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Pre  face 

This work had its origins in two projects. The first, undertaken 

in 1970 with Elmer Rees, was to construct certain low dimensional embeddings 

of real projective spaces. In order to do this we needed methods for 

calculating unstable homotopy groups of truncated projective spaces and 

associate spaces, as well as their images under various Freudenth~l 

suspension homomorphis~s. The second was to understand Mahowald's work on 

the metastable homotopy of spheres. 

In 1971 and 1972 ~ work in surgery made me enlarge the scope of 

the project and consider an apparently unrelated problem - the stable 

homo~Dpy of the Eilenberg-MacLane spacesK(Q/Z ,n). By means of 

appropriate fiberings these questions are seen to he merely different 

faces of the same coin. 

Hence, this current work which provides a relatively effective 

framework for considering such questions. We generalize Mahowald's 

constructions to allow us to apply Ada~' spectral sequence techniques to 

calculations, and we give detailed calculations for ma~ examples~ in 

particulars, those needed for the work with Rees, and those needed in surgery 

with coefficients. 
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Introduction 

In recent years, stable homotopy theory has become a standard tool for 

the working topologist. If ~" is a spectrum (YI,Y2, .... Yn,...) , one defines 

the stable homotopy groups of X with coefficients in ~ as 

Hi(X,Y ) = lira Wn+i(X ^ Yn ) , 
n~ 

and these groups, according to G. W. Whitehead, define a generalized 

homology theory. (This means that they satisfy all the Eilenberg-Steenrod 

axioms except the dimension axiom.) In particular, if ~ is the sphere spec- 

trum ~= (SI,s2,...,S n,...} , then 

Hi(X, ~) = ~iS(x) 

defines the stable homotopy groups of the space X . 

Since these groups form a homology theory, it is not surprising that 

homological techniques can be applied in calculations. Indeed, a major tool 

is the Adams spectral sequence, which has E2-term 

Ext~(pl(H*(X ^ Y, Zp), Zp) , 

and converges to H,(X, ~Y® Z ~) . Hered (p) is the rood (p) Steenrod 

P 
algebra, and Zp~ = lim÷ Zpi (see e.g. [2]). Sometimes there are more effi- 

cient methods for calculating these groups, but in a range it is quite effi- 

cient, and has led to the calculation of the stable homotopy of spheres and 

some associated spaces through approximately the first 60 stems. This is a 

considerable achievement, since it was not that long ago that there was real 

uncertainty as to the order of even the second stem. 



These techniques have also yielded spectacular results, such as 

Adams' first proof of Hopf-lnvarlant 1 and his later solution of the vector 

field problem for spheres. Moreover, the recent work of Mahowald, Quillen 

and others on the structure of the stable J-homomorphismpromises further 

profound knowledge in stable homotopy theory. 

S~rizing, we can regard the stable groups as reasonably well 

understood. 

For many problems, though, it is unstable groups which are actually 

needed. For example, the vector field problem for spheres (or its homotopy 

version) was really a question about how far back a certain element (the 

Whitehead product [I,IS) in (S 2n-l) desuspends. Its solution was 
~ n - 3  

o b t a i n e d  o n l y  a f t e r  i t  was c o n v e r t e d  i n t o  a p rob lem abou t  t h e  s t a b l e  homo- 

topy groups of truncated projective spaces, and the fact that this unstable 

question actually admitted such a reduction is, I suppose, the starting point 

of this monograph. 

In a range of dimensions, there is an exact sequence, discovered in a 

special case by I. M. James and written down in generality by H. Toda, called 

the EHP sequence 

÷ ~i(S n) ~ ~i+j(S n+j ) ~ ~i_l(S n-1 ^ F~n +j-l) ~ ~i_l(S n) ÷ , 

which relates the unstable homotopy groups of S n , S n+j to the (stable) 

groups of a truncated real projective space (Rpmn = Rpm/Rp n-I = *) • 

t~2n-i-1) which suspends to The existence of an element 8 ~ ~4n_3_i ~o 

the Whitehead product [I,Ij can be interpreted as equivalent to the 

- 2n-i-2 ^ ~2n-i , with P(a) = 8 in 
existence of an element ~ E ~4n_3_i(S ~2n_i_l ) , 

the EHP sequence, and, on pinching S 2n-i-2 ^ p2n-22n_i_l to a point, 



e E ~4n_3_i(S 4n-3-i) is a generator, provided i satisfies P(a) is 

sufficiently small that the EHP sequence is valid. This can be seen at once 

on considering the commutative diagram of EHP sequences 

÷ P H W4n_3_i( s2n-i-I 2n-i W4n_3_i(s2n-i-i ) ÷ ~4n_2(S 2n) A P2n_i_l) ÷ 

~E += ~E' 

W4n-2(s2n ) + ~4n-2-i (S2n-i ^ ~2n-i~2n-l)' 
P ,~2n-i~ E H 
÷ ~4n_2_i~o ) ÷ 

÷ 

+E += +E' 

P is2n_l ) E • ,s2n, W4n 2( s2n'-i .2n-l, 
÷ W4n 3 ~4n-2 % J ÷ ^ ~2n-2 ) ÷ 

since [I,I] generates the kernel of the bottom suspension map. 

There are other problems of a similar nature involving, for example, 

the number of times a Thorn space is really a suspension, which have implica- 

tions for the geometric dimensions of vector bundles and the immersion dimen- 

sions for manifolds ( [42] ). 

Our main object here is to develop machinery which leads to systematic 

methods for attacking such problems in a range of dimensions. Specifically, 

we study the problem of passing from the stable to the metastable homotopy 

groups of a space. In particular, we develop the following generalization 

of the EHP sequence. 

Theorem I.ii. There is a S~ace FL(X) = sL-I ~T (X ^ X) , which is 

(2n-l)-connected whenever X is (n-l)-connected and an exact sequence valid 

in the metastable range (i < 3n-2) 

• ... E Wi+L(ZLx ) H wi(FL(X) ) +~ Wi_l(X ) E Wi+L_I(ZLx) ..... 

So for L sufficiently large, * determines w,(X) in terms of the 

stable homotopy of X and FL(X) in this range. If X is a sphere S n , 



then sL-I ~T Sn ^ Sn = ZnRpn+i-I ([22]); however, for more complicated X 
n 

FL(X) becomes considerably more complex. In §§2 and 3, we give H*(FL(X)) 

as a module over the Steenrod algebra .~(2) or ~g(p) , provided we know the 

Steenrod algebra structure of H*(X) . Thus, in principle, we can apply the 

Adams spectral sequence to determine w,(FL(X)) through a suitable range. 

The idea behind the proof of i.II is contained in two facts: that 

wi(Qny) T Wn+i(y ) , where ~ is the n th loop space of Y , and that the 

natural map (§I) 

j : X~* ~n~nx 

gives, on passing to homotopy, the map j, : wi(X) ÷ Wn+i(znx ) , which is the 

suspension map E in I.Ii*. Converting j into a fibration and identifying 

the fiber with ~(Fn(X)) gives i.II. 

In order to make this identification, we need some basic facts about 

the structure of the space ~nznx . When n = i , I. M. James showed that 

~ZX ~ JI(X) , where JI(X) is the "reduced join,, 

(x ~2 x2) x 3 u UF3 .... 

Here F 2 is defined on , x X u X x , as the folding map, F 3 is defined 

on , x X2 u X x , x X u X 2 x , as the folding map, and so on. There is an 

associative product in JI(X) defined by juxtaposition, and * is then the 

identity. In fact, JI(X) can be described as the free associative H-space 

generated by X with * as unit. This result was generalized in E18] to 

give similar constructions for ~n2nx . We review (and explain) this con- 

struction in §0. 



Specifically, we start almost from first principles and develop the 

geometric ideas which lead to an understanding of the basic structure of 

~nznx . These lead to constructions JI(X) , J2(X)...Jn(X) , which are, in 

a sense, minimal models containing all the basic structures just developed. 

It is then a theorem that, for reasonable X , Jn(X) ~ ~nznx . We do not 

prove this last result (the proof can be found in [183), but we do explain 

the considerations which lead to the constructions, and these should make 

the details in [18] almost unnecessary. 

In §4, we consider the problem of looking at ~nX when X is no 

longer an n-fold suspension. The result is quite intriguing. There is an 

evaluation map e : S n ^ ~nx ~ X , and looping e n-times gives 

T : ~nzn(fin X) + ~n X . 

The fiber of T is shown to be Fn(X) in a range, and we obtain 

Theorem 4.4. Suppose X i_~san(n+m-l)-connected CW-complex. Then in dimen- 

* Z sions less than 3m-i , H*(~nx, Zp) depends only on H (X, p) for p odd, 

and on H*(X,Z 2) as a module over ~az(2) for p = 2 . 

To finish Part i, we apply the results of §4 to the desuspension prob- 

lem. The result is 

Theorem 5. I. 

Then 

i) 

Let X be (n-1)-eonnected and have dimension less than 3n-2 o 

2) 

if Y is the (2n-L-l)-skeleton of X , there is a unique space Z , 

so zLz = Y ; 

X is itself an L-fold suspension if and only if a certain (universally 

constructed) map 



¢ : X/Y + EL+IsL-1 ~T Z ^ Z 

i_~s homotopically trivial (as usual, ¢ is a stable map). 

The result would be more satisfactory if we knew more about ¢ or 

even the cofiber of ~ . In low dimensions, things can be explicitly worked 

out using unstable higher cohomology operations (see e.g. [36]), but at pres- 

ent the author has no general results. 

In this connection, we would like to point out the worked example at 

the end of §4, ~ll(cp128) , where we show that the mod 2 Steenrod algebra 

action in H*(~nx) is not determined by its action in X . It is possible 

to interpret the work of Ad6m-Gitler on non-immersion theorems ([3]) in 

terms of examples of this kind, and such analysis could lead to a sharper 

understanding of ¢ . 

In Part 2, we develop means for calculating the maps H and P in 

i. ii*. 

Mahowald showed in [!3] how to use Adams spectral sequence techniques 

to study the ordinary EHP sequence. He constructed a map 

E2(H) : ExtS'~(2)(Z2,Z2)÷ Ext s-l' t-n-~( 2 (H*(RPn) , Z 2) ) 

which conmlutes with differentials and, at E ~ , gives a map associated with 

H . (Note here that E2(H) changes the s degrees. It is precisely this 

change which makes Mahowald's map non-trivial. ) 

The obvious generalization of E2(H) to the map in I.II* fails, how- 

ever, and E2(H) does not exist for any space more complicated than a 

sphere (at the prime 2) 



Our main object in Part 2 is to provide a satisfactory generalization° 

We first review Adams' method for constructing his spectral sequence, and 

generalize it slightly so as to define an unstable spectral sequence which 

approximates the actual homotopy of a space X . Convergence seems diffi- 

cult in general, but the sequence does converge in the metastable range. 

There is a natural suspension map E from this spectral sequence to the 

stable Adams spectral sequence, which is an isomorphism in the stable range 

and, at E ~ , is associated to E . At the E 2 level, E is algebraically 

determined through the metastable range. This situation is quite nice 

except that the E2-term of our sequence for X is very hard to determine 

above the stable range, so we turn to the maps H and P . 

In 6.11, we indicate how to define a spectral sequence for a pair 

(Y,A) , where A c H*(Y,Z2) is any submodule closed under the action of 

~(2 ) . The resulting modified Adams s~ectral sequence has E2-term calcu- 

lable in terms of Ex~(2)(A, Z2) , Ex~(2)(H*(Y)/A, Z2) , and a differential 

B : Exti'*(H*(Y)/A, Z2)÷ Exti+2'*(A, Z2 ) . 

We denote it E~.(Y,A) . 

In H (FL(X) , Z2) , there is a natural.~(2)-submodule A , and in 

§8 we construct a map 

B2 : ExtS,~(2l(H*(X), Z2 ) + E~_I,t_2(FL(X) ' A) , 

which provides the desired generalization of Mahowald's map 6 2 (A is 0 

if and only if X is a sphere at 2 , in which case E~,(FL(X), O) 

Ext*'*-n-l~(2)~ (H*(FL(X), Z2) . In fact, we are able to prove 



Theorem 8.5. Suppose L > 3m , with X (m-l)-connected. 

map 

j* * , 
, E. j(FL(X), A)+ E~+l,j+l(X) 

and, in the metastable range, the sequence 

Then there is a 

. . . .  ExtS't~(2)(H*(X), Z2)~-~2E2st_ 1 (~*(r{x)), A) 

2 z 2)  . . . .  s+l,t" ) ExtS+l' 

is long exact. 

This result makes effective calculations feasible in some cases. To 

expedite them, we conclude Part 2 with a discussion (§9) of methods for cal- 

culating Exti'J 2 (H*(FL(X)/A' Z2) This is highly non-trivial in general, () 

since H*(FL(X)/A) is a very complex~(2)-module; it replaces each Z2-coho- 

mology class of X by the cohomology of a truncated projective space. By 

an appropriate filtration, we obtain a spectral sequence converging to 

Ex~2)(H (FL(X)/A), Z2) , whose El-term contains a copy of 

** )(H*(RP n ), * Ext ;~(2 Z 2) for each n-dimensional cohomology class in H (X, Z2) . 

A second spectral sequence is also developed, which makes calculations feas- 

ible in case Extw(2)(H*(X), Z2) is sufficiently well-known. 

In Part 3, we apply the results of Parts i and 2, and give some exam- 

ples to show that the theorems there cannot be improved too much. 

In §§i0 and ii, we calculate some of the stable homotopy of the 

Eilenberg-MacLane spaces K(Z,n) , K(Z2,n) , and K(Q/Z, n) . The results 

for K(Q/Z, n) are calculated only so far as we need them in applications 

([41]) 



W2n(K(Q/Z, n)) = 0 

s n)) I~/2Z ' n-°dd 
~2n+I(K(Q/Z, 

, n-even 

However, in §ii, we give the first i0 stable groups for K(Z,8k+l) as an 

example (Theorem 11.18), and do most of the necessary work to obtain these 

groups for other values of n as well. In particular, 11.18 corrects some 

errors in [143. 

§12 applies the metastable sequence 8.5** to the case X = S n u 2 e n+l , 

and, as an example, we calculate the homotopy groups of S 7 L; 2 e 8 through 

the entire metastable range. 

Finally, in §13, we give explicit calculations for some truncated 

projective spaces. In particular, our final calculation is of the unstable 

resolution for P62 to slightly beyond the metastable range, where we see 

that wild filtration changes make any reasonable extension of 8.5** impossible. 

The remaining calculations in §13 provide the homotopy theoretic results 

needed in [42]. 

These results were originally obtained in 1969 and 1970. Since then, 

there has been further work by several authors on some of the questions con- 

sidered here. B. Draehman has studied the desuspension problem from another 

point of view, and has obtained geometric criteria for deciding when a space 

is a suspension. Unfortunately, it seems difficult to iterate his 

techniques. 

Also, an area which has received only partial attention but clearly 

merits more is the extension of the current resul~ to generalized homology 



i0 

theories, such as unstable MU-theory, which seems ready for serious 

development in view of W. Steven Wilson~s thesis (M.I.T., 1972). 

In this connection, it would be interesting to explain Donald Davis' 

thesis (Stanford, 1971) on the geometric dimensions of bundles over RP n 

in terms of obstructions to desuspension of the Thom complexes, since that 

would probably give insight into the nature of the map $ (5.1) in b 0 or 

b U theory. 



PART I 

§0. Iterated loop spaces 

We begin by describing the category ~ of n-fold loop spaces. We 
n 

can look at ~X as the space of base point-preserving maps S 1 + ~-lx 

or the base point-preserving maps S 2 + ~-2X ... , or S n ÷ X . With 

respect to the various ways of looking at ~nx , there are evaluation maps 

adj,(1) : S k ^ ~(X) ÷ ~-k(X) , 

which fit together to give 

n-i .n 
S n ^ ~(X) Z adOl(!~sn_l ^ ~_I(x) 

0. I 

zn-2adjn-l(ll ) sn-2 
^ ~ r~oo-2x ~ 

and the composite 

Zn-s , .n-s+l,~ , -i n -i n 
aaJ I ~±) ... Z n adJl(l ) = Z n adJs(l ) . 

The Moore loop space ~(M)(X) is the set of maps f : [0,kf] ÷ X for 

variable k -> 0 , which satisfy f(0) = f(k) = * It has an associative 

product with unit f * g : [0, kf + kg] ÷ X , defined by setting 

f * g(t) = I f(t) 
t < 

kf 2 

f(t-kf) , t > kf . 

The unit of ~(X) is * : [0] ÷ * Also, there is a natural homotopy 

equivalence between ~(X) and ~(X) (as, for example, in J. Adams and 

P. Hilton, "On the chain algebra of a loop space," Con~nent. Math. Helv. 30 

(1956), 305-330), so in the remainder of this paper, we identify them and 

leave it to the reader to make the necessary modifications to go from ~n(x) 

to DnM(X) or vice versa. 
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If Z and W are n-fold loop spaces, then a map f : Z ÷ W is 

"admissible" if and only if f = ~n(g) for some g : ~-n(z) ÷ ~-n(w) . 

Lemma 0.2. Let f : X + ~ny be ~ ma~- Then there is an admissible map 

g(f) : ~nznx + ~nT 

and a natural inclusion 

j : X ÷ ~nznx , 

so g(f)-j : f . 

