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Surgery with coefficients

By R. JAMES MILGRAM*

Dedicated to the memory of A. N. Milgram

After the discovery of the exotic spheres, Kervaire and Milnor (118])
explored the structure of the groups I', of all diffeomorphism classes of exotic
spheres homeomorphic to S*. Their main technique was surgery on degree 1
normal maps

0: W+ —— Jeer,
where M**! is the disc D**' and p is a homotopy equivalence on 4/7. Browder
and Novikov ([4], [30]) extended these techniques to more general classes
of spaces, and applied them to a broad class of problems. Sullivan (I35]) next
redescribed the evolving theory in terms of maps into the classifying spaces
G/0 and G/PL in the smooth and PL-cases, respectively.

Sullivan then presented the program of completely describing the homo-
topy type of a map f: M" — G/PL in terms of invariants (signatures and Ker-
vaire invariants) for a basic set of surgery problems associated to M and f, and
he made great strides towards completing it. But one step was missing.

In this paper, we present a more general type of surgery invariant, one
that is appropriate to surgery on manifolds with coefficients, and which re-
stricts to the ordinary index obstruction on oriented manifolds. But it is
considerably more complex on, for example, Z,-manifolds (for the definition
and properties of Z,-manifolds, see e.g. [34], Chapter VIII, pages 150-168, or
§1, (1.15) and (1.20)).

It turns out that this more general invariant completes Sullivan’s origi-
nal program except for a problem in dimension 4, where something more
subtle must happen.

This work arose out of the need to study the natural map

r: SG — G/PL
of the space SG, the set of degree 1 homotopy equivalences of spheres, onto
G/PL, which is the classifying space for PL-sphere-bundles, together with a
fiber homotopy trivialization. G/PL can also be thought of as the fiber of the
map of classifying spaces,
By, — B, .

* Research supported in part by the National Science Foundation.
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Sullivan’s original description of G/PL was not sufficiently delicate, though,
to give r*: H*(G/PL, Z,) — H*(SG, Z,).

Once the results of the current paper were obtained, the main results
of [9] and [10] became direct calculations, and my point of view, at least, is
that this work should be regarded primarily as a companion piece to [10].
This is reflected, for example, in our choice of method to prove the product
formulas (§ 7) for the new invariant. There is a geometric method available,
developed by Morgan and Sullivan ([29]); however, we use a strongly homo-
topical method similar to that which Browder and Brown ([3], [7], [8]) used
for their treatments of the Kervaire invariant. The main justification for
this is that the techniques involved in §§ 6 and 7 play a vital role in the work
of [10], and, if they had not appeared here, they would certainly have had
to be fully developed there.

A second advantage of our technique has been pointed out by Ib Madsen.
The surgery theory of Poincaré spaces has been developed by Lowell Jones
in his paper “Patch spaces: a geometric representation for Poincaré duality
spaces,” Ann. of Math 97 (1973), 306-343, and also later by Quinn, and all our
proofs go through without essential modification, even for spaces as general
as these. Of course, the interpretation of the invariants in terms of linking
numbers given in §6 is no longer valid, but this is the only point where
geometric properties, as distinguished from homotopical properties, of mani-
folds are required.

Finally, almost no examples of degreee 1 normal maps, to which the
new invariants are relevant, are considered here. This is because they arise
most naturally in the context of [10]. Indeed, in that paper an enormous
number of examples are constructed, and they play a decisive role in the
proofs of the main results.

The paper is arranged so that it should be possible to read it if the
reader is familiar with [5] or [18], and the work of Browder and Brown on
the Kervaire invariant (in particular, [7] or [8] suffice). Since Sullivan’s
thesis is not in general circulation, its main ideas with respect to our present
project are concisely presented. However, the reader may find [32] most
helpful.

In §1, we review the theory of bordism (e.g. as in [13, Chapters 1, 2]),
and introduce coefficients. In order to preserve balance, both the geometric
(constructions with maps and manifolds) and homotopic (calculations in bor-
dism by homotopy theory) viewpoints are presented.

In § 2, we recall Sullivan’s description of G/PL in terms of the index and
Kervaire invariants for degree 1 normal maps, and in § 3 we abstractly solve
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the problem of doing surgery on Z,-manifolds.

The results described so far have been known, I understand, to various
workers in the field. However, our projected use of the generalized index
invariant demanded effective methods for evaluating it. These are supplied
in §4, where we give a new account of the invariant in terms of a quadratic
form on the torsion subgroup of the kernel (for the definition of the surgery
kernels, see [5, Chapters 1, 2]) and a certain Gaussian sum.

In §§5 and 6, we remedy a flaw in the presentation of §4. There the
invariant was defined only after the normal map p was made highly connected
and used special properties of this situation. In §§5 and 6, we use functional
cohomology operations to define the quadratic form directly for an arbitra-
ry p.

In § 7, we apply these techniques to prove a product formula (7.3) for the
invariants (for analogous formulas for the Kervaire invariant, see [5, Chapter
3], or [32]). One of the more interesting consequences of (7.3) is that the
Kervaire invariant on oriented manifolds becomes a special case of the new
index invariant. Specifically, let E, be the 6-dimensional Z,-manifold de-
scribed in [34, p. 167]. Let p: M**+*— M**+* be a degree 1 normal map of
closed oriented manifolds; then p has Kervaire invariant 1 if and only if

1 % p: By x M*%** —— E° x M*+*
has Z,-index invariant 1!

In § 8, we indicate how the new invariant gives the homotopy class of

a map
fi M— G/PL
except for some problems in dimension 4.

For the reader’s convenience, we include an appendix which reviews
those results we need about Q/Z-cohomology and cohomology operations.

I would like to take this opportunity to thank Paul Cohen and Ralph
Phillips for their invaluable aid, and, in particular, Gregory Brumfiel, without
whose help this paper would not have been possible. I would also like to thank
the referees, whose extraordinarily careful reading of the original manu-

script, and detailed criticisms are responsible for whatever degree of clarity
and precision of exposition the present version can claim.

1. Bordism and bordism with coeflicients

In this section, we recall the definitions and main properties of the PL-
bordism groups, and bordism with coefficients.

DEFINITION 1.1. Let (M", M), (N", ON) be oriented PL-manifolds with
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boundaries. Suppose

fo(M, oM) — (X, Y),
9:(N*, 0N) — (X, Y)

are continuous maps. The triple (f, M, 0M) is called bordant to (g, N, ON)
if there are: (1) a manifold (W, 0W) so oW =M + N)UZ with
ZNM=0M,ZN N=06N, and (2) a map H: (W™, Z) > (X,Y)so H M= f
and H| N = g.

Z
A

Z

FIGURE 1.2.

The absolute PL-bordism group Q.%(X) is defined as Qi*(X, ¢), and so,
for (f, M, 0M) to give a class in Q}(X), it is necessary that oM = ¢. Thus
QX)) corresponds to maps of closed PL-manifolds into X.

The QF“(,) satisfy the Eilenberg-Steenrod axioms except for the di-
mension axiom, and thus define a homology theory (see e.g. [13, p. 13]).

There is a second way in which homology theories arise: by taking homo-
topy groups of smash products of spectra and spaces, which we review now.

Recall the definitions of spectrum, smash products of spectra, and maps
of smash products of spectra to spectra as given, for example, in [48, p. 637].

DEFINITION 1.2. “® s a ring spectrum if there is a map t: W A W — W.

We have the usual definition for associativity.
The W-homology groups of (X, Y) are defined ([41]) as

1.3) H(XY; M) =W0(X,Y)=7m(DANXUcY).
These groups also satisfy all the Eilenberg-Steenrod axioms except the di-
mension axiom.

Let By, be the classifying space for oriented PL-n-plane bundles ([19],
[21]) and 7, — Bgp, the universal bundle. Let M(SPL,) be the associated

Thom space. In the standard way, these give the SPL-Thom spectrum
M(SPL). Recall

THEOREM 1.4 (Williamson [42]). Q(X,Y) = H (X, Y; M(SPL)) for (X, Y)
a CW-pair.

Whitney bundle sum induces the ring structure
. M(SPL) A M(SPL) — M(SPL),
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which makes M(SPL) into an associative ring spectrum with unit U. (U is
the embedding of the compactified fiber over a point U: 8" — M(SPL,), which
gives U: S — M(SPL) where S is the sphere spectrum and the composite

$ A M(SPL) 23 M(SPL) A M(SPL) —“— M(SPL)

is the identity.)
!t gives the pairing Q{(pt) x Q"™(X, Y)—Q"™(X, Y) from the composition

7 [M(SPL)] ® 7, [M(SPL) A (X U cY)]

(1.5) —— 7,[M(SPL) A M(SPL) A (X UcY)]
XD, 2 IM(SPL) A X U Y.
We have
(1.6) H(X,Y; Z) = H (X, Y; K(Z, 0))

where K(Z, 0) is the Eilenberg-MacLane spectrum with K(Z, 0), = K(Z, 1)
([41]). The Thom class of M(SPL) gives a map U*: M(SPL)— K(Z, 0), so
the composition & g M(SPL) — K(Z, 0) represents the fundamental class.
The Hurewicz homomorphism % is now described by the composite

U*A1

7 (MSPL A X UcY) 20 7 (K(Z,0) A X UcY).

We recall three further results before turning to the definition of ho-
mology theories with coefficients.

THEOREM 1.7 (Atiyah-Dold [15]). Let W be a spectrum. There is a spec-
tral sequence E* — H, (X,Y; W) with the E?;-term equal to H(X, Y; 7,(W)).
If W is a wedge of Eilenberg-MacLane spectra, then the sequence degemerates,
and E* = E~. Finally, if W s a ring spectrum, the action of 7;,(W) in E*?
extends to E=, and corresponds to the action of w;(W) on H, (X, Y; W).

Let Z, denote the ring of fractions m/n, with » prime to 2. Then
H(X; Z,) can only have 2-torsion. Indeed, if X is locally finite, H™(X; Z,,) =
ZP @ Ty is a direct sum of a finite number of copies of Z,, and a 2-group.

THEOREM 1.8 (Browder, Liulevicius, Peterson [6]). There is a map f of
M(SPL) into a wedge of Etlenberg-MacLane spectra W, so f: M(SPL) — ®
induces an 1somorphism of Z,-cohomology.

This implies that the only k-invariants of M(SPL) lie in p-torsion, with
p an odd prime. Thus

COROLLARY 1.9. Thecokernel of h:Q(X,Y)— H (X,Y) is an odd torsion
group for (X, Y), a locally finite CW-pair.
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Let G be a finite Abelian group and M(G), the »'™ Moore space for G.
Thus H(M(G); Z) = G and H(M(G); Z) =0, i = n. The M(G), form a
spectrum 9M(G).

DEFINITION 1.10. Let W be a spectrum and W,( ) homology with respect

to W. Then W,( ; G) = W homology with coefficients in G is defined to be
homology with respect to W A IM(G).

COROLLARY 1.11. Let G be a finite 2-group. Then h: QMX, Y; G)—
H,(X,Y; @) is onto. (Of course, the same result holds for the ordinary dif-
ferentiable bordism groups Q,.(X, Y; G).)

Proof. From (1.8) and the Kunneth theorem,
f A 1: M(SPL) A M(G) — W A M(G)
induces isomorphisms of integral homology. Hence they have the same
homotopy type. But W A M(G) is again a product of Eilenberg-MacLane
spaces if W is, and (1.11) follows.

Consider M,(G) A M,(G). It has homology H,..(M AN M) =G QG,
H,.... =G G, and all the remaining groups are zero.

LEMMA 1.12. Let ¢: G ® G — G be any homomorphism, and suppose G
contains no Z-direct summands. Then there isa map ;: M.(G) N M, (G)—
M,..(®@), so tt;: Hy (M N M) — H,..(G) is exactly ¢.

This implies

COROLLARY 1.13. Let tt: G R G — G be any pairing where G contains no
Z,-direct summands, and W a ring spectrum of Hurewicz dimension mn.
Then W A M(G) is again a ring-spectrum with coefficient pairing [t and
Hurewicz dimension n.

Suppose, finally, that z: G ® G — G is associative. This implies that, on
the level of homology, the diagram

M(G) A MG) A MG) 223 MG) A M(G)

ll A 19

MG) A MG) 25 M(G)

commutes. Hence if M(G) A W is a wedge of Eilenberg-MacLane spectra,
and 70 is an associative ring-spectrum, then M(G) A “© is again an associative
ring-spectrum. Thus

COROLLARY 1.14. Let G be a 2-group and tt: G ® G — G an associative
pairing. Then QX( ; G) has coefficients an associative ring. Moreover, in
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terms of the action of Q(pt, G), the kernel of the Hurewicz homomorphism
consists of decomposables a-b, h(b) # 0, and Massey products {a, n, by with
a € QM (pt, G) and h(b) # 0.*

Z,-direct summands of G must be handled differently from other groups
because there is no suitable map M(Z,) A M(Z,) — M(Z,). The map ¢: By, —
K(Z, 2) defined by taking the fundamental class of the Eilenberg-MacLane
space to B(v,), the integral Bochstein of the first Stiefel-Whitney class, is an
infinite loop map, so the fiber F' of ¢ is an infinite loop space. The Thom
space of the universal bundle restricted to Fis M(SPL) A M(Z,), and the
resulting identification of spectra makes M(SPL) A M(Z,) into an associative
ring-spectrum.

This completes our discussion of the homotopy theoretic aspects of
QiY( ; G). We now turn to the geometric aspects. From here on, it is most
convenient to assume that G is a cyclic group Z,, and the pairing /¢: Z, ® Z, —
Z, sends a®b to a-b, and hence is the usual identification. It is clearly as-
sociative.

DEFINITION 1.15. A closed Z,-manifold (M™, k) is an oriented m-manifold
with boundary, together with an orientation-preserving PL-homeomorphism
k2N x {1, -+, n} = 0M. Thus the boundary of M consists of n-ordered
copies of N.

A Z,-manifold (M", £) with boundary is M", together with a manifold
N™* with boundary and an oriented PL-homeomorphism (into)

E:N™'x {1, -+, n}—>0M™.

Thus 0M™ — (N x {1, -+-, n})) is a Z,-manifold W with boundary (ON) x
{1, ---, n}.

