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A C O M B I N A T O R I A L  C O M P U T A T I O N  OF THE FIRST 

P O N T R Y A G I N  CLASS OF THE C O M P L E X  

P R O J E C T I V E  PLANE 

ABSTRACT. This paper carries out an explicit computation of the combinatorial formula of 
Gabrielov, Gel'fand, and Losik for the first Pontryagin class of the complex projective plane 
with the 9-vertex triangulation discovered by Wolfgang Kfihnel. The conditions of the original 
formula must be modified since the 8-vertex triangulation of the 3-sphere link of each vertex 
cannot be realized as the complex of faces of a convex polytope in 4-space, but it can be so 
realized by a star-shaped polytope, and the space of all such realizations is not connected. 

0 .  I N T R O D U C T I O N  

In a series of papers [24]-[26] in the 1940s, L. S. Pontryagin defined and 
studied 'characteristic cycles' on smooth manifolds. In the introduction to 
the first paper of the series, he stressed the importance of having 'a definition 
of characteristic cycles which would be applicable to combinatorial mani- 
folds' since it would provide an algorithm for their calculation from 'the 
combinatorial structure of the manifolds'. In the late 1950s, Rdne Thom 
[33], and independently Rohlin and Sarc [28], proved that the rational 
Pontryagin classes are combinatorial invariants, and in the 1960s. S. P. 
Novikov [23] proved that these classes are topological invariants. 

No combinatorial formula for Pontryagin classes was proved until the 
mid-1970s, when Gabrielov et al. [6], [7] established a formula for the first 
Pontryagin class pl(X) of a combinatorial manifold X. The formula ex- 
presses Pl(X) in terms of the simplicial structure of X and some additional 
structure imposed on X, so in this sense the formula is not purely 
combinatorial. R. McPherson [18], N. Levitt [16], and D. Stone [30] have 
interpreted this formula from different viewpoints. Gel'fand and MacPher- 
son [9], [19] have recently announced a combinatorial formula for the 
Pontryagin classes which holds in all dimensions. In none of these papers is 
the formula computed for any non-trivial example. 

In this paper, we carry out an explicit computation of the Gabrielov- 
Gel'fand-Losik formula for the first Pontryagin class of the complex 
projective plane with the simplest possible combinatorial structure, the 
nine-vertex triangulation CP92 discovered by Kiihnel [13], [14]. We present 
an algorithm that can be used to calculate the 'combinatorial part' of the 
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formula for an arbitrary combinatorial manifold. The 'non-combinatorial 
part' of the formula requires a close examination of a particular eight-vertex 
triangulation M of the 3-sphere which is the link of each of the nine vertices 
of CP~. This triangulation M, studied by Griinbaum [11] following classical 
work of Briickner, cannot be realized as the complex of faces of a convex 
polytope in 4-space. But we show that M can be realized as the complex of 
faces of a star-shaped polytope in 4-space. Moreover, we will show that the 
space of all such (orientation-preserving) realizations is not connected, so 
CP92 violates the connectivity hypothesis made by Gabrielov et al. in the 
proof of their formula (condition (A) of [7]). 

The paper is organized as follows. Sections 1-4 contain a brief exposition 
of the formula for the first Pontryagin class, in the original form presented 
by Gabrielov et al. [7] (cf. also [30]). We set notation and establish some 
general facts about the required additional structure on X: hypersimplicial 
sections and configuration data. After stating the formula, we show how 
work of Kuiper [15] can be used to remove the connectivity hypothesis of 
Gabrielov et al. if the dimension of X is 4. 

Roughly speaking, hypersimplicial sections are chains in a cell complex 
A(X) associated to the combinatorial manifold X. The boundaries of these 
chains reflect the cell structure of D(X),  the dual cell complex of X. In 
Sections 5-8 we give an algorithm for finding hypersimplicial sections. This 
algorithm is purely combinatorial and is easy to implement on a computer. 

There is no such general algorithm for the configuration data required for 
the formula. In Section 9-11 we construct these data for the Kiihnel 
triangulation of the complex projective plane. We make considerable use of 
the simplicial automorphism group of this triangulation. We also investigate 
the Briickner-Griinbaum triangulation of the 3-sphere. 

In Section 12 we apply our algorithm to produce hypersimplicial sections 
for the Kiihnel triangulation, and then we plug these sections and the 
configuration data into the formula for the first Pontryagin class. A 
computer-aided computation verifies that the formula gives the expected 
answer. The final section contains some remarks and questions. 

This work was done as part of the author's PhD thesis at the University 
of Georgia (May 1987). I wish to express my gratitude to my adviser Clint 
McCrory for his help and guidance; to the Mathematics Department of the 
University of Georgia for its hospitality and challenging atmosphere; to the 
College of Civil Engineering in Belgrade for granting me a long leave; and 
last, but not least, to my daughters Zorka and Isidora for their innocence 
and understanding. 
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1. FLATTENINGS AND CONFIGURATIONS 

Let L be a triangulation of a k-sphere, and let cL be a simplicial cone over L. 

(1.1) DEFINITION.  Aflattening of L is an embedding 

~: c Z  ~ R k + 1 

which maps the cone vertex to the origin and which is linear on simplices 
of cL. 

Note that a flattening is uniquely determined by the images of the vertices 
of L. Using this, it is easy to see that the set of all flattenings of L has a 
natural (smooth) manifold structure (as an open subset of (R k+ I){vertices of L}). 

We denote this manifold by F(L). The general linear group GLk+ 1 acts on 

F(L); the quotient space CF(L) is called the configuration space of L, and its 
elements configurations. 

Not  very much is known about CF(L): 

(1.2) if dim L = 1 then CF(L) is contractible; 
(1.3) if dim L = 2 then CF(L) is path connected; 

(1.4) if dim L ~> 3 CF(L) can be empty; if nonempty it can be 
disconnected. 

Statement (1.2) is trivial, but (1.3) is not; this is proved by Cairns [4]. The 
first part of (1.4) is also due to Cairns [2], and we shall verify the second 
part in Section 10. 

Now, suppose that L is a combinatorial manifold, ILl = S k. If p is a vertex 
of L then its link L' = Lk(p, L) is a triangulation of a (k - 1)-sphere. There 
is a map 7Zp: CF(L) ~ CF(L') sending the configuration of L represented by 
a flattening 

~:cL-+ R k+ l 

to the configuration rip(if) of L' represented by the composition 

(1 .5)  cL' ~ c L  ~ R k÷ ~ --~ R k÷ lAb(p) --- R k. 

Note that, unless - is specified, this composition is not well defined. 
However, flattenings obtained from different choices of = are equivalent 
under the action of GLR, hence the composition (1.5) represents a well- 
defined configuration of L'. 

Let Fr(L), r >~ O, be the subset of F(L) containing all q/6F(L) such that 
the number of subsets S of {vertices of L} with the property 

IS[ = k + 1 and ~(S) is linearly dependent 
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is at most r. Let CFr(L  ) be Fr(L)mod GLk+ 1. In addition to CFo(L ) (which 
we call 9eneric confiourations) we will need CFI (L  ) only. 

Note that rcp(CFo(L)) ~ CFo(L'  ). 

2. HYPERSIMPLICES 

(2.1) DEFINITION. Let p, q be nonnegative integers. The standard hyper- 

simplex A p'q o f  type (p, q) is the convex polyhedron in R p+q+2 defined by 

A p'q= [-0, 1-]P+q+2~{~xi--qq - 1}. 

Note that: 

(a) dimA " ' q = p + q + l ,  
(b) A p'q and A q'p are isomorphic under x ~ x' where x~ = 1 - x~. If p + q 

is even this isomorphism preserves orientation; if p + q is odd it 
reverses orientation. 

(2.2) EXAMPLES. (a) A p'° is the standard (p + 1)-simplex. 
(b) A 1'1 is a solid octahedron. 

(2.3) Let Z and A be disjoint subsets of {1, 2 , . . . ,m},  and let 

n +  1 -IZl  <lal  < n +  1, n < m .  

Let 

An(Z, A) = [-0, 1-Ira c~ {x, = 0, i ~ A  u Z }  c~ {x,-- 1, i ~ A }  n ( Z x ,  = n + 1). 

Then An(Z, A) is isomorphic to A n_ lal(Z, ~ )  and hence is a hypersimplex of 
the type (p, q) where 

q = n --]AI, 

p = I z l  - q - 2 .  

An orientation of An(Z, A) (i.e. an orientation of A n_ IAI(Z, ~ ) )  is determined 
by (the parity of) an ordering of elements of Z. Note that An(Z, A) is a face 
of the standard hypersimplex [0, 1]" c~ {Z x i = n + 1}. 

On the other hand, it is easy to see that every face (of positive dimension) 
of A = [0, 1-1 m c~ {E x i = n + 1} is of the form An(Z, A) (each face of A is an 
intersection of a face of I-0, 1] m and the hyperplane {Zx i = n + 1}). If 
S _ {1, 2 , . . . ,  m}, ISI = n + 1, let A(S) denote the point x = (xi), where x i = 1 

if i e S, x~ = 0 otherwise. 
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(2.4) PROPOSITION. There are natural correspondences: 

(i) {vertices of A} = {A(S):S ___ {1, 2 , . . . ,m},  ISl = n + 1}, 

(ii) {k-faces of A} = {A,(Z, A):Z, A c_ {1, 2 . . . .  ,m}, Z c~ A = ~ ,  
IZl = k +  1, n - k  < Ihl < n +  1}, 

(iii) {orientations of A,(Z, A)} = {parity classes of orderings of Z}. 

Moreover, A,(Z, A) is a face of A.(Z', A') if and only if 

A ~_ A', A w Z  ~_ A 'wZ' .  

