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Iterated loop spaces

By R. JAMES MILGRAM

In this paper, we construct approximations to the iterated loop spaces
0"="(X) where X is a connected cw-complex (S"(X) is the n-fold reduced
suspension). The approximations are sufficiently good that we can use them
to calculate H,(Q"="(X), I') for reasonable X and I', and we also calculate the
cohomology rings H*(Q" 2 X), Z,).

In this connection we prove a conjecture of W. Browder [4].

COROLLARY 7.2, H,(Q"S*(X), T) depends only on the homology of X and
on I,

For n = 1 the problem of constructing a reasonable approximation to
0=(X) was resolved by I. M. James in [9], where he introduced the reduced
product (here denoted J,(X), see § 3), and proved its equivalence with QZ(X).
We generalize this by proving

THEOREM 5.2, Let X be a countable, connected CW-complex, then there
are natural constructions

J(X)cdJ(X)C---J(X)T .-,

which are themselves countable CW-complexes, and J,(X) ©s homotopy equiva-
lent to Q"S*(X). Actually, each of the J;(X) is a free associative H-space
with unit, and the asserted equivalence preserves multiplications, The author
believes the restriction that X be countable is unnecessary.’

The results in § 8 on the homology and cohomology of these spaces extend
the partial results of Kudo and Araki [10], W. Browder [3], [4], and Dyer and
Lashof [6]. Also, as we make more use of the geometry of the situation,
rather than properties of the Serre spectral sequence, our proofs may be
somewhat easier,

In the first part of this paper we will often describe spaces by means of
an equivalence relation R in a simpler space X, such a space will be written
X/R, and will always have the quotient topology. Also, all loop and path
spaces with fixed base point * [written Q(X), resp. P(X)] will be taken in the

! The referee points out that the restriction to countable Cw-complexes is, in fact,
unnecessary. To avoid it, we need only work in the category of compactly generated
spaces, because here the cartesian product of two CW-complexes is again a CW-complex.
The reader may easily make the necessary modifications.
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sense of J. C. Moore; that is, they will consist of paths of variable length (see
for example [2, p. 305-6]). Finally, when we deal with a chain complex 4, it
will always be graded and free over I' where I' is Z or Z,.

It is a pleasure to acknowledge the aid of Professor W. Browder in
preparing this paper. In particular, he suggested that the results might
be able to give a proof of 7.2. We would also like to thank the referee for his
many helpful comments, especially for pointing out that J,(X) is actually
of the same homotopy type as Q'S(X), instead of weakly homotopic as origi-
nally claimed,

1. Free H-spaces

Let X be an associative H-space with unit x* and multiplication
M Xx X— X.

DEFINITION 1.1, The set of indecomposables G(X) are the points of
X — (M(X' x X"YUx) where X' = X — x,

G(X) is, roughly speaking, the set of generators of X, and X is free in
case there are no relations among the products of the elements of G(X). More
precisely

DEFINITION 1.2, Let G'(X) = G(X), G(X) = M(G(X) x G(X)), then X
18 free if

(1) X ==x*Uz G(X),

(2) G(X)NG(X)= @ fori+# 7, and

(3) M:G(X) x G(X)— X1is1—1 for all 1.

In particular it follows that every point of X may be written uniquely in
the form x, - - - x,,, x; € G(X). We should also note that Q(Y) is in general not
a free H-space as it fails to satisfy condition 1 above.

DEFINITION 1.3, If X 1s a countable cw-complex, we will call the cw-
decomposition adapted to M if

(1) The interior of each cell e of X is contained in G(X) for some %,

(2) For any two cells e, f of X, M is a relative homeomorphism of the
intertor of e X f onto the interior of a cell of X

(3) *1s a vertex.

In particular, since M is onto, M is open, closed, and M~'(C) is compact
if C is.

From now on all H-spaces X will be assumed free with adapted CW-
decompositions,

Let X, be the k-skeleton of X. The cellular complex C(X) is the free,
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graded abelian group with
CX)=H/(X, X,_1;Z) .
The boundary operator is that for the exact sequence of the triple
(X, X1, Xi—o) and
H,(C(X)QTI)= H/(X,I)
for any coefficient group I' (for details see [12]).

The relative Eilenberg-Zilber theorem [7] applied in X x X gives a natural
isomorphism

a:C(X)RCX)— C(X x X),
and the following proposition is easily verified.
PrOPOSITION 1.4, M.a: C(X) Q C(X)— C(X) gives C(X) the structure

of a DG, algebra. Moreover, the gemerators corresponding to cells with
interior contained in G(X) generate C(X) freely as an algebra.

