0 as a point in its index set with multiplicity at most 1.) Ap-
plying d and § to (6.66) shows that dv € null’i"'l(X) and dv € null’i_l(X).
Furthermore, from (6.49), d(dv), §(dv) € H’;byHO(X) have boundary data

in HEZ1H(0X) @ {0} and {0} @ H}, (9X) respectively. Thus
u = d(dv) + 6(dv).

Since d: null’i_l(X) — HE 5. (X) and §: null’i"'l(X) = HE 10 (X),
this gives the first part of (6.6;1), the second part being immediate.

In fact applying (6.52) to v € null® (X) gives v = ddw + ddw + o' with
u € 7-[’5 1o(X) and w polyhomogeneous with 0 of order at most 4 as a
point in the index set. Since (d+d)v e %:b,Ho(X) is closed and coclosed

it follows that déw, §dw € null® (X). Thus
null’i(X) = {v € nullli(X);dv = 0} + {v € nullli(X);év = 0} .

This gives (6.63).
PrROOF OR PROPOSITION 6.14 (COMPLETION): It remains only to show

that the map (6.54) is injective. If u € c™® (X;%4%) is closed and maps to 0
in %/g,HO(X) then

(6.67) u=Av, A(dv) =0, v € x  H(X;°%4*) Ve > 0.

Thus dv € null’i"’l(ﬂ) and from (6.65) meg(dv) = 0 so in fact dv €
%EJEO(X) and therefore, by Proposition 6.16, ddv = 0. This means that
(6.67) can be written u = d(dv) which shows, from (6.47), that the class of

uin e |:/H§R,rel(X):| is 0. Thus (6.54) is an isomorphism.

EXERCISE 6.17. Show that if there is cohomology on the boundary in
dimensions k or k — 1 then the range of d on H}(X;%*~1) is not closed
in L7 i.e. H)(X;%F). Hence deduce that the L? cohomology is infinite
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dimensional. In cases like this the L? cohomology is often replaced by the
refined L? cohomology defined to be

%fm(X) =
{u = Hg(X;b/lk);du = 0} [{dv € HY(X;0AR); v € HY(X; AR},
Show that with this definition
Hyr(X) = Hi po(X).

Of course the notation in (6.61) and (6.62) is supposed to suggest that
these spaces are related to the relative and absolute de Rham spaces re-
spectively. This is true, in an appropriate sense. The maps to boundary
data from these spaces can be interpreted as taking values in Hﬁ;l(ﬁX)
and H¥ (0X) respectively. Using (6.63), there is also a map

Hlret110(X) = M 1o(X) & d [mall= ()] 5w = w + wo
—u € /ng,Ho(X) C /ng—abs,Ho(X)'

Notice that in (6.63) d gives an isomorphism of Eﬁ_l and d [nullli (X)} -
HY 1 115(X). This allows the space HY | 1;.(X) to be given a natural metric
inner product, with the L? metric on 7-[’5 1o (X)), making the decomposition

in (6.63) orthogonal. Using this inner product to define the adjoint, these
maps can be organized into the diagramme:

c Bkl /Hngl(aX) ]ﬂ; /ng—rel,Ho(X)

BD; .,
— /ng—abs,Ho(X) ]EC) /Hlk—lo(aX) - cee

This is the Hodge theoretic version of the long exact sequence (6.55):

ProPoOsSITION 6.18. For any exact b-metric on a compact manifold with
boundary there are natural (metrically determined) isomorphisms

(668) /ng—abs,Ho(X) — /HQR,abs(X)’ /ng—rel,Ho(X) — %QR,I‘GI(X)

such that the diagramme

(6.69) \

_ BD BDy
/HkHol(aX) . /ng—rel,Ho(X) /ng—abs,Ho(X) —+1>
7‘[2;{1(8)() %QR,I‘GI(X) e /HQR,abs (X) -

commutes.
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Proo¥F: From Proposition 6.13 there is a natural map
(670) /ng—abs,Ho(X) — /HQR,abs(X)

given by interpreting u € HY . 1.(X) as a closed conormal form. Con-
versely if u € C%(X; A*) then (6.52) gives

w=dév+ddv+u, u e "ngyHo(X), v € x T HZ(X; AR).

Set w = dv. Then du = 0 implies ddw = 0 and, since dw = 0, necessarily
w e nullli+1(A). Thus

u—dév=u4+dwe %lg.abs,Ho(X)

by (6.63). This provides a two-sided inverse to (6.70) and proves the
first part of (6.68). Moreover the boundary map from %lg_abs,Ho(X) into
H¥ (0X) is the same as that for the de Rham cohomology, so the (implied)
square, with "ng_absyHo(X) at the top left, in (6.69) commutes.

To define the map from %lg—rel,Ho(X) to %QR,rel(X) take a collar decom-

position near the boundary, with x the defining function, and choose some
¢ € C°(R) which is 1 near 0. Any u € %lg—rel,Ho(X) is of the form

dx

/
u=u +—ANAu,
T

in the collar, with v’ € x°H°(X; A*) for some ¢ > 0 and wu, independent
of x and closed. Then consider the map

(6.71) Hy vt 110(X) D ur—r u— d(¢(x) logz Aw,).

Certainly the image form is in z“H° (X;84%) and is closed. It is well
defined apart from the choice of ¢ and a change in ¢ merely changes it by
the differential of a C*° form with compact support in the interior. Thus
(6.71) gives a map into the relative de Rham cohomology. By construction
this map makes the square with %’g_reLHO(X) in the upper right commute
since the boundary map in de Rham cohomology is just

/Hngl(ﬁx) Svr—— ¢ (z)dr Av e %QR,rel(X)

and this map has null space Ezj = (E’g_l)# From (6.63) and Proposi-
tion 6.13 it follows that (6.71) projects to an isomorphism onto H5g _ (X).

This completes the proof of the theorem.
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6.5. Extended L? null space of Dirac operators.

The relationship between the null space, on weighted spaces, of the Dirac
operator, its adjoint and the Dirac Laplacians can be investigated using the
same basic approach as in the previous section.

Let X be a compact even-dimensional manifold with boundary equipped
with an Hermitian Clifford module, with unitary Clifford connection, asso-
ciated to an exact b-metric. Then consider the null spaces of the ‘Laplacian’
and the positive Dirac operator:

null_ (550%) = () {v € 2° Hy* (X; EY); 050Fu = 0}
s<0
null_ (3}) = ﬂ {u € H® (X, E1);0hu = 0} .
s<0

(6.72)

Certainly null_(350%) C null_(3}) and the difference between then is
determined by their boundary values. Using M, to identify (or define) the
induced Clifford module on the boundary, Ey, with (as) the restriction of
E*, (4.115) shows that the indicial family of 3307, is just 5%,}1 + A2, Thus,
just as for the Laplace-Beltrami operator, the corollary to Proposition 5.61
gives a map to boundary data

BDT: null_(ﬁgﬁg) — 111111(50719)2

(6.73)
u=wuylogz+ ug+ O(x) — (ug, u1).

Let ﬂlog(u) = uj be the evaluation of the coefficient of the logarithm. Let
LT C null(dy g) be the subspace defined by

w € LT «— Jue null_(ﬁg) with BD+(u) = (ug, 0).

For the adjoint 0%, and related Laplacian 5;5;3, use of M_ to identify Ey
with £~ gives a similar map to boundary data, BD™, and subspace L™ C
null(do,z) which arises as the boundary data of elements of null_(d%).

ProOPOSITION 6.19. For the Dirac operators on an even-dimensional com-
pact manifold with boundary, as described above

(6.74) null(@o g) = Lt & L™

and 05 null_(0505) — null_(0}) has range the annihilator (with re-
spect to the L? pairing) of the L? null space of 5;'52 and null space mapped
isomorphically by m.s onto L.
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ProoF: From Lemma4.51 it follows that 0 is the only possible point in the
boundary spectrum of 5;'52. The boundary pairing between the formal null
space of 5;'52 and that of 07, associated to 0, is given by (6.3) and, as follows
from (6.7), is just a multiple of the L? inner product on the boundary.
Thus it follows from Lemma 6.4 that LT and L~ are orthocomplements in
null(dy g), as stated in (6.74). By definition null_ (3},0%) consists precisely
of those u € x™H{°(X; E~) such that 05 (0zu) = 0 so certainly 95 maps
null_ (550%) into null_ (6%). If w € null_ (350%) then d5u is L?-orthogonal
to the L? null space of 5}5, which is contained in zH°(X; Et) for some
¢ > 0. The Fredholm properties of 0y allow 0pu = f to be solved if
J € 7 HX(X; ET), for e > 0 sufficiently small, is orthogonal to the L?
null space of 5}5 so the map is surjective as stated. The last statement
follows by applying Lemma 6.4 to 5}55;3.

The spaces null_(ﬁfj) are called the ‘extended L? null spaces’ of the
respective operators in [8]. Proposition 6.19 answers a question posed there,
in showing that every element of the null space of the boundary Dirac
operator Gp g is the sum of the boundary value of an element of null_ (5}5)
and that of an element of null_(0%); this is just (6.74). In [8] the weaker
result, that dim Lt + dim L~ = dimnull(dg g), is shown; this reduces to
the relative index theorem, across weight 0, for 5;'52.

6.6. Resolvent family.

Next the description of the generalized inverse obtained in Chapter 5 will
be applied to the resolvent family of the Laplacian of an exact b-metric on
a compact manifold with boundary. In fact the discussion will be carried
out so that 1t applies to any second-order self-adjoint elliptic b-differential
operator acting on some vector bundle but with diagonal principal symbol,
given by an exact b-metric and with indicial family of the form (6.88). This
is the ‘geometric case’. For simplicity of notation at first only the action of
the Laplacian on functions will be considered:

PA =t -t € Diff(X),
where % is the b-differential in (2.21) and % is its adjoint with respect to
an exact b-metric. The discussion of the indicial operators in §4.17 shows,
as in (6.50), that the indicial roots of %A, the points in spec,(°A), are just
the values of A for which
(As +X)v =0, v € C™(IX)

has a non-trivial solution. That is,
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LEMMA 6.20. For the Laplacian of an exact b-metric
(6.75) A € specy, ("A) <= —A? € spec(Ap).

Since Ay is just the Laplacian on a compact Riemann manifold without
boundary,
spec(Ag) = {0=0] <03 <...}

can be written as an increasing sequence, where o7 corresponds to an eigen-
space of dimension m(k) > 1. As a self-adjoint operator, Ay has resolvent
family (Ap — 7)1 with simple poles (i.e. of order one) at the points 7 = o7,
where the residue is the orthogonal projection, of rank m(k), onto the cor-
responding eigenspace.

Exercisk 6.21. Check that if £ is an Hermitian vector bundle over X,
0<vel®(X;*Q) and P € Diﬁg(X; E) is formally self-adjoint

(6.76) /<P¢>, by = /<¢>, P Y 6,4 € C(X: ),

X X

then if P is elliptic it is selfadjoint with domain HZ(X; F). [Hint: It is
enough to use a parametrix in the small calculus, as in Proposition 4.38.]

This allows (6.75) to be made more precise as in (5.10):
Spec, (PA) = {(0, 1), (£io;,0),0# 0']2» € spec(Aa)}

and 0 is seen to be a special point, being the only indicial root of non-trivial
order.

More generally consider the resolvent family of %A, i.e. the inverse of
YA — 7. The indicial roots of %A — 7 are the solutions of

(6.77) =2 4ol ie A= £X(r), N(1) E (1 - o)t
Notice that
(6.78) Aj(1) ER <=1 € [07,0).

This is important since real indicial roots are obstructions to the the oper-
ator °A — 7 being Fredholm on the metric, i.e. unweighted, Sobolev spaces.
From Theorem 5.40 it can be deduced that (%A —7): HZ(X) — HP(X)
is Fredholm exactly when 7 € C\ [0, o0). In fact %A — 7 is actually invertible
for all 7 ¢ [0, 00) since, by (5.165), the null space would have to consist of
classical conormal functions for which the integration by parts formula

(6.79) 0= (("A = r)u,u) = —l|ull* + ||'dul|?

1s justified.
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Im A

Re A

Figure 11. spec, (°A).

EXERCISE 6.22. Use an approximation argument to show that (6.79)
holds if u € LZ(X) and *Au = Tu.

If the square root in (6.77), A;(7), is taken to have positive imaginary
part, with cut along the positive real axis, then

Specb(bA —7) = {(E£X;(7),0)}, 7€ C\[0,00)

has no points of positive order. The two absolute index sets obtained as
in (5.85), by splitting Spec,, (°A — 7) into parts with negative and positive
imaginary parts and changing the sign of the latter points, are the same:

E(r) = E¥(1) = {(=A;(7),0)}, 7€ C\[0,00).

Moreover there can be no accidental multiplicities except when 7 is real,
since the different roots have different real parts. Let E(T) = (E(T), E(T))
be the corresponding C* index sets defined by (5.118), which reduces to
(5.119) when 7 ¢ R. Applying Proposition 5.61 the resolvent is therefore
of the form

~

(6.80) tA— )t ew; 25(X), r e C\R.

b,os

Going over the construction of the parametrix it is straightforward to
check that it can be carried out holomorphically, at least locally in a set



6.6. RESOLVENT FAMILY 237

where there is no accidental multiplicity. This means that the indicial roots
are holomorphic, all the terms in the expansions are holomorphic and the
remainder estimates are uniform, locally, in A. Thus near any point 75 ¢ R
the inverse in (6.80) can be decomposed into the three terms of the calculus

in (5.156):
(bA — 1) L= A(T)+ B(r) + R(7), |[r— 70| < e

with each term holomorphic. For example the asymptotic expansion of
B(r) near lb and rb is therefore locally uniform in 7 with holomorphic
coeflicients:
(6.81) B(r) ~ pl;)Mj(T)uj(T) near lb,

J

where u;(7) is C*° on X? near b and holomorphic in 7. Similarly A(r) is
holomorphic as an element of the small calculus.

This dicussion is under the assumption of the absence of accidental mul-
tiplicity. There is nothing to stop such accidents for 7 € (—o0,0). The
resolvent certainly stays holomorphic as a bounded operator, but it cannot
in general have a holomorphic expansion in the sense of (6.81). However
it is important to note that the indicial roots +A;(7) stay holomorphic.
In fact all that happens is that in an expansion such as (6.81) the indi-
vidual terms may be only meromorphic, while the whole operator remains
holomorphic. To see how this can happen consider the simple model of
accidental multiplicity given by the two roots ¢A, —iX near A = 0. The
conormal distribution on [0, o0)

e —z7A sin(z))

Wz d) = ==

is holomorphic as a distribution (i.e. weakly, when paired with a test func-
tion ¢ € C> ([0,00))) but the coefficients in its expansion are meromorphic.

This is precisely what tends to happen at points of accidental multiplicity
as can be seen from say (5.127) when the exponent A(7) + k crosses a pole
of I, (P, z). Even though the expansions are then only meromorphic, not
holomorphic, there is a stronger form of the holomorphy of the operator
than just as a bounded operator on L?. Namely it is holomorphic when
considered as an element of the calculus with bounds in §5.16 and defined
in general by (5.107). To say that a map into this space is holomorphic
means that it has a decomposition

A(r) = A1(1) + A2(7) + As(7),
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where Aj(7) is holomorphic as a map into the small calculus (of fixed
order), for some § > 0, pﬁaa_épr_bb_éAz(T) is holomorphic as a map into
the space in (5.104) and As(7) is holomorphic into the weighted Sobolev
space in (5.107). Each of these spaces is fixed, independent of 7 (unlike
the polyhomogeneous space which depends on the variable of holomorphy)
with Frechét topology. Thus each is a countable intersection of Hilbert
spaces, and holomorphy just means holomorphy into each of these spaces.

The construction above therefore gives:

LEMMA 6.23. For any open set G C C with closure compact and con-
tained in C\[0, co) there exists € > 0 such that the resolvent of the Laplacian
is holomorphic as a map

Gorr (A-7)l e ¥ 209(X).

b,08,00

6.7. Analytic continuation of the resolvent.

This construction can be extended outside the resolvent set, or physi-
cal space, C\ [0,00), in a manner typical of scattering theory. To do so
first consider the roots in (6.77). Each of these corresponds to a natural
Riemann surface, Z;. Thus

x:Z; —C

is a double cover of C ramified at the singular point, 7 = 0']2», of the function.

As a topological space, 7; is obtained from two copies of C cut along

[0']2», o0), with the sides identified to their opposite in the other copy. The

complex structure on 7Z; is that of C except near the point of ramification,
2

where it is uniformized by +(7 — O'j)%, i.e. the two holomorphic functions

outside the cuts combine to give a single holomorphic function:
Rj: Zj — C

which restricts to A;(7) in the physical space. Although this standard
construction gives a surface on which one of the indicial roots is holomor-
phic what is required is a surface on which all of them are simultaneously
holomorphic. Starting with 7, notice that +(r — 0'%)% lift from C, cut
along [07, 00), to Zy cut along the two half-lines which are the preimages
of [¢%,00) under Rg in Zg. Taking two copies of Zg, each cut in this way,
and identifying the two pairs of cuts appropriately gives a four fold cover,
Z1 of C to which both 7% and +(r— 0'%)% extend holomorphically. Con-
tinuing indefinitely in this way successive Riemann surfaces, 27', are con-
structed with covering maps 27 — C. Successive constructions leave an

increasingly large compact set unchanged so the Riemann surface, 2, can
be defined to which all of the indicial roots extend to be holomorphic.
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THEOREM 6.24.  The resolvent of the Laplacian of an exact b-metric
extends to a meromorphic function

~2,8(2)
b,os

(6.82) 7352 Q(z) €W (X),

where g'(z) = (B (%), Ew(2)) is the smallest C*° index family containing
the values of the holomorphic functions for all j :

Ew(z) = Em(z) D {(—R;(2),0);5=0,...}.

The notion of meromorphy for a polyhomogeneous b-pseudodifferential op-
erator is discussed above, i.e. all expansions are meromorphic with remain-
der terms meromorphic in the calculus with bounds. As before there may
be more poles in the representation of the expansions than in the operators
themselves.

PrOOF: The idea is simply to construct the parametrix for (A — 2)7! to
be holomorphic in an arbitrarily large compact region of 7 and then to use
analytic Fredholm theory to show that Q(z), extending the resolvent, is
meromorphic. From the uniqueness of analytic continuation it then follows
that Q(z) extends meromorphically to all of 7.1t is important to note
that the index sets g'(z) allow, as z moves outside the physical region,
increasingly large negative powers in the expansions of the kernels. In
particular the extension of the resolvent will not be bounded on LZ. In
order to prove the existence of this analytic extension it is therefore essential
that the error term be made to vanish to high order at 1b(X?) so that the
Neumann series in (5.147) makes sense.

So consider again the various steps in the construction. The first step
was to construct an inverse modulo ¥, *(X). This involves successive divi-
sion by the principal symbol, which is independent of 7. Thus the symbols
are always polynomials (of increasing order) in 7. The quantization map
gives operators depending holomorphically on 7 and these can be summed
uniformly asymptotically, giving a parametrix in the small calculus depend-
ing holomorphically on 7 in any preassigned compact domain in C. Indeed
with a little more effort it can be made entire, but this is of no particular
significance here. This ‘small’ parametrix, G;(7), can then be lifted to a
correspondingly large subset of 7.

The next step i1s to correct the indicial operator of the parametrix so
that it inverts the indicial operator. This is done by using the inverse of
the indicial family, see (5.84). Thus the correction term to the indicial
operator of G 1s

/ s Ap + A2 — 1) Ry (A, YA

— 00
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The integral is over the real axis when 7 € C\ [0, o0), the physical space for
the resolvent parameter. The difficulty is that as 7 approaches the positive
real axis some indicial roots may approach the real axis. However, to get
holomorphy in a given compact subset of 7 only a finite number of the
eigenvalues of Ay need to be considered. Thus G'g can be decomposed as
a sum:

j (o]
_ ) 1 i
(6.83) Gp=GY +p§:0: — Ze oLp) / s AN

— 00

X (02 + A% — 1) / Roar(hy”, )6 (s dy".

Here Gg) is holomorphic in || < 0']2» and the qb((gp) are, for e = 1,...,m(p),
an orthonormal basis of the eigenfunctions of Ay with eigenvalue 0'12,.

To find the analytic continuation of G'p it therefore suffices to consider
the finitely many terms corresponding to the ‘small’ eigenvalues of Ay, i.e.
each integral

(o]
! Ay 2 2 -1
py s (0']» + A= 7)7 R (A, )dA.

— 00

(6.84)

LEMmMA 6.25. The function in (6.84) extends meromorphically to Z;, with
a pole only at the point of ramification over C.

PrROOF: The representation (6.84) is valid for 7 € C\ [0,00). Analytic
continuation across the cut is given by shifting the contour of integration
to ImA = —N, for N large. This crosses the pole of the integrand at
A = A;(7) so, using Cauchy’s formula, (6.84) decomposes into

(6.85)
~S_iRj(T)R R
—ZW s,m(—R;(7), )
1 .
+ 7 / 5“(0']2» N T)_lRS,M(/\, JdA, N >> |7
ImA=—N

Here we have written R;(7) in place of A;(7) to emphasize the analytic
continuation to 7;. Since R, 3r, coming as it does from the small calculus,
is entire and rapidly decreasing as | Re A| = oo when |Im A| is bounded, the
second term is holomorphic in 7. Clearly the first term is meromorphic on
Z;, with only a possible pole at R;(7) = 0 which is the point of ramification.
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In fact the decomposition (6.85) gives more since it shows that in s < C
the second term is not only holomorphic on Z; but is rapidly vanishing
as s | 0. Of course the first term corresponds to a fixed singular point,
—iR;(7), for each value of 7. The same conclusion, as to meromorphy, can
be arrived at by shifting the contour to ImA = N, for N >> |7|. Then in
place of (6.85)

(6.86)
'@R (R»())+i/ Mo? + X2 =) R (N, ) dA
ZQR]'(T) s, M ]T, 271' S O'j T s, M s .
Im A =N

The residues in (6.85) and (6.86) are necessarily the same at the point of
ramification. However in (6.86) the second term is entire on Z;, for s > C
and rapidly vanishing as s — oo.

Applying Lemma 6.25 to the decomposition of the correction term in
(6.83), it follows that G'p is meromorphic on Z (or in as large a region
as R, ar was made holomorphic as a function of 7) with poles only at the
points of ramification and complete asymptotic expansion as s — 0, co
with powers exactly the values of R;(7).

This is the meromorphic version of the first part of the construction of
the correction term to the resolvent. Following the discussion in §5.20,
G g should next be extended off bf(X7?). That is an operator, G'g, is to be

chosen in \T!;OO’E(Z)(X) with G'p as its normal operator in such a way that

the error term in
(6.87) (A—7)(Gs+G%)=1d—Ry — Rs, I,(R1) =0

is to vanish to infinite order at 1b(X?). This proceeds exactly as before,
with the resulting Taylor series being meromorphic in the same sense as for
G'p. The only subtlety worth noting is that the simple poles at the points
of ramification can be chosen to haveA residues in the residual calculus, so
Ry is holomorphic and Rs € \I!_Oo’(@’E_(Z))(X).

This argument can be iterated, as in §5.22, to remove the Taylor series
of the error term at bf(X7?). Summing again gives an improved parametrix
as in (6.87), with no term Ry, in the sense that the error term is now
meromorphic with values in the residual calculus and only simple poles at
points of ramification. This gives a meromorphic right parametrix in the
appropriate space with

(bA — 1(2))GRr(2) = 1d —Rg(z),
Rp(z) € ¥, 2" (X), ze K cC 7,
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where the constant A depends on the compact set K. In fact of course Rg(z)
is also meromorphic as a polyhomogeneous b-pseudodifferential operator.
By analytic Fredholm theory, as discussed in §5.3, it is only necessary to
construct such a parametrix with Id —Rpg(z) invertible for one value of z to
deduce that the inverse extends to be meromorphic. The space on which
these operators act can be taken to be pA HY(X), where again the constant
A will have to be taken increasingly large and positive to get meromorphy
on a correspondingly large compact subset of 7. Tt follows that the inverse

Gr(z) (1d=Rp(z) ™"

is itself meromorphic as an operator from pAH?(X) to p~4HZ(X). The
invertibility for one value of z can be accomplished by the addition of
G(2') — Gr(2'), where G(2') = (°A — 7(2'))~* for some z’ in the physical
space. This completes the proof of Theorem 6.24.

Anticipating a little, the argument from §7.7 can be used to simplify the
construction of the parametrix slightly in that a ‘small’ parametrix G (7)
can be found which is entire in 7 € C and with the property that the error
is small at infinity in the physical space. This approach is discussed in §7.7.

6.8. Poles of the resolvent.

Although Theorem 6.24 is stated for the Laplacian on functions; only
the behaviour of the indicial roots is really crucial to the argument. In
particular it extends to any operator P € Diﬁg(X; E) which is self-adjoint
with respect to an Hermitian inner product on E and the metric density
of an exact b-metric, has diagonal principal given by that b-metric and has
indicial family with respect to the metric trivialization of the normal bundle
of the form

(6.88) IL(P,A) = Py + A%

Here Pj 1s necessarily a self-adjoint operator on sections of E over the
boundary. Examples of such operators include the Laplacian on b-forms
and the square of the Dirac operator. Let Eig(j) be the eigenspace for P
and the eigenvalue o;.

LEMMA 6.26.  For a self-adjoint elliptic operator satisfying (6.88) the
generalized boundary data of P — o;, where o; € spec(Ps) is

(6.89) G(P —0;,0) = {ug + ui log z; ug, u1 € Eig(j)}
and with this identification the boundary pairing (6.12) becomes

(6.90) B(ug + uylogx, vo + vy loga) = / ({ug, v1) — {uy, vo)) vo.
8X
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ProoF: Certainly (6.89) follows directly from (6.88). If ¢ € C™ ()?) is 1
near JgX and 0 near 0; X then the Mellin transform

?

1

({0 + log 2ur)) y = =0 = 15

ug —

with & entire. Then the extension of (6.7) to sections of bundles gives

B(ug + log xul, vg + logavy) =

. : .
AZ-i —Lvg — v - dA
2mi ?{ / o /\2 ), /\vo N nve

I' oX

which gives (6.90).

For applications it is useful to have more information about the poles
of the analytic continuation. The poles of immediate interest are those on
the boundary of the physical region, the physical poles; those outside the
closure of the physical region are poles of the scattering matrix as briefly
explained in §6.10. The physical poles fall into two classes, we discuss the
simpler of these first.

PROPOSITION 6.27. For a self-adjoint element of Diff; (X; F) with diago-
nal principal symbol given by an exact b-metric and indicial operator of the
form (6.88), the poles of the analytic extension (6.82) on the boundary of
the physical region C\ [og, o) and away from the points of ramification of
7 are all simple, project precisely to the points 7 € R\ spec(Py) at which
P has L? eigenfunctions, and have as residues the orthogonal projectors
onto the L? eigenspaces.

Thus these poles behave very much as the eigenvalues in the case of a
compact manifold without boundary.

PRrROOF: Suppose 7 € 7 is a pole of this type, i.e. it is in the boundary
of the physical region and projects to R \ spec(Ps). Thus for r > 0, both
7+ ir and 7 — ir can be interpreted as points in the resolvent set. The
self-adjointness of P means that

Im/«p—riwwww:rww
X

for all ¢ € HZ(X; E) so

(6.91) (P —r+ir) < 1/r
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as an operator on LZ. This and the meromorphy established above show
that, for any ¢ € C®(X;E), »(P — 7+ ir)~1¢ is smooth with values in
v~ HZ(X; E), down to r = 0 with possibly different limits depending on
the sign. Then (6.91) shows that the limits must exist in HJ(X; E). The
residue

(6.92) Res(r) = ilrIilo ir(P — (1 +ir))~*

therefore takes values in L? on C*° (X; F). However its range certainly con-
sists of elements of the null space null(P, ¢) on z°H°(X; E) for some € > 0
and the residue therefore has finite rank. The same argument applies to the
adjoint, so the residue is a finite rank self-adjoint operator on L?, in fact
mapping = H)(X; E) into z°H°(X; F) for some € > 0. Differentiation of
the resolvent identity gives

(6.93) i117}110 % ((P —(r+ir))r(P—(r+ ir))_l) ¢ =

(P —7)(A¢) — Res(r)¢ = ¢ ¥ ¢ € C™(X; E),

with A taking values in z=*HZ(X; F). Thus A is a generalized inverse of
P — 7, s0 Res(7) is necessarily a projection onto the L? null space.

Conversely if there is a point 7 € R \ spec(Ps) for which P — 7 has non-
trivial LZ null space then there must be a pole of the resolvent at any point
on the boundary of the physical space which projects onto 7 since otherwise
(6.93) would hold with Res(7) zero and hence the equation Pu = ¢ would
have a solution for every ¢ € c™® (X; E). This completes the proof of the
proposition.

So it remains to consider the poles at the points of ramification of 7.

ProrosITION 6.28. Under the same conditions as Proposition 6.27 the
analytic continuation of the resolvent to 7 has a at most a double pole
at the ramification point, over o;, on the boundary of the physical region
with coefficient the orthogonal projection onto the L? eigenspace for o €
spec(Ps) as an eigenvalue for P (if it is) and the residue at the pole is the
operator from x*H{(X; E) to =“H°(X; E) for any ¢ > 0 with kernel

(6.94) > U,
l

where the U; € C*(X; E) + 2“H°(X; E) for some ¢ > 0 are a basis of
those solutions of (P — o;)U = 0 in this space which are orthogonal to all
L? solutions and have boundary values orthonormal in L?(0X; E).



6.8. POLES OF THE RESOLVENT 245

PrOOF: Let us consider only the case oy = 0. This simplifies the form of
the indicial roots, but a general point of ramification is not essentially more
complicated. Consider the resolvent evaluated on the negative real axis, in
fact consider G(r) = (P +r?)~* for r € (0,§). The meromorphic extension
of the resolvent shows that r*G(r)¢ has a smooth limit as r | 0 for any
¢ €C™ (X; E) and some k. As in the proof of Proposition 6.27

(6.95) 1G] < 1]~

so k < 2. ForqSECOO(X;E) set

(6.96) Qb = lifglrzG(r)qb
(6.97) Res(0)¢ = zlrlfgl %TZG(T)¢
6.98 Ad = 11' i G
(6.98) o= §T1f(1)1Wr (r)é.

The first three terms in the Taylor series; at r = 0, of the identity
(P+7?) or’G(r) = r*1d,

in which all terms are smooth give:

(6.99) PoQ=0
(6.100) PoRes(0) =0
(6.101) PoA=1d—Q

with all three operators formally self-adjoint on Ce° (X E).

From (6.95) @ takes values in L?. Certainly A takes values in the space
27 H(X; E) for any € > 0 so from (6.101) @ is necessarily the projection
onto the L? null space. From the holomorphy of the resolvent and the fact
that ¢r is the only indicial root of P + r? approaching 0 from Im A > 0
(6.102) ir (G(r) =r72Q) ¢ = «™"E(r)¢ + B(r)¢,
where E(r)¢ € C*([0,6), x X;E) and B(r)¢ is C* in r down to r = 0
with values in * H{°(X; E) for some ¢ > 0. Thus
(6.103) Res(0)¢ = E(0)¢ + B(0)¢

takes values in C*™°(X; E) + 2“H;°(X; E). Differentiating (6.102) we con-
clude that the generalized inverse in (6.101) is of the form

(6.104) A¢p = —logxz Res(0)¢ + Aog + A'9,
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where Ay takes values in C* (X; E') and A’ takes values in 2°H{°(X; E) for
some € > 0.

Suppose ¢ € C*° (X;FE) and Q¢ = 0. Let u € G(P,0) be the generalized
boundary data of A¢ associated to the indicial root 0. Let U; be a basis of
the solutions of PU = 0 which are in C*(X; E) 4+ “H{°(X; E) for some
¢ > 0 and orthogonal to the L2 null space. Then U; can be identified with
its generalized boundary data U; € G'(P,0) as in (6.13). Moreover

(6.105) B(u,U;) = %/(Pu, Ujv = %<¢>, U)o

as follows from (6.10). From (6.101) and its formal self-adjointness, Res(0)
can be written in terms of the basis as

Res(0)¢ = ZAMUMQS’ Ui).

k\

Now B is given in (6.90) so applying (6.104) to (6.105), with u = A¢, shows
that Ag; is the identity matrix. This completes the proof of the proposition.

