
THE HOMOLOGY OF SYMMETRIC PRODUCTS
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In this paper we compute the homology groups for the various symmetric

products of any space X of finite type. Thus we complete the calculations begun

by M. Morse, Smith and Richardson in the 1930's and carried dramatically for-

ward by N. Nakaoka in a series of papers dating from 1955. Our methods are

essentially geometric in nature and are based on a close examination of the geometry

of the topological bar construction introduced in [10]. Indeed it was the study of

the symmetric products which led to [10], but the exposition given here is self-

contained.

(1) The w-fold symmetric product SPm(X) is the set of all unordered «j-tuples

<xlt..., xm> of points in X. Equivalently, SPm(X) is the orbit space of the Cartesian

product Xm under the action of ¿^m, the symmetric group on m letters. It has the

quotient topology.

Let a base point *elbe given, then there is an inclusion

j:SPm(X)<= SPm + 1(X)

given on points by

j(\xi> • • • > xm)) = \*> xi, ..., xm).

Moreover, there is the evident associative and abelian pairing

M: SPm(X) x SPn(X) -> SPn+m(X)

defined on points by

^*(\-^lj ■ • • > Xm/, \Xm+i, . . ., Xm+n/) = \Xi,. . ., Xm, Xm+i, . . ., Xm + n/.

M respects inclusion in the sense that we have the commutative diagram

m
SPm(X) x SPn(X) —> SPn + m(X)

/xl
1 m

Sp<"-i(X) x SPn(X) —> SP"4"""1^).

In particular M induces a Pontrjagin multiplication in the set

CO

@(X, Y) = 2 #*(SPmW, SPm-\X); Y)
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where T is a suitable coefficient ring (for example Z, or Zp) and a result of Steenrod

[3] for connected X

H*(SPn(X); F) s 2 H*(SPm(X), Sf-^X); F)
m=l

shows that it is, in fact, sufficient for our purposes to calculate 3%(X, F).

(2) 3iï(X, F) is a bigraded ring, that is, if we set

^,m = Ht(SPm(X), SPm-\X);F)

then

Moreover, since M is commutative and associative so is M*.

In case Zis a Moore space A(Fl, n) (n}± 1) it follows from the Thom-Dold theorem

[8] that SPco(A(U, n)) = \im dir SPn(A(U,n)) is an Eilenberg-MacLane space

K(U, n). Thus âê(A(U, n), F) is just a bigraded version of the Pontrjagin ring of

K(U, n) which has been completely determined by H. Cartan [2], [3]. Thus the

problem reduces to finding a proper bigrading for Cartan's results. In fact it turns

out, with II = r=Zp where p is prime, that generators (in homology) are in 1-1

correspondence with the admissible monomials 0" in the Steenrod algebra ¿&(p)

of excess <n, and the bidegree of the generator is (\0"\+n, I). Here \3fi'\ is the

degree of 9>l and / is the "length" of &1. Thus if

0>l = ßH^HßH0>^ ■ ■ .0*ißsi + i

then l=p', and we have

Theorem 5.2. ¿%(A(FL, n)) is ring isomorphic to H*(G(U, n)) where G(F\, n) is a

certain (explicitly given) tensor product of bigraded differential algebras of four kinds

(divided polynomial algebra P(m, r), special divided polynomial algebras Ph(m, r),

Grassmann algebras E(m, r), and special Grassmann algebras Eh(m, r)).

Of course these are just the bigraded versions of the algebras introduced by

Cartan, and the double indices specify the bidegree of the generators.

This is our main result. The special case when II is cyclic is proved in §4. The

proof is then completed in §5 where we also use a result of Dold [4] to compute

H#(SPm(X)) for arbitrary X of finite type. Except for the proof of an algebraic

result, the Cartan-Moore theorem (Theorem 1.1) the paper is entirely self-contained,

in fact together with the results of [10] our techniques give the most direct path

to the cohomology of the Eilenberg-MacLane spaces known to the author^).

