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Preface

This work had its origins in two projects. The first, undertaken
in 1970 with Elmer Rees, was to construct certain low dimensional embeddings
of real projective spaces, In order to do this we needed methods for
calculating unstable homotopy groups of truncated projective spaces and
assoclate spaces, as well as their images under various Freudenthal
suspension homomorphisms. The second was to understand Mshowald's work on
the metastable homotopy of spheres,

In 1971 and 1972 my work in surgery made me enlarge the scope of
the project and consider an apparently unrelated problem - the stable
homotopy of the Eilenberg-MacLane spacesK(Q/Z,n). By means of
appropriate fiberings these questions are seen to be merely different
faces of the same coin.

Hence, this current work which provides a relatively effective
framework for considering such questions. We generalize Mahowald's
constructions to allow us to apply Adams' spectral segquence techniques to
calculations, and we give detailed caleulations for meny examples; in
particular; those needed for the work with Rees, and those needed in surgery

with coefficients.
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Introduction

In recent years, stable homotopy theory has become a standard tool for

the working topologist. If @' is a spectrum {Yl,Y Yn,...} , one defines

PYRRRY
the stable homotopy groups of X with coefficients In % as

Hi(X,Y) = 1im “n+i(x A Yn) ,
e
and these groups, according to G, W. Whitehead, define a generalized
homology theory. {This means that they satisfy all the Eilenberg-Steenrod
axioms except the dimension axiom.) In particular, if % 1is the sphere spec-

trum &= {31,82,...,Sn,...} , then
_ .8
Hi(x,y) = w5 (X)

defines the stable homotopy groups of the space X .
Since these groups form a homology theory, it is not surprising that
homological techniques can be applied in calculations. Indeed, a major tool

is the Adams spectral sequence, which has Ez-term

*
Extﬂ )(H (X Ay, zp), zp) s

{p

and converges to Hy (X, #@® Z w) + Hereof (p) is the mod (p) Steenrod

algebra, and 2 _ = lim Z 1 ?see e.g. [2]). Sometimes there are more effi-
cient methods fgr calZulaEing these groups, but in a range 1t is quite effi-
cient, and has led to the calculation of the stable homotopy of spheres and
some associated spaces through approximately the first 60 stems. This is a

considerable achievement, since it was not that long ago that there was real

uncertainty as to the order of even the second stem.



These techniques have also yielded spectacular results, such as
Adams' first proof of Hopf-invariant 1 and his later solution of the vector
field problem for spheres, Moreover, the recent work of Mahowald, Quillen
and others on the structure of the stable J-homomorphism promises further
profound knowledge in stable homotopy theory.

Summarizing, we can regard the stable groups as reasonably well
understood.

For many problems, though, it i1s unstable groups which are actually
needed. For example, the vector field problem for spheres (or its homotopy
version) was really a question about how far back a certain element (the

Whitehead preduct [I,I1) in L (Szn_l

n-3
obtained only after it was converted into a problem about the stable homo-

) desuspends. Its solution was

topy groups of truncated projective spaces, and the fact that this unstable

question actually admitted such a reduction is, I suppose, the starting point

of this monograph.
In a range of dimensions, there is an exact sequence, discovered in a
special case by I. M. James and written down in generality by H. Toda, called

the EHP sequence

E i, H - i-1, P
R ACOES SNCAIER SN CbS At B AN COR

which relates the unstable homotopy groups of S° , §%*J 4o the (stable)

groups of a truncated real projective space (RPmn = RPm/’RPn~1 = %),

2n-i-1)

The existence of an element B € “4n—3-i(s , which suspends to

the Whitehead product 1,11 can be interpreted as equivalent to the

2n-i-2 2n-1
N Pon-i
2n-i-2 A 2n-2

P on-i-1 to a point,

existence of an element o € ﬂAn—B-i(S -1) , with P(a) = B in

the EHP sequence, and, on pinching S



4n-3-1

satisfies pla) =ee 7 (s } is a generator, provided i is

4n~-3-1
suffieciently small that the EHP sequence is valid. This can be seen at once

on considering the commutative diagram of EHP sequences

P 2n-i-1 2n, B 2n-i-1 , _2n-1
LA Y m ST, 5 4(S AP )=

2n-i-1
v E ¢ = - v E!
2n-i, E 2n 2n-1 2n-1
- “4n-2—i(s ) = n@”z(s )+ "411—2—1(8 A PZn—i) >
v E 4= + E'
P (sl E o gy, (SZn:-1 » 21y
4n-3 4n-2 4n-2 2n-2

since [I,I] generates the kernel of the bottom suspension map.

There are other problems of s similar nature involving, for example,
the number of times a Thom space is really a suspension, which have implica-
tions for the geometric dimensions of vector bundles and the immersion dimen-
sions for manifolds ([42]).

Our main object here is to develop machinery which leads to systematic
methods for attacking such problems in a range of dimensions. Specifically,
we study the problem of passing from the stable to the metastable homotopy
groups of a space. In particular, we develop the following generalization

of the EHP sequence.

Theorem 1.11, There is a space FL(X) = SL'l X (X A X), which is

{2n-1)-connected whenever X is (n-1)-connected and an exact sequence valid

in the metastable range (i < 3n-2)

x B Y e e S0 B et

So for L sufficiently large, * determines w,(X) in terms of the

stable homotopy of X and FL(X) in this range. If X 1s a sphere st



then SUT *m st A gh = ZnRP§+1~l ([22]); however, for more complicated X ,

FL(X) becomes considerably more complex. In §82 and 3, we give H*(FL(X))
as a module over the Steenrod algebra .Z{2) or .«{(p) , provided we know the
Steenrod algebra structure of H*(X) . Thus, in principle, we can apply the
Adams spectral sequence to determine ﬂ*(FL(X)) through a suitable range.
The idea behind the proof of 1.11 is contained in two facts: that
ﬂi(QnY} = nn+i(Y) , where @Y 1is the nth loop space of Y , and that the

natural map (§1)
j o xe Qf™

gives, on passing to homotopy, the map J, : ﬂi(X) > (£™X) , which is the

+i
suspension map E in 1.11%. Converting j into a fibration and identifying
the fiber with Q(Tn(X)) gives 1.11.

In order to make this identification, we need some basic facts about

the structure of the space 5™ . When n=1 , I. M. James showed that

Qrx = 3 (X) , where Jl(X) is the "reduced joinr

Here F2 is defined on * x X UX x ¥ as the folding map, F3 is defined
on ¥ x X? UX x % x XU X2 X ¥ as the folding map, and so on. There is an
associative product in Jl(X) defined by juxtaposition, and ¥ is then the
identity. In fact, Jl(X) can be described as the free associative H-space
generated by X with * as unit. This result was generalized in [18] to

give similar constructions for I . We review (and explain) this con-

struction in §0.



Specifically, we start almost from first principles and develop the
geometric ideas which lead to an understanding of the basic structure of
Q"ePX . These lead to constructions Jl(X} s JZ(X}...Jn(X} , which are, in
a sense, minimal models containing all the basic structures just developed.
It is then a theorem that, for reascnable X , Jn(X) Za"™ . We do not
prove this last result (the proof can be found in [181), but we do explain
the considerations which lead to the constructions, and these should make
the details in [18] almost unnecessary.

In §4, we consider the problem of locking at @™ when X 1is mo
longer an n-fold suspension. The result is quite intriguing. There is an

evaluation map e : Nt S ¢ , and looping e n-times gives
e - o
The fiber of t 1is shown to be Fn(X) in a range, and we obtain

Theorem 4.4. Suppose X §§_§§‘(n+m—l)~eonnected CW-complex. Then in dimen-

*
sions less than 3m-1 , H (&%, z,) depends only on K (X,Z,) for p odd,

%
and on H (X’ZZ) as a module over #(2) for p=2 .

To finish Part 1, we apply the results of §4 to the desuspension prob-

lem. The result is

Theorem 5.1. Let X gg_(n-l)-connected and have dimension less than 3n-2 .

Then

1} if Y is the (2n-L-1)-gkeleton of X , there is a unigue space 2,

50 ZLZ =Y ;

2) X is itself an L-fold suspension if and only iﬁ_g’certain (universally

constructed) map



L+lSL-1

¢+ X/Y+ L "o ZAZ

is homotopically irivial {as usual, ¢ 1is a stable map).

The result would be more satisfactory if we knew more about ¢ or
even the cofiber of ¢ . In low dimensions, things can be explicitly worked
out using unstable higher cohomology operations (see e.g. [361), but at pres-
ent the author has no genersal resulils.

In this connection, we would like to point out the worked example at
the end of §4, Qll(CPl28) , where we show that the mod 2 Steenrod algebra
action in H*(QnX) is not determined by its action in X . It is possible
to interpret the work of Adém-Gitler on non-immersion theorems ([31) in
terms of examples of this kind, and such analysis could lead to a sharper

understanding of ¢ .

In Part 2, we develop means for calculating the maps H and P in
1,11%,
Mahowald showed in [13] how to use Adams spectral sequence techniques

to study the ordinary FHP sequence. He constructed a map

2 . st s-1, t-n-l *
E(H) ¢ Bxt™ 7 ,0(25,2,) > Ext w(2)( B (BB, Z5)

which commutes with differentials and, at E , gives a map associated with
H . (Note here that Ez(H) changes the s degrees. It is precisely this
change which makes Mahowald's map non-trivial.)

The obvious generalization of E2(H) to the map in 1.11% fails, how-
ever, and E2(H) does not exist for any space more complicated than a

sphere (at the prime 2) !



Our main object in Part 2 1s to provide a satisfactory generalizationm.
We first review Adams' method for constructing his spectral sequence, and
generalize it slightly so as to define an unstable spectral sequence which
approximates the actual homotopy of a space X . Convergence seems diffi-
cult in general, but the sequence does converge in the metastable range.
There is a natural suspension map % from this spectral sequence to the
stable Adams spectral sequence, which is an isomorphism in the stable range
and, at E , is associated to E . At the E2 level, % is algebraically
determined through the metastable range. This situation is quite nice
except that the Ez—term of our sequence for X 1s very hard to determine
above the stable range, so we turn to the maps H and P .

In 6.11, we indicate how to define a spectral sequence for a pair
{(Y,A) , where AC H*(Y,Zz) is any submodule closed under the action of

#(2) . The resulting modified Adams spectral sequence has E°-term caleu-

. * . .
lable in terms of Exgy(z)(A’Zz) y Eng(z)(H (Y)/A, 22) , and a differential

2,*(

3 ¢ Extt N (EM(Y)/A, Z,) > Ext o N(4,2,) .

We denote it Ei*(Y,A) .
¥
In H (FL(X), Z2) , there is a natural.#(2)-submodule A , and in

§8 we construct a map

L(2)

2
s

’ * >
: Ext® (H(X), 25) > By 4 o(Tp(X), &),

which provides the desired generalization of Mahowald's map E2 (A is ©

if and only if X is a sphere at 2 , in which case Ei*(FL(X), 0) =

¥.n-1

¥, *
Ext (2) (" (PL(X), Zz) . In fact, we are able to prove



Theorem £.5. Suppose L > 3m , with X {m-1)-connected., Then there isa

map

* ¥ *

I Ei’j(rL(x), A) - El+1,j+l

(x),

and, in the metastable range, the sequence

2
s,t % 2 *
*x% e > ExET L oy(H(X), Z,) —>E s, 11 CH (ry (X)), &)
2 f2
Je 2 B s+1,14 *
—->Es+l’t(x)—*Ex“c (o) (X), 2,) > ...

is long exact.

This result makes effective calculations feasible in some cases. To
expedite them, we conclude Part 2 with a discussion (§9) of methods for cal-
culating Exti’i&(z)(ﬂ*(FL(X)/A, 22) . This is highly non-trivial in general,
since H*(FL(X)/A) is a very complex.«Z(2 )-module; it replaces each Z,-coho~
mology class of X by the cohomology of a truncated projective space. By
an appropriate filtration, we obtain a spectral sequence converging to

*
Exéﬁ(z)(ﬁ (TL(X}/A), 22) , whose Er-term contains s copy of
%

(2

A second spectral sequence is also developed, which makes calculations feas-

* *
Ext }(H (RPn), 22) for each n-dimensional cohomology class in H (X,Zz) .

%
ible in case EXEE(Z}(H {(x), 22) is sufficiently well-known.

In Part 3, we apply the results of Parts 1 and 2, and give some exam-
ples to show that the theorems there cannot be improved too much.

In 8810 and 11, we calculate some of the stable homotopy of the
Eilenberg-Maclane spaces K(Z,n) , K(Zz,n) , and K(Q/Z, n) . The results
for K(Q/Z, n) are calculated only so far as we need them in applications

([411)



5 (K(Q/Z, n)) = 0,

s Q/2Z , n-odd
Moy (K(@/Z5 1))

0 , n-even

However, in §11, we give the first 10 stable groups for X(Z,8k+l) as an
example (Theorem 11.18), and do most of the necessary work to obtain these
groups for other values of n as well. In particular, 11,18 corrects some
errors in [147.

§12 applies the metastable sequence 8.5%% to the case X = sty en+l ,

2
7 U ® through

and, as an example, we calculate the homotopy groups of 3 5

the entire metastable range.

Finally, in 813, we give explicit calculations for some truncated
projective spaces., In particular, our final calculation is of the unstable
resolution for Péz to slightly beyond the metastable range, where we see
that wild filtration changes make any reasonable extension of 8.5%% impossible.
The remaining calculations in §13 provide the homotopy theoretic results

needed in [42].

These results were originally obtained in 1969 and 1970. Since then,
there has been further work by several authors on some of the questions con-
sidered here. B. Drachman has studied the desuspension problem from another
point of view, and has obtained geometric criteris for deciding when a space
is a suspension. Unfortunately, it seems difficult to iterate his
techniques.

Also, an area which has received only partial attention but clearly

merits more is the extension of the current results to generalized homology
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theories, such as unstable MU-theory, which seems ready for serious
development in view of W. Steven Wilson's thesis (M.I.T., 1972).

In this connection, it would be interesting to explain Donald Davis’
thesis (Stanford, 1971) on the geometric dimensions of bundles over RP"
in terms of obstructions to desuspension of the Thom complexes, since that
would probably give insight into the nature of the map ¢ (5.1) in b, or

bU theory.



PART I

§0. Iterated loop spaces

We begin by describing the category %n of n-fold loop spaces. We
can look at X as the space of base point-preserving maps Sl +> Qn_lx
or the base point-preserving maps s° > % ... ,or S >X . With

respect to the various ways of looking at P , there are evaluation maps
adj(1) : 8 A @Ax) > KX,

which fit together to give

- -2 ..n-1
n-1 n n (1)

adji(l) I %adj]
S

z
n-1 A Qn—l(x)__________;‘sn-Z N Qn'Z(X)

2 A gFHX)
0.1

> ... > X
and the composite
%2 L ™ aai(1) = P haas1)

The Moore loop space Q(M)(X} is the set of maps £ : [O,kf] + X for
variable k 2 O , which satisfy f(0) = f(k) = * . It has an associative

product with unit f * g : {0, kf + kg] + X , defined by setting

£(t) , t
£xg(t) =
£lt-kp) , ¢

IA

ke

v

ko .

The unit of QM(X) is % : [0] » ¥ . Also, there is a natural homotopy
equivalence between Q(X) and QM(X) {as, for example, in J. Adams and

P. Hilton, "On the chain algebra of a loop space,”" Comment. Math. Helv. 30
(1956), 305~330), so in the remainder of this paper, we identify them and
leave it to the reader to make the necessary modifications to go from S'Zn(X)

to QnM(X) or vice versa.
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If Z and W are n-fold loop spaces, then amap f : Z > W is
"admissible” if and only if f = G™g) for some g : GRzY + W) .
Lemma 0.2. Let f : X » Q7Y be a map. Then there is an admigsible map

g(f) @ "™ > oy

and a natural inclusion

x>t

so g(f)j=f¢f.

n .
Proof. From the composite 2 §—£>EnQnY ééé&lg)Y , we can loop down n-times,

obtaining the map g{(f) . Now j : X ~» 5™ is defined by j(x)(%) =

(%,x) e S" A X, and 0.2 follows.
Remark 0.3, 7 (Y)Zw ("), n>k. Also, if Y= IZ, then the map
jiz -

gives j*:ns(z) - nk+S(ZkZ) , and this is the Freudenthal suspension homo-
morphism. If Z is an {n-1)-connected CW-complex, then the Freudenthal sus-
pension theorem implies j : Z » QkaZ is a homotopy equivalence in dimen-

sions less than 2n-1 , since Milnor has shown thai QkEkZ also has the

homotopy type of a CW-complex ([25]1).