6.9. Spectral theory.

The existence of an analytic continuation of the resolvent can be used
to give a rather precise description of the spectrum of the Laplacian. First
recall the definition of the spectral measure:

PRrROPOSITION 6.29. If P is an unbounded selfadjoint operator on a Hilbert
space H then the resolvent (P — r)~! € L(H) is analytic in 7 € C\ R and
the limit

lim —
el0 27
R

((P —r— ie)_1 —(P—-r+ ie)_l) f(r)dr

(6.106)
= /f(?“)dEP € [,(H)

R

exists for all continuous f of compact support and so defines a measure,
dEp(r), on R with values in L(H), the spectral measure of P.

The spectral measure can be used to give integral representations of
functions of P. In particular the support of dEp is the spectrum of P and
it is the complement in C of the maximal open set to which (P — 7)~!
extends as a bounded operator holomorphic in 7. The spectrum is divided
into various pieces according to the behaviour of dEp.



6.9. SPECTRAL THEORY 247

The discrete spectrum consists of the points at which (P—7)~! has a pole
of finite order (necessarily simple). This can either be of finite or infinite
multiplicity, just the rank of the residue which is necessarily a projection
in £L(H). Thus dEp is equal to a Dirac measure near a point of the discrete
spectrum.

The continuous spectrum consists of the points at which dEp is the
differential of a continuous function with values in the bounded operators.
The rank of a point in the continuous spectrum is k if there is such a
representation of dEp locally with the continuous function having values
in the operators of rank at most k. Thus £ can be infinite. The spectrum
is said to be continuous with embedded eigenvalues, if dEp is the sum of
Dirac masses and the differential of a continuous function.

THEOREM 6.30. If P € Diﬁg(X; E) is self-adjoint with symbol given by

an exact b-metric and indicial family of the form (6.88) then the spectral

measure of P is of the form

(6.107) dEp =Y S(r—m)Pe+ > [r—o]}7F;
k oj€spec(Ps)

where the 7/ are the L? eigenspaces, all finite dimensional with orthogonal
projections Py, and the F; are smooth functions of (T — O'j)% with values in
the null space of (P — 1) on 2 =“HZ(X; E), for small ¢ > 0, orthogonal to
the null space on L? and such that F;(c;) is given by (6.94).

COROLLARY. Under the conditions of Theorem 6.30 the spectrum of P
is discrete of finite multiplicity outside [0, c0) and on [0}, 0;41), where ¢;
j =0,1,... are the eigenvalues of Py in increasing order, P has continu-
ous spectrum of multiplicity equal to the sum of the multiplicities of the
eigenvalues {0y, ...,0;} of Py, with possibly embedded discrete spectrum
of finite multiplicity.

Proor: Naturally we make heavy use of the analytic extension of the
resolvent and the discussion in §6.8. Certainly outside [, o0) the resolvent
family is meromorphic as a family of bounded operators on L?, with at most
poles of finite rank. The self adjointness of P forces these poles to be simple
(i.e. of order 1) and to occur at real points.

Now consider a point in 7 € (0¢, 00) which is not equal to one of the o;.
For the moment suppose as well that the analytic extension of the resolvent
does not have a pole at this point, meaning as it is approached from above
or below from the physical space. Then the limit in (6.106) certainly exists
since the individual kernels converge. Set

(6.108)  F(r)= lim - (P—r+ie)™ —(P—r—ic)”!), reR.
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Thus F(r) maps 2’ H)(X; F) into =% HZ(X; F) for any § > 0. Since it is
given as the limit of the resolvent its range is in the null space of P — r on
x_éHg(X; E). Tt therefore has finite rank, by Proposition 5.61. In fact we
know that the space G(P — r,0) defined in (6.11) has rank exactly twice
the collective multiplicity of the eigenvalues of Pj less than r. From (6.19)
applied to P —r = (P — r)* we conclude that G’(P — r,0) has dimension
exactly half of that of G(P — r,0). Now G'(P,0) is precisely the range of
the map in Proposition 5.63 for & = —e and o’ = ¢ sufficiently small. Thus
we conclude that

1
(6.109)  dimnull(P —r,—¢) = 3 dim G(P — r,0) + dimnull(P — r,¢).

In fact dimnull(P — »,€) = 0 since a non-trivial L? solution would entail a
pole in (P — 7)1 at 7 = r (from either above or below) since it cannot be
in the range of (P — r) on 9 H2(X; F) for small § > 0. This shows that
the limiting operator (6.108) has rank exactly as stated, at regular points.

The discussion at singular points is essentially the same, with Proposi-
tions 6.27 and 6.28 taken into account.

6.10. Scattering matrices.

A little of the scattering theory for an exact b-metric will now be discussed
and used to refine the statements concerning Fy in (6.107). For simplicity,
at first, only the case of the Laplacian on functions for a compact manifold
with X having just one component will be treated, although as usual the
general case presents no essential difficulties.

The scattering matrices are operators on each eigenspace of the boundary
Laplacian (and between them) depending on the resolvent parameter. They
capture the leading global behaviour at the boundary. These matrices can
be viewed as relating the resolvent of the actual Laplacian to the resolvent of
its indicial operator and it is in this sense that they are scattering matrices.
The analogy is strongest with one-dimensional scattering theory on the
line, but this is not examined. Rather the position taken here is that these
scattering matrices are really the analogue of the Calderén projector ([25],
[81]) in standard elliptic boundary problems.

If 0']2» is an eigenvalue of Ay and ¢ € Eig(j) is an associated eigenfunction
consider u(r) = #*%(7) ¢ where R;(r) = (7 — 0']2»)% is the square root with
positive imaginary part for 7 € C\ [0, 00), continued to 2, and x is an

admissible boundary defining function. Then u(7) is not square-integrable,
for 7 in the resolvent set, but
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In particular if |Im R;(7)| < 1, which is certainly true when 7 is close to
[0']2», oo) and in the physical region, then v(7) is square-integrable. Thus

there is a unique L? solution of

(6.110) (A — 1) (1) = v(r),
(6.111) U(r) = %[u(r) —u'(7)] # 0 satisfies (A — 7)U(7) = 0.

This shows the first part of:
LEMMA 6.31. For each eigenfunction ¢ of Ay with eigenvalue 0']2» there is

an open neighbourhood O; C C of [¢3, o) such that to each T € 0;\ [0, 00)
there corresponds a unique element U(r) € = H° (X bQ%) satisfying

1 .
(6.112) (A-n)U(r) =0, U(r) = 51»23]'(7)(/5 mod L%,
Moreover, for T sufficiently close to 0']2» in C\ [0, 00)

U(T) _ _xiRj(T)¢ — - Z x_iRk(T)l/)jk(T)(%j) + O(l‘ﬁ),
(6.113) oise;

Vik(T)¢ € Eig(k),

where € > 0 is independent of 7. The coefficients in this expansion extend
to meromorphic matrices:

Yik: 7\ Dji — Hom(Eig(j), Eig(k))

with Djj, C 7 the discrete set of poles.

After an appropriate normalization (to give unitarity) these ;5 become
the scattering matrices for the Laplacian, or for the metric.

PRrROOF: The existence and uniqueness of the solution to (6.112) has already
been noted. For 7 € €\ [0,00) in a small enough neighbourhood of o7
the only indicial roots of A — 7 corresponding to L? are the —iRy(r) for
o < 0']2». Thus the expansion (6.113) follows from Proposition 5.59. Since
the resolvent is holomorphic in this region it follows the the i, are also
holomorphic in C\ [0, o) near 0']2». It remains then to show that they extend

to be meromorphic functions on 7.
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This 1s a consequence of the meromorphy of the resolvent on 7. The
first step 1s to proceed formally. Namely, for any preassigned N there is a
meromorphic solution of the formal version of (6.112):

(A= 7)Un(r) = on(r) = O(a"),
Un(r) € e NHZ(X;PQ%) in |7| < N
Un(r) = U(r) € HY(X;%Q%) for |7 — 0% < e,7 € C\ [0, 0).

This can be constructed as in Lemma 5.44. Since the remainder term vy is
uniformly small at the boundary, the resolvent can be applied to it, using
Theorem 6.24 and Theorem 5.34, for 7 in a subset of Z which becomes
arbitrarily large with N. It follows that

U(r) =Un(r) = (A=7)" un(7)

1s meromorphic in 7. Moreover the coefficients of the z=1f+(7) can always
be identified in its expansion, except for points of accidental multiplicity.
Hence the ;;, are also meromorphic, as stated.

Once again essentially identical results hold for the Laplacian acting on
forms and the Dirac Laplacian on the spinor bundle.

Let us consider further the behaviour near 7 = 0 of the U(r) correspond-
ing to the zero eigenspace of Agy. Set 7 = z? with 2 the local parameter on
7 (really just Zo locally) with Tmz > 0 being the physical region. Then
for an orthonormal basis ¢; € null(Ap)

(6.114) Uj(z) = —x”qu Zx‘“w]k Vo + Uj(2), |Uj(2)] = O(f)

near z = 0 with € > 0. For small real z # 0 the dimension of the space
of these solution is exactly dimnull(Ay), i.e. they span F'(P — 22 0). It
follows from the vanishing of the boundary pairing on F'(P — z?,0) that
¢(#) is unitary for small real z. The uniqueness shows that

(6.115) B(=2) = ()7 = ()"

Thus ¥(z) is regular at z = 0 and ¥(0)> = Id. The +1 eigenspace is
therefore the boundary data of the solutions in C*™(X; E) 4+ 2°H*(X; E),
just those appearing in (6.94). Thus we conclude:

ProrosiTION 6.32. Under the assumptions Proposition 6.27 on P, the
leading part, Fy, of the spectral measure can be written in terms of the
solutions in (6.114) as

(6.116) Fov = Zr—%ajk( r3)U; (r)(v, Ug(r)) near r = 0,
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where a;i(s) € C([0,¢€) is a self-adjoint matrix and
ur— > ak(0)¢;{u, ¢x)
ik

is the projection onto the subspace of the null space of Py spanned by the
boundary values of the null space of P on C*(X; E) + L*(X; E).

This representation of the leading part of the continuous spectrum will
be used in §7.8 to analyze the long-time behaviour of the trace of the heat
kernel when Ajp is not invertible.



Chapter 7. Heat calculus

To carry through the proof of the APS index theorem as outlined in the
introduction a reasonably good understanding of the heat kernel,

exp(—tP) for P € Diﬁg(X; E), P>0,

is needed. In particular the cases P = -0, P = 30~ are important.
The analysis of these kernels will start with the case X = §, which is very
standard. However the use of blow-up techniques to define a space (the heat
space) on which the heat kernel is quite simple is not so usual, although
philosophically 1t is just a slight extension of Hadamard’s method. This
blow-up approach is very much in the same style as the treatment of the
b-calculus and therefore has the advantage that it generalizes very readily
to the case of the heat kernel for a b-metric, which is the important case for
the APS theorem. For other generalizations of this approach to the heat
kernel see [57] and [30].

7.1. Heat space.

Let P € Diﬂ’z(X;Q%) be elliptic with positive principal symbol on a
compact manifold without boundary. The heat kernel for P can be viewed
as an operator

Hp: C®(X;Q7) — ([0, 00) x X;Q7),
which gives the unique solution to

2-|—P)u(t,~) =0in [0,00) x X

(7.1) (Gt > u=Hpv.

w(0,)=vin X

Here the natural half-density on the line, |dt|51 has been used to identify
the pull-back of Q%(X) to [0,00) x X with Q%([O, o0) x X). The kernel, h,
of Hp can therefore be 1dentified as a distribution
heC®([0,00) x X x X;Q7).
At least formally the conditions (7.1) can be transcribed to
Dy)

(8¢ + P, Yh(t,z,2') =0

(72) h(0,z,2") = 6(x — ).

To show the existence, and properties, of the heat kernel an approximate
solution to (7.2), i.e. a forward parametrix for 9/9t+ P, will be constructed

252
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and then used in an iterative procedure. The model case is simply the
Laplacian on R”, for which the heat kernel, with density factor removed,
is well known:

1 |z — 2|2
. ho(t N = _ .
(7.3) olt,z, ) EIE exp ( m

EXERCISE 7.1. Derive (7.3) using the Fourier transform.

As part of the usual quest to understand Schwartz kernels consider the
sense in which (7.3) is a C* function, i.e. its natural homogeneity. Tt is, of
course, only a function of x — z’ and ¢, but more importantly it is a simple
function of 7 and (# — 2’)/tZ. As will be seen below it is also useful to
think of it as a power of ¢Z times a smooth function of |z — 2|2/t. In the
space [0,00); x R?__, a parabolic blow-up of the origin will be performed,
by introducing as polar coordinates

/ /
r—z :rw,t:r2w0

(7'4) ’ n def n+1 2 114
w:(wo,w)ESH:{WER ;WOZOaW0+|W|:1}'
Thus if X =1R",
(7.5) X% =[0,00) x Sy x R"

and the parabolic blow-down map 1s
(7.6) Br: X33 (r,w,y) — (rPwo, ' +y,y) €[0,00) x R™ x R™,

It is quite straightforward to give a general description of this process of
the parabolic blow-up of a submanifold, in this case

B ={(0,z,2) € [0,00) x R" x R"} = {0} x A,
A= {(J:,J:)ERZ";JL‘ER"},

where the parabolic directions (in this case the span of dt) form a subbun-
dle of the conormal bundle to the submanifold. The interested reader may
consult [32] and [31]. Here only the very special cases needed will be intro-
duced. The new manifold, X%, in (7.5) is a manifold with corners which
has two boundary hypersurfaces, since it is the product of two manifolds
with boundary. The boundary hypersurfaces will be denoted tb(X%) and
tf(X%). The first of these is just the lift of the old boundary {t = 0} of
[0,00) x X :
th = clxz S5 [{t = 0Y\Ba].
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This is the temporal boundary. The other boundary hypersurface is the
front face for the blow-up, i.e. the submanifold on which the blow-down
map does not have invertible differential. In this case

tf(Xj) = {r =0} = 85" (Bn)

will be called the temporal front face, if absolutely necessary. Defining
functions for these two boundary hypersurfaces will be denoted py, (for
example wy) and pg (for instance r). Notice that the lift of ¢ is not a
defining function for either, rather it is of the form

Bt = wor® = puupiy-

This quickly leads to:

LEMMA 7.2. Lifted to the manifold with corners X3, for X = R"™ the
heat kernel (7.3) is of the form

(7.7) ho € p7"C®(X}), ho=0 at tb.

Proor: Lifting (7.3) gives, explicitly,

1 12
(7.8) Birho = 77" X ———exp ( ] ) .

(2mwo) 2  Awg
This reduces to (7.7) if it is shown that the coefficient of =" is C* on S%.
However this is immediate where wg # 0 and as wg | 0 the exponential
vanishes rapidly (since |w’| — 1).

It is useful to consider the lifts to X% in (7.5) of vector fields tangent to
the manifold, By, blown up to construct it.

LEMMA 7.3. Under the blow-down map (7.6) the vector fields on R*"
tangent to the diagonal, 10/0t and the vector fields of the form f0/0t,
where f € C° (IR?") vanishes to second order at A C R?" lift to be smooth
on X% and, over C*(X#%), span the space of smooth vector fields tangent
to the boundary.

Proor: The vector fields in question are spanned by

T I Y )

Dawe For T oer tar M i) =2l gy

(7.9) (z; — pn

over C*([0, 00) x R?™. Consider the lifts of these generating vector fields to
X?, initially away from tf(X%). All of them are homogeneous of degree ()
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under the transformation ¢ — r?t, x — x +r(x — ') with 2’ unchanged.
Thus, in terms of the parabolic polar coordinates (7.4), they must all lift
to be of the form

0

(7.10) ars + v,

where a € C™ (S x R"™) and v is a C* vector field on §% x R™. Thus all
the lifts are smooth up to r = 0, i.e. on X7 . The vector field 78/dr is the
lift of 2t0/0t + (x — 2’) - 9/0x, so it is in the span of the lifts of the vector
fields in (7.9). Moreover the v’s in (7.10) must span all the smooth vector
fields on S% x R™, and tangent to the boundary, since they do so in r > 0.
This proves the lemma.

The brave idea, due to Hadamard in this sort of generality, is to do the
same thing in the variable coefficient case. The heat kernel is the inverse
of an operator of order 2, and so should be thought of as having order —2.
Thus (7.8) is the model for an element of the heat calculus of order —2.
Proceeding in a deliberate fashion, the objective is to define the space of
heat pseudodifferential operators of order &, by
(7.11)

ok (o 0F {A € p -

Feo (X308, K =0 at tb}, k< 0.

Here X% needs to be defined first, of course. The apparent change in power
of r between (7.8) and (7.11) arises from the density factor which has been
suppressed. Lifting to X% :

(7.12) jdtdeda’| = (Br) [0 drdwds|].

This means that (7.8) should really be written:

1 12
By (holdtdeda’|) = r= 30342 5 — __exp _ |drdwda’|?
(2mwo) 2 4wy
and it is then consistent with (7.11).
To define X% as a set it is only necessary to proceed in the obvious way
from the point of view of blowing up:

Xi = [([0,00) x X*)\Bu | U [t(XF)]

(7.13) By = {0} x A, A={(z,z) e X); X € X) = X.

What should the temporal front face, tf, be in general? From the experience
gathered during the construction of X7, it should be some sort of spherical
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normal bundle to By but in this case should have parabolic homogeneity
in t.
Consider the curves

(7.14) x:[0,e] —[0,00) x X% >0
such that
(7.15) x(s) € By <= s =0 and y*(t) = O(s?).

Then impose the equivalence relation

x(0) = x(0),
(7.16) x~X <=1 (= () )f=0(sH) ¥ f €C®(X?) s.t. fja =0,
(X* = (")t = 0(s*).

LEMMA 7.4. The equivalence classes [x] of curves (7.14), satisfying (7.15),
under (7.16), form a space with a natural additive structure and R*-action
(but not a vector space structure) on the sets where x(0) takes a fixed
value.

PRrROOF: The sum of two curves x1, xz satisfying (7.15) with x1(0) = x2(0)
is a curve x also satisfying (7.15), such that x(0) = x1(0) and

(X =X1=X5)[=0(s*)V feC®([0,00) x X*), f=0on By
(X" = X7 —x3)t = 0(s*).

Clearly the equivalence class of x is determined by (7.17). To see that
such a curve exists consider local coordinates x near p € X where x1(0) =
(0,p,p) € B. Then a curve satisfying (7.15), with x(0) = (0,p, p), p being
the origin of the coordinates, is of the form

(7.17)

vi(s) = (2as(s), 57 (s), T (s)), i = 1, 2.

Thus a curve x with [x] = [x1] + [x2] in the sense of (7.17) only needs to
satisfy
(7.18)
X(s) = (s%a(s), 57(s), 57(s)), with
@(0) = a1(0) + a2(0), ¥(0) = 71(0) +72(0) and F(0) = 31(0) + 72(0).

Notice, from (7.16), that the equivalence class of the curve y in (7.18),
amongst curves with the same end point determines, and is determined by

(7.19) [x] «— (a(0),%(0) —5(0)) € [0,00) x R™, x(0) € By fixed.
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Ag

Figure 12. The heat space, X%.

The R*t-action is the obvious one:

alx] = [x], X(s) = x(as) near s =0,a € R™.

Under the local isomorphism (7.19) the R*-action becomes

alx] «— (a®a(0), a((0) = 5(0))), D] +— (a(0),7(0) = 5(0)).

This makes it clear why the fibre over ¢ € By, consisting of the equivalence
classes of curves with x(0) = ¢, is not a vector space. Namely the RT action
does not distribute over addition.

So now define the front face of X% (the inward-pointing ¢-parabolic
spherical normal bundle of By in [0,00) x X?) as the quotient by the
R *-action:

tH(X%) ] # 0} /BT,

Thus tf(X?_I) is a bundle over B

with fibre isomorphic to S%, given in (7.4). This is diffeomorphically a
half-sphere, i.e. a closed n-ball. The additive structure and RT-action of
Lemma 7.2 give a linear structure to the interiors of these balls, since
(7.20)

g € int(tf, (X)) <= ¢ ~[x], x in (7.15),x(0) = p, X"t = s* + O(s°).

Then the linear structure arises from that in (7.19) on the 4(0) — 5(0),
where a(0) = 1.
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EXERCISE 7.5. Show that the C* structure on tf(X%) arises from the
compactification of the vector bundle, being the interior of the fibres with
the linear structure just described, with a linear space compactified in linear
coordinates by

{xewﬂﬂzl}ax—+0ﬂﬁqﬁ)CWJ)XW”~

x

EXERCISE 7.6. Show that, as a vector bundle, the interior of tf(X%) is
canonically isomorphic to the normal bundle to the diagonal in X2, hence is
canonically isomorphic to the tangent bundle to X. [Hint: The isomorphism

is given by (7.20).]
Now that tf(X%) has been defined, the heat space of X, X%, is defined

by (7.13). Tt still needs to be shown that it has a natural C*° structure as
a manifold with corners such that tf(X%) is a boundary hypersurface.

PROPOSITION 7.7. There is a unique C* structure on X3 in which tf(X%)
is a boundary hypersurface, the C* structure induced on ([0, 00) x X?)\ By
by (7.13) is the same as that induced from [0, 00) x X? and for any coor-
dinate patch, in X, 85" ([0,00) x O?) is diffeomorphic to the preimage of
[0,00) x O% in (7.5) under (7.6).

PrROOF: The C™ structure is certainly fixed away from tf(X7%) as that
inherited from [0,00) x X?. Moreover the sets 6;11([0,00) x 0?) clearly
cover a neighbourhood of tf(X#%), so it suffices to show that the transition
functions on [0,00) x S x R™ are C*| i.e. the transformation induced on
(7.5) by a change of coordinates on R" is C*™°. Let y = f(z) be a local
diffeomorphism on R” so (y,y') = (f(z), f(x')) is the transformation on
R” x R”. The transformation induced on [0, 00) x S% x R™ is, by (7.6),

(ryw, ) — (p,w,y)

2 f14y L i y—y/

(rary  ¥=I@e=CHly =y w= (55
1 t r—2a
r= (=5 e = (5 ).

Now, y—y = (xz — 2') - G(x, ') with G a C™®matrix and det G # 0, for #
near ' which may be assumed. Thus

2y - |\ :

since w? + |w'|* = 1 this is C*°. Similarly

w= <w0(£)2,w’ : G(m,x’)(%)) is C*°.
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Thus the transition functions are smooth and the proposition i1s proved.

In brief the C* structure near tf is generated by the functions which are
homogeneous of non-negative integral order under

(t,z,2") — (a’t, 2,2 + a(z’ — ), a > 0.

It turns out that there is an important subspace in the space C®°(X%) of
all C* functions on X%, just defined. Consider the lift under (7.6) of a C*
function on [0,00) x X?, X = R™,

(7.23) g=05f=f(rPwo,rd + 2 ).

The Taylor series expansion of g at tf(X%) is of the form
(o] (o]

(7.24) (ryw,z’) ~ Zr g‘7 wo,w', 2’ Zr”zjg}/(wo,w/, z')
7=0 j

and from (7.23) it can be seen that the coefficients satisfy

g; ((.Jo, _w/a l‘/) = g; (WO, w/a l‘/)

g}/ ((.JO, _w/’ l‘/) = _g}/(WOa w/a $/)a

(7.25)

i.e. are respectively even and odd under the involution w’ —— —w’. For
X = R" let C,(X%) denote the subspace of C°°(X%) the elements of

evn

which have Taylor series at t{(X%) as in (7.24) and (7.25). Similarly let
°4(X%) C €™(X%) denote the subspace which has Taylor series (7.24)
with coefficients satisfying the opposite condition:

Hwo, —w',2') = —g' (wo, ', 2’
(7.26) oo, =/, ) = =45l )
gj(w()a_w y L ) :gj(w()aw y L )
Thus (7.23) shows that

(7.27) BEC([0,00) x R™ x R™) C Cg;’n(X%,).

Moreover observe from (7.21) and (7.22) that the new coordinates on X%
induced by a change of coordinates on R” satisfy

pECodd( H) Wo Eceo\o/n( ) w ECodd( ) yecevn( %I)

as do the old coordinates. Thus the spaces are actually defined indepen-
dently of coordinates, and hence on X% for a general manifold X.
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LEMMA 7.8. For any compact manifold without boundary, X, the sub-
spaces of C%%, (X%), C54(X%) C C®(X%) with Taylor series at tf(X%),
as in (7.23), satisfying (7.25) and (7.26) respectively, are well defined inde-
pendent of coordinates and
(7.28) Covn (XFr) + Coaa(XF) =€ (Xj)

Covn(XH) N Coaa(XFr) =pF € (Xf)-
ProOF: The first part has already been proved and (7.28) arises by split-
ting the terms in the Taylor series into w’-odd and even parts.

In view of (7.27), which of course extends to the general case, the spaces
of odd and even sections of the lift to X% of any vector bundle over X?
are also defined by using the lift from X? of a smooth basis of the bundle.
More formally if E is a C* vector bundle over [0, 00) x X? then the space
of even sections can be written
(7.29)

Ceo\o/n(X%I’ BEE) = Ceo\o/n(X%I) ®ﬁ;IC°°([0,oo)><X2) BECM([Oa OO) X XZ; E)
EXERCISE 7.9. Make sure you understand exactly what (7.29) means.

Consider the half-density bundle on X%. This is not the lift of a bundle
n [0,00) x X% (because of the extra factors of pr.) However choosing
pir € C25, (X %) the spaces of even and odd sections are defined to be

Cg\?n(X%I;Q%) = {u € COO(X%I;Q Ju= pt_f_(n-l_l)u’y,

u' € 2 (X7),0# (Br)wv € C([0,00) x X Q%)}
SSa(XH Q) = {u €C™(X4:0%)u= Per (n+1)u’y,

u' € Codd(X%I)aO 7 (BH)*V € COO([O,OO) X XZ’Q%)}

Then
Coon (X3) - €20, (XF:Q7) C €20, (XF5Q3),
Coon(XF) - C3a(XF; QF) C CRal(XE; QF),
Sa(XF) - Co0n (XF; QF) C CRa(XE; QF),
, o)

Saa(Xir) - Coaa(X7;Q7) C € (X5
and the analogues of (7.28) hold:
Covn (X773 Q7) 4 Ca(Xf73 Q) = € (Xf; Q%)

Conn(Xi;Q ) NCGa(XErs QE) = P C™ (X7 Q

).
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In particular this leads to the spaces of even and odd heat pseudodiffer-
ential operators defined by
(7.30)

\Ifk

H, evn

{A €p 3(n+3)= koo

evn

(X3:Q%); K =0 at tb}

U aa (X3 0%) {A € pi;” Fnt3)- e (X%:Q%); K =0 at tb},

for k < 0 even

and

(7.31)

\IIH evn (X’ Q {IX € ptf ("+3)

e (XG5 Q3) K = 0 at tb}

evn

for k < 0 odd

U aa (X5 0%) {A € p MR (X208 K =0 at tb},

in place of (7.11). In practice the even operators are the interesting ones.

7.2. Standard heat calculus.

Now the definition of (7.11) is complete, i.e. the elements of the heat
calculus of negative integral order have been fixed. Naturally they are in-
tended to be operators. Their action is simple enough since as distributions
they are locally integrable.

LeMMA 7.10. Ifk € —N, each A € ¥4 (X; Q%) pushes forward under By
to a locally integrable half-density on [0, 0) x XZ.

ProoF: It suffices to assume that A has support in the preimage of a
coordinate patch and then sum using a partition of unity. Of course there
is nothing to be proved away from By since the kernels are smooth there.
Taking account of the factors of r in (7.12) the push-forward of A to [0, 00) x
X? is locally of the form

(7.32) =37 1= 3k A\ dideda’| with A’ bounded.

Since A’ vanishes to infinite order at th the local integrability of the co-
efficient in (7.32) reduces to the local integrability, on [0, 00) x XZ, of the

function which lifts to pt_f"_z_k. Clearly this is locally integrable provided
k< 0.

A locally integrable function, or half-density, has a unique extension from
[0,00) x X? to R x X? which is locally integrable and vanishes in ¢ < 0.
With this extension Lemma 7.10 shows that the elements A € W% (X; Q%),
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k € =N, define operators from C™ (X Q%) to C~° (R x X; Q%); clearly Au
always vanishes in ¢t < 0. It is generally preferable to think of these heat
pseudodifferential operators as acting through

(7.33) A€ Uh(X;Q7) = A: C®(X;Q7) — C~([0, ) x X;Q7),

by restriction. This does not result in any loss of information, since the
kernel is locally integrable. In fact there is much more regularity than

(7.33).

LEMMA 7.11. FEach element A € W% (X; Q%), k € —N, defines a continu-
ous operator

(7.34) A C®(X;Q%) — 17571 ([0, 00)1 x X;
where [0,00)51 is the half-line with 12 as coordinate. An element A €
\LADE Q%) is in the even part of the calculus, A € \I!’fqyevn(X; Q%), if and
only if (7.34) actually gives a map

(7.35) A C%(X;07) — 51710 ([0, 00) x X;Q7),

where [r] is the integer part of r, the largest integer no larger than r.

Proor: Using a C* partition of unity on [0, c0) x X? it may be assumed
that the kernel of A has small support on [0,00) x XZ. Certainly, since
the kernel is C* and vanishes to all orders at ¢ = 0, any term away from
tf(X% ) satisfies (7.34), for any k. Thus it can even be assumed that A has
support in the preimage of a coordinate patch. Then

A==k A (p ) |dtda:/dx|%

where, by assumption, A’ vanishes to infinite order at wg = 0 and is C*.
So if the projective coordinates

o
(7.36) 15X = xtf 2,

S5

which are valid everywhere ezcept wy = 0 (corresponding to X = o0), are
introduced it follows that
(7.37)

r_("'i'z)_kA/(r,w, z) = t_%("+2)_%ka(t%,X, z), with o a C* function

rapidly decreasing with all derivatives as | X| — 0.
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The push-forward of the kernel to R x X? is given by

S5

7 - ! 1 1
KA(f/’):///oz(t ’x lx L2)o(t, @, 2Nt TR gt deda!

t
0 R"R™

:///a(t%,X,J:)(b(t,x,x—t%X)t_%_ldthdx,
0 RnEn

where ¢(t, , x’)|dtdxdx’|% is a C* half-density of compact support. Thus
the action of A as an operator is just

(7.38) A(Y) :t—%—l/a(t%,x, 2)h(x — 3 X)dX.

En
The rapid decrease of « as |X| — oo shows that this integral converges
uniformly to t=5=1x a C™ function of % and . This gives (7.34).

The decomposition of the Taylor series of the kernel at tf(X%) corre-
sponds to writing « as

a(t%,X, z) = ae(t%,X, z)+ ao(t%,X, )+ o/(t%,X, z)
ae(t%,X, ) = aee(t, X, x)—i—t%ozoe(t,X, z)
ao(t%,X, ) = ag0(t, X, x)—i—t%ozeo(t,X, z),

where aee(t, X, ) and o (t, X, z) are even and a.,(t, X, ) and a,, (¢, X, #)
are odd under X —— —X. All are C* and vanish rapidly as |X| —
with all derivatives. The extra term o’ vanishes to infinite order at ¢ = 0.
Inserting these into (7.38) one easily sees that an element of the even part
of the calculus satisfies (7.35). An element of the odd part of the calculus
similarly satisfies

A1 C(X;Q5) — 757507 ([0,00) x X;QF), A € Ul 4y (X;QF).

Moreover the range can only be in ¢~ %]_1C°°([0,oo) X X;Q%) if all the
coefficients in the Taylor series at tf vanish. This proves the remainder of
the lemma.

7.3. Heat kernel.

Notice in particular that if £ = —2 then the multiplicative factor in (7.34)

disappears and the restriction to ¢ = 0 is well defined:
AeV(X;Q7) =

(7.39) . i 1)
Ag: C%(X;Q7) — C™(X;Q7), Aoy = (A¥)je=0.

