
Browder’s theorem and manifolds with corners

Duality and the Wu classes. The “Spanier-Whitehead dual” of a
spectrum X is the function spectrum (in which S denotes the sphere
spectrum) DX = F (X, S) (which exists by Brown representability). It
comes equipped with an “evaluation” pairing DX ∧X → S.

Write H∗(−) for homology with F2 coefficients. If X is finite, then
the induced pairing H−∗(DX)⊗H∗(X)→ F2 is perfect, so there is an
isomorphism

Hi(X)→ Hom(H−i(DX), F2)

which may be rewritten using the universal coefficient theorem as

Hom(H i(X), F2)→ H−i(DX)

A Steenrod operation θ induces a contragredient action on the left,
which coincides with the action of χθ on the right. Here χ is the
Hopf conjugation on the Steenrod algebra. The map χ is an algebra
anti-automorphism and an involution, and is characterized on the total
Steenod square by the identity of operators

χSq = Sq−1

because of the form of the Milnor diagonal.
If M is a closed smooth m manifold and X = Σ∞M+, then the Thom

spectrum M ν of the stable normal bundle (normalized to have formal
dimension −m) furnishes the Spanier-Whitehead dual of X. This is
“Milnor-Spanier” or “Atiyah” duality. Poincaré duality is given by the
composite isomorphism

Hm−i(M)
−∪U−→H−i(M ν)

∼=←−Hi(M)

where U ∈ H−m(M ν) is the Thom class.
The rather boring collapse map M+ → S0 dualizes to a much more

interesting map ι : S0 →M ν , which in cohomology induces the map

ι∗ : x ∪ U 7→ 〈x, [M ]〉
By Poincaré duality, for each k there is a unique class vk ∈ Hk(M)

such that for any x ∈ Hm−k(M), 〈Sqkx, [M ]〉 = 〈xvk, [M ]〉. By sepa-
rating connected components of M , it follows that in fact Sqkx = xvk.
Note right off that if k > n/2 then vk = 0, by the instability of the
action of the Steenrod algebra.

Wen-Tsün Wu proved that the element vk is a characteristic class.
This follows from the fact that ι∗ commutes with Steenrod operations:

ι∗(Sq(x ∪ U)) = Sq〈x, [M ]〉 = 〈x, [M ]〉
1
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since the degree zero part of Sq is 1. But by Wu’s definition of the
Stiefel-Whitney classes and the Cartan formula,

Sq(x ∪ U) = (Sq x) ∪ Sq U = (Sq x)w ∪ U

so

〈(Sq x)w, [M ]〉 = 〈x, [M ]〉

Now replace x by the class
x

Sq−1w
, to see that the total Wu class is

v =
1

Sq−1w

When applied to the normal bundle of a manifold, the Whitney sum
formula gives

Sq v(τ) = w(ν)

where τ is the tangent bundle of the manifold.

Change of framing. A “framing” of a manifold Mm is an embedding

i : M ↪→ Rm+k together with a trivialization of the normal bundle

t : νi

∼=−→ kM .
Any two embeddings of M in large codimension are isotopic, and so

we can stabilize to form the set of stable framings of a manifold.

A framing t determines an isomorphism of Thom spaces M νi
∼=−→ΣkM+.

A stable framing of M determines a homotopy equivalence M ν →
Σ−mM+, showing that the spectrum Σ∞M+ is self-dual (up to a shift
of dimension). The framing can be thought of as a fiberwise isomor-
phism from the normal bundle to the k plane bundle over a point, so
stably we get a map t : M ν → S−m. The composite tι : S0 → S−m is
the stable homotopy class corresponding to the framed manifold (M, t).

Let m = 2n. An element x ∈ Hn(M) can be thought of as a homo-
topy class of maps M+ → Kn, and so determines an element

S2n → Σ∞M+ → Σ∞Kn

of the stable homotopy group π2n(Kn). This group is of order 2, so the
framing determines a map

qt : Hn(M)→ F2

This is the Browder-Brown definition of the quadratic refinement of
the intersection pairing determined by a framing.