Proof. From the composite 

obtaining the map g(f) . 

÷ sn (t,x) c ^ X , and 0.2 follows. 

znx znf zn~ny adj(l~y , we can loop down n-times, 

Now j : X + g2nznx is defined by j(x)(~) = 

Remark 0.3. Wn(Y) % w n_k(~kY) , n _> k . Also, if 

j : Z + ~kzkz 

Y : zkz , then the map 

gives j.:~s(Z) + Wk+s(Zkz) , and this is the Freudenthal suspension homo- 

morphism. If Z is an (n-l)-connected CW-complex, then the Freudenthal sus- 

pension theorem implies j : Z ÷ ~kzkz is a homotopy equivalence in dimen- 

sions less than 2n-i , since Milnor has shown that ~kzkz also has the 

homotopy type of a CW-con~plex ([25]). 

Remark 0.4. The universal example for the situation in 0.2 is g(id) : 

~nzn(~ny) + ~ny . Indeed, it has recently been shown by J. P. May that the 

existence of an H-map ~nznz + Z , with ~-j = id , is essentially equivalent 

to the associative H-space Z being an n-fold loop space. 



13 

These observations signal the basic role of the spaces ~nzny in 

14 n . We study the map j in more detail in §l and T = g(1) in §4. Now 

our object is an explicit description of the homotopy type of the space 

~nznx . 

A model for ~EX was constructed by I. M. James (in "Reduced product 

spaces," Ann. of Math. 62 (1955), 170-197). It is easily described. Set 

JI(X) = Un= I Xn/R , where R is the relation 

0.5 (Xl...x i, *, xi+2...x n) ~ (Xl...x i, xi+2...x n) . 

It has an associative product (juxtaposition), a unit * , an obvious topol- 

ogy, and James proved that JI(X) -- DZX for X a CW-complex. The equiva- 

lence of JI(X) with ~ZX is obtained by mapping JI(X) + ~ZX as the 

(unique) multiplicative extension of j : X + ~(Z X) . 

Models for ~nznx , n > I , were constructed in [18]. Several 

attempts to rework the construction occurred thereafter, culminating with 

the construction given by J. P. May(in TheGeometr [ of Iterated Loo~ Spaces, 

Lecture Notes in Mathematics 271, Springer-Verlag, 1972). In 1.14, we describe 

the basic germ of his models, but in the remainder of this section, we largely 

follow [18]. 

Let us begin by looking at Jl(Z Y) ~ ~Z2Y . Its component building 

blocks, the ~ y)n can be written after shuffling the variables in the form 

I n x yn , 

where we make the identifications 



14 

(tl'''£i'''tn'Yl'''Y~ ~ (tl"'tn'~ .... Yi = * .... Yn ) 

^ ^ 

~ (tl...ti...tn, yl...yi, ...yn) , n > 1 , 

and (~l,Yl)~ (tl~) ~ * for n = I . Here c i = 0 or I . 

Let P(n) he the set of variable length paths starting at (0,0,...,0) 

in I n and ending at (i,...,I) . Crossing with yn , we map P(n) x yn 

into paths on I n x yn, starting at (0,0 .... ,0) x yn and ending at 

(I ..... i) x yn , by defining (f~l...Yn)t = (f(t), yl...yn ) . 

In view of our identification 0.6, we see that (0,...,0) x yn 

(i ..... I) x yn ~ . in Jl (~ Y) . Thus, in Jl (Z Y) , each point of 

P(n) x yn gives rise to a loop; i.e., there is a well-defined and continu- 

ous map 

¢n : P(n) × r n + ~J1(z Y) ~ ~2Z2y . 

As a first approximation of ~2Z2y , we could take the free associative 

H-space generated by the disjoint union of the P(n) x yn , and extend the 

Cn to a multiplicative map in the evident way. However, to do this would 

be to overlook at least one vital bit of additional structure in the @n " 

Definition 0.7. There is a pairing 

u.. ; P(i) × P(j) + P(i+j) , 

defined by 

where [fl 

~(f(t), 0 .... 0) , t ~ Ifl 

ui,j~f,gjtr ~ = ~(i ..... i, g(t-lf I)) , t ~ Ifl , 

is the length of the path f . 



15 

Clearly, the u. . are associative in the sense that 
1,0 

ui+j,k(Ui, j × i) = ui,j+k(l x Uj,k) . 

Lemma O. 8. The map 

¢n×¢~ 
(P(n) x yn) x (P(m) x ym) .... ~(jl( Z y)) × ~(jI(Z y)) 

u 
+ ~(Jl(~ Y)) 

factors as the composite 

(P(n) x yn) × (P(m) x ym) + P(n) x P(m) x (yn x ym) 

Um n ×I Cn+~ ~(jl ( z ' ~P(n+m) x yn+m y)) . 

(The proof is obvious. ) 

Thus a better model for ~JI(Z Y) would be obta~ed from the union 

of the P(n) × yn by making a further identification 

0~.9 (p,y)'(p',y') ~ (Un,m(p,p'), (y,y')) • 

The resulting model, although better, is still too big. Recall that, 

in 0.6, if Yi * in yn on x by for- = , we collapse i n x yn in-i yn-I 

getting the i th coordinates. 

Lemma 0.i0. The map ki : In + In-I ' forgetting the _~th coordinate, 

induces a map 

P(k i) : P(n) -~ P(n-l) , 

and if 
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@n : P(n) × yn ÷ ~((Z y)n) 

is the obvious map, Jn: (Z y)n + jl (Z Y) the Quotient map, the__~n 

Cn = Jn@n ' 

and the diagram 

P( n ) vn ~n × ~ ~_, ], f~[(~ y)n] 

P(ki)×Xi 1 ~i 
P(n-1) × yn-I ~n-l~[( z y)n-l] 

commutes. 

Thus we can add another relation to our construction: 

0.Ii (p,y) ~ (P(~i)(p), ~i(y)) if 

y = (yl...Yi_l, *, yi+l...yn) . 

Finally, there is one more type of relation which must be taken into 

account. It is well-known that a second loop space has a homotopy commuta- 

tive multiplication. We add homotopy commutativity to our model as follows. 

Definition 0.12. The symmetric group ~n acts on P(n) by ~(p)(~) = 

p(~) , where ~(t I ..... tn) = (t _i(i) ..... t l(n)) . 

Lemma 0.13. P(n) i sequivariantly contractible with respect to the 

g-action (i.e., the homotopy of contraction can be chosen so that Ht(~p) = 
n 

~Ht(P) , all p E P(n)) . 
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Pro9f. We start by defining a contraction of I n by Zt(tl...t n) = 

(ttl,...,tt n) , and corresponding to Zt ' the contraction H t is given by 

Ht(f)(T ) = { ~ , t f ( x / t )  , T s t l f t  

( t + T - t  I f  I . . . . .  t ÷ T - t l f t  ) otherwise. 

( 1 , . . . 1 )  

, - ~t(f) 

it(In) / 

(o,o . . . ,o)  

Similarly, we have 

Lemma 0.14. The fol.lowing diagram commutes 

(P(n) x yn) x (P(m) x ym) tD×¢~ 
. ~( JIZY ) IT ~( Jl ZY ) 

)~ (Un,m xl )( shuff 

P(n+m) x yn+m ~(JiZy) x ~(JIZY) 

Sn,mXl i ~u 

P(n+m) x yn+l ......... Cn+m ~ fl/l(~ y) 

where Sn, m E "%+m i~s the shuffle of the first 

dinates, and T is the interchange. 

n with the last 

In particular, this implies the additional identification 

m-coor- 

0.15 (Sn,m(Un,m(p,p')), (y,y')) ~ (Um,n(P',P), Y', Y) • 
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But (Um,n(p' p), y' , , y) is equivalent by 0.9 to the product (p',y')(p,y) 

and since P(n) is connected, (Sn,m(Un,m(p,P')),y,y') ishomotopic to 

(Un,m(P,P'), (y,y')) ~ (p,y).(p,,y,) • 

Theorem O.16. Let K2(Y) = U n P(n) x yn modulo the relations 0.9, 0.ii, 

and O.15. Then K2(Y ) is an associative H-space with unit, and the natural 

map K2(Y) + ~I(Z Y) is a homotopy equivalence if Y is a connected 

CW-complex. 

Proof. Consider the type 0.9 and 0.15 relations on P(n) × yn . They 

imply that the only t~q~e of (P(n))-relations occur over the points 

c~(P(r) x P(n-r)) , where a runs over all (r,n-r) shuffles. We call 

these the n-2 "faces" of P(n) . This nomenclature is justified by 

Lemma 0.17. Let F = u n-I a(P(r) x P(n-r)) Then 
a,r=l 

i) Hz(P(n),F; Z) = I 0 ' £ / n-I 

[z , £=n-I 

ii) Let a generator Pn-I of Hn_l(P(n), F) b~e given. Then the 

evaluation map 

e : (I,$) x (P(n),F) ÷ (I n , DI n ) 

has degree ±I ; i.e., 

e,(e I ® Pn_l ) = ±e n , 

where e. is the orientation class of (Ii,~) . 
1 

(The proof is by induction.) 
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In J. F. Adams' paper, "On the cobar construction," Proc. Nat. Acad. 

Sci. U.S.A. 42 (1956), 409-412, it is shown that there is a spectral sequence 

defined for any space X , and converging to H,(DX, Zp) . Its E2-term has 

the form CotorH,(X, Zp)(Zp,Zp) . A similar spectral sequence can be defined 

for K2(Y) , and the natural map K2(Y ) + ~(Jl(E Y)) induces a map of spec- 

tral sequences. From 0.17, it is then an easy calculation to check that, at 

the E2-1evel, the spectral sequence map is actually an isomorphism. Then if 

Y is a finite complex, the comparison theorem shows the natural map induces 

isomorphisms in homology for all coefficients Zp , and it is known that 

G2Z2y has the homotopy type of a locally finite CW-complex. Hence by the 

Whitehead theorem (for connected H-spaces), the natural map is a homotopy 

equivalence. No~ since Y is the limit of its finite subcomplexes, the 

result follows for general Y . 

Notice the role of the "complex" of faces a(P(r) x P(k-r)) , 

a((BP(s) x P(r-s)) × P(n-r)) , etc., in the proof of 0.16. Through 0.17, 

they are the essential things in making the proof work. The complex for 

P(2) is simply that of an interval; that for P(3) has the form of a 

hexagon 

I 
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As these examples indicate, the comPlexes above are obtained from 

cellularly decomposing the boundary of a disc D n-I , and we may simply 

replace P(n) by D n-I , and make the type 0.9 and 0.15 identifications 

over the corresponding faces to give a much smaller model for ~2~2X . 

The explicit construction follows. Recall first that the faces of 

the convex hull of a finite point set S in Euclidean space are convex 

hulls of certain subsets of S . 

Definition 0.18. Let 

( 1 , 2 , 3  . . . . .  n + l )  ~ R n ~ l  

C(n) be the convex hull of the translates of 

under the action of /~n+l " 

C(n) is easily seen to be the hexagon for n = 2 , the figure 

whose faces consist of eight hexagons and six squares C(1) × C(1) for 

n = 3 , and in general C(n) has faces of the form ~(C(r) × C(n-r-l)) , 

r = 0 , ... , n-I , as a runs over all (r+l, n-r) shuffles. 

let S' c S be the orbit of (l,2,...,n+l) under the action of 

Then the convex hull of S' is naturally isomorphic to 
n-r 

C(n-r-l) . Similarly, aC(r) x C(n-r-l) is the convex hull of 

(See Lemma 4.2, p. 391 of [18] for details.) 

C(n) be the identification above. 

Indeed, 

~r+l × 

C(r) × 

~ ( S '  ) . 

Let I r : C(r) x C(n-r-l) ÷ 



Note that 

faces to faces. 

we can define degeneracies 
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C(n) is invariant under the action of "~+i which takes 

Also, guided by the need for degeneracies in 0.I0, 0.i!, 

D i : C(n)+ C(n-l) , i = I , ... , n+l 

(as in Lerm~a 4.5, p. 392 of [18]). Specifically, we have 

Lemma 0.19 ([18]). There are maps 

D k : C(n) ÷ C(n-l) , i <-k-<n+l , 

so that 

i) DII0 is the projection on the second factor; 

= ilk-l(oj × id) , j ~ k 

ii) Djl k IIk (id × Dj_k) otherwise; 

iii) dj(~)D I = Dj8 , 8 ¢ ; 
B- (j) n-i 

iv) DiD j = Dj_ID i ~PF J ~ i . 

(Here dj :~n+l ÷~n is the correspondence which makes the diagram 

commute.) 

Rn+l ~ . Rn+l 

8- (j) dj(~) J 

Indeed, (i)-(iii) specify Dj on faces, and the map Dj is then 

defined by extending linearly along rays to the respective centers. The 

reader is advised to check that (i)-(iv) are forced on us by O.10. 
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As the remarks preceding 0.18 indicate, the 

replacements for the P(n) , and we have 

Corollary 0.20. ~2Z2X ~ U 
n=0 

modulo the relations 

C(n) x X n+l 

C ( n - 1 )  s e r v e  a s  

^ 

i) (C,Xl...xi*,xi+2...Xn+l) ~ (Di+l(c),xl...Xi+l...Xn+l) ; 

ii) if c e ~li(C(i) x C(n-i-l)) for ~ an (i+l,n-l) shuffle, then 

(c, Xl...Xn+l)~ (~-l(c), x ) ..... x 1 ) ' 
~-i(i ~- (n+l) 

if X is ~ connected CW-complex with * a vertex. The multiplica- 

tion in J2(X) = u 0 C(n) x xn+I/R is given as 

{c, Xl...Xn+l}-{c', Xn+l...Xn+m+ 2} = {In(e,c'), Xl...Xn+m+ 2} , 

and with this product, J2(x) is H-equivalent to ~2Z2X . 

This provides us with a minimal geometric model for ~2Z2X . Basically, 

the model makes it clear that the fundamental data which go into the state- 

ment that a space is a 2-fold loop space are an associative unitary multipli- 

cation, together with a series of higher homotopies of commutation. 

We now indicate how to extend this construction to obtain models for 

the higher loop spaces ~nznx , n > 2 . 

Consider, for example, the case n = 3 • We have already approxi- 

mated ~2Z2(Z X) as J2(Z X) = U C(n) × (Z x)n+I/R = u c(n) x I n+l × xn+I/R ' = 

o I n+l x C(n) × xn+i/~ , . Once again we can use the P(n+l) to construct 

loops by taking elements of P(n+l) × C(n) × X n+l and defining 
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@(p,c,xl...Xn+ l)t = {p(t),C,Xl...Xn+ I} . 

By 0.20(i), these paths become loops. Moreover, the obvious analogues of 

0.8, 0.i0, 0.14 continue to hold. Thus we obtain a model for ~3Z3X as 

follows. 

Definition 0.21. Se_~t J3(X) = u (C(n) × C(n) × X n+l) modulo the relations 
A 

i) (c'c"xl'" "*i .... Xn+l) (Di(c)'Di(c')'Xl'" "xi .... Xn+l) ; 

ii) if c' e eIk(c(k) × C(n-k-l)) , then 

(c,c',xl...Xn+l) ~ (e-lc,a-lc,,~Xl...Xn+l)) ; 

iii if c e ~Ik(C(k) × C(n-k-l)) , then 

(C,C',X 1 .... Xn+ I) ~ (~-Ic,o~(c'),~x l...xn+ I)) . 

Here Da(c ' ) = [CD~ k+2"~n-k × (Dl)k+l~-l](c ' ) . . . . . .  is the obvious degeneracy used 

for ~ath$ on (~ X) n+l , which are at * on the first k+l coordinates 

half the time, and * on the last n-k coordinates the remainder of the 

time. 

To complete the definition, we remark that, after using 0.2(i)-(iii), 

if the point is equivalent to one of the form 

((Cl,C2) , (Cl',C2')Xl...Xn+lXn+2...Xn+m+2) , that is, to a product, then we 

asain a~ply (i)-(iii) se~aratel~ to (Cl,Cl'Xl...Xn+ I) , (c2c2'Xn+2...Xn+m+2) 

and take the product of the results. 

It is now possible to prove an analogue of 0.16 for this model, and 

we have 
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Theorem 0.22. If X is a connected CW-complex, then J3(X) 

type of ~323X as an associative H-space. 

has the homotopy 

It is now clear how to generalize the construction. We obtain 

co 

Definition 0.23. Set Jm(X) = Uo= n (C(n)) m-I x X n+l modulo the relations 
^ 

i) (Cl...Cm_l,X .... *i .... Xn+l) ~ (Di(Cl) ..... Di(cm-i )'x .... xi'"Xn+l) ; 

ii) if c. ~ ~Ik(C(k) x C(n-k-l)) , then 

(Cl...Cm_l,X!...Xn+l) ~ (~-ic I ..... a-lc. , Da(cj)...Da(Cm_l ), a(x, )) ; J-i "'''Xn+l 

iii) the same convention on points equivalent to products as given in 0.21. 

Once again we can prove 

Theorem 0.24 (Theorem 5.2 o£ El8], p. 395). Let X be a connected CW-com- 

plex. Then there is an H-map 

j~ - J~(x)÷ ~k~(X) , 

which is a homotopy equivalence. 