(2.5) PROPOSITION (Gabrielov et al. I-6, Prop. 5]). The boundary of an 
oriented hypersimplex is given by 

k 

O) Obn({Zo,...,zk}, A) = ~ ( - - l fAn({Zo, . . . ,2 , , . . . ,zk},  A) 
i=O 

k 

- Z ( -  O' ({Zo . . . . .  . . . . .  A {z,}) 
i=O 

if k > 1, where, if IA[ = n - k + 1 (resp. [A[ = n) the first sum (resp. 
the second) is empty. 

(ii) OA.({Zo, zl},  A) -- A(A w {Zx} ) - A(A w {Zo} ). 

3. H Y P E R S I M P L I C I A L  S E C T I O N S  

Let X be an n-dimensional combinatorial manifold. Consider the following 
standard hypersimplex: 

A = [ O ' l ] " x c ~ { ~ x X v = n + l  } , ,  

where vK denotes the set of vertices of a simplicial complex K. 

(3.1) DEFINITION. A(X) is the subcomplex of A consisting of all 

A(v Lk a, va), a ~ X 

and all their faces. A(X) is a cell complex, with cells of the form A(Z, 
A) = A,(Z, A) where A ~_ va, A w Z ~_ vSta for some a~X. 

Let 

C.  = C.(A(X); R) 

be the group of cellular chains with coefficients in R (R = Z or R = Q). 
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(3.2) Let X' be the first barycentric subdivision of X. For  every a ~ X define 

its (closed) dual cell by 

Da = {~ ~ X': 3p ~ X', r < p, a n p = the barycenter of a}. 

Then DX = {Da :a~X}  is a cell complex and [DX[ = IX[. 
Assume that every cell of DX has some orientation (the vertices of DX, 

i.e. cells dual to n-simplices of X are assumed to be positively oriented). Then 
incidence numbers e,~ of dual cells are defined. For  every a EX, 

~3Da = ~.~>~e~Dz holds (compare with condition (iv) below). 

(3.3) DEFINITION.  A collection {Ba:o-eX} ~ C ,  is called a hypersim- 

plicial section of X if it satisfies the following conditions: 

(i) Bcre Coodim,, 
(ii) the support of Bo- is contained in A(v Lk o-, vo-), 

(iii) if dim a = n then Bcr = A(va), 

(iv) ~Ba = ~>~%~Bz. 

If k ~< n, a collection {Ba:o-E X, codim a ~< k} satisfying conditions (i)-(iv) 

for all a of codim a ~< k is called a hypersimplicial k-section of X. 

(3.4) PROPOSITION.  For every k - - 0 ,  1 . . . .  , n there exists a hypersim- 

plicial k-section of X. 
Proof. First note that if codim tr > 0 then A(v Lk a, va) is a ball, hence 

(3.5) Heodim,r(A(v Lka ,  re); R) = 0. 

The proof is now by induction on k. If codim a = 1 then Ba is uniquely 
determined by (i)-(iv) (and will be of the form Ba = ___A(v Lk a, va)). If 
codima > 1 then the existence of Ba follows from (3.5), the assumed 
existence of Bz for ~ > a and the fact that 

(3.6) The construction of Ba is local: we are using only Bz, a < z. There 
are several ways to make it canonical (i.e. to describe an algorithm for 
constructing Ba using the combinatorial structure of Lk a and nothing else). 
One such canonical construction is described by Gabrielov et al. [7] (see 
also MacPherson 1-18, p. 1131), but in Section 5 we will describe another 
which is easier to implement on a computer (all work with R = Q only). 
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4. THE FORMULA 

Let X be a combinatorial n-manifold such that the configuration space 
CF(Lk G)is nonempty for every an-4e X. 

(4.1) REMARK. There are combinatorial manifolds for which this is not 
true (e.g. a suspension of Cairns' example [2] of a triangulation L of S 3 with 
CF(L) empty); however Whitehead [34] proved that every combinatorial 
manifold has a subdivision with nonempty configuration spaces of all links. 

(4.2) DEFINITION. Let a~X, codim a =  4, and let ~9 be a generic 
flattening of Lk a. Define a homomorphism 

C(~): C4(A(X); R) --, Q 

specifying its values on the generators A(Z, A) of C 4 as follows: 

(i) If A(Z, A) is a type (1, 2) face of A(v Lk o-, va) then 

Z = { z o , . . . , z 4 }  ~_vLk6, A = w r w { a } , a ~ v L k a .  

Consider the following ten bases of R4: 

O{z~,zp, z~,a}, 0 ~ < f l < y ~ < 4 .  

Let # = number of these having the same orientation, then 

(-iy 
C(~k)(A(Z, A))= 48 

(ii) If A(Z, A) is a type (2, 1) face of A(v Lk o-, wr) then 

Z = {Zo,...,z4} __ vLktr, A = vtTw {ao, a,}, ao, a I ~vLk~r. 

Consider the following ten bases of R4: 

O{z~,zp, ao, al}, 0;~<c~<fl~<4; 

let # = number of these having the same orientation, then 

- ( -  1)*' 
C(t~)(A(Z, A))= - -  

48 

(iii) C(O)(A(Z, A))= 0 otherwise. 

Note that C(O) depends only on the GL 4 orbit of O eFo(Lka).  If 
~eCFo(Lk~)  define C(~) to equal C(~k) where ~ is any flattening 
representing the configuration 5. 
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(4.3) DEFINITION. Let zeX,  codimz = 3, and let 0: [C., 1] --* FI(Lk z) be 
a path with endpoints in Fo(Lk z) containing only finite number of points 
in Fa - F o. Define a homomorphism 

C(0): C3(A(X); R) ~ Q 

specifying its values on the generators A(Z, A) of C 3 as follows: 

(i) If A(Z, A) is a type (1, 1) face of A(v Lk z, vz) then 

Z = {Zo,... , Z3} ~___ V t k  z, A = w u {a}, a ~ v t k  z. 

Consider the cross-ratio k(t) of O(t){z o, zl, z2, z3} mod O(t)(a): if Pi, 
i =  0 , . . . , 4  are points of R 3 -  {0}, the cross-ratio k of 

PoP1PzP3modP4  is k = r12ro3/ro2r13 where 

r rP2] 

[31- o,-I/,/LZj P1 _r12 r13 

Note that if k(t)~ (0, 1, oo} then O(t)q~Fo(Lk z). Let/~+ = number of 
times k(t) passes through one of 0, 1, or oo in the direction 
-~0 ~ 1 ~ oo ~ ,  and let ~_ = number of times it passes through one 
of these in the opposite direction (both as t increases from 0 to 1). 
Then 

C(O)(A(Z, A ) ) -  ~+ - p -  
24 

(ii) C(O)(A(Z, A))= 0 otherwise. 

Similarly as before, if 0 is a path in CFI(Lk z) with endpoints in CF o 
containing only a finite number of points in CF 1 - CFo, set C(0) = C(O) 
where 0: [0, 1] ~ F 1 is any path such that the diagram 

Fl(Lk z) 

I-0, 1] t7 _-~ CFI(Lkz)  

commutes. 

(4.4) For  each a"-J~X, j = 3 ,  4, choose a generic configuration 
~ ~ CFo(Lk a). Then for each pair tr n-4 < 1; n- 3 we have two configurations 
of Lkz:~p~ and rc~ where ~:CFo(Lk a ) ~  CFo(Lk z) is the projection 
described in (1.5). Choose a path 0"~:[0,1] ~ C F I ( L k  z), such that 
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0~(0) = ~ ,  0,~(1)= rc~. Finally, choose a hypersimplicial 4-section 
{Ba:a"-JEX, j <<. 4} of X. 

Let 

(4.5) P = ~ IC(~)Ba  + e'-3>~" ~C(O~OB,I(Da)* 

where (Do-)*: C4(DX; Q) ~ Q is defined by (Do.)*Dz = 6~(=  1 if a=z, 0 
otherwise). (For a discussion of the formula, see [30].) 

(4.6) THEOREM (Gabrielov-Gel'fand-Losik). Assume 

for every a"-4E X, CF(Lk o.) is connected; 
for every a"- 3 E X, CF(Lk a) is simply connected. 

(A) 
(B) 

Then 

(i) 
(ii) 

P is a cocycle in C4(DX; Q); 
its cohomology class [P] E H4(DX; Q) is independent of the choices 
made in (4.5); 

(iii) I f  X is a smooth triangulation of a smooth manifold X then I-P] is the 
first Pontryagin class of X. 

(4.7) REMARK. We do not know whether CF(L) is simply connected for 
every triangulation L of S 2. Strong supporting evidence is provided by the 
following result of Bloch et al. [1]: Let L be a triangulation of S 2 and let 
o .2 eL. Then the diagram space of (L, o.) (=  the space of all simplexwise 
linear homeomorphisms L-int o. ~ A 2) is contractible. 

On the other hand, we have an example of a triangulation L of S 3 such 
that CF(L) is disconnected (the link of a vertex in the combinatorial 
manifold X to which we wish to apply the theorem, see Proposition 10.5). 
But, if dim X = 4 then assertion (A) can be removed from the theorem. We 
need the following smoothing result of Kuiper [15]. 

(4.8) THEOREM (Kuiper). Let X be a combinatorial n-manifold such that 
CF(LK p) ~ 0 for every vertex p of X. I f  

(4.9) ~k_l(CF(Lk a))= 0, all akEX, all k > 0 

then for every choice of ~pE CF(Lk p) there exists a smooth structure on 
X = IXI with the following two properties: 

(i) the triangulation of X by X is a smooth triangulation; 
(ii) for every vertex p of X the natural configuration of Lk p (in the tangent 

space TpX) and the configuration ~ belong to the same component of 
CF(Lk p). 
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REMARK. Part (i) is a particular case of Kuiper's theorem 4. Part (ii) 
follows easily from his method of proof: he starts with an arbitrary collection 
of flattenings (Brouwer charts in his terminology) at vertices of X and 
applying carefully chosen homotopies obtains a collection of smoothly 
compatible charts. The key is his Lemma 3.3 which makes it possible to 
choose required homotopies ft so that the first derivatives of ft depend 
continuously on t, thus providing a path from ~kp to the natural flattening 
of Lk p in TrX. 