Amap f:(M™, W, £) = (X,Y) is @« map of Z,-manifolds if fok factors
as Nx {1, -+, n} — NZL X;ie. f ts the same map on each component N.

For convenience in the sequel, we use the notation

N; = k[N x 7] .
Also, if (M, £: N x {1, -+, n} — 0M) is a closed Z,-manifold, we will write
(M) =N.

Bordisms are defined by setting {f, (M, W, )} = {g, (M', W’, £’)} if there

is a manifold P, a set Z C 0P, and a map
H:(P,oP— M — M")— (X,Y),

* For G of odd order and prime to 3, the diagram above always homotopy commutes, and
QPL(pt, G) is always an associative ring [43]. A different argument applies at the prime 3 [29].
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satisfying the expected conditions. This gives rise to a homology theory as
before, and, using transversality, it is directly seen to be Qi*( , Z,).
Indeed, in homotopy consider the cofiber sequence

Sm (xm) (xm) Sm+1

S" —— M(Z,) — S+

Smashing with M(SPL) gives a cofiber sequence of spectra and the long exact
sequence

i P gn ) s Qi 5 Z) s
Suppose now that (M™, f) represents a class of order k£ in Qf“(X). Then
(kM™, kf) = 0(W™, F),and, if k|n [or n|k], we have two classes in Q*(X, Z,),
(n/K(W ™Y, n/k(F)), (W™, F)] and (M™, f). Indeed, the sequence 0—
Q(X) ® Z, — (X, Z,) — Tor(Q,_(X), Z,) — 0 is split exact.
Next, consider the effect of changing coefficients. Given the exact
sequence

0— 2, 7, 2

we have the long exact sequence

Zin 0,

05 Z2) 005 Zu) 005 2y 2 -

Here i{M} = {m(M)}, 0{W} = {M} in Q(Z,) where mM = oW.

The geometric interpretation of the ring structure of (1.13) is not direct
since the Cartesian product of two Z,-manifolds is not a Z,-manifold.

Note, however, that by the collar neighborhood theorem ([27]), we can
assume a neighborhood of M has the form (0, 1] x oM. Using a second ap-
plication of the collaring theorem, we can assume given for each NC oM a
neighborhood of the form (0, 1] x N. Similarly, we have neighborhoods
(0, 1] x N’ of the N'.

N N
(1.16)

N
FIGURE 1.16.

DEFINITION 1.17. Let M, M’ be closed Z,-manifolds. Then M x M’ is
the Z,-manifold

(M x M'"UU.:<; I* X N; x N}, N, £),
where (0, t, N; x N}) is identified with
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@t, N) x NI, t<2,
N, x 2 — 2t N)), tz,
and (1, t, N; X Nj) is identified with
N, x (2, NY) tgé,
@ — 2t, N)) x NI, tg%.

Here N; is M x N}UN; x M’, where we identify N, x N' with N x N! via
the given PL-homeomorphism.

(1.18)

FIGURE 1.18.

By reparametrization, given Z,-maps
fi(M, r)— X,
oM, K)— X',
one obtains a Z,-map
fXgWMx M, F— X x X,
and these give the geometric interpretation of the product in (1.17).
DEFINITION 1.19. Let (M™, k) be a Z,-manifold. Then the associated

singular manifold M™ is M™U ..« N where 7: N x {1, ---, n} — N 1is the
projection.

Example 1.20. If nis2and Misa closed Z,-manifold, then M™ is a closed
manifold. It is non-orientable, however, with the obstruction to orientation
being N. There is a map v,: M™— S, defined by bicollaring N in M, taking the
resulting Thom map M™— S* A N, and projecting onto S*. Clearly, vi(e!)
is the first Wu class of M™. Singular Z,-manifolds, in fact, are characterized
by the property that they are closed, with v, being the mod 2 restriction of
an integral cohomology class ([37]); also compare the remark following (1.14).
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Now we consider the Hurewicz homomorphism
(1.21) h:QMNX,Y; Z,) — H(X,Y; Z,) .
Let (M, ) be an open PL-Z,-manifold, M its associated singular manifold,
and

fr(M, 5, W) — (X, Y)

a map representing x € Q(X, Y; Z,). f factors through f: (M, W) — (X, Y)
and, going one step further, f induces
(1.22) FiMUe(W)— XUeY).

Note that d[M] = n[N] + [W]. Hence in (1.22), o[M U c¢W] = n[N]. Thus
with Z, as coefficients, f,[M Uc W] is a well-defined classin H (X UcY; Z,) =
H,X,Y; Z,). It may be verified directly that f,[M Uc W] does not depend on
the choice of representative for x. In fact,

WS, M, £, W} = F M UcW] .

The next thing that needs a comment is the normal bundle to a Z,-
manifold.

DEFINITION 1.23. A Z,-normal bundle to (M", k) 1is the ordinary
normal bundle v to M", together with an oriented bundle isomorphism
¢ V| k(N x {1, --+, n}) > v(N) x {1, - - -, n} covering .

Associated to the Z,-normal bundle is a bundle ¥ over the singular
manifold M, obtained by pasting together the bundles using ¢. In the case
of a Z,manifold, this is not the normal bundle to I, as one can easily see by
considering the Klein bottle. However, they differ only on N, where the
difficulty is in the orientation.

Y is induced from a map

v: M — By, ,
and hence has characteristic classes v*(\) for » € H*(Bsp)-

For example, in the case of a Z,-manifold M, the total Wu class of M as
an unoriented manifold is

(1.24) 1 +v)UVE),

where v, is the first Wu class, and V(¥) is the Wu class of the bundle 7.
Indeed, on M, v, is the restriction of an integral class =z, ([27]), and if we
consider the map

(x):M— S*,
we see v,(v(M) + (x,)*(&)) = 0, where &, is the Hopf bundle (Mobius band)
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over S'. Thusv(M) + z(&,) is oriented. Now take (&, + me) for m sufficiently
large, and lift (x,) to an embedding (y,) in this bundle. Embed the bundle in
Euclidean space E™*, delete a small neighborhood N of * from S* on which f
isregular, and n‘"(N' )is (&, + me)-thickened to a neighborhood D' x D! x D™+,
Then this neighborhood has a complimentary neighborhood ¢= D" < D' x D™+,
and their union is S' x D™*2,

(1.25)

FIGURE 1.25.

Note that (y,)(M — f*(N)) isan embedding of the Z,-manifold in D' x D' x D™+,
Moreover, from (1.30) we now see easily that U is the normal bundle to (y,)M
in &, + me, and, since &, is the normal bundle to this embedding, we have
2F(&) + Y = v, and (1.24) follows.

2. Normal maps, surgery, and Sullivan’s description of G/PL

In this section, we review the principal results of Sullivan’s thesis.

Recall that a spherical fiber space is a map f: E— X, for which the fiber
has the homotopy type of a sphere. There are notions of Whitney sum, and
a fiber homotopy trivial sphere bundle is one equivalent to X x S* 2> X. The
Whitney sums of trivial bundles are again trivial. '

The equivalence classes of such bundles are preserved by the Whitney
sum operation. Hence we can take the Grothendieck group G(X) of such
bundles over X.

THEOREM 2.1 (Stasheff [3]). Let G, be the set of homotopy equivalences of
the sphere S*™', and By, its classifying space. Let i: G, CG,., be the usual
inclusion (suspension), and B, =— By, . the induced inclusion with B, =
lim,_. B;,. Then, if X is a finite CW-complex,

G(X) =[X, Z x By] .

Consider the map
(2.2) By, — B,
induced by regarding the universal PL-sphere bundle as a fiber homotopy
sphere bundle. Its fiber is the space G/PL. A homotopy class of maps
f: X — G/PL is exactly equivalent to specifying a PL-bundle v over X, to-

gether with a fiber-homotopy trivialization of .
Following Sullivan, we describe the PL-bordism of G/PL.
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DEFINITION 2.3. Let M*, M* be oriented PL-manifolds, both open or both
closed. A degree 1 normal map p: (M", dM™)— (M", 6M™) is a degree 1 map
of pairs, together with a bundle tsomorphism of the PL-normal bundle v
([26]) to (M), with p*(v) for some v € Kepr(M™).

We say o: (M", 0M")— (M*, dM™) is normally bordant to p: (N*, dN) —
(N, 6N) if there are manifolds W=+, W', with W a bordism from M to
N, W a bordism from M to N, and a degree 1 normal map F: (W, 3) — (W, 3)
so F'| M is o0 and F'| Nis 0, together with the restrictions of the bundle iso-
morphism to ¢ W being the original isomorphisms.

Normal bordism is an equivalence relation, and we can define the normal
bordism groups NB, of closed oriented PL-manifolds in the evident way.

THEOREM 2.4 (Sullivan). 9138, = Q%(G/PL).

Proof. Let f: M* — G/PL be equivalent to S — v = M™, together with
the fiberwise homotopy equivalence h: v — M™ x S*'. Note that v is a PL-
manifold, and apply PL-transversality on M" x . Thus we may assume
R (M"™ x D) = M x D', and «|M"— M" is a degree 1 map. Note that
the PL-normal bundle to 7 is 7*(v(M)) — 7*(7), and the normal bundle to /7"
in 7 is trivial. Hence the normal bundle of M" is stably T*(v(M) — 7), and
7w is a degree 1 normal map. The same construction works for bordisms.
This gives a morphism A\: Qi*(G/PL) — 913B,. A similar construction proves
the converse.

LEMMA 2.5. Any element x € Q5(G/PL) may be represented by a map
of a simply-connected manifold M" into G/PL for n =4 (seee.g. [5] or [39]).

Now consider a degree 1 normal map f: M — M" of simply-connected
manifolds and normal bordisms of the form

(2.6) : F:Wr'— M~ x I.
The main technical results of [5] or [18] can be summarized in

THEOREM 2.7. 0: M™ — M", a normal degree 1 map of simply-connected
closed manifolds, is normally bordant to a homotopy equivalence via a bor-
dism of type (2.7) if and only if it is normally bordant to a homotopy equiva-
lence via a general bordism. Moreover, if n s odd, such a bordism is always
possible, while if m is 4k (k > 1), o is bordant to a homotopy equivalence if
and only if Ind(M*) = Ind(M™), and, if n =4k + 2, k> 1, the obstruction to
making o bordant to a homotopy equivalence is a well-defined element £ of
Zy, called the Kervaire invariant of p.

In the case n = 4k in (2.7), I(M") — I(M) is called the index of p and is
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always divisible by 8 ([18]). Again, from [18], there are maps ¢: S* — G/PL
with index (¢) = 8, k > 1, or index (g) = 16 in case k = 1. Similarly, in each
dimension 4k + 2, there is a map ¢: S***— G/PL having Kervaire invariant 1.
Sullivan sharpened (2.7) by observing first that the just cited results

were strong enough to show that

Z, i1=04),
(2.8) ©(G/PL) = {Z,, 1 =24),

0, otherwise.
Moreover, if 915“(X) represents the unoriented PL-bordism ring, we have

COROLLARY 2.9. (a) If n=0(4), the map I: {f: M"— M"}— I(f)/8 factors

through bordism and induces a homomorphism
I. Q'Y (G/PL) — Z .
(b) If n = 2(4), the Kervaire invariant induces a homomorphism
K:9UYG/PL) —> Z, .*

Now consider the effect on I and K of operating with QL*(point) or
91 (point). We have
(2.10) I(z(y)) = (Ind x)I(y)
for x € Q{X(point) and

I(z(y)) = 0

otherwise. A more delicate argument (I32], [35]) now shows

THEOREM 2.11. K(x(y)) = <V? [X]>K(y), where V is the total Wu class
of a representative X of x.

This is Sullivan’s famous product formula. The original formula used W,
the total Stiefel-Whitney class of X, in place of V2. However, in the appli-
cations, all calculations become shorter if W is replaced by V2. This obser-
vation is due to G. Brumfiel.

Also, while we do not explicitly prove (2.11) in the course of this paper, we
develop sufficient machinery (notably in §§ 6 and 7) to make (2.11) routine.

(2.7) through (2.11) were sufficient to prove

COROLLARY 2.12. The 2-localized homotopy type of G/PL 1s

* More precisely, in (2.9b), Rourke, Sullivan, and Wall have shown that there is a morphism
K: %t (G/PL) — Z, ,
so that the composition
QFL(G/PL) —> 9EL(G/PL) —> Z,

is the Kervaire invariant.



SURGERY WITH COEFFICIENTS 207

E, x 17, K(Z, 4i — 2) x K(Z, 41),

where E, is the unique stable 2-stage Postnikov system having w(E,) = Z,
n(E,) = Z, (K, = 0 otherwise and non-trivial k-invariant.

For the proof, see [32] or [35].

Remark 2.13. (2.12) is proved by constructing classes K,, (k,) in
H*(G/PL, Z), H***¥G/PL, Z,), satisfying I(M, f) = (L, (M)f*K,, [M]>
K(M, £)=<V¥M)f*(k,), [M]y. Thereis alarge ambiguity in the definition of
K, in Sullivan’s proof of (2.12). However, since 915%(X)/90: (point) - 934(X) =
H,(X, Z,)), and we have H*(X, Z,)=Hom(H,(X, Z,), Z,), there is no ambiguity
in the definition of k,. From the point of view of cohomology theory, our
efforts in the following sections will be directed toward removing the ambi-
guity from K,. To do this, it is sufficient to define K,, together with its
restrictions to H*(G/PL, Z,7) for each r. Thus we shall have to talk of the
analogue of the index homomorphism I for Z,~-manifolds.

3. Surgery on simply-connected Z,-manifolds

Consider a closed Z,-manifold (M ™, k) and a map f: (M ™, k) — G/PL. Let
St — v — M™ be the associated bundle, together with the trivialization
t:y— M™ x S, Since f is a Z,-map, we may assume ¢ to be the same in
a neighborhood of each identified component of 6M. Making ¢ transversal
by first changing it equally on identified components and then extending
transversality to the interior gives a Z,-manifold (™, £) and a degree 1
normal map

(3.1) o: (M", ) — (M™, k) .
Moreover, by imitating the proof of (2.5), we have

LEMMA 3.2. Bordism classes of degree 1 normal maps of Z,-manifolds
(as in (3.1)) correspond bijectively with Q\(G/PL; Z,).