Remark 0.25. There is a filtration on the points of Jk(X) , given by say- 

ing y has filtration m if it is in the equivalence class o£ a point in 

(C(m-1) k-1 x X m) under the relations of 0.23. In particular, if * is a 

vertex of X , and X is (£-l)-connected, then the set of points having fil- 

tration _ < s , Jk(X) (s) , is a subcomplex of Jk(X) and contains all the 

cells of Jk(X) of dimension < (s+l)~ (provided X has no cells of 

dimension < £ except * , which we can assume). Thus if we wish to con- 

sider problems dealing with dimensions ~ (s+l)Z-2 , we can replace Jk(X) 

by Jk(x)(S) 



25 

The reader is advised to work out the explicit structure of Jk(X) (2) 

and verify the description given in the proof of 1.11. 
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§i. The Inclusion X ~ ~nznx 

Recall from §0 tha~ 

~ l u s i o n  J: X~ ~nznx is defined by sending x ~ X to the map 

f : (sn,*) -~ znx , defined as the composition S n -~ (sn,x) ~-~ S n A X = ZnX • 

It is clearly natural and continuous, and in homotopy induces the map J, : 

-~ ~n+j(znx) , which is just the n-fold iterate of the Freudenthal sus- hi(X) 

pension homomorphism. In particular, if X is an m-l-connected locally 

finite CW complex, then J is 2m-2-connected. 

We convert J into a fibering in the usual way. Thus we first replace 

~nznx by the mapping cylinder M(J ) , and J by the inclusion X~ M(J ) • 

Then F , the fiber of J , is defined to be the space of paths of unit 
n 

length ExM(J ). starting in X and ending at * , the base point in 

~nzn(x) . By the result of Milnor ([25]), if X is a CW complex, then F n 

is the homotopy type of one also. 

In [18], it was 

nzn 
~own that H.(~ (X), Zp) is an explicit functor of H.(X, Zp) alone, 

and the inclusion J. is injective in homology. Thus, using the Serre spec- 

tral sequence of the fibering, it is easily argued that H.(Fn) depends only 

o__nn H.(X) and n in dimensions less than 3m-1 if X is m-l-connected. 

Here is an alternate description of F Let G , H be associative 
n 

H-spaces with units, and f : G ~ H an inclusion which is also a homomorphism. 

f induces an inclusion of classifying spaces ([19], [32]) 

and we have 

Bf : B G -~ B H , 
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Lemma i.i Let EH~B H be the universal quasi-fiberin~ ([7], [19], [52]). 

Then the fiber of Bf is E H restricted to B G ; i.e., p-I(BG) . 

The proof is direct. 

In particular, if G = ~(X) and H = ~(M(~)) , this provides an 

explicit and fairly manageable description of F If X = ZY , the clas- 
h 

sifying space constructions given above can be considerably improved. Indeed, 

using the constructions introduced in [18], the inclusion ~ZY~n+Izn+Iy 

is H-equivalent to the inclusion 

Let X 

X ~R + 

X : JI(Y) ~Jn+l(Y) . 

In §2 of [18], an alternate classifying space construction is given: 

be a (free I) associative H-space with unit * and homomorphism h : 

so h-l(o) = * ; then E X is defined as X X R + X X mod the relations 

(x,t,yz) ~ (xy, t-h(y),z) , 

(x,O,y) ~ (x,t,*) . 

B x is then defined as * ×X ~ " 

Now, if there is a commutative diagram 

(l.2) 
x-~z 
~',~ !+h' 

with g a homomorphism~ then there is an induced map Bg : B X ~H Z • More- 

over, if g is an inclusion, then Bg is an inclusion and Z X X ~ is the 

i 
This is the geometric analogue of unique factorization in algebra. 
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restriction of E Z to ~ . Thus the fiber in the map Bg 

In particular, 395-396 of [18] shows that (1.2) is true for 

Y = Jn+l(Z) , using the 

we have proved 

h I , hn+ I constructed there. 

i s  x . 

X = JI(Y) and 

Passing to fiberings, 

Le~na 1.3 The fiber F n in the natural map ZY~nzn+Iy is 

Jn+l (Y) XJl(y ) EJI(X) " 

This space admits a simple description as a CW complex. 

Corollary, 1.4 C#(Fn) % C#(Jn+l(Y)) @C#(~Y) and ~(a ® ~(b)) = 

(-1) lal aob ® 1 + (-i) lal+l a ®~($b) + ~a ®c(b) . 

complex A 

applied to 

Theorem 1.5 

suppose f : A ~A' 

phisms i__nnhomology. 

i__~nhomology. 

There is an algebraic functor ([18], §7) which defines for any chain 

an associated chain complex Fnsn(A) • It gives C#(Jn(Y)) when 

C#(Y) , and we have ([i~], Theorem 7.2) 

Let A , A' be chain complexes over Z (for p a prime), and 
P 

is an augmentation-preserving chain map inducin~ isomor- 

Then Fnsn(f) : Fnsn(A) ~Fnsn(A ') also induces isomor- 

There are inclusions Yi, j : Fisi(A)~Fi+Jsi+J(A) which, applied to 

C#(Y) , are induced from the inclusion Ji(Y)~Ji+j(Y) , and we have 

Corollary 1.6 Let X = ZY for Y a connected CW complex. Then H.(Fn, Zp) 

depends only on H.(X, Zp) . (Precisely, there are functors ~p(n) for each 

p from the category of graded Abelian groups to graded Abelian groups, and 

Sp(n)(H.(Z¥)) ~ H.(Fn) .) 
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Proof There is an injection ~ : H.(Y, Zp) ~ C#(Y) @Zp inducing isomorphisms 

in homology. Hence we can form the algebraic object corresponding to the com- 

plex in 1.3, G = Fn+Isn+l(H.(Y,Zp) @c(H.(Y, Zp)) with boundary as in 1.3. 

Z extends to a chain map ~ : G ~ C#(Jn+I(Y)) ® C#(~Y) . Now, filtering both 

sides by the dimension in c(Y) , we obtain an algebraic Leray-Serre spectral 

sequence with # = H.(Jn+I(Y)) ® H.(ZY) in both cases. Moreover, E2(~) is 

evidently an isomorphism of E 2 terms. 1.6 now follows from the comparison 

theorem. 

Remark 1.7 Suppose we consider the inclusion F ~LzLF , and study its 
n n 

fiber Fn, L If X = ~Y , then the model 1.3 for F n admits a natural 

description in terms of spaces CT x (ZY) i where CT is a cell, and identi- 
] 1 

fioations are made over ~C~ or when a coordinate in (Z Y) i is * . There 

is a natural way to construct loops in these sets; namely, by usins the sus- 

pension coordinates in (Z Y) i . Thus (ZY) i is an identification space of 

I i x yi , and one constructs paths in I i starting at (O---O) and ending 

at (i,...,i) . A model for a sufficient number of paths is the Zilchgon 
o]~ in 0 ~18J 

C(i-l) , introduced in §4 of [18 Replacing I i by C(i-l) in each cell above~ 

performing the appropriate identifications, and forming a universal construction, we 

obtain natural, minimal, and canonical models for ~n ' "'" • ~L+IZLFn ' .... 

These models also satisfy the property that the inclusions ~LzL-IF n 

~L+IzLF ... are homomorphisms. Now we may apply i.} - 1.6 to show that 
n 

H.(Fn,L, Zp) depends only on H.(Y, Zp) . Of course, if X = Z3Y , we can 

iterate once more. In general, we have 

Theorem 1.8 Define Fnl" . .nk(X ) inductively as the fiber in the ~l~ 

Fnl...nk_l(X) ~ ~ nk Z~nl.. :nk_l (X) • 
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Then for X = zkY , it fellows that H,(F 1...~K, Zp) depends only on 

H.(x,~) . 

We will have no further need of 1.7 and 1.8 except incidentally in the 

sequel; it is for this reason that the details are so skimpily sketched. 

We now turn to the more limited observations which we can make about 

F L when X is not a suspension. 

Lemma 1.9 (Fiber Le~ua) Let X , Y be n-l-connected and locally finite CW 

complexes (n > 2) . Suppos__~e f : X-~ Y satisfies f. : Ht(X~Zp)~ Ht(Y, Zp) 

is an isomorphism for t < 2n and a mon~orphism for t < 3n • Convert f 

into a fibering with fiber F . Then throu~ h dimensions 3n-2 ~ F is rood p 

weakly homotopy equivalent to ~(Y/X) . 

Proof F is 2-connected by our hypothesis. Thus, letting C be the class 

of finite groups having order prime to p , it is enough to show that there 

is a map g : F -~ ~(Y/X) so g. induces a (rood C)-isomorphism H.(F) -~ 

H.(g~(Y/X)) in dimensions less than 3n-i • But our first description gave 

as F = ExY . , and g is defined as the evident projection F 

~S* ~ ~.Y/x. = a(Y/X) 

Note that F and ~(Y/X) are both 2n-2-connected. Thus the Serre spectral 

sequences for the fiberings 

F~X~Y , 

D(Y/X) ~ P -~ Y/X 

are both exact sequences in dimensions < 3n-2 . Moreover, both sequences 

split, and the fact that g. is an isomorphism in this range follows. 
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Remark i.i0 1.9 can obviously be strengthened to give an actual homotopy 

equivalence in this range if f. satisfies the h3~othesis of 1.9 with the 

integers as coefficients. 

In particular~ we can now prove 

Theorem I.Ii Let X be a locally finite n-l-connected CW complex (n > I) . 

Then through dimension 3n-2 , the fiber F in the inclusion 
n 

X ~ ~nzn(X) 

is the spa9 e 2(sn-l~T X A X) (Here sn-1 ~T X A X is given as a quo- 

tient space of S n-I x (X A X) where (x,y,z) is identified with (-x,y,z) , 

and (x#*) is set equal to * .) 

~ ~  ( I n-I Proof From [18], pp. 394-395/ We know ~nznx ~ X U x X x X)/R through 

dimension 3n-i where R is a set of relations defined as follows: 

i) (tl...s...tn_l,x,y) ~ (TS(tl)...TS<tj_l) , O...O)TS(x,y)) where 

~th position 

T(t) = 1-t and T(x,y) = (y~x) if e = 0 or 1 . 

2) (tl...tn_l,*~y) ~ (tl...tn_l,yj*) ~ y for * , the base point of 

Thus, through dimension 3n-2 , ~nzn(x)/x~ (I n-1 × X A X)/R' where R' 

consists of relations of type (1), and (tl...tn_l~*) ~ * 

lows from 

Now~ l.ll fol- 

X . 

Lemma 1.12 (I n-I × X A X)/R' ~ S n-I ~T X A X • 

Proof Embed IJ~ I j+l as the set of points (~3 tl.-.t j) • This induces 

an embedding (I j x X A X)/R'~(I j+l × X A X)/R . (I j+l × X A X)/R' can 

be given as the equivalence classes of points of the form (tl...tj+l~x,y) 
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i 
with tl <_~ , with equivalence relations R' in (I j x X A X) together 

with (O, t2...tj+l,x,y ) ~ (O,x,y) , (tl,t2,...,tj+l,*) = * But S j ~T 

X A X has an identical description in terms of the equitorial embedding 

sJ ~T X A X ~S j+l ~T X A X • I.ii follows by induction. 

Theorem 1.13 

sn-I 
In : XT 

The eguitorial inclusion sn-2~ S n-I induces an inclusion 

X A X-~ S n-I ~<T X A X ~ and the diagram 

k 
n F 

Fn-I n 

~(sn-2 ~<T X A X) " ~(sn'l ~<T X A X) 

homotopy commutes. Here k is the map of fibers induced from the inclu- 
n 

~n-iEn-i X sion hn_ I : ~nznx 

Proof This follows from the proof of i.ii when we note that the inclusion 

(x u I n-2 x X × X ) / R ~ ( X  U I n - l ×  X × X ) / R  

defined on points by 

(tl,...,tn_2,x,y) ~ (tl,.-.~tn_2,0,x,y) 

induces a map H-homotopic to the map hn_ I (eg. see [18], §5). 

Remark 1.14 The "little cubes" category of Boardman and Voit ([ 3J) provides 

an easy way of including the space X U (S L-I MT X x X)/R in ~L~x , where 

R is the relation 

(x,y,*~ ~ (x,*,y) ~ y 

Specifically~ the space C2(L) is defined as the set of all disjoint 
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embeddings 

L 

which are linear and take faces into sets parallel to the corresponding 

faces in I. 3,~ ) . 

acts (freely~) on C2(L) by interchanging I 1 and 12 . 

An arbitrary point x of ~Ly can be regarded as a map fx(~,~) 

(Y,*) . Given two maps fx ' fy and a point z in C2(L) , there is a map 

II~> ~ (Y,*> defined as 

This provides a pairing C2(L) M T ~L(y) × ~(y) ~L(y) . 

Lemma 1.14 (P. May) C2(L) i_s_sequivariantly homotopig~ to S L-1 

antipodal action. 

(Indeed, the equivariant inclusion sL-I~c2(L) takes 

embedding of a cube of length ~ with center at the point 

with the 

x to the 

x , and the 
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second with center at 

i.i4.) 

Now~ using the pairing above in ~L~x 

desired inclusion of X U (S L-I ~T X × X) in 

-x . It is now an easy geometric argument to prove 

and restricting to X , the 

~L~x is readily obtained. 

~2. The Map Fn(X) ~F _z(ZX) 

Le~ma2.l ~z(X) =SXVZ(X^X) VZ(X^X^X) V .... 

Proof This follows from the well-known ([38]) splittings 

ZX n = Z ( X  A - - -  A X)  V ( n )  Z X A . . -  A X,,V . . .  V(~.) Z X ~ A  . . -  A X V . - -  , 

n n-l' n-j 

writing ~JI(X) as an identification space of U Z(X n) . 

n 

Corollary 2.2 There are H-maps H r : Jl(X) ~ JI(X A ... A X) 

r times 

(® Hr) . Hj(X)) ~ H.(® QZ(X A .-. A X)) i_£~ injec~ive. 

SO 

H is called the r th Hopf-invariant map of X • Clearly, if an ele- 
r 

ment ~ in ~.(0ZX) comes from ~.(X), then Hr.(~) = 0 for all r . 

Presumably there is a similar splitting for ZnJn(X ) . Thus it seems 

reasonable~ in particular, to conjecture a splitting 

~J2(x) = ~x v ~2sl ½ x ^ x v z2c(2) ~R (x ̂  x ^ x) v .... 
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Recent results of D. S. Kahn have shown that these splittings exist for 

Q(X) = lim ~nznx ; however, at present the splitting theorem for the J 
n n-+oo 

has not been proved. 

Thus, we adopt an alternate "Hopf invariant" for the purposes of 

this section. The Hopf invariant of a class C~ e ~m(ZX) is defined by 

taking -i(~) e ~m_I(~ZX) = ~m_l(Jl(X)) , and projecting onto ~m_I(J(X)/X) . 

We denote its image by H(~) , and, in the metastable range, the results of 

§i show that H(~) = 0 is both necessary and sufficient in order that 

be in the image of o . 

In the metastable range, H(~) = H2(~) defined above. 

Now we consider the problem of when an element ~ e ~m(ZLx) desus- 

pends L-I times but not L times. 

Consider the diagram 

FL(X ) ~ X ~ 2 L ~ ( x )  

I ~t id ~t ~ 

~tFL_t(ztx ) ~ ~tztx ~ oLzLx . 

Clearly~ ~ does not desuspend L times if and only if ~ ~ 0 in 

~ . (FL(X) )  . On t h e  o t h e r  hand,  i t  desuspends  L - t  t i m e s  i f  and o n l y  i f  

• t . ( ~ )  = 0 . Thus t h e  key s t e p  ( o u t s i d e  o f  a n a l y z i n g  ~ ~ which we d e f e r  

for the moment) is to study the map ~t " We can reduce this to the study 

of ~i since ~t can clearly be decomposed as 

~I> t-l( 

FL(X ) "1> 2FL_I(ZX ) _ _  22FL_2(Z2X) ~ . . .  ~1)> 2 t F L _ t ( z t ( x ) )  . 

We have 
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~eorem 2.2 

points b_2l 

Let f : Z[S n'2 ~<T (X A X)] -~ S n-2 ~<T (ZX A ZX) 

f ( t ,  (x ,y ,z ) )  = (X ( t , y ) ,  ( t , z ) )  . 

Then the diagram 

sn-2 ~m (X A X) adj(f)> ~sn-2 ~T (zx ^ zx) 

Fn(X) > ~ _ 1 ( ~ )  

homotopy commutes in the metastable range. 

be given on 

Proof The map Q(ZX) ~[Qn-Izn-I(zx)] is given by the inclusion Jl(X) c-~ 

Jn(X) ([18]). This inclusion satisfies the conditions of 1.9, so the diagram 

x * Jn(X) 

I 
JI(X) -~ Jn(X) 

induces the inclusion of cofibers in dimensions less than 3n-i , 

sn-i ~<T X A X-~ (S n-I ~<T X A X)/X A X • 

In the proof of Theorem 5 of [18], a map (adjoint to the identity) ZJn(X ) -~ 

Jn_I(ZX) is constructed. Precisely, there is a map (p : I × I ~ ! X I 

defined by 

(2t,O), t < ½-T 

q)(t,T) =1( I -2T,  2(t+T-~)), ½-T < t < I-2T 

| 
[ ( t ~ t ) ,  I-2~ < 2t 
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for T < ½ , and ~(t, 2A~) = T[~(t,~)] . This then defines a map 

r : Z [ (X  U I n-1 X ~ ) / R ]  ~ (ZX U I n-2 X gX X z x ) t R  

by r(t,tl,...,tn_l,x,y ) = [t2,...,tn.l(M(t,tl)x,y ) (identifying 12 X 

with ZX X ZX) . In particular, r(t,81,t2,...,tn,X,y ) ~ZX . Thus, fac- 

toring X to a point, the induced map factors through 

Z[S n-1 ~T (X ^ X)/X A X] • 

Finally, note that, for t I = ½ , 

~(t, ½, t2,...,tn_l, x, y) = [t2,...,tn_l(t,x , t,y)} . 