2. A classifying space for X

Let h: X— R* Dbe a continuous homomorphism of X into the additive,
non-negative reals satisfying 57'(0) = x. Set A = X x R* x X, and define
an equivalence relation R in A by
(2, ¢, v) if t < h(y)
(xy, t—h(y), w) otherwise .
Now, put E(X) = A/R, and let 7: A — FE(X) be the identification map.

PROPOSITION 2.1, E/(X) s contractible.

Proor. f:I x A— A is defined by

f(t, (@, 8,9) = (x, @ — 0)(s + h(x)), xy) ;

it is continuous and preserves R, hence it induces a map f: I x E(X)— E(X)
which gives the desired contraction,

th%%

M x id: X x A — A also respects equivalence classes and induces a map
M: X x E(X)— E(X),
which defines an associative action of X on E(X).

DEFINITION 2.2. B(X) ts the set of maximal orbits in E(X) under the
action of X, 0: E(X)— B(X) is the projection.

ProPOSITION 2.3. E/(X) is a countable cCW-complex with cells of the form
eX *xorexIXxf, whereeis a cell of X, and the interior of f s contained
in G(X). B(X) is also a countable CW-complex with a cell I X f for each f
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as above. M induces the structure of a C(X) module in C(E(X)), and the
triple (C(X),C(E (X)), C(B(X))) ts a construction in the sense of Cartan [5].
(Compare with [2, Th. 2.1, p. 309]).

The proof is direct though tedius. The basic idea is to use the stated
properties of M, in particular that M —(C) is compact if C is, to show that,
if T is closed in a cell f with interior contained in G(X), then

(e X [a, b] x T)), (om)~(om(e % [a, b] x T))

are both closed in A, for ¢ any cell of X. We omit the details,
This proposition has the following fundamental corollary.

THEOREM 2.4. If X is connected, p: E(X)— B(X) is a quasti-fibration
with fiber X. (A map f: X — Y is a quasi-fibration if, for every point y € Y,
fei (X, f7(y)) — 7(Y, y) is an isomorphism for all 7.)

This is precisely enough to imply the existence of a homotopy exact
sequence

Y=, 2 (@) — 71X L5 20 L 2 () — -

and, since E(X) is contractible, this implies
COROLLARY 2.5. 003" s an isomorphism 7, (B(X)) — m(X).

PrOOF OF 2.4. Restricted to o= of the 0-skeleton, the result is true.
Assume the truth of the theorem on o~ of the k-skeleton B(X),. 07'(B(X);+1—
B(X),) is homeomorphic to X x (B(X),.; — B(X),). On the other hand, there
is a retraction of a neighborhood N of B(X), into B(X), in B(X),., which,
because of the way E(X), B(X) were constructed, may be covered by a
retraction of p~'(N) into p~(B(X),) which maps fibers by right translation.
Since X is connected, right translation is a homotopy equivalence. Thus by
[11, 2.10] o| o7'(N) — N is a quasi-fibration, and the result now follows from
[11, 2.2 and 2.15].

THEOREM 2.6, Let X be connected, there is a mapping g: E(X)—P(B(X))
so that
(1) g restricted to X maps X into Q(B(X)),

Xx BN LEX)
(2) g x gl lg B(X)
Q(B(X)) x P(B(X)) - P(B(X)) {

18 commutative where @ 1s composition of paths and p is the end point
projection,
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(3) g: X— Q(B(X)) is a homotopy equivalence.
ProOF. Define g by

‘Oﬂ'(*, t, x) s=t y

t, 1 =
glete,t, s = {00 ot

g is continuous and clearly satisfies 1, 2, The fact that g induces isomorphisms
in homotopy now follows from 2.5. An alternative proof could be given making
use of 2.3, the Leray-Serre spectral sequence, and the spectral comparison
theorem. It remains to show g restricted to X has a homotopy inverse. This
we see as follows:

(1) using the retraction given in [2, p. 306], Q(B(X)) is retracted onto
the space of loops of unit length,

(2) from Milnor’s theorem, [13, Th. 3 p. 276], this latter space is
homotopy equivalent to a cw-complex, and

(3) from the fact that, if two cw-complexes are weakly equivalent, then
they are in fact equivalent, the homotopy inverse is now constructed.