A closed Z,-manifold (M ™, k) is said to be simply-connected if 7, (M™) =
7 (N™") = 0. Analogous with (2.6), we have

LEMMA 3.3. Any element x € Q°X(G/PL; Z,) may be represented by a map
of a simply-connected Z,-manifold (M™, k) into G/PL.

Now, consider (3.1) for simply-connected Z,-manifolds. We attempt to
replace o by a homotopy equivalence of Z,-manifolds by surgery. This means
that surgeries on the boundary must be done equivariantly, but interior sur-
geries are arbitrary.

THEOREM 3.4. There are homomorphisms
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1/8: Q4(G/PL; Z,) — Z,,
K,: Qi (GPL; Z,)— Z, R Z, ,
K: Qi (G/PL, Z,))— Z, R Z,,
0: Q% _«(G/PL, Z,) —> 0
so that the simply-connected surgery problem (3.1) associated to

x € Q(G/PL, Z,) is bordant to a homotopy equivalence m > 1 if and only if
the appropriate homomorphism takes x to zero.

Proof. In (3.1), look first at po| N™— Nm™. Every surgery done on N at-
taches #» handles to I,

N2

(3.5)

2

FIGURE 3.5.

but gives a problem bordant to the original one. Thus as a first step, we
attempt to make o| N — N a homotopy equivalence.

If dim N = 0(4), the obstruction to making 0| a homotopy equivalence is
I(N) — I(N). But n(N) = oM, hence nI(N) = 0so I(N) = I(N) =0 and p|
is equivalent to a homotopy equivalence. We now have an ordinary simply-
connected surgery problem (3.1) with p| a homotopy equivalence on the bound-
ary. At this point, there is no further obstruction to completing the surgery
on the interior ([18]) to make (3.1) an equivalence of Z,-manifolds. This
completes the case x = 4k — 3.

If dim N = 1(4), there is no obstruction to making o| a homotopy equiva-
lence. However, the Kervaire invariant is an obstruction to making o an
equivalence on the interior of M. Consider a bordism W of p: (M, £) — (M, k)
to 0: (M, £) — (M, ), where we assume 0 | again a homotopy equivalence on
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the boundary. 0W = M U M U n(Z), and the Kervaire invariant on (W) is
zero. But K@W) = K(M)+ K(I) + n(K(Z)). Hence K(M) = K(I) + n((Z)),
so if » is odd and Z is a bordism from N to N, having Kervaire invariant 1
(I5]), consider the bordism of Z,-manifolds

(3.6)

FIGURE 3.6.

where the back face is M. Clearly, K(M) =1 + K(M). Thus there is no
obstruction in this case. However, if n is even, then K(JM) = (M), and the
obstruction is well-defined. This completes the case * = 4k — 2.

If dim N = 2(4), there is a Kervaire obstruction K to making 0| N—N
into a homotopy equivalence. The invariant on 0(M) is zero of course, but
by equivariance K(@GM) = n-K(N). Thus K(N) is zero if n is odd, and we
can make p| a homotopy equivalence. There is then no further obstruction
to making o an equivalence on the interior. Soif = is odd, the obstruction
is zero.

Consider the case n even. Let W be a normal bordism from (M, £)— (M, x)
to (M, £)— (M, £). Then the Z’s are normal bordisms from N to N, and
K@GZ) = K(N) + K(N) = 0, so K is well-defined and depends only on the
bordism class. This completes the case » = 4k — 1.

If dim(N) = 4k — 1, there is no obstruction to making o| a homotopy
equivalence. Hence the obstruction to completing the surgery is I(M) — I(M)
(with p| a homotopy equivalence). This number may be changed, however.
We have for W, as before,

(3.7) B(W) = I(M) — I(M) + nl(Z) =0

by Novikov’s index addition lemma ([30]). On the other hand, consider the
degree 1 normal map g: Z— I x N. It is a homotopy equivalence on the
boundary, hence by [25], I(Z) = 0(8). From [5], there is a normal bordism
from 7| to p|, having index any multiple of 8. Using the construction of (3.6),
we see that we can vary I(M)— I(M) by any multiple of 8n. But I(M)— I(M)
is itself divisible by 8. Hence ((M) — I(M))[8 is a well-defined invariant of p,
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taken as a residue class mod #. This completes the proof of (3.4).

We now turn to the question of how one determines the value of I,
given (3.1).

THEOREM 3.8. Let p: M*~* — M*~ be a degree 1 normal map of closed
oriented PL-manifolds, and suppose that W (W) is a bordism from M to M’
(M to M'). Assume p extends to a degree 1 normal map p: W—W, and p| M’
is @ homotopy equivalence. Then I(W) — I(W) is a mod 8 invariant of the
normal map .

Proof. Let W', W’ be a second set of bordisms, and 7 a normal extension
of p so | M" is again a homotopy equivalence. Then p UD: W Uz — W' —
W Uy — W'is a degree 1 normal map which is a homotopy equivalence on
the boundary. Hence
(3.9) IWU—-W'") — IWuU—W’")=0@8).

But by the index addition theorem,
Iwuy-w)h=IW)—- I(W",
IWU—-W)=1IW)— IW",
and (3.9) now implies (W) — I(W) = I(W') — I(W"')(8), as was to be shown.
DEFINITION 3.10. Let o: M*~* — M*~* be a degree 1 normal map of closed

oriented PL-manifolds. Then the semi-index of o, written SI(0), is the mod 8
index of any normal bordism of p to a homotopy equivalence.

Thus we have

COROLLARY 3.11. I/8({o: (BI*, k) — (M*, k)}) is given as 1/8{I(J*) —
IM*) + nSI(o| N*~ — N*)}.

Our object in the next three sections will be to give an effective method
for calculating SI(o |).

We now consider the Kervaire invariant cases. If dimension (M) is 4k + 2,
it is a result of Brumfiel and Wall (see e.g. [32]) that the obstruction obtained
by first making o: M***— M**+* an equivariant homotopy equivalence on the

boundaries and then attempting to do surgery on the interior is given for
Z,-manifolds by the formula

(3.12) K(0) = KV*©) U f*(k,), [M]> = <V() U f*(k), [M]) .
The latter equality follows since
(@ + VYVE) =1 + V)V = V()
by (1.29). Note in particular that K(o) is independent of the choice of the
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equivariant bordism to an equivariant homotopy equivalence.

Now we show that the result for Z,-manifolds implies a similar result
for Z,-manifolds. Indeed, let » be even and

. Z,—— Z,

the non-trivial homomorphism. 7 converts a Z,-manifold to a Z,-manifold by
defining ,M = N x {z'(0)} U N x {7*(1)}, and the homeomorphism identifies
(N x i) with (N x (¢ + 1)).

We have the diagram of maps of singular manifolds (1.24) inducing the
surgery problem on M,

(3.13) M Mo —— M., G/PL .
Choose a bordism of the normal problem over N to a homotopy equivalence.
This gives a bordism of 9,(M) to a homotopy equivalence, and we see that the
surgery problem for M, is exactly the problem for M.
Now ¥(M,,) = n*Y(M,,), as is obvious. Hence

K(p) = <m* f*(k,) U (VI(Mw)), [Ma])

(3.14) = (k) U(VIM ), [Ma] Q Z
= <.7(f*(k*) U V(—ﬂM(n))Z), [Mm>]> ’

where
J: H*( ’Zz)_—’H*( ,Zn)
is the coefficient homomorphism.
Finally, in the case when dimension M is 4k + 3, the surgery obstruction
is given by
(VI(M)) U f*(k,), [N]) = G(VIM)* U f*(k,), 0.[M])
= {Bui(VI(M)* U f*(k,)), [M]) .
Remark 3.16. In the case of Z,-manifolds, 5. becomes Sgq¢', and
Sq'(V(M))* = 0 so (3.15) becomes
Ki(0) = (VI(M))' U f*(Sq'(ky)), [M]) .
4. The semi-index for surgery on 4k — l-manifolds
and Q/Z-quadratic forms
In this section, we obtain techniques for evaluating the semi-index (3.10)
of a surgery problem,
(4.1) 0: M=+ —— M,

They involve a Gaussian invariant for rational quadratic forms.
Recall that, by doing framed surgeries on I/ in (4.1), we can make o
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2k — 2-connected ([5, Chaps. 2, 8]). In the remainder of this section, we
assume this condition satisfied. Note that now we need only make a series
of modification on embedded S*~'’s in order to make o into a homotopy
equivalence. This can be broken down even further. Let K,._.(M) be the
kernel, and split K as

4.2) Ko @ Ko (I

where K™ is a free Abelian group and K" is the torsion subgroup. Then
we may first perform surgery to kill K™°. This will reduce K,,_, to K;}°%(1),
and we have

LEMMA 4.3. Let W be a bordism from M*~* to M*~* and
FFW—Mx1I

a normal bordism of o to p so that:

(1) W is obtained from M by adding 2k-cells, and

(2) Ky (M) = K3*(M), in the sense that there is a direct sum em-
bedding i: Ky _,(M)— K, (W, ), and di(x) = ¢(x) — x defines the isomorphism.
Then I(W) = 0(8).

Proof. Consider the exact sequence of kernels for F":

(4.4) 0 — K, (0W) — Ko (W) 2 Ko(W, 3W) —— K, (3 W)
S Ky (W) — 0.

Note that K,,(0W), K,,(W) are both free groups. By (4.3.2), and the fact that
W~MUe*U --- Ue*, we see that J4 1s a map onto a torsion-free direct
summand in (4.4). Hence 7,, is an isomorphism. Now the self-interjection num-
ber of any element in im(r,,) is zero. Hence I(W) = I(im j,), but this admits
a unimodular even form, and hence has index congruent to 0 mod (8).

From this, it follows that SI(0) = SI(9: M*~* — M*"), and the index of
a bordism from p to a homotopy equivalence is determined by the process
of doing surgery to kill K1o",(M). Assume now that p: M — M satisfies the
additional condition imposed by (4.3.2). Let F: W— M x I be a bordism from
© to a homotopy equivalence, with W obtained from M by adding only 2k-
cells. The exact sequence of kernels (4.4) becomes

(4.5) 0 — Ko W) =2 K(W, W) K (M) — 0,

where both K, (W) and K, (W,dW) are free. The intersection pairing iden-
tifies Ky(W; 0 W) with Hom,(K,.(W); Z), and the self-intersection form on
K,(W) is given by
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(4.6) zex=A@)Nxe =N A®E).

This form is even, rationally non-singular, and its index is I(W) = SI(0)(8).
The associated symmetric bilinear form is -y = A@) Ny = x N A(y).

LEMMA 4.7. Let A™: K, (W, 0W) ® Q@ — K, (W) ® Q be the inverse of
ARL KW (W)RQ — Ky (W, 0W) R Q. Then there is a well-defined non-
singular quadratic pairing on Ki5(M) associated to (4.6),

A Ko (M) — Q27 ,
defined by taking the residue
My) = &0 (A7) in Q2Z
where ox = y.

Proof. Indeed, if #’ also satisfies 02’ = y, we must have &' = x + Az.
Thus

P NA =cNA2+2xNnz) +2nA4z.

Since A is even, 2 Az is even, so, modulo twice an integer, &' N A7'2' =
x N A7'2%, and the form is well-defined. It remains to show ) non-singular.
The associated bilinear form ®(y, ¥’) is defined as {x N A™'2’} in Q/Z where

ox =1y,

axl — yl .
Let f: Ky (W) — Hom, (K, (W, 0W); Z), s K,(W, 0W) — Hom,(K(W); Z)
be the isomorphism induced by Poincaré duality (cap product). We have the
commutative diagram

K.(W) —— Hom,(Ku(W, dW); Z)

4.8) | |

- KW, 0W) —— Hom(K.(W); Z) ,

and A* is injective since A is. Moreover, passing to Hom groups from (4.5),
we have the short exact sequence

(4.9) 0— Hom(K,(W, 0W); Z)— Hom(K(W); Z) — Ext( s (M); Z)—0 .
But Pontrjagin duality identifies Ext(G; Z) with Hom(G; Q/Z) ([11, p. 139]).
Thus (4.8) abuts above the square

KW, 6W) 5 Hom,(Ku(W); Z)

(4.9) la l

K2or (3 —— Hom(K",(M); Q/Z)
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where v is the homomorphism corresponding to ®. Thus the fact that v is
an isomorphism follows from the 5-lemma, and (4.7) follows.

Remark 4.10. It follows from [18] that the form \ defined in (4.7) from
(4.5) for our situation of kernels and surgery is in fact defined intrinsically on
Masa self-linking number. We do not need this fact in the sequel, but will
show by another method in § 6 that X\ is intrinsic to /7 — M and not to the
choice of W, bording p: M — M to a homotopy equivalence.

LEMMA 4.11. Let \: K35 (I) — Q/2Z be given as in (4.7), and suppose n
18 the order of the finite group K= (M). Then

D mid(x) _ ,(7i[4)I(4) 1/2
8 = Zzelf§k°_‘1(71>e =€ (n ) .

Proof. In [1], we find a similar result stated under the hypothesis that A
is odd. However, the proof given there works without essential modification
to show (4.11) for even A4.*

Remark 4.12. 1 am indebted to G. Brumfiel for the proof given above.
It replaces the considerably longer argument originally used. Similar results
may be found in [2].

(4.11) gives us an explicit way to determine the semi-index of p once we
are given the quadratic form x on K7*,(M).

We now consider the general non-singular quadratic form

MK — Q27 ,

defined on the finite Abelian group K, with associated bilinear form .

LEMMA 4.13. Suppose K,C K is a submodule of K on which ® is non-
singular. Let K, = K;*. Then K = K, P K,, and G, = G.,°9,, where )\, s
A-restricted to K.