Thus 2.2 follows. 

Actually, we have proved more than 2.2 

Corollary 2.3 Z[S n-I ~T (X A X)/X A X] is_ h~motooy-equivalent t_~o S n-2 ~T 

ZX A ZX for X a connected CW c~plex. 

Proof Note that, using the cell decomposition of these spaces by the 

[I j x X r X Xr] , ~ constructed above is cellular and induces an isomor- 

phism of cellular chain complexes. 

that 

§3. The Cohomology of the 

We start by examining the cohomology of the 

the structure of H*(Fn(ZX)) we give 

There are maps 

F 
n 

sn-i ~<T X A X • After 
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J : X A x~sn MT X A X , 

S n K : ~T X A X ~Z~ A X • 

K is defined by identifying sn-i MT X A X to a point in sn MT X A X • 

Proposition 3.1 (a) J is surjective onto the invariant subalgebra under 

(T)* o_ff H*(X A X, Zp) for p an odd prime. Moreover, kernel J = im (K*) 

and t h e  f o l l o w i n g  sequence  i_~sexact :  

* l+(-1)n(znT)*> H*( ZnX A X, Zp) im (K*) 0 (3.2) ~ (z~x^ x, Zp) ~ ~ . 

(b) Mod (2) J i_~s sur.~ective as in (a), 3.2 i_~s again exact, but there are 

a d d i t i o n a l  e l e m e n t s  e i U (0 ® O) fo_._rr 1 < i < n where  0 e H (X, Z2) , and 

these completely describe H*(Fn(x), Z2) . 

Proof Consider the filtration of fn(x) , X A X~F2(X) ~-~ -..~-~Fn(x) , 

obtained by embedding successive spheres equitorially. The resulting quotient 

spaces are the zi[x A X] • Moreover, the d I differential on H*(zix A X, Zp) 

is exactly [l+(-l)i(ziT) *] 

Lemma 3.3 A chain complex for sn MT X A X is obtained as 

W~ C ® C 
T 

where C is any chain complex homotopy equivalent t_oo C#(X) , and W is 

any free resolution o_~f Z 2 (e.g. see [18], [27]). (This is immediate from 

the geometry.) 

Now, to show E 2 = E in ~r special sequence, note, for example, 

8e i @ (x @ x) [(i+( i : -1) T)ei_l] @x®x 
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X i s  a c y c l e  i n  ~C • B u t  ( T e i _ l )  ® x ® x = "'(-1) d i m  
X 

i f  

d u e  t o  t h e  a c t i o n  o f  T i n  S n x X A X • H e n c e  

= I0 , i ~ dim (x)(2) 

I ® x ® x  I t~ei_l ® x ® x , i -= dim x ( 2 )  

in W ~ C ® C • Thus cycles in ~ are represented by cycles in 

and 3.1 follows. 

el_ 1 ® ( x  ~ X) 

W~C®C , 

It is also fairly easy to verify that cup products (mod 2) are given 

by the formulae 

(3.4) 
[e i U (e ® e ) ]  U [e j U (T ~ ~) ]  = e i + j  U (e~ ® e l )  , 

• IO~ i>O, 
[e t U (8 @ 8 ) ]  U (a,b> = (aS,he> , i = 0 . 

Here, (a,b) is an appropriate choice of generator, so J (a,b} = a ~ b + b ® a , 

and e ° U 0 ~ 0  i s  a n  e l e m e n t  f o r  w h i c h  J * ( e  ° U 0 ® 0 )  = 0 G O  • I n d e e d ,  

3.4 follows directly from: 

Lemma 3.5 ~ : Fn(x) -~ fn(x) X Fn(x) admits a chain approximation 

~: (w®z2 c~c) ............... ½)> w ®W e(z~×%) (c ®c ) 

- c®c)®(w®z2 c®c) shuf% (w 52 

where ~ is a_ (T ~ T, T) equivariant diagonal ~ for W , and ~ i_~s 

any chain approximation to the dia~onal in X . (This is again immediate 

from the geometry; eg. see [27] .) 
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We turn now to the question of higher Boeksteins. Mod (p) for p 

odd, these Bocksteins are determined by 3.1(a); however, their structure 

mod 2 is somewhat more involved. 

Proposition 3.6 Suppose ~i(a) = b and: 

a) dimension a is even] then ~j(a ® a) = 0, j < i and ~i(a ® a) = 

<a,b> , while sql(b ® b) : e I U b ® b ; 

b) dimension a odd implies that sql(a ® a) : e I U a ® a 

+I0, i>l 

I (a,b) , i : i , 

while ~i+l((a, b) + 8el U a ® a) : b ® b ; 

Sql( e2i+l 2i+2 c) for i e 0 and dm a even, U (a ® a)) = e U a ® a , 

and for dim (a) odd, sql(e 2i U a ® a) = e 2i+I U a @ a . 

(The proof is a routine exercise using the explicit chain complex for Fn(x) 

in 3.3; e.g., as in [20], [27].) 

Finally, it remains to evaluate the action of ~(2) and G(p) in 

H*(Fn(x)) . For p odd, this is immediate from 3.1 (modulo an extension 

problem, but that is handled in the next section; it turns out that the exten- 

sion is trivial). Here is the result for p = 2 . 

n . .  

Theorem 5.7 Assume e e H--(X, Z2) • Then: 

a) Sqi[e k U (0 ® 0)] = E (k) [ n-j ~ek+r-2j • \i-r-2j/ U (SqJo) ® SqJ0 , 
r,j 

b) Sql(e ° U O @ O) = / (sqr8, Sql-re> + Zn-j~ i-2j i_2jle D SqJ(0) (9 SqJ(0) , 
r<i 

i 

c) Sqi(a,b> = E (Sq ra, Sqi-rb> , 

r--O 

at least modulo terms in i m (K*) . 
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Proof The functor e ~ e ° U e @ e is natural and representable, so it 

suffices to establish a , b for ~ @ ~ where ~ is the fundamental class 

of a K(Z2,n ) . Moreover, there is the map K : RP ~ X ... x RP~ ~ K(Z2,n ) , 

taking ~ to e I ® ... @ e n which induces a monomorphism in coh~mology for 

dimensions ~2n . Reference to ~.i (and the obvious naturality) shows that 

£n(K) : Fn(RP ~ x ... x RP ~) ~£n(K(Z2,n)) also introduces a monomorphism in 

dimensions ~ 4n . Moreover, Fn(k)*[L ® L] = (e I ® e I ) U ... U (e n ® e n) . 

Thus we can apply the Caftan formula (noting by 3.4(b) that sql(e ®e) = 

~l(e®e) =e lu(eee) +(e2,e> and Sq2(e®e) :(e~e) 2 = 2® 2) 

Now a , b follow directly. 

Finally, to prove (c), consider the map 

pu~ n S : X K(Z2,m ) × K(Z2,,g ) -~ Fn(K(m) X K(#)) 

defined by S(x,y,z) = [x(y,z)(y,z)] . It is easy to show that S (tm, Li) = 0 , 

but S*[e i U (SqILm U SqJLI) (2) = e i@ (SqILm U SqJL2)2+W is non-zero. Hence 

Sqi(~m,~) can only involve terms (Sql~m , Sqj'r~) and perhaps a term in 

im (K*) • 

Finally, we will need the evaluation of the suspension map TI (2.1) 

in cohomolo~j. 

* * i ei+l 
Theorem 3.8 (~i) (a,b> = 0 • (~i) (e U q(a) ® g(a)) = U (a ® a) . 

The proof is direct from 2.3. 

now consider the structure of H*(F(ZX)) . By use of the Eilenberg- We 

Moore spectral sequence ([26], [30], [31]), there is a spectral sequence 
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converging to H.(Fn(ZX)) having ~ term 

* ~ n+l n+l 
Tor T[H.(X, Zp)](H.(~ Z (X), Zp), Zp) Here T(A) is the tensor alge- 

bra on A , and H*(Gn+Izn+I(X) T[H.(X, Zp) Zp) is a module over ] from 

the inclusion of H-spaces JI(X)~Jn+I(X) . 

Moreover, the arguments of 1.6 show that ~ = E ~ . Thus, to calcu- 

late H.(Fn(ZX)) , it suffices to calculate these Tot groups. 

Note first that H.(Jn+I(X), Zp) = Pn ®R where P is a polynomial 

algebra P( ...7i(x)... ) , with x running over H.(X,Zp) and the 71 over 

same basis for the universal loop homology operations# and R is 

A(H.(X, Zp)) , the universal commutative algebra generated by H.(X, Zp) . The 

action of T on P@R is then obtained by projecting T on I OR • 

Also, T is free; hence a resolution of T has the form O~ 

T ® s(H.(X, Zp)) ~T ~Zp Now, tensoring with P ® R and taking homology, 

we see that a basis for Tor~(P ® R, Zp) as a P ® R module is given by 

the cycles 

(a,b) = as(b)-(-l)laI+Iblbs(a) for a ~ b in H.(X, Zp) . 

We have thus calculated 

Theorem 3.9 H.(Fn(ZX), Zp) % Pn ® L where L is a module over R with 

generators (a,b) o_~f degree lai+Ibl+l , where a , b are non-equal basis 

elements in H.(X, Zp) . L i__sscompletely determined as a module b_~the rela- 

tions a(b,c)-(-l)lal'Iblb(a,c)+(-l)Ibl'Icl+lal'IClc(b,a> = 0 • * 

We now turn to the cohomology structure of F 
n 

fibering ~n+Izn+ix ~ F ~EX ~ ~nzn+Ix . 
n 

This proof was suggested by J. C. Moore. 

First note the 
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Lemma 3.10 There is a map ~ : Z F n ~nzn+ix/zx , so the diagram 

Z ~n+l zn+ix ad~) (I)> nzn+l X 

E F n cp,, > ~n~n+l(x)/ZX 

homotopy commutes. (~ is the evident projection.) 

n n+l 
Proof We can write Fn = EZX~ Z (X). (as in the remarks preceding 1.1), 

. ~zn+l(x)/z(x ) 
and take ~ as the adjoint of the obvious map Fn~E . . = 

~n+izn+l ~[anzn+l(x)/E(X)] . The inclusion J : ~ F is given in this nota- 
n 

~nzn+ltx~ EEXg;nzn+l(X) 
tion by the natural inclusion E. ~ ~.¢-~ . , an~ by suspend- 

ing and adjointing, 3.9 follows. 

By tracing through the map ~ , we find ~.(a,b) = ~.(aob) (the 

Pontrjagin Product) and ~.~o(a,b) = 0 • This gives us some information on 

passing to cohomoiogy. However, to obtain more complete information, it is 

now necessary to use the action map 

~n+izn+l(x) × F ~ F 
n n 

and our knowledge of the structure of this latter syeceas a module over the 

Steenrod algebra G(p) (e.g., see [21], [28]). Also note that k. is 

given by 3.8. 
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~4. The Structure Of Iterated Loop Spaces In The Metastable Range 

We start with the following basic result: 

Lemma 4.1 Let X be the n th loop SliCe o~f Y . 

G ~ ~nznx ~ X 
n 

has a cross-section. H@nce, u/!to weak homotopy equivalence, 

~nznx = G X X • 
n 

Indeed; 

the fiber in the inclusion 

Then the fiberin5 

OG n = F n , 

: X~ ~nznx • 

Proof The cross-section of ~ is exactly the inclusion X~ ~nznx • Hence, 

since ~nznx is an H-space, there is a map 

G × X W ~nzn x , 
n 

and T o W is projection on the first factor. Moreover, if we let G n be 

given explicitly as ~n(H) , where H is the fiber in the adjoint map znx -~ Y , 

then the diagram 

G × X W > nnz--x 
n 
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commutes up to reparametrization of paths. Now both maps are fiberings with 

fiber G n Thus~ by the five-lemma~ W is a weak equivalence. 

n )//H~(Gn,Zp) Corollary 4.2 H.(X,Z) H.(~ znX, Zp a_~sHopf algebras. I__nnpar- 

ticular, i_~f X i_~s m-l-connected, then H.( X, Zp) determines H.(Gn, Zp) com- 

pletely i~n dimensions < 4m-I , and G is 2m-l-connected. (Indeed, a Hopf 
n -- 

algebra basis for H.(Gn, Zp) may be given with generators ~[~.(x)] - 

~.[~(x)] , ~.(Xl) ..... ~.(Xn) - ~.(x I ..... Xn) where Xl.-.x n run 

over a suitable basis for H.(X, Zp) , and the QI over a basis for the loop 

homology operations.) 

Corpllary 4.3 Suppose again that X i~sm-l-connected. Then in dimensions 

less than 3m-i , G n i__~s homotoDic t__oo sn-I ~T X A X f g~ X, the homotopy 

type of a CW complex. Moreover, this equivalence is natural in the same 

ranse (from i.Ii and 4.1). 

Corollary 4.4 Under the assumptions o__ff4.}, Hi(X, Zp) depends only o n_n 

@ 

H.(Y, Zp) for p odd, and on H (Y, Z2) as a_~n ~(2)-module for i < 3m-I • 

Proof Since G = ~nH ~ where H is the fiber in the map znx~Y , 
n 

4.3 implies that H ~ zn(s n'l MT X A X) in dimensions less than n+3m-i . 

Also, in this range of dimensions, the Serre spectral sequence of this fibra- 

tion becomes a long exact sequence 

(4.5) 

and, to obtain H (X, Zp) for p a prime, it suffices to evaluate the map 

. For example, for p = 2 , to evaluate 5(e i U a ® a) , consider the map 

y ~(a)> K(Z2,~ ) 
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By 4.3, this then induces a map of exact sequences 

• ~i+l. , 
~H~(H~,n ) ~n (K(Z2,~)) ~+l(znK(z2,n-~)) 

l l 1 
~i(H) ~ Hi+l(y) ~ ~i+l(~X) ~ . 

Moreover, Fn(~(~))(e i U ~ ® L) = e i U ~®~ , and 5 is determined by its 

behavior in the universal model. 4.4 follows. 

In considering the proof of 4.4, it becomes clear that we need to know 

the map 

: Hi(H~, n) ~HI+I(K(Z2,~), Z 2) 

in order to determine the explicit form of the functor occurring in 4.4. 

Theorem 4.6 5~n[e i U (SqI(L) @ sql(~)] = Sq ~ + deg (I) + i+l(sql(L)) , 

while 

n I j*~n(sql(~) U SqJ(~)) = ~ (Sq (~), SqJ(~)) (in 4.5). 

Proof The second statement is obvious. To prove the first assertion, it 

suffices, by naturality and the known behavior (§§2,3) under suspension, to 

check that 5[q(L~® ~)] _ i+l, ~ (~+i)2 in the fibering ZK(Z2,~ ) 
= ~q ~ + l  ) = 

K(Z2,~+I ) . Indeed, by the known results ([6]) on H (K(Z2~+I)) , the kernel 

of ~* in dimension 2~+2 is exactly (~)2 On the other hand, 

~+I(z(K(~,~) A K(~,~)), Z2) = Z 2 , and has generator ~(~ @ ~) . 

Remark 4.7 The results 4.4, 4.6 give the structure of H*(~ny, Zp) completely 

in the metastable range as a module over In particular, we have 

4.6 follows. 

Z 
P 
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Cor011ary 4.8 Suppose Y i__ssm+n-l-connected, and H (Y, Z2) satisfies 

SqI(a) = 0 for excess (I) > [dim(a)-n] . Then in dimensions less than 

H*(~nY, Z2) = s-nH*(y) @ H*(Gn) . 

3m-i , 

However, this splitting need not be valid over C(2) • 

12. 
CP~ 8 certainly satisfies the hypothesis of 4.8 if m = 5 • 

secondary operation ¢8 ~ associated with the relation 

sqlsq 8 + Sq2Sql(Sq 6) + Sq8Sq I = 0 , 

For example, 

However, the 

is non-zero when evaluated on the bottom cell of Cp128 . On the other hand, 

¢8 is universally zero on any 5 class. Thus, we must have ~II(¢8(e8) ) 

contained in the indeterminacy of (¢8) . But this indeterminacy is zero in 

the part of H*(~IIcpI28) coming from ~!I(H*(CpI28) ) . Thus it must come 

from H (Gll, Z2) . In particular, there im~st be an element ~ e H (GII,Z2) , 

so Sq2Sql(~) = ~iI(¢8(e8) ) . 

§5- The Obstructions To Desuspension In The Metastable Range 

We conclude the first part of this paper by considering a basic exam- 

ple. In the metastable range, we reduce the question of desuspension to the 

determination of when a certain map ~ of known spaces is homotopy-triviai. 