(4.10) COROLLARY.  I f  dim X = 4 then Theorem 4.6 holds without asser- 
tion (A); moreover (iii) does not require smoothness of a triangulation. 

Proof Conclusion (i) is trivially true. The proof of (iii) by Gabrielov et 
al. uses only the following consequence of assertion (A): the natural 
configuration of Lk a (in (TX(Ta)  b, b = the barycenter of a) and the chosen 
configuration ft, belong to the same component of CF(Lk a) for every 
an-4~X" 

Note that conditions (4.9) are satisfied (cf. (1.2) and (1.3)) so, by the 
Kuiper theorem, ['P] is the first Pontryagin class of some smooth structure 
on IX[. The remark that a PL 4-manifold has a unique smooth structure 
(Cerf [-5-1) finishes the proof. 

5. A N  A L G O R I T H M  FOR H Y P E R S I M P L I C I A L  SECTIONS:  

I N T R O D U C T I O N  

We want an algorithm for computing Ba, trn-kEx, k ~< 4 using only the 
combinatorial structure of St a, so all computations are to be Clone in 
A,(v Lk a, va) which is isomorphic to A k_ 1@ Lk a, ~ )  (cf. (2.3) and (3.3)). 

(5.1) LEMMA. Let Cp = Cp(A(v Lk a, va); Q) be the 9roup of hypersim- 
pliciai chains. Then there is a homomorphism F: Cp_ ~ ~ Cp such that 

(i) OFt? = 0 where O: Cp ~ Cp_ ~ is the boundary operator, 
(ii) F is invariant under the action of the symmetric group SvLk~ (i.e. 

F9 = 9F for every gESvLk~). 

Proof Cp and Cp_ 1 are vector spaces over Q. Let {bi}i~ I be a basis of Cp. 
Then {~bt}~a span OCp. Let J _ I be such that {Ob~}j~ s is a basis for 0Cv; 
define a homomorphism Fo:0C p ~ C r by Fo(0bj )=  bj, j~J ,  and extend it 
arbitrarily to a homomorphism Fo:C~_~ ~ Cp. It is easy to see that F o 
satisfies (i). Then F is the average of {9FoV-1, g SS~Lk~}- 
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(5.2) PROPOSITION. Let {Bz:zeX, codim z < k} be a hypersimplicial 
(k - 1)-section of  X and let F: Ck- 1 --* Ca be as in (5.1). Then, / fcodim a = k 

satisfies conditions (i)-(iv) of Definition 3.3. 

Note that in the case k = 1, Ba is already determined (cf. the proof of 
Proposition 3.4). 

A natural basis for the vector space Cp consists of all p-dimensional faes 
A(Z, A) of A,(v Lka,  wr), so we will determine F: Ck_ 1 ~ Ck, k = 2, 3, 4, in 
terms of these natural bases. Since F is invariant under the action of SvLk~ 
it suffices to determine FA(Z', A') for one representative A(Z', A') of each 
type of ( k -  1)-dimensional faces of An(vLko',va ) (there are k -  1 types 
(p,q),p + q + 1 = k -  1). 

(5.3) Thus, our algorithm for computing Ba, codim a = k, consist of a list of 
formulas 

(5.4) FA(Z', A') = ~ a(Z, A; Z', A)A(Z, A), 
Z , A  

one formula for each type of (k - 1)-dimensional hypersimplices. Then, if 

(5.5) = A ' ) A ( Z ' ,  A') .  
~ > a $  Z ' , A  " 

Ba can be obtained as 

(5.6) Bo-= ~ ~(Z', A')FA(Z', A'). 
Z ' , A r  

{Ba} obtained using this algorithm are simplicial invariants. More pre- 
cisely 

(5.7) PROPOSITION. (i) Ba is independent of the orientations of Dz, z # a; 
a change in the orientation of Da results in the multiplication of  Ba by - 1. 

(ii) I f  g: v St a -~ v St(ga) is a simplicial isomorphism then B(ga) = eggBa 
where eg-- + 1 if orientation of D(ga)= g(orientation of Da), ey = - 1  
otherwise. 

Proof. (i) A change in the orientation of Da results in the change of the 
sign of all ~ ,  a < r, and all e,~, a > z. The proof now proceeds by induction 
on codim 0. 

(ii) B(ga) and Ba differ only in the names of vertices and (possibly) in the 
orientations of Dga and Da. The proof is again by induction on codim a, 
using the fact that F is S~Lk ~ invariant. 
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Before explicitly stating formulas for the F's we need to introduce some 
notation, useful in dealing with actions of finite groups on 'subscripts'. 
(Think of Z, A as subscripts for ~, 7, A in (5.4)-(5.6).) 

6. N O T A T I O N ;  T W I S T E D  G R O U P S  AND FORMAL SUMS 

(6.1) DEFINITION.  A twisted group G is a group G together with a 
homomorphism ~: G ~ {1, -1}  where {1, -1}  is considered as a multipliea- 
tive group. 

(6.2) EXAMPLE. (i) Every group G has the trivial twisting: e(g) = + 1, all 
g~G. 

(ii) Sx. the symmetric group on a finite set X, with the usual twisting 
ex(9) = ( -  1) ~¢g), ~(g) the parity of the permutation g. 

(iii) Every subgroup of a twisted group G (in particular every subgroup 
of Sx) can be made twisted by restricting the twisting of G. 

(iv) Let A(Z, A) be a face of A(v Lk a, ~ )  and let Gz, A be the subgroup of 

SvLka 

Then 

Gz, a = {g ~ S, Lk,: gZ = Z, gA = A}. 

Gz, A = {ghlh2:g6Sz, h~ eSa, hz~SvLk~-Z-A } 

and we can define GZ,A by 

~Z,A (gh l h2) = ez(g ) 

where ~z is the usual twisting of Sz- This means that, for g~ GZ,A, 
ez,a(9) = + 1 iff g preserves the orientation of A(Z, A), ez,a(g ) = - 1 other- 
wise (cf. Proposition 2.4(iii)). 

(6.3) If M is an element of the rational group ring of Svek, (i.e. if M = ~ r~g~, 
ri~Q, g ~  S,Lk,) let 

MA(Z, A) = Z r,A(giZ, gi A) 

and similarly for anything else indexed by (a collection of) subsets of v Lk a 
(e.g. a(Z, A), etc.) 
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(6.4) DEFINITION. Elements of the rational group ring of SvLk, are called 
formal sums (of permutations). If M and N are two formal sums, M N  will 
denote their product (in general M N  # NM), so that, for example 

(MN)A(Z,  A ) =  M(NA(Z,  A)). 

(6.5) EXAMPLES. (i) If G is a twisted group we will use the same symbol 
(~ to denote the formal sum ~o~¢ ~(9)9. 

(ii) (~z,a = SzSASvLka-Z-A; 
SxS x = 0 = SxSx  for every finite set X. 

(iii) If H is a subgroup of (~ and ~n = eGtn then G/t  = / t ( ~  = nG where 
n = I/t1 is the size of/4. 

7. F O R M U L A S  FOR F ' S  

Recall (from (5.4)) that 

rA(Z', A') = y~ ~(z, A; z',  A')A(Z, A) 
Z , A  

and that the F's are invariant under the action of SvLk~. This means that if 
g ~ Gz',a' then 

~(gZ, gA; Z', A') = ~Z,,A,(g)~(Z, A; Z', A'), 

i.e. that a(Z, A; Z', A') depends only on the 'orbit' (~z,,a,A(Z, A) so we can 

TABLE I 
F: Cl -* C2 

FA(12, 3) 

2 ( m  - 3)!7~ Zi, Ai 

- -  1 / m  123,0 
( m  - 3 ) / m  134,0 

- -  ( m  - 3 ) / m ( m  - -  1) 123,4 
(m -- 3)/(m -- 1) 124,3 
( m  - -  3 ) / m ( m  - -  1) 134,2 
[(m -- 3)(m -- 4 ) ] / m ( m  - -  1) 134,5 
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T A B L E  I I  

F :  C2 ~ C3 

(a) FA(123,4) 

3!(m -- 4)!~ Zi, A i 

1 / m  1234,0 

- ( m  - 4 ) / m  1245,0 

( m  - 4 ) / m ( m  - 1) 1234,5 

- (m - 4 ) / ( m  - 1) 1235,4 

- ( m  - 4 ) / m ( m  - 1) 1245,3 

- [ ( m  - 4 ) ( m  - 5 ) ] / m ( m  - 1) 1245,6 

[ ( m  - 4 ) ( m  - 5 ) ] / m ( m  - 1)(m - 2) 1234,56 

- [ ( m  - 4 ) ( m  - 5 ) ] / ( m  - 1)(m - 2) 1235,46 

- [ 2 ( m  - 4)(m - 5 ) ] / m ( m  - 1 X m  - 2) 1245,36 

- [ ( m  - 4 ) ( m  - 5 ) ( m  - 6 ) ] / m ( m  - 1)(m - 2) 1245,67 

(b)  F A ( 1 2 3 , 4 5 )  