Proof. That K= K, P K, is well-known ([38]). Now note that \(k,+k,) =
Mky) + NMEy) + 29k, ky) = Mk) + Mky). Thus

Z ezi2<k1~{-kg) — Z e=i2<k1> Z efri2<k2) ,
and (4.13) follows

THEOREM 4.14. Under the assumptions above, let G, = ZNK e Then:
(@) There is a finitely-generated free Abelian group F, a symmetric

* Some questions have been raised about the convergence of the integrals used in [1].
However, P. Cohen points out that the usual way of interpreting such integrals is as dis-
tributions, in which case there is no further difficulty in [1]. Alternatively, the reader could
introduce an integrating factor as is done in [2] or [45] and read of the answer as an
asymptotic limit.
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even map A: F— F, and an identification tt of F with Hom,(F; Z) so

(4.15) 0—F-A F s K—0

18 exact, and \, P are induced from (4.14) as in (4.7);

(b) If N, N are two quadratic forms on K with respect to the same
bilinear form P, then there is an a € K so that

@) 2a =0,

2) M) = Ma + x) — Ma)
for each x€ K. Moreover, S; = G,

Proof. (a) is the ¢ = +1 part of [40; Th. 6, p. 296]. To show (b), note
that \'(x) — M(x) is a linear function of x. Thus there is an ¢ € Hom(K, Q/Z)
S0

N(x) — Mx) = 29(x, a) € Q)27 ,

for all ze K. Write V() = (M) + 2P(x, a) + Ma)) — Ma) = Mz + a) — Ma),
and (b.2) follows. Also, since

V(e — 2) = 2(V () — P(z, ) = 2(Mx) — P(x, ©)) + 4P(x, a) =0,

we have 49(x, a) = 0 in @/2Z. Thus 2¢(z, a) = 0 in Q/Z, and P(x, 2a) = 0.
This being so for all # implies that 2a = 0, so (b.1) follows.
Finally, note that

G, = E eTI (B — EzeK griMEta) g=rid(e) Qze“"““” ,
and (4.14b) follows.

Example 4.16. Let K be a direct sum of Z,’s and »: K — Z,C Q/2Z an
even quadratic form with respect to the non-singular bilinear form . Then
dim(K) is even, K has a @-symplectic basis @, « + + &, ¥, -+ + ¥ With P(z,, 2;) =
P(Ys, ¥;5) = 0, P(xs, ¥;) = 85 ([7]). Moreover, if K, is the subgroup generated
by (., y:), we have (4.13) G; = J]}_, S;,. Now it is easily seen that, in K;, we
may assume M#,) = My,) is either 0 or 1. If M) = My.) = 1, we find that
9, = —2. Similarly, if Mx.) = My.) =0, we have §;, = +2. Thus §;,=(-1)2"
where 7 is the number of K, for which \(x,) = My;) = 1; i.e., §; is negative
if and only if the Arf invariant ([18]) of X is 1.

COROLLARY 4.17. Let K be a Z,-vector space with non-singular bilinear

. . A
form @, and even quadratic form : associated to®. Let 0 —F —F— K—0
be a sequence (4.15) associated to . Then

I(A) = 4¢(8) ,

where € 18 the Arf invariant of .
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Example 4.18. Suppose again that K is a Z,-vector space, but we no
longer assume )\ iseven. Hence K = K, | K, | K, where K, has an orthogo-
nal basis @, -+ 2, and M) = -+ = Mzx,) = 1/2, while K, has an orthogonal
basis y, - - - y, with My,) = 3/2, and K, has a symplectic basis as in (4.16). We
verify that, on Z, with M(1) = 1/2, G, = ¢*1/2, while on Z, with M1) = 3/2,
G, = ¢7/2. Thus on K we have

92 — (e(:r'i/4)(r—s))(___l)Arf(Ks) IKll/z .

Remark 4.19. Corresponding to the examples of (4.18), we can construct
degree 1 normal maps p: MY — M having SI(p) = +1 as follows. Let
7(S*) be the tangent disc bundle to S*. Then ¢(S*), and hence d7(S*) are
both stably parallelizable, so the degree 1 map of pairs

(4.20) 0: (Z‘(SZk), aZ') — (D%, S*Y)

is a degree 1 normal map. The self-intersection number of S* in r(S%) is
+2, so we have the exact sequence of kernels

(4.21) 0—z 27—z — 0

and A1) = 1/2.
Similarly, if 7(S*) is the stably trivial 2k-disc bundle in which S* has
self-intersection —2, then once more

0 (E(S*), 07) — (D, 8%~
is a degree 1 normal map, and this time the sequence of kernels
(—2)

0 Z

gives M(1) = 3/2 in Q/2Z.
In the general case of forms on arbitrary finite Abelian groups, we will
find 4.22 very useful.

LEMMA 4.22 (Brumfiel-Knebusch). Let

Z Z, >0

a B

8:0 C > A B >0

be a sequence (not exact in general) of finite Abelian groups with «-8 = 0,
a an injection and B a surjection. Suppose a non-singular pairing
P: A X A— Q/Z is given so that B and C are dually paired (i.e., | C x C is
identically 0, and the pairing vy: C x B— Q/Z defined by (c, b) = @(c, 9)
for any g with 8(g) = b is non—singular). Then there is a well-defined non-
singular pairing @ on C*/C = H,(S). Moreover, if N is a quadratic form on
A with respect to @ which vanishes on C, then \ induces a well-defined form
N, quadratic with respect to 3 on C*/C and
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91 - 9} I Bl .

Proof. C+ = ker 8 due to the assumption of non-singularity on the
pairing C x B— Q/Z. Let w: C+ — C*/C be the projection. Then for a =
(a’), b = w(b’), set @(a, b) = P(a’, b’). It is well defined, and non-singularity
follows from the non-singularity of ®. A similar definition applies to x. It
remains to calculate 9,. B splits A into cosets {C* + b}, and C* in turn
splits into cosets {C + a}. Write G, in terms of the double cosets as

(4.23) Eaj Ebi Ec g iAbita+0) — Eaj,bizc ETHAa b +20(b5,00)
— E ezil(aj-}—bi)z ezziga(biyc) .
c
But for any n>1, we have 3.~ ¢*"/* = 0. Thus summing over C in (4.23)
gives 0 unless b, = 0, so we have
G = (E&eci/c e”i(a)) IBI ’
and (4.22) follows.
We obtain sequences
0 o A B 0
as in (4.22) by simply taking for C any subgroup of A on which ¢ and \ vanish.
Then B= A/C*. For example, if A = Z, P Z, with symplectic bases e, f, and
Me) = 0, then G; = |A|'* = q. Again, if Me) =1 and 4 divides g, then 2(e)
generates C and C*/C = Z, @ Z, with X(e) = 1, M(f) = 0 (since f = 7(q/2 f)),
so again §; = q. Thus we have

COROLLARY 4.24. Let A have quadratic form \ with respect to a sym-
pletic @, let PC A be a maximal direct summand on which @ ts non-singular
and 2P = 0, and let x = ) restricted to P. Then

8. = (Al P
5. Generalizing the Browder-Brown approach to quadratic forms

In this section, we lay the homotopy theoretic groundwork for calculating
the semi-index of a surgery problem

o0: MUs—l Mt

in terms directly of the map p and a quadratic form on K (M, Q/Z), without
first making o highly connected.

We begin with some algebraic considerations. Consider an exact sequence
of Abelian groups

% Fis

(5.1) 0 A B C—0.

The sequence 0 — A L B Z.C—0 is equivalent to (5.1) if there is an iso-
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morphism j: B— B so j-t =1, 7’7 = m. The set of such equivalence classes
is in 1-1 correspondence with H*C, A) ([12]). This we see as follows. Let
s: C— B beany map so wes = 1,. Then corresponding to s and (5.1), we con-
struct a map #: C x C— A by

(5.2) P(ey, ;) = s(e, + ¢,) — s(c) — s(cy) -

® satisfies

5.3) @) Pla + b, ¢) — Pla, b + ¢) — P(b, ¢) + Pla, b)) =0,
@ P(a, b) = P(b, a) .

Now recall the bar construction ([11], [12], [21]) as a resolution of C. B,(C) =
Z(C), BJ(C) = Z(C x C), the free abelian group generated by C, (C x C).
Similarly, By(C) = Z(C x C x C), and

da, b,¢) = (b,¢) — (@ + b,¢) +(a,b + ¢) — (g, 0),
a, b) = (@) + (0) — (@ + b) .

Thus we see that (5.3.1) is exactly the condition that ¢ be a 2-cocycle in
Hom(B,(C), A). The equivalence class of ® in the resulting cohomology
group H*(C, A) represents (5.1) and is easily checked to be independent of the
choice of s.

Notice that a symmetric bilinear map ®: C x C— A automatically satis-
fies (5.3.)

DEFINITION 5.5. The exact sequence (5.1) admits a bilinear cocycle if
there is a lifting s so @, is bilinear.

(5.4)

PROPOSITION 5.6. If the exact sequence (5.1) admits a symmetric bilinear
cocycle @ € C¥C, A), then in H*(C, A) we have 2{p} = 0.

Proof. Let ) be the 1-cochain \(c) = —®(c, ¢). Then (5.4) gives

~(0\)(a, b) = +Ma) — Ma + b) + Mb)
= —9(a,a) — (b, b) + Pla + b,a + b)
= 29(a, b)
by bilinearity, and (5.6) follows.

Example 5.7. In terms of A4, C, and @, the group B has the form C x 4
with sum rule (¢, a,) + (¢, @s) = (¢, + ¢, P(c,, ¢:) + @, + a;). In particular,
if A = Z,;=C and @ is the bilinear form for which #(1, 1) =1, we have that
B = Z,+1 + Z,, and, if «, 8 are the generators, we see that, in (5.1), (1) =
20 + B, m(a) = 1, m(B) = —2. Notice that in this case the cohomology class
corresponding to @ is the non-zero class of order 2 in H¥(Z,i; Zy) = Z,.

We now turn to consideration of quadratic forms \ associated to a given
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symmetric bilinear form @: C x C— A. We say \ is associated to @ if

(5.8) Ma + ) = M) + My) + 29(x, v) .

We first set up the generic situation for a formula of type (5.8) to hold.
DEFINITION 5.9. Let A be an Abelian group specified by giving genera-

tors {g, *++ gn +++) and relations R, =%, a,,9.. The group A,, is defined by

specifying generators g; im 1 -1 correspondence with the gemerators of A
and relations

Rk = E (20:,,)7:
for each R, satisfied in A. There is an tnjection (multiplication by 2)
(5.10) I: A — sz
defined by I(g9;) = 29;.

In the sequel, we will assume that \ associated to ® in (5.8) takes its
values in A,,, and 29(x, y) will be understood to denote I9(x, v).

Example 5.11. The group (Z,)., = Z,+, and I is the usual injection.
Similarly,

Q/2).. = Q2Z =Q/Z
and I(a/b) = 2a/b. Finally, Z,.,, = Z, but I: Z— Z,,, is actual multiplication
by 2.

PROPOSITION 5.12. Let 0 — A AN B 5 C— 0 be a short exact sequence of
Abelian groups with bilinear cocycle P: C x C— A. Then the set of quadratic
forms

N: C -_ A.(Xg)
assoctated to —® is in 1 -1 correspondence with the set of homomorphisms
h: B— A, extending I.

Proof (compare [8, Prop. 1.3]). Asa set, B = C x A with addition de-

fined as in 5.7. Thusif h: B— A,, is given, we have
h(c,, 0) + h(c, 0) = h(c1 + ¢, Pley, 02)) = e, + ¢, 0) + IP(c,, ¢,) .

Hence h(c, 0) + h(c,, 0) — Ip(c, ¢,) = h(c, + ¢, 0), and & defines a quadratic
form on C associated to —®. On the other hand, if »: C— A,; is given, then

h: B — sz )
defined by
h(c, @) = I(a) + Mc) ,

is a homomorphism and (5.12) follows.
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We now turn to the homotopy-theoretic considerations needed.

Let X be a finite CW-complex, and suppose Y has the homotopy type of
a locally finite complex. Let {X, Y}, = lim,... [2""X, 2" Y| be the i‘"-stable
track group of homotopy classes of maps f: X — Y. It has the structure of
an Abelian group with addition generated by the composite

X A , X
(5.13) siny L, sy i x LY sy A sy L sy

Here Fis the folding map and A is the diagonal approximation

(@t ®), =), ¢ g_;-
@ ) —
(+, @ —1,2), t> _;_ ([21]) .
The suspension
(5.14) s: [ X, Y] — (X, Y},
is not generally a homomorphism, even when [X, Y] has a group structure.

In the circumstances of the next theorem, we see that s gives rise to a
2-cochain to which we can apply the algebraic remarks 5.1-5.12.

THEOREM 5.15. Let X have dimension n, and Y be the L-fold loop space
of Z (L>» m). Then there is a space F(Z), a short exact sequence of Abelian
groups
(5.16) 0 — [X, F(Z)] = (X, Y}, == [X, Y] — 0,
and wos = 1.y ,y. Hence s determines a 2-cocycle of (5.16) in the cochains of
[X, Y] with coefficients in [ X, F(Z)].

Proof. [2*X, 'Y ]|={X,Y},since L > n. But[2*X, Z*Y]=[X, Q"Z'Y].
Let

, Y — 7
be the adjoint of 1, and let
B:Y — QIZLY
be the usual inclusion. Then the composite
vy oy 2y
is the identity. Let F(Z) be the fiber of a, so F(Z) = Q“F(Z) is the fiber in
Q4 ().

The cross-section g8 of the fibering « implies Q*X*Y = ¥(Z) x Y. This

is not an H-space splitting, but the inclusion ¥(Z) =— Q*2*Y and the pro-
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jection (Q'a) are both H-maps. The exact sequence (5.16) is thus obtained
where 1 is induced by the inclusion F(Z) =— Q*X*Y, and 7 is Q%(«a),.

Remark 5.17. The cochain @ corresponding to (5.16) has a geometric in-
terpretation. There is a map J: YA Y —JF(Z) ([31]) associated to the map
t: Y x Y—Q'E'Y, defined by 4(y,, ¥.) = B(¥:- ¥2)*X(By:*By.). Here x(y)(t) =
y(1 — t), and y,-y, denotes their product in the H-space Y. Then @({f}, {g})
is represented by J-(f A 9).

PRrROPOSITION 5.18. Let X have dimension m, and Y = Q“Z. Suppose
also that Y is [(1/3)n] + 2-connected. Then in dimensions less than n + 2,
F(Z)=S""'X; Y ANY, and J is the inclusion of YAY in SN, Y A Y.
(This is immediate from [23, §81 and 2].)