Remark O.4. The universal example for the situation in 0.2 is g(id) :

IR(MY) » @Y . Indeed, it has recently been shown by J. P, May that the

exigtence of an H-map 2tz -z , with =-j = id , is essentially equivalent
n

to the associative H-space Z being an n-fold loop space.
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These observations signal the basic role of the spaces "t in
%% . We study the map Jj in more detail in §1 and T = g(1) in §4. Now

our object is an explicit description of the homotopy type of the space
2% .

A model for NIX was constfucted by I. M. James (in "Reduced product
spaces," Ann. of Math, 62 (1955), 170-197), It is easily described. Set

Jl(X) = U:=l /R , where R is the relation

0.5 (xl...x.

* ~
0 % xi+2...xn) (Xl"‘xi’ xi+2...xn) .

It has an agsociative product (juxtaposition), a unit ¥ , an obvious topol-
ogy, and James proved that Jl(X) -QIX for X a CW-complex. The equiva-
lence of Jl(X) with QIZX is obtained by mapping Jl(X) + QLX as the

(unique ) multiplicative extension of § : X = QM(Z Xy .

Models for FI™X , n >1, were constructed in [18]. Several
attempts to rework the construction occurred thereafter, culminating with

the constructlion given by J. P. May (in The Geometry of Iterated Loop Spaces,

Lecture Notes in Mathematics 271, Springer-Verlag, 1972), In 1.14, we describe
the basic germ of his models, but in the remainder of this section, we largely
follow LI81.

Let us begin by looking at Jl(Z ¥y = QI%Y . Its component building

blocks, the (€ Y)n can be written after shuffling the variables in the form
oy D

3

where we make the identifications
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(tl...ei...tn,yl...yn) ~ (tl...tn,si..., i =% .. )

~ (tl...ti...tn, NARRRS 2P ...yn) s n>1,
and (e,¥;)~ (t;#) ~ % for n=1. Here € =0 or 1.
Let P{n) be the set of variable length paths starting at {0,0,...,0)
in 1" and ending at (1,...,1) . Crossing with ™, we map P(n) x N
into paths on I x YO, starting at (0,0,...,0) x Y? and ending at

(1,...,1) x ¥*, by defining (Fayq .y )t = (£08), y.09,) -

In view of our identification 0.6, we see that (0,...,0) x ™~
(1,...,1) x¥" ~ % in J(EY) . Thus, in J;(I¥), each point of

P(n) x ¥R gives rise to a loop; i.e., there is a well-defined and continu~

ous map

¢t B(n) x Y0 > (2 Y) = Py .

As a first approximation of QZZZY , we could take the free associative

H-space generated by the disjoint union of the P(n) x bas , and extend the
¢n to a multiplicative map in the evident way. However, to do this would

be to overlook at least one vital bit of additional structure in the qbn .

Definition 0.7. There is a pairing

u, 3 P{1) x P(J) > P(i+]),
1,4
defined by

(£(%), 0,...0) , t < |f]
ug Af, el ={
rd (1,...,1, glt=|£])), t=2]f],

where [f| is the length of the path f .
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Clearly, the uy j are associative in the sense that
3

(u, , x1) =

RPN Uy, o 8y

Lemma 0.8, The map
¢, %9
(B(n) x ¥%) x (B(m) x Y")~=D>0(J (2 ¥)) x I (£ 1))
u
+> Q(Jl(Z Y))
factors as the composite

(P(n) x Y®) x (P(m) x Y") » P(n) x P(m) x (Y* x ¥™)
u, *x1 sm s
~Hal > p(peg) x YO m—n—%(Jl(z 0.

(The proof is obvious. )

Thus a better model for QJl(Z Y} would be obtained from the union

of the P(n) x Y® by meking a further identification

0.9 (pyy)(pt,y') ~ (un,m(p,p’), (v,y')) .

The resulting model, although better, is still toc big. Recall that,
in 0.6, if vy =% in Y%, we collapse I° xY" on ™1« ¥l by for-

getting the ith coordinates.

n n-1

Lemma 0.10. The map Xi : I7 -+ 1 , forgetting the ith coordinate,

induces a map

P(Xi) : P{n) » P(n-1) ,
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v, : P(n) = Y o o((z )

is the obvious map, jn: (£ Y > Jl(): Y) the quotient map, then

and the diagram

¥
Pln) x ¥* By ar(z v

1

P(X.)xx.l lﬂk.
i/ v
P(n-1) x Y* Bhor(p vyhh
commutes.
Thus we can add another relation to our construction:
0.11 (p,y) ~ (P(r(p)s A(y)) if
Y=gV * Vyaqeo¥y) -

Finally, there is one more type of relation which must be taken into

account., It is well-known that a second loop space has a homotopy commuta-

tive multiplication. We add homotopy commutativity to our model as follows.

Definition 0.12. The symmetric group .?;1 acts on P(n) by a(p)(%) =

).

st

5
plat) , where a(tl,,..,tn) = (4 EUNRE 1
(1) o (n)

o

Lemma 0.13. P(n) is equivariantly contractible with respect to the

%—action (i.e., the homotopy of contraction can be chosen so that Ht(otp) =

aHt(p) , all p e P(n)) .
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Proof. We start by defining a contraciion of ™ by 2’t(tl"‘tn) =

(ttl,...,ttn) , and corresponding to &

L the contraction H‘t is given by

LE(t/t) , T s t|f]

H(£)(1) =
(t+1-t|f],...,t+1-t|f]) otherwise,
(Tgesst)
|
|
i
i
"\-«
: T, (1)
|
T A R
lt(In)/

(0,0 ...,0)

Similarly, we have

Lemma 0.14. The following diagram commutes

$_x¢
(P(n) x ¥%) x (P(m) x Y") BB a(3;5¥) x (J;5¥)

(un}le Y shuff )L T
P(ntm) x Y50 3, 5Y) x (3, TY)
s, x1 u
n,m i ¢ N/
Platm) x Y1 —— 5 0 (T Y)
where Som € y;mn 1s the shuffle of the first n with the last m-goor-
]

dinates, and T 1is the interchange.
In particular, this implies the additional identification

0.15 (sn’m(un,m(p,p‘)), (y,¥y")) ~ (um’n(p’,p), v y) .
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But (um n(p',p), ¥'s ¥) is equivalent by 0.9 to the product (p',¥' Np,¥)
b
and since P(n) is connected, (sn’m(un’m(p,p' ,y,y') ishomotopic to

oy (22" (3,90 ~ {2y ) (073)

Theorem 0.16. Let K.(Y)=U P(n) x ¥ modulo the relations 0.9, 0.11,
—— == 2 n ———

and 0.15. Then K2(Y) is an associative H-space with unit, and the natural

map KZ(Y> > QJl(Z ¥) is a homotopy equivalence if Y is a connected

CW~complex.

Proof. Consider the type 0.9 and 0.15 relations on P(n) x ¥© . They
imply that the only type of (P(n))-relations occur over the points
a(P(r) x P(n-r)) , where o runs over all (r,n-r) shuffles. We call

these the n-2 "faces™ of P(n) . This nomenclature is justified by

Lemma 0.17. let F = Uﬁ_i:l a(P(r) x P(n-r)) . Then
H

0, %#n-1
1) H(P(n),F; 2) = ;
Z, % =n-1

i1) Let a generator D of H .(P(n), F) be given. Then the
—_— n el fnel = n-l —s e n

evaluation map
e : (1,3) x (P(n),F) » (I, 8I")
has degree 1 ; i.e.,

e*(el ® pn-l) = te_,

where e, 1s the orientation class of (r,3) .

(The proof is by induction. )
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In J. F. Adams' paper, "On the cobar construction,” Proc. Nat. Acad.
Sei. U.S.A, 42 {1956), 409-412, it is shown that there is a spectral segquence
defined for any space X , and converging to H*(QX, ZP) . Its Ez-term has
the form CotorH*(X’z )(ZP,ZP) . A similar spectral sequence can be defined
for K2(Y) , and the natural map KQ(Y) - Q(Jl(z Y)) induces a map of spec-
tral sequences. From 0.17, it is then an easy calculation to check that, at
the Ez-level, the spectral sequence map is actually an isomorphism. Then if
Y is a finite complex, the comparison theorem shows the natural map induces
isomorphisms in homology for all coefficients Zp , and it is known that
9222Y has the homotopy type of a locally finite CW-complex. Hence by the
Whitehead theorem (for connected H-spaces), the natural map is a homotopy
equivalence. Now, since Y 1s the limit of its finite subcomplexes, the

result follows for general Y .

Notice the role of the "complex" of faces o(P(r) x P(k-r)),
a{(BP(s) x P(r-s)) x P(n-r)) , ete., in the proof of 0.16. Through 0.17,
they are the essential things in making the proof work. The complex for
P(2) is simply that of an interval; that for P(3) has the form of a

hexagon

(i G

(130 (Pw=P0)

)
(PO xPe)
(29 Funiy (

Parx &
Roxre)
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As these examples indicate, the complexes above are obtained from
cellularly decomposing the boundary of a disc ot , and we may simply
replace P(n) by p-l , and make the type 0.9 and 0.15 identifications
over the corresponding faces to give a much smaller model for Q222X .

The explicit construction follows. Recall first that the faces of

the convex hull of a finite point set & 1in Buclidean space are convex

hulls of certain subgets of S .

Definition 0.18. Let C(n) be the convex hull of the translates of

Rntl

{(1,2,3,...,n%1) € under the action 22.19;+1 .

C{n) 1is easily seen 1o be the hexagon for n = 2 , the figure

whose faces consist of eight hexagons and six squares C(1) x ¢(1) for
n =3, and in general C(n) has faces of the form a(C(r) x C{n-r-1)) ,
r=0, ... ,n-1, as o runs over all {r+l, n-r) shuffles. Indeed,
let S8' C S be the orbit of (1,2,...,n+l) under the action of 52+1 %
9;_r . Then the convex hull of S' is naturally isomorphic to C{r) x
¢(n-r-1) . Similarly, oC(r) x C(n-r-1) is the convex hull of aS') .
(See Lemma 4.2, p. 391 of [18] for details.) Let ¥ : c(r) x Cln-p-1) »

C(n) be the identification above.
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Note that C(n) is invariant under the action of '7;1+1 which takes
faces to faces. Also, guided by the need for degeneraclies in 0.10, 0.11,

we can define degeneracies

D. : ¢(n)>C(n-1), i=1, ..., n+tl
(as in Lemma 4.5, p. 392 of [181). Specifically, we have

Lemma 0.19 ([181). There are maps

Dy : ¢{n) > Cc(n-1}, 1 sk <sn+l,

i) D:LIo is the projection on the second factor;

Ik'l(Dj xid), J <k

11) D.1¥ = .
J I” (id x D, ,) otherwise;
j-i/ SRDSTEISE
ii1) d.(B)D =D.B, Be H
TN net

iv) DiDj = Dj-lDi for § 21,

(Here dj : e?nﬂ +Sﬂn is the correspondence which makes the diagram
Rn+l B8 5 g+l
X A
-1,.
B () a.(B) J
P —L 5"
commute. )

Indeed, (i)-(iii) specify Dj on faces, and the map Dj is then

defined by extending linearly along rays to the respective centers. The

reader is advised to cheek that (i)-{iv) are forced on us by 0.10.
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As the remarks preceding 0.18 indicate, the C{n-1) serve as

replacements for the P(n) , and we have
2.2 © +1
Corollary 0.20. QITX = | on) x X"
n=0

modulo the relations

. i+1 i
i) (c,xl...xi*,x Y~ (D (C)’Xl"'xi+l"'xn+l) ;

. e X
i+2 n+l

i1) if ¢ e aI'(C(i) x C(n-i-1)) for a an (i+l,n-1) shuffle, then

-1
(e, xl...xn+l) ~ (o (e}, xa_l( s aens Y,

1) xa‘l(n+1)

if X 1is a connected CW-complex with * a vertex. The multiplica-

tion in J,(X) = U c(n) x LR is given as

{e, xl...xn+l}'{c’, Xn+l"'xn+m+2} = {1™ec,e'), xl...xn+m+2} ,

and with this product, J2(x) is H-equivalent to QZZZX .

This provides us with a minimal geometric model for 92£2x . Basically,
the model makes it clear that the fundamental data which go into the state-
ment that a space is a 2-fold loop space are an associative unitary multipli-
cation, together with a series of higher homotopies of commutation.

We now indicate how to extend this construction to obtain models for
the higher loop spaces 2ty , n>2 .

Consider, for example, the case n = 3 . We have already approxi-
mated Q°I%(Z X) as I(2 %) = Ucln) x (2 R = Ugn) x T < P m -

n+l

U T x C(n) x Xn+1/R", Once again we can use the P(n+l) 1o construct

. n+1l .s
loops by taking elements of P(n+l) x C{n) x X and defining



23

o(preyxq e ex g b = {P(E)e,xp e 0]

By 0.20(i), these paths become loops. Moreover, the obvious analogues of
0.8, 0.10, 0.14 continue to hold. Thus we obtain a model for 9323)( as

follows.

Definition 0.21. Set Jz(X) =U (c(n) xC(n) x Xn+1) modulo the relations

i) (c,c’,xl...* ""xn+1) (Dl(c),Dl(c‘),xl...x.,...xn+l) 5

i i

1) if o' e oaT¥(0(k) x C(n-k-1)) , then

(ere’yxyeeex 1)~ (aﬁlc,a_lc',o(xl...xml)) ;

n+1

111) if o e al(C(k) x C(n-k-1)) , then

-1 [+3
(c,c‘,xl...,xn+l) ~{a "e,D (e’ ):O(XI---XH+1)> .

o _
Here DY{c') = E(Dk+2

)n+l

>n-1«: x (Dl )kﬂa”l]( c') is the obvious degeneracy used

for paths on (£ X , which are at * on the first k+1 coordinates

half the time, and ¥ on the last n-k coordinates the remainder 92 the

time.

To complete the definition, we remark that, after using 0.2(i)-(iii),

((cl,c2), (cl',cg’)xl... n+lxn+2"‘xn+m+2) , that is, to a product, then we
again apply (i)~(iii) separately to {cl,cl‘xl...xml) s (CZCZ‘XR*Z'“XD*'KI*Z}

and take the product of the results.

It is now possible to prove an analogue of 0.16 for this model, and

we have
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Theorem 0.22. Ir X ii a connected CW-complex, then JB(X) has the homotopy

type of QBEBX &s an associative H-space.

It is now clear how to generalize the construction. We obtain

Definition 0.23. Set Jm(X) = Ug=n (C(n))m'_l * X oauto the relations

. i i ~ i
i) (cl...cm_l,x,...*i,...xn+l) ~ (D (cl),...,D (cm_l),x,...xi... n+l) 3

11) if oy e al(0(k) x C(n-k-1)) , then

-lC 1

(cl"'cm-l’xl"'xn+l) ~ (g l,...,a_ cj-l’ Da(cj)...Da(cm_l), (X, x5 1)) ;

n+l

iii) +the same convention on peoints equivalent to products as given in 0.21.
Once again we can prove

Theorem 0.24 (Theorem 5.2 of [18]1, p. 395). Let X be a connected CW-com-

plex. Then there 23.25 H-map

. k. k
B 500 - 295

which is a homotopy equivalence.