3. The James construction

Let Y be a countable cw-complex, and  a vertex of Y. Let T(Y) be the
disjoint union
T(Y)=Y+ Y XY+ oo + YY"+ .0

The inclusion map T(Y) x T(Y)— T(Y) makes T(Y) into a free associative
monoid. The homomorphism f: T(Y) — J,(Y) (the free associative semi-group
with unit * generated by Y) makes J,(Y) into an identification space of
T(Y), J(Y)= T(Y)/R, and we may specify Rby (x, -+ x,) ~ (&, Tp-+- x,)
if », = *. J(Y) isthe reduced product introduced by James in [9]. It is clearly
a free H-space with adapted multiplication, and G(J(Y)) = ¥ — =,

Let h: Y — [0, 1] be any continuous function on Y with 27'(0) = x. Then
h extends to a homomorphism h: J,(Y)— R* with 27'(0) = *, and it is easy to
see that B(J,(Y)) is homeomorphic to =Y. Thus, from 2.6, we have

THEOREM 3.1 (James). There is an H-map
9:J(Y)— QY
which is a homotopy equivalence.
4. The polygons C(k)

(1) Let EX, be the set of paths of variable length starting in A and ending
in B where A, B are subsets of the space X. If X isthe n-cube I", and A is
the initial point (0, - - -, 0), B the final point (1, ---,1), Ef, will be written P".
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There is a pairing M: P* x P™— P**™ induced by the inclusions
F,.I"—> I*"x (0,.--,00Cc I,
L:I"—(@1,--+-, 1)y x I I"™,
In order to generalize the James construction, it is necessary to construct

approximations to the P* satisfying certain conditions imposed by the geometry
of the situation. To this end, we introduce some new polygons.

DEFINITION 4.1, Let s=(1,2,83,---,n+1)e R"™, The symmetric group
S,.. acts on R™' by permutation of coordinates [B(x, -+ Xpp) =
(Xp=11) *** Ta-1nyp))], and C(n) is defined as the convex hull of the points
{B(s); Be€ S,..}. (See Figure 1).

12 ) 3(1,2)

1,32

2,1 , 123

cm c®
FI1GURE 1
The first few polygons and faces.

S,., obviously acts as a group of homeomorphisms C(n) — C(n). There
are also homeomorphisms I7; C(j — 1) x C(n — j) — 0C(n) defined by
i@, e oo gy Yy oo s Yuojd) = (@ o B, Yy + Jy 00, Yuojs + J). Leta,’e S,
be (j,n + 1 — j) shuffles. Then im (al’)N (im a’I’) are points common only
to the boundaries of the two sets, moreover the same is true if & is a
(k, » + 1 — k) shuffle for im (al’)Nim («’I*)., In fact we have

LEMMA 4.2, C(n) is topologically a closed disk with a regular CwW-decom-
posttion with one n-cell and the lower dimensional cells exactly the images
of the cells of C(j — 1) x C(n — j) under the maps al’, where 1 < j < n,
and a runs over all (j, n + 1 — j7) shuffles.

ProOF. C(n) is convex, compact, and n-dimensional, thus it is homeo-
morphic to D", On the other hand, the convex hull of a finite point set in R*
is a cw-complex having 1-top dimensional cell, and faces which are convex
hulls of certain subsets of the generating sets. Such a set is contained in a
hyperplane =b,x; = 0 (the plane through the origin which intersects Sx; =
(n+1)(n+2)/2 in the plane containing the n — 1 dimensional face H(s,---s,)).
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Let b, «+- by, (bj, +++ by) be the minimal (respectively maximal) b’s in this
equation, and suppose H (s, - - - 8,) is not aI’C(j) x C(n — j — 1) for any j or
a. It follows that, for some s, € (s, -+ 8,), () < (Sx)m for c=a -+ 7, and
for some s, (8})y < (Sh)mpy 1 =1 = r. Let 5 = s, with thea™ and m'® positions
interchanged, and 5 = s, with the n* and m," positions interchanged, then 5
and § lie on opposite sides of the hyperplane, a contradiction.

Passing to the cellular chain algebra of C(n), we can easily verify

(4.3) o{C(n)} =3, (=1)**{al’C(j — 1) x C(n — )},
where « runs over all (7, n — 7 + 1) shuffles, and 1 < j < n.
(2) Let 7: R"—R" " be the map which omits the j* coordinate. 7 induces

a map d;: S, — S,_, where d;(8) is the permutation which makes the following
diagram commutative

R R

VAN A

ﬂ“(j)l ja‘
R’n—l dj(ﬁ) Rn—-l .

From the definition, we obtain

(4.4) diaB) = dg-1ad;(B) .
LEMMA 4.5. There are maps
D,:C(n)—> C(n — 1), 1=k=n+1
so that

(i) D,oI’1is projection onto the second factor
I*Y(D; x id) i=Zk
I*(id x D;_,) otherwise

(iil) d(B)Dg-1;y = D,B

(iv) D;,D; = D;_,D, for j = 1.