Here S X Y A Y is the space

St %o Y AN Y/(8, Yy ¥2) ~ (=8, Yy Y1)
(5, %) ~ = .

The map S ', Y AY into F(Z) is given by first mapping
SEtx Y X Y/(8,Yi, ¥s) ~ (—S8, ¥sy ¥,) into QXY as is done for example in [16]
or [22]. A convenient visualization of the map has recently been given by
J. P. May ([47]). In the unit disc D", let S*~* be the sphere of radius 1/2,

and for each point se S*7, let D! be the disc of radius 1/4 centered at s.
Then

(4[(t17 tt tn) - S], yl) if

(tl, ) t'ﬂ)e D8
(S; Y, yz)[tly vty tn] = (4[(t1, ct tn) + 3]9 yz) if
@, -, t)eD_,

* otherwise
gives the desired map 8“7 X; ¥ X ¥ — Q"Z*Y.
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If we define #'(s, v, ¥,) = P(s, ¥, ¥.)*x(BY.*BY,), then @' factors through
amap @: S* 7' X, Y A Y— F(Z). The reason this is a homotopy equivalence
in dimensions less than n + 2 is that from [22] we can construct a space
J.(Y) having the homotopy type of Q*X*Y, and J,(Y) has the form
YU, XY x Y)Up (CB) X5,Y x Y x Y)--. where F, projects
S (Y X xUx x Y)onto Y, F, projects C(8) x (Y X Yx xUY x x x Y
Ux X YxY) onto (YUrS"'%X,YxY) etec. If Y is k-connected,
then we can assume it is 2 CW-complex with no cells of dimension % or less.
Looking at J,(Y), we can check that F,, F, - - - are cellular, and passing from
(YU, S IX; Y X Y) to the next stage adds new cells of dimension at least
3k + 3. Similarly, proceeding to the next stage adds cells of dimension not
less than 4(k + 1), etc. Hence (Y Up, S" "X, Y x Y) is a 3k + 2-approxi-
mation of Q*XY.

In general, the ¢ described above is not bilinear. However, we have

COROLLARY 5.19. Let Y (as above) be k — l-conmected. Suppose
S 'K, Y ANY s 2k — 1 + t-conmected, and suppose also that X has di-
mension 2k + t. Now let te H**'(S'" ', Y A Y), Ty o(SE' X, YA Y) be
the fundamental class, and suppose J*(©) = r Xse H*(Y A Y). Then ®(f,g)
18 bilinear, and is represented by the cohomology class P*(¢) = f*(r) U g*(s).

All the cases we require of X’s and Y’s will satisfy the hypothesis of
(5.19). Here are the specific examples:

(5.20) (1) Y = K(Z, n) .
Here 7,,(F(Z)) = Z,and J*(¢)) = t ® .
(2) Y=K(Z n),
S0
. _ Z, m even
Tl F(2)) = |Z, mnodd,

and with appropriate coefficients,

JO)=cRc¢.
(3) Y = KQ/Z,2n — 1),
80 Tiu_o(F(Z)) = 0 but 7,,_(F(Z)) = Q/Z while J*(t) = cR Bt = B R ¢.
) Y = K(Q/Z, 2n) ,

and 7,,(F(Z)) = Ty011(F(Z)) = 0 while 7,,.,(F(Z)) = Z,. Here J*()=R(RB().
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The k-invariants of the fibrations are given in these respective cases as
(1) Sg (o),
(2) B(Sq"(9)) for m even, and Sg"*'(¢) for n odd.
(8) The system is given as

K(Q/Z, 2n — 1 + 5) x KQ/Z, 4n — 1 + s) —> K(Z, 4n + 5)

where k& = Sq*p(I) + i8(J), and i: H*( , Z)— H*( , Z;) is the coeflicient
homomorphism.
(4) Here the k-invariant is S¢****8(1).

These results all follow routinely from [23, § 10]. The notation for
H*(K(Q/Z)) is explained in the appendix. In particular, note that (5.20.1) is
the case exploited by Browder and Brown ([3], [8]) in their work on the
Kervaire invariant.

The following theorem generalizes [8, Cor. 1.1]. Suppose W is an arbi-
trary space of dimension 2n + t + L, and f: W — Z*X is a stable map; that
is to say, the homotopy classes of maps [W, £*X|] are isomorphic under sus-
pension with the stable track group {W, Z“X}. Then we have

THEOREM 5.21. Suppose that f* is an isomorphism in dimension
2n + t + L with coefficients in w5, (Y). Then if Y is one of the spaces in
(5.20), the diagram

H*YX; T0eF(Z))) — (X5 Y)

/|- L

HW; T {F(2)) —— (W; Y}

commutes, and Iof* is injective if and only if, in case

@), (2) Sg**(x) = 0, all x€ H**""Y(W; Zy);

(8) for each xe H™ **"(W;Q/Z), the mod 2 operation Sq**B(x) is the
mod (2) reduction of B(a,) for some a,€ H*"+' - W; Q/Z);

(4) S¢*¥(Bx) = 0 for each x € H™*"(W; Q/Z).

Here the numbers (1)-(4) refer to the cases in (5.20). (The proof does not
differ essentially from that of [8].)

We can now apply the techniques of [3], [8] to define quadratic forms on
manifolds M?**+¢ with appropriate orientations

(5.22) o: M —— Bpr{v,)
and normal classes
(5.23) o Sl —— T(v(M)) .

Specifically, in cases (1) and (2), By.{v, is the fiber in the map
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Vnirt By — K(Zy, n + 1),

which kills the » + 1°* Wu class. In case (3), we use B, .{v,.>, and in case
(4) the most convenient choice is Bp{¥;,:,). See [46] for a more complete
discussion.

In all cases, Brown’s original definition of the construction is unchanged.
Thus, associated to ¢ there is a map of Thom spaces

(5.24) T(0): T(v) —> T(PL(v,)) .

Also, there is the duality isomorphism

(5.25) d: w3+ T(PLCw,p) A Y) = {DT(PL{v,), Y} .

For x € H"(M), consider the composite

(5.26) Srrmtt — T(v) = T) A M, 2229, TPL@ud) A Y.
Then, given any homomorphism

(5.27) h: 7r§n+t(T(PL<'vm>) ANY)— 75 (Y)iso »

vanishing on the image of 73, ( T(PL{v.)) A K(Q, 2 —1)) in 73,  T(PL{v,>) A
Y') and satisfying the condition that, if

UANLS"NY— T(PL{w,)) A Y
is induced by including S* as the Thom class in T(PL(vm>), then
ho(U A 1)4: Tl ¥) — @i V)
is exactly the map I defined in (5.10). We find that % defines a quadratic form

(5.28) (a,0,Y, k) =\t H(M) — T3, (Y). -
Dually,we could define v = (a, 0, Y, h) using the composite
(5.29) DT(PL(v,d) 2% se(ar,) 2 5oy,

and a homomorphism
D(h): {DT(PL{vp), Y} — Tpn i o( V), -

Remark 5.30. In the case when  is even and ¥ = K(Z, n), it is easily
seen that the quadratic form («, o, , Y, h) is uniquely determined on M by the
cup product pairing

6. The generalized forms and surgery

In this section, we combine the results of §§4 and 5 to give an effective
determination of the semi-index for the surgery problem 4.1 in terms directly
of o without first doing surgery to make (4.1) 2k — 2-connected.
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There is an exact sequence

L K*(IL, 2) — K*(3, Q) — K*(I, Q/2) - ,
and we define K:.(M, Q/Z) to be the quotient group K*(M, Q/Z)/im . It
can also be identified with im(g8), which is precisely the torsion subgroup in
K*+*\(M, Z). Thus, by Poincaré duality, if M is a 4k — l-manifold, then
#-Y(M, Q/Z) = K& (M, Z). In the case where p is 2k — 2-connected, we
showed in §4 ((4.7) and (4.10)) how to construct a quadratic form on K3".(M, Z),
whose Gauss sum G, ((4.11)) determines the semi-index of p.

On the other hand, the techniques of §5 ((5.20.3)) determine a quadratic
form on KZ;'(M, Q/Z). One of our main results in this section will show
that the Poincaré duality isomorphism identifies the homotopically defined
form on KM, Q/Z) to the surgery form on K;*(M, Z) if o is 2k — 2-
connected. But this homotopically defined form does not depend on making
0 2k — 1-connected, and is unchanged under surgeries on spheres of dimension
less than 2k — 1 ((6.8)). Thus the Gauss sum is unchanged under such sur-
geries, and we obtain the semi-index of p without the necessity of first doing
surgery! (For a more direct proof of this last fact, see (6.11) and [10].)

In (4.11), we mentioned that the quadratic form on K;:°3(J, Z) could be
defined intrinsically if 7 is 2k — 2-connected. We briefly recall how this is
done. Let ac K;*(M, Z), and represent a by an embedding S*~' x D* < M
(the S*7* x D* suitably embedded so we can do normal surgery [18]).
Suppose n(a) =0, and consider N =M — S*~* x D as a manifold with boundary
S#=t x S*7', Let e, e, be the two generators of H,,_,(0N) corresponding to
the core sphere S*~' x * and the fiber sphere = x S*~', respectively. There
is an integral homology class 4 € H,.(N, 0N, Z) which can actually be repre-
sented by an immersed disec D* with boundary sphere embedded in 0N, and
0,A = me, + se,. Moreover, different choices of embeddings (obtained by
changing the framing of the embedded core sphere), which are also suitable
for doing surgery, change s by multiples of 2n. \.(a) is then defined as s/n
in Q/2Z. The bilinear form @ associdated to A\, is the linking form. On the
level of cohomology, its expression is given by

(6.1) P(a, b) = {aUBb, [M]) .

An alternate description of \, is first to do surgery on the embedded
S*-! representing a = Ba N [M], and thus attach a handle to /7. Let W be
the resulting normal bordism, and let D* be the core disc of the attached

handle. Then nD U D* (D* is the immersed disc of the preceding paragraph)
represents a sphere S* immersed in W. With a little care in the choices made,
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we can assume S* stably framed in W, and hence its normal bundle is sT(S%)
for some s. Then by [40, p.253, Lemma 5.3], \,(8(a) N []) = s/n. Alternately,
in the cohomology group H*(W, 6 W), there is a generator ¢ dual to (D*, ),
and an f dual to nD* U D* in H*(W). f is partially characterized by the fact
1*(f) = B(a) in H*(M, Z), and we have

(6.2) Ma) = (f Ue, [W, 0W]5/*(e) U e, [W, 0W]) .

In view of (6.1) and (5.20.3), we give a quadratic form on K2;*(JZ, Q/Z)
in terms of the sequence
(6.3) 0— H“\(M, Q/Z) — {M, K(Q/Z, 2k — 1)} — [}, K(Q/Z, 2k — 1)] - 0

and an orientation o: M % M — Bp{vyy. Precisely,

DEFINITION 6.4. Let 0: M — By {(vy) be an orientation, and a any nor-
mal class for M. Then on H (M, Q/Z), we define a quadratic form as

N = (T(p)ea, 0, K(Q/Z, 2k — 1), 1),
and on H:'(M, Q/Z), we define a quadratic form as
X = (a, 000, K(Q/Z, 2k — 1), h) .
Here the notation is that of (5.28), and h is an arbitrary homomorphism (5.27)

We note that o*: H¥ '(M; Q/Z) — Hi%\(I; Q/Z) embeds HZ (M, Q/Z)
as a direct summand ([5, Chapter 1]), and, with respect to the bilinear form
(6.1), the image is non-singular. K2 is its orthogonal complement in
Hi:\(M, Q/Z). By the definition, we have

(6.5) X(o*(x)) = M) .
Thus, from (4.13) we have
(6.6) TR DL

Now we can state

THEOREM 6.7. Let M, M be simply-connected, and assume k > 1 (in
(4.1)). Then for the quadratic Sforms defined in (6.4), have

9}/92 — e(zi/uSI(p)N,
where N is a positive integer.

Proof. We begin by proving that the quotient (6.6) is unchanged when
we do surgeries in dimensions less than 24 — 1. Actually, we show that 8;
itself is invariant under such surgeries.

LEMMA 6.8. Let M =0W. Suppose an orientation o: M — Bp vy
given, together with an extension to W. Let be H: (M, Q/Z) be 1*(a) for
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some a € H*Y(W). Then \b) = 0.

Proof. (compare Browder [3, Prop. 1.8, p. 168] or Brown [8, Lemma 1.14]).
We have the diagram

M—W-—WM—ZIM W

)\, J(a) z(w\ lma)

KQ/Z, 2k — 1) 2KQ/Z, 2k — 1) .

Now by duality,
D(o): DT(PL(vZ,,>) THM.)
factors as

(6.10) DT(PL(vy)) — Z(W/M) — ZH(M.) ,

since W/M is the s-dual of T(VW) and ¢ factored through W. Hence (b) €
{DT(PL{w,p), K(Q/Z, 2k — 1)} given in (5.29) is obtained from the composition

DT(PL(Y) — S (WIM) —— 5 29 srowy 2% 50K(Q) 2, 2k — 1),

and, since X%(7)o0 ~ 0, it follows that (b) = 0 and certainly 2(b) = 0. (6.8)
follows.

Now assume p: M — M is extended to a normal map g: W— M X I,
where W is obtained from A7 by doing surgery on spheres of dimension less
than 2k — 1. Then im(:*)N HZ (0 W, Q/Z) provides an isomorphism

Hi7 (M, Q/Z) with Hig (0, Q/Z)
by writing i*(a) = @, — a, (uniquely), a, ¢ H¥'(M, Q/Z), a,c HZ (M, Q/Z).
The isomorphism identifies a, with a,.

By (6.8), Mt*(@)) = 0 = Ma,) + N'(a,) since the two boundary components
are orthogonal under (6.1). Now \'(a,) differs from the ) of (6.4) because 0 W =
[M] — [M'], and so : (6.9) is obtained from )’ by reversing the orientation
of M’. This has the effect of changing \'(a,) to —\'(a;). The invariance of
G, in this situation follows.

We now assume p to be 2k — 2-connected, and prove (6.7) in this case. In
view of the preceding remarks, this will complete the proof.