O A short proof of the last part of the Cartan-Moore theorem can be given using the

Eilenberg-Moore spectral sequence (filtering by bar degree). Indeed if /: A -> B is a map of

D.G.A. algebras so /«,: H(A) -»• H(B) is an isomorphism then El(f): ^(B(A)) -> ^(BiB)) is

already an isomorphism. Finally, it is easy to show that two different resolutions of the same

D.G.A. algebra have isomorphic homology.
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(3) To illustrate our results we now use them to calculate the two primary

cohomology of ^ with untwisted coefficients. Since the singular locus of (S2ny

under £r\ has dimension 6« it follows that

H'M; r) ~ Hto-¿SPKS"); T)

for / < 2« -1. On the other hand, with twisted Z or Z„ coefficients it is easy to see

that

//'(^;r)s//8n+4-i(SP4(^+1);r)

in the same range of dimension.

Hence, since H^SP^S2"), SP3(S2n))^Hj(SPi(S2n)) fory>6«+l it follows that

we can use 0l(S2n; Y). In particular we specify all generators of 3&(S2n; Z2) having

second degree á 4. These correspond to /, Sq'(i) 1 </5j 2«, and Sq2r + sSqr(i) with

r> 1 and r+s^2n. Moreover each of these generates an exterior algebra, hence all

elements of bidegree 4 in 3ft(S2n, Z2) are contained in

E(e) ® E(f2) <g • • • <g E(f2n) <g £(*2,0) (g • • • ® E(gu) (g ■ • •,

where e is dual to i (bidegree (2«, 1))/ is dual to Sq1 (bidegree (2n+j, 2)) and *u

is dual to Sq2i+iSqi (bidegree (2«+ 3/'+/ 4)).

Thus a Z2 basis for all elements with second degree 4 are the/ (g/ i<j, and the

gij. We can write

dim / <g / = 8« - (2n - i) - (2n -j),

dim(*u) = 8n-3{2n-(i+j)}-2j,

and setting a = 2n — i, b = 2n—j, c=2n — (i+j) and passing to the limit over n we

see that an additive basis for H*(if^ Z2) is

fafb,   with b > a and gcj,

where dim (fafb) = a + b, dim (gCJ) = 3c + 2j.

(4) We now study the ring structure in H*(¿^, Z2).

Remark. Consider the "2-fold suspension"

s2 : X2(SPr(X)) -> SPr(L2X)

defined in the evident way (see §3). When X is S2n it follows from 3.4 that (i2)*

induces a map of degree +3, p.: H*(£^) -*■ H*(¿Q, and it is not hard to show

(from the proof of 3.4 and the fact that (s2)* is obtained from a cell map) that

p.(a)=a u w where h>=^(1).

On the other hand the map

M: SP2(S2n) x SPV) -> SP^S2»)

gives rise to a map

m: H*(S?2) (g H*(£Q -> H*(£Q
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and it is easy to verify that m is just the transfer homomorphism induced by the

inclusion

I:Sr\@S^^Sr\.

From these remarks and some further study of g0yl we can now show that

H*(¿^, Z2) is ring isomorphic to the polynomial algebra in 3 variables

P(w,g,f)

modulo the single relation wf=0 (w=/j.(1) corresponds to g1¡0, g corresponds to

lo.i and/is f0-fx).
(5) To find the order of the various cohomology classes above we use the in-

formation implicit in the chain complexes given in 2.1 to 2.4 on the Bockstein

cohomology operation ß2 corresponding to the exact sequence

0 -» Z2 —> Z4 —> Z2 -*■ 0.

We find j82(/)=/2, ß2(g) = w +fg. Thus the homology of H*(^, Z2) with respect

to ß2 is

P(g2) ® E(fg).

Thus all other elements have order exactly 2. Moreover ßi(fg)=g2, and we can

now read off the 2-primary cohomology of ^ with integer coefficients.

We defer further details and more extensive calculations of H*(SÇ) for all n

to a further paper.

I would like to take, this opportunity to thank Professors E. Calabi and A.

Aeppli for many helpful conversations—indeed this article is largely the content

of my thesis written under Calabi's direction. I would also like to thank A. Mayer

for renewing my interest in this problem.

1. Cartan's theory of constructions. Let A be an associative algebra with unit

over the ring A (Z or Z„). It is bigraded in case A is a direct sum

CO CO

i=0    i=0

and

Aij-Akl c Ai+kj+l.

There is a natural grading associated to the bigrading,

4 = 2 A'k
k

and A is commutative in case

a-b = (-lyb-a

if aeAp, b eAq.
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A is regarded as a bigraded ring when we set A00 = A, Ai; = 0 if zVyVO. The fact

that A has a unit implies there is a map r¡: A -> A, and we assume it is a map of

bigraded rings. A will be called augmented if there is a map e: A -> A of bigraded

rings so that 07 = id.