Berstein and Ganea independently have obtained related results ([36]). 

Theorem 5.1 Let X be n-l-connected~ and . have dimension less than 3n-2 . 

Then: 



48 

i) if Y is the 2n-L-i skeleton of X , there is a unique space Z , 

s__~o ~Z = Y ; 

2) X itself is an L-fold suspension if and only if a certain map 

: X/Y ~+IsL-I MT Z A Z 

i~shomotopy-trivial; 

3) if ~ i__~s trivial, the number of distinct L-fold desuspensions of X 

i_~s equivalent to the set of homotopy classes of maps 

[X/Y, ~S 2-I ~T Z A Z] . 

(To avoid low dimensional complications, we also require L to be less than 

n-3 .) 

Remark 5.2 In 5.1-9, the equivalence classes comprise: (a) distinct homo- 

topy types of desuspensions, and (b) maps 

L 
where Z--W = X , and where 

2n-2L-i skeleton of W . 

h : W-,W 

h is a homotopy equivalence ~i on the 

Remark 5.3 By the dimensional restrictions, ~ is actually a stable map 

since sL'I MT Z A Z is 2(n-L)-l-connected. Similarly, the set occurring 

in 5.1.3 is stable. Thus stable techniques are sufficient to determine them. 

Proof g Ly is a CW complex. The dimensional restrictions imply that the 

adjoint map zL~LY~ Y induces an isomorphism in homology in dimensions 

< 2n-L . Now taking the associated cross-section of ~Ly , we can assume 

that Y is actually the 2n-L-i dimensional skeleton of zLoLy ° Thus Y 
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is a suspension ~Z . Moreover, the attaching map of every cell of Z is 

stable~ Hence Z is indeed unique. This proves 5.1.1. 

From 5.1.1, X/Y = zL+~ for a unique W . Moreover, there is a map 

: Z~ ~zLz , so the following is a cofiber sequence: 

(5.4) sTm ~ ~z ~ x ~ ~+~w ~ .... 

Then X is a suspension ~(M) if and only if • : zLT ' for some z' • 

W-~Z . 

(5.5) 

Consider the diagram 

T ~ 
W ~ Z • 

We assert that ~' exists if and only if the composite 

(5.6) W a ~ '  ~L. LEL z ~ ~L~z/z 

is homotopy trivial. This follows from 

Len~ma 5.7 Let ~ be the fiber in the map ~ : ~LzLz~LzLz/z . Then 

throug~h dimension 3(n-L)-2 , ~ ~Z , and the inclusion ~ ~LzLz factors 

the inclusion Z ~LELz . (This is immediate from the fiber lemma, §i.) 

On the other hand~ from the proof of i.ii, it follows that, in the 

range of dimensions which concern us, ~LzLz/z ~ S L-I K T Z A Z , and this 

concludes the proof of 5.1.2 when we note (as in 5.3) that ~ o ~L o P is 

a stable map, hence is homotopic to zero if and only if zL+I(~°~L~oo) = 

: X/Y ~EL+Is L'I ~T Z A Z is. 
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To prove 5-i.)~ note that different suspensions satisfying the 

relations imposed by 5.2 are given by different homotopy classes of liftings 

in (5.5). But by 5.7, these are given by maps of W into the fiber. 

~(~LzLz/z) ~(sL-I ~T Z A Z) in our range. Dimensional considerations 

show that these are again stable~ and 5.1.3 follows. 

Remark 5.8 Combining 5.1 with 4.6 and the structure of S L-I K T Z A Z , it 

is direct to calculate the first few obstructions explicitly in terms of 

higher order cohomology operations in X . For the first two obstructions~ 

see [36] in particular. 

Remark 5.9 Recent work of D. Anderson ([)5]) makes it also possible to give 

analogues of 4.6 for certain exotic cohomolo~y theories~ eg. K-theory. This 

in turn makes it possible to carry through a program analogous to 5.8 in 

these theories as well. This remark will be considerably amplified in a 

forthcoming paper. 



PART I I 

§6. An Unstable Adams Spectral Sequence 

In this section, we introduce a version of the Adams spectral sequence 

which gives information about the unstable homotopy of a Sl~Ce X . It is 

invariantly defined from ~ on; however: (1) little is known about its con- 

vergence properties~ and (2) in general, ~ is not just a functor of 

H*(X, Zp) over Q(p) but actually depends on the space itself. 

The construction we use is similar to the one given in [17]. However, 

due to the special cohomological properties of the spaces they considered~ it 

there turns out that ~ is a functor of H (X, Zp) over G(p) . 

In §8~ we will show that, in the metastable range~ ~ is algebrai- 

cally determined (explicitly) from H (X, Z2) over G(2) . Thus we reduce 

many of the problems involved in metastable calculations to formal algebra 

and the determination of differentials in this sequence. 

Definition 6.1 An Adams (p,q)-resolution of a space 

q a positive integer is a sequence o f_f fiberin~s 

P l  P2 . P3 
X -- E 1 -- E 2 ' E 3 

BH1 B~ B~5 BH4 

X for p ~prime and 

where: 

i) 

ii) 

E i is the fiber in the map ~i ; 

~. is a generalized Eilenberg-MacLane s~ace 
1 

p , and 

K(Zp,n~ for the prime 
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iii) ~ = (nl,...,ni) with each nj ! q ; 

0 i : Hk(Ei_l,Zp) ~ Hk(Ei,Zp) i s_s 0 for k ~ q . iv) 

It is clear that, if X has the homotopy type of a CW complex, then 

(p,q)-resolutions of X exist for all (p,q) . They also satisfy the natu- 

rality properties: 

Lemma 6.2 Let f : X ~Y be a map o__ff CW Complexes, and suppose siren 

sequences 

a) Y <-- E{ <-- E~ <-- E~ <-- 

H} H 4 

where (a) satisfies (i), (ii) of 6.1, and (iii) with 

o_~f q; 

b) x <--~l <--E2 <--~3 <- 

where (b') satisfies all of 6.1. 

Then there are maps fi : Ei -~ E! • I ~ so the diagram 

x <--E 1 <--E 2 <--E 3 <-- 

Y <--El <--E~ <--E% <-- 

q-i in Dlace 

commutes. 

Lemma 6.3 Under the assumptions o__ff 6.2, suppose f ~ g : X -~ Y and 

[gi : ~i ~ El} 
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are given. Then there are homotopies 

SO 

i) 

ii) 

iii) 

K i : I x E i -~Ei_ I , 

Ki(O, Ei) = Pifi , 

Ki(l,Ei) = pigi , 

the diasram 

IX P2 IX p} 
I x X <iXPl I X ~ < i x ~ < 

, <-- , <-- 
y <-- E 1 E 2 

I×Es< ..... ... 

commutes. 

As usual, taking the homotopy exact couple of the (p,q)-resolution in 

6 . 1  g i v e s  a s p e c t r a l  s e q u e n c e .  S i n c e  E i ~ Ei_  t ~ BH. i s  a f i b e r i n g ,  i t  f o l -  
1 

lows that ~.(Ei_l,Ei) ~ ~.(BH. ) . Moreover, the d I differential is 
i 

obtained b y  p a s s i n g  t o  homot opy  i n  t h e  c G m p o s i t i o n  

H i -J-> E i ~ BHi+I 

where j : H i ~ E i represents H i as the fiber in the map Pi " By using 

6.2, 6.3, we define our desired spectral sequence by passing to inverse limits 

over q when we note 

Corollary 6.4 ~i,j(X)[(p,q)] depends only on X for i-j < q-i , and is 

isomorphic to ~i,j(X) . l__nn particular, h~i,o(X > depend ~ only o__nn X and 

not the resolutions used to take the inverse limit. 
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Note that, when X is a (single) suspension~ the convergence proof 

given in [34] carries over without change. (It depends only on 6.2 and the 

fact that it is possible to map a suspension onto a space Yx ' which satis- 

fies 6.5(i) below for x c ~.(X) , so the image of x in ~.(Yx) is non- 

zero.) Thus we have 

Corollary 6.5(i) l_~f X satisfies the condition that, for each j , there 
r. 

is an rj < ~ __s° p 3~j(X) ® Z(p)~ = 0 , then the spectral sequence con- 

ver~es to ~.(X) @ Z 
(p)~ 

(ii) l_~f X is a susDension, then the spectral sequence always con- 

ver6es t_~o ~.(X) @ Z 

For general X , the difficulty in extending 6.5 is in the elements 

of infinite order in ~.(X) . If X is simply connected, has the homotopy 

type of a locally finite CW complex, and is also an associative unitary 

H-spae% then: (a) the only elements of ~.(X) of infinite order are con- 

tained in Z-direct summands, and (b) have non-trivial images under the 

Hurewicz map ([43]). 

Put another way~ this says that the Postnikov in~riants are all 

finite for X • An easy argument now shows: 

Corollary 6.6 i__ff X i_ssa simply connected~ locally finite unitary H-sDace , 

then the spectral se ence qu converges to ~.(X) ® Z 

6.5 and 6.6 establish convergence insofar as we need it. It is prob- 

able that more extensive results in this direction can be obtained from [44]. 
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Example 6.7 Let X = K(Zps,n) . Then Bill = K(Zp, n) X K(Zp,n+I) , and the 

k-invariants are (~) and ~(~) . It is easily verified that E 1 = K(Zp3,n ) , 

and the map Pl* is multiplication by p . Thus E 2 ..... E n ..... 

1 
K(Z 3,n) , and Pn* is always multiplication by p . In particular, El, j = 

P o 
E+?. . = 0 unless j-i = n,n+l when it is Z The differentials are all m,j p 

d 3 's and are all non-trivial. 

A map of spectral sequences ~ : Ei,j(X ) -~ Ei, j+I(ZX ) is defined 

from 6 . 2 ,  6 . 3 ,  t h e  map ~ : X~-~ ~ , and  t h e  s e q u e n c e  

(6.8) nPl JP2 
~SX <i ~EIIZX) ~'t EX) < 

associated to a (p,q)-resolution of ZX . 

Corollary 6.9 

in dimensions 

If X i_~s n-l-connected, the sequence oil (6.8) satisfies 6.1(iv) 

< 2n-2 . Thus 

a : Ei, j(X ) -* Ei,j+I(ZX ) 

is an isc~orphism in dimensions j-i ~2n-2 . 

Corollary 6.10 If X i_~sn-l-connected, then 

~i,j(X ) N Exti,ja(p)(H*(X), Zp) 

for j-i < 2n-2 . 

Remark 6.11 It is possible to generalize somewhat the above construction. 

Let Ac-~H (X, Zp) be an unstable sub-~(p)-module. Then we can resolve X 

by a sequence of fiberings 
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X P2 <P3 E5 <__ < D-~-l E 1 <-=- E 2 

BG(A) BG 2 ~G 3 BG 4 

so im (~i)* is exactly A , while the sequence ~*- E2~- E3~- is a 

(p,q)-resolution of E 1 . Analogs of 6.2 through 6.6 continue to hold. 

Thus we again have an Adams-type spectral sequence with invariantly-defined 

Z-term. We denote it #(X,A) . Clearly, in the stable range, there is an 

Ex'i+l'* , ," " ~i+l .(X,A) Ext i' G(p)(H (X)/A, Zp) exact sequence t G(p~[A, Zp) ~ 

Exti+2'~(~u PJ~(A'ZP) ~ ... , though, as we will see in the examples, 8 may 

well be non-trivial. 

7. The Loop Space Functor For Resolutions 

Let X be m-l-connected, and suppose that 

(7.1) x jl E1 & J3 < -  

is a (2,q)-resolution with q < 3m+n • In this section, we wish to study 

the behavior of (7.1) under the operation of taking loop spaces. It will 

appear that the sequence 

(7.2) ~nznx ~ ~npl --~nE I 

is not a (2,q-n)-resolution, as 

~n 
_ _  ~n~ < ~nE3 < ... 

(~npl)* is not zero in general. However, 

this is the only point at which the sequence fails to satisfy the definition 

for a (2,q-n)-resolution. Moreover, we will be able to calculate exactly 

im (anpl)* 

We begin by proving 
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Theorem 7.3 Under the above assumptions, the sequence 

eZ_ .%< ... 

is a (2,q-n)-resolution of GnE I for q < 2n . 

Proof We proceed in two steps. First, consider the diagram of (vertical) 

fibrations 

(7.4) 

fl % 

z n a ~ l  .~ znanE2 . , z n ~ }  . . . .  

E 1 ~ ~ " E 5 • .... 

The key observation about (7.4) which we need is 

Lemma 7.5 Throug~u dimension 3m+n-2 , f. 
1 

cohomology. 

is the zero map in mod p 

Proof From4.3, Gi = sn-1 ~T (~nEi A ~nE i) in our range. Moreover, by 

* n * 
3.1 and naturality, fi is determined in our range by (~ pi ) restricted 

to Hr(~nEi ) with r <2m . But by suspensio~ Hr(~nEi ) ~ Hn+r(Ei ) in 

this range. Hence fi = 0 , and 7.5 now follows. 

Next we must consider the fibering 

H i ~ E i ~ El_ 1 • 

* HqE~ Since q < 2n , we know that j : ) ~Hr(Hi ) is injective for r < q . 

Now consider the functor ~n n applied to the map J . We obtain the dia- 

gram of fibrations 
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(7.6) 

G: ~ G. 
1 

zn~nHi~zn~nEi 

L I 
H i ~ E i 

From 3.1, it now follows that e. is inJective in our range. In particular, 

given x e Hr(Ei ) , we can suppose that J (x) = ~ and ~ ~ 0 ~ then the 

class j*(sqdim(~)+k+l'n(x)) : sqdim(~)+k+l-n(~) ~ 0 • Thus sqdimC~)+k+l-n(x) ~ 0 , 

provided, of course, dimension (6) < n+m . From the exact cohomology sequence 

for the left-hand fibering in (7.6), we find 

5(e k U ~ @ ~) = sqdimC~)+k+l-n(~) • 

Hence 5(e k U x @ x) ~ 0 in H (El) • Hence the only possible elements in 

H (Gi) which are in the kernel of 5 are the <x,y) with x ~ y in H (El) @ 

(Of course, x and y must each have dimension less than n+m .) Now note 

(as a consequence of 4.6) that 

( 7 . 7 )  <x,y}* = T*onc~ncx) U ncy)) ; 

hence (x,y> E ker 5 , and these elements give the entire kernel. 

n 
To c~mplete the proof of 7.3, we suppose there is a k e H (Z ~nEi,~) 

with (znanpi)*(k) ~ 0 . In the diagram (7.4), It is certainly true that k 

is not in the image of 

Hence ~*(k) ~ 0 . 

Hence ((7.6), (7-7)), it follows that 

for some 

= ~nc~ncx) u ~ncy))  + 

in the image of 
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On the other hand, (~npi)*(~n(x) U ncy)) : ( npi)*(nx) U (~npi)*~n(y) : 0 

BE -** - 

Also, trivi~&ly, (Z ~ pi ) ~ (x) = 0 • But this implies 

(zn~npi)*(k) = 0 • 

Hence k = 0 , and 7.3 is proved. 

We now turn to the first map in (7.2), Gno I : GnE I ~nnz ~X • 

the proof of 7.3, we suspend and consider the diagram of (vertical) 

fibrations 

As in 

(7.8) 

e 
G < G 1 < G{ 

i 1 1 
Zncanznx) <znanpl znanE1 < znanH1 

z~x < ~ < H a 

Note that ~ has a homotopy inverse. Hence, in the metastable range s 

(7-9) zn~nznx~znx V G . 

Before proceeding further, we need to consider the bottom (horizontal) 

fibration in (7.8). For n(~) in H (znx, z2) , let t(~) be any element 

@ 

in  H (H1) which s a t i s f i e s  

(7.10) 5(t5(~ )) = n(~) 

in the Serre exact sequence of the fibration. Note that, for all k ~0 , 

we have 

(7.11) sqdi~(~)+k+l(t(~)) ~ im (j) . 
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(In our range, this is due to exactness and the fact that sqdim~aj+l+k(~)f ~ ~ 0 

for k ~ 0 ° For general k ~ 0 , it follows from the Borel transgression 

theorem.) Hence~ for each k~O , we can choose 

satisfying 

(7 .m) 

Theorem 7.13 

correspondin~to 

~.CG~ we have 
"K" " 

Proof 

%(~) ~ H*(~) 

j*(%(~)) : sqdim(~)+k+l(t(~)) 

Under the splitting (7.9), let qk(~) be the cohomology class 

e k U (C®G) i__n_n H*(zn~nznx) . Then for some choice of 

(zn~n%)*qk(~) : ~k(~) . 

It suffices to verify 7.1~ in the universal situation. The space 

which is universal for 

the bottom line of (7.8), we consider the fibering 

(7.14) K(Z2, n-i + dim (~)) ~ ~znCK(%, 

Of course~ 

n(~) is Zn(K(Z2 , dim (G))) . Thus, in place of 

t(°~dim(~)) : ~n÷l÷dim(~) " 

Now consider the f i b e r i n g  

(y.15) 

Clear l y ,  ~n~ 

zero element in H*(~) • 

dm (a))) . 

is 2 dim (~)-l-connected, and e*(L * ~) = > , the first non- 

(Here, L * L is the class dual to the Pontrjagin 
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product.) By 4.3, n~ = sn-i ~T K(Z2' dim (G)) A K(Z 2, dim (G)) in the 

metastable range 3 and 7.13 follows by naturality under suspension. (Explicitly, 

the class corresponding to e k U L ® ~ in H (U, Z2) pulls back under 

in (7.14) to sqk+l+dim(G)L .) 