The “gauge group” of smooth maps from M to O(k) acts transi-
tively on framings (with respect to this embedding), and the group
K−1(M) = [M, O] acts transitively on the set of stable framings.
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Proposition. (Brown [3], 1.18) Let (M, t) be a framed 2n manifold,
and let f : M → O. Then

qft(x) = qt(x) + 〈x · f ∗vn+1, [M ]〉

were vn+1 denotes the image in Hn(O) of vn+1 under the map

ω : ΣO → BO

adjoint to the equivalence O → ΩBO.

Let RP∞
0 denote projective space with a disjoint basepoint adjoined,

and let λ : RP∞
0 → O be the (pointed) map sending a line to the

reflection through the hyperplane orthogonal to that line.

Lemma. The maps ΣRP∞
0

λ−→ΣO
ω−→BO induce maps fitting into

the commutative diagram

H∗(ΣRP∞
0 ) H∗(ΣO) H∗(BO)

QH∗(BO)

�
λ∗

�
ω∗

�
�

�
�

�
�+

π

Q
Q

Q
Q

Q
Qk ∼= 6

Thus λ∗ is bijective on the image of ω∗, and λ∗w = (1 + t)−1 where
t generates H1(RP∞

0 ). Since Sq t = t + t2 = t(1 + t),

Sq t2
k−1 = t2

k−1(1 + t + · · ·+ t2
k−1) = t2

k−1 + · · ·+ t2
k+1−2

and hence

Sq(1 + t + t3 + t7 + · · · ) = (1 + t)−1

Now vSq−1w = 1 gives on indecomposables v = Sq−1w. Thus

λ∗v = λ∗Sq−1w = Sq−1(1 + t)−1 = 1 + t + t3 + t7 + · · · .

So vk = 0 unless k is a power of 2.
It follows that the quadratic form of a framed 2n manifold is inde-

pendent of the framing unless n is of the form 2k − 1, and that the
Kervaire invariant is too.

Theorem. In positive dimensions, every framed manifold is framed
bordant to an odd multiple of a reframed framed boundary.

John Jones and Elmer Rees [4] observed the following:

Corollary. The Kervaire invariant of framed manifolds is nonzero at
most in dimensions of the form 2(2k − 1).
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The theorem is a reformulation of the Kahn-Priddy theorem due to
Nigel Ray [8]. There is a commutative diagram

RP∞ SO Q0S
0

QRP∞ QSO

-
λ

?

-
J

?
-

�
�

�
�

���
Ĵ

where λ sends a line to composite of reflection through the orthogonal
hyperplane with a fixed reflection. The Kahn-Priddy theorem asserts
that the composite QRP∞ → Q0S

0 has a section after localizing at 2,
so the induced map π∗(SO) → π∗ is surjective in positive dimensions
after tensoring with Z(2). A map f : Sn → SO allows us to reframe
the trivially framed n sphere, and Jf ∈ πn is represented by that
new framed manifold. This is the “J-homomorphism.” An element of
πn(SO) is represented by a framed boundary Mn together with a map

f : M → SO. Ĵ is the “stable J-homomorphism.” Its image in πn

is represented by M with the new framing; so the image is the set of
reframed framed boundaries.

The Adams spectral sequence. An “Adams tower” for a spectrum
X is a diagram

...

X2 I2

X1 I1

X X0 I0

?
-

k

?
-

k

?
-

=
-

k

in which each “L” is a cofiber sequence, each Is is a mod 2 general-
ized Eilenberg Mac Lane spectrum, and each map labeled k induces
a monomorphism in homology. The Adams spectral sequence is as-
sociated to the exact couple obtained by applying homotopy to this
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diagram. In it, then, under some finite type assumptions,

Es,t
1 = πs+t(I

s) = Homt
A∗(H∗(Is), F2)

The long exact sequences induced in cohomology are short exact, so

0← H∗(X)← H∗(I0)← H∗(ΣI1)← · · ·

is a projective resolution and

Es,t
2 = Exts,t

A∗(H∗(X), F2) =⇒ πt−s(X)2̂

When X = S we can start to compute these groups. E0,∗
2 is F2

concentrated in degree 0. E1,∗
2 is dual to the module of indecomposables

in A∗, so is generated by classes hi with ||hi|| = (1, 2i). E2,∗
2 was

computed by Adams right away; it has as basis the set

hihj , 0 ≤ i and either i = j or i + 2 ≤ j

Very few of these elements survive in the Adams spectral sequence.
The Hopf invariant one theorem amounts to the assertion that hi sur-
vives only for i ≤ 3: h0 survives to 2ι, h1 to η, h2 to ν, and h3 to σ.
(In fact Adams proved that for i > 3, d2hi = h0h

2
i−1.)