Remark 6.11. The arguments which follow can be considerably sim-
plified if the reader is interested only in (6.7), and not in the identification of
the two forms. Indeed, it is possible to prove (6.7) directly without first
making o highly connected by considering the diagram

M 114 W/oW ——— =M

o ] o

KQ/Z, 2k — 1) 2 k2, 2k) — K(Q, 2k) — SK(Q/Z, 2k — 1)
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and using (A14) of the appendix (compare the arguments following (6.19)).
This is our procedure in [10]. So the geometric and homotopical arguments
which follow, culminating in (6.19), should be read with the understanding
that their intent is to relate the \ defined above with the refined self-linking
invariant used in [18], [29], and [39].
Let a e K& (M, Q/Z) be given, and, corresponding to it,
© = Ba N [M]e K=, Z) .
Let f,: S*~'— I be an embedding so (f)«(es—) = x. Moreover, we assume

of. = 0. Thus 7,, the normal PL-block bundle, is stably trivial, and £, ex-
tends to an embedding

fl 8%t % D* = T .

We assume this map chosen so that the manifold W, obtained by attaching
D* x D* over fi(S*~' x D%*), admits a normal extension of o over M x 1.
Precisely,

W =M x ITUimisyycana (D* x D¥) .

Our object now will be to verify that (6.2) holds for (f) in W. In order to do
this, we must map D* into M so that oD% = nf,(S*7') in a good way in order
to obtain a geometric hold on the cohomology classes ¢, f in (6.2).

LEMMA 6.12. Let N = M — fI(S*™* x D). Then there is a complex X
having the homotopy type of D*\/ S*\/++-\/ S* and an embedding g: X =—— N
so that 0X = S*~' embeds in ON = S*~' x S™' with degree (n, 1), and trivial
normal PL-block bundle. Moreover, there is a degree 1 map h: S** U, e* —
XU fAS™ x D*) so that h|S** = f, and poh = 0.

Proof. Ky_,(M) = m,(0) ([5]). Thus a map g: S*~ U, ¢* — I extending
f. exists if nw = 0, s0 pog =~ 0. We place fg(¢*) in general position with re-
spect to S*7', and delete ¢! f/(S*~! x D%*) from e*. We may assume this is
homeomorphic to D* minus a finite number of disecs. Connect the boundaries
of these discs together and delete tubular neighborhoods of the connecting
lines, obtaining a disc e¢* with boundary S*'. Change ¢ slightly so that this
S¥#71is =¢7'9(S* x D*), and assume g¢|S*' — 3(S*~! x D%*) is now an em-
bedding. Then from [17], ¢ leaving ¢|S*~' fixed is homotopic to a simple
immersion. Such an immersion has circles of double points as its only sin-
gularities, and no double coverings occur. The homotopy type of such a
space Y is

D* v (S'vS)V---Vv(STV Sy,

one pair S' \V §* for each double point circle. Since I is simply-connected
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of dimension =17, each circle bounds a disc D* in the complement of Y. Ad-
joining these D? we get the desired complex X.

(6.12) now follows directly. Let V = X Ufi(S** x D*). Then V =
St J, e* \/ §*V --+ V S?and is embedded in M, so the composite

S5 U e~ V= I
represents x, and posor =~ 0. Let U be a regular neighborhood of V in M,
and set Y = U/dU. By [44, p. 301, Prop. 3.2], the s-dual of Y is the Thom

space T(v) restricted to U, where v is the normal bundle to M. Thus, by
using the Thom isomorphism, we see that Y is a CW-complex of the form

(6.13) ((Szk—1 UnGZk) \V; S8 \/ oo \/S4k—3) U, ettt
Here w = a + B (@€ Ty o(S* ™ U, €%), BETy o(S* PV -+ V S#-9), with a
stably trivial. The obvious map p: M— Y collapsing M — U to = satisfies
p*(©) = a, where ¢ is the fundamental class in H*( Y; Q/Z).

Now we turn to the classes e and f in (6.2). Consider again the W of
(6.11). Define

(6.14) U = U x IUD* x D*
and
(6.15) T=U'/6U".

U’ is a regular neighborhood of UU D* x 0 which has the homotopy type of
S#y St o-ee v 8P
Hence by again applying duality and noting that the composite
S# U’ w M
is homotopic to zero, we have

T~ (S* v S* 2\ ... VS8*7?) U, e,

where 7 = 7, + 7, with 7, again stably trivial. Note that the cup product
{(&), e*) determines 7,. The map p: W/oW — T satisfies p*(¢) = e.

Now consider the transverse sphere (0 x D*, 0 x dD*) embedded in T.
Let

¢ 8% — T
represent this embedding. Then we have

LEMMA 6.16. q, is multiplication by m in integral homology in di-
mension 2k. Moreover, the mapping cone of q is naturally homotopic to
Y, and, using this homotopy equivalence, the diagram
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W/oW — =M
1p 12p
) 4

commutes. (Thus, if 7 is the fundamental class in S*, we have that (f-¢,¢*) =
(1/n)<&, e*> again determines 7,.)
Proof. Write
T={IxUPUxITU0xUUL x (U— S** x D*}}
U {D2k X DZk/{S2k—l X D2k}} .
The second set in the above decomposition of 7' has the homotopy type of
S*, and q: S* — D* x D*/S*~! x D% is a homotopy equivalence. Moreover,

if we collapse this set to *, we obtain X Y.
Thus the sequence

(6.17)

RN, N ) '
is a cofibering. Again from (6.17), we see that, if we embed Yas1 x ¥Yin T
and use the map
t: Y — S*
defined by first collapsing Y to (S*~' x D*/3) and then projecting onto
(D*/3) = S*, we can describe T as the cofiber in the map t. Moreover, the

map
Sz, Qe U¢CY

is exactly the map q. Now (6.16) follows.
Remark 6.18. In the proof of (6.16), we have actually shown that the
sequence

¥ — 5%

is a cofiber sequence.
Now consider the commutative diagram

M L W/ow i SW/ew

Y A
|

Zq

(6.19) yp—t 5w 9, T 2Dg S+t
(¢) 1(:) J’(!) lz(l) lz(z) l
K(Z,,2k — 1) 2 K(Z, 2k) — X, — SK(Z., 2k — 1) — LK(Z, 2k) — X, ,

where the bottom two horizontal lines are cofiber sequences, and | embeds
Masl x McW.
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The verification of (6.2) will follow from the properties of the bottom line
in (6.19,) in particular the space X,.
LEMMA 6.20. For L = 2, we have
Z, v=2k+ Lori=4k + L
i ZLX’/L = . .
7l ) 0 otherwise, ©+ < 4k + L .

Moreover, the cofiber sequence of (6.19) (for X,) gives in homotopy in dimen-
ston 4k + L the exact sequence

(6.21) 0— 21 Z— 1y (S K(Z,, 2% — 1)) — 0,

where j s multiplication by n if n is odd, and by 2n if n 1s eveni(direct from
[23, 8§81, 2, 10]).

Consider the map dual to 7 in (6.19) and the composite

T(a) T
(6.22) Tw|U' ) T( ) —> T(PL{vw)) .
T|U') =~ S*+* \/ SFUef™ V -+ - V ef*?, and T(v)oD(p) on S“** isithomotopic
to 0 from (6.12). Dualizing (6.22), we obtain the stable diagram

DT(PLSv,y) 222 sy(Wjo Wy — s+4(i)

(6.23) J l Fmp

Q = Stz (elL-Hk ) ZLT 2L+1Y .
Finally, combining (6.19) with (6.23), we have the commutative diagram
a’)

D(TPL(vyy) — S+l 22 sev gz, 2k — 1)

\o10 [z / I

(6.24) SEW/owW Tty
| N/
Q ZET X,
Now, from (6.20) note that
(6.25) (1) the Hurewicz homomorphism
h: T (B5X,) — Hyi (27 X,)

is injective;
(2) any map f: Q@ — £*X, factors up to homotopy as
Q S4k+L ZLXn
@

where £ is the pinching map. In particular, f, =~ f, if and only if f.. = f,. in
homology.
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This means that the map (a, 0) constructed as the top line in (6.24) factors
as the composite

(6.26) D(TPL(w,y) 2 S+t 50X, — s0K(Z,, 2 — 1) .

LEMMA 6.27. The generator « of the Z-component of H*(X,; Z) can be
chosen so that (* = na, where ¢ is the generator of H*(X,; Z) = Z.

Proof. In the map j: K(Z,2k) — X,, we have j*(¢) = ne. Hence j*(7)* =
n*’. But in the map (8¢): K(Z,, 2k — 1) — K(Z, 2k), we have (B82)*2 = (8¢)* =
B(tU ) has order n in HYK(Z,, 2k — 1)). Thus n = j*a, and since no
torsion element in H*(X,) has order greater than n, (6.27) follows.

Note finally that, if » is even, « evaluates 1 on the homotopy generator,
and in any case a = ¢U¢. This shows the result on comparing (6.26), the
middle line of (6.19), and (6.2).

The proof of (6.7) is complete.

7. A product formula

Given a surgery problem
(7.1) o:M— M
for simply-connected Z,-manifolds and a simply-connected Z,-manifold P, we
have the new problem
(7.2) ox1L:MxP—sMxP
(see (1.17) for the definition of M x P). In the case where dim (M) +
dim (P) = 0(4), the resulting surgery problem has a generalized index ob-
struction (3.4) and our object in this section is to evaluate it in terms of
the original obstruction in (7.1).

THEOREM 7.3. The surgery obstruction in dimensions greater than 4 for
(7.2) 1s given by

(1) I(p)/8-ind(P) for dim(P) = dim(M) = 0(4);

(2) (Bvw) [P])- K(M) = {v,,8¢"v,,, 0PYK(M) for Aim P = 45+ 2, diim M =
4k + 2;

(3) <Wus+Sq'vy, [P1RQ Zp Ky (M) for dim P = 4s + 1, dim M = 4k + 3, and
P a closed, oriented manifold.

(As a matter of notation, recall that dP is the Z,-boundary of P as described
in Definition 1.15 and the remarks which follow it.)

Proof. Assume p in (7.1) as highly connected as possible. Specifically, if
dim(M) = 4k, we assume p| 0M — oM is a homotopy equivalence, and p is
2k — 1-connected on the interior of M. In case dim(M) = 4k + 2, we assume
©|0M — 6M is a homotopy equivalence, o is 2k-connected on the interior of
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M, and K,,..(JI) = Z @ Z if K(M) = 1. In case dim M = 4k + 3, we assume
0|60 — 51 is 2k-connected, o on the interior is 2k-connected, and, if
K,(M) = 1, we have the exact sequence of kernels

(T.4) 0 — Kypoo(M, 031) — Kopt(3M % {1, + -+, m}) — Kopon(M) — 0 .

This is a sequence of free Z-modules and represents the entire kernel of 0.

Take the product of (7.1) with P and attach the canonical handles to make
I x Pand M x P into Z,-manifolds (1.17), and consider the Meyer-Vietoris
sequences calculating the homology of M x P, M x P. By Poincaré duality,
the kernels separate out to give a separate Meyer-Vietoris sequence calculat-
ing K, (M x P). In particular, when M has even dimension, K, (0 x 6P) =0,
so K, (M x P) = K. (M) ® H,(P) since K,(M) is Z-free. Thus the interior
index of K(JM x P)is I/8(JM)- I(P) in case 1, and is zero in cases 2 and 3.

In order to complete the proof of (7.3), we must calculate the semi-index
on a boundary component of M x P. We have

(7.5) 3(M x P) = M x P Usiipepm M x 3P,

where we identify (3M, i) x oP with 60 x (3P, ). In case 1, the torsion
kernel in dimension 2k + 2s — 1 has the form

(7.6) K*(IT) ® HE:'(P, Q/Z) .
In case 2, the kernel is
(7.7 K*+(M) ® H(0P, Q/Z) .

LEMMA 7.8. In case 1, let r @ se K*(M) @ H:'(0P, Q/Z), and suppose
A = (a, 000, M, hy), N, = (&, 0", P, h;) are two quadratic forms (5.28). Then
corresponding to these is an orientation o0 X ¢’ on M x P, and, with respect
to this orientation, the form » = (@ N\ &', 00 X d’, M x_ P, h,) satisfies

Mr ® s) = Mr)<s-Bs, [0P]) .
(Here h, is the homomorphism T M(SPLvy1:)) A\ K(Z, 2k)| — Z, which gives

the cup square (5.20.2), while h, is chosen as in (5.20.3). The assumption that
0 is 2k — l-conmected makes the particular choices immaterial.)

Proof. Let f: S* = M represent » N [#/5]. Consider the diagram

DU A1

DTSPLCvysa - +>—> DTSPLvsgsr- - -5 A DTSPL(vsg -+ —ts SE A DTSPLCvsg- -+
aANad’ l LAa’
My A 5P 2L SET(f)AGP)
(7.9) l s
SLK(Z,2k) A K@Q/Z, 25 — 1)
l Ly
SIK(Q/Z, 2 + 2k — 1) .
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(Here T(f) is the Thom space of the normal bundle to f(S*) while D(f) is
the L-fold suspension of the Pontrjagin-Thom map from M/d — T(f). The
spaces T(SPL{Vy.s, - - +») are obtained as the Thom spaces of the universal
bundles over the spaces Bgpi{Vyrz, **+», Which are defined from By by
killing all the Wu classes v, for 7 = 2k + 2s.) The composite represents
Mr ® s). Precisely, 1o D(U) lifts to the fiber £ in the fibration sequence

(7.10) E-1.3iK(Z, 2k) — K(Z, 2k + L) .