Remark 7.15 

the space Y 

tion is that 

Finally 3 it should be noted that 7.3 is valid whether or not 

with which we start is znx . Indeed, the only crucial condi- 

Y be n+m-l-connected. 

8. The Metastable Exact Sequence 

In this section, we assume X is m-l-connected, and restrict our 

attention to the 3m-2 skeletons of all the spaces under consideration. 

Consider the fibering F L ~ X ~ flLzLx ; then 3 as we have observed 3 

F L has the homotopy type of 

fl(S~-i ~T X ^ X) 

w 
in our range. Consequently 3 H (FL,Z2) has a natural sub-~(2)-module 

A = [~ (a3b) ; a3b e H*(X)} . 

A plays a fundamental role in the sequel. Before proceeding to our 

main result, 8.53 we illustrate why this must be so. 

Lemma 8.1 Consider the inclusion 

~L+IzL X e : ~F 

Then ker (@*) is exactly A . (This follows immediately from the results 

of Part I (notably 3.10).) 
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Now suppose we start to construct (2~q)-resolutions. Observe that the 

composite 

(8.2) 

is onto in cohomology. 

x ~ ~ L ~ x  ~ ~Lz~x ~ ~ 
Hence the first stage in the resolution of X can 

be assumed to be the fiber in the map of (8.2). The following diagram of 

(vertical and horizontal) fibrations is thus obtained. 

(8.3) 

F L = > F L 

E{ > X 

aL( Pl)> nL~ ~LELx 

! (since E 1 can be regarded as the pull-back via 

: x * ~Lz~x) 

> nLBHI 

~L( 01 ) of the fibering 

T e=~ 8.4 (a) ~ (7)* = A, 

(h) H(~I)~AeB 

L * 
where B = H*(aT(~)l/im a (pl) 

Proof In our range~ the Leray-Serre spectral sequence becomes a long exact 

sequence. Note that, in the sequence of the left-hand fibering in (8.3), 

L * ~L( pl)*(y ) 
5(x,y) = x O y and ~L(ol)* x U y = ~ (pl) (x) U = 0 • On the 

other hand, 5e i O (x @ x) = (Qi(x))* , and the results of §7 show that 

~L(pl)*(Qi(x))* ~ 0 • Indeed, the ~L(D1)*(Qi(x))* span im ~L(pl )* 

8.4 follows. 
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We are now ready to state the main result of Part II. 

Theorem 8.5 Suppose L > 5m • Then there are maps o_~f spectral sequences 

~I." : Ei,j(~X)* ~ Ei, j_L_I(FL,A ) *  , 

jl. : Ei,j(FL,A) ~ Ei+I,j+I(X ) , 

and the resulting sequences 

J2 L 

i,j L i 1,j "'" 

are exact fo__~r j-i ~ 3m-2 , and converge to the generalized E.H.P. sequence. 

Remark 8.6 The mechanism for determining ~I. will be made clear during 

the course of the proof. 

Proof We begin by constructing the maps ~. , J.. 

Consider the first stage of an (FL,A)-resolution of F L : 

(FL) 1 ~FLZ B(A ) 

where im ~ = A . From Lemma 8.!~ there is no obstruction to extending 8 

to a map 81 so 

aL+Ip I 0 

~+lzL x o> F~ 

commutes. The map 81 may now be continued to a map of resolutions. This 

gives ~. on passing to spectral sequences. Moreover~ by 6.3, ~. is 

invariantly defined from ~ on. 
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* e i (aL+lO1)*(Qi(x.))* Remark 8.7 From 7.13, it follows that e I ( O x ~ x) = 

Thus the map e I is completely determined except on secondary elements asso- 

ciated to the resolution of A . We shall discuss this situation more care- 

fully later in this section. 

Now~ consider the map 

F L ~ X • 

Since ~* : H*(~LzLx) ~H*(X) is surjective, it follows that j* = 0 . Let 

' be the first stage in a resolution of X • It follows that j lifts to E 1 

7. FL~ i • 

From 8.4(a), ira (7)* = A ; thus if E~ is the next stage in a resolution of 

X , it follows that 7 lifts to 

al : ( ~ ) l  -~ ~'~ • 

We then continue Jl to a map of resolutions 

(8 .8)  .,. -~ (F~) 4 -~ (F~) 3 -~ (FL) ~ (F2)l -, (F L) 
/ / 7/ lJ 

... ~ E' E' ' 4 ~ 3 -'~ E2 ~ --* X • 

This defines J. • Of course, J. is not,as it stands, well-defined since 

it depends on the choice of lifting ~ . However, anticipating the feet that 

the sequence 7.5 is exact, it is certain that the image of J2 is invariant 

under the different choices of liftings. 

In order to demonstrate this exactness, we construct a very special 

resolution of X , one which tries to be the direct sum of the resolution 
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for ~LE I and (FL,A) . Only the first two steps, due to the influence of 

A , must be handled with special care. 

To begin, take E i as given in (8.5). Consider the situation in 

(8.5). We have the fibering 

and we can i n d u c e  a f i b e r t n g  o v e r  ~ ]L~  f r om  t h e  f i b e r i n g  o v e r  f~LE i 

the left in (8.3). This gives the diagram of (vertical) fiberings 

on 

= 

F L > F L 

(8.9) g2 > 

~L P2> 
$ 

From 8.4(b), im (~)* = A since the map (~Lp2)* m 0 in our range. 

we can kill A in H (g2) • This gives us the diagram 

Thus 

(8.1o) (F )l 

1 
= 

> F L > F L 

Lemma 8.11 l__nn (8.10), the c~posite ma~ p~ has as fiber a ~eneralized 

Eilenber~-MacLane space. 

Proof Consider the diagram 
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(8.12) 

/ BH(A) 

E' @ > i ~"-~> BH(A) × 2LBH I 

a BHI 

Here the 45 ° lines are fiberings~ as well as the horizontal line starting 

with ~ Clearly, there are liftings ~i ' P--2 to make the triangles in 

(8.12) commute. But E~ is universal for such pairs of maps. Hence there 

' making 8.11 commutative in its entirety. Thus we have is a k : @ ~ E 2 

a map of fibrations 

(8.13) 

H(A)×~(H 1)~ ~ ~E i 

F , E~ ---> F~ 

Note ~.(F) % ~.(H(A) × ~LHI) , and reference to (8.13) shows that the iso- 

morphism is actually induced by kl.. 8 , E~ have the homotopy type of 

CW complexes. Thus, since the five-lemma shows k. : ~.(~) ~.(~) is 

an isomorphism, it follows that ~ ~E~ • 8.11 follows. 

Again in view of 8.4(b), (O~)* = 0 in our range. Henc% from 8.11, 

it follows that p~ is the second stage in our resolution. 

To continue the process, consider the diagram 
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(8.z4) 

(%)I : > (%)i > % 

Here ~3 is the fibering over E~ induced by (~.~) from 

(DL03)* = 0 , it follows as in 8.4 that 

(8.1~) H*(e3) ~ H*((Fpl) • H*(O~Ep 

in our range. We construct E~ by now k i l l i n g  H ((%)i) 

in the proof of 8.11~ we find that the composite 

(DL03) . Since 

{- 

in H (S3) . As 

has as fiber a generalized Eilenberg-MaeLane space. 

tion~ the mp is zero in cohomology. 

This process evidently continues giving us a resolution of 

fiber at each stage the product of a fiber in a resolution of F L 

fiber in the resolution of 9LE I o 

Passing to El-terms gives 

(8.16) E~,j(x) ~ EI,j+6~LX) • E~_l,j+l(%,A) • 

Moreover~ by construe- 

X , with 

with a 

Now we need 

Lemma 8.17 The ~ operator for the resolution ~iven i__nn (8.15) is the 

pair 
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where 

from the resolution of ZLX 

Thus, algebraically, ~.(X) 

exactness of 8.5 follows. 

~l is the boundary map constructed in the first ste~ off our proof 

tO that of (FL,A) • 

is the homology of the mapping cone, and the 

Proof We find immediately that the diagram 

( 8 . t 8 )  s , 
] ~ i + 2  / i + l   /L/l 

~i (Fn)i L 

El+ 1 

commutes. The fiber of the map 

E' ~ E! 
i+l I 

~L+IB H × ~B , and the map iou embeds ~L+IBH. as is the first 
i (FL)i-i 

I factor in this fiber. On the other hand, El+ 2 is the fiber in the map 

' B( and 7 : El+ I -+ FL)~ 

The differential 

composite 

~ :  ~, ~.B × ~ B ~  , 
i+l (FL) i i+l 

is exactly plo~ , the projection on the first factor. 

d I is determined by the map in homotopy in the 
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E' -e ~LB H X B( , (8.19) aL+IB~ i × aB(F~)i_ 1 i+l i+l FL)i 

and now 8.17 follows. 

This completes the proof of 8.5. 

We now turn to the problem of determining the map ~, as explicitly 

as possible. 

In 6.!l, an exact sequence was exhibited which determines ~(FL,A,Z2) 

in terms of an exact sequence. Part of this sequence is a map 

(8.20) ~ : ~i,j(FL,A,Z2) -~ Exti-I'j+IG(2)(H*(FL)/A , Z~2) . 

In terms of the map, we have 

Theorem 8.21 The composite 

~°~ 2 : ~bcti'JG(2)(H*(X), Z 2) -~ ~b:ti-l'j+2m-2G(2)(H*(FL)/A , ~) 

i__ss algebraically determined, and commutes with the action of ExtG(2)(Z2JZ2) 

on each of these modules. (This is an immediate consequence of 8.7 and the 

fact that the map (8.20) is determined by the algebraic inclusion of 

~i*(Fzl/A in H*((FL)I).) 

Remark 8.22 In the special case that X is the sphere S m ~ note that A = 

Thus (8.20) is an isomorphism, and we obtain as a corollary the main result 

of [13], on the existence of 8.5 for spheres. 

Remark 8.23 In particular, this gives us many examples where 82 is non- 

trivial. For example, if X = S 7 ther~ in the first non-trivial dimension, 

we have 
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Extl' 8~(2) (Z2, Z2 ) 

has generator h 3 , and ExtO'Oc(2)(H*(P7~), Z2) : Z 2 with generator e 7 , 

while 

$2(h3) = e 7 • 

9. Calculating The Groups Exti'J~(2)(H*(FL)/A , Z2) 

In §8, we saw how the composite 

(u.~.) : Exti'Ja(2)(H*(X) , Z2)~Exti-I'j-2L-2c(2)(H*(FL)/A, ~) 

is algebraically determined. In the context of the Adams spectral sequence 

approach to metastable homotopy theory, it replaces the classical ~-invariant 

in the E.H.P. sequence. 

In this section, we review the most effective techniques for calculat- 

ing this Ext group for L greater than the connectivity of X • 

@ 

H (FL)/A has generators e i U x @ x for x ~ H*(X) . There are two 

obvious filtrations for these elements: 

(9.1) e i ux®x ~ ~j 

(9.2) er U x ® x c ~i 

The results of §3 show that each of these 

action of the Steenrod algebra 

sequences i E , 2 E with 

if dim x ~ j , 

if r> i . 

~j ' ~i are closed under the 

~(2) . Hence they give rise to spectral 
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(9.3) ~ ~ z 2) , i j Ext,(2) (~j/~j+l' 

i 
(9.4) 2Ej ~ ExtG(2)(~i/~i+l , ~) . 

In order to identify these terms further, we note 

Theorem 9.5 ~j/~j+l ~ H (P j) ~ HJ(x) • 

Proof This is immediate from 3.1, or see [22, §2]. These groups have been 

tabulated in a range ([13]), and hence may be regarded as available for 

calculations. 

Now, turning to the second filtration, let 

ant subalgebra of H*(X) ® H*(X) , and let 

B(H*(X)) 

be the quotient of S2(H*(X)) by the sub-G(2)-module 

dently have 

Theorem 9.6 The 

2 is a copy of 

S2(H*(X)) be the T-invari- 

image (I+T) . We evi- 

2El. k-term of the sDectral sequence defined by filtration 

Ext G(2)(s~(H*(X)), ~) . 

There are eases~ for example: when X has very few cells, when the 

first spectral is more convenient. However, when the structure of H*(X) is 

very intricate, but Ext~(2)(H (X), Z2) is completely known in a range, then 

the second spectral sequence is usually much easier to work with. (For exam- 

ple, in §ii we will study the case when X = K(Z,m) .) 
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In order to calculate the functor 

(9-7) ExtG(2)(B(H*(X)), Z 2) , 

we proceed by exploiting the "doubling" homomorphism. Let D : ~(2) ~G(2) 

be the doubling map (~xy) = [~x)~y), D(Sq 2j) = Sq j) • It is a map of alge- 

bras, and makes ~(2) into an algebra over itself. We denote ~(2) in this 

context as C(2)D . Similarly, we can "double" modules over ~(2) . Thus if 

M is a graded ~(2)-module, via the doubling map M becomes an ungraded 

G(2)-module, ([Sqi](m) = ~Sqi)m) . 

Lemma 9.8 

morphism 

There is a unique (graded) G(2)-module D(M) 

f : D(M) ~M so that the diagram 

D(M) f > M 

and ungraded iso___- 

commutes. (Obvious: D(M)2 i ~ (M)i , D(M)2i+ 1 = 0 • 

We call I~M) the double of M • Clearly, B(H*(X)) ~ D(H*(X)) . 

We can expand the diagram of 9.5 as 

D(~)~ ;D(u) 

G(2) ® D(M) ........ > D(M) . 

In particular, D(M) is actually a module over D(~) , and we can use the 

change of rings spectral sequence ([12]) ccnverging to(9.7). Thus we have 
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Lemma 9.10 There is a spectral sequence converging to ExtG(2)(BH (X), ~) 

with ~ term 

mtG(2)(M, mt~(2)(z~(2),  z2)) • 

(Here the tilde over the internal Ext denotes the fact that this is a spec- 

tral sequence with twisted coefficients.) 

However, 9.10 is still very useful since ExtG(2)(IXI(2), ~) has a 

very simple form; e.g., see [23, §2]. Specifically, we have 

Theorem 9.11 Ext G(2)(D(G), Z2) ~ p ( q o , q l , . . . , q i .  " ' )  

bidegree (i, 2i+i-I) . 

where qi has 

To illustrate methods, we outline the proof. The dual 

is a polynomial algebra on generators ~i of degree 2m-i . 

2 
d : ~i ~ ~I extendsto a map of Hopf algebras. 

to the sequence of Hopf algebras 

(9.z2) 

there is the sequence 

Clearly~ the map 

Its dual is D ~ Thus~ dual 

G(2) / /dG(2)  , 

(9.13) 

Of c@~rs% 

becomes an exact sequence of G(2)-modules as 

(9.14) 0 ~ ~(2) • Ker (D) ~ G(2) ~ IXI(2) ~ 0 • 

(9.14) gives rise to a long exact sequence of ~xt groups, and, since 

is G(2)-free, this implies 

(Ker D) -cO(2) ~G(2) l lKer (D) m D(e(2)) 

G(2) t/dO(2) E ( ~ l ' ' ' ~ i ' ' ' )  ~ Ker (D) • Now the sequence (9.13) 
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i "- 
Ext C(2)(~(2), z2) ~ Ex¢ la(2)(C(2).Ker (D), Z 2) 

On the other hand, Exti-ic(2)(G(2).B , Z2) % EXtiB(Z2,~) for any sub-Hopf 

algebra of G(2) ([23, §2]). Thus the result follows from the routine cal- 

culation of the Ext groups for a graded exterior algebra. 

Remark 9.15 The difficulty with using 9.10 and 9.11 for the spectral sequence 

(9.4) is that the twisting in 9.10 is almost always non-trivial. 

Example 9.16 In case X = K(Z2,m ) , we find the spectral sequence (9.4) by 

far the more convenient. Its E 1 term in our range is a copy of 
r 

P(qo... ) ; however, the differentials are very involved. Considerable work 

on this case has been done by J. Harper ([i0], [ii]). 



PART III 

APPLI~TIO~ ~DEXAMPL~ 

10. Calculations Of The Stable Homotopy Of K(~,n) 's 

In [4], [5], and [14], methods were given for studying the stable 

homotopy groups ~S.(K(~n)) . These techniques give only fragmentary infor- 

mation in actual practice. More recently, work of Browder and Brown ([38], [39]) 

and Brumflel, Madsen, and the author ([40]) has shown the importance of these 

groups for problems relating to the classification of manifolds. Also, and 

rather tautologically, these groups give the classification of higher order 

one-variable cohomology operations which vanish for dimensional reasons, 

[3], [8], [i0], [ll] universally on appropriate cohomology classes. 

In this section, we apply the methods of Sections 4 and 9 to the prob- 

lem, obtaining somewhat more efficient tools for the calculations. We begin 

bY considering the first few groups when ~ = Z 2 or Q/Z , the cases of inte- 

rest in [38], [39], [40]. We then continue in the next section by giving more 

extensive calculations for the case ~ = Z . 