If A is an augmented, commutative, bigraded algebra over A it will be called a

D.B.A-algebra in case there is a derivation 8 in A of degree (—1,0), i.e.

d:Ai)-±Ai-UJ,

8(a-b) = (8a)b + (~l)pa-8b   ifaeA„

and, if A is regarded as a bigraded algebra with trivial derivation, e is a chain map.

Note that the tensor product of two D.B.A-algebras over A is again a D.B.A-

algebra if we define a bigrading by

(A ® A B\, =       2       A* ® firt

and an augmentation by e(a (g è) = e(a)e(è).

A construction is a triple of D.B.A.-algebras (.4, AT, M) with Af=/l <g>A 7Y as a

bigraded augmented ring (however, not necessarily as a chain complex) such that :

(1) The injection A -> A <g 1 is a map of D.B.A-algebras.

(2) The projection tt: M -> N defined by Tr(a ® b) = e(a)b is a D.B.A-map.

(3) e* : //*(M) -^ A is an isomorphism, that is, M is acyclic over A.

^4 will be called the initial algebra and N the final algebra of the construction,

Ñ is ker (e) n N.

A special construction is a construction with a A-homomorphism í (a contracting

homotopy) of bidegree (1, 0) (not necessarily a ring homomorphism) which

satisfies

(1) s2=0,

(2) s8 + 8s=l—r¡e,

(3) 1 (g Ñ^s(M),s(M)-s(M)czs(M).

Theorem 1.1 (Cartan, Moore). Let (A,N,M) be a construction and

(A', N', M', s) a special construction. Suppose there is a D.B.A-map g: A ->■ A', then

it may be extended to a unique D.B.A-map g: M-> M' so that *(1 (g N)^s(M');

hence to a unique homomorphism g:N^-N'. Moreover if H0(A) = A and

*„.: H*(A) -*■ H*(A') is an isomorphism the same is true 0/**.

[The proof does not have to be changed in any essential way from that in [3] for

D.G.A-algebras, and is thus omitted.]

Theorem 1.2 (Cartan). Let (A, N, M), (A', N', M') be constructions, then there

exists a construction

(A®AA',N®AN',M").
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Proof. Let M" = (A (g A') (g (N (g N') with 8 defined using the "shuffle"

isomorphism

M (g M' -> M".

Given a D.B.A-algebra y4, let Z=kere, and define B(A) = A + Ä+Ä®hÄ

+ ■ ■ ■ +A (gA- • -®aA+ • • •. A new bigrading is defined in B(A) as follows: if

«i<g--<gßn has bidegree (/,/) in the (g bigrading its bidegree in B(A) is

(i+n,j). An augmentation in B(A) is defined by e|A is the identity, and e\B(A)ij

is the 0-map for / or j greater than 0.

Let a be an element of the symmetric group SPm. For each such a there is a

chain map shuff (a)A (g • • • ®A to itself which permutes factors (with the appro-

priate signs). Using these maps we define a commutative, associative multiplication

in B(A) by

[ax <g- • -(goJ-K+l ®' ■ -® ön+m]

= (_!)«. 2?= i aim <»,)   2   (sgn a)[shuff «(Oi (g • • • (g an+J]
aeS(n.m)

where •!>(«, w) is the set of all (n, m) shuffles.

We now define a derivation in A (gA B(A) by

0(a ® [ai ® ■ • -(g) a„]) = So <g [fli ®- • -® a„]

+ (_ l)dim a + dim al(n-1)^ (g [a2 <g ■ ■ . <g aj

+ (- l)dlm ac7 (g ^   J   C" M«! ® • ■ ■ ® flA+1 ® • • • ® «»]
W = l

n-1 ^

+ 2 (-l)n + SO)[ai®---® Say (g■ • • (g an] ^

where S(j) = 2k<j dim afc.

A contracting homotopy s is defined by

s(a<2> [fli <g • • • <g an]) = (-lfdim^ (g, [5(g) Oi ®---®an]

where ä=a—ne(a). It is easy to check that

sd + 8s = 1 — 7?£.