Remark 0.25. There is a filtration on the points of Jk(X) , given by say-
ing y has filtration m if it is in the equivalence class of a point in
(C(m—l)k_l x X*) under the relations of 0.23. In particular, if * is a
vertex of X, and X 1is (&-1)-connected, then the set of points having fil-
tration <s , Jk(X)(S) , is a subcomplex of Jk(X) and contains all the
cells of Jk(X) of dimension < {s+1)% (provided X has no cells of
dimension < % except * , which we can assume). Thus if we wish to con-

sider problems dealing with dimensions =< (s+1)2-2 , we can replace JK(X)

by Jk(x)(s) .
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The reader is advised to work out the explieit structure of Jk(X)(2)

and verify the description given in the proof of 1.11.
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§1. The Inclusion X - q X

Recall from 50 that
the inclusion J: X< QnEnX is defined by sending x € X to the map

f: (Sn,*) 5 5% , defined as the composition s o (sh,x) o sPAX =5 .

It is clearly natural and continuous, and in homotopy induces the map J* :
nj(X) —ann+j(2nx) , which is just the n-fold iterate of the Freudenthal sus-
pension homomorphism. In particular, if X is an m-l-connected locally
finite CW complex, then J 1is 2m-2-connected.

We convert J 1into a fibering in the usual way. Thus we first replace
Qrx by the mapping cylinder M(J) , and J by the inclusion X< M(J)
Then Fn , the fiber of J , is defined to be the space of paths of unit
length EXM(J)* starting in X and ending at * , the base point in
Q"Z™(X) . By the result of Milnor ([25]), if X is a CW complex, then F
is the homotopy type of one also.

In [18], it was

shown that H*(QnZH(X), Zp) is an explicit functor of H*(X,Zp) alone,

and the inclusion J, is injective in homology. Thus, using the Serre spec-
tral sequence of the fibering, it is easily argued that H*(Fn) depends only

on H*(X) and n in dimensions less than 2m-1 if X is m-l-connected.

Here is an alternate description of Fn . Let G, H be associative
H-spaces with units, and f : G » H an inclusion which is also a homomorphism.

£ induces an inclusion of classifying spaces ([19], [32])

Bf : BG—>BH,

and we have
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Lemma 1.1 Let EH-g BH be the universal guasi-fibering ([7], [19], [32]).

_l(B

Then the fiber of Bf is EH restricted to B i.e., p

G 3 o)

The proof is direct.

In particular, if G = @(X) and H = o(M(j)) , this provides an
explicit and fairly manageable description of Fn . If X =2Z2Y, the clas-
sifying space constructions given above can be considerably improved. Indeed,

n+l nt+l

using the comstructims introduced in [18], the inclusion QZY < "Z° Y

is H-equivalent to the inclusion

P Jl(Y)=—>J (Y) .

n+l

In §2 of [18], an alternate classifying space construction is given:

Let X be a (freel) associative H-space with unit * and homomorphism h :
+ 1

(

X>R so h 0) = * ; then EX is defined as X X R" X X mod the relations

(x,t,52) ~ (xy,t-h(y),2) ,

(%,0,¥) ~ (x,8,%) .

. . e x
BX is then defined as XX EX .

Now, if there is a commutative diagram

187
(1.2) }\i’rh'

with g a homomorphiem, then there is an induced map Bg : BX —aBZ . More-

over, if g is an inclusion, then Bg is an inclusion and Z Xy EX is the

= This is the geometric analogue of unique factorization in algebra.
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restriction of EZ to BX . Thus the fiber in the map Bg is Z XX EX .
In particular, 395-39%6 of [18] shows that (1.2) is true for X = Jl(Y) and

Y= %) , using the hl , h constructed there. Passing to fiberings,

n+l( n+l

we have proved
Lemma 1.3 The fiber Fn ip the natural map ZY - anrﬁly is

J ¥) X%

w1 %5 (0) B (0

This space admits a simple description as a CW complex.

Corollary 1.4 C#(Fn) = c#(Jn+l(Y)) ® c#(;;z) and d(a @ g(b)) =

(-1l e g1+ (-1)1B 1 g o(3b) + 20 @ g(b)

There is an algebraic functor ([18], §7) which defines for any chain
complex A an associated chain complex F s (A) . It gives C#(Jn(Y)) when

applied to C#(Y) , and we have ([lB], Theorem 7.2)

Theorem 1.5 Let A , A" be chain complexes over Zp (for p a prime), and

suppose f : A — A' 1is an augmentation-preserving chain map inducing isomor-

phisms in homology. Then s (£) : Fos™{a) 5 Fs™A') also induces isomor-

in homology.

id i+ i+] . .
There are inclusions 7, ¢ Fe(A) o F Js J(A) which, applied to
I

C#(Y) , are induced from the inclusion Ji(Y)‘—)Ji+j(Y) , and we have

Corollary 1.6 Let X =ZXZY for Y a connected CW complex. Then H*(Fn,Zp)
depends only on H*(X,Zp) . {Precisely, there are functors 3p(n) for each
p from the category of graded Abelian groups to graded Abelian groups, and

3 (0)(8,(50) = B,(F,) )
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Proof There is an injection ¥ : H*(Y,Zp) ->C#(Y) ®Zp inducing iscmorphisms
in homology. Hence we can form the algebraic object corresponding to the com-
plex in 1.3, G = Fn+lsn+l(ﬁ*(‘1,zp) ®£(H*(Y,Zp}} with boundary as in 1.3.

y extends to a chainmap 7 : G —aC#(Jn+l(Y)) €>C#(£X) . Now, filtering both
sides by the dimension in _EKX) , We obtain an algebraic Leray-Serre spectral

sequence with 7 = H*(Jn+l(Y)) ® #,{(ZY) in both cases. Moreover, Ee(?) is
evidently an isomorphism of E2 terms. 1.6 now follows from the comparison

theorem.

Remark 1.7 Suppose we consider the inclusion Fn —»QLZLFR , and study its

fiber Fn . If X = 22Y , then the model 1.5 for Fn admits a natural
>

L
description in terms of spaces C? X (ZY)l where Ci is a cell,and identi-
fications are made over Bcg or when a coordinate in (XY)i is * . There

is a natural way to construct loops in these sets; namely, by using the sus-

pension coordinates in (ZY)l . Thus (ZY)i is an identification space of

I1 X Yl , and one constructs paths in Ii starting at (0-.-0) and ending
at (1,...,1) . A model for a sufficient number of paths is the Zilchgon

or in 0.18 5
c(i-1) , introduced in §4 of [18])" Replacing I~ by C(i-1) in each cell above,

performing the appropriate identifications, and forming & universal construction, we

obtain natural, minimal, and canonical models for QFn y eee QL+1ZLFH PR
These models also satisfy the property that the inclusions QLZL_lF

LF
n

>
n

e
QL L

= .. are homomorphisms. Now we may apply 1.5 - 1.6 to show that

H*(Fn,L’Zp) depends only on R*(Y,Zp} . Of course, if X = 25Y , we can

iterate once more. 1In general, vwe have

Theorem 1.8 Define F.o.im (X} inductively as the fiber in the map
1 k

F (X) an anF

R " ] T T |

(x) .
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Then for X = DY , it follows that H*{Fnl“.nk,zp) depends only on

(X, zp) .

We will have no further need of 1.7 and 1.8 except incidentally in the
sequel; it is for this reason that the details are so skimpily sketched.
We now turn to the more limited observations which we can make about

Fi when X 1s not a suspension.

Lemma 1.9 (Fiber Lemma) Let X , ¥ be n-l-connected and locally finite CW

complexes (n > 2) . Buppose f : XY satisfies £, : H X,Zp)-a Ht(Y’Zp)

is an isomorphism for t < 2n and a2 monomorphism for + < 3n . Convert f

5

into a fibering with fiber F . Then through dimensions 3n-2 , F is mod p

weakly homotopy equivalent to Q(Y/X) .

Proof F 1s 2-connected by our hypothesis. Thus, letting € be the class
of finite groups having order prime to p , it is enough to show that there
isamep g : F-0(Y/X) so g, induces a (mod C)-isomorphism H(F) -

H(0{¥/X)) in dimensions less than 3n~l . But our first description gave

F as F = EXY* , and g 1is defined as the evident projection
Y Y/x _
By o BT =o(Y/X)

Note that F and 0(Y/X) are both 2n-2-connected. Thus the Serre spectral

sequences for the fiberings

FaX-Y,

YIK) - P - Y/X

are both exact sequences in dimensions < 3n~2 . Moreover, both sequences

split, and the fact that gy 1s an isomorphism in this range follows.
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Remark 1.10 1.9 can obviously be strengthened to give an actual homotopy
equivalence in this range if f, satisfies the hypothesis of 1.9 with the

integers as coefficients.
In particular, we can now prove

Theorem 1.11 Let X be a locally finite n-l-connected CW complex (n > 1) .

Then through dimension 3n-2 , the fiber Fn in the inclusion

X< 0°5N(x)

; n-1 n-1 . .
is the space (8 Yn XA X) . (Here 8 Kn X A X is given as a quo-
tient space of g1 x (X A X) wvhere (x,y,z) is identified with (-x,v,z) ,

and (x,*) is set equal to * .)

or 0.2h )
Proof From {181, pp. 59&-59’57 v Koov 0PEX ¥ X U (I x X x X)/R  through
dimension 3n-1 where R is a set of relations defined as follows:
- € €
1) (tl..'S...tn_l,x,y} (T5(t))...T (tj__l), 0...0)7(x,y)) where
.th s
J position
T(t) = 1-t and T{x,y) = (y,x) if € =0 or 1.
2) (tl...tn_l,*,y) ~ (tl...tn_l,y,*) ~ vy for * , the base point of X .
Thus, through dimension n-2 , Q' EYX)/x * (In-l X X A X)/R* where R!

consists of relations of type (1), and (t ...tn_l,*) ~ % , TNow, 1.11 fol-

1

lows from

n-1
) KTXAX.

e

Lemma 1.12 (1°°1 x x A X)/R'

Proof Mmbed I%e 1% as the set of points (L £

an embedding (I° X X AX)/R' o (I x x A X)/R . (9 x X A X)/R' can

...tj) . This induces

be given as the equivalence classes of points of the form (tl"'tjﬂ,’x’y)
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with tl 5_%', with equivalence relatiocns R' in (IJ X X A X) together

. J
with (O,tg...tj+l,x,y) ~ (0,%,y) , (tl,tz,...,tj+l,*) =% . But 8 X

X A X has an identical description in terms of the equitorial embedding

g x xaxosdtt My X AX . 1.11 follows by induction.

T
Theorem 1.13 The equitorial inclusion Sn_zta Sn’l induces an inclusion
n-1 n-1 .
Tpt g KT XAX-S KT X A X, and the diagram
kn
Fn—l Fn
4
-2 -
R N S e CHEI 99

homotopy commites. Here kn is the map of fibers induced from the inclu-

. Qn-lzml

: n
sien h__, : O

Proof This follows from the proof of 1.11 when we note that the inclusion

1

(FUT2 xxx X)/Res (X U TP L X X X X)/R

defined on points by
(tl' . ':tn_E:X:Y) g (tlx .. -,tn_e,O,X,y)
induces a map H-homotopic to the map h {eg. see [18], §5).

Remark 1.14% The "little cubes” category of Boardman and Voit ([ 37]) provides
an easy way of including the space X U (SL_l X X X X)/R in olslx , where

R is the relation

(XJY)*) ~ (x,*y) ~ ¥y .

Specifically, the space CZ(L) is defined as the set of all disjoint
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enbeddings

L L

which are linear and take faces into sets parallel to the corresponding

faces in 1(5) .

Z, acts {freely!) on 02(L) by interchanging I, and I,
. . L IL IL
An arbitrary point x of §Y can be regarded as a map fX( ,0T7)
(Y,*) . Given two maps £ fy and a point 2z 1in CE(L) , there is a map

(i%8)44 (Y,*) defined as

This provides a pairing 02(1,) Kep QL(Y) x o(Y) - QL(Y) .

-1 .
Lemma 1L.1% (P. May) CE(L) ig equivariantly homotopic to SL with the

antipodal action.

{Indeed, the equivariant inclusion gt —>CE(L) takes x to the

embedding of a cube of length %- with center at the point x , and the
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second with center at -x . It is now an easy geometric argument to prove

1.1k4.)

Now, using the pairing above in QLZLX and restricting to X , the

desired inclusion of X U (SL_l X, X X X) in QLZLX is readily obtained.

T

§2. The Map Fn(X) - OF 2X)

e

Lemma 2.1 ZJl(X) =X VEIAXN)VIEAXAX) V ...
Proof This follows from the well-known ({%8]) splittings

&f:HXA.“AX)WMZXA.“AXN.“v@)ZXA”.AXv.“,
U N g

—_—— e st

n n-1' n-j
writing ZJl(X) as an identification space of U (X)
n
Corollary 2.2 There are H-maps H_ : J,(X) —;Jl(X A ... AX) so
e by 1 ) —
r times

(® B ), HJX)) > H(® J;%(X A ... A X)) is injective.

Hr is called the rth Hopf~invariant map of X . Clearly, if an ele-
ment O in 7w, (QEX) comes from =, (X) , then Hr*(a) =0 forall r .
Presumably there is a similar splitting for Zan(X) . Thus it seems

reasonable, in particular, to conjecture a splitting

2.1 2
Pr,(x) = £x v £ Xy X AXV ZCR) %K, (XAXAX) Y oee
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Recent results of D. S. Kahn have shown that these splittings exist for
QX) = lim QnZnX ; however, at present the splitting theorem for the Jn

>0
has not been proved.

Thus, we adopt an alternate "Hopf invariant” for the purposes of
this section. The Hopf invariant of a class Q ¢ nm(EX) is defined by
taking G_l(a) € nm_l(QZX) = nm_l(Jl(X)) , and projecting onto ﬂm_l(J(X)/X)
We denote its image by HE(Q) , and, in the metastable range, the results of
§1 show that H(Q) = O 1is both necessary and sufficient in order that o
be in the image of ¢

In the metastable range, H(Q) = Hg(a) defined above.
Now we consider the problem of when an element B € nm(ZLX) desus-
pends L-1 +times but not L times.

Consider the diagram

FL(X) N X - QLZL(X)
lrt T 'id
+
QtFL_ t(ztx) - ntztx - QLZLX .

Clearly, B does not desuspend L times if and only if OB # 0 in
n*(FL(X)) . On the other hand, it desuspends L-t times if and only if

Tt*(aﬁ) = 0 . Thus the key step (outside of analyzing O , which we defer

for the moment) is to study the map LI We can reduce this to the study
of T since T, can clearly be decomposed as
t-1
T QT o ()
1 i 2 2 1 t t
FL(X) - QFL_l(ZX) —= q FL_2(Z X) 5 oo ——> 0 FL_t(z (x)) .

We have
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Theorem 2.2 Let f : E[sn~2 X (X AX)] - gh? X (=X A ZX) Dbe given on

T
points by

£]t, {x,5,2)) = (x (t,¥), {t,2)} .
Then the diesgram

ek %y (X A X) adj(f), gn-2 Xy (ZX A EX)

"1
Fn( X — qF

n-l(z'X}

homotopy commutes in the metastable range.

n-lZn-l (

Proof The map Q(ZX) — aln ’X)] is given by the inclusion Jl(X) y

Jn(X} ({181). This inclusion satisfies the conditions of 1.9, so the diagram
X - Jn(X)
J1(X) - T (%)

induces the inclusion of cofibers in dimensions less than 3n-l1 ,

Sl x A x - (857 i

T X/\X)/X/\X.