3 l (m - 4)!~ i Z i ,  A i 

- [ ( m  - 4 ) ( m  - -  5 ) ] / 2 ( m  - -  2) 1236,45 

write 

(7.1) FA(Z',  A') = ~ ~,Gz,,a,A(Zi, Ai). 
i~ l  

Here 1 is the set of Gz,,a, orbits of hypersimplices A(Z, A), A (Z i ,  Ai) is a 
representative of the orbit  i, and 

1 
~ = - -  ~ ( Z i ,  Ai; Z' ,  A') ,  

mi 

where m i is the number  of elements of (~z,,a, leaving A(Zi, Ai) fixed 

(ml = IGz',A' n C'z,, A~I). 
Since A,(v Lk a, va) is isomorphic to A k_ l(v Lk o-, ~ ) ,  codim a = k (the 

isomorphism: A(Z, A)~-> A(Z, A - va), of. (2.3)) and A k_ l(v Lk a, ~ )  is 
isomorphic to A k_ l(m) = A k_ 1(12... m, ~ )  where m = Iv Lk a[ we present 
formulas for 

F : C k _ I ( A  k_ l ( m ) ; Q ) - - ~ C k ( A k _ l ( m ) ;  Q), k = 2, 3, 4 

in the form prescribed by (7.1). Note that  m > k (since 
m = iv Lk a[ > 1 + dim Lk a = codim a = k). 
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(a) FA(1234,5)  

4!(m - 5)!~ Z~, A~ 

- 1/m 12345,0 

( m -  5)/m 12356,0 

- -  (m -- 5)/m(m -- 1) 12345,6 

(m - 5)/(m - 1) 12346,5 

(m - 5 ) / m ( m -  1) 12356,4 

[(m - 5)(m - -  6)]/m(m - 1) 12356,7 

- [ (m - 5)(m - -  6)]/m(m --  1)(m - 2) 12345,67 

[ (m - 5)(m - -  6 ) ] / (m - 1)(m - 2) 12346,57 

[2(m - 5)(m - 6)] /m(m - l ) (m - 2) 12356,47 

[ (m - 5 ) ( m -  6 ) ( m -  7 ) ] / m ( m -  1 ) ( m -  2) 12356,78 

- I(m - 5)(m - -  6)(m, - 7)]/m(m - 1)(m - 2)(m - 3) 12345,678 

[ (m - 5 ) ( m -  6 ) ( m -  7 ) ] / ( m -  1 ) ( m -  2 ) ( m -  3) 12346,578 

[3(m - 5)(m - 6)(m - 7)]/m(m - 1)(m - 2)(m - 3) 12356,478 

[ (m - 5)(m - -  6)(m - 7)(m - 8)]/m(m - 1)(m - 2)(m - 3) 12356,789 

(b) FA(1234,56)  

4!(m - 5)!~i Zi ,  Ai  

[(m - 5)(m - 6 ) ] / 2 ( m -  2) 12347,56 

[(m - 5)(m - 6)(m - -  7 ) ] /2 (m - 2)(m - 3) 12347,568 

(c) FA(1234,567)  

4!(m --  5)!ct~ Zi ,  A i 

[(m - 5)(m - 6)(m - 7 ) ] /6 (m - 3) 12348,567 

8 .  O N  T H E  P R O O F  O F  T H E  F O R M U L A S  F O R  F ' S  

Let Cp = C p ( A  k_ 1(12 . . .  m, ~ ) ;  Q) be the group of hypersimpticial chains. 
We are looking for F: C k - 1  ~ Ck satisfying the conditions of Lemma 5.1: 

(8 .1)  c3rO = O, 

(8.2) Fg = gF for eve rygeS lz  . . . .  . 

Condition (8.2) implies that it suffices to determine FA(Z, A) for one 
representative of each $12..., . orbit of (k - 1)-dimensional hypersimplices, i.e. 
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for one representative of each type of (k - 1)-dimensional hypersimplices. 
Moreover, it implies that FA(Z, A) is of the form 

(8.3) rA(Z, ,4): ~z,A Y~ ~tA(Z,, A.) 
tel 

where (~z,a = SzS.4S(12...m}-Z-a, ~" is over I = collection of all nonzero 
'orbits' Gz.aA(Z', A') of k-dimensional hypersimplices, and A(Zt, At) is a 
representative of orbit i. 

The idea is now a simple one: plug (8.3) in (8.1) and solve for s t. We will 
describe how to do this in the case k = 2 and give some comments about 
the cases k = 3, 4. 

REMARK. The F's listed in Section 7 satisfy (8.2); the computer program 
A (described briefly in (12.6) can be used to check that they satisfy (8.1) for 
specific values of m. Here we answer the question how to obtain these F's. 

There is only one type of 1-face of A1(12 ...m,. J~), namely (0, 0), so 
consider its representative A(12, 3). There are eight nonzero 2-dimensional 
G12,3A(Z, A), whose representatives (Zi, Ai) are: 

( i=1 ,  2, 3: (123, ~ ) ,  (124, ~ ) ,  (134, ~ ) ,  
(8.4) ~i= 4, 5, 6, 7, 8: (123, 4), (124, 3), (134, 2), (124, 5), (134, 5). 

Since it suffices for F to satisfy 

(8.5) OF OA(Z, A ) =  aA(Z, A) 

for only one 2-dimensional A(Z, A) of each type, consider first A(123, ~ )  
and then A(124, 3). 

Write ~A(123, ~ )  = - A(23, 1) + A(13, 2) - A(12, 3) as 

1 
aA(123, ~ ) -  2 ( m -  3)! (~123"~A(12' 3). 

Then 

OF 0A(123, J2f) - 2(m - 3) i 63F G123'~A(12' 3) 

1 ~ 
2(m - 3)! GI23,~12,30Lo~IA[ZI , y , ~ r - ' . .  Ai) 

= - 0c,123,e ~ ~A(Z~, A~) 

(since (~123.~G12,3 = 2 ( m -  3)[(~123,~, cf. Example 6.5(iii)), so that (8.5) 
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becomes 

1 
(8.6) ~ ~td[Zt' Ai] - 2(m - 3)! [12, 3], 

where [Z, A] = G123,~ A ( Z ,  A) .  

It is easy to compute O[Z t, At]: 

i =  1 01123, ~ ]  = -3112,  3] 

(since [23, 1] = - [ 1 3 ,  2] = [12, 3]; we are always representing [Z, A] by 
its first representative in lexicographic order). 

i = 2 , 3  

i = 4 ,  5 

i = 6 ,  7 

i = 8  

0 1 1 2 ~ ]  = - [ 1 2 ,  4] + 2114, 2], 

01123, 4] = 3112, 4], 

01134, 2] = - [ 1 2 ,  3 ] - 2 1 1 4 ,  2], 

01134, 5] = - [ 1 2 ,  4]. 

01134, ~ ]  = [12, 4 ] -2114 ,  2]; 

01124, 33 = [12, 3] + 2114, 2], 

01124, 53 = [12, 43, 

Replace these 0[Zt, At] in (8.6), and equate the coefficients of [ij, k]: 

1 
(8.7) - 3 c q  + e5 - e6 - 2(m - 3)! ([12, 3]) 

- ~ 2  + ~3 + 3e4 + e7 - as  = 0 ([12,  4 ] )  

2~ 2 - -  2~  3 + 2~ 5 - 2 %  = 0 ([14, 2]) 

Repeat a similar procedure with A(124, 3): 

1 G194 3A( 12, 3), 0A(124, 3) = 2(m -- 4)! " ' 

0F 0A(124, 3) = 0('~ 124,3 C45...m 2 °~iA(Zi, Ai) 

(C45..., . is defined by G1 2 4 ,3 6 1 2 ,3  = 2(m - 4)]G124,3C45...m), 

(8.6') ~ chO[C45...,,(Z i, At)] 

where [ ] denotes G124,3(). 
Compute 0[C45 .... (Zi, Ai)], e.g.: 

1 
[12, 33 

2(m - 4)! 

0[C45 .... (124, ~ )3  = 0([124, ~ ]  + (m - 4)[125, ~3 )  

= - 3 [ 1 2 ,  43 + ( m  - 4) [15 ,  2] - (m - 4 ) [12 ,  53 
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and obtain 

(8.7') 
1 

- - ( m  - -  3 ) c t  1 - -  t~ 3 -4- (m -- 1)cq --- 
2(m - 

2(m - 3)~ 1 + 2c¢ 3 + 2ct 4 + (m - 2)~ 6 - t~ 8 = 0 

-3c¢ 2 + c¢ 4 + ct 6 + ct 7 = 0 

- ( m  - 4)~ 2 + (m -- 4)ct 4 + (m - 2)ct 7 + ~8 = 0 

2 ( m -  4)~ 2 - (m - 4)a 6 + 2~ 7 + ~8 = 0 

([12, 3]) 

([13, 2]) 

([12, 4"1) 

([12, 5-1) 

([15, 21) 

The  general  so lu t ion  o f  the sys tem (8.7)-(8.7')  is 

1 1 
(8.8) ~ x =  2 r e ( m - 3 ) !  x c t s = 2 ( m - 1 ) ( m - 4 ) !  - - X  

1 
~2 = x ~ 6  = 2 m ( m  - 1)(m - 4)! + 2x 

2x ~ 7 = y  

1 

% = 2 m ( m  - 4)! 

1 1 
°t4 = - 2 m ( m  - 1)(m - 4)! + x - y c~8 = 2 m ( m  - 1)(m - 5)! - 2y 

where x and y are arbi t rary  rational numbers.  