Moreover, the map Z-u¢ restricted to £ A K(Q/Z, 2s — 1) lifts to the fiberF’
in the map

(7.11) F—J——a XIKQ/Z, 2s + 2k — 1) —> K(Q/Z,2s + 2k + L — 1) .
Thus A on r &) s is determined by the composite
D(TSPL{0yig0r - - )) = 8 A D(TSPL(0,, - - -Y)— E A K(Q/Z,25—1) > F
1D(U) 11 A D(U) /T/
St —————S"ANS"—E N KQ/Z, 25 — 1)[4s + 4k — 2.
Here /4s + 4k — 2 means we pinch the 4s + 4k — 2-skeleton of £ A K to a

point, and D(U) is the dual of the inclusion S°C T(SPL(v%H,, ce }) embedding
the Thom sphere. We now need

PROPOSITION 7.13. Let a be the fundamental class in
H“'M)_HL(F; 7r4(k+a)—1+L(F))' Then
w*(@) =a(c-pB)
in (7.12) where @ is the fundamental class in H* (K, Z).
Proof. Consider the diagram
A QEK(Z,20) A K@1Z,25 — 1) QUK(Z, 2k) A K(Q/Z,25—1))
(7.14) K(Z,2k) A KQ/Z, 23-1)< le(m
"N K(Q/z, 2k+25—1) - QK(@Q/Z, 2k+2s—1)
where Q(X)=1lim,_..Q"="*(X) ([16],[22]). In H**+"~{(Q(K(Q/Z2k+2s—1)),Q/Z),
there is a special class ¢ satisfying: (1) i*(g) =0, and (2) (x)*q = ¢ B¢ where
* Q(X) X QX) — Q(X)
is the loop product. Moreover, j*(¢) = o*(a) on looping (7.11) L times ([23]).
Next, using the *-product, we obtain the diagram

(K(Z,2k) x K(Z,2k)) A K(Q/Z, 25— 1) 225218 (K(Z,2K) A K(Q/Z, 25— 1))

(7.15) l*“ l*
Q(K(Z, 26) A K(Q/Z, 25 — 1) —— Q(K(Z, 2k) A K(Q/Z,25 — 1)) .
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Thus
(* A 1)*6*Q()*(@) = @ A A)*shuff.(42£9%Q(2)* (¢ & Be)
=1AA[®)R¢8]
=(RIR U Be.
But any element b satisfies j*(b) = @ if (»)*(b) = ¢ ® ¢ in QK(Z, 2k) ([23]).
(7.13) follows.
Clearly, Lemma 7.8 is an immediate consequence of (7.12) and (7.13).
We now have
LEMMA 7.16. In case 1, p x 1|3(M x P) — o(M x P) has semi-index

equal to zero.

Proof. For M, consider the exact sequence of kernels

0 — K*(IT, 33) —2s K*(Il) — 0 .

We identify K*(J, 6M) with K*(JM) by Poincaré duality, and, with respect
to this identification, choosing a basis for K %(}, 6M) represents A as an
m % m symmetric unimodular matrix with index divisible by 8.

Let v: H2:'(6P, Q/Z) — Q/2Z be any form quadratic with respect to the
bilinear pairing

P(x, y) = <& U By, [0P]),

and let a resolution (Th. 4.14(a)) of v be given as

00 F-2 F— H¥'(5P, Q/Z) — 0 .

Then

0— K* @ FA2E g @ F—s K* @ HiGP, Q/Z) — 0

is a resolution of the )\ obtained in (7.8). But I(4™") = I(A) is congruent to
zero mod 8, and I(A~* ® B) = I(A™")- I(B), which is also divisible by 8. Thus
SI(o x 1) = 0, and (7.16) follows.

Note that (7.16) implies that the total obstruction in case 1 is the interior
index, and (7.3.1) follows.

In case 2, we find for » @ s in (7.7) that a result analogous to (7.8) is
again true, and
(7.17) Mr ® s) = Mr){s-Bs, [0P]) .
Here, note that \(r)e Z, is the Kervaire form ([7]), <s-Bs, [0P])> € Q/Z has
order 2, and the indicated multiplication takes place in Z,CQ/2Z. (The proof

of (7.8) does not have to be changed; simply re-index the diagrams to take into
account the different dimensions and interpretations for 7, s, and \.)
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We assume K**(M) = Z @ Z with generators e, e, respectively, and
Me,) = Me,) = 1 in the group Z,, while ®(e,, ¢,) = 1. Then KQHZ.(0P, Q/Z)
has the form H,.(0P, Q/Z)<ey@H}:.(0P, Q/Z)<e.), and & satisfies
P(ae;, be;) = 0
P(ae,, be)) = <aUBb, [0P]) .

Abstracting this situation, we have

(7.18)

LEMMA 7.19. Let »: LQ L — Q/Z be a non-singular skew symmetric
bilinear pairing. Define a quadratic form + on L @ L — Q/Z by

(b, L) = 24() + 2B(,) + 290, 1) ,

where A, B are homomorphisms into Z, C Q/2Z. Then + is non-singular,
and if

A@) = p(w,, ),
B(y) = Py, ws) , forall x, ye L,
then
Gy = | L|erietwawn

Proof. The bilinear form @ associated to v is &((l,, 1), (l, L)) = ®(1, L) —
@(ly, 1), which is symmetric and non-singular. Let 4, be the form

"r‘"‘o(lu lz) = 2¢(l1, lz) .

Then 9y, = | L|. Moreover, the a in (4.14) which changes , into v is (®;, ®.,).
Hence

Sy = gwoe“""i'&ko(‘”B’“’A) = 911,062:‘5?(“’,1:“’3) .

Remark 7.20. From (4.14b), both w, and w, have order 2 so Gy = +|L]|,
and is —| L] if and only if p(w,, w;) = 1/2.

Note that, in H%.(X, Q/Z), we have aUBa = —BaUa so aUBa is a Z,-
class. Moreover, looking in the universal example K(Q/Z, 2s), we see that
¢UBe = {Sg*B¢}. This suggests that w, = w; = v,,.

More exactly, let ¢:Z,— Q/Z be the usual inclusion, inducing
i: H*(0P; Z,) — H*(3P; Q/Z), and suppose v,, given in H*(3P; Z,). Then
W, = 0y = 1(vy) and {(v,,) U Bi(vz,), [0P]) = P(®4, @5). Suppose now (v,,) =
22. Then (v,)- Bi(v,) = 4(xB(x)) = 0. Thus P(w,, w;) # 0 only if i(vy,)
is not divisible by 2, i.e., only if Sq¢'(v,,) # 0. Moreover, in this case,
{0,58¢"Vss, [0P] @ Z,> # 0 if and only if {(i(v.,)Bi(vy,), [0P]) = 1/2. This proves
case 2. (This paragraph does nothing more than identify ¢(w,, ®;) with the
Z,-characteristic number <v,,Sq'v,,, [0P] ® Z.).)

We now prove case 3. If P is a closed, oriented manifold,
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o(I x P) = (M) x P, and as a consequence,
K.(0(Mx P) = K*(9M) ® Hix(P, Q/Z) .
Applying the technique of (7.8), we have

(7.21) Mr @ p) = Mr)Xp U B(p), [P]) = Mr){Sq*B(p), [P]) .

After doing surgery, we can assume that K*+'(o/) = Z P Z with generators
e, f, and Me) = M(f) = 1. Then (7.19), (4.24), and (4.22) give the result.
This completes the proof of (7.3).

Remark 7.22. It is possible to prove (7.3.3) for a Z,-manifold P or even
for P, a Z,-Poincaré duality space. However, the added complexities, bring-
ing in covering spaces, and a generalized transfer would have added at least
10 pages to the exposition, so, in that the stronger result is not required
in the sequel, it was thought best to leave those details to a forthcoming
article.

8. The homotopy type of a map to G/PL

We use (7.3) to define cohomology classes K, in H*(G/PL, Z,,) so that, if
12 Zyy — Zy is a coefficient homomorphism, and f: M* — G/PL is a map of
differentiable Z,~manifold, then }_. f *(i(K“)) determines I/8 for a surgery
problem associated to f.

These classes are then used to classify the homotopy types of maps into
G/PL.

In order to do things in proper generality, we first need to extend the 1/8-
invariant of (3.4) to the case of 4-dimensional manifolds as I/8(o x 1: Mx CP*—
Mx CP?. In this situation, (6.7) is valid, but a result analogous to (7.8) shows
that, on M x CP? we have Mk ®¢,) = Mk). Thus the machinery of §6
evaluates I/8 (as an element of Z,). Clearly, for all j, I/8 defines a homomor-
phism Q{(G/PL) — Z,.

However,dueto (7.3.3), we restrict attention to the differentiable bordism
groups Q,(G/PL) in the remainder of this section, because the indecomposable
generator in Q,,,,(point, Z,-) can always be taken orientable (see e.g. [34, pp.
181—182]), but we have no such assurances for generators in Q% (point, Z,-).

Next we need

THEOREM 8.1. Let Vbe a Z,-normal bundle to M* ((1.28)), and suppose
V: M* — By s its classifying map. Then thereis a class L € H***(Bso; Ziy)
so that 1(L) € H**"*(Bso; Z,i) satisfies

KV*GL), [M]) = I(M),
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The Z,-index of M. Moreover, if m = 2, then L = (1 V,.), and L is multi-
plicative. (This is easy and classical for differentiable M. It is also true for
PL-manifolds, but considerably more is involved. We refer the reader to
[29] for a proof.)

From this point on, we assume = is a power of 2.

THEOREM 8.2. There are classes K,;€ H*(G/PL; Z,) so that, if M* is an
ortented Z,-manifold and

fi M* — G/PL
s any map, then
8(£) = <Fr(ED) UL, D) + KT, (87 (6 05 + F*(6)80,)80;, [MY])
where k, is the Kervaire class (2.14) injected into Q/Z-cohomology.

The proof is modeled on (2.13). As the first step, we give an explicit
description of the kernel of the Hurewicz homomorphism

(8.3) h:Q.(G/PL, Z,) —> H,(G/PL; Z,) — 0 .
Next, we inductively define a homomorphism

(8.4) K Q,G/PL, Z,)—> Z,

by setting

K AM, D = 18(f) — 8, {F*Ki U L, [M])

— < (BF*e,) U, + f*(ky) U Bv.)Bv., [M]) .
We then observe that (K", {M, f}> = 0 if h{M, f} = 0. Hence K»¢
Hom(H,(G/PL; Z,), Z,). Finally, we fit all these K together to construct
the desired K,,.
Proof. We begin with a lemma.

(8.5)

LEMMA 8.6. Let k divide n. Then a maximal direct summand of
Q,(point, Z,) which is isomorphic to a direct sum of Z,’s admits a basis
(M}, ---, (M} with the property that, if t:Z,— Z, is the surjection,
oM} = g or ©{M,} = (n/k)g where g is a generator. In particular,

(1) if Case (1), then M may be chosen orientable;

(2) if Case (2), then g is represented by a Z,-manifold W, and {M;} is
represented by n/k copies of W.

(See the remarks following (1.19).)

In particular, Lemma 8.6 implies that, if i(x) = 0 for 2 Q (X, Z,) and
x a generator of order k, x can be written as a sum of “decomposables”

(8.7 e~ M x X;+ 3 (n/k)W, x Y3},
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where M; is closed and i(X;), ~(Y,) are non-zero.
Now use (8.5) to define the K, € Hom(Q,(G/PL, Z,), Z,). Here, to be precise,
choose a Thom class U (i.e., a map

U: K(Z,, 0) — M(SO) A OUZ.)

inducing an isomorphism in homotopy in dimension zero). This gives a lifting

U: H(X, Z,) — (X, Z.),
80 hoU = id. We now interpret the expression

(FHKEP) UL, MDD
in (8.5) to mean
(8.8) (Kig', foUL N [M])>
It is a bordism invariant since (LN [W]) = LNa[W] = LN[M,] — LN [1,]
mod(n) for a bordism W from M, to M,.
LEMMA 8.9. K vanishes on ker(h).

Proof. By (8.7), we may assume « € ker(k) has the form M x N and fis
the composition M x N— M =5 G/PL. There are three cases to consider,
depending on the dimension of M.

Case (1). dim M = 4s. By (7.3.1), I/8(f) = I/8(f)- I(N) where by (8.1)
I(N) = {L, [N]>. But from (8.5),

(K, (M x N}y = I/8(f) — &C,., K UL, [M x NJ)
= I/8(f) — <K\ UL, [M])<L, [N])
by the multiplicative property of L. But this in turn is

I/8(f) — I/8(f)XL, [N]) = 0

(8.10)

from (8.5).
Case (2). dim M = 4s + 2. By (7.3.2),

(K AM %N, £y = II8(f) — & (B(f* (k))vu + (k) BVa)Bow, [M X NT)
= I/8(f)— (n/2)< f*(ky)- vuSq'va, [M, X ON])
(8.11) = I/8(f)— (n/2)< £*(k)vuSq vy, [Mo] x [ON])
= I/8(f) — (n/2){ £* (e, )vh, [M])<v:8¢"vs, INT)
=0.
(Note here that v,,., is divisible by v,, and v, is zero in our situation. Thus
we were able to restrict to the v, in (8.11.))
Case (3). dim M = 4s + 3. Note first that it is sufficient to prove this
case if N is an indecomposable in Q,;,, (point). Then we take note of the
fact that
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(8.12) Bi(f*(ky) U ) = Bif*(k)iv, + if *(k,)Biv, ,

which makes sense of the second expression in (8.2). We thus have
K, AM XN, 1> =I/8(F)— <5, i(*(k.) Uv)Bvs, [BM x N1

=TI/8(f)— (n/2)3, f* (k) UvuSq'vy, [0(M x N)|®RZ,)

=1/8(f)— (n/2) f* (k) Ui, [0M]) & 08¢ 0.0, [NIR Z:)
=0

(8.13)

by (7.3.8). Thus in all three cases, (8.9) is verified, and the proof is complete.

Hence K, factors through Hom(H,(G/PL; Z,), Z,) as desired. Recall
from the outline proof of (2.13) the definition of K in

Hom(I{u(G/PL, Z), Z(z>) .
LEMMA 8.14. For X a locally finite complesx,
Hom(H(X; Z,), Z,) = H*(X; Z,) .

Consider now the universal coefficient sequence

(8.15) 0—>Ext(H, (X; 2), Z,) <=5 Hi(X; Z,L)—(’D—>Hom(Hj(X; Z), Z,)—0.
By (8.14), this gives a map ‘
h,: Hom(HA(X; Z,), Z,) — Hom(H(X; Z), Z,) -

Also, from the coefficient map z,: Z,, — Z,,, we obtain a map

7 Hom(H(X; Z), Z,,)) — Hom(H (X; Z), Zy) .
Again, if v,: Z,» — Z,—1 is the surjection, then we have maps
Vo Hom(H(X; Zyr), Zyr) — Hom(H(X; Zy—1), Zyr—1) ,
Vs Hom(H{(X; Z), Z,r) — Hom(H{(X; Z), Zy—) .
Let D = Li_n_lHom(Hj(X; Zy), Zy), E = Egl_ Hom(H{(X; Z), Z,y). There are

(8.16)

r

natural mai)s
p: HY(X; Z,) — D,
¢ Hom(H (X; Z), Z,,)) — E
from (8.14), and a map
0:D— F,
defined using the maps ® in (8.15) and passing to limits.