ProoF. D, = D,: C(1) — C(0), now (i), (ii), (iii), serve to define D; by
induction on 4C(n), (consistency follows from 4.4). Let y, = ((n + 2)/2, ---,
(n + 2)/2) € C(n), each point of C(n) can be uniquely written (¢(y.) + (1 — t)z)
where z€ 0C(n). On such a point define

Dj(ty, + 1 — t)2) = ty,. + (1 — t)Di(?) .
Lemma 4.5 (iii), (iv) continue to hold as they are true on the boundary. 7
restricts to 7: I"— I"*, which induces a map 7 ¢ P— P, Similarly 8¢ S,
restricts to a map B: I"— I which induces a map 8;: P — P*, so that P also

(ii) D,I* =

admits S, as a group of homeomorphisms,

LEMMA 4.6. There are mappings
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J: C(k) — P**

so that
(i) JiB = By, BE Sk
(ii) g4y = JpoiD; (modulo re-parametrization of paths).
(i) J JI"= M(J,_, X J,_,)
(iv) The evaluation map
E: I x Clk)y —> I*

18 cellular and of degree plus or minus one. (See Figure 2.)

SN

/ \

! \

| \.

|

)
| * _/
O

FIGURE 2
Some typical paths.

ProoF. Set [J,(1)]t =t, then (i), (iii) serve to define J, on dC(k) for k>0
(again consistency follows from (4.4)), and J, is extended to the interior by

([T z <1,
[7:(X — )y + te)]r = f<[ (z)]< t )) = t]Ju(2) ]
(Eeert)+ (x—t|ux) )@, -+, 1) otherwise.

Here f,(x, -+~ ) = (tx, - - - tx,), and | J(2) | is the length of J,.(z). Note that
the length of J,((1 — t)y, + t2) = 1 + ¢(|J.(2)| — 1). (i), (ii), (iii) continue to
hold, and the truth of (iv) is a consequence of the fact that the evaluation
map is of degree 1 or —1 from o(I x C(k)) into o(I**+") from (iii).

5. The spaces J,(X)

For any space X, T'(X) is the disjoint union X + X* 4+ X® + ... 4
X"+ ..., It has the structure of an associative monoid with multiplication
defined by the inclusion M: T(X) x T(X) — T(X).
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If X is graded, then T(X) has a grading defined by degree(, --- @,) =
2, degree ;. We will denote the set of points of T(X) of degree k by
T X).

As we have seen in § 3, the reduced product J,(X) is defined by means of
an equivalence relation in T(X). We now define certain higher functors T'(X)
and equivalence relations which allow us to construct spaces J;(X) equivalent
to QX for ¢ = 1.

X is graded by deg (x) = 1 for all ze X, T(X) = T(X), and suppose
inductively T:(X) is defined and graded. We set

Y, =C(0) x THX) + C(1) x TAX) + +-- + C(n) X TP (X) + -,
and define a grading in Y by degree (x) = n + 1 if x € C(n) x T7*(X). Then
T,.(X) = T(Y). Thus T«(X) is a graded associative monoid. We can write
its points in the form

Yy ** Yicsy o0 D)

where each y; is contained in a product C(i,) x « -+ X C(3,) with 4, + -+« +1,=
n — . In this notation the multiplication is specified by

MI(Ys = Yimsy o T)y W=+ * Yoty Tais *** Tugm)]

= ((yly YD), oy Wiy Yic1), Tyov e xn—i—m) .
There is an obvious identification map

K A{IXT/(X) 4+ "X THX) + -} — T:(ZX)

given on points by
K, oooCuy Yoo Yicay @100 x,) = (?/1 e Yy (b, y) oo (L yn)) ,
and 4.6 implies there are maps
J, x id: C(k) x T¥X)— P*' x THY(X) .

These induce a map K,T: T;.(X)— P(T«(=X)). Let 7 be the identification
map T(X)— J(X). We assume 7,K,T maps T';,,(X) into QJ(ZX). This being
so, we will (roughly speaking) define J;,,(X) to be the image under this map
of T (X).

We will have to be more precise! J;.,(X) is an identification space of
T,..(X), and our task now is to give the equivalence relation explicitly.

To this end it is convenient to introduce some new notation. First we

. extend the mappings D, to products by induction: suppose D, defined on all
products of length <, then on C(s) x A, D, = D, X id if k = s + 1 orid x
D,_,., otherwise (here D,|C(0) is the forgetful functor). Now, let a be an
(i + 1, 7 + 1) shufle. We define a mapping D*: C(¢ + j + 1) — C(z) x C(J) by

D* = (D% x Ditha™ .
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Then D¢, restricted to the face aC(i) x C(j), is just the projection onto
C(i) x C(j), and unless a cell B(C(3,) X +++ X C(i,) is a face of aC(z) x C(j),
D* maps it onto a lower dimensional cell. Also, using (4.4) we have

(56.1) D.D* = Dda—l(k)aDa—uk) .