In s = 2, the only survivors are:

h0h2 , h0h3 , h2h4 , h1hj for j ≥ 3 , and possibly h2
i

The class h1hj survives to Mahowald’s class ηj ∈ π2j . For j ≤ 3 the
classes h2

i survive to 4ι, η2, ν2, and σ2. After that things get trickier.

Theorem. (Browder [2]) Let κ denote the functional on Ext2,∗
A∗(F2, F2)

which is nonzero on h2
i but zero otherwise. In dimension 2n > 0, the

Kervaire invariant can be identified with the “edge homomorphism”

π2n

∼=←−F 2π2n � F 2π2n/F
3π2n

∼= E2,2n+2
∞ ↪→ E2,2n+2

2
κ−→F2

Bordism interpretation of the Adams spectral sequence.
I have defined an Adams tower in more generality than is usual because
I want to give bordism interpretations of the various parts of the E1

exact couple. Ultimately I want to express the Kervaire invariant as
a characteristic number, and then identify that characteristic number
with the functional κ. The Adams tower we will use is built not from
the Eilenberg Mac Lane spectrum HF2 but rather from the Thom
spectrum MO, which Thom showed to be a wedge of mod 2 Eilenberg
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Mac Lane spectra. With X the sphere spectrum S and MO = MO/S,
there is an Adams tower of the form

...

Σ−2MO ∧MO Σ−2MO ∧MO ∧MO

Σ−1MO Σ−1MO ∧MO

S S MO

?
-

k

?
-

k

?
-

=
-

k

All the parts of the diagram induced in homotopy admit bordism in-
terpretations. π∗(S) is the framed bordism ring, π∗(MO) is the bordism
ring of (unoriented) manifolds, and the map k forgets the framing. An
element of πn+1(MO) represents a class of triples (N, M, t), in which N
is an n + 1 manifold with boundary, M = ∂N , and t is a trivialization
of νM . Such an “(O,fr) manifold” represents zero if it is a “boundary,”
i.e. if there it embeds in a manifold with corner (P, N, N ′, M, t). This
means that P is an n+2 manifold whose boundary is given by N∪M N ′;
N and N ′ are manifolds with boundary and ∂N = M = ∂N ′; and t′ is
a trivialization of the normal bundle of N ′ which restricts to the given
trivialization of the normal bundle of M . The map πn+1(MO)→ πn(S)
sends (N, M, t) to its “boundary” (M, t), t = t′|M .

Warmup: the Hopf invariant. In positive dimensions, the Hopf in-
variant can be described as the composite

πn

∼=←−F 1πn � F 1πn/F
2πn
∼= E1,n+1

∞ ↪→ Ext1,n+1
A∗ (F2, F2)

a1−→F2

in which a1 is an element of TorA∗

1,n+1(F2, F2) (which is canonically dual
to the Ext group) represented by the cycle

α1 = [Sqn+1]

in the bar construction. The cycle α1 is a boundary unless n + 1 is a
power of 2 (since Sqn+1 is decomposable in A∗ unless n + 1 is a power
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of 2), so the Hopf invariant is potentially nonzero only in dimensions of
the form n = 2k − 1. In this case the functional a1 sends the generator
hk ∈ Ext1,n+1

A∗ (F2, F2) to 1 ∈ F2.
The short exact sequence

0← F2 ← H∗(MO)← H∗(MO)← 0

induces a boundary map compatible with the projection map in the
Adams tower:

πn+1(MO) Ext0,n+1
A∗ (H∗(MO)), F2)

F 1πn(S) Ext1,n+1
A∗ (F2, F2) F2

-
Hurewicz

? ?