This allows the main result for the heat kernel to be stated:



264 7. HEAT CALCULUS

THEOREM 7.12. If P € Diff*(X; Q%) has non-negative principal symbol
and is elliptic on a compact manifold, X, without boundary then there is
a unique element Hp € U2 (X; Q%) satisfying

Hevn
(7.40) (O +P) - Hp=0 int>0, (Hp)jzo =1d.

The proof still requires some work. First consider the initial condition,
which can be examined using (7.37) and (7.38). Thus if A € ¥;*(X; Q)
then (7.38) shows that, at least locally,

(7.41) (A) =0 = /a(O,X, z)p(x)dX = <I>(x)|dt|% ()

X

is actually a multiplication operator. The function @ is just the integral,
over the fibres, of the restriction of the kernel of A, on X%, to the front face.
To make sense of this globally requires a little thought about densities.

In fact the restriction to the temporal front face can be written

Az = A Byv, A€ C°(H(XE), 0# v € C(Br; Q3([0,00) x X7)).

Here By is given by (7.13) and lies above the diagonal. So as in the ordinary
pseudodifferential calculus, there is an identification:

v=|dt|? oV, v € C™(X;0).

Furthermore a density on X can also be considered as a (fibre-translation
invariant) fibre-density on T'X = NA. Since tf(X%) is just a compact-
ification of the tangent bundle to X (see Exercise 7.6) this means that
restriction to the temporal front face gives a map

U5 (X Q%) S Avr— Apyxz) € C° (t(XFr); Qibre)-

Thus integration over the fibres is invariantly defined:

LEmMMmaA 7.13. IfA€ \I!;IZ(X; Q%) then Ag, defined by (7.39), is multipli-

cation by
fibre

The initial condition in (7.40) is therefore seen to be the requirement
that on each leaf of tf(X?_I) the kernel should have mean value 1. It is also
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necessary to arrange that Hpv be a solution of the heat equation. As usual
this cannot be done directly, rather a parametrix is first constructed and
then iteration is used to get the precise solution. Now, G € \I!;IZ(X; Q%)
will be a parametrix if

(7.43) {4+ P)-G=ReW;®(X;Q%) and Gy =1d.
Notice that an element of the residual space for the heat calculus here
is given by a C* kernel on X% which vanishes to infinite order at both

boundaries, tf and tb . This is just the same as a C° function on [0, co) x X?
vanishing to all orders at ¢ = 0. Thus

(7.44) A€V, (X;03) <= A€ C®([0,00) x X?; Q7).

To arrange (7.43) the form of the operator on the left needs to be computed.
LEMMA 7.14. If A€ W% (X;Q3), for k € —IN, then
(7.45) {0+ P)- A e Wk (X;0%)
for any P € Diff*(X; Q%) and furthermore
A€W o (X;Q7) = (0, + P) - A € Wy, (X; Q7).

ProOF: Recall Lemma 7.10, which defines A as an operator. Certainly

S5
S5

tP: 13K ([0, 00)
10, 17771 ([0, o0)

) — 71 ([0, 00)

) — 71 ([0, 00)

)
).

W=
W=

S5

x X;Q x X;Q
X;Q X;Q

S5

W=
[NIE

So the composite operator in (7.45) is well defined and the statement that
it is an element of W (X; Q%) 1s meaningful. To check its veracity it is
enough to work with the local form (7.38). The local form of P,

P = Z pa(z) Dy,
|

a|<2

gives

tP.szt—%/P[a(t%,x,xw(gg—t%){) dx

=51 /5(15%,)(, 2 (x — 13 X)dX,
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where integration by parts in X has been used to find
(7.46) =Y pal@) Dot X, z) +13 - 7,
|a|=2

with 5’ a C* function. Similarly, applying ¢J; gives:

tO,AY =t~ 51 /»y(t%,X, 2)(z — 17 X)dX,
(7.47) :
T=3 {-0x(Xa) = (k+ 2)a}t + t%'y/ with " C*.

All terms are rapidly decreasing as |X| — oo, so (7.45) follows. The
conservation of parity follows from the last part of Lemma 7.11 and the
fact that tP and t9/0t preserve the spaces on the right in (7.35).

In fact not only does this computation give (7.45) but it also results in an
explicit formula for the restriction of the kernel to the front fact. Consider
the restriction map (the normal operator in this context)

(7.48)
Nog: \I!’;I(X;Q%) S3A—
(D12 41 € O (U (XF ) Qeibre), k € —TN,

where the normalization comes from (7.12). Certainly this map is sur-
jective, by definition in (7.11), and its null space is clearly the space of
operators of order k — 1, i.e. there 1s an exact sequence

(7.49)

0 — WX QF) s Wl (X5 03) 2 6% (1(X): Qo) — 0.

The parities in (7.30) and (7.31) are set up so that the same is true of the
even part of the calculus:

(7.50)
0— \Ijl;Ielvn(X; Q%) — \IjHevn(X Q= ) _» Ceo\?n(tf(X%I)’ Qﬁbre) —0
where Cg\?n(tf(X%I); Qgpre) C Co° (tf(X%); Qppre) is the subspace consisting

of the elements which are invariant under the natural reflection around the
origin of the fibres.

The image space in (7.49) can also be thought of as the space of C*
sections, over T X, which are rapidly vanishing at infinity. Here the iden-
tification established in Exercise 7.6 is used again. These are ‘Schwartz
functions,’” so

(7.51) C(t(X5); Q3 (XE)) = S(TX; Qpipre )

1s just the space of those sections over T'X, of the lift of the density bundle,
which vanish rapidly at infinity with all derivatives. Now from (7.46) and
(7.47) the fundamental formula results.
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ProposiTION 7.15. If P € Diff?(X; Q%) has symbol o(P), thought of as
a translation-invariant differential operator on the fibres of T X, then under

(7.51)
(7.52) Nk (t(d; + P)A) = [o(P) — %(R +n+k+2)Ngx(A),

where R is the radial vector field on the fibres of T X.

Proor: It 1s usual to think of the symbol of a differential operator as a
polynomial on 7% X, but that is completely equivalent to a constant coeffi-
cient differential operator on each fibre of T X, varying smoothly with the
fibre. Then (7.46) shows that
NHyk(tP A) = O'(P) . NH,k(A)

Similarly (7.47) gives the action of 10, as —$[x (X) + k + 2], i.e. —4(R+
n+ k +2) as stated in (7.52).

Now we can construct a parametrix for the heat operator.
LEMMA 7.16. Under the assumptions of Theorem 7.12 the heat operator
has a forward parametrix, G € \I!;IZGVH (X; Q%), satisfying (7.43).
ProOF: The terms in the Taylor series of G at tf will be constructed
successively. The first step is to find
(7.53) G € W (X;Q32) with G =1d, (8, + P)G© € ¥33(X;Q3).

By (7.42), (7.49) and (7.52) these are conditions only on the normal oper-
ator, viz

(0(P) = 3R+ 1)V -2(G) =0

/ Ny (GO = 1.

fibre

These are fibre-by-fibre conditions. In fact each fibre i1s just R™, so the
solution to (7.54) must be implicitin (7.3). More precisely local coordinates
can always be introduced such that

(7.55) o(Py=Di+ - +D2onT,X

(7.54)

since P is assumed to have a real elliptic principal symbol. Then (7.54)
becomes

1
[D% + -+ D2~ §(R—|— n)] Ny —o(G™) =0

/ Ny _o(GOy =1.

fibre

(7.56)
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From (7.3) it follows that

must be a solution. Indeed it is the only solution in S(R™). To see this
simply take the Fourier transform of (7.56), with u = Ng _»(G%) 7. x. It
becomes

(€0 + 20 a=0, a(0)=1.

This is an ordinary differential equation, with initial condition, along each
radial line and the Fourier transform of (7.57) is the only solution. Clearly
then the choice (7.57), with | X| now the Riemannian norm on 7'X induced
by P, gives a solution to (7.53).

Now the order of the error term can be reduced inductively. Suppose

jENg={0,1,2,...} and GU) ¢ \I!;IZ(X; Q%) has been found such that
(7.58) {6 + P)GY) = R; e 5277 (X;0%), ¢Y) =1d.

Then look for GU) = GU) — 15, T € W;>77(X;Q72), such that (7.58)
holds for j + 1. Of course this just means solving

(7.59) H0 + P)Tj = Rj + Rjp € U5" 77 (X;Q%),

Rjps € U 77(X;05),

where R; is given as the error term in (7.58). The initial condition continues
to hold since (Tj)o = 0 as its order is at most —3. By (7.52) the equation
(7.59) can be transformed into a condition on the normal operator, namely

(T60)  |o(P) = 5(Rtn—j—1)| Nar s (T3) = Nug s (Ry).

Again this has a unique solution, this time without any integral condition.
In appropriate coordinates (7.55) holds. Taking Fourier transforms on a
given fibre, with v = Ng _3_;(Tj4+1), f = Nu,—3-;(R;+1), equation (7.60)
becomes

(7.61) (E0: + 20+ 7+ Da = f € S(R™).

The solution to this is:

(7.62) ) = [ expllr ~ i) S0E) 5 ar
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This is clearly an element of S(IR™), and easily seen to be the only solution
to (7.61). This completes the inductive proof of (7.58), for all j.

Now the successive T; = GUY — GU) give a formal power series at
tf(X%). By Borel’s lemma this can be summed, so G € \I!;IZ(X; Q%) sat-
isfying (7.43) can indeed be found. Since the normal problems (7.56) and
(7.60) are clearly invariant under the reflection in the fibres, using (7.50)

instead of (7.49), it follows that G € W52, (X; Q%).

Hevn
It still remains to complete the proof of Theorem 7.12. So far we have
considered the elements of the heat calculus as operators from X to R x X,
as in (7.34), but in order to remove the error term in (7.43) it is more
convenient to consider them as ¢-convolution operators. If A € W% (X; Q%),
its action as a t-convolution operator will be denoted

(7.63) Ax: €([0,00) x X;Q7) — €([0, 0) x X; Q7).

This can be expressed in terms of (7.34) by

(7.64) Axu(t) = /[Au(t — 5)](s)ds,

where the dependence on the spatial variables is suppressed. Notice that
as a function of » > 0 and s > 0

[Au(r)](s) € s~ 2" 71€% ([0, 00) x [0, 00)1 x X;Q7F)

1 ;

2

vanishes to infinite order at » = 0. Restricting to » = — s gives
[Au(t — $))(s) = s~ 251 (t — s)Tuj(t — 5,57, 2)

for any j, with u; a C° half-density. Since k& < 0 this is integrable in s and
C™® in t. Thus A * u, defined by (7.64), is C*° in ¢ and vanishes rapidly as
t } 0. This gives the mapping property (7.63).

The elements of ¥~ (X; Q%) give rise to Volterra operators in (7.63)
and the removal of the error term in (7.43) reduces to standard invertibility
results for such operators.

PROPOSITION 7.17. If A € U™ (X;Q%) then Id —Ax is invertible as
an operator on C*®([0,00) X X;Q%), with inverse Id —Sx for some S €

UL (X;Q3).
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Proor: If A, B € \I!;IOO(X;Q%) the composite operator A * Bx = Cx,
where C' € W5 (X; Q7) has kernel
(7.65)

'y(t,x,x/)|dt|511/(x)1/(x/) ://a(t—s,x,x”)ﬁ(s,x”,x/)yz(x”)dsy(x)y(x/)

in terms of the kernels « (¢, x, x’)|dt|%1/(1‘)1/(1") and B(t, z, x’)|dt|%1/(x)1/(x’)
of A and B, with v a fixed non-vanishing smooth half-density on X. Direct
estimation shows that there is a constant K, depending only on v and X
such that

1k
(7.66) |a(t,z, )| < CE’ 1B, z,z)| < C"int<T
k1

G mit<T.

= |y(t,z,2')| € CC'K

This estimate can be applied iteratively to A € ;> (X; Q%). For fixed
T > 0 let C = Cj be such that the estimate on « in (7.66) holds and let
C" = Cy. Let the kernel of 4; € \I!;IOO(X;Q%), fixed by Ax; = (Ax)7, be
a;. Then for any k and j

i o kti-1 )
|Ozj(t,l‘,x’)| < (KCyy 1Ckm mi<T.

It follows that the Neumann series for the inverse of Id —Ax,
(Id—A%)™" =Td 4+ (A% =Td+ D (A;)* = TId —Sx,
Jj=1 Jj=1

converges. The same estimates hold on the derivatives, which shows that
S e v (X, Q%) and so proves the lemma.

PrOOF OF THEOREM 7.12: If the parametrix of Lemma 7.16 is considered
as a convolution operator and R is given by (7.43) then

(7.67) (0 + P)-Gx =1d—Ax, A=—R/t € U= (X).

To see this note first that for any u € C*(X; Q%) we know from (7.35) that
v(t) = Gu(t) € € ([0, 00) x X; QEI) and from (7.43) that if f(¢) = (Ov/dt+



7.3. HEAT KERNEL 271

Puv)(t) then f € COO([O,OO) X X;Q%). Thus if g € COO([O,OO) X X;Q%) then
nt>0

(%+memw:(%+P)/WM%@—$®

:wmmm+ﬁ

0

(s Pyt 5)ds

s
giving (7.67). Since R € ¥;7(X; Q%) its kernel vanishes to all orders at
t = 0, so dividing by ¢ gives another kernel of the same type.

Thus Proposition 7.17 can be applied to (7.67). It follows that if Id —Sx
1s the inverse of Id —Ax* then the composite operator Hx = G x —G % Sx 1s
a right inverse of the heat operator:

(7.68) v=Hxg, gEC'OO([O,oo)XX;Q%)z(%—I—P)v:ginRxX.

From the regularity, (7.35), for the action of (G it follows that G x Sx = Bx,
with B € ¥, (X;Qz2). Thus H € s (X;Q%) differs from G by an
)

H evn
element of ¥ (X; Q
(7.69) t(0:+ P)H =0 and Hy=1d

T

. In fact H must satisfy

since H satisfies (7.43) in place of G and hence (7.67), but the error term
1s necessarily zero.

It remains only to show the uniqueness of H. To see this it suffices to
show that there are no solutions to

(% + Plu=0, up=o =0, u e C™([0,00) x X;Q%).

Formal differentiation of the equation shows that all the ¢-derivatives of u
must vanish at ¢t = 0, so u € COO([O, o0) X X; Q%). Thus u can be extended
as 0 to ¢t < 0 and then it satisfies (9/0¢ + P)u = 0 on the whole of R x X.
Now notice that the formal adjoint of 3/9t + P is just —9/dt + P*. This
is the heat operator, with time reversed, for P*. Since P* satisfies the
hypotheses of the theorem if P does, the construction of H above means
that for any ¢ € C°(R x X), vanishing in ¢ > T, we can find a solution
of (=8/0t + P*)v = ¢, where v € C™(R x X;Q%) vanishes in ¢t > 7. This
means that

/u$: / u(—%—l—P*)v: /(%er)uvzo.

RxX RxX RxX
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Here the integration by parts is justified by the fact that u vanishes in ¢ < 0
and v and ¢ vanish in ¢ > 7. This shows that v = 0 and hence completes
the proof of Theorem 7.12.

The uniqueness of the solution to the heat equation shown in the course
of the proof of Theorem 7.12 implies that the one-parameter family of op-
erators defined by the forward fundamental solution H forms a semigroup.
This is the justification for the standard exponential notation

(7.70) exp(—tP)u = (Hu)(t) ¥ u € C°(X;Q%), t >0 =

. exp(—tP)exp(—sP) = exp(—(s +t)P) ¥ s,t > 0.

Since the kernel of H € \I!;IZ(X; Q%) is a C* half-density in ¢t > 0, it follows
that this is a semigroup of smoothing operators; such smoothing operators
are trace class.

The local index theorem involves computing the limit, as ¢ | 0, of the
difference of the traces of heat kernels, see (In.27). This computation is
carried out in the next chapter since it involves cancellation in the short-
time asymptotics. Except for such cancellation the short-time behaviour
of the heat kernel can be read off directly from the definition of the heat
space. Thus let

A={(t,z,2)e[0,00) x X2} ={z=2'} =[0,00) x A

be the diagonal with time parameter. In the local variables from (7.4)
in X7 this is given by w’ = 0. It is therefore an embedded submanifold.

Denote its lift under Gp as &H C X?_I. In fact the restriction Gp : &H —

A= [0,00) x X is a diffeomorphism. Lidskii’s theorem, Proposition 4.55,
then takes the form

tr(A(t)) = /ATZH, t>0,

where A(t) is the map (7.34) at fixed ¢t. From (7.11), (7.30) and (7.31) it
follows that

LEMMA 7.18. For any A € W%, (X; Q%) the restriction of the kernel to the
diagonal is a polyhomogeneous conormal distribution at t = 0 on [0, 00) x X
with an expansion

Ajg, ~ D AT RIS 4 e 0 (X Q).
j=0

IfAc ¥ (X; Q%) the terms with j odd vanish identically.

Hevn
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As a direct corollary the trace itself has a complete asymptotic expansion
at ¢ = 0. The case of most interest is:

Hevn

(7.71) A€ WH, (X;Q%) = tr(A() ~ > 73" Ha; as t | 0.
j=0

The cancellation for the supertrace is discussed in Chapter 8.
The long-time behaviour of the heat kernel is discussed below after the
finite time analysis is extended to cover b-differential operators.

7.4. b-heat space.

The description of the heat calculus above is in a form which is quite
straightforward to generalize to the b-category. Indeed the b-heat calculus
which will be considered next is little more than a direct combination of the
constructions above and those from Chapter 4. None of the complications
having to do with the boundary terms of the type constructed in Chapter 5
arise for finite times, only in the long-time asymptotics. Thus, most of this
section amounts to putting together the various pieces already examined.
The discussion proceeds in the usual way, first defining the space on which
it 1s reasonable to expect the heat kernel to be simplest and then showing
that it is indeed an element of the calculus so defined. No composition
formula is proved for this calculus, although it is easy enough to do so (see
for example [30]). The parametrix is constructed by symbolic means rather
than iteration.

Given P € Diﬂ’g(X;bQ%), an elliptic b-differential operator with non-
negative principal symbol corresponding to an exact b-metric, the objec-
tive is to construct the heat semigroup of P, exp(—tP), with kernel Hp €
C ([0, 00) x XZ,bQ%). Again the densities can be freely played with on
the factor [0, 00), using |dt| or |dt/t| and their powers. Thus Hp should
define an operator

Hp: C®(X;"Q7) — ([0, 00) x X;"Q7)
which 1s intended to have the properties

. {(&—l—P)u:O int>0
u = Hpv satisfies
u| teg = U
Of course the initial condition does not make sense a priors; some regularity
is needed to define u|t:0 as before. Since P is a b-differential operator it
is natural to expect the b-stretched product, X7, defined in Chapter 5 to
play a role. Similarly away from the boundary, it is the just the ordinary
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heat kernel being considered, so the heat space, X%, of (7.13) should be
involved.

The question then is how to combine these spaces when X 1s a compact
manifold with boundary. Certainly there are two obvious submanifolds on
which something subtle will happen:

(7.7) By = {(t,2,2') €[0,00) x X%, 2,2/ € 90X} =[0,00) x (0X)?,

' B = {(0,2,2) € [0,00) x X?} = X.
Both these submanifolds will be blown up. The question then arises as to
the order in which to proceed. The obvious way (for some) to approach
such a problem is to guess, and analyze the options geometrically. It is
easily seen that blowing up By first is not a good option. In any case it
is probably more convincing to look at a simple example and see how the
kernel actually behaves.

EXERCISE 7.19. Check that the order of blow-up does make a difference.

So consider an R*-invariant operator, P = (2D,)?, on [0, 00) (so really
X = [—1, 1] with variable (1 — z)/(1 + #) etc. as in Chapter 1). Then P is
self-adjoint with respect to |da/«| and in terms of the variable

r=logz, P = D2

The heat kernel is therefore

1 | — 7|2 1 |10g§|2
exX — = exX —_—— .
) ¥ At ) ¥ 4t

Notice how this can be made into a smooth function for finite times. First
introduce s = /2’ as a C* variable. This is the b-stretching construction.
Then make the ¢-parabolic blow-up of the submanifold s = 1,¢ = 0; finally
remove the simple singular factor at £ = 0. The conclusion is that the ‘-’
blow-up should be done first and then the ‘H-" blow-up.

DEFINITION 7.20. The b-heat space, Xﬁ, of a compact manifold with
boundary, X, is defined from [0,c0) x X? by first blowing up B,, defined
in (7.72), giving [0,00) x X7 and then making the ¢-parabolic blow-up of
{0} x Ap C [0,00) x X7, which is the lift of By in (7.72). The overall

blow-down map will be written

Byt X7 —[0,00) x X7,
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It is worthwhile making the last step more explicit. The b-heat space can
be written as a union

(7.73) X5 = [([0,00) x XPN{0} x Ap)] LF(XT),

where tf(Xg) is the ‘temporal front face’” which replaces the lift of By
under the b-blow-down map, 57 (Bm) = {0} x Ap. Geometrically tf(Xi) is
the ‘t-parabolic, inward-pointing spherical normal bundle’ to {0} x A, in
[0,00) x X72. Following the discussion above this is a bundle, over A, = X
with points given by equivalence classes of curves.

Thus, consider curves (C* of course)

(7.74) x:[0,€) — [0,00) x X2, x(s) € {0} x Ay iff s =0.
The t-parabolic curves are those satisfying in addition
(7.75) X" (t) = O(s%) as s | 0.

The equivalence relation defining the inward pointing ¢-parabolic normal

bundle to {0} x Ay is

Xif = x3f =0(s) ¥ f € C®(X})
(7.76) X1~ X2 <= Xig—x39 = O(s) ¥ g € C=(X}) with g|, =0
Xt — x5t = O(s?).

Set x; = (1;,Cy), Ti € €=([0,1]), Ci: [0,1] — X?. Then the first con-
dition in (7.76) demands C1(0) = C2(0) € Ay by (7.74). The second two

conditions require, respectively

(7.77) C1(0) = C5(0) in Ney(0)As = Tey 0y Xe /Ty 0y Db
' T7'(0) = T5/(0),

where T7(0) = T4(0) = 0 by (7.75). If the equivalence classes under (7.76)

are written [x], and [x] = 0 means the vanishing of C1(0),77(0) in (7.77),

then

t£(X5) = {J/R*}, alx] = [x(a-)], a> 0.

In this R*-action the fact that x only needs to be defined on [0, ¢) for some
€ > 0 is used. To show that Xﬁ, given by (7.73), has a natural C* structure
and to consider the nature of its boundary hypersurfaces, particularly the
two ‘front faces,” the discussion in §7.1 above can be followed essentially
verbatim. In particular the fact that Xﬁ is a C*° manifold with corners
follows directly from the proof of Proposition 7.7.
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rb

bf

Figure 13. The b-heat space Xﬁ.

EXERCISE 7.21. Extend Exercise 7.6 to show that the interior of tf(Xi)
has a vector bundle structure, over Ay, and that as a vector bundle it is
canonically isomorphic to *TX.

EXERCISE 7.22. Give an abstract definition of a compactification of a

vector bundle, V, over a compact manifold with boundary, X, which applied
to PT'X gives tf(Xi).

The boundary hypersurfaces will be named as indicated in Figure 13.
The left, right and temporal boundaries; Ib, rb and tb are respectively the
lifts of [0, 00) x X x X, [0,00) x X x X and {0} x X* to X?. The two front
faces introduced by the blow-up are the b-front face, bf, and the temporal
front face, tf . As usual a defining function for the face F' will be written
PF-

Asin Lemma 7.8 there are well-defined even and odd subspaces Cg;,, (Xi),
ngd(Xi) CC™ (Xi) and these extend to define the spaces of even and odd
sections of any vector bundle on Xi which is the lift of a C* vector bundle

on [0,00) x XZ.
7.5. b-heat calculus.
It should be more or less clear by now how the b-heat calculus will be

defined.

DEeFINITION 7.23. For any compact manifold with boundary, X, and
k € —N the space of b-heat pseudodifferential operators acting on b-half-
densitites is

(7.78)
wh(x;tah) = {K € py BT e (X200%) K = 0 at thulburh )
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The discussion of the density bundle following Exercise 7.9 also extends
to b-metrics with only notational changes. Thus the even and odd parts of
the b-heat calculus can be defined as in (7.31).

THEOREM 7.24.  Suppose P € Diﬂ’g(X;bQ%) is elliptic with positive

principal symbol, then there exists a unique operator Hp € \I!;évn(X; bQ%)
such that

(7.79) (O +P)Hp =0int >0, Hpjeg=1d.

Of course as before it 1s necessary to make sense of the initial condition in
(7.79). To do so, direct extensions of Lemma 7.11 and Lemma 7.13 will be
used.

LEMMA 7.25. FKach A € \Ilﬁ (X; bQ%), k € —N, defines a continuous linear
operator

(7.80)

A: C.OO(X;bQ%) NS {u € C7([0,00)1 X X;bQ%),u =0 at 3X}

1
2

and if A € Uk

n,evn(X§bQ%) then
A: C.OO(X;bQ%) —s o {u € C([0, 00) x X;bQ%),u =0 at 3X}.

If k = —2 restriction to t = 0 is given by a multiplication operator

(7.81) v+ Av =0, v, Py = /Artf(X?’), VUEC'OO(X;bQ%).

fibre

|t:0

PrOOF: One can follow the proofs of Lemma 7.11 and Lemma 7.13 closely.
The operator A in (7.80) acts on v € c™® (X; bQ%) by lifting v from X to Xﬁ,
from the right factor, multiplying by the kernel and then pushing forward
to [0,00) x X. Since v vanishes to all orders at X, when lifted to Xﬁ it
vanishes to all orders at bf(Xg). Thus the product with the kernel vanishes
to all orders at all boundary faces of Xi except tf(Xi). The argument of
Lemma 7.11 now applies directly. Similarly (7.81) follows from the proof
of Lemma 7.13.

This makes sense of the initial condition in (7.79). The construction of
Hp proceeds in the expected three main steps. First the Taylor series of the
kernel at tf(Xg) is constructed. Then the Taylor series at bf(Xg) is found
and finally a convergence argument is used to remove the error term. The
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first step is just a direct extension of Lemma 7.13. To state it succinctly
consider the normal operators by extension from (7.48). Thus

Nipt WE(X;0Q%) — € (t1(X2);°Q7) = S(PTX;PQF),

(7.82) :
Niy(A) = t5(n+2+k)A[tf.

The surjectivity here follows directly from the definition, (7.78), and in
Exercise 7.21 the interior of tf(Xg) is identified with °7°X in such a way
that the spaces on the right in (7.82) are identified. In fact, as in (7.49)
there 1s a short exact sequence for each k& € —N :

E—1/y.bOt Eiy.boiy Meo o bt
(7.83) 00— W, (X;°Q )<—>\IJU(X, 02) =2 S(°TX;°Q2) — 0.

EXERCISE 7.26. Write down the sequence analogous to (7.83) for the
even part of the calculus and check its exactness.

As in Proposition 7.15 this leads to:

ProposiTION 7.27. If P € Diﬂ’g(X;bQ%) has symbol ba(P), as a trans-
lation-invariant operator on the fibres of *I'X, then for each k € —IN

10, + P)- A€ UE(X;PQ%) V A € U¥(X;°Q%)
(7.84)

Nealt(0h + P)A) = ['o(P) = 5 (Rt n+ 2+ B)]Ne o (4),

where R is the radial vector field on the fibres of °TX.

Proor: From Proposition 4.4 it follows that P € Diﬂ’g(X;bQ%), acting
on the left factor of X2, lifts to P € Diﬂ’g(Xg;bQ%). Then the further
lift of (0, + ]5) from [0,00) x X7 to Xi exactly parallels the proof of
Proposition 7.15. It is even possible to think of the formula for the normal
operator in (7.84) as following by continuity.

Now notice that the first step in the construction of Hp, as desired in
Theorem 7.24, follows ezactly the construction starting with (7.53) and
finishing with (7.62) in the boundaryless case; where °c(P) is elliptic on
the fibres of ®7°X. This gives the analogue of (7.43). Since it is only the
first step in the construction of a parametrix, in this case we denote this
partial parametrix G, Thus
(7.85)

(0 + P)GY = R € W= (X;°Q7)

G ew? X;bQ% satifies
! ( ) G(1)|t:0 =1Id.
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The serious difference 1s that the remainder term here, in ;"> (X; bQ%), 18
not a smoothing operator. Rather directly from (7.78) it is clear that
(7.86) W (XPQ3) = O ([0, 00): Wy (X °02%)
is (using the freedom to cancel off |dt/t|2) just a b-pseudodifferential op-
erator, in the small calculus of order —oo, depending smoothly on ¢ and
vanishing to infinite order at ¢ = 0.

The next, new, step is to remove the Taylor series at bf(Xi). Asisimplicit

in (7.86) it is natural to think of these kernels as defined on [0,00) x X7.
Thus the problem is to find

G? e wre(X; Q%) st (9 + P)GP = R 4 R,

(7.87) . ,
R® e ¢ ([0,00) x X2;°Q7).

Here R is the remainder term in (7.85) and the remainder R®) is just an
element of W= (X; bQ%) with kernel vanishing to infinite order at bf(Xg),
as well as tf(Xg), and therefore C* on [0, 00) x X? and vanishing to infinite
order at all (finite) boundaries.

The first stage in (7.87) is clear enough. Namely the indicial equation
on [0, 00) x bf(X?),

(7.88) (8 + I(P))[(G?) = I(RW),

should be solved. Here a boundary defining function can be chosen giving
a decomposition

bf(X2) ~ X x 0X
so that (7.88) is just the heat equation for the indicial operator of P.
ProposiTION 7.28. IfQ € Diﬂ’a[()?;bQ%) is elliptic with positive prin-
cipal symbol then the equation

0
(7.89) (a—I-Q)u:f t>0
has, for each forcing function f € t*°C*° ([0, c0) x )?; bQ%), a unique solution
u €100 ([0, 00) x X;°Q3).

PRrROOF: As in the elliptic case, examined in Chapter 5, it is natural to take
the Mellin transform. Then (7.89) becomes

(7.90) (8 + Q\)usr(N) = far(A) € € ([0, ) x 0X),
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where far(A) is entire in A, and vanishes rapidly with all derivatives as
| Re A| — oo with |Im A| bounded. A solution of the same type is needed.
Certainly the solution exists because () is an elliptic operator on X
with principal symbol bO’(Q)[)\zo independent of A. Thus the existence of
a unique solution to (7.90), for each A, follows from the construction of the
heat kernel above, i.e. Theorem 7.12. The construction of the heat kernel
exp(—tQ(A)) is clearly locally uniformin A, so the solution is holomorphicin
A. It remains to show that ups(A) is rapidly decreasing at real infinity in A.
However to see this it suffices to apply the discussion above to a parametrix
for exp(—tQ(A)) which has an error term which vanishes rapidly at real
infinity. This 1s exactly what I(G(l)) gives. The proof of Proposition 7.28
is therefore complete.

PrROOF OF THEOREM 7.24: Thus, by taking the Mellin transform, (7.88)
can be solved with solution the indicial operator of G(lz) € \I!;OO(X; bQ%).

This first step towards the construction of G(2) can be iterated. Thus G(lz)
should satisfy

RM 4+ R with
), GE € €([0, 00); Wy (X;70%)).

(9, + P)GY
R(12) € ([0, 00); por ¥} ©(X;°Q

S5

Since R(lz) is an element of the small calculus its kernel vanishes to infinite
order at the left and right boundaries of X?. Thus pps can be replaced just
as well by x’ and, this being a parameter in the equation, division by z’ is

(2)

permissbile the equation for G5 takes the form
(0 +1(P)I(GY) = (R /),

which is just (7.88) again. Proceeding iteratively this constructs the Taylor
series of G(2) at bf(X7?) exactly as required to give (7.87). This completes
the Taylor series part of the construction of Hp and G = G — G ¢
\I!;Z(X; bQ%) has been found such that

(0 + P)G = R € C([0,00) x X%;°Q%), G|,_, =1d.