Stien X =+ X S 4, acts as a group of homeomorphisms on the product
C(t,) X +++ x C(i,). Let now a be an (I + 1,4; — 1+ 1) shuffle. Then
Drxeosixaxtext = jd x voo X D* x id X +++ X id. Where no confusion is

possible, we will also denote this last map as D=,

The equivalence relation R is now defined by specifying generators of two
kinds:

(1) (Yoo Yima@y o oe ) ~ (a_lyl ey, DYy e e Dey;_,, a " (x, -~ xn))
if y,, belongs to a face C(z,) X +-+ X (@C(m) x C(i; —m — 1)) X +-+ X C(z;)
of C(¢,) x -+ x C(3}),

(2) WYroes Yimyy @y ov 0 @,) ~ (Dk(yl) o DY) ®y o By e e xn)

if 2, = x. We now set J,(X) = Ti(X)/R.

From 5.1, it follows that these two types of relations commute, Hence,
every point is uniquely equivalent to one of the form (y, «-- y,_, @, «-- ,)
with each y; an interior point of its cell, and no x; = ., Thus, if X is a
countable cw-complex with * a vertex, so is J,(X). It contains X as a
subcomplex and otherwise it has cells of the form C' x ... x Ci x ¢, X

- X e,, where each C’ is a product of C(k)’s, and no e; = *. This cell
complex will be studied in more detail in the next three sections. For now we
content ourselves with observing that J,(X) is an associative H-space with
unit *, and the cell complex is adapted to the multiplication. Its generators
are the cells which contain the interior points of Y,_,.

THEOREM 5.2. Let X be a connected countable CW-complex with * a

vertex., Then there is an H-map
it Ju(X) — QEXX)

which 1s a homotopy equivalence.

Proor. It suffices to find an H-map T:J.(X)— QJ,_,(SX) which is a
homotopy equivalence,

The map K,T induces a map Exp: R* X T(X)— T,_(SX), where
Exp (¢, 2) = K,;T(2)t. Define L: R* x TW(X)— R* by

oo ez = (5 (LD V)
Lity e+ v o ) = [ (50, (S92 heet) e,

where h: X — [0, 1] is some function so that 27'(0) = *. To put it another
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way, define H(x,++-2,): R"—R"by H(x,+++x,)(t; - t,) = (h(x)t, « -« h(2,)L,).
Then L(t, Y, Y, +++ Yi_s, ®, -+ &,) is the distance traveled on the path
H(x --- x,)J (y) as ¢ runs between zero and ¢.

That L may be assumed continuous, follows from a close examination of
the proof of 4.6,

Define h: Ty(X) — R™* by h(z) = max, (L(t, 2)). k is continuous, hM =
hp, + hp,; and, if z~ 2/, then h(z) = h(z’). This is true since, if the two points k
are related by a relation of type one or two, then i(z) = h(z’). Thus h extends
to a multiplicative map h: J,(X) — R+ with A=(0) = ; and from § 2, we may
use £ to define a classifying space B,(X) for J,(X).

There are maps @, ¥ which will make the following diagram commutative

R* x TyX) 25 T, (X)

LXn‘pzl 17:

(5.3) R* x J(X) 5 J,(35X)
\n‘p w’f/‘
N /
By(X) .
This follows from the fact that
L(t, 2) t < h(z)
L(t, M(z,?2)) = .
(& M ) = 1y + Lt — b, #) otherwise ,

and, if z ~ 2’ while L(¢, 2) = L(t, '), then Exp (¢, z) ~ Exp (¢, 2’).

As a consequence of 2.6, the theorem will be proved if we can show +r is
a homotopy equivalence.

Both B,(X) and J,_,(SX) are simply connected, so the result will follow
from the fact that +,: Cy(By(X)) — Cy(J,_(2X)) is an isomorphism. But this
is a consequence of 4.6 (iv) and the diagram. q.e.d.

6. The cellular chain groups Cy(J;(X))

Let e be a cell of J;(X). If ¢ contains an interior point in the equiva-
lence class of (y,, * -, ¥;, &, + -+, ;) With no «, equal to , then e has degree
7, and it follows that deg M (e x f) = deg(e) + deg (f).

Let [CyJ(X))} be the submodule of Cy(J«(X)) generated by the cells of
degree j. We assume [CiJ (X))’ ts a subcomplex of C,J(X). For this to
happen, it is sufficient that * be the only vertex of X; and since X is connected,
X is homotopy equivalent to a cw-complex with a single vertex. Thus our
assumption is always satisfied, at least up to homotopy equivalence.