T

In the proof of Theorem 5 of [18], a map (adjoint to the identity) ZJn(X) -
Jn_l(ZX) is constructed. Precisely, there isamap ¢ : IX I I XTI

defined by
(2t,0), t < 3-1
o(t,7) =<(1-21, 2(t+1-})), &-1 <t < 1-271

(t,t), 1-27 < 2%
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for 7<%, and ¢(t, $+1) = T[p(t,7)] . This then defines a map
r: (X U TP x 2)/R] o (2x U TR X X x ZX)/R

. <o 2
by r(t,tl,...,tn_l,x,y) = {tQ""’tn*l(¢(t’tl)x’y) (identifying I X X2
with XX %X ZX) . In particular, r(t,el,tz,...,tn,x,y) - ZX . Thus, fac-

toring X to a point, the induced map factors through

2T g (XA X)X A XD

Finally, note that, for t, = 3

3
Cp(t’ %’ tE’“"tn-l’ X, y) = {tg:"')tn_l(t}x; t:Y)} .
Thus 2.2 follows.

Actually, we have proved more than 2.2

2

"L (X A X)/x AX] is homotopy-equivalent to S o

Corollary 2.3 Z[S T (

ZX A ZX for X a connected CW complex.

Proof Note that, using the cell decomposition of these spaces by the
[IJ X Xr X Xr] , @ constructed above is cellular and induces an isomor-

phism of cellular chain complexes.

§3. The Cchomology of the Fn

We start by examining the cohomology of the Sn_l kT X A X . After

*
that we give the structure of H (Fn(ZX))

There are maps
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J:XAXoS K, XAX,

T

K:SanTXAX—HZnX/\X.

K 1is defined by identifying Sn-1 I><T X A X toa point in Sn X, XAX .

T

*
Proposition 3.1 (a) J is surjective onto the invariant subalgebra under

* * . x| *
(T) of H(XAZX, Zp) for p an odd prime. Moreover, kernel J = im (K ) ,

and the following sequence is exact:

* -nn* ¥* *
(3.2) H(z”x/\x,zp)l+ L ZT>H(ZnXAX,ZP)—>im(K)—>O.

*
(b) Mod (2) J is surjective as in (a), 3.2 is again exact, but there are

~%
additional elements e U (6 ®6) for 1 <i<n where 6 ¢H (X,Zg) , and

*,.0
these completely describe H (I'(X), Zz)

Proof Consider the filtration of I'(X) , X A X© FE(X)L—) o),

obtained by embedding successive spheres equitorially. The resulting quotient
. I
spaces are the Zl[X A X] . Moreover, the dl differential on H (ZlX A X, Zp)
s s x
is exactly [1+(-1)7(z'T)")

Lemma 3.5 A chain complex for st D<T X A X 1is obtained as

——
W&I,C®C

where C 1is any chain complex homotopy equivalent to C#(X) , and W is

any free resolution of Z, (e.g. see [18], [27]). (This is immediate from

the geometry.)
Now, to show E2 = E‘m in our special sequence, note, for example,

de; ® (x ®x) = [(1+(-1)'De,_ 1@x®x
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if x is a cycle in C . But (Tei-l) ®x®x = (-l)dlm * &1 ® (x ® x)
due to the action of T in Sn X X AX . Hence
0, 1# dim (x)(2)
aei @XxQx =
2e, 4 ®x®x, 1=dim x(2)

s P
in W&, C®C . Thus cycles in E‘Z are represented by cyecles in W &I c®e,

and 5.1 follows.

It is also fairly easy to verify that cup products (mod 2) are given

by the formulae

[ei ule®o)lu {e‘j U(t®1)] = ety (81 ®61) ,

(3.4) 0, i>0,

[e* U (6 ®6)] U (a,b) =
(a6,b8) , 1=0 .
*
Here, {a,b) 1is an appropriate choice of generator, so J {(a,b) =a®b +Db®a,
*
and e U6 ®06 is an element for which J (e° UO ®6) =0®6 . Indeed,

3.4 follows directly from:

Lemma 3.5 A : I'(X) » I'(X) x I'(X) admits a chain approximation

—~ D B (D, B L)) o
cp:(w®z C®C)~—-—-———-—>W®W®(ZXZ)(C ®Cc)
] 2" 2
————t pr—r
Ml%(weaz CRO® (W], C®C)
2

%

where A is a (T®T, T) equivariant diagonal map for W, and &, is

any chain approximation to the diagonal in X . (This 1s again immediate

from the geometry; eg. see [27].)
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We turn now to the question of higher Bocksteins. Mod (p) for p
odd, these Bocksteins are determined by 3.1(a); however, their structure

mod 2 1s somewhat more involved.

Proposition 3.6 Suppose Bi(a) =b and:
a) dimension a 1is even; then 6j(a ®a) =0, <i and Bi(a ®a) =
(2,b) , while Sq-(b®1b) =e* Ub® b ;
b) dimension a odd implies that Sql(a ®a) =e Ua®a
0, i>1

+
<a:b>; i=1,

. 1
while Bi+l((a,b) +8e  Ua®a) =b®b ;

¢) for i>0 and dim a even, Sql(egidl'l Ul(a®a)) = L2 Ua®a,
and for dim (a) odd, Sq]'(e21 Ua®a) = 2L Ua®a .

(The proof is a routine exercise using the explicit chain complex for r(x)

in 3.3; e.g., as in [20], [27].)

Finally, it remains to evaluate the action of G(2) and G(p) 1in
*
H(r*(X)) . For p odd, this is immediate from 3.1 (modulo an extension
problem, but that is handled in the next section; it turns out that the exten-

sion is trivial). Here is the result for p =2 .

Theorem 3.7 Assume 6 ¢ H (X, Z, ) . Then:

a) sai[ef U (9 ®8)] = E ( ) (1n1:-23) K25 | (8q90) ® 806

b) sa(e®Ue®e) = ~ (sq6, Sa* Te) + in_z"’j)el 23 U sqd(e) ® sal(e) ,
r<i

c) Sqi(a,b) E (Sq a, Sq T b) R
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Proof The functor @ -»e° U8 ®6 is natural and representable, so it
suffices to establish a , b for ¢« ® ¢+ where ( is the fundamental class
of a K(Zz,n) . Moreover, there is the map A : RP” X ... X RP~ —>K(Zg,n) »
taking ¢ to = ® ... 0 e, which induces a monomorphism in cohomology for
dimensions < 2n . Reference to 3.1 (and the obvious naturality) shows that
r*a) s rYREC X .. x BY) - Fn(K(ZQ,n)) also introduces a monomorphism in
dimensions < kn . Moreover, Fn(k)*[a Q1] = (e}’ ® el) U...u(e®®e™) .
Thus we can apply the Cartan formula (noting by 3.4({b) that Sql(e<$ e) =
Bl(e Qe) = et u (e ®e) + (e2,e) and Sq2(e ®e)=(e® e)2 =& 8>62) .
Now a , b follow directly.

Finally, to prove (c), consider the map
S+ P X K(Zy,m) X K(Z,,2) - I'(K(m) x K(4))

*
defined by S{x,y,z) = {(x{y,2)}{y,2)} . It is easy to show that S (Lm;L£> =0 ,
* 1 i
but 8 [e U (SqILm u SqJL‘@)(2> = e]‘g)(SqILm U SqJL£)2+W is non-zero. Hence

J=r

Sql(Lm,Ll) can only involve terms (Sqle, Sq LE> and perhaps a term in

*
im (K ) .

Finally, we will need the evaluation of the suspension map 11 (2.1)
in cchomology.

Theorem 3.8 (ch)*(a,b> =0 . (cwl)*(ei Uofa) ® o(a)) = et

U(a®a) .
The proof is direct from 2.3.

*
We now consider the structure of H (Fn(ZX)} . By use of the Eilenberg-

Moore spectral sequence {[26], [301, [31]), there is a spectral seguence



42

converging to H*(FB(ZX)) having ¥ term

¥* n+lontl :
Tor T[H*(X,ZP)}(H*(Q =, ZP), Zp) . Here T(A) is the tensor alge

*
bre. on A, and H (Qn+lzn+l(x),

Zp) is a module over T[ﬁ*(X,ZP)] from
the inclusion of H-spaces Jl(X)H Jn+l(X) .

Moreover, the arguments of 1.6 show that E2 =& . Thus, to calcu-
late H*(Fn(EX)) , it suffices to calculate these Tor groups.

Note first that H*(J

nﬂ(x), Zp) =P ®R where P is a polynomial

algebra P(.. .7I(x) «vs), with x running over ﬁ*(X,Zp) and the over

1

some basis for the universal loop homology operations, and R 1is

A(ﬁ*(X,Zp)) , the universal commutative algebra generated by ?{*(X,Zp) . The

action of T on P®R 1is then obtained by projecting T on 1 ®R .
Also, T 1is free; hence a resolution of T has the form 0 -

T® s(ﬁ*(x,zp)) > T - zp . Now, tensoring with P ® R and taking homology,

we see that a basis for Tor%(P ® R, Zp) as a P®R module is given by

the cycles
{a,b) =as(b)—(~1}1a1+1bibs(a) for a £b in ﬁ*(x,zp) .

We have thus calculated

Theorem 3.9 H*(Fn(ZX), ZP) = P, ®L where L is a module over R with

generators {a,b) of degree |a|+|b|+1 , where a , b =zre non-egual basis

elements in H(X,Z ) . L is completely determined as a module by the rela-

*

tions a(b,c)—(—l)|a|. blb(a,c)+(—l)|b| fel+lal ’Ec|c(b,a> =0

We now turn to the cohomology structure of Fn . First note the

fibering o rz™lx g F_ - X - Py

This proof was suggested by J. C. Moore.
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Lemma 3.10 There is amap ¢ : L F - Py /s , S50 the diagram

5 Qn+l Zn+lX adj glj> anmlx

lZ(J) £ﬂ
ZF, — 2 B liyy /ex

homotopy commutes. (x is the evident projection.)

QP (x)
Proof We can write Fn = EZX * (as in the remarks preceding 1.1),

* n.n+l
and take ¢ as the adjoint of the obvious map Fn - E%Q z (X)/Z(X)* =

al ™™ (%) /2(X)] . The inclusion J 5 B ir®l F_ 1is given in this nota-

nen+l nentl
tion by the patural inclusion B2 (0 g 05 (0

, and, by suspend-
ing and adjointing, 3.9 follows.

By tracing through the map ¢ , we find g,.(a,b) = n,(20b) (the
Pontrjagin Product) and P,Q(a,b) = 0 . This gives us some information on

passing to cohomology. However, to obtain more complete information, it is

now necessary to use the action map

n+]_En+l

A
Q (%) XFn-)Fn

and our knowledge of the structure of this latter spece as a module over the
Steenrod algebra G(p) (e.g., see [21], [28]). Also note that 1\, is

given by 3.8.
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§h. The Structure Of Iterated Loop Spaces In The Metastable Range

We start with the following basic result:

Lemmpa 4.1 Let X be the nth loop space of Y . Then the fibering

G - WP 5 x

has a cross-section. Hence, up to weak homotopy eguivalence,

an“x=cn><x.

Indeed,

the fiber in the inclusion

T X QnZnX .

Proof The cross-section of 1 is exactly the inclusion X< QnZnX . Hence,

since 0"£"X 1is an H-space, there is a map
anxﬁnnz“x,

and 7 o W 1is projection on the first factor. Moreover, if wve let Gn be
given explicitly as Qn(H), where H is the fiber in the adjoint map b >

then the diagram

G %X M Py

N e

Po
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commutes up to reparametrization of paths. Now both maps are fiberings with

fiber Gn . Thus, by the five-lemma, W is a weak equivalence.

Corcllary b.2 H*(X,Zp) ol H*(annx,zp)//ﬁ (c.,7 ) 28 Hopf algebras. In per-
*3 k]

ticular, if X is m~l-connected, then H*(X,Zp) determines H*(Gn,Zp) com-

pletely in dimensions < hm-1 , and G, is 2m-l-connected. (Indeed, a Hopf

algebra basis for H*(Gn’zp) may be given with generators QI{K*(X)] -

n*[QI(x)] » m(x) e e n*(xn) - n*(xl o weu © Xn) where x -..x = Tun

over a basis for the loop

over a suitable basis for H*(X,ZP) , and the Q

homology operations.)

Corollary 4.3 Suppose again that X is m-l-connected. Then in dimensions

less than 3m-1 , Gn is homotopic to sht Mp X AX for X, the homotopy

type of & CW complex. Moreover, this equivalence is natural in the same

range {from 1.11 and 4.1).

Corollary 4.4 Under the assumptions of 4.3, Hl(X,ZP) depends only on

¥
H*(Y,Zp) for p o0dd, and on H (Y,ZZ) as an G(2)-module for i < 3m-1 .

Proof Since Gn = QnH , Where H 1is the fiber in the map EnX -Y,

4.5 implies that § = (sl

X XA X) 1in dimensions less than n+3m-1 .
Also, in this range of dimensions, the Serre spectral sequence of this fibra-

tion becomes a long exact sequence

(4.5) St Sty & ety 4 et i) o

*
and, to obtain H (X,ZP) for p a prime, it suffices to evaluate the map

& . For example, for p =2 , to evaluate 5(e U a ® a) , consider the map

Y g15)—> K(ZZ,B) .
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By 4.3, this then induces a map of exact sequences

- Hi(Hﬂ,n) - Hiﬂ'(K(ZQ,ﬁ)) > H2+l(ZnK(ZE,n-Z)) -

| ! l

- Hi(H) - Hi+l(Y) - Hi+l(ZnX) - .

Moreover, I'{o())(e’ U1 ® () =e" UQ®Q , and & is determined by its

behavior in the universal model. 4.4 follows.

In considering the proof of h.h, it becomes clear that we need to know

the map

i i+l
5 : H (Hz’n) - H (K(zg,z), 22)

in order to determine the explicit form of the functor occurring in 4.h.

Theoren 4.6 50™el U (8qT(1) ® 5a¥(1)] = sgf * €8 (1) + i+l Tr vy

while

5 P(sa¥(1) U sa?(1)) = oXsal(e), 8a%(1)) (in b.5).

Proof The second statement is obvious. To prove the first assertion, it
suffices, by naturality and the known behavior (§§2,3) under suspension, to
£+1 )2

check that sia(nz ® L}Z}} = 8g in the fibering zzc(ze,z) -

(tgey) = (g
*

K(Z2,£+l) - Indeed, by the known results ([6]) on H (K(Z,,£+1)) , the kernel

of ¢ in dimension 24+2 is exactly (L)Q . On the other hand,

H2£+l(Z(K(22,H A K(ZzJ)), Z,) = Z, , and has generator o1 ®t¢) . 4.6 follows.

*
RBemark 4.7 The results 4.4, 4.6 give the structure of H (QnY,Zp) completely

in the metastable range as a module over Zp . In particular, we have
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*,
Corollary 4.8 Suppose Y is m+n-l-connected, and H (Y,Z2) satisfies
SqI(a) =0 for excess (I) > [dim(a)-n] . Then in dimensions less then 3m-1 ,

H*{QnY,ZZ) - s (1) @ H*(Gn) .

However, this splitting need not be valid over ((2) . For example,
12.
CP‘ZB certainly satisfies the hypothesis of 4.8 if m =5 . However, the

secondary operation @8 , associated with the relaticn
satsd® + sa®sqt(5e%) + ngsql =0,

is non-zero when evaluated on the bottom cell of CPl28 . On the other hand,
®g is universally zero on any 5 class. Thus, we must have QLl(@8(88))
contained in the indeterminacy of (@8) . But this indeterminacy is zero in
* 1 *
the part of H (Q*ICPIQB) coming from Qll(H (CP128)) . Thus it must come
* *
from H (Gll,zg) . In particular, there must be an element O ¢ H (Gll’z2> s

so Sq2Sql(a) = Oll(®8(e8))

§5. The Obstructions To Desuspension In The Metastable Range

We conclude the first part of this paper by considering a basic exam-
ple. In the metastable range, we reduce the gquestion of desuspension to the
determinaticn of when a certain map ¢ of known spaces is homotopy-trivial.

Berstein and Ganea independently have obtained relsted results {[36]).

Theorem 5.1 Let X Dbe n-l-connected, and have dimension less than ?*n-2 .

Then:
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1) if Y is the 2n-L-1 skeleton of X , there is a unigue space %,
50 XLZ=Y;

2) X itself is an L-fold suspension if and only if a certain map

9 X/Y - ghtigh=t Xp Z A Z

is homotopy-trivial;

3) if ¢ 1is trivial, the number of distinct L-fold desuspensions of X

is equivalent to the set of homotopy classes of maps

xX/y, 22w, 2 A 2] .