The remainder term here is a Volterra operator in a very strong sense,
since 1ts kernel vanishes to infinite order not only at ¢ = 0 but at both
boundaries of X?2. The usual iteration procedure, as discussed above, there-
fore gives a convolution inverse to Id +R, of the form Id+S with S €
COO([O, 00) x X% bQ%) as well. Then the operator, the existence of which is
claimed in Theorem 7.24, is

Hp=GY - ¢ 4 (M —G®)« 5.
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The first two terms are, by construction, in the b-heat calculus. The final
term is easily seen, from Lemma 7.18 and the properties of S| to have kernel
in COO([O, o00) x X% bQ%), so0 it is in the b-heat calculus as well.

This proves the existence part of Theorem 7.24. The uniqueness follows
as before, so is left as an exercise. It is most important to note, for use in
the proof of the APS theorem, that the third equation in (In.23) has now
been proved. Namely

(7.91) I(exp(—tP))(A) = exp(—tI(P)(N)).

The relative simplicity of the construction of the heat kernel for P a
b-differential operator should not be lost in the detail here. It amounts
to essentially no more than the constructions in the b-calculus plus the
construction in the heat calculus. This is the main point of presenting
them in a reasonably unified form.

7.6. Bundle coefficients.

As usual the discussion above has been limited to operators on half-
densities for simplicity. There are two extensions that will now be made.
The first is the addition of bundle coefficients. As with the other calculi
this is mainly a matter of notation, since by construction the calculus is
coordinate-invariant so can be localized easily. Thus the main space of heat
pseudodifferential operators is, for a bundle F, obtained as in (5.156):

V) E

(7.92) _ . .
Vi (X;°Q7) @ces (x2) € (X g x Hom(E © Q7).

Notice that Hom(F ® B) is naturally isomorphic to [F® B|K[E’' @ B'], for
any line bundle B. For B = Q™% the extra factor of £’ @ Q7 on the right
in (7.92) has the effect of turning a section of F into a section of Q2. The
factor of E @ Q™% on the left turns a section of Q2 back into a section of

E. Thus (7.34) is replaced by
(7.93) WG (X;E) 3 A: C®(X; B) — 175710 ([0,00)1 x X; B).

The spaces of even and odd operators have similar definitions.

All the results above extend to the case of bundle coefficients. The main
result, Theorem 7.12, extends immediately under the assumption that the
principal symbol i1s diagonal since then the inversion of the normal operator
proceeds exactly as in the scalar case. Similar remarks apply to b-metrics
with the general space being

—ky. gy def
R (X E) =

U (X;P03) e (x2) C°(X2; 37 Hom(E © Q73 E 0 'Q73).
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For purposes of the next section it is convenient to extend the main result
a little further by the introduction of some complex scaling.

THEOREM 7.29. IfP € Diﬁg(X; E) has diagonal principal symbol given
by an exact b-metric on X then for any a € C with Rea > 0 the heat
equation
(G +aP)u=01in (0,00) x X
Up=g = Up € COO(X;E)

has a unique solution u € C*([0,00) x X; E) and the operator so defined,
C*(X; E) 3 up —> u = exp(—taP),

is an element of W2 (X; E).

7,evn

ProoFr: If ¢ = 1 this is a straightforward extension of Theorem 7.24 as
in the boundaryless case just discussed. So consider the more general case
of @ € C with positive real part but with X = . Again reviewing the
proof above, the only point at which the constant a appears significantly is
in the inversion of the normal operator. Since the symbol is diagonal this
reduces the question to the scalar case with P the standard Laplacian on
R™. The constant can be viewed as complexification of the time variable,
i.e. t 1s replaced by at by continuity from the case a = 1 through Rea > 0.
Thus (7.57) should be replaced by

1 | X]?
NHV_Q(G(O)) = (271_&)% exp (— 1 )

which is the unique tempered solution of
1
oD} ++ D) = G0+ )] Vit el = 0

/ Ny (G =1,

fibre

the replacement for (7.56). The iterative equation replacing (7.60) again
has a unique solution in the Schwartz space. Thus the construction proceeds
essentially as before.

The extension of this to b-metrics reduces to the same normal problem,
together with the solvability of the indicial family, but this is of the same
type for the boundaryless case, just discussed. Thus the theorem follows
from a review of the proof of Theorem 7.12.



7.7. LONG-TIME BEHAVIOUR, FREDHOLM CASE 283

ProposiTION 7.30. If A € Diff}(X;E, F) is elliptic and its adjoint,
A* with respect to Hermitian structures on the bundles I/, F' and a non-
vanishing b-density on X, is such that A* A and AA* have diagonal principal
symbols then the heat kernels of A* A and AA* are related by

(7.94) Aexp(—tA*A) = exp(—tAA™)A int > 0.

Proor: If u € COO(X;E) then wu(t) = exp(—tA*A)u is the unique C*
solution to

Geu(t) + A" Au(t) =0int > 0, u(0) = u.
Applying A to this equation shows that Au(t) satisfies

%Au(t) + AA™ (Au(t)) = 0, Au(0) = Au.
From the uniqueness of the solution to the initial value problem for this
heat equation (7.94) follows.

The identity (In.15) is an immediate consequence of this result.

EXERCISE 7.31. Show that even the assumption that the principal symbol
is diagonal is by no means necessary for the construction, i.e. any P &€
Diﬂg(X;E) with the property that P* + P is elliptic of order 2 has a
well-defined heat kernel exp(—tP) € \I!b_Z(X; E). How would you go about
extending this to operators of even order greater than 27

7.7. Long-time behaviour, Fredholm case.

It remains to analyze the behaviour of the heat kernel as ¢ — oo. In
the boundaryless case this is quite straightforward, but in the case of b-
metrics a little more effort is needed to get a reasonably precise description
of the kernel. As usual we prove much more than 1s strictly necessary
for a minimal proof of the APS theorem. For the boundaryless case the
heat kernel has a complete asymptotic expansion in exponentials as ¢ —
oo arising from the discrete spectrum. Following Seeley [80] this can be
deduced from appropriate asymptotic information about the resolvent. The
same approach will be used in the case of a b-differential operator.

Since the heat kernel has already been constructed for short times it is
convenient to use it to find a uniform parametrix for the resolvent for large
values of the parameter. In the first instance for the boundaryless case,
taking P € Diﬁz(X; E), consider the Laplace transform of the heat kernel,
cut off at a finite time to ensure convergence:

(7.95) G(\) = /e” exp(—tP)¢(t)dt,
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where ¢ € C°([0,00)) has ¢(¢) = 1int < 1. Certainly G/(A)¢ is well-defined
by (7.95), for each ¢ € C*°(X; E), with the integral absolutely convergent.
Thus G(A) is weakly entire in A as an operator on C*(X; F). Applying P
and using (7.40) gives

(P — NG\ = ¢ — R(A)¥ with

(7.96) R(\) = /eM exp(—tP)¢’(t)dt.

Since ¢’ € C>°(R™T) the remainder here is an entire function of A with
values in the smoothing operators. Moreover in the conic region

(7.97) ReA < —¢|A], e>0

it 1s rapidly decreasing as a function of A, in the uniform sense that all
the ¢V norms on the kernel decay rapidly as |A| — oo. This implies in
particular that the norm as an operator on L? is small for |\| large, so the
Neumann series converges and gives

(Id—R(N))™! = Id —=S(\) with

(7.98) S\ = i RI(A) = R(\) + R*(A) + R(N)S(A)R(N).

The second identity here, together with the fact that the smoothing op-
erators are a semi-ideal in the bounded operators on L? (see (5.110)),
shows that S(A) is also a smoothing operator which is rapidly decreasing
as [A| = oo in the region (7.97). Then

(7.99) (P=N"t =G\ -G\ - SN

gives a useful representation of the resolvent.

Although the representation (7.99) is restricted to the region (7.97), The-
orem 7.29, in the boundaryless case, gives a similar representation, in the
complement of some disc in C intersected with any closed sector of angle
strictly less than = which does not contain [0, o0). The composite operator
G(A) - S(A) in (7.99) is again a smoothing operator.

To bound the last term in (7.99) some bound on G(A) is needed. The
uniqueness of the resolvent means that G()) is a pseudodifferential opera-
tor. It 1s useful to see this directly, in particular to get a uniform statement
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near infinity. So consider the definition (7.95) as a formula for the Schwartz

kernel of G/()) :

oQ

(7.100) Gy, v, \) = /e”HP(t, v,y )o(t)dt.
0

Given the structure of Hp as an element of the heat calculus it 1s natural
to consider the lift of the right side of (7.100) to X%, the heat space.
Away from the diagonal, (7.100) shows that G(y, ¢, A) is uniformly rapidly
decreasing as a smoothing operator as |A\| — oco. Near the diagonal the
projective, parabolic, coordinates (7.36) can be used. Suppressing both
the bundle coefficients and the density factors this means that

o0 _ o
(7.101) Gy, v\ N /”t‘?h (5, 2 ey,
0

where h 1s C*° 1n all arguments and rapidly decreasing with all derivatives in
the second argument. Localizing in y — 3, by multiplying by a compactly-
supported cut-off factor x(y —y') does not change the structure of (7.101),
so the Fourier transform can be written:

a(n, A, y) = /6“@"@")'”(?(3/, v, A)x(y — v)dy
!

_ /etA+i(y—y')'”t—%h(t%, yt—%y Y )o(t)dtdy.

Changing the variable of integration from y to (y — ')/t this becomes

a(n, A y) = /et*ﬁ(t%,t%n,y')qs(t)dt,

where the Fourler transform of h is taken in the second set of variables.
Now set A = r2a with |a| = 1 and change variable of integration to s = rts
giving

N o2
(7.102) a(n, A\ y') = r_z/eO‘SQh(s/r, sn/r,y' ) (—2)25ds

In this form it is easy to see that the full symbol of G satisfies symbol es-
timates in n uniformly as r = |/\|% — 00. Indeed from (7.102), |Ala(n, A, ¢')
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is uniformly bounded in a region where Re a < 0. Applying any one of the
vector fields
g 0 0

0 9 9
e oy, or

to (7.102) gives an integral of the same type. This means that a satisfies
the uniform symbol estimates

|D5D£D;’a(77’ rza’ y/)| < Cﬁypﬂyér_z(l + |77|)_|ﬁ|
inr>1, Rea < =4 for any § > 0.

Thus G(A) is uniformly O(|A|71) as |A\| — oo as a pseudodifferential opera-
tor of order 0. In particular the second term in (7.99) is rapidly decreasing
as a smoothly operator as |[A| — co. In consequence, (P — A)~! satisfies
the same estimates as G(A), in any subset of C which does not meet the
spectrum of P and in which |argA| > ¢ > 0 for |A| large.

EXERCISE 7.32. Using this argument show that the resolvent is, in the
same sets, uniformly a pseudodifferential operator of order —2 (without
any vanishing in the estimates as |A\| = c0.)

Having obtained uniform estimates, as a pseudodifferential operator, on
the resolvent of P the argument above can be reversed to study the long-
time behaviour of the heat kernel. From the fact that exp(—tP) is a semi-
group and that it is bounded for some positive t = T' as an operator on L2,
the L? operator norm is at most exponential:

(| exp(—tP)|| < C exp(At).
Thus if A in (7.95) is taken to have real part strictly less than —A the
integral converges, without the cut-off function, to the resolvent:

(7.103) (P-X"t= /e” exp(—tP)dt, ReA = —A — 1.
0

Now as a function of Im A this is just the Fourier transform of a function
(even if operator valued) which is tempered, even square integrable. Thus
this Fourier-Laplace transform can be inverted to give:

T
ReAd=—A4-1

exp(—tP) = QL / TP =N

Alternatively one can justify this representation directly.
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Im A

Re A

Figure 14. The contours in (7.104) and (7.106).

Using the estimates on the resolvent the integral in (7.103) can be moved,
fort > 0, to a contour, 4, on which the exponential is decreasing at infinity,
so giving absolute convergence:

1
(7.104) exp(—tP) = %/6—“(13 — At
YA

For example 4 can be taken as in Figure 14, inward along a line segment
of argument —d, % > ¢ > 0 with end point at (—A — 1,0) and outward
along a segment of argument ¢ from this point. Now the contour can be
moved to a similar one, yg, where the end point is at (B, 0) for some B > 0
except for the finite number of poles of the resolvent, i.e. eigenvalues, of
P crossed in between (choosing (B,0) so that vp does not itself hit any

poles). Thus, noting that the poles have order 1, if P is self-adjoint

(7.105) exp(—tP) = Y e "M P+ Rp(t),

finite

where the P; are the finite rank self-adjoint projectors onto the eigenspaces
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for eigenvalues less than B and

1
7.106 Rp(t) = — [ e (P = ))"HdA.
(7.106) olt) = 5 [P
B
The estimates on the resolvent show that Rp(t) is exponentially decreas-
ing as a smoothing operator, 1.e. its kernel satisfies

10FQRB(t,y,¥)| < Crge P B < BY k €N, Q € Diff*(X; E).

This proves a result which is more than strong enough to handle the be-
haviour of the trace of the heat semi-group as t — oo :

PROPOSITION 7.33. If0X =0 and P € Diffz(X;E) has diagonal prin-
cipal symbol given by a metric and is self-adjoint then the heat kernel has
a complete expansion (7.105), as ¢ — oo, with remainders exponentially
decreasing smoothing operators.

EXERCISE 7.34. State and prove an extension of Proposition 7.33 when
the assumption of self-adjointness is dropped.

In fact this argument is a rather cumbersome way to prove the existence
of the expansion. However it has the advantage of extending relatively
easily to b-metrics, for an operator P as in Theorem 7.29. Indeed the
argument leading to the representation (7.96) is valid without essential
change.

Following the notation of §6.7, write the formula (7.95), in the case of a
b-metric, as

(7.107) Gs(N) = /e” exp(—tP)¢(t)dt.

In any finite interval [T, 7"], with 0 < T" < T”, the heat kernel is a smooth
function with values in the small-residual space W, (X; ). Thus it follows
as before that the remainder term, now denoted R (A), in (7.96), is entire
in A and rapidly decreasing at infinity in the set (7.97), with values in
U, (X E). The estimates on G, (A) are also very similar. The heat kernel
near ¢ = 0 needs to be lifted to Xﬁ in (7.100) but the remainder of the
analysis proceeds unaltered to show that AG,(A) is uniformly an element
of W)(X; E) in the set (7.97). The complex scaling argument also allows
this sector to be rotated, provided i1t does not meet the positive real axis.

The crucial difference in the case of a b-metric is, as always, that the
remainder is not compact. To make 1t so the indicial equation needs to be
solved uniformly.
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LEMMA 7.35. Let Y be compact without boundary and suppose () €
Diﬁz(Y; E) is self-adjoint with diagonal principal symbol given by a metric
then for any €, > 0 there exists R such that if

(7.108) Zy e ={A€C|A| > R, argz ¢ [—¢, €]}
then (Q — XA+ 2%)~! is holomorphic for
(7.109) [Imz| < r A€ Z,

and uniformly bounded in ¥°(Y; E).

ProoF: If |[Imz| < r then for a given § > 0 there exists R > 0 such that
2?2 4+ R lies in the sector |arg(z? + R)| < 6. Thus for R in (7.108) large
enough (7.109) implies that A — 2% does not have argument in [—4, §] so the
uniformity of the resolvent in (7.109) follows from the discussion above.

Now, choosing a boundary defining function, consider a correction term,
G'p()), chosen to remove the indicial family of the remainder in (7.96):

(7.110) L(Gp(A),2) = (Q — A+ 22) " L (Rs (M), 2),

where z i1s the Mellin variable and A the spectral variable. The estimates on
R, (A) imply that the right side of (7.110) is holomorphic in the intersection
of the set (7.109) with the sector in which R;(A) is rapidly decreasing, takes
values in the smoothing operators and is rapidly decreasing as |A|+]z| = o
in this set. Taking the inverse Mellin transform in z it follows that there
exists a b-pseudodifferential operator in the class (5.104), i.e.

(7.111) Gp(\) € W, 20" (X, E), [N > R, argA € [o, §]

satisfying (7.110). Here the weight, r, in the calculus with bounds, arises
from the width in (7.109) of the domain of holomorphy. The sector in
(7.111) has angle less than 7 and does not meet the positive real axis; R
depends on 7 and the family is uniformly rapidly decreasing as |A| — oo in
the sector, as an element of the calculus with bounds.

Now (7.96) is replaced by

(7.112) (P = N[Gs(\) + Gp(N)] = 1d =R, (\),

where for |A| > R in the appropriate sector the remainder term is rapidly
decreasing as |A| = oo as an element of the finitely residual calculus:

(7.113) Re(N) € phypin H® (X%;707)

in case F = Q% and similarly in general, see §5.24. It is now straightfor-
ward to prove an analogue of Proposition 7.33:
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PROPOSITION 7.36. If P € Diff2(X; E) is self-adjoint with diagonal prin-
cipal symbol given by an exact b-metric and has indicial family with respect
to the metric trivialization of the form Q422 with @} having least eigenvalue
oy > 0, then the heat kernel of P has a decomposition for large t :

(7.114) exp(—tP) = Y e "M Pj+ Roo(1),

finite
where the P; are the finite rank projections onto the eigenspaces of P with
A; < op and there exist €, § > 0 such that exp(6t)R.c(t) is uniformly
bounded, with all its t-derivatives, with values in

(7.115) PP HE® (X7 Hom(E ©°Q7 %) @ bQ™ %),

ProoOF: The proof of Proposition 7.33 can be followed quite closely. First
the identity (7.112) gives a uniform bound on the resolvent for A large, in
any sector away from the positive real axis, using (7.98) to estimate the
correction term and noting Proposition 5.38 which shows that the (finitely)
residual space of the calculus with bounds does form a semi-ideal in the
bounded operators. Thus we conclude that in any closed sector not meeting
the positive real axis and of angle less than 7 the resolvent has a decom-
position

(7.116) (P=X)"' =GN+ Gs(N\) + G (V)

where G(A) is defined by (7.107), G'p(A) is chosen to satisfy (7.110) and
(7.111) and the third term is

Gr(A) = (P - /\)_15(/\) where
(Id =R, (M)~ = Id+S()).

Thus G, (A) takes values in the space (7.115) and is rapidly decreasing, in
this space, as [A| = oo in the sector.

The behaviour of the resolvent in any finite part of the complex plane is
discussed in §6.7. In particular the representation (7.104) can be recovered.
The contour cannot be moved across the bottom of the continuous spectrum
[0g, 00) of P, so one should take B < ¢ in (7.106). Cauchy’s formula gives
the finite rank part of (7.114) and the estimates on the remainder follow
as before.

(7.117)

Notice that the heat kernel itself is in the small-residual calculus, uni-
formly as a function of ¢ in any finite closed subinterval of (0, c0). In par-
ticular it is uniformly rapidly decreasing at the left and right boundaries
of X7. However as ¢ — oo the ‘heat’ eventually starts to arrive at these
boundaries and the exponential expansion at infinity in terms of the eigen-
values below the continuous spectrum gives only finite order decay at these
boundaries.
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7.8. Long-time behaviour, non-Fredholm case.

The results of this section are not needed in the proof of the APS theorem
but they are used, in Chapter 9, in the extension of the definition of global
invariants, such as the analytic torsion and the eta invariant, from the
boundaryless case to the case of manifolds with exact b-metrics.

In case the hypotheses of Proposition 7.36 are fulfilled, except that Ps
has least eigenvalue 0, the behaviour of the heat kernel as { — oo is not as
simple as (7.114). In particular there is considerable non-uniformity near
the boundary. The main result needed below concerns the b-trace of the
heat kernel.

ProrosIiTION 7.37. Under the hypotheses of Proposition 7.36, except
that Py has smallest eigenvalue 0,

[0,1) 3 s — b-Tr, (exp(—s~2P)) is C=
down to s = 0 with

1
(7.118) tlim b-Tr, (exp(—tP)) = 5(]\71 + Na),
—00

where N1 = dimnull(P,0) is the dimension of the null space of P acting
on H*(X; E) and N, is the dimension of the null space of P acting on
C*(X;E)+ HX(X; E).

Note that if P = A*A with A € Diﬂ’é(X; E, F) then the integers in (7.118)
are, respectively, the dimensions of the null space of 4 acting on Hg°(X; E)
and ¢~ “H°(X; E) for € > 0 sufficiently small.

PRrROOF: The representation (7.104) remains valid, as does the discussion of
the asymptotic behaviour of the resolvent. In particular the decomposition
(7.116) will be used. Let é(/\) = (Py)7! — G5()\) be sum of the second
two terms in (7.116). Since G(A) was obtained, in (7.107), by Laplace
transformation of the cut-off heat kernel it case i1t makes no contribution
to the kernel for large ¢. Thus we only need to consider

(7.119) Hp(t) = ! /e—”é(r)dr.

T omi
YA
Choose x € C*(R) with x(r) = lin r < %B and x(r) = 0in r > %B.
Inserting this into (7.119) gives
Hp(t) = Hi(t) + Ha(t) where
1 N
Hi(t) = T/x(Re T)e_”G(T)dT and

)
(7.120) YA
/(1 — x(ReT)) e‘”é(r)dr.

YA

Hy(t)

= 2mi
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In the second term the integrand is uniformly in the calculus with bounds,
with a uniformly positive exponent and the real part of 7 is strictly posi-
tive so, just as in the proof of Proposition 36, its b-trace is exponentially
decreasing in ¢ with all derivatives; in particular

b-Tr, (Ha(s™?)) € € ([0,1))

vanishes with all its derivatives at s = 0. Thus it is only necessary to
examine H(t), involving the part of the integral near = = 0.

We proceed as before, to move the contour. Of course the integrand
is no longer holomorphic and convergence near the spectrum needs to be
considered, so we replace vg by the simpler contour Imz = § > 0, where
7 = 2% and Imz > 0 is the physical region. The non-holomorphic form of
Cauchy’s formula gives:

Hi(t) = Hi(t) + H{(t)
Hi(t) = QL / x(Re T)e_”é(r)dr

e

(7121) Im2=4¢
H(t) = QL / gx(Re T)e_”é(r)dr AdT.
i

5(4,9)

Here S(A,d) is the region between v4 and Im z = §, where § is taken small.

First consider the limit as § | 0 of the b-trace of H{(t). To do so recall
the structure of the kernel of é(zz) from the construction in §6.7 and its
revision in §7.7, see in particular (7.110) and (7.111). For the moment we
shall suppose that P has no null space on L?, so the resolvent has only a
single pole at z = 0. We only need to consider G near the diagonal. There
it decomposes into two terms:

(7.122) G=Gp+G, = H|({t) = Hy(t) + H.(1).

First consider G which arises from the inversion of the indicial operator.
It is C> near the lifted diagonal in X7 and meromorphic near z = 0 with
just a simple pole at z = 0. Introducing z as variable of integration, the
first term in the corresponding decomposition of the b-trace is

(7.123) b, () = o [ Al
Im2=4¢

Here fi(z) = zx(z) b-Tr,(G}) is C* in Rez uniformly as § | 0 and has
uniformly compact support. Thus the integral converges as § | 0 and
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changing variable to z = sZ, t = 1/s%, gives

oQ

1 >
7.124 limb-Tr, (H%(s7%)) = s— -z ALV
( ) i b-Tr (Hp(s™%)) s— [ 77 filsZ)

Clearly this is s times a C> function of s2.

Next consider the term in the b-trace which arises from G,. This is
the leading part of the term in the residual calculus and is of the form
), (2)(zx") X! (2) /2, with @, taking values in the smoothing operators
on the boundary and having a simple pole at z = 0 and where x/(#) local-
izes near the boundary. This term is trace class for Imz = § > 0 but not
uniformly down to § = 0. As in (7.123)

(1425) T (1) = = [ e aRea ) [ Ve

X
Im z=4¢

For 6 > 0 the integrals converge absolutely, so the order can be freely
changed. Introducing z = sZ as before and = = 2slogx

_ 1 = -
(7.126) b-Tr, (H;(s 2)) = %/X/(exp(g)Bz(s,:)d:
(7.127) By(s,E) = / e 7 fy(sZ)e" 1 PEd7.
Im Z=4/s

Here again f5 is uniformly C* and of compact support as § | 0. Tak-
ing the limit § — 0 (7.127) can be regarded as the Fourier transform of
exp(—2?) f2(sZ) which is uniformly in Schwartz’ space S(R) and depends
smoothly on s. Thus Ba(s,Z) is uniformly rapidly decreasing in the sec-
ond variable, with all derivatives. Inserting this into (7.126) shows that
b-Tr, (H;(s_z) 1s a C* function of s down to s = 0. Note that the extra
factor of s has been absorbed in the change of variable from log z to =.
Consider next the part H{(t) of the heat kernel near t = oo in (7.121).
This can be treated in exactly the same way, by dividing considering the two
terms. The important difference is that the complex derivative of x(Re 7)
has support in a region |Rez| > B/4 > 0. It follows that both three
terms are smooth in s = {3 but rapidly decreasing (in fact exponentially
decreasing) ast — 00, so in particular they vanish to infinite order at s = 0.
This completes the proof of the regularity statement on the b-trace of
the heat kernel under the assumption that there is no L? null space. If
there is such a term then, by Proposition 6.28, it contributes a simple pole
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in 7 at 7 = 0 with residue the projector onto the eigenspace. This just
adds a constant term, equal to the dimension of the L? null space, to the
b-trace. The only other source of a constant term as ¢ — oo is H/(t) in the
decomposition (7.122). From (7.126) and (7.127)

(7.128) Jim b-Tr, (H,(1)) = ! /B’(O,E)dE - %fz(oy

T omi

From Proposition 6.32 if follows that f3(0) = Ny — Ny is the dimension of
the boundary data of the null space of P on C*°(X; E) + H°(X; E).



Chapter 8. Local index theorem

The cancellation between the expansions at ¢ = 0 of the traces of the two
heat kernels in (In.18) will be discussed using a rescaling argument due to
Getzler. Although, as in [34], this can be carried out in local coordinates
it is interpreted globally here. To do so the process of scaling, or rescaling,
a vector bundle at a boundary hypersurface of a compact manifold with
corners i1s examined. Such rescaling takes into account some jet information
at the hypersurface. Getzler’s rescaling of the homomorphism bundle of
the spinor bundle, lifted to the heat space, is of this type and will be used
to prove the local index theorem. As usual the point of giving a general
treatment (rather than just a computation in local coordinates) is that it
can be carried over to other settings. In particular the extension to the b-
setting is immediate. The integral defining the eta invariant is interpreted
as a b-integral in this way (in fact it converges absolutely). These rescaling
arguments are used in the next chapter to discuss the convergence of the
integral for the eta invariant on an odd dimensional exact b-spin manifold
and also to extend the analytic torsion of Ray and Singer (see [30]) to this
class of complete Riemann manifolds.

8.1. Simple rescaling.

Suppose first that X is a manifold with boundary and E is a vector
bundle over X. One can easily recover the fibres of the vector bundle from
the space of all C* sections. Indeed if p € X consider

T, -C (X B) = {u € €% (X; E); u(p) = 0},
The notation here suggests that if Z, = {f € C*°(X); f(p) = 0} then

uw€CT(XSE), ulp) =0 u=>_ fiu;, [ €Ty,u; € C(X;E)

finite

and this is easily seen to be the case. Clearly then
(8.1) E, =C®(X;E)/I, C*(X;E).

It turns out that this is rather a useful way to construct vector bundles,
starting from the putative space of all sections. The following construction
is a special (and frequently encountered) case of the general rescaling pro-
cess described below. Let E be a vector bundle over X and suppose that
at the boundary F has a subbundle:

(8.2) F C E)px is a subbundle.

295
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Then consider the space
(8.3) D={ueCX;E)uax € C*(0X;F)},

Jjust consisting of the sections of F which take values in F' at the boundary.
Observe that D has many of the properties of C*°(X; F). For instance it is
a C*(X)-module, C*°(X) - D = D. In fact it is the space of all sections of
a vector bundle:

PropPosITION 8.1. If (8.2) holds then D, given by (8.3), defines a vector
bundle through
(8.4) PE,=D/1,-D VpeX, TE=|]|"E,

PEX

with a natural C* structure and bundle map tp: 'El — E which is an
isomorphism over the interior and such that

(8.5) 5D =C”(X;TE).

PRrOOF: The vector bundle, “E, with its C* structure is defined by analogy
with (8.1). With the fibres defined by (8.4) there is an obvious map

(8.6) wp:D/I, D="E, — E,=C*(X;E)/T, C~(X;E)

which is just evaluation of u € D at p. Over the interior of X, (8.6) is an

isomorphism. Suppose p € 90X and let uy,...,un be a local, C*, basis

of E/ such that wuy,...,u; is a basis of I/ near p in 90X. Such a basis can

be obtained simply by taking uy,..., ug as a basis of F' near p, extending

these sections smoothly off X and then completing them to a basis of F.
Any element of D is locally of the form

k
(8.7) u=>Y_ fiu;+ Y filzuy),
Jj=1 J>k
where x is a defining function for X since, by definition, it must be a
section of F over 0X. The coefficients fi,..., fa in (8.7) give a local triv-

ialization of “E, which is to say that uy,..., ug, Turi1,. .., zux is a local
basis. A change of admissible basis of F from uy,...,uny to u),..., ul
must be such that
k N
u; = Zaﬂul 4z Z a;rug, j<k
=1 I=k+1

since the (uf)1ax, for j < k, span F. Thus the basis elements u;, for 1 <
r < k, and zu, for ¥ < r < N are smooth linear combinations of the
ULy ooy Ul TUK41, - - -, ZUN, 50 this induces a C* transformation amongst
the f;. The C* bundle structure is therefore natural. Clearly the bundle
map ¢tp is C* and (8.5) follows directly from (8.7).
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EXERCISE 8.2. This construction of the bundle ¥E should be at least
vaguely familiar, since it occurred in the definition of the b-tangent bundle.
Take

E=TX, F=T0X CTyxX

and show that resulting bundle F'E is canonically isomorphic to *7T°X.

EXERCISE 8.3. Show that the bundle L constructed above is always
bundle-isomorphic to E. (There is generally no natural isomorphism.)

8.2. Rescaling bundles.

A considerable generalization of this construction will now be made
where, rather than just one subbundle, there i1s a sequence of subbundles,
i.e. a filtration

(8.8) rkcrktc...CcF°C Epx.

It turns out that this bundle filtration is not in itself enough information
to give an unambiguous rescaling. It will be required that

FJis a j-jet of subbundle of F at 9X,

(8.9) : o id . .
consistent with F?7" as a (j — 1)-jet.

Of course this needs to be explained. In practice in the cases which arise
below, (8.9) follows from the more obvious condition that

(8.10)  the filtration (8.8) has an extension to a neighbourhood of 9X.

The jet conditions are just the weakened version of (8.10) which suffices
for the construction. Suppose that F and G are subbundles of E near §.X.
They will be said to be equal, as p-jets at X, if
(8.11)
{u € C®(X;E)ju=u + T’ v € C™(X; F), v’ € C®(X; E)}
={veC(X;E)v=0 42T v € COO(X;(NJ),UH €CT(X; E)}.

That is, each section of F is, near 90X, the sum of a section of G and #Pt?
times a section of E, and conversely with F and G interchanged.

By a p-jet of subbundle of F at 0X is meant an equivalence class of
subbundles near JX, up to equality as p-jets. Clearly a 0-jet is just a
subbundle of E5x. If ' and G are p-jets of subbundles of F then the
condition

(8.12)
COO(X;ﬁ) C {u €C™(X; E);u=u 4+ P,
u' e Cm(X;é),u// € COO(X;E)}
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is easily seen to be independent of the choice of representative subbundles,
F and G. It is equivalent to the existence of representatives F and G with
F C G. The condition (8.12) on F and G will be indicated by writing
F C G as p-jets of subbundles. Certainly any p-jet of subbundle, F, defines
(if p > 0) a (p— 1)-jet of subbundle. Then a p-jet F and a (p—1)-jet G are
said to be consistent if ' C G as (p — 1)-jets of subbundles. This explains
the meaning of the assumption in (8.9). Such a consistent system of jets
will be called a jet filtration. The integer k + 1 is the length of the jet
filtration. Thus the simple rescaling of §8.1 corresponds to a jet filtration
of length 1.