Let P, .-+ P, -+ be the generating cells of C,J;_(X)(G'J;_(X)). Their
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products M (P, x --- x P,) will be written P, .-- P,. Thus, the generating
cells of C.J,(X) will be of the form

{Cr —1) X (Py--- Py}

with » = 37 deg P,. For convenience we will use the symbol |P, --- P,|
for such a cell,

THEOREM 6.1. There s a map A of DGA algebras
A: CJi(E(X)) — CJL(EX) @ C(J:(EX)) ,
which s a diagonal approximation, and is defined on generators by
A|P, ---P,|=|P+--P,|R1+1RQ|P,---P,]|.

Stated in other words, A makes C,J,(ZX) into a co-commutative, primitively
generated, Hopf algebra.
Proor. The identification map

K {7, I x TiX)}) = Z— T(=X)

is multiplicative and onto. We will construct a diagonal approximation in Z
by means of the compositions

I’ % Tif(X)F—Xj»If x I' x T{(X)- Ti"(X)S—}m—fE (7 x T/(X)) x (I7 x T,
where F' is the usual cellular approximation to the diagonal
(e tn)—a(gl...ﬁ%;-zi_—__l, cee, 2, — 1)
(@ = min (a, 1), 8 = max (0, 8)). The homotopy between F" and d is given by
H(t tooet,) = (T + 0y, oo+ @+ Ot A+ Ot —t, -+ ¢+ D, — 1),
and it is seen that this homotopy induces a homotopy & so that

I xZ —i Z X Z
ian‘Kl
I % JEX) > J(EX) x JEX)
is commutative. Now it is clear that A, is cellular and commutes with M.
Moreover, on a cell A=I'"x C(j—1) x P,--- P,, hi KA =nK(A) x 1+
1 x 7K(A) + =B; x B where the B; x B/ are of lower dimensions. q.e.d.
If A is a co-associative, co-augmented co-algebra with co-unit, then the
cobar construction F'(A) is defined (see [1] for definition). We now can prove
the main result of this section.
THEOREM 6.2. F'[C,J(2X)] is isomorphic to CJ;.(X).
Proor. It suffices to show this for an arbitrary generator |P, --- P, | of

‘lr:KX K
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CyJ:.:(X). Such a generator corresponds to a cell Cim) x P, X «++ X P,. In
turn, each cell P; is of the form C(m;) X M; X €,; X +++ X €n 11, where M,
is a certain product of C(j)’s. The map +: B, — J(2X) maps the cell
Ix Cim)x P, x «-+ x P,into

(—‘1)ﬁ H:’:l C(m,) X Mj X O'el,j X oo ><0'6mj+1,j y

where @ is the appropriate sign and oe represents the suspension of the cell e
of X. Now using 4.3 and 6.1 we can easily check that

OIP, e Pl = —|9W |+ S(—1 W, W},
where W = (I x C(m) X Pyx +-+ X P,)and SW,QW;+ W1+ 1QW =
AW, with a(j) equal to the dimension of W,.
7. Some invariance theorems for the cobar construction

In this section all chain complexes A will be assumed connected and aug-
mented over the ground ring I (Z or Z, for p a prime).

DEFINITION 7.1. s(A) s the complex

S(A)i — A, >0,
(A= A,
s(4),= 0

with boundary operator induced by the isomorphism J.
The operation s may be iterated, and we write
ss(A) = s*(A), -+, s(s"(A)) = s"(4) .

Moreover, a diagonal approximation is given in s(4) by A(x) =2 @1+ 1 2.
Thus if A is free over I', F(s"(A)) is defined, and a diagonal approximation on
generators is given by A |z | =2 | Q1+ 1Q|z|. Itis extended to F' by
requiring that it commute with the multiplication. If F'(s"(4)) is simply con-
nected, i.e., if n = 2, we can define F'(F'(s"(4))) = F**(s"(A)), and this procedure
may be iterated until we obtain F'"(s"(A)).

THEOREM 7.2. Let A, A’ be free chain complexes over I', and suppose
f: A— A’ is an augmentation preserving chain map inducing isomorphisms
in homolegy, then for v = n,

Fi(s"f): Fi(s"A) — F'(s"4’)
also induces isomorphisms in homolegy.