δ

H
H

H
H

H
H

H
H

HHj

a0

-
Hopf

-
a1

The functional a0 here is given by the class ∂a1 ∈ TorA∗

0,n+1(H
∗(MO), F2),

where ∂ is the boundary map induced by the same short exact sequence.
We find:

[Sqn+1] ← [Sqn+1]U
↓d

Sqn+1U ← wn+1 ∪ U

so a0 is represented by the element

α0 = wn+1 ∪ U

The Hopf invariant is thus captured by the Hurewicz map on πn+1(MO).
The interpretation of this in terms of (O,fr) manifolds is this. Let

(N, M, t) be an (O,fr) manifold. Let ν be the normal bundle of N . The
trivialization t of ν|M provides a factorization of N → BO through

N/M , and hence for any c ∈ H
k
(BO) we obtain a class c(ν, t) ∈

Hk(N, M); in particular, wn+1(ν, t) ∈ Hn+1(N, M). Then

Hopf(M, t) = 〈wn+1(νN , t), [N, M ]〉

This was observed for example by Stong, [9], p. 105.

Kervaire via (O,fr) manifolds. Let me change notation, and write

b2 for the functional on Ext2,2n+2
A∗ (F2, F2) which detects h2

i , i ≥ 0. There
is a convenient and explicit cycle in the bar construction which repre-
sents the element b2 ∈ TorA∗

2,2n+2(F2, F2), namely

β2 =
n∑

i=0

(n + 1, i)[Sqn+1−i|χSqn+1+i]
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The fact that this is a cycle follows from the identity [1]

n∑
i=0

(n + 1, i)Sqn+1−i χSqn+1+i = 0

This is like the defining identity for the χSq’s,
2n+2∑
i=0

Sqn+1−i χSqn+1+i = 0

but omits most of the terms. In the critical dimension, n = 2k − 1,

the cycle takes the form
n∑

i=0

[Sqn+1−i|χSqn+1+i = 0], with leading term

[Sqn+1|Sqn+1].
Just as before, we have the commutative diagram

F 1π2n+1(MO) Ext1,2n+2
A∗ (H∗(MO), F2)

F 2π2n(S) Ext2,2n+2
A∗ (H∗(MO), F2) F2

-
Hopf

? ?

δ

HHHH
HHHHH

HHj

b1

-
Kervaire

-
b2

where b1 = ∂b2 ∈ TorA∗

1,2n+2(F2, H
∗(MO)). Lannes computed this class

to be represented by the cycle

β1 =
n∑

i=0

[Sqn+1−i]vivn+1 ∪ U

and then verified that this functional coincides with the Kervaire in-
variant, giving a new proof of Browder’s theorem.



9

Codimension two. We can push this story one step further:

π2n+2(MO ∧MO) Ext0,2n+2
A∗ (H∗(MO ∧MO), F2)

F 1π2n+1(MO) Ext1,2n+2
A∗ (H∗(MO), F2)

F 2π2n(S) Ext2,2n+2
A∗ (F2, F2) F2

?

-
Hurewicz

?

δ

@
@

@
@

@
@

@
@

@
@

@
@

@
@@R

b0-
Hopf

? ?

δ

H
H

H
H

H
H

H
H

H
H

H
HHj

b1

-
Kervaire

-
b2

where b0 = ∂b1 ∈ TorA∗

0,2n+2(F2, H∗(MO ∧MO)) turns out to be the
class of

β0 =
n∑

i=0

(vn+1−i ∪ U)⊗ (vivn+1 ∪ U)

An element of the group π2n+2(MO ∧ MO) is represented by a
“(O, fr)2-manifold.” This consists of the data (P, N1, N2, ν1, ν2, t1, t2),
where P is a (2n + 2)-manifold with boundary N = N1 ∪M N2, ∂N1 =
M = ∂N2; the normal bundle νP comes with a splitting νP = ν1 ⊕ ν2;
t1 is a trivialization of ν1|N1 and t2 is a trivialization of ν2|N2 . The
normal bundle of the corner M thus acquires a trivialization t. The
map π2n+2(MO ∧MO)→ π2n+1(MO) carries this data to (N1, M, t).