T

(To avoid low dimensional complications, we also require I to be less than

n-3 .)

Remark 5.2 In 5.1.%, the equivalence classes comprise: (a) distinct homo-

topy types of desuspensions, and (b) maps
h:W-aW

where ZLW = X , and where h 1is a homotopy equivalence =1 on the

2n-2L~-1 skeleton of W .

Remark 5.5 By the dimensional restrictions, ¢ 1s actually a stable map

since SL'l KT Z A Z is 2{n-L)-l-connected. Similarly, the set occurring

in 5.1.3 is stable. Thus stable techniques are sufficient to determine them.

Proof QLY is a CW complex. The dimensional restrictions imply that the
adjoint map ZLQLY %, Y induces an isomorphism in homology in dimensions
< 2n-I, . Now taking the associated cross~-section of ZLQLY , We can assume

that Y 1s actually the 2n-L~1 dimensional skeleton of ZLQLY . Thus Y
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is a suspension ZLZ . Moreover, the attaching map of every cell of Z is

stable! Hence Z is indeed unique. This proves 5.1.1.

Prom 5.1.1, X/Y = TN for a unique W . Moreover, there is a map

T ZLW —>ZLZ , 8o the following is a cofiber sequence:

(5.14) S Sl Lx oty S L

Then ¥ is a suspension ZL(M) if and only if 1 = slet for some 1

W =27 . Consider the diagram

sty £ (Ll
(5.5) P I I

We assert that ' exists if and only if the composite
L QLT L.L, n L

(5.6) W8l LT oPely X Plasy

is homotopy trivial. This follows from

Lemma 5.7 Let & Dbe the fiber in the map i : QLZLZ ~éQLELZ/Z . Then

through dimension 5(n—L)-2 , &= Z, and the inclusion & »agLZLZ factors

the inclusion 2 - QLZLZ . (This is immediate from the fiber lemma, §l.)

On the other hand, from the proof of 1.11, it follows that, in the
range of dimensions which concern us, oPslz/z = gbt Xp Z A Z , and this
concludes the proof of 5.1.2 when we note {as in 5.3) that = o QLz o p 1is

. . . R ZL+1 L
a stable map, hence 1s homotopic to zero if and only if (nog tep) =

@ : X/Y - oPghl My ZAZ is.
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To prove 5.1.3, note that different suspensions satisfying the
relations imposed by 5.2 are given by different homotopy classes of liftings
in {5.5). But by 5.7, these are given by maps of W into the fiber.
Q(QLZLZ/Z) “’Q(SL-l RT Z A Z) in our range. Dimensional considerations

show that these are again stable, and 5.1.3 follows.

Remark 5.8 Combining 5.1 with 4.6 and the structure of L-1 %o 7ZAZ, it
is direct to calculate the first few obstructions explicitly in terms of
higher order cohomology operations in X . For the first two obstructions,

see [36] in particular.

Remark 5.9 Recent work of D. Anderson ([35])} makes it also possible to give
analogues of 4.6 for certain exotic cohomology theories, eg. K-theory. This
in turn makes it possible to carry through a program analogous to 5.8 in
these theories as well. This remark will be considerably amplified in a

forthcoming paper.
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§6. An Unstable Adams Spectral Sequence

In this section, we introduce a version of the Adams spectral sequence
which gives information about the unstable homotopy of a space X . It is
invariantly defined from E? on; however: {1) little is known about its con-
vergence properties, and (2) in general, E2 is not just a functor of
H*(X,Zp) over (@(p) but actually depends on the space itself.

The construction we use is similar to the one given in [17]. However,
due to the special cohomological properties of the spaces they considered, it
there turns out that K is a functor of H*(X,Zp) over G(p)

In §8, we will show that, in the metastable range, E? is algebrai-
cally determined (explicitly) from H*(X,Ze) over G(2) . Thus we reduce
many of the problems involved in metastable calculations to formal algebra

and the determination of differentials in this sequence.

Definition 6.1 An Adams (p,q)-resolution of a space X for p a prime and

q a positive integer is a sequence of fiberings

ﬁl 02 95
x ~L g ~2E ~2E
l it 1 K l 3 l My
B B B B
Hy B Hy H,

where:

i) E, is the fiber in the map =,

Lo He 24DET 4 VL i3
ii) BH ils a generalized Eilenberg-MacLane space K(Zp,ﬁ3 for the prime
i
p , and
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ciay .
iii) o = (nl,...,ni) with each ny <q ;

. * k k )
iv) p; ¢ H (Ei_l,Zp) >H (Ei,Zp) is 0 for k<gq .

It is clear that, if X has the homotopy type of a CW complex, then
(p,a)-resolutions of X exist for all (p,q) . They also satisfy the natu-

rality properties:

Lemma 6.2 Let f : X > Y be a map of CW complexes, and suppose given

sequences
a) i < Eli < E) < By <
B! B! B! B!

Hy 5y H} Hy,

where (a) satisfies (i), (ii) of 6.1, and (iii) with g-1 in place

of g ;

b) X <—E <—E, <— E5 <

where (b) satisfies all of 6.1.

Then there are maps fi : Ei - Ei » 50 the diagram

X <—E <-—E\2 G B, <o

l f ‘ fl l f2 . f5
-~ P e Y G
Y < Ei EQ' < E5 <

commites.

Lemma 6.3 Under the assumptions of 6.2, suppose f =g : X - Y and

. *
(fi 2 Ei—?El} 3

. ]
[gi P By - Ei}
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are given. Then there are homotopies

. i
K, : TXB »E

1) Ki(O,Ei) 0.t

it1”’

ii) Ki(l)Ei) = pigi s

iii) the diagram

X Py 1x o5 1x 93
I XX IXx El < Ix Eé < I X B, <o .,
Y < Ei < Eé Lt .
commutes.

As usual, taking the homotopy exact couple of the (p,q)-resclution in

6.1 gives a spectral sequence. Since Ei-a Ei-l - B is a fibering, it fol-

H.
i

lows that n*(Ei_l,Ei) = n*(BHi) . Moreover, the d, differential is

obtained by passing to homotopy in the composition

. .
H, - E, - B,
i+l

where j Hi —>Ei represents Hi as the fiber in the map Py - By using

6.2, 6.5, we define our desired spectral sequence by passing to inverse limits

over ¢ when ¥We note

Corollary 6.4 E@ j(X)[(p,q)] depends only on X for i-j < g-1 , and is

Lorollary , depends only on Tor and 1is

isomorphic to E€ j(X) . In particular, Ei j(X) depends only on X and
b ?

not the resolutions used to take the inverse limit.
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Note that, when X is a (single) suspension, the convergence proof
given in [34] carries over without change. (It depends only on 6.2 and the
fact that it is possible to map a suspension onto a space YX , ¥Which satis-
Ties 6.5(1) below for x e 7, (X) , so the image of x 1in n’*(XX) is non-
zero.) Thus we have
Corollary 6.5(1i) If X satisfies the condition that, for each J , there

r

is an rj <w 50 P JftJ.(X) ® Z o = 0 , then the spectral sequence con-
(p)

verges to = (X) ® z

P
(11) If X 4is a suspension, then the spectral sequence always con-

verges to (X)) ® Z
(p)

For general X , the difficulty in extending 6.5 is in the elements
of infinite order in n (X) . If X is simply connected, has the homotopy
type of a locally finite CW complex, and is also an associative unitary
H-space, then: (&) the only elements of = (X) of infinite order are con-
tained in Z-direct summands, and (b) have non-trivial images under the
Hurewicz map {[431).

Put another way, this says that the Postnikov invariants are ail

finite for ¥ . An easy argument now shows:

Corotlary 6.6 If X is a simply connected, locally finite unitary H-space,

then the spectral sequence converges to n*(X) ®Zz
{p)

<«

6.5 and 6.6 establish convergence insofar as we need it. It is prob-

able that more extensive results in this direction can be obtained from [44].
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Example 6.7 Let X = K(Z 5,n) - Then By = K(Zp,n) X K(Zp,nﬂ.) , and the
D

k-invarisnts are (1) and B{L) . It is iasily verified that E = K(Z 5,n) R
and the map Prx is multiplication by p . Thus E2 = .. = En = ... =p

K(z 5,n) > and p, is always multiplication by p . In particular, Ei,j =
Eei,? =0 unless Jj-i = n,n+tl when it is Zp . The differentials are all

d5 's and are all non-trivial.

A map of spectral segquences o : Ei j(X) -y (ZX) 1is defined
2

Byl
from 6.2, 6.3, the map = : X< QXX , and the sequence

sz
(6.8) 05X <= OF, (3X) < 0B, (X)) <—

OB, QB OB
By sy

associated to a (p,q)-resolution of IX .

Corollary 6.9 If X is n-l-connected, the sequence of (6.8) satisfies 6.1{iv)

in dimensions < 2n-2 . Thus

¥* %
o Ei)j(X) —>Ei’j+1(zx)

is gn isomorphism in dimensions j-1 <2n-2 .

Corollary 6.10 If X is n-l-connected, then
F(x) Tesed (5N%), 2)
i,J a(p) 2
for j-i <2n-2 .

Remark 6.11 It is possible to generalize somewhat the above construction.
*
Let A<s>H (X,Zp) be an unstable sub-G{p)-module. Then we can resolve X

by a sequence of fiberings
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0 2, 8
1 2 )
— e <—
X < El < E2 < E5
\l/ﬂ}_ T{z iﬂ5 ﬂl&,
B B B B )
G(A) G2 Cr5 Gl;,

*
so im (ﬂl> is exactly A , vhile the sequence E « E,+ E5+~ is a

(p,q)-resolution of E Analogs of 6.2 through 6.6 continue to hold.

1 -
Thus we again have an Adams-type spectral sequence with invariantly-defined

Ee—term. We denote it EZ(X,A) . Clearly, in the stable range, there is an

141, % i,% *

exact sequence - Ext ’ A7 E?‘ X,A Ext ™’ H{X)/A, Z

3 gq* a(p) A% 2 E pig Wl0R) = a(p) (K8 2)
i+

S mxtTe G(p)(A’Zp) - ... , though, as we will see in the examples, O may

well be non-trivial.

7. The Loop Space Functor For Resolutions

Let X be m-l-connected, and suppose that

& e} ¢
1 2 3
. G G e < e
(7.1} 2 < E, <=, Ey
is a {2,q)-resolution with ¢ < 3m+n . 1In this section, we wish to study

the behavior of (7.1} under the operation of taking loop spaces. It will

appear that the sequence

n n
Qp Qo
{7.2) P — 2t QnEl 2 QnE2 < QnE5 <

*
is not a (2,q-n)-resolution, as (anl) is not zero in general. However,
this is the only point at which the sequence fails to satisfy the definition
for a (2,g-n)-resolution. Moreover, we will be able to calculate exactly

; n o\ ¥

im (Q°p)) -

We begin by proving
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Theorem 7.5 Under the above assumptions, the sequence

an Onp
QnEl< 2QnE2<: 5QnE5<

is a (2,g9-n)-resclution of QnEl for g <2n .

Proof We proceed in two steps. First, consider the diagram of {vertical)

fibrations
£, T
Gl 4--}—- G2 "—2- GZ) — e
l T l T l T
(7-%) 20"e, ~—z"0"E, «——znnn‘sy_. e
ln l bis l n
El s EQ -— Ef' a4 s

The key observation about (7.%) which we need is

*
Lemma 7.5 Through dimension Jm+n-2 , fi is the zero map in mod p

cohomeology.

Proof From 4.3, @, = ght g (QnEi A nnEi) in our range. Moreover, by
* *

3.1 and naturality, fi is determined in our range by {ani) restricted

to H'(q'E;) with r <2m . But by suspension H (a'B;) = F(E,) in

*
this range. Hence fi =0, and 7.5 now follows.

Next we must consider the fibering

J
H, SE; >E .

R * r
Since q <2n, ve know that j : H (E;) »H (H;) 1is injective for r <g .
Now consider the functor Znnn applied to the map J . We obtain the dia-

gram of fibrations
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6] A G,

1

(7.6) znnnﬂi‘q =g,
Lo
Hi =y Ei

From 3.1, it now follows that €, is injective in our range. In particular,
. r *
given x ¢ H (El) , we can suppose that J (x) = o and o £ 0 ; then the

*
class Jj (8q

(@)t ney)) - g @KL RG) 4o . mmue g

dnm(a)+k+1-n(x) Zo
’
provided, of course, dimension (@) < n+m . From the exact cohomology sequence

for the left-hand fibering in (7.6), we find

B(ek Ua®a) = Sqdim(a)+k+l-n(a)

*

Hence 6(ek Ux®x) 40 in H (El) . Hence the only possible elements in

* * ¥*

H (G;) which are in the kernel of & are the (x,y) with x#4y in H (E;) -
(0f course, x and y must each have dimension less than n+m .) Now note

{as a consequence of 4.6) that
* * n, n n
(7.7) (x,y) =7 o (a(x) Ua(y));
*
hence (x,y) € ker & , and these elements give the entire kernel.

To complete the proof of 7.3, we suppose there is a A ¢ H*(ZnQnEi,Z?)
with {Enﬁngi)*(k) £ 0 . 1In the diagram (7.4), it is certainly true that i
is not in the image of x .

Hence T*(x) £0.

Hence {(7.6), (7.7)), it follows that

A= a (@ (x) U QM(y) + o

*
for some v in the image of =« .
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* * *
On the other hand, (a",) (a™(x) U a™(¥)) = (%) (") U (a%,) a™(y) = ©
Also, triviglly, (Znanpiﬁ*x*(x) =0 . But this implies
nn ¥
(Zap) (M) =0 .
Hence A =0 , and 7.5 1s proved.

We now turn to the first map in (7.2), anl : QnEl 5™ . As in

the proof of 7.3, we suspend and consider the diagram of (vertical)

fibrations
W 6
(— 1
G < 6 < 6
T T
1 annp t 1 1
(7.8) (o %) <= fo’s, «— o'y,
l P jnl [
s J
1
< E < H

Note that = has a homotopy inverse. Hence, in the metastable range,
(7-9) Pt 2™ v .

Before proceeding further, we need to consider the bottom (horizontal)
*
fibration in (7.8). For o(@) in H (ZnX,Zz) , let t{a) be any element

*
in H (Hl) vhich satisfies
(7.10) 8(1()) = o'(Q)

in the Serre exact sequence of the fibration. Note that, for all k> 0,

we have

(7.11) s (O b o0yy ¢ m (57
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{In our range, this is due t0 exactness and the fact that Sqdlm(a)+l+k(

o) =0
for k>0 . Por general k > 0, it follows from the Borel transgression

theorem.) Hence, for each k > 0 , we can choose

*
B (o) < B ()
satisfying

dim(oc)+k+l(

(7.12) 5 (B(@)) = 54 ()

Theorem 7.13 Under the splitting (7.9), let qk(a) be the cohomology class

&k{a> 3 W_Ehivg
(%0%,) q (@) = B(a) -

Proof It suffices to verify 7.13 in the universal situation. The space
which is universal for o (Q) is 5 (K(Z,, dim (0))) . Thus, in place of

the bottom line of (7.8), we consider the fibering
(7.14) K(Z,, n-1 + dim (@) By - £X(K(Z,, aim (@))) .
Of course,
.ff.("‘dim(a)) = 'nilsdim(a)
How consider the fibering
(7.15) P ORA 22%(2,, din (@) - K(Z,, din () .

*
Clearly, Qnu is 2 dim (®)-l-comnected, and 6 (¢ * v) = v , the first non-

*
zero element in H (%) . (Here, ¢« * . 1is the class dual to the Pontrjagin
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product.) By 4.3, oy = st

X K(Z,, dim (@)) A K(Z,, dim (@)) in the

metastable range, and 7.l3 follows by naturality under suspension. (Explicitly,
* *

the class corresponding to S u t®¢ in H (U’ZE) pulls back under ¢

in (7.14) to sqitirtdim(@)

Remark 7.15 PFinally, it should be noted that 7.3 is valid whether or not
the space Y with which we start is % . Indeed, the only crucial condi-

tion is that Y be ntm-l-connected.

