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TOPOLOGICAL MANIFOLDS AND SMOOTH()
MANIFOLDS

By J. MILNOR

Suppose that one is given a topological manifold M (i.e. a Hausdorff space
with a countable basis where each point has a neighborhood homeomorphic
to some cuclidean space). Then one can ask the following two questions:

Problem 1. Can M be given the structure of a smooth manifold? In more
intuitive terms: can M be imbedded in a high dimensional euclidean space
$0 as to have a continuously turning tangent plane?

Problem 2. If such a smoothness structure exists, is it essentially unique?
.More preciscly, given two such structures on M, does there exist a homeo-
morphism of M onto itsclf which carries one structure to the other?(2)

The first problem was answered negatively when M. Kervaire gave an
example of a compact triangulable 10-dimensional manifold which is not
smoothable. (Thus if Kervaire’s manifold is imbedded in some cuclidean
gpace, its image must have “angles” or “corners” or worse singularities.)
Other such examples, in other dimensions, have been given by Smale,
Tamura, Wall and by Eells and Kuiper (references [5], [6], [14], [18], [21]).

The second preblem was answered negatively when the author showed
that the 7-dimensional sphere possesses several essentially distinet smooth-
ness struetures (see [8], [97], [13], [17]).

Thus the two problems are non-trivial. They lead naturally to the follow-
ing.

Problem 3. Given a topological manifold M, can one make a classification
of all possible smoothness structures on M?

The answer must surely depend on a detailed knowledge of the topology
of M.

Quite a bit of progress on these questions has been made during the last
few years. Suppose for example that 3 is the topological sphere 8. Define
two smoothness structures on S* to be equivalent if there exists an orienta-
tion preserving homeomorphism of S” to itself which carries one smoothness
structure to the other. For n +4 it is known that the set of such equivalence
classes can be made into an abelian group, which is denoted by I',. The
structure of this group for many small values of 2 has been determined by
Kervaire and Milnor, making use of work by Smale (references [7], [10],
(14], [15]). (For the cases n <4 see [11], 22].) For example one has:

[ =T, =Ty =T, =T,=0, T,=Z,, I\y=2Z,

The groups I',, n==4, are all finite.(3)

() The word smooth wil be used as a synonym for “differentiable of class C*".

(*} This is equivalent to the question as to whether the two resulting smooth mani-
folds are diffeomorphic to each other. )

(*} Here Zj, denotes the cyclic group of order k. For n = 4 the group T', must be defined
somewhat differently. Nothing is known about the structure of r,
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Now let M be an arbitrary triangulated manifold. J. Munkres, in reference
[12], has defined a sequence of obstructions, whose vanishing implies that M
can be given a smoothness structure (see also Thom [19], [20]). These
obstructions arc homology classes of M with coefficients in the groups 1';.
Similarly, if one is given two different smooth manifolds with the same
underlying complex, Munkres [11] has defined a sequence of obstruction
classes whose vanishing implies that the two manifolds are diffeomorphic.
Again the groups I'; occur as coefficient groups.

One interesting application of Munkres results has been made by
J. Stallings. In reference [16], Stallings shows that the euclidean space
R"* n =4, has an essentially unique smoothness structure.

In the remainder of this lecture, I would like to introduce a quite different
tool, which I hope will be used in the future to attack these problems;
namely the theory of microbundles. '

A “microbundle” is an object something like a fibre bundle having the
euclidean space R" as fibre. However the fibre in a microbundle is not an
honest topological space, but is only a “germ” of a topological space. This
can be made precise as follows.

Definition. An R"-microbundle over B is a commutative diagram

E\
NG
{

identity B

B

where B, E are topological spaces, and 1, j are continuous maps; such that
the following “local triviality” condition is satisfied:

Requirement. For each b€ B there should exist neighborhoods U of b and
V of i(b), with

WUV, j(V)=U

so that ¥ is homeomorphic to U x R™ under a homemorphism whicl makes
the following diagram commutative

V.
i / \7‘

U U
o\ | e

U xR"

Here R™ denotes the n-dimensional euclidean space, X 0 denotes the mapping
u—>(u,0), and proj, denotes the projection to the first factor: proj, (u,z) =wu.