COROLLARY 7.2. H.(Q"=%(X),T') depends only on n, and the homology of
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X, tf X has the homotopy type of a connected, countable CW-complex.*
PrOOF OF 7.2. Let A be a minimal complex for the homology of X, and
suppose f: A— C(X) induces isomorphisms in homology, the result now follows
from 7.1 and the results of § 6. Similarly we have
COROLLARY 7.3. The cohomology ring H*(Q"'Z"(X), ') depends only
on n and the homology of X.
PRrROOF OF 7.1. Let F(A) = F(A) — ('), then if we set
Fid)=imMFA R --- R F(A) 1 >1,
i times
we have
F(A) = F{A) D F(A)D>F¥4)D --- DFY(A)D-.--;
and if x has dimension %, then x does not belong to F**'(A4). Thus, the spectral
sequence induced by the filtration converges and
SiEiO — Si(Fi/FiFl) ~t A® .. ® A_ .
i times
Hence
EIF(f): E}{(F(A)) — E{(F(4))
is an isomorphism, thus the same is true for EJF(f) » = 2, and thus also for

F(f)x.

Now, suppose A, A’ are simply connected, co-associative, co-algebras
which are free over I'. A co-multiplication is defined in A® A’ by the
composition

Aa "0 44404 2L AR MURA),

and the cobar constructions F'(A), F'(4"), F(A R A’) are all defined.
THEOREM 7.4. The map of algebras
0: FIARQ A)— F(A) Q F(A)
defined on generators by
ola®1]=la|®1
Pll1Qa | =1 |a|
with p identically 0 on other generators, induces isomorphisms in homology.
Proor. F(C)Q® C is made into a construction [5] over F'(C) by defining

2 The referee points out that the restriction to countable CW-complexes is unnecessary,
as is any restriction involving cwW-complexes at all, since the singular complex of a space
is the direct limit of its countable subcomplexes, and homology preserves direct limits
both for the original complex and for the induced limits in the loop space.
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the twisted boundary

(1.5) @e=c|®L+T,le @ +1@de,
where A(c) = Z¢; ® ¢;. Using this formula it is easy to check that o extends
to a map of constructions

PRIEFARA)RARA —FARFAIRQARQA).
Define filtrations by
H=FARQRA)RQARQA)
G=FARQFA)RARA),
where (A ® A’); is the i-skeleton of A. Then

EXH) = H(FARA) QAR A)/(ARQ 4);.
Ej(G) = H(F(AQF(A)QUARQA)I(ARQ A,
E(o®id) = p, @id,
and
EXH)=H(AQ A; H(F(AR A")) )
EXG) = H(AQ A’; H(F(4) @ F(4))) .
Since A, A’ are simply connected, F(AQ A’), F(A) Q F(A’) are connected,
and we may apply the spectral comparison theorem, from which it follows
that p, is an isomorphism.

8. The homology of J;(X)

In this section we obtain some information on the homology and cohomol-
ogy of J(X) if X is of finite type. In particular, we assume C(X); is finitely
generated for every 7.

Let A be a connected free I' complex with trivial boundary. Then F'(sA)
is just the tensor algebra generated by A, T'(4). It now follows from the
Poincaré-Birkhoff-Witt theorem (see for example [8]) that we can write
T(A) = @; P(x;) as a I' module, where the {x;} form a basis for the graded
Lie algebra generated by A4, and P(x) is the polynomial algebra generated by «.

In the case of interest here, we assume A is itself a suspension s4’, then
we can make T(A) into a Hopf algebra by setting A(a) =a @1+ 1 Q a for
acA. (If T(A) represents Q(3*X), it will follow that F'(T(A)) represents
03=2X).) But if a,b, are primitives in a Hopf algebra, so is [a, b]. Hence
the graded Lie algebra generated by A is primitive in T'(A4), and T'(4) is
thus represented as a tensor product of primitively generated co-algebras, and
we may apply 7.4 when we iterate.

We may simplify P(x) still further. For example, if « is odd dimensional,
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then P(x) = E(x) Q P(2*) as a co-algebra Az’ = 22 @1 + 1® 2% and if I' =
Z,, and z is even dimensional,
P)=2=T@)QTE@NQ - Q@ T@)Q -,

where T(a) is the polynomial algebra on a truncated by the relation a? = 0,
and A@@?’) = 2"’ @1 + 1 ® .

LeEmmA 8.1, IfI'=Z,, n =1, then
FECn+1)=TCn)Q TCm) R -+ Q@ T2np) @ -+ -
as a co-algebra.
The proof is obvious.
LeEMMA 8.2. If I' = Z,, n = 1, there ts a chain map of co-algebras
0: F(T@2n) — E@n — 1) Q@ T@np — 2)® -+~ @ T(p'@np —2) @ -+ -
inducing isomorphisms in homology.

Proor. We define a twisted boundary operator in F(T'(2n)) ® T(2n) by
7.5. We claim that the diagonal

A=(1RTRIVARQAF(T)RT— (F(T)R T)
is a chain map. It is clearly sufficient to verify this on an element 1 a’.