Moreover, 8 is a derivation with respect to the multiplication in A <g> 5L4). Thus

by projection S induces a boundary operator 8_ in .8L4) which is also a derivation.

We have
n-1

3_[a! <g- • -® an] = 2 (-l)fc[fli ®- ' -® ûjA+i ®- • -® an]
/c = l

n

+ 2 (- l)"+s<w[ai ® • • ■ ® 8ak (g ■ ■ • <g an].

Thus, the triple (A, B(A), A <g B(A), s) becomes a special construction. It is known

as the bar construction.
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Remark. Our boundary operators differ in sign from those usually used in the

definition of the bar construction, as does the contracting homotopy s, so as to

make clearer the geometric interpretations which arise in §3.

2. Constructions for special D.B.A-algebras.

Definition 2.1. The Grassmann algebra E(n, m) is the D.B.A-algebra with a

single generator e of bidegree (n, m), (ee = 0) and trivial derivation.

Definition 2.2. The divided polynomial algebra P(2n, m) is the D.B.A-algebra

with generators pup2,...,pn,...,p¡ of bidegree (2ni, im), trivial derivation and

multiplication given by PiPj = Ci+j¡ipl+j (where Ci+3ti is the binomial coefficient).

If A=ZP it is an easy exercise with binomial coefficients to show

P(2«, m) s T(2n, m) (g T(2np, mp)®---<® T(2npj, mpj) <g• ■ •

where T(2k,j) is the polynomial algebra on a single generator <u of bidegree (2k, j)

truncated by the relation wv=Q.

There are also certain combinations of these algebras which we need.

Definition 2.3. The special Grassmann algebra Eh(2n+l,m) is isomorphic to

E(2n+\, m) <g P(2(«+1), m) as an algebra, but 3\ (g p¡ = he ®p¡-\. The integral

homology of Eh(2n +1, m) is generated by the elements {e (g pj), each generating

a cyclic subgroup of order h. The homology ring is trivial.

There is one more algebra we will need, the special polynomial algebra Ph (2n, m)

(where h =p> p a prime), but it is enormously complex. It has the form

P(2«, k) <g • • • (g E(qj2n+1, q'k) <g P(q*2n + 2, q%) <g • • •

where q runs over all primes not equal to p, and a very complex derivation which

I will not specify. It is best described by specifying its homology ring over Z.

H^(Pn(2n, k)) has as generators the elements {p,} (p¡ e P(2n, k)) with order

{pj\ = hVj(p) (vj(p)=pk where j=pkm with m prime to p).

The technique used for computing H%(B(A)) for these rings is substantially the

same in all cases. Let M, N, K be D.B.A-algebras for which M (gA N=K as a

bigraded algebra, the inclusion /: M-^M® IeK, and the projection 7 =

e (g 1 : K^- N are both D.B.A-maps. A filtration, and hence a spectral sequence,

for K is defined by setting &'i(K)=j-1(NQ + N1+ ■ • • +AQ (that is, y'"1 of the

/-skeleton of N). It is easily verified that E\q(^) = HQ(M) <g Np and E2g(^')

= HP(N, Hq(M)). Moreover, in the case at hand the higher boundaries di may be

explicitly given, and from knowledge of the Eœ terms (and the explicit generators)

the structure of H*(N) can be inferred.

The N that we use will only be a divided polynomial algebra or a Grassmann

algebra (as these are, in a sense, the only algebras which occur in the bar con-

struction). They have the advantage that their homology is free over A, thus the

E2 terms are relatively simple. The procedure is to use an N to kill the smallest

dimensional homology groups in M, then iterate the process for K, etc. till we have

an acyclic complex. It is a remarkable fact that this procedure actually works !
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Applying this technique and assuming A=Z we obtain the following four

lemmas :

Lemma 2.4. B(E(2n-\, m))=P(2n, m).

Lemma 2.5. There is a construction with initial algebra P(2n, m) and final algebra

E(2n+ 1, m) <g E2(4n+1, 2m) <g • • • <g E^n+l,^™) <g• • •

where p runs over all primes and 1 &j< oo.

Lemma 2.6. There is a construction with initial algebra Eh(2n — \,m) and final

algebra

Ph(2n, m) <g Ep(2np +1, />m) <g • • • <g Ep(2np> +1,p'm) <g>• • ■

where p is a prime and h —pk.