Such a microbundle will be denoted by a single German letter, such as
1. The spaces E and B will be called the fotal space and the base space
respectively. The maps ¢, j will be called the injection and the projection
maps of T.

Note that this condition of local triviality depends only on that portion of
E which lies in a aribitrarily small neighborhood of i(B). If Z, is any
neighborhood of i(B) in & then we will take the point of view that the new
microbundle
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E,
? \7[E [
B ldentihy_’ B

can be identified with the original one. More precisely, and more generally:
Definition. A second microbundle ¢’ over B with diagram

E
AN

N
B __identity__ B

is zsomorphzc to 1 if there exist nelghborhoods E, of i(B) in E and E, of '

V/(B) in E’, and a homeorphism from E, to Eo whlch makes the following
diagram commutatlve

Ay
. E:E/

Here are some examples of microbundles.

Ezxample 1. For any topological space B and any integer n >0 one has the
trivial microbundle e” with diagram

BxR"

’;’/’ \Proj:
B identity —B

Zl[\)’Iore generally any microbundle isomorphic to " is called a trivial micro-
undle.

Example 2. Let £ be a vector bundle over B with total space E(£) and
projection map p: E(&)—B. There is a standard cross-section

2: B->E(£)

which assigns to each b€ B the zero vector in the vector space p~(b). The
underlying microbundle |&| of £ is defined to be the microbundle

E(&)
z AN
B identit,y_\jB

Example 3. Let M be a topological manifold. Then the tangent microbund!¢
t of M is defined to be the microbundle

I

G
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MxM
A/f \{fojl
M identity M

where A denotes the diagonal map. Thus the “fibre” over a point z € M is
the set of all pairs (x,,%) where y ranges over an arbitrary neighborhood of
#o in M. The local triviality condition can be verified as follows. Given
%,€ M let U be a neighborhood homeomorphic to R™ under a homeomorphism
h, and let V=U x U. Then V is homeomorphic to U x R" under the homeo-
morphism,

flug, ug) = (ug, B(ug) — h(uy)),

which makes the following diagram commutative.

Now suppose that M can be made into a smooth manifold. Then, using
the smoothness structure, one can also define the tangent vector bundle T of M.
The following result is fundamental.

TurorEM 1. In this situation the underlying microbundle || is isomorphic
to the tangent microbundle t of M.

The proof can be outlined as follows. Choose a Riemannian metric on M.
Then for any tangent vector v€ E(r) which is not too long, there exists a
geodesic segment

y»:(0,1]1=>M,

whose velocity vector at O is the given vector ». Now the correspondence

v=>(y,(0), (1))

defines the required homeomorphism between a neighborhood of z(}) in ‘

E(z) and a neighborhood of the diagonal in M x M.

CoroLLARY. If M can be smoothed then the tangent microbundle t is iso-
morphic to |£| for some vector bundle & over M.

A fundamental conjecture would be the converse proposition:

Problem. If { is isomorphic to |§ | for some £, does it follow that M can be
given a smoothness structure?
The following partial result can be proved.

TueoreM 2. If the tangent microbundle of M is isomorphic to |&] for some
vector bundle &, then the Cartesian product M x R*™*1 can be given a smoothness
structure.

I will not try to describe the proof, which is based on a method due to M.
Curtis and R. Lashof [4].

p—
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Many standard constructions for vector bundles carry over immediately
to microbundles. For example given a microbundle ¢ over B, and given a
map f: B'—B, one can construct the induced microbundle f*T over B

TuroreM 3. (Homotopy theorem.) I f B’ is paracompact, and if g: B'—>B
is homotopic to f, then the induced bundle g*t is isomorphic to f*t.

The proof is similar to the usual proof for vector bundles.

Given two microbundles ¢ and ) over the same base space B, one can
construct the Whitney sum r@®Y), a new vector bundle over B. By definition,
1@V, is equal to A*(z xVY), where ¢ x1 denotes the Cartesian product
microbundle

B@)xEO) |,

ixy \\ixa

B x fo. Mdentity pxp

and where A:B->Bx B denotes the diagonal map.

Definition. Two microbundles 1 and 1" over B belong to the same s-class
if there cxist integers m,m’ so that the Whitney sum y@e” is isomorphic
to ¥'@e™. (Here e denotes the trivial R™-microbundle over B.)