8. The Metastable Exact Sequence

In this section, we assume X 1is m-l-connected, and restrict our
attention to the 3m-2 skeletons of all the spaces under consideration.

Consider the fibering F, - X —>QL2LX

I ; then, as we have observed,

FL has the homotopy type of

a(s*™ kX A X)

*
in our range. Consequently, H (FL’Z2) has a natural sub-G(2)-module
* *
A={o(a;b) ;a,beH (X)) .
A plays a fundamental role in the sequel. Before proceeding to ocur

main result, 8.5, we illustrate why this must be so.

Lemma 8.1 Consider the inclusion

o s Lr .

*
Then ker (9 ) 1is exactly A . ('This follows immediately from the results

of Part I (notably 3.10).)
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Now suppose we start to comstruct (2,q)-resolutions. Observe that the

composite

(8.2) X - P2 - ol S QLBH

1

is onto in cohomology. Hence the first stage in the resolution of X can
be assumed to be the fiber in the map of (8.2). The following diagram of

{vertical and horizontal) fibrations is thus obtained.

Fo——> F
s )
i
(8.3) El —> X >
i By,
I, ¥ :
2“(p,)
L 1 Lol T,
9 — VYK e (B
B i

(since E) can be regarded as the pull-back via QL(pl) of the fibering

x: X —>QLZLX)

Lemma 8.4 (a) im (j) =4,
(v) Emp:A@B

where B = H (Q (El) )/in ﬂ pl)

Proof 1In our range, the Leray-Serre spectral sequence becomes a long exact
sequence. Note that, in the sequence of the left-hand fibering in (8.3),
5(x,y) =x Uy and QL(pl)* x Uy = QL(pl)*(x) U QL(pl)*(y) =0 . On the
other hand, Sei U{x®x)= (Qi(x))* , and the results of §7 show that
o) (a,(x)" 40 . Indeea, the a"(p) (@(x))" span im a¥(p)"

8.4 follows.
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We are now ready to state the main result of Part II.

Theorem 8.5 Suppose L > 3m . Then there are maps of spectral sequences

i * *
at, . Ei’j(ELX) S B (FA)

i *
J* : E.

F A *
% :L,,j(L’)_)E'

1+1,j+l(x) ’

and the resulting sequences

dJ, L 3 J

2 209y O, Loy 2 -2,
> Ei,j+l (x) — E§’j+L+l(Z X) —2 Ezi’j(FL,A) > ..

are exact for Jj-i < 3m-2 , and converge to the generalized E.H.P. sequence,

Remark 8.6 The mechanism for determining 51* will be made clear during

the course of the proof.

Proof We begin by constructing the maps 5* PR

Consider the first stage of an (FL,A)-resolution of FL :

(7)), 5 F, %, B(a)

*
where im @ =A . From Lemma 8.1, there is no obstruction to extending 6

to a map 6 50

1
T+ o
o - (F)q
I+l
9 Py o]
o sly s

L

commutes. The map Gl may now be continued to a map of resolutions. This

gives O, on passing to spectral sequences. Moreover, by 6.3, 3, is

invariantly defined from E2 on .
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*, i * *

Remark 8.7 From 7.13, it follows that 6 (e Ux®x) = (QL”'pl) (Q(x)) -
*

Thus the map Gl is completely determined except on secondary elements asso-

ciated to the resolution of A . We shall discuss this situstion more care-

fully later in this sectiom.
Now, consider the map

J
FL—aX .

i * * LZL * *
Since n : H (0ZX) - H (X) is surjective, it follows that J =0 . Let

Ei be the first stage in a resolution of X . It follows that J 1ifts to

el .
J o FL—aEl .

—_— %
From 8.4(a), im (j) = A ; thus if E} 1is the next stage in a resolution of
X , it follows that J 1ifts to
v R 1
s )y -8

We then continue to a map of resoclutions

I

(8.8) N —-){FL)ha(FL)§-—->{FL)2 A{Fg)l—)(FL)
VA A VT
- El'; - Eé -+ E! - E - X.

This defines J, . Of course, J is not,as it stands, well-defined since

*
it depends on the choice of lifting E‘. However, anticipating the fact that
the sequence 7.5 is exact, it is certain that the image of J2 is invariant
under the different choices of liftings.

In order to demonstrate this exactness, we construct a very special

resolution of X , one which tries to be the direct sum of the resolution
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for QLE and (FL’A) . Only the first two steps, due to the influence of

1
A , must be handled with special care.
To begin, take E/ as given in (8.3). Consider the situation in

{8.3). We have the fibering

L
1 Eb ~9QLE1-» QLBH2 3
R " L . . L
and we can induce a fibering over ( Eb from the fibering over El on

the left in (8.3). This gives the diagram of (vertical) fiberings

[
(8.9) e, —> E
V &
L lg —— obs

* *
From 8.4(b), im () = A since the map (QLpz) = 0 in our range. Thus

*
we can kill A in H (82) . This gives us the diagram

(8.10) FL)l LT F

!

By > & o By
\\\ =
' -~ P
92 \\$ hold

Lemma 8.11 In (8.10), the composite map el has as fiber a generalized

Eilenberg~Maclane space.

Proof Conslder the diagram
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€ By(a)

/ ?52\ / Ay
(8.12) E < g — EiiBH(A) x QLBH
— 1

Py Po

\ 3 / QL%H

1

Here the 45° lines are fiberings, as well as the horizontal line starting

with © . Clearly, there are liftings 'El s 32 to make the triangles in
(8.12) commute. But Eg' is universal for such pairs of maps. Hence there
isa A: ® - Eé making 8.11 commutative in its entirety. Thus we have

a map of fibrations

H(A) X QL(Hl) - ® -

(633 | b |-

F —_— E% - Ei

Note wm (F) = w, (H(A) X QLHl) , and reference to (8.13) shows that the iso-
morphism is actually induced by x} % - e , Ez’ have the homotopy type of
CW complexes. Thus, since the five-lemma shows A, : zt*(®) Aﬁ*(Eé) is

an isomorphism, it follows that &~ E . 8.11 follows.

*
Again in view of 8.4(b), (pé) = 0 1in our range. Hence, from 8.11,
it follows that ,{)2' is the second stage in our resolution.

To continue the process, consider the diagram
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(7)), — (FR), —> T,
(8.14) ei l
' 3
‘%sﬂl
L( ﬂL03 l i

—_ QL(EQ) —_ QLEl

Here 85 is the fibering over E} induced by (n-w) from (QLpﬁ) . Since

(QLDB)* =0 , it follows as in 8.4 that
* ~ ¥ *, 1
(8.15) H (65) = H ((FL)l) ®H (@ E5)

in our range. We construct E!

3
in the proof of 8.11, we find that the composite

* *
by now killing H ((FL>1) in H (& As

3)

Eé —)85 —aE%

has as fiber a generalized Eilenberg-MaclLane space. Moreover, by construc-
tion, the map is zero in cchomology.

This process evidently continues giving us a resolution of X , with
fiber at each stage the product of a fiber in a resolution of F. with a

L
fiber in the resolution of QLEl .

Passing to El~terms gives

212

(8.16) BN (%) %) o B

1,3 1, j+L (F

A)

i-1,J+1

How we need

Lemma 8.17 The d, operator for the resolution given in (8.15) is the

pair
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-
(079, 2, @ al{FL,A)}

where §l is the boundary mep constructed in the first step of our proof

from the resolution of % to that of (Fh,A) .

Thus, algebraically, Ei*(x) is the homology of the mapping cone, and the

exactness of 8.5 follows.
Proof We find immediately that the diagram

L+l
QR > (FL)i

(8.18)

B B
R .
a Ei+1
commutes. The fiber of the map
1 1
Ei+l ’)Ei
is QL+lB X OB , and the map iou embeds QL+18 as the first
H. {(F_), H,
i L'i-1 i
factor in this fiber. On the other hand, Ei+2 is the fiber in the map
%t Bl B x a8,
i+l (FL)i Hi+l

and 7 Eé+l-a B(F ). is exactly pyo% the projection on the first factor.
L1
The differential dl is determined by the map in homotopy in the

composite



69

T4l , L
(8.19) QB X QB(F - Bl -0 By

) B
i L7 i-1 i+l

i
)1

and now 8.17 follows.

This completes the proof of 8.5.

We now turn to the problem of determining the map 5* as explicitly
as possible.
In £.11, an exact sequence was exhibited which determines E?{Fi,A,ZQ)

in terms of an exact sequence. Part of this sequence is a map

(8.20) W E.zi’j( LA Zy) -amti'l’j‘Lla(g)(H*(FL)/A, Z) -

In terms of the map, we have

Theorem 8.21 The composite

pody + Bt o (1K), 7)) - Bt IR ), 2,)

is algebraically determined, and commuites with the action of Exta(2>(22,z2)

on each of these modules. (This is an immediate consequence of 8.7 and the

fact that the map (8.20) is determined by the algebraic inclusion of

H*(FL)/A in H*((FL)l) )

Remark 8.22 In the special case that X is the sphere gt , note that A = )
Thus (8.20) is an isomorphism, and we obtain as a corollary the main result

of [13], on the existence of 8.5 for spheres.

Remark 8.23 In particular, this gives us many examples where 82 is non-

7

trivial. For example, if X = 3' , then, in the first non-trivial dimension,

we have
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EthﬁG(z)(zz’zz)

has generator h and  Ext®0 (H*(P *Y, Z,) = %, with generator e
’ a(2) 7/ 2 2

3 77

while

52(h3) = ey

. 1,3 *
9. Calculating The Groups Ext ’30(2)(}{ (F,) /8, 2,)

In §8, we saw how the composite

1-1,j-2L-2

(w:d,) & Bxe™7d0 0 (H1(X), 2,) - Bxe a2y (F (L) /85 2)

is algebraically determined. 1In the context of the Adams spectral sequence
approach to metastable homotopy theory, it replaces the classical O-invariant
in the E.H.P. sequence.

In this section, we review the most effective techniques for calculat-
ing this Ext group for I greater than the connectivity of X .

* i *

H (FL)/A has generators e Ux ®x for x ¢ H (X) . There are two

obvious filtrations for these elements:
(9.1) 81Ux®xe33 if dimx> 3,
{9.2) erux@;xeqi if r>1.

The results of §3 show that each of these 3j 5 Qi are closed under the
action of the Steenrod algebra ({2) . Hence they give rise to spectral

sequences lE B EE with
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(9-3) 1By = Bty oy (35785, %)

1~
(9.4) oFy = Btoy(G5/G,0 B) -
In order to identify these terms further, we note

= g J
Theorem 9.5 33/3j+1 = H (P J,) ® H(X) .

Proof This is immediate from 3.1, or see [22, §2]. These groups have been
tabulated in s range ([13]), and hence may be regarded as available for

calculations.

*
Now, turning to the second filtration, let 82(H (X)) be the T-invari-

* *
ant subalgebra of H (X) ® H (X) , and let
*
B{H (X))

2, % .
be the quotient of S7(H (X)) by the sub-G{2)-module image (1+T) . We evi-

dently have

Theorem 9.6 The 2El* k—tenm of the spectral sequence defined by filtration

2 1s a copy of
mt*é(g)(s}%(ﬂ*(x)), 7,) -

There are cases, for example: when X has very few cells, when the
first spectral is more convenient. However, when the structure of H*(X) is
very intricate, but Exta(g)(H*(X), Z2) is completely known in a range, then
the second spectral sequence is usually much easier to work with. (For exam-

ple, in §l1 we will study the case when X = K(Z,m) .)
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In order to calculate the functor

(9.7) Brtg oy (B(E (X)), %)

we proceed by exploiting the "doubling" homomorphism. Let D : G(2) - G(2)
be the doubling map (D{xy) = D{x)D{y), D(ng‘j) = qu) . It is a map of alge-
bras, and mekes G(2) into an algebra over itself. We denote G(2) in this
context as Ci(2)D . Similarly, we can "double" modules over G{2) . Thus if
M is a graded ((2)-module, via the doubling map M becomes an ungraded

6(2)-module, ([Sq }{m) = B{sq )m) .

Lemme 9.8 There is & unique (graded) G(2)-module D(M) and ungraded iso-

morphism f : D(M) —» M so that the diagram

a2) ® o(m) 285 g2) @ M

I
£ M

>

(M)

commutes. (Obvious: 13(M)2i = (M)i , D(M)2i+l =0 .

~ *
We call D(M) the double of M . Clearly, B(H*(x)) = D{(H (X)) .

We can expand the diagram of 9.5 as

a(2) ® o(a) ® o) “-EL (a) ® ()
D(u)}' [pw)
G(2) ® D(M) s> D M)

In particular, D(M) is actually a module over D{G) , and we can use the

change of rings spectral sequence ([12]) converging to (9.7). Thus we have
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*
Lemma 9.10 There is a spectral sequence converging to Exta(g)(BH (x), 22)

with Eé term

Bty oy (M, gﬁca(a)(m(Z), z,)) -

(Here the tilde over the internal Ext denotes the fact that this is a spec-

tral sequence with twisted coefficients.)

However, 9.10 is still very useful since Exta(g}(Iﬂ(2), 22) has a

very simple form; e.g., see [23, §2]. Specifically, we have

Th Bxt z
__99_1‘_9_129‘11 G(g)(D(G)J Z2) = P(qo)ql)"')q
i+l

i...) where g, has

bidegree (1, 27 ~-1) .

*
To illustrate methods, we outline the proof. The dual G of @G(2)

is a polynomial algebra on generators gi of degree 2t . Clearly, the map

d : £ —aglg extendsto a map of Hopf algebras. Its dual is D ! Thus, dual

to the sequence of Hopf algebras

(5.12) a2)* S a2)" - a2)"//aa2)”
there is the sequence
(9.13) (Ker D) »a(2) 3a(2) //ker (D) = Da(2)) .

* * o~
0f course, G(2) //aa(2) —-E(gl"-g **) Z Ker {D) . Now the sequence {9.13)

i

becomes an exact sequence of G(2)-modules as
(9.14) 0 - G(2) - Ker (D) - G(2) = Da(2) »0 .

{9.14) gives rise to a long exact sequence of Ext groups, and, since G(2)

is g{2)-free, this implies
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1

Bxt'o )(00(2), 2,) = mxt' T 0 (6(2) Ker (D), 7,)

i-1 = ~ i
On the other hand, Ext G(2)(a(2)-3, z2) = Ext E( z2,z2) for any sub-Hopf
algebra of @G{2) ([23, §2]). Thus the result follows from the routine cal-

culation of the Ext groups for a graded exterior algebra.

Remark 9.15 The difficulty with using 9.10 and 9.11 for the spectral sequence

(9.4) is that the twisting in 9.10 is almost always non-trivial.

Example 9.16 In case X = K(Zg,m) , we find the spectral sequence (9.4) by
far the more convenient. Its Elr term in our range is a copy of
P(qo---) ; however, the differentials are very involved. Considerable work

on this case has been done by J. Harper ([10], [11]1).



PART I1I1

APPLICATIONS AND EYAMPLES

10. Calculations Of The Stable Homotopy Of K{w,n) 's

In [4], [5], and [14], methods were given for studying the stable
homotopy groups ns*(K(n,n)) . These techniques give omly fragmentary infor-
mation in actual practice. More recently, work of Browder and Brown ([381, [391)
and Brumfiel, Madsen, and the author ([40]) has shown the importance of these
groups for problems relating to the classification of manifolds. Also, and
rather tautologically, these groups give the classification of higher order
one-variable cochomology operations which vanish for dimensional reasons,

[3], {81, [10], {11] universslly on appropriate cohomology classes.