ProrosIiTION 8.4. Let E be a C*™ vector bundle over a manifold with
boundary, X, and let F be a jet filtration in the sense that the F7 are, for
J=0,...,k, j-jets of subbundle of E at 90X satisfying (8.9), in the sense
of (8.12), then there is a C* vector bundle ¥E over X and a bundle map
tp: ¥E — I which is an isomorphism over the interior and is such that

C=(X;FE) = 3D,

k
(8.13) D={ueC™(X;E)ue) "¢ (X; F)

7=0

+2*+1C>®(X; E) near 8X} ,

the Fi being representatives of the [J.

ProoF: This is just the same as the proof of Proposition 8.1, once the
existence of a reasonable basis for £ is shown. First note that the space D
in (8.13) is independent of the choice of representatives Fi, Indeed, from
the definition of equality of p-jets in (8.11), if F' is a p-jet of subbundle of
0X then

(8.14) {u ECT(X;E)u=1u + T ' € COO(X;ﬁ),
u” € C%(X; E) near 3X}

1s independent of the choice of representative subbundle. Thus for any [
the space obtained from (8.14) by multiplying by #' is also independent
of choices. Summing over [ = k — j with p = j shows that D in (8.13) is
independent of the choice of representatives of the F7.

Now observe that if ' C G are a j-jet and a (j—1)-jet which are consistent
in the sense of (8.12) then near a point p € X any basis uy,...,us of a
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representative of I can be extended to a basis u1,...,up, usy1,...,ugof a
representative of (G. Applying this construction repeatedly gives, near p, a
basis of £ of the form

ul,...,ufk,ufk+1,...,ufk_l,...,uN,

where f; = ran(F7) and uy, .. .uy,; is a basis of some representative of Fi.
Thus

N
weD <= u=> gu'Vu,
=1
where o(l) = k — j if fj11 <! < fj, (fig1 = 0). This gives the desired C*°
basis, °Wu;, for E. Clearly the bundle structure is independent of the
basis chosen so the proposition is proved.

Notice that associated to the filtration of F}5x induced by the jet filtra-
tion there is a natural graded vector bundle, namely

k
(8.15) P N-ox) e (FgaX/Fgg;) , FFHL = {0}, F~' = Ejax.
j=-1

The powers of the conormal bundle here just arise from the factors of = in
the definition of D. This bundle has the same rank as I and in fact:

LEMMA 8.5. IfPE is the bundle obtained by rescaling Il with respect to
a jet filtration at JX then FE[aX is canonically isomorphic to the graded
bundle, (8.15), associated to the filtration induced on E;sx by the jet
filtration.

Proor: The natural isomorphism can be defined directly at the level of
sections. Thus the space of all C* sections of FE[aX is naturally identified
with the sections of ¥E modulo those which vanish at the boundary, i.e.

C*(0X;¥E) =D /xD.

From (8.13) the map

(8.16)
k
Dou :Zxk_juj + 2 —
(fun], (dr) @ [ug—1], ..., (d2)* @ [uo], (du)"*' @ [u)

k
eC [ 0X; P (N*0X) T & (Flyx/Fif)

j=-1
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is well defined, where [u;] denotes the section of F{aX/F{(;; defined by u;

restricted to 0X. In fact the map (8.16) is clearly surjective, because of the
compatibility condition between the jets, and has null space exactly «D.

There 18 also the possibility of making an overall conformal rescaling of
a bundle, by multiplying by any complex power of a boundary defining
function.

LEMMA 8.6. If E is a vector bundle over a compact manifold with bound-
ary then for any z € C the space

CO(XGE)={ue (X E);u=2"v,v € C* (X, E)}

is the space of all sections of a vector bundle, denoted * F | i.e. there is a C™
bundle map over the interior of X, ¢: ©* F — E such that C*°(X;2*F) =
F(2PC (X E)).

Of course these two types of scaling are very closely related and can be
combined.

Proo¥: Clearly if uy,...,ug is any local basis for E then zuq, ..., 2% ug
is a local basis for 27 £ and the transition matrices are the same for £ and
*F.

If X is a compact manifold with corners and H is a fixed boundary
hypersurface then the notions of a j-jet of a subbundle, F7, at H of a fixed
bundle is an immediate generalization of (8.11), where # is interpreted as
a defining function for H and the notion of a jet filtration i1s defined in
the natural way. Then Proposition 8.4 extends immediately too. Thus one
can associate in a completely natural way a rescaled bundle ¥E with a jet
filtration, F', of £ at H :

For j =0,...,k, F’is a j-jet of subbundle of E at H,
with F7 consistent with F/=! as a (j — 1)-jet.
For this rescaled bundle (8.5) holds so certainly
(8.17) T (X E) C (X, PE) C ¢ (X B).

One consequence of (8.17) is that the space of sections which vanish to
infinite order at the boundary is the same for the bundle £ and the rescaled
bundle FE : . .

C®(X;E)=C>(X;TR)

whatever the jet filtration. The rescaling procedure also has a simple sta-
bility property under tensor products. If F is a bundle with jet filtration
FJ at the boundary and (' is another bundle then

(8.18) HE© G)=TE® Gif L is the jet filtration L/ = FI @ G.
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Similarly if E has jet filtration F' then there i1s a natural jet filtration of
the dual bundle E’ given by taking the annihilators of representatives

L= (F*=0)° e,
B e 1) = {ue s ) ute) =0 ¥ 0 e 2 (s 7))

in a neighbourhood U O 0X of the boundary. This dual filtration gives
rise to a rescaling, L(E"), of the dual bundle.

EXERCISE 8.7. Check that (8.19) does indeed define a jet filtration of
the dual bundle and in particular that it is independent of the choice of
representative filtration.

LEMMA 8.8. If 'l is the bundle defined by rescaling E with respect
to a jet filtration of length k + 1 at the boundary and {(E') is obtained
by rescaling the dual bundle with respect to the dual jet filtration given
in (8.19) then there is a natural identification of (FE)/ and the bundle
l‘_k_lL(E/).

EXERCISE 8.9. Write down a local basis of E, adapted to the jet filtration
F and show that the dual basis of £’ is adapted to the dual filtration L;
deduce that there is an overall factor of #**! in the pairing and so prove

the lemma.

As a corollary of this lemma and the stability under tensor products the
space of extendible distributional sections of “E is canonically the same as
that of £ :

(8.20)
C~*°(X; E) = C~*°(X;FF) for any rescaling by a jet filtration at 9.X.

Indeed the first space is the dual of C>° (X; E' ® Q) and the second is the
dual of

(X (FE) @ Q) = ¢ (X;HME) 0 Q) = (X E Q)

with the topologies also the same.

8.3. Rescaling and connections.

If £ is a C* vector bundle over a manifold with boundary and Ejsx has
a filtration, as in (8.8), a (true) connection on F can be used to extend the
filtration off the boundary and hence to give a jet filtration. For simplicity
let us suppose initially that X has only one component.
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Let N be an inward-pointing vector field, i.e. N € V(X) is such that
Nzsx > 0 for any boundary defining function . Simply define the space
D by
(8.21)

if u € C™(X; E) then u € D <= Viuppx € C°(0X; FF7), 0<p<k.

To see that this space does actually arise from an extension of the filtration
off the boundary consider a defining function # € C*° (X)) such that No = 1
near 3X. If € > 0 then U = {# < €} is a neighbourhood of the boundary. If
¢ is small enough any section u of I/ over d.X can be extended to a unique
section & € C*™(U; F) which is covariant constant along N :

(822) VNﬂ = 0, a[ax = u.

Indeed, (8.22) is a system of ordinary differential equation along the integral
curves of N. If z is used as a normal coordinate, so U = [0, ¢), x X then

N = §/0x and (8.22) becomes
P N
o T D it =0, (W)),—0 = uj,
j=1

where ; are the coefficients of u with respect to some basis e; of £, the
7;,; arise from covariant differentiation of the basis, Vye; = El vi,;€ and
the u; are coefficients of u with respect to this basis.

Thus the choice of N extends the filtration (8.8) to a filtration over U by
taking C*° (U; f~73) to be the span, over C* (U), of the solutions to (8.22) with
initial data in 7. One can think of the filtration (8.8) as being extended
by parallel transport along N. The Taylor series of any v € C*(U; E) at
0X can be written to any order, r, as

(8.23) u=1ug+xruy +- -+ u + $T+1U(T+1), U1y € C°(U; E)

where the u; € C(U; E) satisfy Vyu; = 0, j!(u;)jax = (Viyu)jax. The
definition of D in (8.21) therefore reduces to (8.13) for the extension of the
filtration.

In general this filtration and the induced jet filtration depend on the
choice of N although replacing N by ¢N, where ¢ € C*(X) is positive,
leaves (8.22), and hence the filtration, unchanged. Next we consider a
sufficient condition for vector fields to act on the rescaled bundle through
covariant differentiation.
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LEMMA 8.10. Let E be a vector bundle with connection on a manifold
with boundary, X, and let D be defined, by (8.21), from some filtration,
(8.8), over the boundary and some inward-pointing vector field N. Then,
for a given V € Vi (X), Vy acts on D provided the induced connection on
0X preserves the filtration and the curvature operator satisfies

(8.24) Kp(N,V)jpox: F'l — FITlvo<i<k
and for every W € Vp(X), 1 <l <k and 1 <p <l
(8.25) VR (Kp(N,W))ox : F' — F'77.

ProoF: If u € D consider the Taylor series of Vyu at 9X. Since V € Vi, (X)
and the induced connection on the boundary is assumed to preserve the
filtration it follows that (Vyu)jax € C*(0X; Fr).

For the first normal derivative

(826) VaVyu = [(E(N, V)u—i—V[NyV]u—i—VVVNu.

At X the first term is a section of F¥~1 since Urax 1s a section of F* and
by (8.24) the curvature operator maps this into F*~1. In the second term
in (8.26) the commutator can be decomposed into the sum of a multiple
of N and a term in V;,(X) giving, over the boundary, sections of F*~1 and
F¥* respectively. The last term is also in F¥~! over the boundary, hence so
18 VNVVU.

Next consider the action of the covariant derivative of a general element
W € Vp(X). Tt is convenient to use an inductive argument on the length of
the filtration. Generalize (8.21) by defining

(8.27) u €D, <= Viupsx €COX;F'7P), 0<p<r

Thus D, just corresponds to shortening the filtration to length r+1. Clearly
Dy =C®(X; FDE) corresponds to the simple rescaling of £ with respect to
FO D, =D and for r < k

(8.28) u € Dyyy == u,Vyu€D,, uppx €C°(0X; F'T).
From (8.25) we shall deduce that for any C* vector field W on X
(8.29) Vw:Dry1 — D,

Since this follows for N from the definition we can assume that W € V, (X).
Then (8.29) certainly holds for » = 0, so we proceed inductively over r.

Replacing V' by W in (8.26) gives

(8.30) S Dr+1 — VyVwu= [(E(N, W)u + V[N,W]U + VwVyu.
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The first term on the right is in D,_1 because of (8.25), the second is in D,
and the third in D,_; by the inductive hypothesis. Since (Vi u)jax is a
section of F"T1 C F" we conclude that Vyu € D,, by (8.28). This proves
(8.29) in general.

So consider the higher normal derivatives of Vyu where now V' € V4, (X)
is the vector field satisfying (8.24). Again induction can be used to show
that

(8.31) Vv:D, — D, Vr.

Assuming u € D, it follows that Vyu € D, from (8.29) and in (8.26) the
second term is in D,_1, again by (8.29), and the first is in D,_, by (8.24).
Since (Vyu)jax is a section of F” this proves (8.31). The statement of the
lemma is the special case r = k.

EXERCISE 8.11.  Show that if V' € V,(X) acts on D, defined by parallel
transport of the filtration along N, then the same jet filtration arises by
parallel transport along N + V.

Lemma 8.10 shows that, assuming that the connection preserves the
filtration over the boundary and (8.25), for any vector field V € V,(X)
satisfying (8.24) Vv acts on the rescaled bundle. The identity (2.58) holds
by continuity, so (Vv u);ax can be determined from usx, i.e. Vi induces
an operator on the rescaled bundle over the boundary, (8.15). To obtain
a formula for this operator consider, as in the proof above, the normal
covariant derivatives. Thus, for u € D,

P
(832) VA Vvu=VoVha+ > Vi ((Kp(V, V) + Vin ) Vi 7u)
j=1
Decomposing [N, V] = aN + W, with W € V(X), it follows by further
commutation that
(8.33) '
V‘g\f_1V[Nyv]vZJ)V_]U[aX = apex (vzj)vu)rax (HlOd c™ (8)(, Fk_p-l_l)).

Similarly further commutation on the part of (8.32) involving the curvature
operator gives

(8.34)
J—1¢5 p—J — (5 p—1
(vN (Kp(N, V)V u)rax_ (AE(N,V)VN u)rax

+( = 1) (VNKe(N,V))sx (vi’v‘lu) - (mod €™ (0X; F*=7+1))

since, in view of (8.25), it is readily seen that terms involving covariant
derivatives of the curvature operator of order higher that one cannot con-
tribute to the leading part. From these formule and a slight generalization
we easily deduce:
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ProrosiTION 8.12. If X is a compact manifold with corners and a C™
vector bundle, F, with connection over X has a filtration, I', over a bound-
ary hypersurface, H,

(8.35) FrCcFFtc...Cc F'C By,

which is preserved by the induced connection and is such that the curvature
operator satisfies (8.25) at H for some inward-pointing vector field, N, then
covariant differentiation by any V € Vy(X) satisfying (8.24) at H acts on
the rescaled bundle, ¥E obtained by parallel transport along N from H

(8.36)
Vv = [Vvigvj + (k= j)nv sl + [Ke(N,V)igvili-1

1 o
+ S [(VNEe(N, V)invjlj-s, ¥ vj € C(H; F7/F/F),

where ny is the normal component of [N, V].

Proor: First suppose that X is a manifold with connected boundary, H.
Then (8.36) follows from (8.32), (8.33) and (8.34) since if N is used to
trivialize the normal, and hence conormal bundle of H, the pieces of the
map (8.16) are given by

1
(8.37) DSur—s ];(V%U)rH €C™(H; Fk=r).

The extension to a manifold with corners requires only modest reinter-
pretation of the discussion, provided the vector field N is chosen to be
tangent to the boundary hypersurfaces other than H.

8.4. Getzler’s rescaling.

The example to which these constructions are directed comes from [34].
Recall, from Chapter 3, the basic properties of the Clifford bundle of a
Riemann manifold. This bundle is naturally filtered by the degree, as in
(3.13):

(8.38) c=0@caWec...ca®W=a ~N=dimX.
These are real filtrations, over the whole manifold. If X is an even-
dimensional spin manifold then (3.65) shows that there is a natural identi-

fication

(8.39) Cly ¢+— hom(S;) Vze X.
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That 1s, the Clifford bundle is naturally identified with the homomorphism
(or endomorphism) bundle of the spinor bundle. Here the little homomor-
phism bundle, hom(SS), is being considered.

As a first, very simple, example of rescaling consider the lift of hom(S)
from X to [0, 00)51 x X. Let 7: [0, oo)% x X — X be the projection. The
filtration (8.38) gives a filtration of 7* hom(S), and so in particular a jet
filtration at {0} x X. This allows a rescaled bundle, denoted “hom(5), to
be defined by application of Proposition 8.4. It will reappear below when
the trace of the heat operator is considered.

Operators from sections of S to sections of S (which are typically what
is being studied here) have as kernels distributional sections of the big
homomorphism bundle over X2 :

Hom, ,/(S) = hom(S;+, Sy) = {h: Sy —> Sy, linear}, (z,2') € X2

Clearly then Hom(S);a = hom(S) as bundles over A = X. Thus Hom(5)
has, initially, a natural filtration, (8.38), only over the diagonal.

For the heat kernels of operators one needs to consider the pull-back of
Hom(S) under blow-down and projection:

mrx: X4 2500, 00) x X2 — X2,

Directly from the definition of the pull-back of a vector bundle, see §2.11,
F;LX Hom(S) has a natural filtration over tf(X%) U Ay where Ay is the
closure of the lift of Rt x A. We shall apply (8.21) to get a jet filtration at
tf(X%) and hence define a rescaled version of 7% x Hom(S). To do so we
need to consider the connection on 7y x Hom(S).y

The connection on Hom(S) is discussed in §2.11 as is the pull-back op-
eration of connections. Thus 7} y Hom(S) has a natural (Levi-Civita)
connection. Lemma 2.32 allows the curvature operator on the lifted bundle
to be computed in terms of the curvature operator on Hom(S).

LEMMA 8.13. On an even-dimensional spin manifold, X, the pull-back to
T x Hom(S) of the Levi-Civita connection preserves the filtration (8.38)
over tf(X %), (8.25) holds for any inward-pointing vector field N for tf(X%)
and (8.24) holds for all V € V,(X%) which are tangent to the fibres of
tf(X%) over A.

PRrROOF: The restriction of the connection on Hom(S) to A reduces to the
connection on hom(S) and hence coincides with that on the Clifford bundle
under (8.39). Since tf(X%) projects to A under mgy x it follows that the
connection over tf(.X%) preserves the filtration (8.38).
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Now from Lemma 2.32 it follows that the curvature operator on the
bundle F;LX Hom(S) is given directly in terms of the curvature operator
on Hom(S) and hence ultimately, through (2.84), in terms of the curvature
operator on S; this in turn is given by (3.68). Thus Kg(V,W) is Clifford
multiplication by a 2-form. The curvature operator on Hom(S) is therefore
of the form

(8.40) Ktom(s)(V,W)A=cl(w)o A— Ao cl(w)

for some C* 2-forms w and w’ on X (but depending parametrically on
all variables of X?.) The covariant derivative induced on Hom(S) satisfies,
(2.77) so VZJ)V(KHom(S)(V, W)) is also given in terms of Clifford multiplica-
tion by 2-forms on the left and right. This moves the filtration (8.38) at
most two steps, so (8.25) follows for every p.

The vector fields V' € V,(X) which are tangent to the fibres of tf(X%)
have the property that (mg x)«(V) = 0 at each point of A. Thus, from
(2.84), the curvature operator on £ = m} y Hom(S) in (8.24) vanishes
over tf(X%) so this condition holds trivially.

So to define the rescaling of the homomorphism bundle of the spinor
bundle over X% it is only necessary to make a choice of normal vector field
to tf(X%). One condition that it is convenient to demand is:

(8.41) N is tangent to Ay C X%,

In fact there is rather a natural choice for N. At each point ¢ € t{(X%),
push-forward under the blow-down map sends N, to a normal vector at
B (q) to A. From the definition of the blow-up in, see in particular (7.19),
the 1mage must project to a multiple of the tangent vector to the curve
defining ¢, plus a term tangent to A. There is a natural choice for the
normal space to A, at Sy (¢) = (p,p) as the span of (v, —v) for v € T, X.
Thus in addition to (and consistent with) (8.41) we demand

(8.42)

(Bur)«(Ng) = (v —v), v € T,X ¥ g € tH(X), Bu(q) = (p.p) € A.

This will be called a radial choice of N.

EXERCISE 8.14. Show that (8.42) can be arranged by taking N to be the
lift of the radial vector field in local coordinates:

0 1 (e o
(843) A5ty Ll =) (a_ ’ a)

J

divided by pis.
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DerFINITION 8.15. If X is an even-dimensional spin manifold without
boundary the bundle “Hom(S) over X% is defined by applying the rescaling
procedure of Proposition 8.4 to the jet filtration of 7}, x Hom(S) at tH(X%)
fixed by parallel transport of (8.38) along an inward-pointing vector field
satisfying (8.41) and (8.42).

This is Getzler’s rescaling ([35]).

EXERCISE 8.16.  Show that the imposition of (8.42) fixes N up to a
positive multiple and an additive element V' € V,(X%) which is tangent to
the fibres of By on tf(X%) and hence conclude, using Exercise 8.11 and
Lemma 8.13, that this rescaling is independent of the choice of N satisfying
(8.42).

The lifted diagonal Ap is naturally identified with [0, 00)51 x X by Bg.
The simple case of rescaling considered above therefore reappears through
a natural bundle isomorphism:

(8.44) GHom(S)rZH = Ghom(S).

Notice that as a corollary of Lemma 8.5 the rescaled bundle restricts to
tf(X%) to

(8.45) “Hom(S)1r = 77 x A*(X),

provided N is used to trivialize the conormal factors in (8.15). Indeed the
maps from the filtration of the Clifford algebra, (8.38), induce an isomor-
phism from the graded bundle associated to the filtration to the exterior
form bundle, i.e. give (8.45).

This needs to be done in the b-category as well. As usual this is a
straightforward generalization. Certainly %, Hom(%5) and the filtration of
Hom(%S);a = hom(%S), all make sense, just assuming that X is an even-
dimensional b-spin manifold. If X is an exact b-spin manifold the Levi-
Civita connection is actually a true connection on ®7* X and hence on the
spin bundle %S. Let

THX: Xi —>Xg, Ty, X Xi — X?

be, respectively the composites of the heat blow down and projection to X?
and the combined blow down and projection to X2. Thus ™ x =0BpomH x.
The proof of Lemma 8.13 applies essentially unchanged to give:

LEMMA 8.17. If X is an even-dimensional exact b-spin manifold with
boundary the pull-back of the Levi-Civita connection to 7T;7X Hom(%5)
preserves the filtration by Clifford order over tf(X%), (8.25) holds for
any inward-pointing vector field N for tf(Xg) and (8.24) holds for all
V € Vy(X}) which are tangent to the fibres of tf(X}) over A.
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Thus the rescaled bundle “Hom(%S) on Xi can be defined, just as in
Definition 8.15, by choosing an inward-pointing vector field for tf(Xi). It
will always be assumed that the analogue of (8.41) holds, i.e. N is tangent
to ﬁn =cl ﬁ;ll (R* x Ap). Then, as in (8.44)

(8.46) “Hom(%S) 5, = “hom(%9),

the latter bundle being the rescaling of hom(%S) over [0, oo)% x X = 377
with respect to the Clifford filtration. As in (8.43) we shall take N to be
the lift of 2t9/0¢t plus a radial vector field for Ag. Using this to trivialize

the conormal bundles as before give the obvious extension of (8.45), namely
the natural identification

(8.47) “Hom("S) s = 35 (*A*(X)).

8.5. Rescaled trace.

The main reason for introducing this rescaling is its relationship to the
supertrace functional on the homomorphism bundle of the spinor bundle,
which we proceed to consider. Recall that the ‘little trace’ 1s always a linear
functional on the homomorphism space of any finite dimensional vector
space and hence defines a map from C* sections of the homomorphism
bundle of any vector bundle to C* functions on the base. In particular
consider this for the spinor bundle:

(8.48) tr: C*°(X;hom(S)) — C*=(X).

Here X is assumed to be a spin manifold and S is the spinor bundle. If
X is even-dimensional (for the moment without boundary) then the spinor
bundle decomposes into a direct sum, as in (3.64):

(8.49) S=%5g S, dim X = 2k.

This means that hom(S) decomposes into four pieces, corresponding to
linear maps from £S to %5 for all signs. Thus

_ (A Ao
hom(S) 5 A = (A__|_ A__) .

Then the trace of A € hom(S) is just

tr(A) = try (Apq) + tr_(A-_),
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where tr4 denote the traces on hom(iS). The supertrace is defined as the
difference instead:

str(A) = try (Apq) —tr—(A__).

The reason for considering the supertrace is immediately apparent from
(In.16), which is really the ‘big supertrace’ of the heat kernel of d?, since
the Dirac operator satisfies (3.69). Consider the parity involution

R € hom(S), R= (é _01), R? =1d,

then the supertrace can be written in terms of the trace:
(8.50) str(A) = tr(RA).
Using this the fundamental observation of Berezin [15] and Patodi [73] can

be deduced:

LEMMA 8.18. (Berezin-Patodi) Using the natural identification of hom(S)
and the complexified Clifford bundle Tl for a 2k-dimensional spin manifold

(8.51) str = 0 on @(Zk_l), str(gh - g% ¢?F) = 2K (—i)k

for any oriented orthonormal basis ¢*, ..., ¢** of T*X or °T* X.

ProoF: Recall that the decomposition of S arises from the grading of
Cl as in (3.29). Namely %G are maximal proper subspaces of S which are
invariant under C1" and then €1~ maps £S5 to 5. Under the decomposition
(8.49), odd elements are of the form

0 Ay

a 9A:<A_+ 0

) = str(4) = 0.

Thus only elements of C1T | i.e. elements of even order, need to be consid-
ered. Choosing an oriented basis it suffices to consider the basis of C1T

¢i1.¢i2...¢i2p’ il <i2<...<i2p.

For a fixed string i1, ..., 9, with p < k, choose l #i; forall j =1,...,2p.
Clifford multiplication by ¢! is an isomorphism and involution:

l.
EEES L FS BT o= (B
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Moreover, from the basic anticommutation property, (3.12), of the Clifford
algebra

=" g = u=¢" - u- ¢
Thus the Clifford action of « under (8.49) can be written as

_ [ At 0 _
u= ( 0 ElA_H_El_l) — str(u) =0

using the invariance of the trace under conjugation.

To complete the proof of the lemmait only remains to compute the super-
trace of the action of the ‘volume element’ ¢' - - - ¢** on S. Here induction
can be used with the isomorphism (3.24) providing the inductive step. In
terms of (3.24) and (3.25) the sign-reversing involution Raj in dimension

2k 1s represented by
[ Rap_o 0
Fow = ( 0 _R2k—2) ’

Thus, from (3.26),
StI’(¢1 . ¢2k) — tr <¢1 . .¢2k—2 <_OZ ?) Rzk) — —2iStI’(¢1 . .¢2k—2).
This gives the normalization condition in (8.51).

The effect of rescaling hom(.S), lifted to [0, c0)
ing (8.39) can now be seen easily:

1X X, as discussed follow-

LEMMA 8.19. For a 2l-dimensional spin manifold the linear functional
defined through (8.50) and (8.48), restricts from C* ([0, 00)51 x X;hom(S5))
to

(8.52) str: C*°([0, o0)

X X;Ghom(S)) — thOO([O,oo) x X).

1 1
2 2

ProOF: By definition C* ([0, >0)
Thus

x X;%hom(S)) = D is given by (8.13).

1
2

2
uED = u= th/zuj, u; € C7([0, 00)
7=0

XX;@(j)).

1
2

Then (8.52) is an immediate consequence of (8.51).
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This applies equally well in the case of a b-spin structure, since the ar-
gument is algebraic. Using (8.46) we find for a 2/-dimensional exact b-spin
manifold

(8.53) str: C(A,; “Hom(%S)) — 11¢> ([0, 00)1 x X).

8.6. Rescaled heat calculus.

Consider the definition of the heat calculus for sections of a general bun-
dle E, first for a manifold without boundary, in (7.92). If TH x Hom(FE)
has a rescaling at tf(X%), as is the case for the spinor bundle on an even-
dimensional spin manifold, then 7},  Hom(E@ Q™ %) has the tensor rescal-
ing (8.18). TFor the spin manifold the rescaled bundle will be denoted
“Hom(S @ Q_%). We can therefore consider the rescaled heat calculus,
as usual for simplicity limiting the order to be negative:

W, (X5 5) = Wy (X3 Q%) @ew (xz,) € (XE; “Hom(S © Q%)
(8-54) = " K € 0 (X5 Hom (S © Q7 F) © Q)
K =0at th(X3)}.
The second formulation follows from (7.11) and the first.

Since rescaling decreases the space of smooth sections this is a refinement
of the heat calculus as defined earlier:

(8.55) UL(X;5) C W, (X;8).

We will show below that the heat kernel of the Dirac operator, in the even-
dimensional case, is in the rescaled calculus. To see why this is important
consider the supertrace analogue of Lemma 7.18.

LEmma 8.20.  If S is the spinor bundle on an even-dimensional spin
manifold and A € U[,(X; S) is an element of the rescaled calculus of order
j < 0 then the supertrace functional applied to the restriction of the kernel
to the diagonal int > 0 gives

(8.56) Str(ArZH) € t—ij—lcoo([o,oo)% x X; Q).
IfA€W) , (X;S)NW,(X;S) then
(8.57) str(A 5, ) € 47771 ([0,00) x X;9).

ProoF: This is just Lemma 8.19 applied to (8.54).
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In the exact b-spin case we proceed in the same way, defining the rescaled
b-heat calculus by
(8.58) '
U o(X;%5) = W) (X;°07) @cwe (x2) € (X7 “Hom (%S @ *Q7 %)

— pt_f%(n-l—?))_]{[{ c Coo (Xi,GHOHl(bS ® bQ_%) ® bQ%)’
K =0at th(X]) Ulb(X}) Urh(X})}.

This is again a refinement of the b-heat calculus and both (8.56) and (8.57)
extend trivially. In fact (8.58) depends only on the existence of the rescal-
ing, so can be generalized further as in §8.12 below.

8.7. Rescaled normal operator.

It remains to show that exp(—t9?) is, in the even-dimensional case, an
element of the rescaled heat calculus; this will be done by re-constructing
it. The main tool in the construction of the heat kernel in Chapter 7 is
the normal operator, so we proceed to show that there is a rescaled normal
homomorphism.

As in (7.53) powers of 3 can be used to remove factors of pir as needed
to define the restriction of a kernel to tf(X%). From (7.48) we see that

\I!‘é(X; S)2A— t%(”+j+2)A[tf €
C*° (t(X %) “Hom(S © Q%) @ mjy x (23 (X?)))

and as before WEYX(Q%(XZ)) =~ Q(X) = Qapre(TX). Since the kernels all

vanish to infinite order at the boundary of tf(X%) we can also use t%,
in place of pir, to trivialize the normal bundle to tf(X%) in (8.15); the
singular factors of ptf/t% can be absorbed into the kernels. This gives,
with the identification of tf(X%) as a compactification of T'X,

(8.59) Nej: UL(X;S) — S(TX; (mh x A" X) @ Qire).

Clearly this is surjective and has null space exactly the operators of order
j—1. '

The inclusion (8.55) means that the normal operator on ¥, (X;S) acts
on the rescaled calculus. It is important to understand the relationship
between the two normal operators. Corresponding to the fact that the
elements of D in (8.13) restrict to the boundary to sections of F*,

Nrj: ‘I"é(X; S) — S(TX; (7 x @(0)) @ Qfibre) = S(TX; Qfibre)
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since C11®) = CId . In the rescaling this just corresponds to the 0-form part,
le.

(860) NHJ' (A) = EVO(NGJ' (A)) S S(TX, Qﬁbre).

For operators of order —2 it therefore follows, as in Lemma 7.13, that

(8.61) Aup=o(z) = Ap(2)u, Ao = / Evy (Ng, —2(4)) .

This allows the initial condition for the heat kernel to be expressed in terms
of the rescaled normal operator.

To proceed with the construction of exp(—t3?) in the rescaled calculus
it is clearly necessary to show that 82 itself preserves the rescaling in an
appropriate sense. Except for the small point that elements of positive
order in the heat calculus have not been, and will not be, defined this
amounts to showing that the heat operator 9/9t +3? is an element of order
2 in the rescaled heat calculus. More prosaically this is the first part of:

ProrosiTION 8.21. The Dirac Laplacian on an even-dimensional spin
manifold satisfies

(8.62) 107 WE(X;5) — WE(X;S), Ng _o(td?A) = NG (t5%)-Ng _2(A),
N¢(t9%) being the operator on the lift to T'X of the form bundle

2k

(8.63) Na(t3*)(v) = -3 (aj n %RA (p; aj,Y))z Y eTpX

j=1

with respect to any orthonormal basis of T, X where

(8.64) RMp; 0;,Y) = > RjkpgY *da da?
kpq

is the curvature operator acting on A;(X) by exterior multiplication.

The proof consists in examining the square of the Dirac operator, in terms
of Lichnerowicz’ formula, and the action of its lift to X% on the rescaled
homomorphism bundle. Since the Dirac operator is a sum of products of
Clifford multiplication and covariant differentiation these operators will be
examined first.
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LEMMA 8.22. For any smooth 1-form on an even-dimensional spin mani-
fold Clifford multiplication gives an operator

c(t3w): W(X;8) — U2(X;5), we C™(X;AY)

(8.65) L
Nap el(t5w) A) = 7 x () A Naip(A).