Lemma 2.7. Withp, h as above there is a construction with initial algebra Ph(2n, m)

and final algebra

Eh(2n, m) (g Ep(2np+l, mp) <g>• ■ • (g E^np'+l, mp1) (g• • •.

In the case A=ZP the results are much simpler, the only algebras which occur

are of the form E(2n+1, m) or T(2n, m). For these we have

Lemma 2.8. There is a construction having E(2n+l, m) as initial algebra and

T(2(n +1), m) <g T(2(n + \)p, pm) ® ■ ■ ■ <g T(2(n + \)pi, p'm) ® • ■ •

as final algebra.

[This is an immediate consequence of 2.4.]

Lemma 2.9. There is a construction with initial algebra T(2n, m) and final algebra

E(2n +1, m) (g T(2(np +1), mp) <g • • • <g T(p'2(np +1), p'm) (g • • •.

This completes the necessary calculations.

3. Cell decompositions and suspension. Throughout this section we will assume

that X is a countable CW-complex with a distinguished 0-cell *.

Definition 3.1. X has a normal filtration if there are subcomplexes X0<^ Xy<= X2

<= ■ ■ ■ c xn<=- ■ ■ ■ with union X so that * e X0.

If X has a normal filtration put

XkJ = (^-skeleton of X¡) u X}_y

and

Gk.j  —   Hk(Xk¡j, Xk_yj).

The CkJ are all free A-modules and if we set Cy=2fc Gk,¡, C¡ becomes a chain

complex with boundary operator equal to that in the sequence of the triple

(Xk,j,  Xk-yj, Xk-2j).
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Proposition 3.2. Hk(Cj) = Hk(Xj: X^y).

(This is a special case of Theorem 2.6.10, p. 80 of [9].)

Now suppose that X has a commutative, associative multiplication with unit *

M: XxX-^X

M is normal in case : (1) M is cellular, and (2) M(X¡ x X¡)<^ Xi+j.

Proposition 3.3. If X has a normal filtration and multiplication then C="2kJ CkJ

has the structure of a D.B.A-algebra.

Proof. Xk^u is a neighborhood deformation retract in XkJ; hence we may

apply the relative Eilenberg-Zilber theorem to

^<[(-*k,/> Xk-l,j)X\Xm.ni -*m-l,n)]

and since CkJ is free over A it follows that there is a natural equivalence

a: Ckj ® Cm¡n-> Hk+m[(XkjXk_1j)x(Xm¡n, Am_ln)]

and a8® = 8a. We define the ring structure

/x: Ckj (g Cm>n —*■ Ck+mj+n

by u=M*a. Then the naturality of a assures that u makes C into a D.B.A-algebra.

Now, we apply these results to symmetric products. There is an inclusion

SPn(X) c SPn+1(X)

obtained by identifying <xx • • • xn> with <xx • • • xn, *>. SP'C(X) is then defined

to be the union of the SPn(X) with the weak topology. The monoid structure in

the disjoint union of the SPn(X) induces in SPCC(X) an abelian, associative multi-

plication with unit *. Thus SP°°(X) is always a filtered space with multiplication.

Theorem 3.4. Suppose SPco(X) has a CW-decomposition with * the only 0-cell

so that the filtration and multiplication are normal, then SP^CIZX) inherits these

properties and there is an isomorphism of D.B.A-algebras

J: C(SPX(I,X)) -► B(C(SP">(X))).

[Here 2,X is the reduced suspension of X.]

Proof. There is an inclusion

jn:I,SPn(X)-+SPn(I,X)

defined by jn(t <[xx • • ■ xn» = (.(tXy),..., (txn)}, and this extends to a map

j: ZSP°°(X) -» SP^ZX). Moreover, there are the maps/n)(ES'P0O(A'))n -* SP^X)

where jn=M(jx ■ ■ ■ xj). The images of the successive j(n) contain the preceding

ones and form a filtration of SP00(I,X) "transverse" to the usual one.

There is a map Fn: Inx(SPcc(X))n-^ (LSP^Xy which is a relative homeo-

morphism on interior /",

F(t1---tny1---yn) = ((t1y1)---(tnyn)).
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Now /" may be triangulated by defining

< = {(h ■ ■ ■ Q e /» : ta-\y, g ta-\2) g       g ta-\n)}

where a is an element of the symmetric group S^n, and jnFn | int d% x(SP"°(X))n

is a relative homeomorphism. Also, im jnFn \ o-% x (SP'*(X))n = im jnFn \ a}

x (SPco(X))n. Thus the images im (jnFn | o\ x (,S7>00(A'))'1) for n= 1, 2,... decom-

pose SPW(LX).