In this section, we apply the methods of Sections 4 and 9 to the prob-

lem, obtaining somewhat more efficient tools for the calculations. We begin

by considering the first few groups when x = Z., or Q/Z , the cases of inte-

2
rest in [38], [39], [L0]. We then contimue in the next section by giving more

extensive calculations for the case = =2 .
In all cases, we begin by considering the fibering
{10.1) G, - XLK(:t,n) - K{w,n+L) .
This is of the type considered in L4.1; hence in our range
6, = =8 iy (K(x,m) A K(x,0)) -

Moreover, since ni(K(n,n+L)) =0 for i >ntL , it follows from the homo-

it

topy exact sequence of (10.1) that ﬁis(K(n,n)) xiS(GL) in our range.
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Thus to compute niSK(Ze,n) , we must calculate the homotopy of
L-1
s X K(Zg,n) A K(Zz,n) .

In the first few dimensions, this has cells as follows:

.
e, Ut ®¢ e U Sqlv. ® 8q97 ¢ (Sqla, Sq2L) {1, SqQSqu (L, SqBL}

3
e, Ut ® ¢ SqlL ® SqlL {1, quc)
(10.2) N
e, Ut ®u (L, B9
LR

The action of the Steenrod algebra ((2) on the elements enumerated above

depends, of course, on n . Thus for n = 2(4) , we find from 3.7 that

8¢7(v ® 1) = (1, Sq7¢)

]

Sqe(L ® 1)

I

2
SqlL®SqlL+(L, Sq L)+e2UL®L

- ]
Sq3L ® 1 = {8q 1, Sqla) + (Sq5t, Ly

1
Sqel®b®t=62UL®L,

2
Sqe1®t®t=e Ut ®tL +e USqlr.®SqlL,

3 1

Sql(Sqlt @ Sqlc) =e, U Sqlt ® SqlL

1

In this range, there are at least four non-trivial 22 ‘s in homotopy; the

first dual to 1 ® 1 , the second dual to e, U 1 ® 1 , the third dual to

1
1 1 1 2 . s
897t ® 89"t , and the fourth dual to (Sq i, 8¢ t) . Applying 3.7 in the

remaining cases, we obtain the table
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i 0 1 2
n = 0(2) ﬁ§n+i(K(Z2,n)) z, Z, Z,
generator (Lt ® 1), (el Ut @), (SqlL®SqlL)*
n=12) g (K(Zm)| % 2y 2y
generator (L®u), (elU L ® )+ (1, SqlL))* (e2 Ut®)y

Now we consider the group Q/Z . Suprisingly, this involves us in
some algebraic problems. The first is a suitable description of Q/Z . To

this end, let 2 = 1lim (2 i) for each prime p .
P

Lemma 10.% @/z =@ (z ) as p runs over all primes.

Proof Injectionms GP : Z(p)w - Q/% are defined as the direct limits of maps

Pyt z ., -Q/z
P

where pi(n) =n/p" . These in turn induce a morphism
"~
6:Pz -9
(p)

given on elements by
8 =8 + .0+ B .
(nyreemg) = 8 (n ) a(mg)
To see that ker (6) = O , note that
i J
+ .. + €z
np/p nq/q

o(pe. .q-j) . In particular,

il

if and only if np(---qJ) e (pl...)nq

(")

np(---qj) + el # (pi‘--)nq

o(?) ,
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0(q%) . Thus ker (68) =0 .

n

and these congruences imply n, = o), e, n

Il

To see the converse, suppose the fraction is given in Q/Z . Since

Qiij...qk

the ideals (pj) + (qk) = 7 in the integers, for p a prime and q rela-

tively prime to p , there are integers m, 5 By, 80
i k
n22 + m2(33.~~q Y =n.

Similarly, there are integers m5 5

n 80

3
s k J
mg(5 +r0q7) ¥ ng3° = my
etc. Hence we can write
i k i k
n/e*ee gt = m2/2 + e+ mqfq B
and this shows that 6 is onto. 10.4k follows.

Now note that the inclusion 2Z i‘” z 141 induces an inclusion
P Y
K(Z i,n)ca K(Z i+l’n) {e.g., see the models for K{=,n) introduced in [19]).
P P

Clearly, we have

Lemma 10.5 K{Z _,n) lim (weak) K(Z i,n) under these inclusions. (Here,
)" P
the topology in K{(Z wﬂﬂ is given by specifying its compact sets [which are
(p)
the sets X contained in K(Z i,n) for some i, so X NK(Z i,n) is com~
D by
pact], and letting Y be open if and only if Y N X is open for each com-

pact set X .)

W
Corollary 10.6 X(Q/Z,n) = H x(Z w,n) {weak limit of the finite
p prime (p)

Cartesian products).
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Corollary 10.7 Consider the fibering

o - 2%(Q/2,0) - K(Q/Z,04L) .

Then G = ] wlim (wesk) T i (7 Kz .,n)] i
L = ) r T i,n) A on n our range.
b prime P P
Thus we can calculate the stable homotopy groups of K(Q/Z,n) from

the observation

10.8 =, (1im (weak) Xi) = lim n*(xi) .
Using 3.1 and 3.7, we now find

Theorem 10.9 {(a) nens(K(Q/Z,n) =0,

. _la/ez = a/z, =n odq,
(0) 7, ., (K(Q/Z,n)) =
5 n even.

Z 4+ D even

P
Proof ﬂ%&(GL(K(zpi,n)) =¢0 , n odd, p#2

Z, , n odd, p=2

In homology, (t i)* —>p(zpi+l}* under our injection. Hence (i ), @;(Lpi)*

—9p2((L i+l)*} , and the kernel of the map is generated by
P

Moreover, the image of pl-z[(t i)* ® (4 i)*} is in the kernmel of the next
P

map, and, in general, p- “[{. i)* R (1 i}*] is in the kernel of the jth
p P

iterate. Thus the direct 1limit is indeed zero, and 10.9(a) follows.
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To prove {b), note that

-
Z, , mn odd, p #2
P
7 . n odd, p =2
l+1. b 2
(10.10) ﬂ2n+l+L(GL(K(Z ;on))) =< 2
? 0 , n even, p#2
Zg , N even, p =2 .
A

Moreover, from examining the action in homology of the Hurewicz images of
the generators, we conclude that, in each case, the inclusion of the one in

the next is given by multiplication by p . Hence
lim (zhc » Zg C R z(2)oo

is the two-local component of the limit. Clearly, there is a surjection of

this 2 on 2 with kernel Z, . Thus it is natural to embed the
(2™) (2) °

resulting group in Q/EZ . This completes the proof of (b).

Remark 10.11 Theorem 10.9 is exactly the homotopy theoretic result which is

needed to do simply-connected surgery ([41]), and also plays a key role in

[4o]. fThe results of Section 2 also allow us to know exactly at which sus-

pension the various homotopy elements first appear. For example, the reader

is asked to verify that, for n odd, & Q/Z appears in

(x(Q/Z,n) A KQ/Z,n) , and hence in (2{KQ/Z,n)) . However, while

Ton+l Tone2

the map

£(K(Q/2,1))) ~ n, . °(K(Q/Z,n))

ol on+l

is an isomorphism, the approximating maps
A A
ol i+l

2
for K(Z i,n) always have cokernel Z, .
2
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11. Some Calculations Of The Stable Homotopy Groups For The K{(Z,n)

In this section, we apply the techniques of §9 to study ns*(K(Z,n))
in some special cases. The calculational results illustrate the structure

of the exact sequence 6.11.

L-1

(10.1) shows that we need study only m,(S K K(Z,n) A K(Z,n))

for L >n . To do this, we shall calculate the groups

Betg ay (R (TK(Z,m), 25)
{11.1)
**(

Exta(g) H*(PL), A, zg)

in three steps. First, we calculate EXtG(Q

*%
culate Exta(2> (A’ZE) ; finally, we put them together to obtain the desired

)**(H*(GL)/A, Z,) ; then we cal-

groups {11.1}.
*%

We begin with the calculation of EXtQ(Z)

*
(H (GL)/A, Z2) , using the

second spectral segquence in §9.

Lemma 11.2 Ext**G(Z)(D[H*(K(Z,n))]; Z,) =

= EXt**G,l(ZZ’Z2) ® EXt**A(QBQl{-. . .)(ZE’Zz)

in total degrees less than Un+l . Here 01 is the subalgebra of a(2)

generated by Sql and Sq2

Proof We imitate the main idea in the prcof of 9.11. The map u
*
H (k{2Z,n)) 1is onto in dimensions less than or egual to 2n and has kernel

G(E)Sql . Thus, the kernel of the doubling homomorphism

a(2) B ma(2) 28k o (k(z,n))
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15 p7Ha(2)sq") = Ker (D) @ 6(2)(Sq°) , but this 1s G(2)E(Sq", %, 8 ) @

2 .
6{2)(sq") , but this ideal is clearly isomorphic to

a(2) TG ® B, ) »
and 11.2 follows.

Now we recall the well-known

*%
Lemma 11.3 Ext G1(1‘222,22) = P(ho,th,P)/R vhere R is the set of relations
2 2
Q = hOP ’
hoh, =0 ,
n -0,
th =0 .

Here h, has bidegree (1,1} , h, has bidegree (L,2) , Qe Ext>’ T and

Pe Ex‘t:h"’l2 . (See e.g. [9, §6.1] for a proof.)

We mention in passing that Q has Massey product representation
2 . 2 2
<h1’hl’h0> . Also, P has representation <hl’h1’hl’hl) .
11.2 and 11.5 together determine the E:L term of our spectral sequence.
We now turn to the evaluation of the differentials. I know of no way to do

this without going to the chain level. First, we need some notation. In

1 th

E™ , we denote an element in the k¥ copy of Ext (2.2 ,Zz) with

a, ®Kas--+)
iZL ir th
a (k) on the right. Thus 6 Q® q5 *rq, in the k= copy will be written
i i
1 T
6 ® 4z ‘4, (x) .

The generators of c® are thus the {(x),} , and those in ¢t are the
ho(k)* s hl(k)* B qa(k)* +e+ ., In principal, we can completely describe the

(1)

differentials once we have specified the boundaries of the generators in C
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1 2
In the associated graded gadget, Bho(k) = 8q(kx), , Bhl(k)* = 8¢ (k), ,
qu(k) = Qi(k)* . Of course, these are not in the kernel of the surjection
*
co-a H (GL)/A in general, so there are higher filtration correction terms
which must be added to these (presumptive) boundaries. In particular,
2 k-1

(11.4)

k-l)

sa‘(x), + (] 0e1),

are in the kernel, and hence are appropriate choices for the actual differen-

tials. Now, using standard calculstlional technigques, we have
(11.5) Qisqk - g0 @) gkl o (0eeiOk)g kS

where 6 vanishes on elements of dimension k+h . Hence if we are concerned

only with the first four or five differentials, we can assume
0--:02 0«04
(11.6) gk, = 9y (k) + 5o 1), + st Y3, -

Thus we obtain

Lemma 11.7 8 x) - ($ng(x-1)
8(a,(x)) = ([ ngagle-1)
8%(x) = (;7)m, (x-2) ,

5%(a,(k)) = (57 )m g (c2)

These differentials and some routine algebra allow the complete deter-

mination of Eus .t in dimensions r-s < 12 . For example, when =1 = 4L+l ,
3

we find
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(11.8)

yL Y —

of-0

u
'~
w

{10)

[ U NI ———

e & o
-~
L)
~—r

-3

0 ©) @)

r-s — 0 1 2 3 L 5 6 7 8 9 10 11

Our conventions for writing the BExt groups are the usual ones
(e.g., see [16]). However, for the reader's convenience, we list them here.
A vertical line connecting two dots represents the fact that the upper is

h, times the lower. A U5° line connecting two dots says that the upper is

O
hl times the lower. ¥Finally, a dashed vertical line implies again that the
upper is h. times the lower, but the extension is not obvious in El .

¢}
*
{Actually, the precise significance is ® (lower) = (Sql) {upper} + 6 where

6 has filtration at least 4 higher.)
Exemining {11.8), we see that the only possible differential is
a4(3)

67(10) = . In fact, we have
o]
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q5(§) ? n= l(8>

Lemma 11.9 57(10) = . (For the proof, it is necessary
0 s n=5(8)

only to expand {11.6) two further stages in these cases.)

Hi

Thus, in view of the dashed vertical lines, this determines the remain-
*
ing differentials, and (11.8) represents Exta(g)(H (Fn)[A, 22) for n = 5(8),

while

Eb(ta(2)(H*(Fn)/A, )

for n = 1(8) has the form

i
b
5
2
0
r-s -} 0 1 2 3k 5 6 7 8 9 10 11
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Now, following our program, we turn to the calculation of Exta(e)(A,ZQ)
Unfortunately, I know no indirect way of studying this group, so I found it
necessary to write down an explicit resclution in our range of interest. We

suppress the calculations (in the interest of mercy to all concerned) and

record the result:

with, perhaps, some missing terms in r-s = 11 . Combining this with {(11.10),

and calculating some obvious differentials in the exact sequence
11.12 t “(F 8,2) S Ext_, (H(F /A, 2,)
(11.12) ...Ex G(;',)(H( L), Z,) —->Exta(2)( 2Z5) ~>Exa(2) /A Zy) o,

*
we find that Exta(z)(H {F8k+l), 22) has the form
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A
A ﬂ

L ) hoD

3

2 B / H

1 .

(1)

T 3
8 0 . . . p . C . - E .
r-s »{ 0 1 2 3 I 5 6 7 8 g 10 11

There are a number of "suprising" facts concealed in (11.13). For
one, note that & in (11.12) is highly non-trivial. For another, note e.g.
that, for hoD » H , there are extensions of the Exta(g)(z ,22) module
structure connecting the remaining terms from {11.10) and {11.11). The orig-
inal interpretation of elements in EXtG(Q)(H*(Fn)/A’ Z,) was as "stable"
higher order cchomology operations which vanish universally on integral cocho-
mology classes of dimension n (e.g. see [11]). However, it is clear that
that hypothesis can no longer be supported since the terms from Exta(g)(A,ZQ)
play a very definite role in determining the actual Ext groups of Fn 3
and the differential depends on n . Thus the general defining system for an
operation represented in Exte(g)(H*(Fn)/A, Z,) may well have been built on

relations which depend on lower order elements in EXta(g)(A’zé) and n .

We now calculate the differentiels in {11.13), and conclude this sec-

tion by evaluating
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Ez**(Fn) AJ Z2)

in this range.
We first observe that the Z, Bockstein (Proposition 3.6) implies

some 52 differentials. Thus we have

Lemma 11.1h Ip (11.13), we have

52€5(0) =h3B,

82(3) =h D .
Somewhat less immediately, we have
Lemma 11.15 (1) Jy(es(1)) =0,
(ii) 9,(E) =0 .

Proof (i) Consider the inclusion

1 n-1
u i S MT KAK->S KT KAK.

It is easy to verify that 85(1) is present in im (u,) on Ext groups.
3p s . s
However, h D is not in this image. Hence 52(55(1)) = u*52<g3(l)) =0,

*
and (i) follows. To prove (ii), note that E has representative cycle

3 b

: 2
(8g”, Sq'Sq ) . Consider the inclusion

I:KAK-—eSn-lD(TKAK.

KA K is a wedge of K(Zg,n) 's and K(Z,n) 's in low dimensions. A direct
3

*
calceulation shows that SQASQQL ® 8q”t 1is a generator in H (K A K) over
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G(2) . Hence it is dual to an element b in m (K A K) . Clearly, I.(b)

*
is detected by E , and (ii) follows.

Remark 11.16 The splitting of K A K used in the proof of 11.15(ii), together

with the cofibrations

r +1 r+1 r
(11.17) S K KAK=8 "X, KAK-Z KAK-ZS K KAK— ...,

provide us with a good method for constructing homotopy classes in ocur range,
while the global calculations of Ext groups provide an effective way to
limit the number of elements whose study is required. It would seem to the
author that this remark provides the reader with effective tools for analyzing
the stable homotopy of Eilenberg-MacLane spaces so far as desired in our

range!

Returning to our calculation, we easily see that 11.14 and 11.15 give

all the o, differentials. Moreover, E5

A % E° , and we have

Theorem 11.18 The first ten stable homotopy groups of X{Z,B8k+l) are given

by the table

ooyt fspels) 6 jry 8 |
Mgy | 221 01 Bl 0T, T2, 2,02, ]2

S(K(2,8k+1)) hes order at most 8 .