Proor: Consider the lift of A'X from X to X?, under projection onto

the left factor, and thence to X%. Since t2w, for w € C® (X;ALX), is

not a smooth section of (w1 )*A® consider instead pyr(mg r)*w. The lifted

bundle acts by Clifford multiplication (on the left) on (7g x)* Hom(S) and

hence on the space of heat kernels. Clearly

c(prw): W (X;8) — Wi H(X;S).

To see that it acts on the rescaled calculus consider the Taylor series of
perw, with respect to the Levi-Civita connection and an inward-pointing
vector field, N, to tf(X%). With the corresponding defining function, pis,
chosen to satisfy Npi = 1 near tf(X%) :

2%h—1
prrw = Z Prewp + ngkw(%) with
(8.66) =
wiaky € C(Xi; (ma,L)*A'X) and Vyw, = 0 near tf(X7).
Since
(8.67) P Wy (X3 5) C WL (X;9),

it suffices to consider the finite sum in (8.66). Now cl(w;) shifts the filtra-
tion, extended by parallel transport, by one step and multiplication by pys
shifts it back. Thus cl(pgrw) maps U7, (X;S) into itself. Moreover

(8.68) prr s WL(X;S) — WX 9),

so only the first term in (8.66) affects the normal operator. Multiplication
by t%/ptf preserves the heat calculus so (8.65) follows, when it is recalled
that ¢2 is used to trivialize N* tH(X%).

For covariant differentiation there i1s a similar formula. Recall that the
interior of tf(X%) is naturally identified with 7X. The symbol, o(V') (really
just iV), of V € V(X) can be considered as a vector field on the fibres of
TX and as such it acts on sections of any bundle pulled back from X to
T X, since such a bundle is canonically trivial along the fibres.
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LEMMA 8.23. For an even-dimensional spin manifold, X, if a radial choice
of inward-pointing vector field to tf(X%) is used to extend the filtration
then V € V(X)) defines an operator

(8.69) 13V WL (X S) — WL (X 9)

and at Y € T'X, the interior of tf(X%),
1 . 1
(8.70) Ng;(t?VvA) = (—w‘(V) - gRA (v, V)) Ne ;(A4),

for all A € \I!‘é(X; S), with the curvature term given by (8.64).

PROOF: Since ¢3V is not smooth when lifted to X% consider instead V'
which is pgr times the lift of V. Thus V'’ € V,,(X %) satisfies the hypothesis of
Lemma 8.13, so the covariant derivative V. acts on “Hom(S) and (8.36)
gives a formula for the restriction to tf(X%). The curvature operator on
Hom(S) is given by (2.84), so the second term on the right in (8.36) van-
ishes, as V'’ pushes forward to zero from tf(X%). For the same reason the
third term can be written %KE(N, VnV?’) with £ = Hom(S). By assump-
tion Npyr = 1, so V V' pushes forward to V' as a vector field on the left
factor of X in X?2. Thus with V' being the restriction of V’ to a vector
field on the fibres of tf(X%),

. 1
(871) szvj = V”vj + (k’ — j)nvlvj + [§A/5((7TH7L)*N, V)vj_z]j.

Here pir has been used to trivialize the conormal factors in (8.15).

Our convention for the rescaled (as for the original) heat calculus is to use
the singular defining function t% instead of the pir associated to the choice
of N. This means multiplying v; by (ptf/t%)k_j. This effectively multiplies
the curvature operator in (8.71) by ¢/pZ. Observe that

ny = [N, V']pie = NV'pis on tf(X?_I)

since Npir = 1, so commutation of this multiplicative factor through vV
cancels the second term in (8.71). Thus, multiplying by one factor Oft%/ptf
to change V' to the lift of 2V gives

1

(8,72) NG’j(vt%VA) = (—io‘(V) + %%[(5((7TH7L)*N, V)) NG,j(A).
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Finally this proves (8.70) since, in view of (8.42), at a point Y in the interior
of tf(X%)

ts 1
—(m «N ==Y
ptf( L) 2
The action of t3/dt can be deduced in the same way, namely
8 . .
(8.73) taz UL (X;8) — UL(X;9).

Indeed there are no curvature terms, so the rescaled normal operator can
be deduced from the normal operator on the heat calculus in (7.52). Tt
preserves the degree of a form and the extra factors of t7 introduced in the
rescaling give

d 1
(8.74)  Ev, (Nc;,j(ta oA)) = —5(BAn+j+p+2) Evy(Ng ;).

A formula for the leading term in (8.57) in terms of the rescaled normal
operator is easily deduced from Lemma 8.18 and Lemma 8.20. Namely

(8.75)
AW (X;8) = (1 ¥ str(Ag ) o = (720) Bya(Na i 4) x,

where restriction to X on the right is restriction to the zero section of TX,
e to Ag Ntf(XF).
8.8. Lichnerowicz’ formula.

Lichnerowicz’ formula expresses the square of the Dirac operator as the
sum of the connection Laplacian and a scalar term. If £ has an Hermitian
inner product and X is Riemannian then 7*X ® E has a natural inner
product and the adjoint of a connection, V, is a first order differential
operator

V' C¥ (T X @ F) — C* (X, E).
The connection Laplacian is just

AY = V*V € Diff*(X; E).

If v 1s a non-vanishing volume form the divergence of a vector field with
respect to v is defined by the identity:

d(int(w)v) = (divw)v.

Since it is invariant under change of sign of v, the divergence is actually
defined with respect to a non-vanishing smooth density even if the manifold
is not oriented (or orientable). In particular the divergence of a vector field
is defined on any Riemann manifold.
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EXERCISE 8.24. Show that the divergence div, v of a vector field with
respect to a non-vanishing density v € C*°(X;Q) is fixed by the integration
by parts formula

/vfy:/f(divl,v)y vV feC™(X).

X

LEMMA 8.25. Ifw;, 2 =1,...,N is a local orthonormal frame for T'X
then for any Hermitian connection on a vector bundle F/

N
AVu=3"ViV,
i=1

(8.76) N

= —Z (Vﬁl —divvivvl) u Yuel?(X;E).

i=1

Notice that at any point where the frame is covariant constant the first
order terms on the right vanish.

PRroOOF: Let ¢ be the dual coframe to the v;. The connection is

N
Vu=Y ¢ @V,

i=1
The adjoint, acting on a section ¢' ® v must therefore satisfy
(V*(¢' @ v),v") = (¢' @ v, V') = (v, V,,0).

Thus V*(¢! @ v) = V5.v, where the adjoint is with respect to the inner
product on E. This gives the first formula. Since the connection is Hermi-
tian, Vi = —V,, + divy;. This gives (8.76).

The square of the Dirac operator has principal symbol given by the metric
tensor and the same is true of the connection Laplacian. The difference
between them is therefore a differential operator of first order. In fact the
difference 1s of order zero and was computed by Lichnerowicz:

ProPosITION 8.26. The Dirac operator on the spinor bundle satisfies
2 v, 1
(8.77) g°=A" + ZS’

where S is the scalar curvature of the metric.
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PRroOOF: Let v; be a local orthonormal frame for the metric, with ¢’ the
dual coframe. Then the Dirac operator is given by (3.41), so

N N

02 = = cl(¢)V,, 0> cl(¢?)V

i=1 j=1

Dividing by 2 and exchanging the dummy variables on one sum gives

N N
P = —5 303 @) V0, 0 cl(6]) Ty, + (@) Vs, 0el(6)9,]
i=1j5=1
1 N JN
= =3 2D [e@) el Vo, Vo, +cl(6) el (6 V., V]
i=1j=1

[cl(¢") (V4 ¢) Vo, + cl(¢7) cl(Vo, 6" V],

M=
™M=

1
2

1
-
1
-

i J

where the fact that the connection is Clifford has been used. Commuting
differentiation gives

al AL
=2 Vit g2 > (@) el(@)[Ve, Vi)
i=1 i=1j=1
N
—32

i=1j

N el(Vy,¢7) Vo, +cl(¢7) cl(Vy,6') Vs, ]

Mz

l\DI»—k

1

by the anticommutation property of Clifford multiplication. Further ex-
pressing the commutator of the covariant derivatives in terms of the cur-
vature operator of the connection gives

(8.78)
N
- Zvi,

ZC] ¢>J cl(¢ Vi w,] + §ZZc](¢J)cl(¢l)Q(vi,vj)

J

N | —
Mz

_|_

s
1
-
n
-
-
1
-
Y
1
-

[cl(67) UV, 67V, + cl(¢7) cl(V,, 61V, ] -

.“E'{Z
=

1
-

i=1j

Using (8.76) this shows the difference 32— AV to be a first order differential
operator. Consider the coefficients of the first order terms. Choose a point
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p € X and then choose the orthonormal basis to be covariant constant at
p and equal to a coordinate basis to second order. Then the commutators
[vi, v;], the covariant derivatives of the coframe and the divergence terms
in (8.76) all vanish at p. Since the remaining term in (8.78) is of order zero,
and independent of the basis, the first order terms must in fact vanish
identically and

(8.79) P = A7 4+ 23S d() @), 1)

i=1j=1

The action of the curvature operator on the spinor bundle is discussed
in Chapter 3. In particular for an orthonormal basis

N
Quiseg) = 7 3 Fpaig el(67) cA(67),

pg=1

Inserting this into (8.79) gives the somewhat forbidding expression for the
tensorial term:

(8.80) —% ZRPW c1(¢i)cl(qu)cl(qsp)cl((/)q)’

tjpg

where the sign change comes from anticommutation of cl(¢?) and cl(¢?).
This expression considerably simplifies because of the symmetry properties
of the Riemann curvature tensor discussed in Lemma 2.29. In particular
total antisymmetrization in any three indices gives zero. Subtracting the
total antisymmetrization of the product of the last three Clifford factors
and then using the anticommutation property of Clifford multiplication
gives

cl(¢?) cl(¢F) cl(67)

—é[cl(w) cl(¢) cl(¢?) + cl(¢”) cl(¢7) cl(¢) + cl(¢7) cl(¢7) cl(¢F)
—cl(¢7) cl(¢7) cl(¢7) — cl(¢7) cl(¢) cl(¢7) — cl(¢) cl(¢) cl(¢7)]
[26;p cl(¢) — 2854 cl(¢P) + 28,4 cl(¢7) — 2054 cl($F) + 28,4 cl(¢7)

+ 20pq C1(¢j) — 2654 cl(¢) + 28;p cl(@?) + 245, C1(¢q)]
= 8jp cl(¢) — g cl(¢F) + Gpg cl(¢?).

S| =
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Inserting this into (8.80) therefore reduces it to

(8.81) ZR],,” (¢ cl(¢P) + ZRW cl(¢?) cl(¢P)

ijp ijp

- Z Rppij cl(6) cl(¢?).

ijp

The last sum is zero and the first two are equal, because the Riemann cur-
vature tensor 1s antisymmetric in the first and last pair of indices. Moreover
the curvature tensor is unchanged under exchange of the two pairs of in-
dices, so (8.81) can be rewritten

ZRW [cl(¢") cl(¢P) + cl(¢P) cl(¢ ZRW
ijp

Thus the term of order zero is simply multiplication by a scalar as (8.77)
claims, with
S =Y Rijij
iJ

by definition the scalar curvature of the Riemann manifold.

Lichnerowicz’ formula extends easily to the case of a twisted Dirac oper-
ator.

ProrosiTION 8.27. The twisted Dirac operator on S ® E, where E has
an Hermitian connection, satisfies

1 1
(8.82) 92 =AY + 75— 5 l(Kn),
where S is the scalar curvature of the metric and
KpeC®(X;T"X @ T"X ® hom(F))

is the curvature of the coeflicient bundle acting through Clifford multipli-
cation in the sense that for any orthonormal frame v; and dual coframe

(/)i
(8.83) cl(Kg) ZAE vi, vj) cl(¢') el(¢7).

ProoF: The formula (8.83) follows exactly as in the proof of Proposi-
tion 8.26, except that now ) is the total curvature operator acting on the
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tensor product bundle S ® E. As shown in (2.76) the curvature splits into
a sum

Q=Qs+ Kg,

where Kg is the curvature operator for the connection on F and g is the
curvature on the spinor bundle. This gives an extra term in (8.79) and

leads directly to (8.83).

PROOF OF PROPOSITION 8.21: Applying (8.77) to t3% and writing it lo-
cally as
1 1 1 1
192 = — t7V,.)° tz divytzV, t-S
ZZ:( O+ ZZ:( ivv O+ 1
in terms of an orthonormal basis of vector fields allows Lemmas 8.22 and
8.23 to be used to show that t3? preserves the space defining the rescaled
heat calculus, i.e. proves (8.62). The formulae (8.65) and (8.70) then give
(8.63).

8.9. Mehler’s formula.

Consider the representation (8.63) for the rescaled normal operator. This
can be used to obtain an explicit formula for the normal operator of the
(putative) rescaled heat kernel, using (8.62), and then to show that the
Dirac operator on an even-dimensional manifold does indeed satisfy

(8.84) exp (—t0%) € UZ*(X;.9),

as has been anticipated.
Consider the normal operator in (8.63), acting on functions on T, X with
values in A7 X. Thus

n

(8.85) P==> (0 + %ZQ“@Q@’“)Q.

i=1
Here the @;; are 2-forms acting by exterior product. This means that as
operators on A7 X they are nilpotent:

Qi) =0, j >k, dimX = 2k.

This makes it plausible that the heat kernel for P should have an explicit
representation, since it could be obtained from the heat kernel for the flat
case (Q;r = 0) by a finite number of iterative steps. By exploiting the
analogy between (8.85) and the harmonic oscillator and by generalizing
Mehler’s formula ([52]) for the latter, Getzler observed that there is in fact
a closed form solution.
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Thus consider the harmonic oscillator on the line:

d? 9
Plz—@—kl‘ .

One variant of Mehler’s formula gives the fundamental solution to the heat

equation for P; as

(8.86)
1

T X - .
(2 sinh 20)3 p{ 2sinh 2t

Uniqueness follows rather easily from the existence, which can be checked
by differentiation. Direct derivations of (8.86) can be found in [20] and [48].

By scaling the variables ¢t — at, =,y — a%x, a%y for a > 0, (8.86) can

be generalized to obtain the heat kernel for P, = _ddx_22 + az?; namely

(x% cosh 2t — 2xy + y* cosh 2t)} :

5o 1 ( 2at ) 2
(8.87) ‘T (471-15)% sinh 2at
X exp {—m(l‘z cosh 2at — 2xy + y* cosh 2at)} :
The fundamental solutions for the harmonic oscillators in higher dimensions

can be obtained by taking products of the one-dimensional fundamental
solution.

LEMMA 8.28. If B is a non-negative symmetric matrix then
H=A+{(Bz,z) =

—tH ——1 et?a B
(8.88) e (@) C (4nt)F (d ¢ (t))

< exp (— L 180y, 2) — 2a(t)e, ) + B0}y, y>])

et
where the symmetric matrices «(t) and 3(t) are defined by
(8.89)
a(t) = F(2tB%), B(t) = G(2tB?), F(r) =

r (r) rcoshr
_ r)= —.
sinh(r)’ sinh r

PrROOF: Ifb;; = é;;a7 is diagonal and positive semidefinite then just taking

products of (8.87) gives

1 & 2t \°
B = = -
(4mt)= H (smh Qait)

i=1

(8.90)

X exp {— ZZ_; 281;;1722%(1‘22 cosh 2a;t — 2x;y; + y2 cosh Qait)} .
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If the diagonal matrices

. sinh(2a;t) o 2astcosh 2a;t
(8.91) aij(t) = di; a0 D (t) = b emhoad

are considered then (8.90) can be written in the form

1
(4mt) 5

x (det%a(t)) exp (-% [(B(t)e, z) — 2a(t)z, y) + (B(t)y, y>]) :

F =

(8.92)

Of course (8.91) and (8.92) just reduce to (8.88) and (8.89) when B is di-
agonal. Moreover the general case follows by making an orthogonal trans-
formation in the independent variables. Thus if O € SO(N) is such that
OBO! is diagonal, changing variables from z and y to Oz and Oy reduces
H in (8.88) to the form (8.91). Changing variable back from (8.92) gives
the general case.

Still for operators acting on functions, suppose that A;; = —A;; is an
antisymmetric matrix. Then, thinking of it as a ‘vector potential,” consider
the operator

The linear vector field
V= ZAZ<$‘7i - Z—)
— I 3% 31‘]'
i
is a sum of infinitesimal rotations, so commutes with the Laplacian, and

V{(Ax, Az) = 0.

Thus if H = —A+(Az, Az) then Hy = H+V, [H,V] = 0. The heat kernel

can therefore be written

1 1
exp(—tH,) = exp(—iﬂ/) exp(—tH) exp(—§ﬂ/).
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The middle term here is given by Lemma 8.28 and the exponential of the
vector field is an orthogonal transformation, namely the exponential of
—%tA as a matrix. Thus the kernel of exp(—tH ) can be obtained from
the kernel of exp(—tH ) by replacing « and y by exp(—t%A)x and exp(t%A)y
respectively in (8.88).

Notice first that the functions ' and G in (8.89) are actually even func-
tions of the argument r, i.e. are actually analytic functions of r?. Thus
they can be expressed in terms of —t?A? and hence, with conjugation by
exp(%tA), the fundamental solution can be expressed as a matrix function

of tA :

(8.93) X
e~ tHa TE (det5a(t))
cexp (= (00)2,2) 22,0 + G100,
a(t) = F(2itA), B(t) = G(2itA), F(r) = Sin}i(r)’ G(r) = rsciiihrr'

To apply this discussion to the operator (8.85) a further generalization to
the case of a system is needed. This would be rather daunting, except that
it is a very special system. The A;; in (8.85) are antisymmetric real matrices
with values in the 2-forms, acting by exterior multiplication on A7 X, which
is commutative. It is also nilpotent, i.e. any (k + 1)-fold product (where
the dimension of X is 2k) vanishes. From an algebraic point of view it is
therefore obvious that (8.93) continues to give the fundamental solution in
this case.

Those who are not algebraists may need to check the claim. To do so
consider (8.93) as a function of the matrix A. It is certainly real-analytic,
hence it is complex analytic as a function of complex (still antisymmetric)
matrices near the real subspace. This allows polynomial variables 2,4 to be
introduced into the formula for all pairs p,q¢ where p,q = 1,...,k, ¢ > p,

by replacing A by
A(z) = Z Zgp APY,
a>p
where AP-? is the matrix with all entries zero, except for a 1 at (p,¢) and
—1 at (¢,p). The formula (8.93) still gives
(8.94) (Or + Ha) exp(—tHa) = 6(t)d(z — y)

provided the z,, are small. Let F,4 be the action of dx, Adz, on the exterior
algebra. Using the nilpotence, which means that 0 is the only eigenvalue,
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it follows that for any function g analytic in z near 0

1 _
by 9(2)(z = Epq) tdz = 9(Epq)-
Applying this to (8.94) in each of the variables z,, and using the commu-
tativity gives:

LEMMA 8.29. The heat kernel for the operator (8.85), acting on functions
with values in T X, is given by (8.93) with A = —%R’\.

8.10. Local index formula.

Now the proof of the local index theorem for Dirac operators can be
completed since (8.75) leads directly to the local index theorem, proved
originally by Patodi [72] and Gilkey [37]:

THEOREM 8.30. If P = 02 is the Dirac Laplacian on a compact 2k-
dimensional spin manifold X then (8.84) holds and

(8.95) strlexp(—tP)] =0 = Evax (det%<%>) ’

where R is the antisymmetric matrix of 2-forms defined by the curvature on
the orthonormal frame bundle and Evsy, evaluates a form to its component
of maximal degree.

PRrOOF: Proceed, as previously announced, to reconstruct the heat kernel
for the Dirac Laplacian. From (8.63) the first step is to take for a para-
metrix, B, € \I!aZ(X; S), an operator which has rescaled normal operator
satisfying

(896) Ng(t%+t6*6)Ng(E1) =0

and the appropriate initial condition which follows directly from (8.60),
namely

(897) / EVO (Ngy_z(El)) =1d.

In fact the solution to (8.96) with initial condition (8.97) follows directly
from Lemma 8.29 and in particular (8.93). First take y = 0 in (8.93), since
that is where the diagonal 1s. Now rescale the form bundle and the linear
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coordinates on 7, X for a given fibre, setting 7 = x/t% and dwd = t3dZ9.
Multiplying by an overall factor of %, this gives

1 1 1
(8.98) Ng(E1) = W (det a) exp <_Z<ﬁZ’ Z>) ,
where o and 3 are the matrices in (8.93) evaluated at ¢ = 1. Certainly

(8.96) holds, just by rescaling the equation expressing the fact that (8.93)
gives the fundamental solution of (8.85). Then (8.97) follows from (8.61).

The leading part of the rescaled heat kernel has therefore been obtained.
As in the scalar case discussed in Chapter 7 successive correction terms can
be found, which are now lower order in the rescaled heat calculus, by using
the fundamental solution (8.93). Summing the Taylor series at tf(X%)
gives an error term vanishing rapidly at ¢ = 0 which is therefore a Volterra
operator, the terms of order —oo in the rescaled calculus being the same
as In the unscaled case. Thus F; can be extended to an element

(8.99) Ec VU *(X;9) st t(0 +0%)E = 0.

Furthermore from (8.55) it follows that in this way the heat kernel has
simply been reconstructed. Thus (8.84) has been proved for the Dirac
Laplacian.

The local index formula (8.95) is just (8.75) applied to (8.98), since the
lifted diagonal meets the temporal front face at Z = 0 in the fibre.

The formula for the integrand is in terms of a characteristic class, namely

(8.100) Evog <2k(—i)k (471r)k [det%(%)]) :

It is given by an invariant polynomial in the curvature as discussed in
§2.14. Since only the volume part, i.e. the component of form degree 2k, is
involved the function in (8.100) is necessarily homogeneous of degree k in
R. Thus the constant can be absorbed to give precisely the volume part of
the A-genus as defined in (2.106) and written again in (8.95).

Now it is easy to go back and add in the effect of twisting by the Hermi-
tian bundle F, with Hermitian connection:

THEOREM 8.31. If P = 0% is the twisted Dirac Laplacian for a bundle
with Hermitian connection on a compact 2k-dimensional spin manifold X
then the conclusions of Theorem 8.30 hold with (8.95) replaced by

R/4mi iKg ))

(8.101)  strlexp(—tP)]jt=0 = Evag (det2 (m) tr exp(?

where now Kg is the curvature of E.
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ProOF: The formula (8.82) should be used in place of (8.77), to compute
the normal operator on the rescaled bundle. Thus (8.85) is replaced by

& 1 L 1.
(8.102) P==> (s + ZZQM )2 — 5K

i=1 k

Since this just involves the addition of a constant, nilpotent, matrix of 2-
forms acting on A7 X ® E, at each point (and therefore commuting with
the action of the Riemann curvature) the fundamental solution can be
constructed precisely as before, with an additional exponential factor of
exp(Kg/2) in (8.93). On rescaling to give the analogue of the normal
operator in (8.98) this gives an extra factor of exp(—iKg). Then (8.101)
follows after taking the supertrace, which acts simply as the trace on the
operators on F, and using the homogeneity to absorb factors of 2 and 7 as
before.
This extra factor

K
Ch(F) = trexp( Z;E
7

)

is the Chern character of the bundle E discussed briefly in §2.14. Again it
is a differential form on X but is independent of the choice of trivialization
used to compute it. Finally then the derivation of (In.2) is complete, since
(8.101) is just the definition of the Atiyah-Singer integrand for the twisted
Dirac operator:

AS = Evaim x (Q(X) : Ch(E)) .

This is very close to the completion of the proof of the Atiyah-Singer the-
orem for twisted Dirac operators as outlined in the Introduction; it only
remains to put the pieces together. This is done in the next chapter.

8.11. The b case.

The case of a b-metric still needs to be examined; fortunately not much
has to be done apart from a review of the discussion above.

The rescaling of “Hom(%S) is fixed by Proposition 7.36 and satisfies
(8.47). The rescaled heat calculus is defined by (8.58). Moreover the rescal-
ing of the trace functional, the rescaling of the connection and Lichnerowicz’
formula all follow by continuity since they are true away from the bound-
ary. The construction of the rescaled normal operator proceeds exactly
as in the boundaryless case and then the remainder of the construction
proceeds without difficulty.

This leads directly to the local index theorem for the twisted Dirac op-
erator:
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THEOREM 8.32. If P = 65% is the twisted Dirac Laplacian for a bundle
with Hermitian connection on a compact 2k-dimensional exact b-spin man-
ifold X then the heat kernel is an element of the rescaled b-heat calculus,
exp(—tP) € \IIZ;ZG(X;S ® F) and (8.101) continues to hold for the fibre
trace:

R/4mi )
sinh(R/4m1)

(8.103)  strlexp(—tP)]jt=0 = Evax det%(

where K is the curvature of E.

8.12. Graded Hermitian Clifford modules.

Although the results above have been discussed in the context of twisted
Dirac operators they all generalize directly to the case of a generalized Dirac
operator associated to a graded Hermitian Clifford module, with graded
unitary Clifford connection, over an even-dimensional compact manifold
with boundary with an exact b-metric. It is for this general case that the
APS theorem is proved in the next Chapter.

Let E be the bundle which is a Clifford module over X, dim X = 2k. The
homomorphism bundle decomposes, as discussed in Lemma 3.6, giving the
filtration

This filtration can be used to define the rescaled bundle, “Hom(F), as be-
fore. That is, the subbundles hom(k)(E) lift to a filtration of 7 x Hom(E)
over tf(Xg) and this can be extended by parallel transport along some
chosen radial normal vector field. Now the rescaled heat calculus for the

bundle F, is defined by (8.58). Notice that (8.45) is replaced by
GHom(E) Pof = 5; (A" X @ hompy (E)).
Then Lemma 8.22 can be extended to give
cl(t77): U 5(X; 8) — Wi 5(X;9), v € A (X)
Nb,G(Cl(t%’Y)A) = By A Ng(A).

To get the analogue of Lemma 8.23, and hence Proposition 8.21, a for-
mula for the curvature operator on F, and hence on Hom(FE), is needed.

LEMMA 8.33. If E is a Clifford module, with Clifford b-connection, over
an even-dimensional compact manifold with boundary equipped with an
exact b-metric then under (3.37) the curvature operator decomposes

(8.105)  Kp(V, W) = icl(R(V, W) + Kp(V, W), ¥ V, W € Vy(X),
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where Kg/ (V, W) commutes with the Clifford action and for any orthonor-
mal coframe

A(R(V, W) = Ryg(V, W) cl(@7) cl(¢7).

Pgq

Proor: By definition the curvature operator is
Kp(V,W)s = ([Vv,Vw] = Vv w)) s ¥ s € C%(X; E).

Now suppose that « € C*(X;7T*X) is a smooth 1-form. Then the com-
mutator of the curvature operator and Clifford multiplication by « can be
evaluated using (3.36):

(8.106) Kp(V,W)cl(a)s = cl(a)Kg(V,W)s + cl(R(V,W)a)s,
where R(V, W) is the curvature operator on 1-forms:
R(V,W)gP =3 Ry (V, W)e?.
q

This in turn can be written as a commutator

1 1
(8.107) cl(R(V,W)a)s = 1 c(R(V, W) - cl(a)s — 1 cl(a) - cl(R(V, W)s.
Indeed, for any orthonormal coframe

cl(R(V, W)) cl(¢") — cl(¢”) cl(R(V, W)
=D Ry (VW) el(@') el(@7) el(¢”) = > Rij(V, W) cl(¢”) cl(¢7) el(¢”)

%] %]

=2 Z RZP(V, W) CI(QSZ) - Z RPJ(V’ W) C1(¢])

J
=4 Riy(V,W)cl(e').
Combining (8.106) and (8.107) shows that
1
(8.108) Kp(V,W) - 1 c(R(V, W)

commutes with Clifford multiplication by 1-forms. It therefore commutes
with all Clifford multiplication, on E. With Kg/(V, W) defined to be the
difference, (8.108), this proves the lemma.
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The extensions of Lemmas 8.22 and 8.23 to this wider setting are the
same, since the rescaling takes place only in the Clifford part. This then
allows the heat kernel for 8% to be constructed in the rescaled heat calculus,
the formula replacing (8.63) for the action in (8.62) being as in (8.102)
except that Kg should now be replaced by Kg/ from (8.105). Tt remains
to analyze the supertrace of the restriction to the diagonal of the resulting
kernel.

Let R be the involution defining the Zs-grading of E. By assumption
this is consistent with the grading of the Clifford action, i.e. commutes with
Clifford multiplication by any element of CIT . Since the involution on the
Clifford algebra itself, R, is given by multiplication by the volume form, it
follows that R and R commute. Moreover Rg must anticommute with
C17, as does R. The product therefore commutes with the Clifford action,
so in the decomposition (3.37)

Rp=R- Ry, (Rp) =1d.
This allows a supertrace functional to be defined on homg,(FE) by
(8.109) str’(A) = tr(RgA), A € homg(F).
Then
str(A) = tr(RgA) = str(a)str’(4'), A=a® A, a€, A’ € homy, .

In particular Lemma 8.18 applies to the supertrace on the Clifford factor,
as before.

With these minor modifications the local index theorem extends to the
case of a graded Hermitian Clifford module for an exact b-metric:

THEOREM 8.34. If P = 65% is the twisted Dirac Laplacian for an Her-
mitian Clifford module with Hermitian Clifford connection on a compact
2k-dimensional manifold, with an exact b-metric, then the heat kernel is an
element of the rescaled b-heat calculus, exp(—tP) € \Ilb_zG(X; S ® E) and
the fibre supertrace satisfies 7

R/Anmi iKY
——F— )| st
sinh(R/47ri)> str’ exp( 2w )

(8.110)  strlexp(—tP)]jt=0 = Evay det%(

where Kg is the difference in (8.108), the part of the curvature of E com-
muting with the Clifford action and the modified supertrace is given by
(8.109).



332 8. LOCAL INDEX THEOREM

8.13. The eta integrand.

Consider the formula (In.28) for the eta invariant. It follows from (In.27)
and the local index formula just discussed that the integral converges ab-
solutely. In fact

(8.111) Tr (3o, exp(—t33 5)) € t2C>([0,00)).

This is for the Dirac operator on a compact spin manifold of odd dimension,
assuming of course that it bounds a compact exact b-spin manifold. In fact
(8.111) always holds for the Dirac operator in odd dimensions. Even more
is true and there is an analogue of the local index theorem, due to Patodi
and Gilkey. We shall prove this using a scaling argument given by Bismut
and Freed [19].

THEOREM 8.35. If 0 is the Dirac on an odd-dimensional compact spin
manifold without boundary, Y, then application of the fibre trace to the
restriction to the diagonal gives

(8.112) tr (5exp(_t62)) €12C%([0,00) x Y; Q).

ProOOF: We shall extend the spinor bundle to a product, so denote the
Dirac operator on Y as 0g. As in §2.10 and §3.14 consider X = S' x Y, at
first with product metric

g=do>+h,

where h is the metric on Y. The spin structure on X is discussed in §3.14
and in particular the Dirac operator takes the form (3.75).

The short-time asymptotics of the integrand for the eta invariant of Ty
can be recovered from the heat kernel for d through

tr (8 exp(—t37))
(8.113) \/227& (R (_OZ 6) (8 é) o exp(—tbﬁfg))

Here the kernel on the right acts on Sy &.5¢ and is restricted to the diagonal
in Y? and to any one point § = ¢’ in the diagonal of (S')%. From (3.75) the
square of the Dirac operator on the product is just

9=0" A(Y)

(8.114) 0° = (Dj +05)1d, Dy = l%.
1

The heat kernel is therefore just the product of the heat kernels on S and
on Y. Since S! is locally diffeomorphic to R the heat kernel on the circle has
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the same short time asymptotics as on the line; so on the diagonal reduces
to 1/v/2nt up to all orders as ¢ } 0. The matrices in (8.113) multiply to iR
since R 1s just Id on the first factor of Sy and —Id on the second. Thus
(8.113) does indeed hold.