The element β0 gives rise to the characteristic number appearing in
the following theorem.

Proposition. [6] Let (P, N1, N2, ν1, ν2, t1, t2) be an (O, fr)2 manifold.
Then

Kervaire(M, t) =
n∑

i=0

〈vn+1−i(ν1, t1) ∪ vi(ν2)vn+1(ν2, t2), [P, N ]〉

This gives yet another proof of Browder’s theorem. A proof of the
proposition is sketched below, after a reminder on quadratic forms.

Quadratic forms. Let E be a finite dimensional F2 vector space with
a symmetric bilinear form denoted x · y. The “perp” of a subspace
I ⊆ E is

I⊥ = {x ∈ E : x · y = 0 for all y ∈ I}
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Clearly I ⊆ I⊥⊥. The map

E/I⊥ → E∗ , x 7→ (y 7→ x · y)

is injective by definition of I⊥.
Now assume that the form is nondegenerate, so that we have an

“inner product space.” Then this map is also surjective; any linear
functional on I extends to a linear functional on E, and so is given by
pairing with some element. So in this case

dim I + dim I⊥ = dim E and I = I⊥⊥

The monoid of isomorphism classes of inner product spaces over F2

(and orthogonal direct sum) is the same as the monoid of diffeomor-
phism classes of closed surfaces (and connected sum): The simple ob-
jects are the unique 1-dimensional inner product space I = H1(RP 2),
and the “hyperbolic space” H = H1(S1×S1) with inner product given

by the matrix

[
0 1
1 0

]
. Then H ⊕ I = 3I, and any inner product

space is either a multiple of I or a multiple of H.
An inner product is “even” if x · x = 0 for all x. From the classifi-

cation, this is equivalent to being a multiple of H (and corresponds to
the oriented surfaces). Such spaces are necessarily even dimensional.

Note that the restriction of an inner product to a subspace is not gen-
erally nondegenerate; for example one-dimensional subspaces of even
inner product spaces are always degenerate. If I is a nondegenerate sub-
space of the inner product space E, then I∩I⊥ = 0 and so E = I⊕I⊥,
the orthogonal direct sum.

At the other extreme, a subspace I ⊆ E is a “Lagrangian” if I = I⊥.
If E admits a Lagrangian subspace I then dim E = 2 dim I and so is
even. Conversely, any 2n dimensional inner product space admits a
Lagrangian subspace: the operation I 7→ I⊥ is an involution on the
set of n-dimensional subspaces, which has odd cardinality and hence a
fixed point.

A “quadratic refinement” of the inner product x · y on E is a map
q : E → F2 such that

q(x + y) = q(x) + q(y) + x · y

Taking x = y = 0 shows that q(0) = 0. Taking x = y shows that the
inner product is even.

The hyperbolic inner product space H admits four quadratic refine-
ments: q can be nonzero on any one of the nonzero vectors and zero
otherwise; or it can be nonzero on all three nonzero vectors. The first
three are permuted by automorphisms of H. Call these two quadratic
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spaces Q0 and Q1. Any quadratic space (over F2) is isomorphic to either
nQ0 (Arf invariant 0) or Q1 ⊕ (n − 1)Q0 (Arf invariant 1); dimension
and Arf invariant form a complete invariant.

Since the underlying inner product of a quadratic space is even,
there are Lagrangian subspaces I in E. Choose one. Since I is self-
orthogonal, q|I is a linear functional, and hence there exists u ∈ E such
that q(x) = x ·u for all x ∈ I. The set of such elements u forms a coset
of I ⊆ E, and the calculation q(u + x) = q(u) + q(x) + x · u = q(u)
shows that q(u) is independent of choice of u. It looks like it might still
depend upon the choice of Lagrangian, but it doesn’t:

Proposition. (Lannes [5], 0.2.1) The Arf invariant of (E, q) is given
by q(u).