For j =10, ™ 6x+1]

Remark 11.19 The groups obtained in 11.18 for j =6 , 7 do not agree with
those obtained by Mahowald and Willisms in [14]. They apparently missed the

generator € corresponding to the cycle (Sq2, th) .
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Finally, we apply 11.18 to calculate the differential

i * 142 ) )
3 : Ext 6(2)(H (F) /A, Z,)— Ext* (A,Z,) defined in 6.11. We easily

a(2)
find that

E2*(F8k+l’ 4 Zé)

has the form

“ s
: Ve
l////’ H

Again using 11.18, the reader can easily calculate the higher dif-

ferentials in (11.20).
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12. An Example Por The Metastable Exact Sequence

In [13], Mahowald used his special case of 8.5 to give extensive
calculations of the metastable homotopy groups of spheres. The most element-
ary spaces after the spheres are the various two-cell complexes; in particu-
lar, the four such non-trivial ones distinguished by their structure as
G(2)-modules.

In this section, we apply 8.5 to calculate some of the unstable
groups of the space X7 = 7 U2 e8 as an example of the techniques involved.

The stable homotopy of X7 is easily studied. We have an exact

sequence
(2.a) 9 Exta(g)(22,22)~£ Exta(g)(ﬂ*(X7), 7,) QQExtG{2)(zg,z2).4 ,

and O is exactly multiplication by h ox = h X (eg., see [2]). Hence

o?

*
EXtQ(2)(H (XY)’ Z2) consists of elements of two kinds:

(12.2) i) elements @ in the image of I ,

ii) elements B for which J(B) # 0 and hoJ(ﬁ) =0 .

Elements of this second kind may be written explicitly as Massey products in

* z
Exta(z)(H (XY)’ 2) . Exactly, we have

(12'5) B = <J(5)) h0> j)
. N 0 *
where ¢ = () is the unique non-zero element in Ext ’70(2)(H (X7)’ Z2)

Consequently, we obtain
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*
Proposition 12.4 The following extensions occur in Extﬁ(g)(ﬁ (X7), ZE) :
1) n{r,hee) = b I

ii) If o =0 in Exta(g)(zé,z?) , then a<7,ho,i) = <a’7’ho>kn'
Proof By the slide formula for Massey products,
AB,7,8) = (%,8,7)8 ,
we obtain (ii). To show (i), note that
ho<7’ho’k) = <ho’7’hoXi

from 12.2(ii) and 12.4(ii). On the other hand, the "Hirsch" formula ([17],

[24]) {a,b,a) = (& Yy a)b implies <ho’7’ho> =h;7 since h U h =h ,

and (i) now follows.

Using the tabulated results ({16}, [33]) on Exta(z)(zg,zg) , we obtain

*
Exta(e)(}{ (XT)’ z2) for t-s <20 as
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Proposition 12.6 In the range of (12.5), there are only two non-zero

differentials:
2
%leg) =1 a4,
2
62T = hl d L
Moreover, there is a non-trivial extension
2[hu} = Q .

Proof These differentials are non-trivial since the sequence (12.1) is actu-
ally a long exact sequence of Adams spectral sequences, being induced from
the obvious cofiber map of spaces, and the corresponding differentials are
non-zero for spheres.

The next possibility for a non-zero differential is th . In fact,
Bz(th) = (2h52)L - 271 by naturality, but 26°L = can?t’= 0 since

02n =0 . Thus th represents the Toda bracket

F, (2,n2),<;)]

in ns*(X7) , and is indeed an infinite cycle.

There remains the possiblity of a differential on f . 1In the Adams

spectral sequence for the sphere, Bz(fo) = 2h2(do) - Hemce f_ represents

the Toda bracket

(o(do), 2, ¢}

. s
in =« *(X7) . This completes the first part of 12.6.
For the second assertion, note that hh is a permanent cycle repre-

senting the Toda bracket
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(% 2, )
Hence
2 2
(12.7) 2(,2,1) = (,2,1)2 = (5,2,20) = (o5,h,1)
o~ WA WA A

But this last represents (h 2,;) =0 , and 12.6 follows.
s

4
5 18
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Remark 12.8 The reader might wonder why we did not use the slide formula in

(12.7), obtaining 2{02,2,L} - [202,2]L = ngL =0 . But these eguations are
-~ wA A

valid only modulo the total indeterminacy which in this case is 2n522(x7) .

Now we turn to the calculation of ﬂ*(s7 U2 e8) in the metastable

range. The fiber in the map

FL - S? U2 68 - QL(SL+7 U2 eL+8)

[s7 U, e8) A (87 U 98)} . The calculation of

is given as QSL-l X, >

T
*% *
Ext 0(2)(H (FL),A,Zg) is routine using the first spectral sequence in §9

s,r

a(2y(E (FL),8,7,) has

(in this case an exact sequence), and we find Ext

the form

<epeg)

r-s—| 0O 1 2 3 4 5 6 7 8

In particular, the reader should note that, since Bh<87’68> = (e8 8>e8) ,
it follows that the element 7 , in the space El(FL’A) , corresponding to
Sql(ao} satisfies Sql(y) = ey ®eg . This is an example of the type of
twisting referred to in §6, particularly 6.11. It is easy to check that

there are no differentials in this range in the resulting Adams sequence, s0O

ol o
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We now evaluate the map 612 of 8.5.

) = IO , and there are no further non-trivial images

Proposition 12.10 52(115

L
o

for r-s <8 .

Proocf Since the k-invariant of h is Sq8(c7} , it is evident that

2L
62(h5£} = I, . The only other possibility is B(hBL) = €hl(e7,98) , but
this is part of the tower associated purely to A . Hence € =0 , and 12.10

follows.

Corollary 12.11 The unstable resolution of S7 U 68 in the metastable
Ltoroilary 2he of > A0 the metastable

range has the form

r~s »| O 1 2 3 L 5 6 7 8 9 10 11 12

There are clearly no further differentials, so E2 = E° in this range.
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13. PFurther Calculations For Some Truncated Projective Spaces

In this section, we study the groups

na () L 126,

(13.1)

a. (PF%9) , 1<6,n=2.

i+n
They are of importance in the joint work of the author and E. Rees on embed-
ding projective spaces ([42]), and provide examples illustrating much of the
theory of Part I not already explored in §§9-12.

We being by recording the stable homotopy of the spaces in (13.1) and

in our range.

*, 6 .
Lemms 13.2 Exta(g)(H (p 2), Zz) is given by the table

in our range.
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Lemma 13.3 Exta(g)(ﬂ*(P62), 22) is given by the table

5
L
3
2
1 1
s 0
t-s -

]

T 2 3 & 5 6 7 8 9 10 11

in our range. (Both 13.2 and 13.3 are evaluated by using the exact sequence
of cofiberings

2 4 200"’5’700’

(13.4)

Pl —)le-ap.?m,

taking the resulting long exact sequences of Ext groups, and using the
tables in [13], pp. 5%, 55, and 60 to evaluate Exta(z)(ﬁ*(Pgm), ZE) in our
range.)

From 13.2, 13.3, and the fact that, in ng(Iém) , the class correspond-
ing to 4L(5) is non-zero ([13], p. 55, and the observation J (L(5)) =
2{65}) , it follows that 52h2(5) = 0 in the Adams spectral seguences for
which 13.2 and 13.3 are the E2 terms. On the other hand, by inspection
we see that 52(h2(5)) is the only possible non~zero differential. Thus

E2 =E in both cases, and we have the table (localized at 2)

(13.5) __d |1 |2 |5 | % |5 |6 ] 7 |8 _| 9
ﬁsj(P oz iz ozl Zg (22}5 Zo® (22}2
nsj(P6l) 2,1 2, | 75| 2, z, | 7, ® zg (Zz)3 (22)5 .
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Now we consider the unstable homotopy groups (13.1) for ZEP61 y
22P62 . ©Since these are suspensions, the fibers
LR 22P6 5 QL2L+2P61
L 1 1
(13.6) ! l

F e — 22P62 - QLZ

1+2_6
L P

2

are given explicitly in §1 and their homology calculated in §3 (particularly
3.9, 3.10). There is no difficulty in comstructing resclutions to evaluate
€ 1
% .
:(*(FL ) for < 8 . {For the fiver F

point where 1.11 1s valid; thus the fact that we are dealing with suspensions

, we are one dimension beyond the

is essential for effective calculation.)

Lemma 13.7 n7(FL2) = 7 generator A ,
"o {F 2) = Z, & Z generators B, C
8\7g L 2 ’

with relation nA = 2B .

2
Proof We are in the range in which 1.11 applies. The fiber Fi has homol-

ogy generators

7 8 9
O(el; * ez‘) GQl(eA) on(ez\L)
ole, * e.) ole. ¥ e.)
(15.8) Lo

c(e4 * 66)

Passing to cohomology over @(2) , we apply 3.7 to show that
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sa'(0q,(e,)) = o(&(e,)”

]

5a'(ole, *;))" = 56°(o(e, * ¢,)) ,

and there are no further non-zero operations in {13.8). 13.7 now follows on

taki t *(r 2 Z, in thi
aking Ex G.(?)(H (FL s ,) in this range.

The situation for FLl is similar. However, we must also take into

account the classes Z2e {225 R Z2e ) Z2e (2:2e R 2263 Y {in the notation
1 1 2 2 1 2
of 3.9).
Lemma 13.8 . (F l) = enerstor D = (228 * de )
= 5L Z gensrator 1 1
1 2 2
ﬂ6(FL ) = 2, generator E = Q,l(Z el) + (Z e )_‘.2@2>
(7 1) = enerator F = (Zze de )
"(F ) = 2%, gemerator 1 =%
¢ = z2el-<22el, %e,)
(3)

KB(FL]-) = Z, generators ’ uvD
g - {n,4,D}

. 1 2 . *
Also, in the map 9 : Fi” -5 F ", ve find ¢,(D) = 9,(E) = @ ,(F) = ¢,(G) =0,

but
9. (H) = 1A .

Proof Through dimension 8 , n*(FLl) = n*s( FLl) since FLl is h-connected.

*
We thus take a stable resolution. H (FLl) has generators
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5 6 7 8 9
(o5 %) Qle))” ale)”  ale)”  gley)”
(epey)” (e * o)™ Qe ayey)
(65,e5>* <e3)e6>* (es * es)*

*

(13.9) x
<eh’65> (eB,e7)

* *
e5<e5,ek} ek<85’eh>
*
<eh’66>

in dimensions less than or equal to 9 . A basis over ((2) is easily seen
* * * * * *
to be (65 * 65) s Ql(e5) s (eli- * eh) b <e5’95> s e§<33:e)+> b Qg(e5) 3

* %
¥ in this range. Relations are Sql( {eq)) = Sql(e *e ) =0,
5 3 h 4

(es * e

sa'(e5 * o)" = sa7(a (e,))"
(13.10)
(50489784 ) (o5 * o5)" = 86y * &))" .

Next, since Bh(eh * eh) = <e§’eh> + Ql(e3) , We see that, in the

1 2
* = .
Adams spectral seguence for o 82(eu eu) h (Ql(e5)) Moreover,
there are no further differentials in our range, and E3 =E .

Finally, noting the fact that

*

9 (el * o) = (e, * o))",

we see that the filtration 2 class, due to the second relation in (13.10),

maps to nA in K*(FLZ) .

Corollary 13.11 The E? term of our spectral sequence 6.4 for Ezfé6 has

the form
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O N

up to extensions (which are marked with dotted lines).

Remark 13.12 By using the techniques of §§1 and 8, we note that j*(G) 5
Jx(H) generate the unstable part of the homotopy group ::8(22?6) . More-
over, a simple argument with Whitehead products shows that J,(G) cannot be
a suspension element. Thus j*(H) is the only candidate for an element in
0216(]?6) in 7(8(22P6) . In particular, the generator of 1r6(P6) is the

attaching map of the cell building P'? :

(13.13) X L8l LT

E

2
and it must be clear from (13.13) that the top class in 2 P7 is spherical

if and only if GQ(X) =0 in ﬂ8(22P6) . But the only non-zero candidate
is j,{H) ; and in (22P62) 5 1.3.(H) £0 by 13.8. This proves the key

result needed in [43]:

Theorem 13.13 22P7 has top-class spherical if and only if 22P72 does.

We now complete the calculations of this paper by calculating

n2+i(ZPée) and =« (P62) in the range of(l}.}).

1+i
3

Without difficulty, we find that the homotopy of the fiber ¥

1, in

the map

6 LI+1.6
ZPQ-»QZL P2
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is given by

3 5 6 7

3
(13.14) “j(FL ) Zy | By | 2, 9%

Generator | I J K, {n,2,1} -

Clearly, 82(02) = I, and no other non-trivial boundary is possible. A

schematic representation of ﬂ*(ZP62> in our range can now be given as

A

> 2,1}
(13.15) 2 %,h,(z)/

1 o £y generalor h, (3)
' /]
8 0

t-s = | 3 L 5 6 7

The extensions 2v(3) = j(K) , n[hoh2(2)] = J,{n,2,I) must be veri-
fied. (Of course, the second extension follows directly from the fact that
B[h2(2)] = I .) To obtein the remaining extension, note that we are outside
the range where 8.5 holds, so the extension is not necessarily surprising-
(The point is, if 8.5 were true in this dimension, then in the resoclution
both XK and h2(5) would occur in filtration 1 , and the extension 2v(3) =
J,K would clearly be impossible.)

Specifically, the difficulty with extending 8.5 occurs here because
th(ah) = Liz is & Z), class, and sh(‘k)z = [Sqlah 8] by + thSqlzh] in

6

K(Zé,h) . Using the fact that we can take an unstable "resolution” of =P 5

with first K-invariants given as



(13.16) =p o
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2 2
6 (Geg,ceﬁ) SqlLu+Sq bs by

> K(Z,3) X K(2,,1)

> K(Z2;5) X K(ZM;B) P

we easily justify {13.15), and this provides a good exsmple of why the range

of dimensions in which 8.5 holds cannot be extended.

Remark 13.17 We note in passing that, in the map u : FL5 -3 QFLl , we have
6 2.6
pe(K) =0, we(n,2,I) =94 ; and in themap w : 2P, » 02 P, , ve heve

ey (2)) = 3,(R) + 2v(2) .

Now we conclude the discussion by studying briefly the homotopy of
P62 itself. It is a routine calculation with the Serre spectral sequence

to give the homology of the fiber in the map

6 L.L.6

P, - QTP

2 2

in dimensions less than 8 . The fact that there are non-trivial cup prod-
ucts in P62 produces some minor unpleasantries such as: (i) the class

which should have transgressed to (8308@)* is ldentified with the class
transgressing to (e2°e5)* , and (ii) in H7(F) , the class which transgresses

*
to (e20620e2°e2) is & Zg-Bockstein,

58{0-1((e5,eu)* + e U es ® e5)} .

This illustrates the way in which the results of §1 fail when X is not a
suspension.

The homctopy of F is given by

d 3 i 5 6
(13.18) ﬁj{F) 7z 2, @2, | T, &7 Z, @ Zg
Generator [L2,L2] ﬁ; L niﬂ [LB,L5] M, P
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Further, we have relations naﬁ =2M, ﬂ[Lz,LZ] =2, and XK) =1,

Z(M) = {n,2,I} while ZIP =X on suspending, i.e., taking the map

F - QFL

Clearly, M(2) =K @L , (3) = [L5,L5] . We may also verify O(L(5)) =
2P . This is not trivial; it involves the construction of an unstable reso-
lution of P62 , and makes essentiel use of the fact ({29]) that 22P72 is

reducible. Here is what the resolution looks like through dimension 6 :

P
- o
L.
-

AN

n
W
=
w
N

t-5 —

The k-invariants may be easily calculated. Notice that M has fil-
tration 2 here but oM has filtration 3 in the resolution of ZP62 .
This change of filtration degree would seem to merit further study (e.g., see

[15] for an example of what can happen).



10.
11.

12.

13.

1h.

15.

16.
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