We would now like to say the images jnFn | o-J x^1 x • • • xEn) where the El

are cells of SF00^) gives a CW-decomposition of ¿'/"(SA'). This follows from

Lemma 3.5.   jnFn=jn-1Fn.1(DJxMJ) when restricted to a]a)x(SP'a(X))n where

Dj(ty ■•tn)=(h-tr-tn)

Mj(yy ■ ■ ■ yn) = (yx ■ ■ ■ M(y¡, yj+x) ■ ■ ■ yn).

[Here cr){1) are those points of a" for which tj = tj+1.]

The proof follows from the definitions.

This gives the desired CW-decomposition. It is easy to check that the usual

filtration is normal for it, and it remains to check that M is cellular.

Lemma 3.6. M(jnFnxjrFr) \ a1ix(SPm(X))nxaryx(SP'°(X)ycjn+rFn+r | a?+rx

(SPcc(X))n + r and is cellular with cellular approximation given by the formula

M^{anxE1x ■■■ xEn}®{arxEn + 1x ■■■ xEn+r}

= (-l)ir2(-1)a{(^n+rxshuffa£1x--- xEn+r)}
a

where t = 2E=i dim Ek and a runs over all (n, r) shuffles.

Proof. The first part is clear. For the second consider

olxE1x ■■■ xEnx<7rxxEn + 1x ■ ■■ xEn + "
shuff

-+olxorxxE1x--- xEn + r

SP°°(ZX)
jn + rp

In + rxE1x ■■■ xEn + r.

In a\ x a\ a triangulation is induced by the inclusion, and a\ x o\ = 2« <^â+r where a

runs over all (n, r) shuffles. The proof is now completed by observing that the

following diagram is commutative.

o¿x(sp(x)y

spx(S x) shuff a x shuff a

olx(sp(x)y
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Now, to complete the proof of the theorem set J{anxE1x ■ ■ ■ xEn} =

[{E1} <g • • • (g {En}] in B(C(SPX(X))). From 3.6 it follows that this is a map of

bigraded algebras. The fact that it is a chain map follows from 3.5 and the relative

Eilenberg-Zilber theorem.

To complete this section we show that for a great many X (and all those we

need) SP'C(X) admits a CW-decomposition to which the multiplication and

filtration are normal.

Theorem 3.7. Let C be a countable semisimplicial complex with a single generator

in dimension 0, and \C\ its geometric realization, then -SP"(|C|) admits a CW-

decomposition satisfying the hypothesis of 3.4.

[For the definition and properties of |C| see [7].]

Proof. Define SPn(C) = Cx ■ ■ ■ x C/S(n), its generators are of the form

<Ci • • • cn>,   Cj a generator of C,

d/ci • • • cn> = <^Ci • • • 3¡cny,

sk\cí ' ' ' cn/ = \Vl ' ' ' skcn)-

It follows from Theorem 2.2 of [7] that

\SP"(C)\ = SPn(\C\)

and if * e|C| is the point corresponding to the 0-dimensional element in C, then

the decompositions are compatible with inclusion. Finally, it is an easy calculation

similar to that in the proof of 3.5 to show the multiplication is normal.

4. The homology rings 8&(X) for Moore spaces. A(tt, 1) is the geometric realiza-

tion of a countable s.s.c. with a single 0-dimensional generator, and we may apply

the results of the last section.

Theorem 4.1. (i) There is a D.B.A-homomorphism E(\, 1) ->• C(A(Z, 1)) inducing

isomorphisms in homology.

(ii) There is a D.B.A-homomorphism Eh(\, 1)-»- C(A(Zh, 1)) inducing iso-

morphisms in homology.

Proof, (i) By the theorem of Steenrod mentioned in the introduction, the injection

j: A(Z, 1) -> SP">(A(Z, 1))

induces an injection in homology onto a direct summand. On the other hand,

both these spaces are K(Z, l)'s. Thus/,, is an isomorphism and it suffices to map

the nontrivial generator of E(\, 1) onto the chain representing a homology

generator.