Consider the square of the Dirac operator for the warped product in

(3.78)

%ZI(<D9+F(9))2+6‘2¢53)Id+i¢/e_¢(—0' 5) ((f 5)50'

i
Suppose that ¢(#) depends smoothly on a parameter s then

(8.115)

CF = F(0)(Ds + F(0) + (Dy + F(0)£(0)
+il¢' — ¢'dle? RBy — 20952,

where I and q/) denote the derivatives with respect to the parameter s. We
can choose ¢ =0 at s = 0 and then (8.115) reduces to

d %2 _
T-0°(0) =

2k —1
42

(8.116) (®(0) Dy + Do®(0)) Id +i®(0) Ry — 2¢'3,
where ®(6) = Q.S’(H) at s = 0 and (3.79) has also been used.

By Duhamel’s principle the derivative of the heat kernel with respect to
the parameter can be written:
d X2 ! %2 d82 2
(8.117) —exp(—t0%) = =t | exp(—(t — r)0°)—— exp(—rd”)dr.
ds 0 ds

Notice that the parity involution R is the volume element, i.e. the product
of Clifford multiplication by an oriented orthonormal basis. By (3.76) this
is independent of ¢, and hence the parameter, in the identification of spinor
bundles. Thus the supertrace can be taken in (8.117) at any point on the
diagonal. Setting s = 0 and using (8.116)
(8.118)
ds str (exp(—t )) [8=6' A(Y),s=0

t d%Z
= ct str (/ exp(—(t — r)52)E(0) exp(—rﬁz)dr)

0

19=6",A(Y),s=0

Here ¢ # 0 is constant and 82 is the square of the product Dirac operator
given in (8.114). In (8.116) only the middle term is not a multiple of the
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identity 2 x 2 matrix on Sy @ Sg, so 1t gives the only contribution to the
supertrace in (8.118). Thus
(8.119)
d =2
T str (exp(—t5 ))

[6=6" A(Y),s=0

= ctstr (/Ot exp(—(t — r)3%)®(6) R, exp(_rzsz)dr)

19=6" A(Y),s=0

Now we are free to choose @ as a real-valued function on the circle.
Choosing it to be 1 near some value of § and again recalling the locality of
the short-time asymptotics of the heat kernels, it follows from (8.119) and
(8.113) that the short-time asymptotics of the eta integrand are a constant
multiple of those of

_1id o

(8.120) t72 7 str (exp(—t5 )) 1 AV ) a0
near a point where & is constant. The local index theorem applies to the
heat kernel here, so (8.112) holds with t= replaced by ¢~%. The leading
term can be computed using the local index formula, (8.101). In this case
only the ﬁ—genus appears. Consider the formula (2.74) for the curvature
of the warped product. Differentiating with respect to s and evaluating at
s =0 and at a point § = # near which ¢ = 14 s(8 — ¢'), all terms vanish.

It follows that the leading term in (8.120) vanishes. The trace can only
have odd powers of 7 in its expansion, so (8.112) follows and the theorem
is proved.

Notice that this proof extends to show that (8.112) holds for the Dirac
operator on any Hermitian Clifford bundle with unitary Clifford connection.
In fact:

THEOREM 8.36. If Op is the Dirac operator for an Hermitian Clifford
bundle with unitary Clifford connection on an odd-dimensional exact b-
manifold with boundary, Y, then application of the fibre trace to the re-
striction to the diagonal gives

(8.121) tr <5E exp(—tﬁ%)) € t%COO([O, o0) X Y; Q).

EXERCISE 8.37. Go through the details of the proof. [Hint. The warped
product is only used to twist the Clifford action on the bundle.]
8.14. The modified eta invariant.

Next consider the dependence of the modified n-invariant, in (In.32), on
the parameter s.
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ProposITION 8.38.  For a generalized Dirac operator, 0o g, associated
to an Hermitian Clifford module on an odd-dimensional compact manifold
without boundary the modified n-invariant (In.32) is C* near any s ¢
—spec(0g,g) with derivative

d

EUS@O,E)

2 1
= ——= coeff of t™2 in Trexp(—t(Jo g +5)*) ast | 0

NG

and satisfies, for s € —spec(0p ),

(8.122)

11,. .
775(60,E) = 5 lelfglns+e(60,E) + 1611%1775—6(60,E)
(8.123)

) 1.,
dimnull(@p,g + s) = 3 lﬁlf(r)l [7s4¢(00,8) — ns—c(T0,E)] -

ProoOF: From the construction in Chapter 7 the heat kernel
exp(=t(To, + 5)°)

depends smoothly on s as an element of the heat calculus, for all finite
times. In particular for any 7" > 0

Tt (o, + 5) exp(—t(To & + 5)%)) €73°C([0, 7], x R,).

The derivative of the finite integral can be computed by differentiation
under the integral and by integration by parts in ¢ :

T
d 1
E/t_i Tr [(507;; + s) exp(—t(0o,5 + 5)2)] dit

€

— /t‘% Tr [(1 = 2t(T0, + 5)°) exp(~+(To,m + 5)")] dt

T
=2 [t% Tr(exp(—t(To,r + 5)2)

€

If s ¢ —spec(0o,g) the trace of this heat kernel converges exponentially
to zero as T — oo. This proves (8.122). Since the right side of (8.122)
is smooth for all s it follows that (3o £) is smooth up to any point s €
—spec(0p,g) from above and below.
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If s € —spec(To,g) then the smoothness of the integrand remains, but
not the uniform decay at oo. The finite integral is therefore smooth, and
the same integration by parts gives

lﬁifél (s +¢(To,8) — ns—c(0o,p)] =

lim lim [ 7% [Te((To,z + 5) exp(—t(@o,p +)*)] 21" at
(8124) el0 T—>ooT
s+e
T . % _ 2
=t i, [ 21Tl

The expansion of the heat kernel at infinity in (7.105) shows that only the
eigenvalue —s of 8g g contributes to this limit. If m is the dimension of
—s as an eigenvalue then changing the variable of integration to (r + S)T%

shows )
16%1 [Ms+¢(00,8) = Ns—e(00,1)] =
T%e
=2mlim lim exp(—R?*)dR.
el0 T—o0
—T%e
This gives the second part of (8.123).
Essentially the same argument shows that if s € —spec(Jg g) then

75 (00,8) — leii%lﬁs%@oﬂ) = dimnull(dp £ + 5).

From this the remainder of (8.123) follows, completing the proof of the
Proposition.

8.15. Variation of eta.

Although the eta invariant i1s not a local invariant of the geometry its
variation is local, as long as the dimension of the null space of d does not
vary.

ProrosITION 8.39. Let Y be an odd-dimensional compact spin manifold
and let g; be a 1-parameter family of Riemann metrics on Y then, pro-
vided the null space of the Dirac operator Oy, defined by g, has constant
dimension n(0) is a smooth function of s and

d

EU(@)
(8.125) 9 ) .
= _\/_F coeff of t72 in Tr (55 exp(—tﬁ?)) ast |0,

with 55 the derivative of 0, with respect to s.
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ProoF: The spinor bundle over Y can be considered to be independent
of the parameter and this allows the heat kernel for 32 to be constructed
uniformly. It i1s therefore smooth in s as an element of the heat calculus
for all finite times. Thus

T
(8.126) v(s,6,T) = /t—% Tr (55 exp(—tﬁ?)) dt

€

depends smoothly on s, for any finite ¢ > 0 and 7"
Differentiation of (8.126) gives

T
(8.127) di'y(s, e,T) = /t_% Tr {55 exp(—t0?) + 55% exp(—tﬁ?)} di,
s s

€

where 3, is the derivative of 3, with respect to the parameter. The deriva-
tive of the heat kernel with respect to the parameter can be evaluated from
the identity

0
(_

ot
The initial condition is independent of s so, using the heat kernel to solve
(8.128) (i.e. Duhamel’s principle),

(8.128) + 5?)% exp(—t32) + (3.8, + B8, ) exp(—t32) = 0.
S

t

(8.129) %exp(—tﬁ?) =— /exp(—(t—r)5§) (5555 + 5555) exp(—r0?)dr.
0

Inserting this into the second term in (8.127) and using the trace identity,
the commutativity of functions of 3, and integration by parts

T t

_ / i1yl / exp(—(t = r)0?) (3,0, + 0,8, ) exp(—r?) b dr

€ 0

= —2/15% Tr (5553 exp(—tﬁ?) dt

= 2/15% Tr (55% exp(—tﬁz) dt

€

= {Qt% Tr (55 exp(—tﬁ?))}T - /t_% Tr (55 exp(—tﬁ?)) .

€
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The second term here cancels the first term on the right in (8.127) so

(8.130) %’y(s, ¢T)= [t% Tr (55 eXP(_tﬁz))LT

Let TI; be the orthogonal projection onto the null space of d;. The as-
sumption that the dimension is constant as s varies means that II; depends
smoothly on s. Thus, by the self-adjointness of 3,, 0,115 = I1,0; = 0 so

9, = (Id —11,)3, (Id —II,) =
8, = —I1,8,(Id —I1,) 4 (Id —11,)8, (Id —11,) — (Id —T1,)3,I,.

Since (Id —7;) exp(—td?) is uniformly exponentially decreasing this shows
that the contribution from the upper limit in (8.130) vanishes rapidly as
T — oo. Thus (8.125) holds.

8.16. Spectral flow.

To extend Proposition 8.39 to the general case where the dimension of
the null space may change we consider the notion of the spectral flow of a
family of first order elliptic differential operators, including therefore Dirac
operators. The definition of spectral flow applies to general families of self-
adjoint operators and was introduced in this context by Atiyah and Lusztig
see [10;87].

If A; € Diff™(X; F) is a smooth family of self-adjoint elliptic operators
of fixed order, m, on a compact manifold without boundary then the eigen-
values vary continuously in the sense that the sum of the dimensions of the
eigenspaces corresponding to the eigenvalues in any closed interval [a, b] is
constant as long as a and b are not eigenvalues of any element of the family.

EXERCISE 8.40. Prove this constancy using the resolvent family, the fact
that the residues are the self-adjoint projectors on the eigenspaces and
Cauchy’s formula.

So suppose for the sake of definiteness that [0,1] — A, € Diﬁl(X; E)
is such a smooth family of first-order elliptic self-adjoint elliptic operators.
The spectral flow across a real number ¢ i1s intended to measure the net
number of eigenvalues which cross ¢t upwards. Thus we certainly want

(8.131) As —tis invertible V s € [0, 1] = SF(4;,?) = 0.
More generally let us assume that

(8.132) t ¢ spec(Ag) and ¢ ¢ spec(Ay).
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Since the dependence of the eigenvalues on s may be rather complicated, a
slightly indirect definition is needed, based on the expectation of homotopy
invariance. By the discreteness and continuity of the spectrum we can
choose a partition of [0, 1], fixed by endpoints 0 = 55 < 51 < -+ < 55 =1
and associated real numbers ¢; with ¢, = ¢,.1 =1 and such that

(8.133) t; ¢ spec(As) Vs €simy,si], i=1,...,q.
Then set

(8.134) SF(A,,t) = > sgn(tiy1 — t)m(o, s;).

i=0 o€spec(As,; )N[ts,tit1]

Here the convention for sgn» for » € R is that it is —1, 0 or 1 as r is
negative, 0 or positive.

Naturally it needs to be shown that this definition is independent of the
partition used to define it, provided (8.133) holds. Clearly subdividing the
intervals but keeping the values of the ¢; the same does not change (8.134).
Thus in comparing (8.134) for any two partitions it can be assumed that
the intervals are the same. It therefore suffices to consider the case where
just one of the ¢; is changed, but then the independence of choice follows
from the continuity of the eigenvalues as described above.

Next consider the dependence of SF(A;,) on ¢. Clearly if (8.132) holds
then SF(A;,t) is locally constant in the open intervals of R\ (spec(A4q) U
spec(A1)) on which it is defined. On the other hand it follows directly from
the definition that if ¢ and ¢’ both satisfy (8.132) then
(8.135)

SF(Py,t') — SF(Py,t) = sgn(t' — t) > - >
o€spec(A1)N[t,t']  o€spec(Ag)N[t,t’]

That is, on crossing an eigenvalue of either Ay or A; the spectral flow
changes by the difference of the dimensions of the eigenspaces. In general,
when (8.132) is not assumed we set

(8.136)
1
SF(As,t) = 3 (dimnull(4; —¢) — dimnull(Ag — 1))

+ Z Z sgn(ti+1 — ti)m("'a 5i)~

=0 oespec(As, )N(ti,tit1)

EXERCISE 8.41. Interpret this formula in terms of the incidence function
introduced in (6.22) and generalize (8.135) to cover general values of ¢ and
t.
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EXERCISE 8.42. Show that if A, is a closed curve of operators, i.e. Ag =
Ay, then SF(A;) = SF(A;,1) is independent of ¢ and a homotopy invariant
of the curve.

ProposITION 8.43. If g, is, for s € [0, 1], a smooth family of metrics on
a compact odd-dimensional spin manifold without boundary then for the
corresponding family of Dirac operators

n(01) — n(0o) =

1
8.137
( ) dimnull(d1) — dimnull(dg) + /F(s)ds + 2SF(3s,0),
0

where F(s) is the coefficient of t=% in Tr (55 exp(—tﬁ?)) ast ] 0.
To prove this result we need to examine the local term a little:

LEMMA 8.44. Suppose [0,1] — D, € Diff'(X; F) is a family of self-
adjoint elliptic operators on a compact odd-dimensional manifold without
boundary, then a = Fds + Gdr, is a smooth closed 1-form on R x [0, 1] if

(8.138) F(s,r) is the coeff oft™7 in Tr (55 exp(—t(0; + r)z)) ast ] 0
and
(8.139)  G(s,r) is the coeff of t™7 in Tr (exp(—t(ﬁs + r)z)) ast ] 0.

Proo¥F: Consider the derivative of F' with respect to r. The smoothness of
the heat kernel in parameters means that 9F/dr is the coefficient of 17 at
t = 0 in the expansion of

(8.140) —2Tr (ziss(z«ss + 1) exp(—1(3, + r)2)) .

Similarly the derivative of G with respect to s can be computed using
Duhamel’s principle, as in (8.129), and it also reduces to (8.140).
PrROOF OF PROPOSITION 8.43: Consider the somewhat more general for-
mula for an elliptic family depending on s € [a,b] and the modified eta
invariants:
(8.141)

1 (O6) = 1r(0a) =

b
dimnull(3y 4+ r) — dimnull(d, + r) + /F(s, ryds + 2SF(d, + r,0),



8.17. THE CIRCLE 341

where now F' is given by (8.138). This reduces to (8.137) when » = 0. In
fact if (8.141) is proved for a particular family for any one value of r it holds
for all other values of r for that family. This follows from Proposition 8.38,
Lemma 8.44 and the properties already established of the spectral flow.
Moreover (8.141) also follows if it holds for each interval of a partition of
[a,b]. Since there is always such a partition in which @; + r is invertible
on each subinterval, for a fixed r depending on the subinterval, it suffices
to prove it under this assumption. In this case the two null spaces on the
right are trivial, as is the spectral flow, and the formula then follows from
the proof of Proposition 8.39.

EXERCISE 8.45. Using Exercise 8.42 and the fact that the space of met-
rics on any compact manifold without boundary is simply connected (it is
affine) show that the total spectral flow of the family of Dirac operators
corresponding to a closed curve of metrics, on a compact odd-dimensional
spin manifold without boundary, is trivial. See how this arises from the for-
mula (8.137) by using Proposition 8.38 and a generalization of Lemma 8.44
to a general family depending on two parameters.

8.17. The circle.
Using the properties of the modified eta invariant we will evaluate it for

Dy on the circle.

ProOPOSITION 8.46. For Dy = —id/df on the circle the modified eta
invariant is

(8.142)
ne(Da) =2 (V25 = j(s))
. . . s seL
—8) = —J\s), s) = . .

i=3) is), 3(s) {%+max{jEZ;j<s} s € (0,00) \ IN.
ProoF: From Proposition 8.38, 1, (Dy) is smooth except for integral jumps
at the points s € Z. The short-time asymptotics of the heat kernel on S! are
the same as those of the heat kernel on IR, since they are locally determined.
Thus the derivative of 7;(Dg) can be evaluated, using (8.122), from the heat
kernel of D, 4+ s on R. Since Dy e'™ u(x) = '"*(Dy + s)u this kernel is

(x —2)?

1
ex
V2t P 4¢

exp(—t(Dy +5)%) = +i(z —2')s).

Thus away from the integers

(8.143) %US(DG) = %/\/%dﬁ = 2V2.
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This leads to (8.142) once it is shown for one value of s.
The Fourier series representation of the heat kernel of Dy

1 2
exp(—tD3) = o Z e~ exp(ik(0 — 0"),
kel
shows that in ¢ > 0
tr Dy exp(—tDj;) = Zk’ —th?

i

Thus n(Dg) = no(Dy) = 0. This completes the proof of Proposition 8.46.

EXERCISE 8.47. Evaluate the modified eta invariant of Dy directly using
Fourier series to construct the heat kernel of Dy + s on the circle.



Chapter 9. Proof revisited and applications

In this final chapter the various threads examined in the preceding chap-
ters are pulled together to fully justify the proof outlined in the Intro-
duction. Then the original application of the APS to the signature of a
compact manifold with boundary is described. Some other applications
of the description of b-geometry and analysis are made; in particular it is
shown how the eta invariant and the analytic torsion can be defined on
manifolds with exact b-metrics, under appropriate conditions.

9.1. The APS theorem.

The discussion of the APS theorem in the Introduction is limited to the
twisted Dirac operators on exact b-spin manifolds. In fact the theorem
extends readily to the generalized Dirac operators defined in §3.11. In
the boundaryless case, for the Atiyah-Singer theorem, this extension is
emphasized in [20]. Tt is in this more general context that the proof in the
Introduction will be reviewed.

Let X be a compact even-dimensional manifold with boundary, equipped
with an exact b-metric as defined in §2.3. Let £ = ET & E~ be a
graded Hermitian Clifford module on X with a graded unitary Clifford
b-connection; these notions are defined in Chapter 3. Thus F is an Her-
mitian vector bundle over X with a (non-trivial) fibrewise action of the
Clifford algebra of the b-metric such that CIF (X) preserves the spaces EF
while Cl; (X) interchanges them. That the connection is Clifford is the
condition (3.36). Definition 3.7 fixes the generalized Dirac operator

0g € Diffy(X; E)

associated to this geometric data.
The symbol of such a b-differential operator is defined in (2.22) and in
this case

o1 (BE)(€) = cl(¢) Ehom(FE,) VEET X, x € X.

For ¢ # 0 this is an isomorphism (since cl(£)? = |¢|*Id) so O is elliptic. It
is formally self-adjoint and graded

_ (0 Og gt -

see Lemma 3.32.

The b-metric fixes the choice of a trivialization of the normal bundle to
each component of the boundary of X, up to a global R*-action (for each

343
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component the same constant on each fibre), as discussed in §2.3. Thus
the indicial operator of O, given by (4.102) in local coordinates, which is
in general an operator on the compactified normal bundle to d.X, becomes
a well-defined operator on [0, c0) x X on sections of Ejspx. Asin §3.13 set

Ey = EFI;’)X

with the identification denoted My : EFBX — Ey.

Since T*0X C °Tjx X, Clifford multiplication by elements of T*9X is
defined on E}sx. Clifford multiplication by the metrically defined section,
dz/z, of *T}x X is a self-adjoint involution on Erax so

. dx
cla(n) = zcl(?) c(n): By — Ey.

This defines a Clifford module structure on £y for the induced metric on
9X since dz/x is orthogonal to T*9.X, so for n,n" € T;0X

cla ) lo (o) + cla (') cla(n) = — () el el 2 )
(el (el = 20n, ).

The induced connection on Fy is a Clifford connection for this action
(since dx/x is covariant constant); let 0y g be the induced generalized Dirac
operator on the boundary, acting on Ey. Let M_: E[_(’)X — FEy be defined

by M_ = M, - cl(id%) and consider the unitary isomorphism

d
(9.1) M™': Ey& Eg 3 (u,v) — Mj ut M-'o = u— icl(f)v € Fiox.

Then

Micl(df)f(st)M—l - (é _01) xa% + 8 mld.

Correspondingly the indicial family of the Dirac operator satisfies

607E + A 0 )

., dx _

which is just (In.23).
Since Jg g is self-adjoint the only singular points for the inverse of the
indicial family are pure imaginary:

spec,(Or) = {(xis,0);s € spec(Do r)} .
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In particular Theorem 5.40, or rather its extension to operators on bundles,
shows that

(9.2) Op: @ HN(X; B) — * H"" (X B)

is Fredholm if and only if s ¢ +spec(Jp,g). For the partial Dirac operators
it follows similarly that

9.3) oL o M (X; BY) — 2" HY(X; EF)
. is Fredholm iff s ¢ Fspec(Jo,g)
for the respective signs. When it is Fredholm the inﬁgx of the operator
0% in (9.3) is denoted ind; (). The index function ind, (), defined by
(In.30), extends this to all s € .
Consider next the curvature of E. It is shown in (8.105) that the curvature
operator decomposes:

1
Kp = 7cl(R)® K,

where K is a 2-form on X with values in the homomorphisms of E com-
muting with the Clifford action. Correspondingly the Atiyah-Singer inte-
grand becomes:

1 1 R/2
4 AS = —— Evgim det? (=
(94) 5 )E Velim X ( © (smh

(2mi W) -str’ eXp(K}s)) :

Thus AS is a smooth b-form of maximal degree on X. The eta invariant of
Oo,p is discussed in §8.13.

With these preliminaries the Atiyah-Patodi-Singer index theorem can
now be stated in this more general context:

THEOREM 9.1. (APS) If 8}, is the Dirac operator on a compact mani-
fold with boundary with exact b-metric fixed by a graded unitary Clifford
module, E| with graded Hermitian Clifford b-connection then

9.5) ind(o%) = IJ/AS—%n(st,E),

X

where AS is given by (9.4), the regularized integral (with respect to the
metric trivialization of the normal bundle) of a b-form is defined in (4.138)

and 1(0o g) is defined in §8.13.
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ProoF: We shall give two slightly different forms of the proof. In the first
we extend (9.5) to

~ v
(9.6) ind, (3%) = /AS(S) - %775(50719) VseR,
X

where igas(ﬁg) is defined above, 1,(0y ) is defined in §8.13 (as a regu-
larized integral) and the generalized Atiyah-Singer integrand is fixed by
(In.31). For the proof that (In.31) is meaningful see Chapter 7.

The dependence of 1}1?18(6;) on the parameter is discussed §6.2, see The-
orem 6.5. Similarly the dependence of #,(0y g) on the parameter is con-
sidered in §8.13, see in particular Proposition 8.38. These two results show
that the sum inds(ﬁg) + %775(507;;), is independent of s. Thus it suffices
to prove (9.5) for the dense set of values of s for which 5;'52 is Fredholm in
(9.2).

Now we proceed to follow the proof outlined in the Introduction, start-
ing with §4. The properties of the heat kernels for 5;35}5 and 5;5;3 are
discussed in Chapter 7. In particular Theorem 7.29 applies to both op-
erators, so (In.18) and (In.23) follow. The identity (In.15) is discussed in
Proposition 7.30. The b-trace is defined and analyzed in §4.20, with (In.22)
shown in Proposition 5.9. This justifies the identity (In.24) and hence also
(In.25) and (In.26). Note that the limit as ¢ | 0 in (In.27) is regularized.
This completes the proof of the formula (9.6) for these generalized Dirac
operators.

In the particular case s = 0 the Atiyah-Singer integrand reduces to (9.4)
and the integral in ¢ defining the eta invariant converges absolutely. This
completes the first proof of (9.5), and hence of the theorem. In particular
(In.6) holds for twisted Dirac operators.

Alternatively (9.5) can be proved directly by the same formalism. Of
course 1f s = 0 happens to be a Fredholm value then the discussion above
leads directly to (9.5). If it is not Fredholm then the proof in the Introduc-
tion can still be used, except that (In.10) is not valid, since the spectrum
of 0% is not discrete near 0. However this limit is examined in §7.8, see

(7.118). This shows that (In.10) is replaced by

tlim b-Tr, exp(—t350}) = %hl%l [null(ﬁg, —¢) + null(5, e)]
— 00 €

(9.7) 1
lim b-Tr, exp(—t050%) = 3 lim [null(ﬁg, —e€) + null(d5, e)] ,

t—co el0

where the null(ﬁfj, r) are the null spaces on the weighted Sobolev spaces
2" HE°(X; E*). The definition of indy then means that (In.11) is replaced
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by
(9.8) Jlim Trlexp(~t050%) — exp(~t0305)] = indo (3}).

With this modification the proof proceeds as in the Fredholm case.

The advantage of this second, direct, proof in the non-Fredholm case is
that it extends more readily; the disadvantage is that a more detailed study
of the resolvent and spectral measure is required.

Notice that if the original connection on the Clifford bundle is a true
connection, rather than just a b-connection, then the form AS is a C* form
in the usual sense and (9.5) becomes a true, unregularized integral. The
A part comes from the curvature of the exact b-metric, so i1t 1s always a
smooth form by Proposition 2.39.

Using the variation formula for the eta invariant proved in §8.15 the
general APS formula (9.6) can be cast in the more explicit form:

— 14 ~
(9.9) inds(ﬁg) = /AS —%7](507;;) — N(@o,e,5) VseR,
X

where the counting function, N(ﬁoyE, s), is defined in (In.35).

9.2. Euler characteristic.

One of the main direct achievements, and indeed motivations, of the
papers [8] - [10] was the application of the index theorem to give an analytic
formula for the signature (and twisted generalizations of it) of a compact
Riemann manifold with boundary. This is discussed in the next section.
The signature formula is closely related to the Gauss-Bonnet formula for
the Euler characteristic of the manifold. As noted in [8] the Gauss-Bonnet
formula can, and indeed will, be proved in this way, even though it is in
reality much more elementary (see for example [27]) since the global ‘eta’
term vanishes.

For any finite dimensional complex

0-Lyo Lyt 4y yr L 2=
the Euler characteristic is
P
x(V,d) = Z ] dim V7.
7=0

The cohomology spaces of the complex are H* = {u € V*:du = 0}/{dv;v €
VF=1} and

x(V,d) =Y (=1) dim HY.

-

Y
I
=)
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This applies in particular to the cohomology arising from a simplicial de-
composition of the manifold. Thus, by the de Rham theorem, for a compact
manifold without boundary the Euler characteristic 1s

Y(X) = Z(_w dim H7 (X).

The operator d + 4, of which the Laplacian is the square, changes the
parity of differential forms so defines

(9.10) D: C(X; A™™) — € (X; A%, Du = (d + d)u.
This differential operator is elliptic, has null space H7(X) and its adjoint,
D*: C%(X; A%y — ¢ (X; A, D*¢ = (d+3)¢
has null space H&34(X), so
ind(D) = dim H3™(X) — dim HZY(X) = x(X).
The Atiyah-Singer index theorem asserts that this index is given by inte-

gration of a local differential expression over the manifold, and the resulting
formula is the (generalized) Gauss-Bonnet formula of Chern. Namely

(9.11) ind(D) = x(X) = /e,

where e is the Euler density of the Riemann manifold:
(9.12) e(x) = Pf(Ry).

To prove (9.11) and (9.12) observe that A*(X) = A°®(X)@ A°44(X) isa
graded Hermitian Clifford module where the involution is given by (2.90).
The bundle is Hermitian and the Levi-Civita connection is certainly graded,
unitary and Clifford for the Clifford action given by (3.18). The associated
Dirac operator is defined by (3.39):

Ogp = d+94.

Indeed this follows from the formula (2.63) for d and the corresponding
formula for 4. Thus Theorem 9.1 applies, with 9X = §.
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The Gauss-Bonnet formula, (9.11) and (9.12), on a compact manifold
without boundary will be deduced from the corresponding result for a man-
ifold with boundary. For the moment note that

x(M) = 0if M is odd-dimensional.
This is a direct consequence of Poincaré duality which shows that
dim H*(M) = dim H"%(M), n = dim M.

Passing to the case where M has boundary there are two ‘obvious’ co-
homology theories for which the Euler characteristic can be computed,
namely the absolute and relative cohomologies of the manifold. These lead
to the same Euler characteristic in even dimensions, although not for odd
dimensions. In fact the index function for the operator D in (9.10) has the
expected behaviour of the Euler characteristic.

LEMMA 9.2, If X is a compact manifold with an exact b-metric then
OagB € Diﬂg(X; bpevn bAeddy g elliptic with indg(Jgp) = 0 if dim X is odd
and if dim X is even

indy(Ogp) = / Pf(R)

X
(913) dim X dim X
= > (W dimH (X) = Y (=1) dim B, (X).
j=0 7=0

ProoF: The discussion above of the formal properties of gp on a compact
manifold without boundary carries over to the case of an exact b-metric on
a compact manifold with boundary. Thus the b-form bundle is a graded
Hermitian Clifford module and has a true connection which is unitary and
Clifford. Thus Theorem 9.1 does indeed apply.

Consider the decomposition of ?A°"™ over the boundary of X. Using the
metric b-conormal dz/xz, it splits as an orthogonal direct sum:

d
PASE(X) = AR (0X) & A°M(9X) A f

The map (9.1) becomes:
M: (Am0X @AOddﬁX)z 3 ((a, B), (o, ) —>

(9.14) y y
oz—i—ﬁ/\—x—i—io//\—x—iﬁ/.
x x
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This gives
clo(n)M ((a, 8), (e, "))

Nl
(9.15) = —icl(n)f +icl(n)a’ A df +cl(m)a +cl(n)8 A i—x,
where on the right cl(n) is the standard Clifford action on the boundary.
Applying the inverse of (9.14) to (9.15) and inserting the result in (9.1)
shows that the Clifford module on the boundary is just A*(9X) and the
induced Clifford multiplication of T*9X on it is just the standard one
(meaning (3.18)) for a manifold without boundary.

In particular the boundary operator of dgp is just d + § for the induced
metric on the boundary, but acting on all forms. On the boundary d + 4
interchanges even and odd forms and hence is off-diagonal with respect to
the decomposition

A*(0X) = AT (0X) @ A°I(9X).

Since (d + 6)? = A is diagonal for this decomposition it follows that the
integrand, even at the level of the pointwise trace, of the eta invariant with
parameter s = 0 vanishes identically. Thus n(d + ) = 0.

To prove (9.13) it only remains to evaluate the Atiyah-Singer integrand
in this case. This follows directly from Theorem 8.34 once the induced
supertrace and curvature are examined. Clifford multiplication, (3.18), on
A*(X) can be modified into a right Clifford action. Thus consider

(9.16) clr(€) = [ext(&) —int(€)|Ra: AV — A™V

with the involution given by (2.90). This is easily seen to extend to an
action of the Clifford algebra since

cle(@) cle(n) +clr(n)clr(é) =0if np L &
clr(€)? = 2/¢%

Moreover the action (9.16) commutes with the action (3.18).
Thus for the exterior algebra the decomposition (3.35) becomes

(9.17) hom(A*) = C1(X) ® C1(X), dimX even

with the right factor acting through (9.16). The decomposition for the cur-
vature of a tensor product therefore applies and the curvature of hom(A*)
decomposes according to (8.105) as

K- (VW) = T el(R(V, W) + § clr(R(V, 7).
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Consider the product of left and right Clifford multiplication by the vol-
ume form. A simple computation shows that

cd(gh) - -cl(gV) -clr(pt) - -clr (o) = Ra.

That 1s, the involution induced on the Clifford bundle is just the usual one.
Thus in (8.103) the induced supertrace is just the supertrace on the Clifford
bundle to which Lemma 8.18 applies, so

str/(exp(% clr(R))) = Pf(R/4),

where by definition the Pfaffian is just the term homogeneous of degree
%dimX in the exponential. Finally then (9.12) follows from (9.4) since the
second factor is already of maximal form degree, so the constant term is
the only contribution of the ﬁ—genus in this case.

9.3. Signature formula.

Now the signature formula of [8] can be discussed. This generalizes Hirze-
bruch’s formula in the case of a compact manifold without boundary, which
is described briefly first.