R E M A R K .  We must  be a little more  careful about  the cases m = 3, 4. If  

m = 4 then ~7 = as = 0 (since Z7, A7 and Zs,  A8 do not  exist) and, in (8.7'), 

the equat ions cor responding  to [12, 51 and [15, 2"1 should be omitted. All 

this has the same effect as setting m = 4, 7 7 - ' - a s  = 0 in (8.7)-(8.7')  and  

(8.8), provided we write ( m -  4 ) / ( m -  4)! instead of  1 / ( m -  5)!. The  dis- 

cussion of  the case m --- 3 is similar and shows that  it is convenient  in (8.8) 

to write (m - 3)/(m - 3)! instead of  1 / ( m  - 3)! 

The  formula  for FA(12, 3) given in Table I is the same as (8.8) with 
x = y = 0 .  

As can be seen from the case k = 2, condit ions (8.1)-(8.2) do not  

determine a unique F. If  k > 2 the number  of  free a, 's increases. In the case 

k = 3 the system corresponding  to (8.7)-(8.7')  has 32 equations and 32 

variables, 13 of  those variables are free. Wha t  is remarkable is that  a 

part icular  solution of  this system can be chosen so that  FA(12, 3) and 

FA(123, 4) have a similar pat tern (cf. Tables I and II  in Section 7); eight of  
the non-free variables in this part icular  solution are zero. In the case k = 4 
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a conjecture was made that F is like the one in Table Ill and then it was 
verified that it satisfies (8.1) (finding a general F requires a general solution 
of a system with 80 variables). 

9. THE KUHNEL PROJECTIVE PLANE C P  2 

The complex projective plane has a triangulation with nine vertices whose 
discovery was announced in Kiihnel and Banchoff [13] (see also [14]). This 
triangulation, which we denote by CP 2, can be thought of as a subcomplex 
of OA 8, the boundary of the 8-simplex A 8. The CP 2 contains all 1- and 
2-simplices of A 8 (36 and 84 simplices respectively), and it contains 90 
3-simplices and 36 4-simpliees (out of 126 3- and 126 4-simplices of As; in 
fact, for every 4-simplex o-~ of A a, either o-4 or the 3-simplex o-3 opposite to 
o -4 in A 8 belongs to Cp2). The complete list of 4-simplices of CP~, each given 
by a 5-tuple of integers from 1 to 9, is given in the Table IV. 

TABLE IV 
Simplices of CP~ 

12456 45789 78123 
23564 56897 89231 
31645 64987 97312 

12459 45783 78126 
23567 56891 89234 
31648 64972 97315 

23649 56973 89316 
31457 64781 97124 
12568 45892 78235 

31569 64893 97236 
12647 45971 78314 
23458 56782 89125 

It is indicated in [13] how it can be proved that CP 2 is indeed a 
triangulation of the complex projective plane. A preprint by Morin,  
Yoshida and Marin [22] contains three different proofs, among  them a 
construction of an explicit homeomorphism 

h: ICP~I -~ CP z 

(~4 of [22]). Unfortunately h is not a smooth triangulation: h is degenerate 
at the vertices of CP~. This means that configurations cannot be obtained 
in the usual way for smooth triangulations: as configurations in the tangent 
space. 
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The symmetries of CP~ will allow us to reduce the number of configur- 
ations to be chosen. 

Consider the permutations 

= (147)(258)(369), 

fl = (123)(465), 

z = (12)(45)(78), 

7 = (aft)-lfl~ = (123)(456)(789) 

and the following subgroups of the symmetric group $12...9: 

G54 , generated by ~, fl, and z; 

G27 , generated by ct and fl; 

G9, generated by ~ and 7 

(the notation is such that [Grl = r). 

(9.1) PROPOSITION. (i) G54 is the full group of simplicial automorphisms 
of  Cp2; all elements of  Gs~ preserve orientation. 

(ii) G 9 acts transitively on Cp2: for every pair i, j~  {1, 2 . . . .  ,9} there is a 

unique gij~ G 9 such that gi j (J)  = i. 

REMARK. The arrangement of 4-simplices in Table IV reflects the action 
of G54. Using our notation from Section 6 we can write the complete list of 
simplices of C P  2 as 

Gs4(~(12456 ) - ½(12459)) 

Here 1/6 and 1/2 indicate that (12456) and (12459) are invariant under 
subgroups of G54 of order 6 and 2 respectively and the minus sign indicates 
that (12456) and (12459) have opposite orientations (since they have a 
common 3-face (1245)). 

(9.2) PROPOSITION. There are two G27 orbits of 1-dimensional simplices 
of Cp2; their representatives are (69)  and (89)  (see Figure 1). 

In order to apply the formula for the first Pontryagin class to the Kfihnel 
triangulation of CP z we must make our way around assertion (B) of 
Theorem 4.6 (and then use Corollary 4.10). The best we can do is repeat the 
assertion in the special case at hand: 

ASSERTION (B') I f  L is either one of triangulation of S 2 indicated in Figure 
1, then CF(L) is simply connected. 
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3 

8 4 

(a) 

4 6 

5 
(b) 
Fig. 1. 

By Proposition 9.1(ii) it suffices to choose a configuration ~9 of Lk(9); 
a configuration ~ of Lk(i)  is then represented by the flattening ~b~ = ~ / 9 9 9 i ,  

where ~9 is the flattening representing the configuration ~9. Our choice for 
the flattening 1~9 is described in Section 10 and it will be proved there 
(Proposition 10.4) that if9 and ~gfi belong to the same connected compo- 
nent of Fo(Lk(9) ), the space of generic flattenings of Lk(9). 

For every 1-simplex (ij) of CP 2 there are maps 

CFo(Lk( j ) )  ~', CFo(Lk(i j ) )  .~ CFo(Lk(O ) 

Given an unoriented 1-simplex {ij} we have two choices for the configuration 
~ j  of Lk(ij):Tri~ i and 7rj~,. Since G27 contains no element of even order, 
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an orientation chosen on one 1-simplex induces orientations on all 1- 
simplices in its orbit. Thus define ff;j as 

(9.3) ~i~ = n,~j 

where the oriented simplex ( i j )  is the same G27 orbit as the oriented simplex 
(69)  or (89)  (cf. Proposition 9.2). 

(9.4) EXAMPLES. ~89 = nsff9, 

= 

ffi9 = zr9t~, i =  1, 2, 3, 

Iffi 9 = ~ilff9, i = 4, 5, 6. 

According to (4.4), for each pair i, {i, j }  we need a path O;.;j between the 
configurations t~;j and nj~,. Each pair i, {i,j} belongs to the G27 orbit of 
exactly one of the following four: 

8, {8, 9}; 9, {8, 9}; 6, {6, 9}; 9, {6, 9}. 

Moreover, there exists a unique 9~ G27 such that either 

(i) 9(i, j ) =  6, 9 or 9, 6 
or(ii) g~G 9 and 9(i, j ) =  8, 9 or 9, 8. 

(9.5) PROPOSITION.  It suffices to choose 

 0,09, 0`9,69,  9,89 
and then define~i,t j according to either (i) or (ii), as Oi,ij = 0"6.69g, or 0`9,69g, 
etc. Moreover, 09,69 and 0"9,89 can be chosen to be trivial. 

Proof. If #(i, j) = 9, 6 or 9, 8 then, by the definition of ~kij, ~kij = r~ffi, so 
01,ij has both required endpoints the same. 

If g(i, j ) =  8, 9, g~G 9, then 0;.;j = 08,89g has endpoints (7~81~9)g= 
n,~j = ~ij and (n 91ff8)g = ~j~li, which are as required for 0`~.,j. 

If g(i, j) = 6, 9, g E G 27, then the endpoints of 0 ì,~3 = 06,69g are (n 61ff9)g a n d  
(n9~6)g and the required endpoints for 0,.,j are n,~j and nj~,. Are (n6~9)g 
and n,ffj, (n 9~6)g and nj~i the same? 

Recall that ff~ = ~1999j , g 9 j ~ a 9 .  Since ggg~ ~ ( 9 ) =  9 and gg9.i1~G27 it 
follows that gg9j ~ ~ {id, fl, f12}. If, say g = flggj, then (n6t~9)g = n,(ff9fl9j) and 
~i~lj = gi(l~9g9j), if not the same, belong to the same connected component 
of CFo(Lk(i  j )) (by Proposition 10.4 and the continuity of hi). 

The proof that (ngt~6)g and nj~; belong to the same component of 
CFo(Lk(i  j )) is analogous. 
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This is sufficient since all we need to know about the path 0i,ij is where 
(and how) it crosses CF 1 - CF o (cf. (4.3)). 

10.  A F L A T T E N I N G  OF Lk(9)" GRLINBAUM'S T R I A N G U L A T I O N  OF S 3 

(10.1) Lk(9)  consists of the following 20 3-simplices 

1237 7145 7124 1245 
7264 7236 2364 
7356 7315 3156 

2138 8254 8215 8457 
8165 8136 8647 
8346 8324 8567 

The symmetry group G 6 of Lk(9)  is generated by fl = (123)(465) and 
z = (12)(45)(78); all elements of G 6 are orientation preserving. (The above 
display of 3-simplices of Lk(9)  reflects the action of G6; n o t e  that orienta- 
tions of the displayed simplices are consistent, so they determine an 
orientation of Lk(9).)  

In fact, Lk(9 )  is simplicially isomorphic to Grfinbaum's triangulation M 
of S 3 (see Griinbaum [10, p. 224]; his vertices A B C D E F G H  correspond to 
our 78453612, respectively). M is a triangulation of S 3 with eight vertices 
which cannot be realized as the face complex of the boundary of a convex 
polytope in R 4 (see Griinbaum and Sreedharan I"11]). However, this 
property of M does not prevent M from having a flattening. 

(10.2) PROPOSITION. Let  ~: M ~ R 4 be a map, linear on simplices, with 

values on vertices as follows: 

~(i) 
x / ~  1 1 

- x / ~  1 1 

2 0 1 1 

0 - 2  - 1  1 

- x / ~  1 - 1  1 

x / ~  1 - 1  1 

0 0 0 1 

0 0 - a  - 1  
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(i) I f  0 < a < 1, ~ is a flattening of  M. 