We have A1 ® o) = 3 ( 7 )1 ® o ® 1 ® 2, while

ANl ® ) = z(| @1+ Y (fc)l | @ x"")
=@ R®1I®LI+1R¥1IRK (27| ®1)
+ T (D @r Q191+ @1Q 1@ o
+1IR R ®L+1RQLIRY " [ Q]
and this is 6A(1 ® 27).

Thus the dual complex Hom (F(T)® T, Z,) becomes a twisted tensor
product of commutative DGA-algebras. Let Y = (F2n — 1) ® T(2np —2) Q
-++). We define an inclusion of algebras o*: Y F*(T) = Hom (F(T), Z,) on
generators by

o*(e2n — 1) = | |*
o*(f@np — 2)) = (| |a*|)*
o*(f(2np — 2)p")) = (@ |2 | -+ |z |ar )

»J times

etc. We define a twisted boundary in Y ® T'(x) by
of ((2np — 2)p?) = a;(f (@mp — 2)p? )" - -+ (f(2np — 2))*'e(2n — 1) Q2" ,
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de(2n — 1) = x where «; is the appropriate non-zero coefficient, defined so as
to make the inclusion p* Qid: YQ T* — F*(T) ® T* into a chain map. If
we now define a spectral sequence by F(F(T)*@ T*)=2_ ., F(T)* ®«’ and,
by restriction, give a sequence for Y ® T*, an easy induction shows that
E*(p* ®id) is an isomorphism of spectral sequences, and this proves the lemma.

Because of 7.4 and the preliminary remarks, 8.1 and 8.2 allow us to give
an essentially complete description of the cohomology rings H*(J (2 X), Z,) for
all 7, since in this case there is always an A with trivial differential, and a
map f: A— C(X)® Z, inducing isomorphisms in homology. For example
H*(Q*S", Z,) k<n is a tensor product of exterior algebras on odd dimensional
generators, and twisted polynomial algebras T'(2n) on even generators. Note
that

H*@QS™, Z,) = H*(S"", Z,) @ H*(QS", Z,) ;

thus H*(Q*S*, Z,) = H*(Q*'S*"; Z,) ® H*(Q*S*, Z,), and it suffices to
give the generators for odd dimensional spheres only. Given any sequence of
positive integers (i, - - - 4,) with » = k, we have the long sequences

{(’I'L, PRy o, pil_ln)y 17 ((n:pt1 — 1); ct (n.iﬂ1 — 1)pi2_l)! 1?
([(nph — 1)piz—1.. ] .. .), 1,
(- [np™ — 1)p's — 1 -+ - pirs — 1pir),
where e may equal O or 1if » <k, and e = 0 if » = k. To such a long sequence
there corresponds a generator of dimension

(21 — k) + 2n(p — 1) + -+ + enpii(p — 1) — 1 + 2(np — H(p — 1)
+ oo 4+ 2[([(mp't — D)pi2 — 1] -+« pirt — 1)p"f(p — 1) — ¢,
and these are precisely the generators of H*(Q*S*+!, Z,).

One may note the rough duality that occurs between these results and
the results of Cartan for Eilenberg-MacLane spaces K(Z, n). This duality
may be extended to the case where I' = Z also. By methods similar to those
used by Cartan, or to those used in the proof of 8.2, we may prove

LeEmwMmA 8.3. There is a map p*: D(2n)— F*(E(2n + 1)) tnducing tso-
morphisms in cchomology. There is a map

p*E@n — ) QEMn —1)® - QE@n - 1)@ ---
R E,(p(2n) —1)Q --+ —> F*(D(2n)) -
tnducing isomorphisms in cohomology. Similarly there are maps

7*: D,2n) @ By2np — 1) @ -+ @ E,2np! — 1) ® -+ — F*(E,(2n + 1))

P Een — ) Q@ E,@np — 1)@+ @ E,@np’ — 1) @+ - — F*(D,(2n)) ,
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which tnduce 1somorphisms in homology.

Here D(2n) is the divided polynomial algebra on a generator of dimension
2n. E,2n —1) = E(2n — 1) ® D(2n — 2) with 0w = pe if w is the generator
of D(2n — 2), and D,(2n) is an enormously complex algebra with integral
cohomology generated by elements V; in dimension 2n¢, and the order of V;
is ph where h is the largest power of p dividing <.

Thus, it would seem that, for X more general than spheres, the problems
of calculating the integral cohomology rings of Q'%*/(X) reduces to finding a
reasonable representation of T(S**/(A)) where A is a minimal complex for
C(X). The author, however, has not been able to achieve this.
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