The following result shows how to use D, E, 6, and ¢ in order to calcu-
late H*(X; Z,,).

LemMMA 8.17. The kernel of
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6 — ¢: D @ Hom(H(X; Z), Z,)) — E
is evactly H*(X; Z) for X a locally finite complex. (Indeed, the map
1@ e H(X; Zn) — D D Hom(H*(X; Z); Z(z))

maps H*(X; Z,,) exactly onto this kernel, as can be verified on the level of
cochains.)

Thus, in order to complete the proof of (8.2), we must show that the
{K/} define an element £ in D satisfying 6(k) = ¢¢(K,). Explicity, we have

LEMMA 8.18. (1) T (K = K&,
(2 Y (K) = hor(KY)

Proof. (2)is easy. If x e H,(G/PL; Z,,), then there is a closed oriented
manifold M and a map f: M — G/PL so that h{M, f} is some odd multiple of
x. The surgery obstruction associated to {f, M} depends only on the index
of M and not on any semi-index. Moreover, since M is oriented, the part of
(8.5) involving the Kervaire classes vanishes, and the result follows by in-
duction.

(1) Consider the coefficient sequence

(8.19) 0— H,(G/PL; Z)® Zur— HlG/PL; Zyr) = Tor(Hii(G/PL; Z), Zur)—0 .
The splitting of (8.19) by s gives us a method to write
(8.20)  H,(G/PL; Z,) = Hy(G/PL; Z) ® Zyr @ Tor(H,.—.(G/PL; Z), Zy) .

In view of (8.18.2), the truth of (8.18.1), on the first summand of (8.20), follows.
It remains to verify (8.18) on the second summand. To this end, look at an
element » ¢ H2(G/PL; Z,). Represent x by f: M*~'— G/PL for some closed
oriented M. Then if 2"x = 0, there is a W with 6W = 2"M and F: W— G/PL,
so F|GW) = f. Select a basis {x, - - - «,} for H*(G/PL; Z)), and associate
with each x, a pair (W, aW,, F') as above. Then in terms of these explicit
elements and (8.6.2), we build all the elements in the second summand in (8.20).
Now, an easy induction on ¢ using (8.5), and noting for the second term
(involving the Kervaire classes) that the Bockstein is for the associated
singular Z,-manifold, give the result.
(8.2) now follows.

COROLLARY 8.21. The two local homotopy type of a map f; X — G/PL s
completely determined in dimensions greater than 4 by picking

(1) a basis ai, -+, @i, -+ for Q(X; Zy) as a module over Q. (point; Zy)
for each t, and

(2) @ representative g: M, — X for 2t and evaluating the surgery in-
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variant for the problem associated to fog. Conversely, given a sequence of
compatible homomorphisms

P, Q(X; Zyr) — (surgery obst.);
for 1 > 4, subject to (7.3), there is a unique map
f: X— G/PL[S, 8, ---]
realizing the @,,,. (Here compatibility is in the sense of (8.6)).

The surgery classes in (8.2) determine the map X — G/PL[6, 8, - -] =

s K(Z;: 41 — 2) xX K(Z,); 41) since they determine +1 on the generators

in 7,(G/PL). But the situation in the total space G/PL is more involved. For
E,, we have an exact sequence

(8.22) 0 — HYX; Z) — [X; E] — HYX; Z) 5% 59(X; 7)

and, in dimension 4, there are two generators ¢, 0 with 2(66) = 6 = 4(y).
Thus ¢ — 26 represents an integral cohomology generator. (6 may be thought
of as the fundamental class on the fiber K(Z, 4) in E,.) Two maps into E,
agreeing in dimension 2 may differ on 4. Indeed, from (8.22) f*(6) may be
changed by any integral cohomology class v ¢ HYX; Z). Then f*(¢ — 26) is
changed by —2x.

PROPOSITION 8.23. There are cases when two homotopically distinct maps
fii X— E, f,: X— E, give the same map in cohomology.

Proof. Suppose H*X; Z) contains a Z,-direct summand with generator
x. Suppose alsé that X is 4-dimensional. Then changing f by (2x) does not
change the maps in cohomology for any coefficients.

Consequently, it cannot happen that considerations at the level of or-
dinary bordism can determine completely the 2-adic homotopy type of a map
into G/PL in general.

Remark 8.24. Note that H(E,; Z) = Z with generator l,and if : Z — Z,
is the coefficient homomorphism, then 7(l) = 2. Moreover, K, = 1. Also, if
we look at the H-space structure of E, in G/PL, we find (¢, ®¢,) = {0,}
with Z,coefficients. This last suggests that, if we take the product of two
2-dimensional Kervaire invariant-one surgery problems, we obtain a surgery
problem which has an unstable non-trivial bordism invariant associated with

it. What the geometric interpretation of the invariant is the author has no
idea.

Example. 8.25. In the case of certain spaces, homology type completely
determines homotopy type for maps into G/PL. In particular, this is true for
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real projective spaces. From [20], [RP", G/PL]=Z,BZ.DZ,DZ,. We identify
the various generators in terms of their effects in Q, (RP"; Z,). As a module
over Q,(point, Z,), this set is free with 10-generators e,, e, - -+, ¢,,. The odd
generators are represented by the non-trivial map RP**' — RP", while the
even generators are represented by maps of the generalized Klein bottles
E* = 8% %, S*where T(z, y) = (r(z), —y), with r the reflection of the upper
and lower hemispheres of S*~'. Let q,, ¢, @: q. be the generators of [RP,
G/PL]. Then ¢(k,) = ¢, ¢¥(K.)) = ¢, ¢i(Ku_s) = ¢F(Kw) =0, ¢ > 1, and
I/8(q.E*) =1,

I/8(q.(E")) = 0,
while K(q.E,) = K(q.E;) = K(¢q:E,,) = 1 and K;(RP*"") = 0. Similarly, for g,,
we have g (k;) = ¢, ¢.|RP?) = 0, and ¢;(K,) = ¢; (k,,) = 0, so I/8(¢.(E®)) = 0,
K(¢,E°)= K(g.E*)=1. Also, I/8(g(E®))=1, K(q,(E"))=0, while K(q.(E"))=1

Appendix: Q/Z Cohomology

Define @, to be the direct limit lim Z,; where 7: Z,;— Z,:+: sends the
generator g; to pg..,. There is a natural map

(Al) P Q(p) R Q/Z
defined by ®,(9;) = 1/p% and, using these ®,, we have

LEMMA A2. Q/Z=Y% . Qu, hence the dual group Hom(Q/Z; Q/Z) =
Hom(Q/Z, S*) is tsomorphic to
Hp:prime Z<P°°) .
(Recall that Z ,~, = lim,, Z,; where the map 7.: Z,; — Z,i-: is the usual
surjection.)
COROLLARY A3. (1) K(Q), n) = lim K(Z,, n),
(2) K(Q/Z, n) = weak limit II,- prime K@, n).

Consequently, K(Q.,,, n) and K(Q/Z, n) have the homotopy types of countable
CW-complexes.

Hence we have from [28, Lemma 1]

COROLLARY A4. H,(K(Q), n); A) = lim H,(K(Z,, n); A).

In order to evaluate the cohomology of K(Q/Z, n), we recall from [28]
the definition of the lim' functor: let Alf—lAgﬁA3<— -+« be an inverse
sequence of abelian groups. Then lim, (4,) is defined as the kernel in the map

—

d: JT (4) — II (4)
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where d(a,, - -+, @y, -+ +) = (@, — Ta, a, — Ta; ---) and
(A5) lim' (4,) = [I (4)/a T (4) .

LEMMA A6. (1) Lim'(4;) = 0 ¢f m: A, — A,_, is onto for all 1.
(2) Lim'(A4,) = 0 if there is a sequence of positive integers

MWy, My * =+, Ny, *++, SO the cOMPOsites T;oM 0+« + oy, are identically zero.
Proof. In the first case,
a= (0’ _a:l; —((7,1 + a:z)y M) )

satisfies d(@) = (a., a,, as +-+) Where @, is chosen so 7d@; = a,. In the second
case,

a@=(a,+ ma, + Tag+ oo + T4, Gy F v T gy, )

satisfies

d@) = (a, as, *++),
and (A6) follows.

THEOREM AT. H*(K(Q.,, n); Z) = lim H*(K(Z,;, n); Z).

Proof. We check lim' H*(K(Z,:, n); Z) = 0 in all dimensions. First, we
consider the situation mod(p). H*(K(Z,, n), Z,) is the free commutative
algebra (for p odd a polynomial algebra on even generators tensored with
an exterior algebra on odd generators, and for p = 2 a polynomial algebra)
on specific generators

A(s e, D), <+, PTBE), -+, bPI(), - -, BPIB(D))

where b: H(X, Z,) — H**(X, Z,) is the Bockstein associated to the coefficient
sequence 0 — Z,— Z,.— Z,— 0. Looking at the integral cohomology of
X, = K(Z,,, n), we can make the following observations:

(1) If w is even, then, except for a summand Z,:,, in H**(X,, Z) cor-
responding to b[(¢)*], the order of any class in H"(X,, Z) is bounded by a
power of p which depends only on » and not on 7 ([11]).

(2) If n is odd, then, except for a class in dimension (# + 1)k of order
p’ corresponding to [b(¢)]*, the same statement is true.

) (i) = p(¢yi—1), SO

T(b(l,,i)) = b(l,,i—l) .

(4) (P = 7(b(P"))) = 0 mod (p) for I = (iy, &, *+*, tnos, Enyy 1a) DO
identically zero.

Thus, the elements in H"(X;, Z), aside from the special elements in (1) and (2)
above, can be split into direct sums A4,,; + B,,; where 7(A,,,)C A4,,.,, as a direct
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summand, while 7(B,,;) CpB,,.;. Since lim'(4,,,P B,,;) = lim'4,,, Plim'B, ,,
this lim'-term is zero by (A6). The exceptional elements associated to (¢)* or
(b(¢))* are handled similarly, and (A7) follows.
Remark A8. The proof of (A7) shows that
H*(K(Qqp, n); Z,) = A(++- Pb() -+ ),

where 9'b is a permissible monomial in the (mod p) Steenrod algebra G(p)
of excess less than n. Note also that each generator except b(¢) has order
exactly p.

Remark A9. Of course, by Kunneth’s theorem, H*(K(Q/Z, n); Z ) is
now evaluated directly by using (A3.2). In particular,
H(K(Q/Z, n); Z) = Hom(Q/Z, Q/Z) .
We set 8()) e H**(K(Q/Z, n); Z) to be the class corresponding to the identity.
In HY(K(Q/Z, n); Q/Z) = Hom(H(K, Z); Q/Z) = Hom(Q/Z, Q/Z), we have
the class ¢ corresponding to the identity. Then B¢ serves as a universal
Bockstein operator in the following sense: let a coefficient sequence
0 Zs Zsm Z’Iﬂ 0
be given. This gives a Bockstein operation
Bmss H( 3 Z,) — H™'( ; Z,) .

On the other hand, the embedding p: Z,, = Q/Z and the surjection »: Z — Z,
give rise to

K(Zy, n) —— K@Q/Z, n) 2 K(Z.,n + 1)
where 5*(¢) = p(B¢). Moreover,
(7oN)*(9) = Bm,s(6) -
Remark A10. Suppose X is a complex. Let H.(X; Z) be given. Then
B+ His(X; Q/Z) — Hiw(X; Z)
is an isomorphism.

We now turn to some basic considerations about the pairing Q/Z R Z —
Q/Z. In particulur, this defines an operation

H(;QZ)®H(;Z)—> H*(;Q/Z),
which we denote a U 8b.
PROPOSITION All. a U Bb = (—1)Wimte)thdinb+shp ) gg,

Proof. B(a U Bb) = B(a) U B(b) = (—1)@im@+naim®iin(o(p) U B(a)
= B(b U Ba)).
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Similarly, there is the pairing Z ® Q/Z — Q/Z, which gives the operation
Ba U b.

PROPOSITION Al12. B(a) Ub = (—1)tm@ig (J B(b).

Proof. Indeed, we have B8(BaUb) = (—1)*™*+'3(q) UB(d) on using our
direct limit arguments, and (A12) follows from the proof of (A11).

In particular, we have

COROLLARY A13. ¢, U 8t = {S¢*5¢,,}.

Proof. Welook in K(Q,, 2s). Note that 3(c, U Bts) = (Bt)* = B{Sq*BL,}.
Thus their difference lies in the kernel of 42, and hence is zero by (A10).

Finally, we point out a mysterious result first suspected by Brumfiel and
later proved in a joint conversation. The reader would do well to compare
our techniques in § 6 for proving (6.7) (notably (6.19)-(6.27)) with

THEOREM Al4. The fibration

K@Q/Z, n) 2 K(Z, 0 + 1)~ K@, + 1)

1s also a cofibration.

Proof. Consider the directed system of cofiberings and the maps

K(Zn, 1) & K(Z, 0 + 1) —— X,

bk
K@Q/Z,n)— K(Z,n + 1) — K@@, n + 1)

where j embeds Z, in Q/Z and {r*(¢), e,) = 1/m where en is the generator
of H,.(X,, Z) = Z. The directed system has as limit

KQ/Z, n) LB, K(Z, n + 1) — Mapping cone (8(¢))

by (9), and the limit of the maps r,, is a map (r): (Mapping cone) — K(@Q,n+1).
We check now that » induces isomorphisms in homology. For this, use (8)
which implies that, except on (¢), the map (8,.¢)* is injective. On the other
hand, (A7) shows the cokernels of 3,(¢) have limit zero. Thus the only ho-
mology of (Mapping cone) is due to the (¢), and the result follows easily.
Question A15. Are there any other fiberings which are also cofiberings?
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