Let X be a compact Riemann manifold (for the moment without bound-
ary) which is oriented and of even dimension, 2k. The Hodge cohomology
in the middle dimension has on 1t a bilinear form:

(9.18) Hito(X) x Hiro(X) 3 (6,%) — B(é,¥) = ¢ A/,

where v 1s the oriented volume class of the manifold, v = x1. In case k is
odd this is an antisymmetric bilinear form, if & is even it 1s symmetric. The
signature of the manifold, sign(X), is the signature of this bilinear form, by
definition zero if k is odd and otherwise the difference of the dimensions of
the maximal subspaces on which it is positive and negative. The involution
7 = ?=D+ky on p-forms, introduced in §2.12, restricts to A¥(X) to be »
if k is even. Thus (9.18) becomes

B(¢,¢) = (¢, 7¢), dim X =4Il € Ny

with 7 symmetric and 72 = Id . Thus the signature of X is just the signature
of 7 on the middle dimensional cohomology when X = 4/ and B is non-
degenerate in this case.

In general 7 gives the exterior algebra A*X a Zs-grading and Clifford
multiplication on A* X is graded in this sense, i.e.

cl(€)r = —rcl(§).
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Furthermore 7 is, as a tensor, covariant constant, and since d + J is the
Dirac operator for this Clifford connection it also anticommutes with 7.
Let FL C A*X be the subbundles spanned by the eigenspaces of 7 with
eigenvalues 1. The signature operator of X is the positive Dirac operator
for the Zs-grading and the Levi-Civita connection:

of € Diff' (X; B E).

sign
Hirzebruch’s theorem is:

ProprosITION 9.3. The signature of an oriented 4l-dimensional compact
manifold without boundary is equal to the index of the signature operator
and given by the formula

sign(X) = ind(ﬁggn) = /EV41 L(X),
X

where L(X) is Hirzebruch’s L-polynomial in the Pontrjagin forms of X; it
is given explicitly in terms of the Riemann curvature by (2.107).

The extension to compact manifolds with exact b-metrics is now quite
straightforward and Proposition 9.3 will be deduced as a special case of
it. The discussion above applies to the case of an exact b-metric to show
that the bilinear form (9.18) gives, in case dim X = 4/, a non-degenerate
symmetric bilinear form

Hio(X) x Hi'uo(X) 3 (6, ¥) — B(o, ¥) = (¢, 7).

The symmetry follows from the fact that = = % on 2i-forms and the non-
degeneracy from the invertibilty of 7. The signature of the manifold is then
the signature of this symmetric bilinear form.

Let B be the operator on even forms on 90X given by

Beyn = (—1)"F (dx — x d) on A*F(9X).

The eta invariant 7(Beyn) is defined in §8.13. The signature theorem of
Atiyah, Patodi and Singer is:

THEOREM 9.4. The signature of an oriented 4l-dimensional compact man-
ifold with boundary is

(9.19) sign(X) = indo(08,,) = [ La(X) ~0(Bon),

where Ly is given explicitly in terms of the Riemann curvature by (2.107).
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ProoF: From the discussion above, the APS theorem does apply to the
signature operator of any exact b-metric. In particular (9.5) gives the for-
mula for the index function. To prove (9.19) it remains to show that the
first equality holds, to show that the Atiyah-Singer integrand in (9.5) re-
duces to the first term on the right in (9.19) and to relate the boundary
operator of the signature operator to d + é on the boundary.

First consider the Atiyah-Singer integrand. As already noted the part
of the curvature operator on A*(X) which commutes with the left Clifford
action is given in terms of right Clifford action and any orthonormal frame

by

(920) [(sign = % Z RZ] Clr(¢l) Ch’(¢)‘7)

ij

In this case the involution Rgign acts trivially on the right factor in (9.17),
SO

str’(A) = tr(A), A € homg(A*(X)).

Of course the curvature takes values in the 2-forms but, as in the discussion
of Mehler’s formula, it suffices to consider the case of an antisymmetric real
matrix in (9.20).

In fact for any such matrix S;;

(9.21) tr exp(z Sij clr(¢?) clr(qu)) = 4 det? (cosh(?S)).

ij

On the left the operator acts on A*(R?*) and on the right S is simply
a matrix, i.e. acts on R?*. Since S is real and antisymmetric it has two-
dimensional invariant subspaces; the sums of eigenspaces with eigenvalue
it and —zt, which are orthogonal. Thus by an orthogonal transformation
of R?* the matrix S can be reduced to 2 x 2 block-diagonal form. Both
sides of (9.21) are invariant under such a transformation. Thus it can be
assumed that the invariant subspaces are spanned by ¢?*~! and ¢% for
p=1,..., k. Consider the decomposition of A*(IR?*) arising from splitting
off the first eigenspace R?* = R? @ R? =2 Then

A*(Rzk) = (A*(]Rzk—z))‘l

(9.22) . ) . )
u=u+¢ Aus+¢" Aug+ ¢ Ao~ Aug.

The first 2 x 2 block 1s of the form

(5 0)
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corresponding to the eigenvalues it of S. Moreover

Z Sijclr(¢ elr (b]))

ij=1
2k—2
= t(clr(qbl) clr(¢?) — clr(¢?) clr(¢ Z Sijclr(¢ clr(qb]))
ij=1

The two terms on the right commute, so the exponential becomes

(9.23)

exp Z Sijclr(¢ 'y elr( (b]))

ij=1
2k -2
= exp [t (clr((bl) clr(¢?) — clr(¢?) clr(¢ exp Z Sijclr(¢ clr(qb]))
ij=1

The second factor here preserves each of the four spaces in (9.22). Moreover
clr(¢!) clr(¢?) — clr(¢?) clr(¢?) is off-diagonal and has square —41d, so the
diagonal part of the first exponential on each of the four components on
the right in (9.23) is 1 — 4¢2/2! 4+ 16t*/4! - - = cos(2t) Id . The trace of the

composite is therefore

2k—2

4 cos(2t) trexp Z Sij Clr((lsi)df(ﬁbj))

ij=1

Proceeding inductively it follows that

2%k k
(9.24) trexp Z Sij clr(¢?) clr(qu)) = 4 H cos(t;)
ij=1 j=1

where +it; are the eigenvalues of S. Since the eigenvalues of cosh(25) are
cosh(£2it) = cos(2t;) with multiplicity 2 it follows that the right side of

(9.24) reduces to A+ det? cosh(2S) and this proves (9.21).
Applying (9.21) to the integrand in (9.4) gives

str' exp(Kggp) = 4kdet%(cosh(R/2)).

Combining this with the formula for the ﬁ—genus shows that the integrand
(9.4) becomes in this case

R/4mi
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which 1s the L-genus of Hirzebruch. This identifies the first term on the
right in (9.19).

Next consider the index of the signature operator. If the null space of
5;@ on z°H;°(X; A*), i.e. the part of the null space of d + ¢ which is in
the +1 eigenspace of 7, is denoted nullﬁ(ﬁggn
then by definition

) and similarly for nullﬁ(ﬁ;gn)

—~ 1. . _
(9.25) 1nd0(5;gn) = §[d1mnullﬁ(5:§gn) — dlmnull_ﬁ(ﬁsign)
+ dim null_ﬁ(ﬁggn) — dim nullﬁ(ﬁ;gn)]

for any ¢ > 0 small enough. The space nullﬁ(ﬁsign) is the image of the
relative in the absolute cohomology (see Proposition 6.14). The involution
7 maps this space into itself and as in the boundaryless case discussed above
it follows that

sign(X) = dim nullﬁ(ﬁggn) — dimnull¢ (T,

Thus the first inequality in (9.19) follows from (9.25) provided
(9.26)

dim null_ﬁ(ﬁggn) — dim nullﬁ(ﬁggn) = dim null_ﬁ(ﬁ;gn) — dim nullﬁ(ﬁ;gn).

To see this, recall Proposition 6.16, and in particular (6.60). Now

_ + -
null_.(d+4) = null_ﬁ(ﬁsign) &) null_ﬁ(ﬁsign)
_ + -
nulle(d 4+ 6) = nullﬁ(ﬁsign) &) nullﬁ(ﬁsign)

and the quotient of these two spaces is identified by BD with a subspace of
(9.27) Hip (0X) & Hi (0X).

Namely the subspace of those (u,v) such that there exists some element
w € null_¢(Fgign) with

we~ U+ & Av

x

at 0X (see (6.56)). Thus 7 induces an involution, 7/, on the image. It is
just
(9.28) 7 (u,v) = i(TRv, T Ru),
as a short calculation shows. Since, from Proposition 6.16, the subspace of

(9.27) splits it follows from (9.28) that the +1 eigenspaces of 7/ acting on
it have equal dimension, i.e. (9.26) holds.
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Finally it remains to identify the n-invariant term in (9.5). Consider
the generalized Dirac operator on the boundary induced by the signature
operator 5;@. This is just the boundary operator of 5;@ composed with
Clifford multiplication by idz /2. The boundary operator of d + J can be
computed from (6.49) and the normalizing factors My show that the #-
invariant of the induced generalized Dirac operator is just twice that of
d + ¢ on the boundary. This completes the proof of Theorem 9.4.

9.4. Flat coefficient bundles.

One furhter generalization of the signature theorem, of considerable ge-
ometric interest, arises from the introduction of a flat coefficient bundle.
This makes essentially no difference to the analytic structure of the prob-
lem. Over a manifold a connection on a vector bundle is said to be flat if its
curvature operator vanishes identically. The analogy with the Riemannian
case, in Theorem 2.16, easily leads to the conclusion that near every point a
flat bundle has a trivialization in which the connection becomes the trivial
connection.

LEMMA 9.5. If F is an Hermitian bundle with flat unitary connection
over X then each point p € X has a neighbourhood U (p) over which F has
a trivialization

E[U(p) — T x U(p),
(9.29) e € CT(U(p); E) — (e1,. .., er) €CT(U(p))
f— vve — (V@l, .. .,V@r).

EXERCISE 9.6. To prove this lemma it suffices to introduce local coordi-
nates in which p is the origin and take a local frame of £ which is covariant
constant with respect to the radial vector field R. Such a local frame is
fixed by its value at p. Since the connection is unitary it is orthonormal
near p if it is orthonormal at p. The linear vector fields commute with R,
so the frame is covariant constant with respect to these vector fields too.
Near (but not at) p the coordinate vector fields are in the span of the linear
ones, so the frame is covariant constant and hence (9.29) holds.

Let x¢, be a continuous one-parameter family of curves, i.e. a continuous
map [0, 1] %[0, 1]; — x:(s) € X with x¢(0) = p and x¢(1) = ¢ independent
of t. The flatness of the bundle means that transporting a basis from p along
Xt to its endpoint, ¢, gives a result which 1s independent of ¢. If p = ¢, so
the curves are closed, this gives a map

(9.30) m1(X) — hom(E,),

where m1(X) is the (pointed) fundamental group of X, the group of ho-
motopy classes of closed curves in X with endpoint p. Clearly (9.30) is a
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representation of m1(X). If F is Hermitian, with unitary connection, then
the representation is unitary. If two bundles with flat connections are
identified when they are isomorphic with a flat isomorphism (i.e. one that
intertwines the connections) then the representation (9.30) is fixed up to
(unitary) equivalence. Conversely any unitary representation of the funda-
mental group generates an Hermitian bundle with flat unitary connection.
In the case of a manifold with boundary the same results hold, provided
the connections are required to be true connections. The fundamental
group of the boundary maps into the fundamental group of the manifold

(931) 71'1(8)() ‘—)7T1(X)

if the base point is chosen on the boundary. Notice that (9.31) need not be
injective. The restriction of a flat bundle to the boundary corresponds to
the pull-back of the (unitary) representation under (9.31).

If £ 1s a flat bundle then the exterior differential can be defined on
A*(X)® E by reference to any locally covariant constant frame. This leads
to twisted versions of both the de Rham and the signature complexes. In
particular there is a well-defined twisted Laplacian on A*(X) ® E if F is
flat. The representation corresponding to E is said to be acyclic if this
Laplacian is invertible, i.e. has no null space.

EXERCISE 9.7. Show that on a compact manifold with boundary the
Laplacian associated to an exact b-metric twisted by a flat coefficient bundle
is Fredholm as a map from HZ(X; A* @ F) to L*(X; A* @ F) if and only if
the induced representation on the boundary is acyclic.

EXERCISE 9.8. State and prove the twisted signature theorem for a com-
pact manifold with boundary (see [9]).

EXERCISE 9.9. Recall that a connection on a bundle E over compact
manifold with boundary induces a b-connection on the weighted bundle #* E/
defined in Lemma 8.6. Show that any bundle, over a compact manifold with
boundary, with a flat b-connection (one for which the curvature operator
vanishes) is locally isomorphic, with its connection, near each boundary
point to z%C" for some multiweight a with its b-connection. Extend the
signature theorem to this case.

9.5. Zeta function.

As an indication of the degree to which most of the usual notions from
compact Riemann manifolds can be extended to exact b-metrics the zeta
function of a non-negative Fredholm elliptic self-adjoint b-differential oper-
ator with symbol given by such a metric will be defined. This will be used
in the next section to discuss the Ray-Singer analytic torsion associated to
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any unitary representation of the fundamental group of such a manifold.
Although no major results are proved here the existence of these invariants
suggests a variety of interesting questions.

First consider the b-zeta function, which was introduced by Piazza [74].
We shall only consider the ‘geometric case’ of a non-negative second order
differential operator with diagonal principal symbol acting on sections of
some vector bundle (in [74], Piazza considers the b-zeta function for b-
pseudodifferential operators). If §X = @) then the spectrum of P is discrete
and of finite multiplicity. For Re s >> 0 the zeta function is usually defined
by

(9.32) ((Ps)= > A7,

{7:x;#0}

where the A; are the eigenvalues of P repeated according to their (finite)
multiplicity. The convergence of the series in (9.32), for Res > %dimX,
follows from the asymptotic properties of the eigenvalues, see for example
[47].

Since the heat kernel for P € Diﬁg(X; E) has already been extensively
discussed it 1s convenient to express the zeta function in these terms, avoid-
ing such convergence questions

EXERCISE 9.10. Deduce a bound on the growth rate of the eigenvalues,
from the properties of the heat kernel already established, which is good
enough to demonstrate the convergence of (9.32) in Res > %dim X.

If IT, is the orthogonal projection onto the eigenspace associated to A €
spec(P) then the heat kernel can be written

exp(—tP) =1y + Z e "M,
0#AEspec(P)

Thus all terms, except the first, are exponentially decreasing. Since the
trace of I, is the dimension of the associate eigenspace, at least formally,

(9.33) C(P,s) = F(ls) /ts Trexp(—tP)

dt
.

Here T'(s) is the gamma function

Tt
I'(s) = /tse_tT
0
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and P is P with its null space removed, i.e. (9.33) should really be

(9.34) C(P,s) = ! /ts Tr [exp(—t P)TT7 ] %, My =1d —IT,.
0

I'(s)

In this form the properties of the zeta function can be analyzed directly
(following, at least in general terms, the ideas of Seeley [82]).

LEmMMmA 9.11. If P € Diff*(X; E) is an elliptic, non-negative, self-adjoint
operator with diagonal principal symbol on a compact manifold X, with
0X = 0, the zeta function, defined by (9.34), is meromorphic as a function
of s € C with only simple poles at the points %dimX, o1 ifdim X is

even and at %dimX, . ..,% and —% — Ny if dim X is odd.

Proor: This follows from the properties of the trace of the heat kernel.
In particular Lemma 7.18 shows that the integral

T dt
t* Tr exp(—tﬂ)T

0

extends to a meromorphic function of s, with poles only at the points
s = %n — J, since exp(—tP) € \I!;I?evn (X; E). The inverse of the Gamma
function, 1/T'(s), has zeros at s € —INg. So in case n is even the zeta function
itself only has poles at s = %n, %n —1,...,1. On the other hand if n is odd
there 1s no such cancellation.

The value of the zeta function at s = 0 is of rather special interest since,
as can be seen from (9.33), {(rP,s) = r~*¢(P,s), so ((rP,0) = ((P,0) for
any constant r > 0. In fact the simple pole of the gamma function at 0
means that

ap —dimnull(P) dim X even

9.35 P0)= . .
( ) ¢(P,0) { — dimnull(P) dim X odd,
where ag is the coefficient of ¢° in the expansion of Trexp(—tP) as ¢ | 0
(which vanishes in case dim X is odd).

Formally the derivative of (9.32), with respect to s, evaluated at s = 0 is

the (non-convergent) sum — log A;. This makes it reasonable to define
A;#£0
the determinant of the operator P by

det(P) = exp (=('(P,0))
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which makes sense by Lemma 9.11. Again one can easily see that under
multiplication by a positive constant the determinant is transformed to

(9.36) det(rP) = r¢(P0) det(P).

Of course this is not the usual transformation law for a determinant, but
shows that the dimension of the space has been ‘renormalized’ to ((P,0).

Now consider how these elementary considerations can be extended to the
case of a compact manifold with boundary. Suppose that P € Diﬁg(X; E)
is elliptic, self-adjoint, non-negative, has diagonal principal symbol corre-
sponding to an exact b-metric and indicial family of the form:

(9.37) L(P,A) = A* + Ps.

Chapter 7 gives a rather complete description of the heat kernel of P. Of
course it is not trace class but the trace functional in (9.33) can be replaced
by the b-trace functional, with respect to the trivialization of the normal
bundle to the boundary given by the exact b-metric. Adding to (9.37) the
condition

(9.38) P is invertible
means that the spectrum of P is discrete near 0 with finite multiplicity

and that b-Tr,(exp(—tP)) = dimnull(P) + e(t) with e() exponentially
decreasing as t — oco. The direct extension of (9.33):

17 d1
b(P,s) = ) /ts b-Tr, exp(—tﬂ)T
0

therefore behaves essentially as before:

LeMMA 9.12. IfP € Diﬂg(X; E) is elliptic, self-adjoint, non-negative, has
diagonal principal symbol corresponding to an exact b-metric on a compact
manifold with boundary and has indicial family of the form (9.37) satisfying
(9.38) holds then the conclusions of Lemma 9.11, (9.35) and (9.36) apply
to °¢(P, s).

Ignoring the proof for the moment, consider what happens if (9.38) does
not hold. One then has to be a little more careful in defining the b-zeta
function since the operator P has continuous spectrum down to 0. There
is another way of looking at the removal of the zero eigenvalue in (9.33)
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which leads directly to a suitable extension. Namely, choosing any D > 0,
two ‘half zeta functions’ can be defined by

D
1 dt 1
(9.39) °C(Ps) = /ts b-Tr, exp(—tP)—, Res > 3 dim X
0

T (s) n
1T dt
b _ 5. Y= ind
(9.40) Coo(Pys) = ) /t b-Tr, exp(—tP) ) Res < 0.
D

As already noted, in case (9.38) holds (or X = §}), the trace of the heat
kernel is, near t = oo, the sum of a constant (equal to the dimension of
the null space) plus an exponentially decreasing term. Thus not only do
(9.39) and (9.40) make sense but the resulting functions both extend to be
meromorphic in s € C and

(9.41) P(P,s) = PCo(P,s) + (o (P ).

To see this simply note that if P is replaced by P in (9.40) the resulting func-
tion, °Coo (P, 5), is entire. Thus (P, s) = °C(P, s) = °¢o(P, 5) + °Co (P, 5).
Moreover °Co. (P, 5) = °Coo (P, 5) — ND*/sT'(s), where N = dimnull(P),
and similarly °Co(P, s) = %(o(P,s) + ND*/sT(s) giving (9.41). With this
in mind consider (9.39) and (9.40) in the general case.

ProposiTiON 9.13. If P € Diﬂg(X; E) is elliptic, self-adjoint, non-
negative, has diagonal principal symbol corresponding to an exact b-metric
on a compact manifold with boundary and satisfies (9.37) then °C.. (P, s)
extends from Re s < 0, where the integral in (9.40) converges absolutely, to
a meromorphic function of s with poles only at %N and °(y(P, s) extends

from Res > %dimX to be meromorphic with poles as in Lemma 9.11. If
the b-zeta function of P is defined by (9.41) then

ag — (N, + N. dim X even
(942) bC(P, 0) — { 01 2( 1 2) .
—5(N1 + N2) dim X odd,

where Ny is the dimension of the null space of P on H{°(X; E) and N; is
the dimension of the null space on C*(X; E) + L}(X; E).

Proor: The meromorphy of bCO(P, s) proceeds exactly as in the proof
of Lemma 9.11 since the behaviour of A(t) = b-Tr,exp(—tP) ast | 0
is essentially the same as in the boundaryless case. On the other hand
Proposition 7.37 describes the behaviour of h(t) as ¢ — co. Thus h(¢) has
a complete asymptotic expansion in powers of t=%. Since 1/T(s) vanishes
at s = 0 the pole there is removed, but otherwise °C., (P, s) can have poles
at %N as stated. This proves the proposition, since (9.42) just arises from

(7.118).
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9.6. Analytic torsion.

From (9.36) the determinant is most interesting in case {(P,0) = 0. One
case in which this occurs, at least in the simplest setting, is in the definition
of the analytic torsion of Ray and Singer. If A; is the Laplacian acting on
j-forms on a compact manifold (initially without boundary) consider the
superposition of zeta functions:

dim X

(A s)= D (=1)75¢(4;,9).

7=0

In fact it is worthwhile, following [78] and §9.4, to generalize slightly and
to look at twisted versions of the Laplacian, as in §9.4.

DEeFINITION 9.14.  For any unitary representation of the fundamental
group of a compact manifold with boundary and exact b-metric the analytic
torsion is

T(gap) = _bcg'(gap’ 0)
EXERCISE 9.15. Extend the results of [78] to exact b-metrics.

9.7. The b-eta invariant.

In the same spirit as the discussion of the analytic torsion, the definition
of the eta invariant of the Dirac operator can be extended to the case of a
graded Clifford module for an exact b-metric. This b-eta invariant appears
in the generalization of the Atiyah-Patodi-Singer index theorem to exact
b-metrics on manifolds with corners.

In case X = @ the eta invariant, defined by (In.28), can be obtained as
the value at s = 0 of the eta function:

oQ

1 , 2\ dt
_ s+3 —t3
n(ﬁ’s)_iF(s+%)o/t Tr(Ese )—t.

Since the null space is annihilated by the factor of @, the integral is abso-
lutely convergent near ¢ = oo; the convergence near { = 0 is discussed in
Chapter 8. The latter discussion extends directly to the case of an exact
b-metric, as does the former if (9.38) is assumed for the Dirac operator and
the definition is taken to be:

dt

b _ 1 /00 s+3q —t8*2 b _b
(043) *n(0,5) = £ 5/ b-Tr, (56 ) =, "n(@) = "n(8,0).
0

Even without the assumption that I,,(9,0) is invertible the same formula
can be used.
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ProrosiTiON 9.16. If X is an odd-dimensional exact b-spin manifold
then the integral in (9.43) converges absolutely for —% < Res < % and

7
extends to a meromorphic function of s € C.

ProoF: The convergence near { = 0 follows from the discussion in §8.13.
Similarly Proposition 7.37 can be generalized to show that

(9.44) e(t) = b-Tr, (6e—t52) ~ Z bjt_l_%j as t — 0o.

7=0

To see this we start from (7.119), which gives the long-time component of
the heat kernel and apply 0 :

(9.45) e(t) = % /b—Trl, el (5G’(T))d7’.

The analytic extension of G'(7) in the variable z, 7 = z?  has a double pole
at z = 0, as discussed in Proposition 6.28. Since the leading term is the null
space of P = 0% on L?, this is annihilated by . Similarly the residue has
range in the null space of 3% on C*°(X; F) + L?(X; E) and this is just the
null space of 0 on 2~ “H{°(X; E), for € > 0 small, by the properties of the
boundary pairing. Thus the analytic continuation of 3G’(r) has no pole at
z = 0. Following through the proof of Proposition 7.37, the leading terms,
as t — 0o, arising from both H} and H}(¢) vanish. Taking into account the
parity of the terms, it follows that the leading term in e(t) is of order =1,
i.e. (9.44) holds. This completes the proof of the proposition.

In particular if Tr is replaced by b-Tr, then the formula (In.28) defines
the b-eta invariant. The transition, by ‘analytic surgery,” from the eta
invariant on a compact manifold without boundary to the b-eta invariant
is discussed in [57].
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freezing, 129
cohomology

de Rham, 220
cohomology

L?, 224

refined L2, 231
cohomology class, 63
collar neighbourhood, 4
commutator, 143

b-trace of, 8

trace functional on, 6
compactification, 126
completeness

asymptotic, 121
complex powers

conjugation by, 8, 152
complex scaling, 282
composition, 122
connection, 37

affine, 45

induced on boundary, 59
connection Laplacian, 317
conormal bounds, 180
conormal distributions, 108
construction

symbolic, 123
continuous operator, 262
contraction, 71
convention, 215

Clifford action, 76

conormal order, 126
convergence

exponential, 5

weak, 124
cotangent bundle, 27
covariant constancy, 38
covariant constant, 44
covariant derivative, 44
curvature operator, 49

D

d’Alembertian, 67
de Rham cohomology, 220

SUBJECT INDEX

L2, 221
absolute, 222
conormal, 222
relative, 222, 223
de Rham complex, 32
de Rham theorem, 220
defect, 7
densities, 105, 264
b-, 105
b-half, 105, 110
distributional, 113
half, 106, 108
distributional, 107
determinant, 82, 151
diagonal, 100
lifted, 114
Dirac operator

decomposition at boundary, 4

flat, 86
generalized, 77
symbol of, 77
square of, 318
twisted, 80, 321
direct proof, 1
distributional section
extendible, 301
distributions, 110
extendible, 111
supported, 111
domain, 16
double cover, 82
duality, 120
Duhamel’s principle, 333, 337

E

ellipticity, 2, 34
essential uniqueness, 169
estimates

symbol, 109
eta invariant, 10, 21

defined, 10

modified, 11
evaluation, 296
even part, 266
exact b-metric, 3, 31, 57
exact sequence, 266
examples, 132
expansion

asymptotic, 109, 115
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extensions, 142
exterior power, 32

F
face
front, 127
factor-exchanging isomorphism, 154
facts
bald, 9

fervour, 1

filtration, 297, 308

finite rank, 135

flat, 35

frame bundle, 3
refinement, 3

Fredholm, 3, 15, 18
condition, 3, 10, 18, 128
not, 21

Fredholm condition, 183

Fredholm theory
analytic, 150

front face, 254, 257

Fubini, 107

full calculus, 173

fundamental group of SO(V), 83

fundamental point, 28

G

Gauss-Bonnet formula, 347
generalized, 348
generalized inverse, 5, 207
genus, 217
X—genus7 63
L-genus, 63
geometric case, 234
grading, 310
Gram-Schmidt procedure, 37
growth
polynomial, 120

H

harmonic oscillator, 322

heat calculus, 261, 273
even part, 266
residual space, 265

heat equation, 279, 282
uniqueness for, 6

heat kernel, 5, 7, 252, 263, 280

SUBJECT INDEX

heat pseudodifferential operators, 255, 261

heat semigroup, 272, 273
heat space, 258, 285
Hermitian bundle, 77
Hilbert-Schmidt, 107, 137, 178
Hodge cohomology, 220, 221, 226
Hodge theorem, 221
homomorphism

boundary, 8

indicial, 116, 125, 128

normal, 116
homomorphism bundle

big, 306

little, 306

ideal, 31
identity
remarkable, 6
incidence function, 215
index, 2, 16, 18, 21
extended, 10
family, 170, 197
formula
invariant case, 161
function
extended, 215
local, 295
set, 167, 174
C®, 167
absolute, 168
theorem
relative, 11
indicial
equation, 279
family, 8, 145, 148, 149
inverse of, 147, 151, 159, 174
operator, 279
roots, 235
infinity, 3
initial condition, 264, 273, 277
integral, 106
inverse
generalized, 244
involution, 74, 154
parity, 310

inward-pointing spherical normal bundle, 96



SUBJECT INDEX 375

J
jet, 295, 297
jet filtration, 298, 299
dual, 301
length of, 298
jets
equality of, 297
K
kernel
Schwartz, 6, 108
L

Lagrangian subspace, 227
Laplacian
indicial family of, 225
indicial roots of, 225
resolvent family of, 234
Levi-Civita connection, 35, 38, 87
Lichnerowicz’ formula, 317, 321
Lidskii’s theorem, 6, 136, 138
Lie
algebra, 83
bracket, 28
lift, 104, 105, 117, 139, 259, 285
lifting, 254
little trace, 309
locally integrable, 261
logarithmic term, 7

manifold

with boundary, 27

with corners, 1, 170, 253
manucentrism, 103
mapping

symbol, 115, 116
Mehler’s formula, 322
Mellin transform, 144, 145, 148, 155, 167,
171, 186, 209, 210

double, 183
model, 126, 253, 255
multiplication operator, 264, 277
multiplicity

accidental, 168, 186
multiweight, 215

N

Neumann series, 190

normal bundle
compactified, 126, 206

normal operator, 266, 278
rescaled, 313

0]

operators
classical pseudodifferential, 109
maximally residual, 119
orthogonal group, 82
orthonormal bases, 35
orthonormal coframe bundle, 36

P

pairing, 106, 110
Paley-Wiener theorem, 144
parametrix, 122, 273
forward, 252
Pauli matrices, 68
periodicity, 71, 72
Pfaffian, 64
physical poles, 243
physical region
boundary of the, 243
physical space, 238
Plancherel formula, 155, 209, 215
Plancherel’s theorem, 157
Poincaré duality, 349
point
small, 314
polar coordinates
parabolic, 253

pole
order of, 146, 174
rank of, 146

poles of the scattering matrix, 243
polyhomogeneous conormal distribu-
tions, 167, 169, 187, 192, 197, 272

Pontrjagin forms, 62, 63
precise parametrix, 197

principal symbol
diagonal, 282
product
stretched, 112
projective structure, 97
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pseudodifferential operators
one-step polyhomogeneous, 109
push-forward, 119, 261, 263

R

radial choice, 307
radial vector field, 278
ramified, 238
refined L? cohomology, 231
regularization, 155
relative index theorem, 206, 214, 216
pseudodifferential case, 215
representations, 118, 194
rescaled bundle, 300, 308
rescaling, 10, 30, 295
conformal, 300
dual, 301
tensor product, 300
residual space, 173, 265
maximally, 164
resolvent family
indicial roots of, 235
resolvent parameter, 248
restriction, 111, 125, 171, 308
restriction map, 266
Riemann curvature, 35, 42
Riemann metric, 35
flat, 42
Riemann surface, 216
Riemann-Roch, 219
Riemann-Roch theorem, 216

S

sanity-preservation, 34
scalar curvature, 318, 321
scattering matrices, 248
scattering theory, 248
Schwartz kernel, 23
theorem, 112
sections, 28
putative, 295
semi-ideal, 182, 284
short exact sequence, 278
sign reversal, 74
singular coordinates, 95
smoothing operator, 5
Sobolev spaces, 10, 16
weighted, 10, 18, 183
spectral asymmetry, 22

SUBJECT INDEX

spectral flow, 338
spectrum

continuous, 247

continuous with embedded eigenval-

ues, 247

discrete, 247
spin bundle, 87

homomorphism bundle of, 87
spin bundles, 4
spin group, 82
Spin group

Lie algebra of, 83
spin representation, 84, 87
spin structure, 86
splitting, 161
square root

convention for, 236
Stiefel-Whitney classes, 87
Stokes, 66
structure

C®, 275

C>on X%, 258
structure equation

first, 40

second, 40
structure group

reduction of, 86
subbundle, 28

jet of, 297
sum of two curves, 256
supertrace, 309, 310

big, 310
surjectivity, 278
symbol

of generalized Dirac operator, 79
symbol estimates, 149
symbolic construction, 273
symmetry condition, 37
symplectic form, 227

T

t-parabolic normal bundle, 275
Taylor series, 263, 279
temporal boundary, 254
temporal front face, 254, 255, 264
tensor product, 32
trace, 135, 273, 309

little, 309
trace class, 136, 137, 138, 142



trace class (continued)
not, 7
trace functional, 5
extension of, 7
trace norm, 136
transgression formula, 63
transition functions, 258, 259
transpose, 192
transversality, 100, 101
trivialization
choice of, 146
local, 296

uniqueness, 271, 281

essential, 124

SUBJECT INDEX

vector bundle, 296

compactification of, 258

graded, 299
vector field

A%

inward-pointing, 222
vector fields tangent to the boundary, 28

Volterra operator, 280

weight, 213

weighted Sobolev spaces, 171

weighted spaces, 157

Weil homomorphism, 60

7 grading, 73

w

Z
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