In all cases, we begin by considering the fibering 

(lO.l) 

Thi~ is of the type considered in ~.l~ hence in our range 

GL = ELsL'1 ~T (K(~,n) A K(~,n)) • 

Moreover, since ~i(K(~,n+L)) = 0 for i > n+L , it follows from the homo- 

s s G topy exact sequence of (10.1) that ~i (K(~,n)) ~ ~i ( L ) in our range. 
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s 
~i K(Z2'n) ' we ~st calculate the homotopy of 

sL'I ~T K(Z2'n) A K(Z2,n) • 

In the first few dimensions~ this has cells as follows: 

e 3 U ~ ® L e I U sqlL ® Sq!L (sql~, Sq2L) (~, Sq2Sql~) 

e 2 U L ® ~ Sq I~ ® Sq IL (~, Sq 2~) 

(i0.2) 
e I U ~ ® ~ (~, sqlL) 

The action of the Steenrod algebra ~(2) on the elements enumerated above 

depends, of course, on n . Thus for n ~ 2(4) ~ we find from 3.7 that 

sql(~ ® L) = (~, SqiL) , 

Sq2(~ ® L) = sql~ ® sqlL + (L, Sq2L) + e2 U ~ @ ~ 

Sq3~ ® ~ = (Sq2~, sql~) + (Sq~L, L) , 

sqlel ® ~ ® ~ = e 2 D ~ ® ~ 

Sq2el ® ~ @ ~ = e 3 D ~ ® ~ + e I D sql~ ® sqlL , 

SqI(sqlL ® sql~) = e I U sql~ ® sqlL • 

In this range, there are at least four non-trivial ~ 's in homotopy; the 

first dual to ~ ® ~ ~ the second dual to e I U ~ ® ~ • the third dual to 

sql~ ® sql~ , and the fourth dual to (sql~, Sq2L) . Applying 3.7 in the 

remaining cases~ we obtain the table 
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n = 0(2) s ~2n+i(K(Z2,n)) 

generator 

n = 1(2) ~n+i(K(~,n)) 

generator 

(4 ® L). 

Z2 

(4 ® 4). 

z 2 

(e I U 4 @ ~). 

z 4 

(e I u 4 @ ~) + <~, sqlL>). 

Z 2 

(Sql4 @ sgl~). 

Z 2 

(e 2 U 4 ® L). 

Now we consider the group Q/Z . Suprisingly, this involves us in 

some algebraic problems. The first is a suitable description of Q/Z . To 

this end, let Z = l~m (Z i) for each prime p . 
P 

Lemma 10.4 Q/Z %0(Z ) a_~s p runs over all primes. 

Proof Injections 8p : Z(p)~ ~Q/Z are defined as the direct limits of maps 

where Pi(n) = n/p i . 

Pi : Z i -~ Q/Z 
P 

These in turn induce a morphism 

(p)~ 

given on elements by 

To see that 

if and only if 

8(np'-.nq) : 8p(np) + ... + eq(nq) . 

ker (8) = 0 , note that 

np/p i + ... + nq/q j 6 Z 

np(...q j) + ... + (pi...)nq ~ O(pi...q j) . 

np(...q j) + ... + (pi..-)nq ~ O(p i) 

O(q j ) , 

In particular, 
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and these congruences imply np ~ O(p i) , ... , nq ~ O(q j) • Thus ker (@) = 0 . 

To see the converse, suppose the fraction n is given in Q/Z • Since 
2i3J...q k 

the ideals (pj) + (qk) = Z in the integers, for p a prime and q rela- 

tively prime to p , there are integers m 2 , n 2 so 

n22i + m2(3J...qk) = n • 

Similarly3 there are integers m 3 , n 3 so 

m3(5s...q k) + n35J = n 2 , 

etc. Hence we can write 

n/2i...qk = m2/2i + ... + mq/qk , 

and this shows that e is onto. 10.4 follows. 

Now note that the inclusion Z i~Z i+l 
P P 

K(Z i,n)~K(Z i+l,n) (e.g., see the models for 
P P 

Clearly~ we have 

induces an inclusion 

K(~,n) introduced in [19]). 

Lemma 10.5 K(Z(p)~,~ l~m (weak) K(Zpi,n) under these inclusions. (Here, 

the topology in K(Z(p)~n) is given by specifying its compact sets [which are 

the sets X contained in K(Z i,n) for some i , so X D K(Z i,n) is e(~n- 
P P 

pact], and letting Y be open if and only if Y 0 X is open for each com- 

pact set X .) 

W 

Corollary 10.6 K(Q/Z,n) = p p~rime K(Z(p)®~n) 

Cartesian products). 

(weak limit of the finite 
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Corollary lO.7 Consider the fibering 

G L ~ zLK(Q/Z,n) ~ K(Q/Z,n+L) • 

Then % = 
W 

M 
p prnne 

lira (weak) zL[s L-I ~<T K(Z i,n) A K(Z i,n)] 
P P 

in our range. 

Thus we can calculate the stable homotopy groups of K(Q/Z,n) from 

the observation 

io.8 ~. (i~ (~eak) Xi) : i~ ~.(X i) • 

Using 3.1 and 3.7, we now find 

Theorem 10.9 (a) ~2nS(K(Q/Z,n) = 0 , 

~S2n+l(K(Q/Z'n)) ~ IQ/2Z ~ Q/Z , n odd, (b) 
0 , n even. 

ipi ~ n even 

i,n)) = , n odd, p % 2 

Z 2 , n odd, ~ = 2 . 

In homology, (L i) . ~p(~ i+l) . under our injection. Hence 
P P 

p2((~ i+l).) ' and the kernel of the map is generated by 
P 

(~ i). ® (~ i). 
P P 

Moreover, the image of 

map, and, in general, 

iterate. 

pi-l(L i). ® (L i). • 
P P 

pi-2[(L i) . ® (~ i).] is in the kernel of the next 
P P 

pi-j[(L i). ® (L i).] is in the kernel of the jth 
P P 

Thus the direct limit is indeed zero, and lO.9(a) follows. 
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To prove (b), note that 

(10.10) ~2n+I+L(GL(K(Z i,n))) =- 
P 

Z i , n odd, p ~ 2 
P 

Z2i+l , n odd, p = 2 

0 , n even, p ~ 2 

Z2 , n even, p = 2 . 

Moreover, from examining the action in homology of the Hurewicz images of 

the generators 3 we conclude that, in each case, the inclusion of the one in 

the next is given by multiplication by p . Hence 

l~m (Z 4 C , Z 8 C ...) = Z(2)~ 

is the two-local component of the limit. Clearly, there is a surjection of 

this Z on Z with kernel Z 2 . Thus it is natural to embed the 
(2 ~) (2 ~) 

resulting group in Q/2Z . This completes the proof of (b). 

Remark i0.ii Theorem 10.9 is exactly the homotopy theoretic result which is 

needed to do simply-connected surgery ([41]), and also plays a key role in 

[40]. The results of Section 2 also allow us to know exactly at which sus- 

pension the various homotopy elements first appear. For example, the reader 

is asked to verify that~ for n odd, a 

~2n+I(K(Q/Zsn) A KQ/Z,n) , and hence in 

the map 

Q/Z appears in 

~2n+2(Z(KQ/Z,n)) . However, while 

~2n+2(Z(K(Q/Z, n) )) -~ ~2n+lS(K(Q/Z,n)) 

is an isomorphism, the approximating maps 

Z2i -~ Z2i+l 

for K(Z i,n) always have cokernel Z 2 . 
2 
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ii. Some Calculations Of The Stable Homotopy Groups For The K(Z,n) 

s 
In this section, we apply the techniques of §9 to study ~ .(K(Z,n)) 

in some special cases. The calcu]ational results illustrate the structure 

of the exact sequence 6.11. 

(i0.i) shows that we need study only ~.(S L-I N T K(Z,n) A K(Z,n)) 

for L > n . To do this, we shall calculate the groups 

Ext,(2) (H (FLK(Z,n)), Z2) , 
(il.l) 

Exta(2)**(H*(FL) , A, Z2) 

in three steps. First, we calculate Ext,(2) (H (GL)/A, %) ; then we cal- 

culate Ext,(2) (A,~) ; finally, we put them together to obtain the desired 

groups (tl.l)° 

We begin with the calculation of Ext,(2) (H*(GL)/A , Z2) , using the 

second s p e c t r a l  sequence  i n  §9. 

~emma 11.2 E~t a(2)(D[H (K(Z,n))], Z 2) 

Ext ~I(Z2,Z2) ® Ext A(Q~Q4...)(Z2,Z2) 

in total degrees less than 4n+l . Here ~i is the subal~ebra of ~(2) 

generated by Sq I and Sq 2 

Proof We imitate the main idea in the proof of 9.11. 

H*CKCZ, n)) 

~(2)sq I 

The map u 

is onto in dimensions less than or equal to 2n and has kernel 

Thus, the kernel of the doubling homomorphism 
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is D-I(G(2)Sq l) : Ker (D) ~ G(2)(Sq 2) , but this is 

G(2)(Sq 2) , but this ideal is clearly isomorphic to 

~(2 ) . (% ~ s(Q3Q4...)) , 

and 11.2 follows. 

G(2)~(sq l, %, Qs") 

Now we recall the well-known 

Lemma ii.3 Ext ~(Z2,Z2) = P(ho,hlQ, P)/R where R is the set of relations 

Q2 h~P, 

hoh I = 0 , 

h~ = 0 , 

hlQ = 0 • 

Here h 0 has bidegree (1,1) , h I has bide~ree (1,2) , Q s Ext 3'7 and 

Ext 4~12 (See e.g. [9, §6.1] for a proof.) P s 

We mention in passing that Q has Massey product representation 

2 2 
(h~,hl,ho) . Also, P has representation (hi,hi,hi,hi) • 

ll.2 and ll.3 together determine the E 1 term of our spectral sequence. 

We now turn to the evaluation of the differentials. I know of no way to do 

this without going to the chain level. First, we need some notation. In 

E 1 , we denote an element in the k th copy of EXt~l ®E(Q 3...)(Z2,Z2) with 

i I i kt h 
a (k) on the right. Thus e ® q3 "''qr r in the copy will be written 

i I i 
e @ q3 "''qr r(k) " 

The generators of C O are thus the ((k).] , and those in C I are the 

ho(k). ~ hl(k). , q3(k). "'" . In principal, we can completely describe the 

differentials once we have specified the boundaries of the generators in C (1) 
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In the associated graded gadget, 3ho(k ) = sql(k). , 8hl(k). = Sq2(k). , 

8qi(k ) = Qi(k). • Of course, these are not in the kernel of the surJection 

C ° -~ H (GL)/A in general, so there are higher filtration correction terms 

which m~st be added to these (presumptive) boundaries. In particular, 

sq2(k). + (k~l)(k+2). , 
(ll.4) 

Sql(k). + (k~l)(k+l). 

are in the kernel, and hence are appropriate choices for the actual differen- 

tials. Now, using standard calculational techniques, we have 

(11.5) QiSq k = Sq(0"'0e)Sq k+l + Sq(0"'O4)sqk+} + 0 

where e vanishes on elements of dimension k+4 . Hence if we are concerned 

only with the first four or five differentials, we can assume 

(i1.6) ~qi(k). = Qi(k). + Sq(0'''0~)(k+l). + sq(O'''O4)(k+3).. 

Lemma 11.7 51(k) = (k)ho(k-i) , 

81(q3(k)) = (k[1)hoq3(k-l) , 

~2(k) = (~3)hl(k-2) , 

~2(q3(k) ) (~2 = )hlq3( k-2 ) 

These differentials and some routine algebra allow the complete deter- 

mination of E4s,r,t in dimensions r-s < 12 . For example, when n = 4L+l , 

we find 

Thus we obtain 
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(~1.8) 

5 

4 

3 

2 

i 

T 
s 0 

r - s  --~ 

A (z) 
0 i 2 3 

7 

4 5 6 7 8 9 I0 ii 

Our conventions for writing the Ext groups are the usual ones 

(e.g., see [16]). However, for the reader's convenience, we list them here. 

A vertical line connecting two dots represents the fact that the upper is 

h 0 times the lower. A 45 ° line connecting two dots says that the upper is 

h I times the lower. Finally, a dashed vertical line implies again that the 

upper is h 0 times the lower, but the extension is not obvious in E 1 . 

(Actually, the precise significance is 5 (lower) = (sql) * (upper) + 8 where 

e has filtration at least 4 higher.) 

Examining (11.8), we see that the only possible differential is 

67(10) = In fact, we have 
0 
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q3(3) , n -= l(8) 

Lemma 11.9 57(10) = 
O , n -= 5(8) 

(For the proof~ it is necessary 

only to expand (11.6) two further stages in these cases.) 

Thus, in view of the dashed vertical lines, this determines the remain- 

ing differentials, and (11.8) represents Ext~(2)(H (rn)/A , ~) for n ~ 5(8) , 

while 

for n ~ 1(8) has the form 

Ext~(2)(H*(rn)/A, Z 2) 

4 

3 

2 

i 

T 
s O 

/ 
r-s -~ O i 2 3 4 5 6 7 8 9 iO Ii 
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Now, following our program, we turn to the calculation of ExtG(2)(A,Z2) 

Unfortunately, I know no indirect way of studying this group, so I found it 

necessary to write down an explicit resolution in our range of interest. We 

suppress the calculations (in the interest of mercy to all concerned) and 

record the result: 

5 

4 

3 

2 

1 

s 0 

r-s 

/ 
J • • • • 

o 1 2 3 4 5 6 7 8 9 lo ii 

withj perhaps, some missing terms in r-s = ll . Combining this with (ll.10), 

and calculating some obvious differentials in the exact sequence 

(ii.12) ...ExtG(2)(H*(FL) 3 ~) ~ ExtG(2)(A~Z2) ~ Ext~(2)(H*(FL)/A, ~) ~ ... , 

we find that ExtG(2)(H (F8k+l), Z2) has the form 
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2 

1 

T 
s 0 

r-s -~ 

l 

• "C 

7 8 

/ 

I m • • E • 

0 l 2 3 4 5 6 9 l0 ll 

There are a number of "suprising" facts concealed in (11.13). For 

one, note that 5 in (ll.12) is highly non-trivial. For another, note e.g. 

that, for hoD , H , there are extensions of the ExtG(2)(Z2,~) module 

structure connecting the remaining terms from (ll.lO) and (ll.ll). The orig- 

inal interpretation of elements in ExtG(2)(H (Fn)/A , ~) was as "stable" 

higher order cohomology operations which vanish universally on integral coho- 

mology classes of dimension n (e.g. see [ll]). However, it is clear that 

that hypothesis can no longer be supported since the terms from Ext (2)(A, Z2) 

play a very definite role in determining the actual Ext groups of F 
n ' 

and the differential depends on n . Thus the general defining system for an 

operation represented in ExtG(2)(H (Fn)/A , ~) may well have been built on 

relations which depend on lower order elements in ExtG(2)(A,~ ) and n . 

We now calculate the differentials in (ll.13), and conclude this sec- 

tion by evaluating 
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~**(Fn, A, Z 2) 

in this range. 

We first observe that the Z 4 Bockstein (Proposition 3.6) implies 

some 82 differentials. Thus we have 

L~mm~ 11.14 I__nn (iI.13)~ we have 

~293(o) = nob , 

~2(H) = hoD • 

Somewhat less immediately, we have 

Lemma II.15 (i) ~2(g3(i)) = 0 , 

(ll) ~2(E) =0 • 

Proof (i) Consider the inclusion 

S I sn-i u : ~<T K A K~ ~<T K A K . 

It is easy to verify that g3(1) is present in im (u.) on Ext groups. 

However, ho3D is not in this image. Hence ~2(g3(i)) = u.~2(g3(1)) = 0 , 

and (i) follows. To prove (ii), note that E has representative cycle 

(Sq3, Sq4Sq 2 ) . Consider the inclusion 

I : K A K-~sn-I ~<T K A K . 

K A K is a wedge of K(~,n) 's and K(Z,n) 's in low dimensions. A direct 

calculation shows that Sq4Sq2~ ® Sq3L is a generator in H*(K A K) over 
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~(2) . Hence it is dual to an element 

@ 
is detected by E , and (ii) follows. 

Remark 11.16 The splitting of K A K 

with the cofibrations 

(11.17) sr ~T K A K ~ S r+l ~T 

b in  ~.(K A K) • C l e a r l y ,  I . ( b )  

used in the proof of ll.15(ii), together 

K A K-~Er+l K A K-*E sr ~<T K A K-~ ... 3 

provide us with a good method for constructing homotopy classes in our range, 

while the global calculations of Ext groups provide an effective way to 

limit the number of elements whose study is required. It would seem to the 

author that this remark provides the reader with effective tools for analyzing 

the stable homotopy of Eilenberg-MacLane spaces so far as desired in our 

range~ 

Returning to our calculation3 we easily see that 11.14 and 11.15 give 

all the 82 differentials. Moreover, E 3 ~ E ~ , and we have 

Theorem 11.18 The first ten stable h~motopy groups of K(Z,8k+I) are given 

by the table 

1°llr 2 q31 
~16k+j+l Z 2 .... 0 Z 4 0 Z 2 ~ Z 2 

6 17j819 
Zl6 Z 2 Z 2 @ Z 2 

For j = I0 , ~16k+l~(K(Z, Sk+l)) has order at most 8 . 