(ii) SPx(A(Zh, 1)) is a K(Zh, 1). Its homology groups are known to be Z in

dimension 0 and Zh in each odd dimension.

Let A(Zh, 1)=|C|, we may also assume that the dimension of |C| as a CW-

complex is 2. The normalized chain complex CN is the quotient of the chain complex
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of C by the complex generated by degenerate elements. It follows from [7] that

CN is isomorphic to the CW-chain complex of | C |. In particular C# has dimension

2n and its top dimensional cells are permuted freely among themselves under the

action of Sn. The singular locus is the set of cells of C$ on which Sn does not act

freely, it is generated by cells cxx ■ ■ ■ xcn with 2 or more of the c¡ equal.

Let 77: C# -> SPn(C)N be the projection tt(cx x • • • xcn) = <c1 • • • c„>. There

is a chain map T: Cj} -► C£ defined by T(cx x • • • x c„) = 2a caa, x • • • x ca(n)

where a runs over Sn. It is clear that TrT=n\n, and defining p(cx- ■ • cny =

T(cy x ■ ■ ■ x cn), pis a. chain isomorphism SP n(C)N -» im T.

Finally, we need an explicit approximation for the Eilenberg-Zilber theorem,

CN(g---(gCN->(Cx ■■■ xC)N.

This is given in case « = 2 by

P (cr n (g Om)  = ¿( — 1 )"Saim + n) • • • Sa(m + 1)°" x ^«(m) ' ' ' ■S'irU/7"'

where a runs over all (n, m) shuffles. Pn is obtained from this by iteration. As a

consequence Pna = aPn for any a in Sn, for details see [5].

Now, let F be a chain in CN representing the one-dimensional generator in

#*(|C|), and F is a chain so that 8F=hE. Set Fn=F(g- • -ig F in (CN)n and

En = (l/h)8(Fn).

It is easy to see that Pn(En) and Pn(Fn) both belong to im T in (Cn)w and are

disjoint from the singular locus. Thus

■nP\En) = n\ln,       ttP»(F") = n\fn

and P(ln)=Pn(En), p(fn)=Pn(Fn). On the other hand En, and hence Pn(En)

represents a nontrivial element of order h in H*(\C\n), thus the same is true of /„

for H2n-y(SP"\C\).

Thus /„ also represents a nontrivial element of order h in

H2n.y(SP\\C\),SPn~i\C\)

and it follows that for;V2«-l, H,(SPn(\C\), 5'Fn-1(|C|)) = 0.

Finally, we have

(n + m)lfn+m = 7rPn + m(Fn ® Fn) = MPn (g Pm(Fn ® Fm) = n\mlfn-fm

since F is natural. Thus/,/m = (Cn+m,n)/n+m. Also,

n\ln = nPn(En) = nnP%E®Fn-1) = n(Mly ® (n-l)!/,^) = «l/i/,-!,

and the proof is complete.

To handle the case of &(A(n, n)) n>\ observe that A(n, «)=S(^(-n-, n — 1)).

Theorem 3.4 now may be applied, and the study of the resultant D.B.A-algebra is

easily accomplished with the techniques and results of the first two sections.
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To give the final results we need some notation. Let Tk(n) be the set of ordered

sequences of positive integers (tlt..., tk) with ]>í=i t¡ = n (ordered partitions of«).

Let Z+ be the positive integers, and Ck the fc-fold Cartesian product of Z+ with

itself. We now define functions Ap, Bp from Tk(n) x Ck-X to Z+ as follows:

Ap[(t1,...,tk),(s(l),...,s(k-l))]

= tk +p«* - »{.* _ x + tk _ ! +psik " 2)k - 2 + tk _ 2 + • • • +/>s(1>(r1 + El) ■ ■ ■ ]}

(here e,=0 if r¡ is even and £¡ = 1 if í¡ is odd). Bp[(tu ..., tk), (s(\),..., s(k— 1))]

=psa)+"+s<-k'iy{(A(x, v), 5(x, y)) will be the bidegree of the generator associated

to (x, y)}.

Now we must isolate three further properties of the pairs in Tk(n) xCt_ t—(x, y)

is of type 1 if x=(r1;..., tk) and tk is odd, it is of type 2 if rfc is even, and of type 3

if tx is even.

Notice that Ap(x, y) is odd only if (x, v) is of type 1.