TaroreM 4. Let B be a finite dimensional complex. Then the s-classes of
microbundles over B form an abelian group with respect to the Whitney sum

operation.

The proof is more difficult than the corresponding proof for vector bundles.
The key step, showing that for each 1 there exists a 1) with T@Y) trivial, is
proved by induction on the dimension of B.

This group of s-classes of microbundles will be denoted by kropB. The
analogous group whose elements are s-classes of vector bundles over B will

_ be denoted by kortnog B- Note that the correspondence £—|&| gives rise to &

natural homomorphism °
kOrthogB - k’l‘op B.

Note also that the groups ko, B (or kortnog B) behave somewhat like
cohomology groups. Thus any map f: B'—B induces a homomorphism

f* :kTopB—ékTopB"

If f is a homotopy equivalence, then f* is an isomorphism.

The groups Kortnog B are well known through the work of Atiyah, Hirze-
bruch, Adams and others (sec [1], 21 13D. Unfortunately very little 1s
known about kg, B. For example it is not known whether the groups
kpopS™ are finite, countably infinite, or uncountably infinite. Even the
group kSt scems forbiddingly difficult to compute.

The following qualitative result can be obtained.

TrroreM 5. There exists a finite complex X, for which the canonical hii:

morphism
Kortnog X1~ krop X1
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has a non-trivial kernel. Furthermore there exists a finite complex X, so that
the canowical homomorphism

. .
kOrt,hog X 27" k’rop X 2
s not onto.

Thus the theory of microbundles is essentially distinet from the theory of
vector bundles. The proof of Theorem 5 is quite diffienlt. Tt is based on
joint rescarch with M. Kervaire |7].

(Actually the proof of Theorem 5 gives a specific example of such a
complex X,: namely a 7-sphere with an 8-cell attached by a map of degree 7.
For X, the proof shows only that one of two possibilities will work. If
kpopS? is infinite then the 8-sphere itself will serve as a complex X,. If
JoropS8 is finite, then the 8-sphere with a 9-cell attached by a map of degree
3 will serve.)

fach half of Theorem 5 has an interesting consequence.

CororrARY 1. The tangent vector bundle of a certain smooth manifold M,
is not a topological imvariant. .

Proof. Choose an open set U, in some euclidean space R™ which has the
same homotopy type as X,. Then there exists a vector bundle & over U,
whose s-class is non-trivial, and belongs to the kernel of the homomorphism
Fortnog U1—>k1opUy- Thus the underlying microbundle |&| is s-trivial. Without
loss of generality we may assume that |&] itself is trivial.

Let & denote the trivial vector bundle, with total space U, ¥ EP, where p
is the fibre dimension of £. Since |&”| is isomorphic to |&| it follows that
some neighborhood M, of U, x 0 in U, x R? is homeomorphic to some neigh-
borhood M; of the zero cross-section in F(£).

But each of the bundles & and & can be given the structure of a smooth
vector bundle. Hence the open scts M, < E(e?) and 3, < E(&) can be con-
sidered as smooth manifolds. Clearly the manifold Jf, is paraliclizable.
However the tangent vector bundle of M 1, restricted to U, is isomorphic to

(tangent bundle of U,)PE=e"DE.
Thus M; is not parallelizable. This completes the proof of Corollary 1.

CoROLLARY 2. There exists a topological manifold M, such that no Cartesian
product M, x M’ can be given a smoothness structure.

Sketch of proof. Let U, be an open subset of some euclidean space R"
having the homotopy type of X,. Then there exists a microbundle ¢ over U,
whose s-class does not belong to the image of the homomorphism

korthog Us=>kzop U,.

Let M, be the total space of this microbundle. We may assume that 3/, is
a manifold. ‘

It can be shown that the tangent microbundle of M,, restricted to U,, is
isomorphic to the Whitney sum

(tangent microbundle of U,)(Pr=~e*Py.
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Since this is not isomorphic to ]5 | for any vector bundle & over U,, it fol.
lows from the Corollary to Theorem 1 that 3/, is not smoothable.

Given any positive integer p, a similar argument shows that the product
M, % R? is not smoothable. But this implics that no Cartesian product
M,* M’ can be smoothable; and proves Corollary 2.

[21].

[22].
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