(ii) I f  0 < a < 1 and a ~ 2 - x/~, ~ is a generic flattening of  M. 
Proof We will give two proofs. 

I. ~ is given by an 8 x 4 matrix.  Let det(ijkl) denote  the 4 × 4 minor  (of  
the matrix ~b) containing the rows ~(i), ~ ( j )  ~(k), ~(I)  in that order.  Then  

(i) ~b is a flattening of M if and only if det(ijkl) has the same sign for 

every 3-simplex ( i jk l)  of M, where the ordering of vertices of all ( i jk l )  
is consistent with some or ientat ion or M; 

(ii) ~ is a generic flattening if and only if, in addit ion to condi t ion (i), 
det(ijkl ) ~ 0 for every 4-tuple ijkl. 

Condit ions (i) and (ii) are easy to check. In fact, 0 < a < 1 if and only if 

det(ijkl) > 0 for every 3-simplex ( i jk l)  with the ordering of vertices as in 

(10.1), and if a = 2 - x//3, then det(1348) = det(2168) = det(3258) -- 0. 
II. Let  N = M - S t (8 ) .  N is a 3-ball and it is easy to see that  O[N is an 

embedding of N in R 3 × 1 (see Figure 2). Hence, ~b: M ~ R 4 embeds M as 

~pN w cone over 3(~N) with vertex ~(8) (see Figure 3). Next, check that  the 

5c i 

x l × l  
V / \  I / /  ® ~ R2×o×1 

4 

Fig. 2. ~]N as seen from above. 

~N 
- -  i 

~(8) 

P ~ "  R 3 x 1  

R 3 ×-1 
Fig. 3. 0(M). 
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origin O (of R 4) is inside ffM ('inside' has meaning since 
ffM = ~(~k(8). ~N)). But, O is inside ~ M  if and only if a point P(0, 0, a, 1), 
symmetric to ~(8) with respect to O, is inside ~ N  and P is inside ~ N  iff 
0 < a < 1 since 

~ # N ~ 0 x 0 x R x  1 = 0  x 0 x  [0,13 x 1. 

All that remains to prove is that ~(8). ~,N can be realized as O. ~#M; this 
follows from the fact that @N can be realized as P .  ~,(~ N). The verification 
of this is similar to the verification at the beginning of the proof that ~bN is 
an embedding. 

i# is generic unless P belongs to some plane determined by ~,(i), t#(j), ~,(k), 
i, j, k ~< 6. It is easy to see (in Figure 2 for example) that the only plane 
intersecting 0 x 0 x [0, 1 ]EP  are 134, 126, and 235 and then to compute 

that the intersection point is (0, 0, 2 - ~/-3). 

(10.3) DEFINITION.  Define ~#~¢ CFo(Lk(i))  to be the configuration given 
by the flattening ~# with a = ½ if i = 9; if i # 9 then set ~ = ~999~ where 

g9i ~ G9, g g i ( i )  =- 9. 

(19.4) PROPOSITION.  ~k and Off (fl = (123)(465)) belong to the same 
connected component of  Fo(M ), the space of  generic flattenings of  M. 

Proof. fl is rotation through 120 ° in the first two coordinates. 

The next proposition is not needed in the sequel, but is rather interesting in 
view of assertion (A) of Theorem 4.6. 

(10.5) PROPOSITION.  ~k and ~9z (z = (12X45)(78)) belong to distinct 
connected components of  F(M), the space of  all flattenings of  M. 

(10.6) COROLLARY.  The configuration space CF(M) has at least two 
connected components. 

Proof of  (10.5). Suppose that tp~ is a path in F(M) such that ~o o = ~k, 
q~l = ~,z. Let dett(ijkl ) be the corresponding minor of the 8 x 4 matrix q~. 

Note that, if (ijkl> is a 3-simplex of M (as in (10.1)) then 

dett(ijkl ) > 0, all t, 

but if ijkle{1234, 1235, 1236} then 

deto(ijkl ) > O, detl(ijkl ) < 0 

(since detl(i jkl)= deto(z(ijkl))). Also note that since the eodimension of 
F -  F 1 (in F) is at least 2, without loss of generality we can assume that 
~0t~Fl(M), all t (i.e. that for every t, at most one quadruple ijkl has 
det,(ijkl) = 0). 
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Now, if for some t det,(1234) = 0 then there are )01 ~ 0 such that 

q~,(4) = 2,~0,(1) + 22q~,(2) + 23~0t(3). 

Since 

deh(7124 ) = Y~2~ deh(712i ) = 23 deh(7123 ) = - 2 3  deh(1237 ) 

and both (7124) and (1237) are (properly oriented) simplices of M, it 
follows that 23 < 0. But, since ( 1 2 4 5 ) ~ M ,  

0 < deh(1245) = 23 deh(1235) 

so that det,(1235) < 0. 
Thus, 1234 cannot be the first element of {1234, 1235, 1236} for which de h 

changes sign (we proved that det,(1235) must  change sign before 
deh(1234)). 

Proofs  that neither deh(1235) nor deh(1236) can be first to change 
sign are similar to (and in fact equal to/~2 and j~ multiples of) the proof for 
1234. 

1 1. 08,89 AND 06,69 

According to Proposition 9.5 it suffices to find paths 

0s.89 : [0, 1] ~ CFI (Lk(89) )  

and 

06,69 : [-0, 1] --* CFI(Lk(69) )  

with required endpoints: zr8~ 9 and zr9~8, rr6~ 9 and 7r9~ 6 respectively. The 
additional requirement is that both paths have only a finite number of 
points in CF1 - CFo (see (4.3)). The paths [0, 1] -~ F 1 we will find are paths 
in the flattening spaces and 08,89 and 06,69 are their projections into the 
corresponding configuration spaces. 

(11.1) Given ~o o, ~o I E Fo(L), L a triangulation of the 2-sphere, our strategy 
for finding a path {~o~} __. FI(L ) between ~o o, ~o 1 is as follows: First, find ?Po, 
?P 1 ~ Fo(L) such that 

(i) if9 o, ~o 1 and ~1 are  in the same connected component  of  Fo(L); 
(ii) for every vertex v of L, ?plv~R 2 × { -1 ,1} ,  i = 0,1; 

(iii) for at least four vertices q~o = ?Pl. 

Then we have to move each of the remaining vertices from position ?Po to 
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position 01, so that no more than one triple of vertices is linearly dependent 
at any moment, and certain triples are not allowed to be linearly dependent 
at all (those triples are vertices of 2-simplices of L). These conditions can be 
easily visualized if we plot -?ply in R 2 × 1 for each ~ ivER 2 × (--1); then 
everything is going on in R 2 × 1 and there linear dependency = colinearity. 

Next, for each case (i, j = 8, 9 or 6, 9), we list, in Tables V and VI, the 

T A B L E  V 

08,89 

(i) L k ( 8 9 )  

123 125 136 156 234 
245 346 457 467 567 

(ii) q~o = 7~8~9 qh = rCg~b8 = (re7~9)7, 
= (123)(456)(789) 

1 -1  4 5  1/2 1 - 1  - . f i  1 
2 --1 _x/ /3  1/2 2 2 0 1 

3 2 o i/2 3 -1  4 5  1 
4 0 - -2  --3/2 4 _ 4 5  1 --1 

5 _ x / ~  1 - 3 / 2  5 x /3  1 - 1  

6 x/~ 1 - 3 / 2  6 0 - 2  - 1  
7 0 0 --1/2 7 0 0 --1/2 

nsff9 and 2T7ff/9 a r e  obtained by expressing ~k 9 in terms of the basis (1, 0, 0, 0), 
(0, 1, 0, 0), -2~b9(7), -2~b9(8 ) and then omitting the last and third coordinates 
respectively. 

(iii) Oo ~l 

1 - 2  6 1 1 - 2  6 1 
2 - 2  - 6  1 2 - 2  - 6  1 
3 4 0 1 3 4 0 1 
4 0 - 2  - 1  4 3 3 - 1  
5 - 1  1 - 1  5 0 - 6  - 1  
6 1 1 - 1  6 - 3  3 - 1  
7 0 0 - 1  7 0 0 - 1  

~: normalize each ~oo(i ) so that the 3rd coordinate is ___ 1; rounding and scaling in the 
first two columns of q)o. 
~ t :  rotation through - 120: in the first two coordinates then similarly as in q~o- 
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(iv) 08,89 

Linearly 
dependent 

Step 4 5 6 triple 

gPo 0 --2 --1 --1 l --1 1 1 --1 
1 0.3 -- 1.5 -- 1 145 
2 0.6 1.2 -- 1 246 
3 -- 0.9 0.3 -- 1 356 
4 0.6 -- 1 -- 1 147 
5 --0.8 --0.4 -- 1 357 
6 0.2 1.4 -- I 267 
7 0 1.5 --1 256 
8 --0.7 --1.1 --1 345 
9 0.9 --0.5 -- 1 146 

10 1.5 0.5 -- 1 347 
11 --0.5 --2.5 --1 257 
12 --1 2 --1 167 
13 3 3 --1 124 
14 0 --6 --1 135 
15 - 3  3 --1 236 
~1 3 3 - 1  0 - 6  - 1  - 3  3 - 1  

Read, for example row 8, as: Step 8 is to move vertex 5 along the straight line from 
previous position ( -0 . 8 ,  -0 .4 ,  -1 .0 )  to ( -0 .7 ,  - 1 . i ,  -1.0);  the only linearly depend- 
ent triple occurring during this move is 345 

T A B L E  VI 
06,69 

(i) Lk(69)  

135 138 158 234 237 
247 348 357 478 578 

(ii) q~o = 7~6~/9 qJ, = ~ 9 ~  = (=3~9)~,  
= (147 ) (258 ) (369 )  

1 1 _  X/" 5 l _ x / 5  2x /~  
2 1 0 0 

3 l + x / ~  --1 --2~/3 
4 0 1 0 
5 --3 -- 1 +v/ '3  6 
7 0 0 1 
8 - 1/2 , / 3 / 6  - 1/2 

1 1--x/ /3 2~//3 
2 1 0 

3 l + x / ~  --2V/3 
4 0 1 

5 1/2 3/2 
7 0 0 

8 - 3  6 

0 

- 1  
0 

- x/5/6 
1 

- 1  +x /~  
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q~o: express qJ9 in terms of the basis ff/9(2), ff/9(4), ~/9(7), I//9(6 ) and then omit the last 
coordinate. 
~o~: express ~6 in terms of the basis ~6(2), ~6(4), I]/4(7), ~t4(6 ) and then omit the last 

coordinate. 