Now, for each prime p set Jn(p) equal to the tensor product of the rings

Pp(Ap(x, y), Bp(x, y)) [Ev(Av(x, y), Bp(x, y))] as (x, y) runs over \Jnk=2 Tk(n) xCM

and is of type 2 [respectively of type 1].

Similarly Kn(p) is the tensor product of rings Pp(Ap(x, y), Bp(x, y)) [respectively

Ep(Ap(x, y), Bp(x, y))] as (x, y) runs over all elements in \Jk=2 Tk(n) x Ck-X and is

simultaneously of types 2 and 3 [respectively of types 1 and 3].

Now we have

Theorem 4.2. (i) For n even

£%(A(Z,n);Y) = H*(P(n,l)®   <g>   Kn(p);Y),
p prime

®(A(Zh, n);Y) = H*(Pn(n, 1) <g Jn(p); Y),

where h =p' (p prime).

(ii) For n odd

@(A(Z,n);Y) = H*(E(n,l)®   <g>   Kn(p);Y),
v prime

3t{A(Zh, n);Y) = H*(Eh(n, 1) ® Jn(p); Y),

and if Y is Z or Zq with q prime this is an isomorphism of bigraded rings.

(The proof is a direct induction using 4.1 to start and the calculations of §2 to

continue.)

For the special case where Y=ZP the reader will have little difficulty specifying

the resultant algebra as the tensor product of T(r, s)'s and E(q, t)'s where (r, s),

(q, t) run over a somewhat larger set than the corresponding index set in the

integer case.

Moreover, one could easily use the fact that the Steenrod algebra A(p) is trans-

gressée in the Serre spectral sequence to obtain new proofs of some results of

Nakaoka on the action of the Steenrod algebra in SPn(M) where M is one of the

other Moore spaces considered here.
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One further remark. The use of the Thom-Dold theorem in the proof of 4.1

was not essential. It is possible in fact with a little more work to use the results of

Cartan [2] and 4.2 to show SPcc(A(Zh, n)) is a K(Zh, n) directly, thus obtaining an

independent proof of part of the Thom-Dold theorem.

5. The homology of SPn(X). Dold has shown [4] that H*(SP n(X)) depends

only on H*(X). On the other hand, given an arbitrary arcwise connected space X

of finite type, there is a wedge product Y of Moore spaces with isomorphic homol-

ogy groups. Thus H*(SPn(X)) = H*(SPn(Y)) and the problem reduces to calcu-

lating 3&(Y\ F) where y is a wedge product.

Theorem 5.1. Let A, B be topological spaces which satisfy the hypothesis of 3.4,

then

3t(A V5)ï H*(C(A) (g C(B))

the isomorphism being of bigraded algebras.

Proof. A, B are CW-complexes, thus they have contractible neighborhoods of

their respective base points.

The mappings px: A ^ A v B, p2. B-> A v B induce a mapping p:SPm(A)

xSPœ(B)->SPcc(A v B).hetTn = p-íSPn(A V B), then Tn.x is a neighborhood

deformation retract in Tn as is SPn~\A v B) in SPn(A V B). Thus we can take

excisions, and

Th-Th-X S SPn(A V B)-SPn~1(A V B)

= J (SPi(A)-SPi-1(A))x(SPn-i(B)-SPn-i-1(B)).

The result now follows from the relative Eilenberg-Zilber theorem and the fact

that p commutes with multiplication.

Corollary 5.2. Let it be a finitely generated abelian group then 3%(A(tt, n)) is

isomorphic to H*(G(tt, ri)) where G(n, n) is an explicitly given tensor product of the

D.B.A-algebras of 4.2.

Proof. A(n, n) may be represented as a wedge product of A(Zh, w)'s and A(Z, «)'s.

As an application of these results let X be a Riemann surface of genus g. Then

M(X) £ F(l 1) ® ■ ■ ■ (g F(l 1) ® P(2l)   (where F(l 1) appears 2g times).

Thus S%(X) has no torsion, and the same is true for SPn(X). The Betti number of

Hk(SP n(X)) is equal to the number of ways we can have

exH-\-e2g + r g n

subject to the condition

ex+ ■ ■ ■ +e2g + 2r = k
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where £¡ = 0 or 1. This is easily seen to be

r = o \K    z.ri
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