Remark 11.19 The grOups obtained in 11.18 for j = 6 , 7 do not agree with 

those obtained by Mahowald and Williams in [14]. They apparently missed the 

generator C corresponding to the cycle (Sq 2, Sq 4) . 
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Finally, we apply ll.18 to calculate the differential 

i * Z21_ * : Ext ~(2)(H (Fn)/A , Exti+2a(2)(A, Z2) defined in 6.11. 

find that 

~.(F8k+l , A, ~) 

has the form 

We easily 

/ .8 

A•/ 
P 

• "C 

0 i 2 3 4 5 6 7 8 9 i0 

/ 

//IH 
£ 

Again using 11.18, the reader can easily calculate the higher dif- 

ferentials in (ll.20). 



91 

12. An Example For The,,,Metastable Exact Sequence 

In [13], Mahowald used his special case of 8.5 to give extensive 

calculations of the metastable homotopy groups of spheres. The most element- 

ary spaces after the spheres are the various two-cell complexes; in particu- 

lar, the four such non-trlvial ones distinguished by their structure as 

G(2)-modules. 

In this section, we apply 8.5 to calculate some of the unstable 

groups of the space ~ = S 7 U 2 e 8 

The stable homotopy of 

sequence 

(12.1) 

as an example of the techniques involved. 

is easily studied. We have an exact 

ExtG(2)(Z2,Z 2) ~ ExtG(2)(H*(X7), Z 2) ~ ExtG(2)(Z2,Z 2) -~, 

and 8 is exactly multiplication by h ° , 8x = hoX (eg., see [2]). 

ExtG(2)(H (~)~ Z2) consists of elements of two kinds: 

( 12.2) i) elements ~ in the image of I , 

ii) elements ~ for which J(~) ~ 0 and hoJ(~ ) = 0 • 

Hence 

Elements of this second kind may be written explicitly as Massey products in 

ExtG(2)(H (~), Z2) . Exactly, we have 

(m.3) ~ = <j(~), h o, ~J 

where ~= I(~) is the unique non-zero element in Ext 0'7 * G(2)( H (XT), Z 2) • 

Consequently~ we obtain 
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Proposition 12.4 The following extensions occur in 

i) ho(7 ,ho~  > : h l I ( 7 ) ~  ; 

i i )  I ~  ~ = 0 i~  s~t (2 ) (12 ,12 )  , then 

Proof 

Ext~(2)(H*(~), Z 2) : 

~<7,ho,±,> = <~,~,ho> h • 

By the slide formula for Massey products, 

~(# ,~ ,~ )  = <a,# ,~)8  , 

we obtain (ii), 

from 1 2 . 2 ( i i )  and 1 2 . 4 ( i i ) .  

[24])  (a,b,a> = (a U 1 ~)b 

and (i) now follows. 

To show (i), note that. 

~o<7,ho,~> = <~o,~,ho>~ 

On the other hand~ the "Hirsch" formula ([17]~ 

implies (ho,7,ho> = h17 since h ° U I h ° = h I , 

Using the tabulated results ([16], [59]) on 

Ext~(2)(H*(X~),{  Z2) f o r  t - s  < 2 0  as 

~xtG(2)(Z2,Z2) , we obtain 
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Proposition 12.6 

differentials: 

In the range o_ff (12.5), there are only two non-zero 

82(eo) = hl2do , 

82T = hl2doL • 

Moreover, there is a non-trivial extension 

2[h4] = Q • 

Proof These differentials are non-trivial since the sequence (12.1) is actu- 

ally a long exact sequence of Adams spectral sequences, being induced from 

the obvious cofiber map of spaces, and the corresponding differentials are 

non-zero for spheres. 

The next possibility for a non-zero differential is h4L . In fact, 

~2(h4L) = (2h32)L = [22]L by naturality~ but 2~2L = 2 2~ = 0 since 

2 
~ = 0 • Thus h4L represents the Toda bracket 

i n  ~ s . ( x T )  , a n d  i s  i n d e e d  a n  i n f i n i t e  c y c l e .  

There remains the possiblity of a differential on f . In the Adams 

spectral sequence for the sphere, 82(fo) = 2h2(do) . Hence fo represents 

the Toda bracket 

{O(do), 2, ~ 

s 
in ~ .(~) . This completes the first part of 12.6. 

For the second assertion, note that h 4 is a permanent cycle repre- 

senting the Toda bracket 
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Hence 

(i2.7) 

But thls last represents 

{ ~ ,  2, , j  . 

(h32,hJ~A) = 0 , and 12.6 follows. 
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Remark 12.8 The reader might wonder why we did not use the slide formula in 

(12.7), obtaining 2[~2,2,~) C [2a2,2]~ = ~o2~ = 0 • But these equations are 

valid only modulo the total indeterminacy which in this case is 2~s22(~) . 

New we turn to the calculation of ~.(S 7 U 2 e 8) in the metastable 

range. The fiber in the map 

F L ~S 7 U 2 e 8 ~L(sL+7 U 2 e L+8) 

is given as ~sL-I MT [$7 U2 e8) A (S 7 U 2 e8)] • The calculation of 

Ext ~(2)(H (FL),A, Z2) is routine using the first spectral sequence in §9 

s,r * 
(in this case an exact sequence), and we find Ext ~(2)(H (FL),A,~) has 

the form 

2 

(is .9) 
I 

s=O 

r-s-- 0 i 2 3 4 5 6 7 8 

In particular, the reader should note that, since ~4(e7,e8) = (e 8 ® e8) , 

it follows that the element 7 , in the space ~(FL,A ) , corresponding to 

sql(~o ) satisfies sql(7) = e 8 ® e 8 . This is an example of the type of 

twisting referred to in §6, particularly 6.11. It is easy to check that 

there are no differentials in this range in the resulting Adams sequence, so 
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We now evaluate the map ~l 2 of 8.5. 

Proposition 12.10 

for r-s < 8 . 

~2(h3~) = I ° , and there are no further non-trivial images 

of h3~ is Sq8(~7) , it is evident that Proof Since the k- invariant 

~2(h3~) = I ° The only other possibility is ~(h}L) = ~hl(e7,e8) , but 

this is part of the tower associated purely to A . Hence ~ = 0 , and 12.10 

follows. 

COrollary 12.11 The unstable resolution of S 7 U 2 e 8 in the metastable 

range has the form 

8 

6 

4 

2 

s=o 

r-S -~ 

f 

O i 2 3 4 5 6 7 8 9 iO i! 12 

There are clearly no further differentials, so ~ = ~ in this range. 
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13. Further Calculations For Some Truncated Projective Spaces 

(13.1) 

In this section• we study the groups 

~i+n(Zn(P62 ) ) 

~i+n ( zn(p6) ) 

, i!6, 

• i~6,n=2. 

They are of importance in the joint work of the author and E. Rees on embed- 

ding projective spaces ([42]), and provide examples illustrating ranch of the 

theory of Part I not already explored in §§9-12. 

We being by recording the stable homotopy of the spaces in (13.1) and 

in our range. 

* 6 
Lemma 13.2 Ext~(2)(H (P 2) , Z2) i__ss ~iven by the table 

4 

3 

-~ 2 

1 

s 0 

t-s -~ 2 3 4 5 6 7 8 9 lO 

in our range. 
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Lemma 13.3 

5 

4 

3 

2 

i 
T 
s 0 

t-s -~ 

* 6 
ExtG(2)(H (P 2) , Z2) i_ss given by the table 

1 2 3 4 5 6 7 8 9 lO ll 

in our range. (Both 13.2 and 13.3 are evaluated by using the exact sequence 

of cofiberings 

(13.4) 
p2 6 A p2 ~ . P7 ' 

pl 6 ~ PI ~ ' 

taking the resulting long exact sequences of Ext 

tables in [13], pp. 54, 55, and 60 to evaluate 

range.) 

From 13.2, 13.3, and the fact that, in 

groups, and using the 

Extc(2)(H (Pi)~ Z2) in our 

~8(P2 ) , the class correspond- 

ing to 4L(5) is non-zero ([13], p. 55# and the observation j.(L(5)) = 

2[e5} ) , it follows that 82h2(5) = 0 in the Adams spectral sequences for 

which 13.2 and 13.3 are the ~ terms. On the other hand, by inspection 

we see that 82(h2(5)) is the only possible non-zero differential. Thus 

= E ~ in both cases, and we have the table (localized at 2) 

(13~) j 
~Sj(P62) 

~Sj(P61) 

2 

0 Z 

z 2 z 2 

4 

z 4 0 

z 8 z 2 

6 

z 4 

Z2 

7 
z 8 

z2 ~z8 

8 
(Z2)3 

9 

~6 • (zJ 

(z2)5 . 
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Now we consider the unstable homotopy groups (I].I) for Z2p61 , 

Z2p6 2 . Since these are suspensions; the fibers 

(i}.6) 

%1. z2p6 o~z~+2p6 

FL2 ~ Z2p6 2 -~ DLEL+2p 6 
. ~ 2 

are given explicitly in §I and their homology calculated in §3 (particularly 

3.9, 3.10). There is no difficulty in constructing resolutions to evaluate 

~.(FLa ) for * < 8 (For the fiber FL I _ . ~ we are one dimension beyond the 

point where i.ii is valid] thus the fact that we are dealing with suspensions 

is essential for effective calculation.) 

Lemma 13.7 n7(FL 2) = Z generator A , 

~8(FL 2) = Z 4 ~ Z 2 generators B , C 

with relation NA = 2B . 

Proof We are in the range in which i.ii applies. 

ogy generators 

2 
The fiber F_ has homol- 

b 

7 8 9 

o(e 4 * e4) o~(e~) o~(e 4) 

~(e 4. e 5) ~(e 5. e 5) 

c(e 4 * e6) 

Passing to cohomology over C(2) , we apply 3.7 to show that 
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sq~(o%(%) *) : °(%(%))*, 

s q l ( d ( % * % ) )  * = Sq2(o (e4  * e4)  ) , 

and there are no further non-zero operations in (1}.8). 13.7 now follows on 

• 2 
taking Ext~(2)(H (F L ), Z2) in this range. 

The situation for FLI is similar. However, we must also take into 

account the classes Z2el<~el , ~e2) , Z2e2(Pel , Z2e2) (in the notation 

of 3.9). 

Lemma 13.8 ~5(FL 1) = ~ g e n e r a t o r  D = ( ~ e  1 * ~2el) 

~6(FL 1) = Z 4 g e n e r a t o r  E = % ( Z 2 e l  ) + ( Z 2 e l  , ~ e 2 )  

~(FLI ) = ~ generator F = (Z2el, Z2e3) 

[G = Z2el'(Z2el , Z2e2) 

~8(Fl ) = Z2(3) ~nerators !~D 

I H = (n,4,D) 

Also~ in the map 

but 

: FLI 2 * F~ , we f i n d  ~ . ( D )  = ~ . ( E )  = ~ . ( F )  = ~ . ( G )  = 0 , 

~ . (H)  = I]A . 

~.(F~ l) = ~.s(F~l) sinoe FL1 
* 1 

H (F L ) has generators 

Proof Through dimension 8 , 

We thus take a stable resolution. 

is 4-connected. 
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(e 3 

(13.9) 

5 6 7 

* e 3) %Ce 31 %Ce31* 
<~,%> (e~ * e4) 

(es,es)* 

8 9 

Q3(e3)* Q~(e3)* 
%(e4)* %(e4)* 
(e3,e6)* (e 5 * e5)* 

(e4,e5)* (e3,e7)* 

e3(e3,e4)* e4(e3,e4)* 

<e4,e 6) 

in dimensions less than or equal to 9 • A basis over G(2) is easily seen 

to be (e 3 * e3)*, ~(e3)*, (e 4 * %)*, <e3,eS>*, e3<e~,%>*, Q4(e3)*, 

(e 5 * e5)* in this range. Relations are sql(~(e3))* = sql(e4 * e4)* = 0 , 

Sq4(e 3 * e3)* = Sq3(Ql(e3))* , 
(13.1o) 

(Sq4+Sq3sql)(e~ * e3)* = Sq2(e4 * e4)* . 

Next, since ~4(e4 * e4) = (e3,e4) + ~(e3) , we see that, in the 

Adams spectral sequence for FLI , 82(e4 * e4) = h02(~(e3) ) . Moreover, 

there are no further differentials in our range, and E 3 = E ~ 

Finally, noting the fact that 

* I * ! * * (e 4 e 4) = (%* e 4) , 

we see that the filtration 2 class, due to the second relation in (13.10), 

maps to qA in ~.(F#) • 

Corollary 13.11 Th__~e # term of oar spectral ~equence 6.4 for Z2P2 6 has 

the form 
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4 

3 

2 

1 

0 T- 

4 5 6 7 8 

up to extensions (which are marked with dotted lines). 

Remark 13.12 By using the techniques of §§i and 8, we note that j.(G) , 

j.(H) generate the unstable part of the homotopy grOup ~8(Z2P 6) . More- 

over, a simple argument with Whitehead products shows that J.(G) cannot be 

a suspension element. Thus j.(H) is the only candidate for an element in 

~2~6(P6 ) in ~8(~P 6) • In particular, the generator of ~6(P 6) is the 

attaching map of the cell building p7 : 

(13.13) s6hP6-~# ~ S 7 , 

and it must be clear from (13.13) that the top class in 

if and only if ~2(k) = O in ~8(~P 6) . 

is j.(H) ; and in (~P62) , i.j.(H) ~ 0 

result needed in [43]: 

Z 2 P  is spherical 

But the only non-zero candidate 

by 13.8. This proves the key 

Theorem 13.13 ~p7 ha s top-class sl0herical if and only if ~P72 does. 

We now complete the calculations of this paper by calculating 

~2+i(ZP62) and ~i+i(P62) in the range of(13.~. 

difficultyj we find that the h~motopy of the fiber FL3 Without 

the map 

in 

zp62 -~ ~z~+lp62 
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is given by 

(13.~4) 

J 

~j(FL3) 

Generator 

5 6 

I J 

7 

Z 2 ~ 

K, [~,2,1] • 

Clearly, 82(D2) = I , and no other non-trivial boundary is possible. A 

schematic representation of ~.(ZP62 ) in our range can now be given as 

(13.15) 
1 

T 
s 0 

t - s  

4 

3 

2 

3 4 5 6 7 

The extensions 20(3) = J.(K) , ~[hoh2(2)] = j.(G,2,I] must be veri- 

fied. (Of course, the second extension follows directly from the fact that 

~[h2(2)] = I .) To obtain the remaining extension, note that we are outside 

the range where 8.5 holds, so the extension is not necessarily surprising- 

(The point is~ if 8.5 were true in this dimension, then in the resolution 

both K and h2(} ) would occur in filtration I , and the extension 2D(3) = 

J.K would clearly be impossible.) 

Specifically~ the difficulty with extending 8.5 occurs here because 

Sq4(c4 ) = L42 is a Z 4 class, and ~4(L4 )2 = [sqlL4 U c 4 + Sq4Sql~4] in 

K(~,4) . Using the fact that we can take an unstable "resolution" of ZP62 

with first K-invariants given as 
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(@e2'@e3)> K(Z,9) x K(Z2,4 ) SqI~4+Sq2~Y ~42 (1}.16) ZP6 2 - > ~(Z2,5) x K(Z~,8) , 

we easily justify (13.15)~ and this provides a good example of why the range 

of dimensions in which 8.5 holds cat, lot be extended. 

Remark 13.17 We note in passing that, in the map ~ : FL3 ~ ~FL I , we have 

~.(K) : 0 , ~.{~,2,1] = GA ; and in the map ~ : E P6 2 ~Z2p6 2 ~ we have 

~.(hoh2(2)) = j.(A) + 2~(2) . 

Now we conclude the discussion by studying briefly the homotopy of 

P6 2 itself. It is a routine calculation with the Serre spectral sequence 

to give the homology of the f~ber in the map 

P26-~LzLp62 

in dimensions less than 8 . The fact that there are non-trivial cup prod- 

ucts in P6 2 produces some minor unpleasantries such as: (i) the class 

which should have transgressed to (e3oe4) is identified with the class 

transgressing to (e2oe5) , and (ii) in H7(F) , the class which transgresses 

to (e2Oe2oe2Oe2)* is a Z8-Bockstein , 

~8(~-!((e3,e4 )* + e I U e 3 O et)] . 

This illustrates the way in which the results of §i fail when X is not a 

suspension. 

The homotopy of F is given by 

(13.18) 
J 

Generator 

3 
Z 

[~2, ~2] 

4 

2 

5 

z2 z2 

~, [L3,~ 3] 

6 

z s 

M, P 
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Further, we have relations 2 ~  = 2M , 9 [ ~ 2 , ~ 2 ]  = 2K, and Z(K) = I , 

Z(M) = [~,2,I] while ZP = K on suspending, i.e., taking the map 

3 
F ~  L 

Clearly, ~(2) =K@ L , c~o(3) = [~3~3] • We may also verify 8(L(5)) = 

2P . This is not trivial; it involves the construction of an unstable reso- 

lution of P62 , and makes essential use of the fact ([29]) that ~P72 is 

reducible. Here is what the resolution looks like through dimension 6 : 

t-s 2 3 4 5 6 

The k-invariants may be easily calculated. Notice that M has fil- 

tration 2 here but aM has filtration 3 in the resolution of ZP62 . 

This change of filtration degree would seem to merit further study (e.g., see 

I15] for an example of what can happen). 
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