(iii) (~o ~ 1 

1 - 1  - 6  8 1 - 1  8 - -6  
2 1 0 0 2 1 0 0 
3 1 --8 --8 3 1 - 8  --8 
4 1 3 0 4 1 3 0 
5 - 1 6 38 5 - 1 - -4  - -2  
7 1 0 3 7 1 0 3 
8 - 1  2 - -2  8 --1 38 16 

Multiply both q~o and qh by 

1 eGL~- 

0 

and get first columns with corresponding entries having the same sign (GL~ is 
connected!). Then  proceed similarly as in the case 89. 

(iv) 06,69 

Linearly 
dependent 

Step 1 5 8 triple 

~o - 1  - 6  8 - 1  6 38 - 1  2 - 2  
1 - 1  - -6  5.5 128 
2 --1 - 6  2.1 147 
3 - 1  - 6  0.6 148 
4 - 1  - -6  - 1 . 1  124 
5 - 1  - 6  - 4 . 1  134 
6 - 1  - 1 . 4  8.4 257 
7 - 1  -3 .1  1.6 258 
8 - 1  - 3 . 4 3  0.28 457 
9 - 1  - 3 . 4 8  0.08 458 

10 - 1  - 3 . 6  - 0 . 4  245 
l l  - 1  - 4 . 9  - 5 . 2  123 
12 - 1  - 4 . 1  - 6  178 
13 - 1  - 1 . 3  - 6  137 
14 - 1 - 4  - 2  345 
15 - 1 38 16 248 
16 - 1  1.5 - 6  127 
17 - 1  8 - 6  147 
(pt - 1  8 - 6  - 1  - 4  - 2  - 1  38 16 
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following: 

(i) 2-simplices of L = Lk(i j)  (see Figure 1). 
(ii) ~o o = Oiy = rri~kj and tpl = 7zi~b i (note that 7r i is not well defined on 

flattenings unless an isomorphism R4Ab~(j)- R 3 is specified (see 
(1.5)), so we have to do this also). 

(iii) 0o and 01 satisfying conditions ll.l(i)-(iii) above. (We do not know 
whether such 0o and 01 exist for every pair of flattenings q~o and 
qh ~Fo(L) of an arbitrary triangulation of S 2, so we give a brief 
description of how they are obtained in the cases at hand.) 

(iv) Paths between 0o and 01 (described in steps, one step changes 
position of only one vertex) together with all linearly dependent 
triples along the way. 

REMARK. The procedure described in (11.1) is needed only for finding the 
paths. Verifying that these are indeed paths with all the required properties 
and that the list of linearly dependent triples (i.e. the list of points of F1-F o 
on the path) is complete is much easier; a computer can do it. 

(11.2) DEFINITION.  08,89: [0, 1] ~ CF1(Lk(89)) is the path in the con- 
figuration space represented by the path 08,89 in the flattening space; 06,69 
is represented by 06,69. 

Note that, although (11.2) does not determine 0s,s9 and 06,69 completely 
(parametrizations are missing), it does determine C(O) (see Definition 4.3). 

12. P, (CP 2) 

The formula for Px(CP 2) is of the form 

9 
PI= ~ PiD*(i) 

i=1 

where D*(i) is a cocycle in C4(D(Cp2); Q) defined by D*(i)(D(j)) = 6~j 
(D(k) = the cell dual to the vertex k of Cp2), and 

Pi = C(~i)B(i> + ~ ei.iiC(O,,ij)B(ij> 
i # j  

where ~b i is the configuration of Lk( i )  (chosen according to 10.3), 0~,ij is a 
path in Fl(Lk(ij) ) (9.5, 11.2), B(i), B(ij) are elements of the hypersimplical 
section determined using the algorithm of Section 5, and e~,~j is the incidence 
number of dual cells D(i) and D(ij). 

Note that, in order to apply the algorithm of Section 5, we must specify 
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orientations of dual cells (and these orientations will determine the incidence 

numbers gi,ij)" 
Since CP 2 is orientable we can make use of the following 

(12.1) P R OP OSITION.  I f  X is an oriented n-dimensional combinatorial 
manifold then there exists a natural correspondence orientations of o- ~ orien- 
tations of  Do-. 

Namely, an orientation of o- E X (given as a parity of an ordering of its 
vertices, say (Vo... VR) ) determines an orientation for every (n - k) simplex 
z of X' belonging to Do-: the vertices of z are bo, . . . ,  bt, the barycenters of 
simplices 

a = o - o  <o-1 < ' ' "  < a t ( k + l = n )  

respectively; each o-z, i >/1 has an additional vertex w i (in addition to 
vertices of o-i-l), and we say that the orientation of z determined by 

a = (VO...Vk) is 

either (bob l . . . b l )  or - - (bob l . . . bk )  

depending on whether the orientation (Vo...VkW 1 . . .wt )  agrees with the 
orientation of X or not. 

It is easy to see that orientations of top dimensional simplices of Do- 
determined by the orientation (Vo.. .  Vk) of a are compatible; therefore they 
determine an orientation of Do-. 

(12.2) COROLLARY.  I f  o- denotes an oriented simplex of  X and DG the 
correspondingly oriented dual cell, then 

( i )  D ( - -  o-) = - Do-; 
(ii) ( - 1)  dim r/;s r ~-- ,D ~D e,~, where ~s, are incidence numbers of simplices 

o- < z, dual cells Do- > Dz respectively; 
(iii) D . . . .  = + 1 .  

Oo...Jk- ~),(Io...lk) 

We will use the above correspondence with the orientation of CP 2 
determined by (12456). 

(12.3) P R OP OSITION.  (i) For any two vertices i, j of  CP 2 

C(~ ,)B(i)  = C(~ j )B( j ) .  

(ii) I f  i, ij and k, kl are in the s a m e  G 2 7  orbit, then 

C(O,.,)B(ij) = C(Ok,u)B(kl). 

Proof (i) Let 9~ G9,  g ( i )  = j. Then ~ = ~j9 and B ( j )  = 9B(i ) .  It easily 
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follows from the definition of C(~) in (4.2) that C(~bjg)B(i) = C(~j)oB(i) .  
(ii) Analogous to (i). 

(12.4) COROLLARY. For any two vertices i, j of  CP 2 

Pi = Pj. 

(12.5) PROPOSITION. 

P9 = C ( ~ 9 ) B ( 9 )  + C(08 ,89)B(89)  -k- 3C(06,69)B(69). 

Proof 09,98 and 09,9/, i = 4,5,6 are trivial paths (9.5). 9,97 and 8,89 are 
in the same G27 orbit; 9,91, 9,92, 9,93 and 6,69 are in the same G27 orbit. 

(12.6) To compute Pg, we use three computer programs: A, B, and C. 
Program A is designed to compute Tv, v ~ V~, where T: V 1 ~ V z is a linear 

map and V/, i = 1, 2 is a Q-vector space spanned by all A(Z, A) (of a certain 
dimension). Various examples of T for which this program is used are 
T = F, T = a, and T = formal sum of elements of a twisted group acting on 
v l  = 

Programs B and C are used to compute C ( ~ ) B a  and C(0 . . . .  )Br. 
All three programs can be used for computing PI(X), X any com- 

binatorial manifold, provided configuration data {~ , , a" -4~X} and 
{0 ..... trn-4R<'cn-3} are given. (I know of no algorithm for finding 

configuration data, say on a computer.) 
The procedure for computing B(9), B(69), and B(89) has several steps. 
STEP I (Preparation). The F's must be transformed from the form (7.1) 

(given in Tables I, II, and III) to the form as in (5.4). We need the following 
F ' s : k = 2 ,  m = 3 ,  4, 5, 6; k = 3 ,  m = 7 ;  k = 4 ,  m = 8 .  Program A can be 
used; moreover, using the same program it can be checked that these F's 
satisfy condition 5.1(i). 

STEP II. If dim a = 4 then, by Definition 3.3(iii), Ba = A(va). If dim a = 3, 
say a = (ijkl),  then it follows from the proof of Proposition 3.4 that 
Ba = A(mn, ijkl) where (ijkln) has orientation agreeing with that of CP g 
(and ( i jklm) has the opposite orientation). 

STEP III. For each 2-simplex (Ok)~  CP~, compute 

C(i jk )  = Y.{B(ijkl): l r v  Lk( i jk)} .  

Note that, since the Ba's are invariant under the action of Gs4, Ca will be 
invariant too, so it suffices to find C(i jk)  for only one representative of each 
Gs4 orbit. There are five distinct orbits of 2-simplices of CP92; their 
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representatives are (see Figure 1): 

(269), Lk(269) = 347; 

(369), Lk(369) = 157248; 

(389), Lk(389) = 1246; 

(689), Lk(689)  = 13475; 

(789), Lk(789)  = 456. 