Let M be a 2n manifold which is the boundary of a (2n+1)-manifold
N . Then, as observed by Thom, the self-duality of the exact sequence

Hn(N)
i∗−→Hn(M)

δ−→Hn+1(N, M)−→Hn+1(N)

implies that I = Im(i∗ : Hn(N)→ Hn(M)) is a Lagrangian in the inner
product space E = Hn(M). Now suppose that M is framed. Write t
for the framing, and equip E = Hn(M) with the quadratic form qt. (If
N admits a framing extending that of N , then the quadratic form is
trivial on I, and so the Witt class of the quadratic form is a framed
bordism invariant.)

In this situation, Lannes characterized the elements u ∈ E such that
q(x) = u · x for x ∈ I, in terms of the relative Wu class vn+1(ν, t) ∈
Hn+1(N, M). This class restricts on N to vn+1(ν) ∈ Hn+1(N), which
vanishes since n + 1 > (2n + 1)/2. Let u ∈ Hn(M) be such that
δu = vn+1(ν, t) ∈ Hn+1(N, M). It is well defined modulo I = Im(i∗ :
Hn(N)→ Hn(M)), so we may hope for the following result.

Proposition. (Lannes [5], 0.2.2) q(x) = x · u for any x ∈ I.

Say x = i∗y. By self-duality of the sequence,

q(x) = x · y = i∗y · u = y · δu = y · vn+1(ν, t)

Sketch of proof.

Step 1. Suppose that (P, N1, N2) is a manifold with codimension 2
corner. The first step is to construct a self-dual diagram analogous to
the (N, M) homology exact sequence. We need a space dual to P/M .
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Define X to be the homotopy pushout in the diagram

P+ P/N1

P/N2 X

-

? ?

σ1

-
σ2

and

V = P/N1 ∨ P/N2 .

There is a commutative diagram of cofiber sequences

ΣM+ ΣP+ ΣP/M Σ2M+

V X ΣP+ ΣV ΣX

P/N P/N ∗ ΣP/N ΣP/N

?

-

?

-

?

τ

-
ξ

?

ρ

?

-

?

-

?

-

?

-
σ

?
- - - -

which enjoys a duality in cohomology across the diagonal line through
ΣV and Σ2M+.

Define an inner product space E as the orthogonal direct sum

E = Hn(M)⊕Hn+1(V )

and let

J = Im

(
i∗ =

[
ρ∗

σ∗

]
: Hn+1(X) −→ Hn(M)⊕Hn+1(V )

)
⊆ E

This is a Lagrangian subspace.

Step 2. Assume given a trivialization t of νM . Using it, impose on E
a the quadratic form

q = qt ⊕ qh

where qh is the “hyperbolic form” given using the duality between
Hn+1(P, N1) and Hn+1(P, N2). Then, as in Lannes’s theorem,

q(i∗y) = vn+1(νP , t) · y
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for y ∈ Hn+1(X), using the duality pairing

Hn+1(P, M)⊗Hn+1(X)→ F2

Step 3. Assume that there exist classes u1 ∈ Hn+1(P, N1) and u2 ∈
Hn+1(P, N2) such that

vn+1(νP , t) = τ ∗(u1, u2) ∈ Hn+1(P, M)

Then

Arf(qt) = u1 · u2

This is a calculation using duality of the diagram:

q(i∗y) = τ ∗(u1, u2) · y = (u1, u2) · σ∗y = (0, u1, u2) · i∗y

Therefore

Arf(qt) = Arf(q) = q(0, u1, u2) = qh(u1, u2) = u1 · u2

Step 4. Finally, assume that we have a framed corner. Then we can
take

u1 =
n∑

i=0

vn+1−i(ν1, t1)vi(ν2)

u2 = vn+1(ν2, t2)

because the Whitney sum formula for relative Wu classes shows that

vn+1(νP , t) =
n∑

i=0

vn+1−i(ν1, t)vi(ν2) + vn+1(ν2, t) = τ ∗(u1, u2)

So by Step 3 the Arf invariant of qt is given by

u1 · u2 =
n∑

i=0

vn+1−i(ν1, t1)vi(ν2) · vn+1(ν2, t2)

=
n∑

i=0

〈vn+1−i(ν1, t1) ∪ vi(ν2)vn+1(ν2, t2), [P, N ]〉

Haynes Miller
June, 2009
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