Using Program A, compute B(ijk) = F(C (ijk)) in each of the five cases. 
STEP IV. There are only two G54 orbits of 1-simplices of CP 2, represented 

by (69) and (89)  (for their links see Figure 1). When computing 

C(ij) = Y~{B(ijk): kev  Lk(ij)} 

(ij = 69 or 89) we use Proposition 5.7 and (orbit representatives of) B(ijk) 
computed in Step III so that 

C(69) = E{B(k69):k ¢ 6,9} 

= [(12X45)(78) + id]8(269)  + 8(369)  

+ [(184275)(396) + (174)(285)(396)]B(389) 

- [(12)(45)(78) - id]B(689) 

and similarly 

C(89)  = [(123)(465) + (132)(456) + id]B(389)  

+ [(132)(456) + (123)(465) + id]B(689)  + B(789).  

Program A is again used. Finally, compute 8 ( 6 9 ) =  F(C(69) and 
B(89) = F(C(89)). 

STEP V. Similarly, as in Step IV, first compute 

C(9) = E{B(9i):i ~ 9} 

= [(169)(247)(358) + (158)(269)(347) + (147)(258)(369) 

-- (132)(456) -- (123)(465) -- id]B(69) 

+[-(12)(45)(78) - id]B(89), 

and then compute 8 ( 9 )  = F(C(9)) .  
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Now, using ~9, 08.s9, and 06,69 obtained in Sections 
programs B and C, we compute 

C(~9)B(9 ) = - 1/42, 

C(08,89)B(89 ~ = 3/28 

C(06.69)B(69 > = 1/12. 

Thus, by Proposition 12.5, 

1 3 1 1 
P9= 42+2-8 + 3  12 3 

Therefore 

10 and 11 and 

1 E{D*(i):i = 1 , . . . , 9 } .  

REMARKS. (i) Sinee 9(1/3) = 3, PI(CP 2) agrees with the smooth PI(CP 2) 
(compare [21, Example 15.6]). 

(ii) Had we chosen the opposite orientation on CPZ(-(12456) instead 
of (12456)), B(ijkl) in Step II would have the opposite sign, so that all 
subsequent Ba would change sign, thus resulting in P9 = - - 1 / 3 .  But a 
change in orientation of CP~ will cause a change in the orientation of D(i),  
so that PI(CP 29) remains unchanged. 

13. REMARKS 

13.1. On our Version of the Formula 

A careful reader will note a few minor differences between our statement of 
the formula (in Section 4) and the original version in Gabrielov et al. [6]. 
Notational differences aside, these are: 

(a) Our P is a cochain in C4(DX; Q) while theirs is a chain in C,_4(X; Q), 
the chain complex on the simplices of X with the boundary operator 

defined using incidence numbers of dual cells: 

= • < 

it is obvious that C*(DX) and fT,_.(X) are isomorphic. This isomor- 
phism, together with the natural correspondence of incidence numb- 
ers of simplices and incidence numbers of dual cells (see 12.1), is, in 
fact, the simplicial form of Poincar~ duality. 
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(b) When defining C(O) (see 4.2), Gabrielov et al. [6] use - ( - 1 )  # for 
both types (1.2) and (2.1) of hypersimplices; we follow Stone [3] in 
using ( - 1 )  # for type (1,2) and - ( - 1 )  # for type (2,1). A possible 
cause for the discrepancy is in a typographic error (our computation 
would give an incorrect result if the signs from [6] were used). 

(c) Finally, [6] does not have assertion (B) that the configuration spaces 
of triangulations of S z are simply connected. Instead, there is a claim 
that assertion (B) easily follows from a result of Chung-Wu Ho [12]. 

13.2. Flatteninys vs. Diagrams 

If K is a triangulation of a sphere S k then, for every o'k~ K, K -  a is 
simplicially isomorphic to a subdivision of the standard n-simplex A k (with 
no new vertices on the boundary aA k of Ak). A homeomorphism 
h: IK - al --- A ~ which is linear on simplices of K -- a is called a (Schlegel) 
diagram of K (based on a) (compare Grfinbaum [I0, p. 42]). The space of 
all diagrams of K (based on the same a) is an open subset of (int Ak) vK-~ 
(cf. Section 1); denote it by L(K, a). 

Diagram spaces have been studied by several people, sometimes with the 
motivation that these spaces are used by Cairns [3], Whitehead [35], Thom 
[33] and Kuiper [15] in their studies of the problem of smoothing a 
combinatorial manifold. In the first non-trivial case, k = 2, L(K, a) turns out 
to be contractible (Bloch et al. [1]; earlier Cairns [4] proved its connected- 
ness; and the already mentioned result of Ho [12] is that L(K, a) is simply 
connected), but almost nothing is known in the next case k = 3. There are 
sporadic examples showing that 

(a) L(K, a) depends on the base simplex o .3 ~ k. In fact, 

L(M, (1245)) = ~ ¢ L(M, (4578)) 

where M is Griinbaum's triangulation of S 3 with vertices as in Section 
10 (see pp. 222-226 of [9]). 

(b) The diagram space can be disconnected: Starbird [29] describes a 
subdivision K of A 3 with no new vertices on ~A 3 (and at least 17 
vertices altogether) such that L(K) is disconnected. 

However, the smoothing theory of Cairns and others uses configuration 
spaces, not diagram spaces: a typical theorem shows that obstructions for 
smoothing a combinatorial manifold X have coefficients in homotopy 
groups of configuration spaces of links of simplices of X (e.g. [15], 
theorem 4.8). There are some variations in the spaces used (orientation- 
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preserving flattenings, configurations whose vertices are on the unit sphere, 
geodesic triangulations of a sphere, etc.) but these spaces are always based 
on flattenings. The only exception is Thom's lecture at the 1958 Interna- 
tional Congress in Edinburgh in which he goes from a geodesic triangula- 
tion of a sphere to a diagram ('par une inversion on est ramen6 ~t 
consid&er...') without further explanation and then makes a conjecture that 
every diagram space is aspherical 1,32, p. 251]. 

The problem here is that the connection between flattening and diagrams 
requires that the flattening is convex (i.e. that a flattening realizes K as the 
boundary of a convex polytope; one then uses a central projection to obtain 
a diagram) and flattenings are not a priori convex. For example, if for some 
o-, L(K, tr)= ~ then K has no convex flattening (thus M has no convex 
flattening, but, as we now know, it has a flattening). Note that a generic 
flattening of K realizes K as the boundary merely of a star-shaped polytope. 

It is interesting to note that Cairns in 14] proves that for a triangulation 
K of S 2, both the flattening space F(K) and the diagram space L(K, tr) are 
connected, but he gives two similar but independent proofs (and does not 
derive one as the corollary of the other). There is a similar situation with 
the non-connectedness result for F(M) (10.5): McCrory [20] has proved 
that the diagram space L(M, (4578)) is also disconnected (thus providing 
an example much simpler than Starbird's 1-29]). It is worth mentioning here 
that Kuiper [15] has proved that the direct limit (under the directed system 
of compatible subdivisions) of configuration spaces of S 3 is connected; the 
proof depends on a deep (and hard) result of Cerf [5]. 

The only conclusion which can be drawn from all this is in the form of 

QUESTIONS. (1) What are the homotopy properties of configuration 
spaces? What is the relationship between diagram spaces and configuration 
spaces? 

(2) Does the existence of convex flattenings of K imply some nice 
homotopy properties of CF(K)? 

(3) If IKI = S 2, is CF(K) contractible? simply connected? (In particular, is 
our assertion (B') true?) 

(4) MaePherson's variant of the formula 1"18] requires only 
~zl(CF(Lktr"-3)) =0 ;  Levitt's variant 1-16] does not require it. Is the 
formula (Theorem 4.6) valid without the assumptions (A) 7ro(CF (Lk a"-4)) 
= 0 and (B) ~zl(CF(Lk a "- 3)) = 0? (In general?, for 4-manifolds?) 

13.3. The Role of Flattenings 

Levitt [16] has an interpretation of the formula which does not require 
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hypersimplicial data. He uses transverse plane fields instead of flattenings, 

but these two are more or less equivalent (see Whitehead [35]). On the other 

hand, the smoothing theory of Cairns, Whitehead, and Kuiper shows that 

any generalization of the formula to higher Pontryagin classes, requiring 

flattening data, might, in fact, require the existence of some kind of smooth 
structure (say with singularities contained in some skeleton of the combina- 
torial manifold in question). A similar message is provided by Stone [31] 

where he constructs a 'combinatorial  Gauss map '  for a C 1 submanifold of 

Euclidean space. Recent work on the combinatorics of flattenings has been 

done by MacPherson [19]. The work of Levitt and Rourke [17] shows that 
local combinatorial  formulas for characteristic classes could be obtained 

from explicit cocycles representing the cohomology of the classifying space 

for piecewise-linear bundles. 

Q U E S T I O N S .  (1) How much information about  X is retained in a hyper- 
simplicial section of X? What  minimum additional information is needed to 

recover characteristic classes of X? (Note that Gel ' land and MacPherson [8] 
showed that  there are natural hypersimplices inside the Grassmannian G,k.) 
In the case of rational classes, does this additional information restrict the 

scope of the formula? 
(2) Note  that the conditions 5.1(i)-(ii) do not determine a unique 

hypersimplicial  section F. Is there some canonical  way to choose F, 

which implies a meaningful  p rope r ty  of  { B a }  (compare  Propos i t ion  5.7)? 

It  is reasonable  to expect that  by requiring more  from F in 5.1, the 

a m o u n t  of  informat ion carr ied by {Bo-} can be increased. 
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