SYMMETRIC INNER PRODUCTS IN CHARACTERISTIC 2

John Milnor

Let F be a field of characteristic 2. This paper will classify the non-
degenerate symmetric inner product modules over F, and describe the

structure of the associated Witt ring W(F) as defined by Knebusch [3].

1. Introduction

The concept of symmetric bilinear form (= symmetric inner product) is
closely related to the concept of quadratic form. In fact in the classical
case, working over a field of characteristic different from 2, the two con-
cepts are completely equivalent. But in dealing with more general rings,
the symmetric bilinear form seems to be the simpler and more natural ob-
ject of study. (Compare Serre [7, p. 6].)

Recently M. Knebusch has defined and studied a ‘“Witt ring’” W(A)
associated with any commutative ring A. The elements of W(A) are equiv-
alence classes of symmetric inner product modules over A. We will study
this Knebusch-Witt ring for the special case of a field F of characteristic
2. The subfield S C F consisting of all squares in F will play an im-

‘I portant role. Thus if F has finite degtee d = 2k over S, then the additive
group of W(F) is canonically isomorphic to the group consisting of all
S-rational points in a certain algebraic group whose identity component is
an open subset of a rational variety of dimension d(d-1)/2 over S. The

ring W(F) is local, and its unique maximal ideal § satisfies the condition

gk L 0, but gk+l _ 0. The proofs are based on a Clifford algebra
C = C(F) which is canonically associated with F.

I am indebted to W. Scharlau for very useful discussions.
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2. Inner product modules and the Witt ring

Let A be a commutative ring with unit. An inner product module X
over A will mean a finitely generated projective A-module together with a

symmetric bilinear inner product,
X-y €A

for x, y ¢ X, which is non-degenerate in the following strong sense. The

homomorphism

h:X > HomA(X,A)

adjoint to the inner product, defined by h(x)(y) = x-y, must be bijective.

(An elementary topological application may help to motivate this con-
cept: Let M? be a closed connected surface. Then the homology
Hl(Mz;Z/ZZ) is an inner product module over Z/27, using the intersec-
tion number as inner product. In fact the isomorphism class of this inner
product module provides a complete invariant for the surface. Similarly
the inner product module H2(M4;Z) over 7 provides a complete invariant,
up to homotopy type, for an oriented simply connected 4-dimensional mani-
fold M*. Compare [4].)

Starting with the monoid consisting of all isomorphism classes of inner
product modules over the ring A, one can form the Grothendieck ring,
which we denote by “AI(A). This consists of all formal differences X — X’
of inner product modules, where X — X’ is set equal to Y — Y’ if and only
if the orthogonal direct sum X ©® Y’® Z is isomorphic to X"®Y © Z for
some Z. (Compare [7], [3].) The sum operation in \’h}(A) corresponds to
the orthogonal direct sum of modules, and the product operation to the ten-
sor product of modules.

An inner product module is called hyperbolic if it splits as the direct
sum of two self-annihilating submodules. The hyperbolic modules generate
an ideal in \’J}(A). Following Knebusch, the quotient of “AI(A) by this ideal
is called the Witt ring W(A). This coincides with. the classical Witt ring

in the case of a field of characteristic £ 2.
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For any inner product module X, let —X denote the inner product

module formed from X by reversing the sign of every inner product. Note

the isomorphism

X o(—X) ©X = X & (hyperbolic module).

In fact the diagonal submodule
DX e (-X) #X) C X 3 (-X)eX

is canonically isomorphic to X, and the orthogonal complement of this

submodule is hyperbolic, since it splits as the direct sum of
DX ©(=X)) @0 and 0 ® D((—X) ® X), each of which is self anmhllatmg.

Passing to the Witt ring, it follows that the identity
X + (=X) =

is satisfied in W(A).
Now suppose tha
Then the theory undergoes several drastic simplifications. Thus the iso-

t as ring A we choose a field F of characteristic 2.

morphism X = -X implies that every element of the Witt ring W(F) has

order 2. Furthermore the quadratic function
qx) =

from X to F is now an additive homomorphism. Hence its image
: 2
q(X) C F is a finite dimensional vector space over the subfield S = F

consisting of all squares in F. This image q(X) will be called the value

space of X. Note that X is hyperbolic if and only if qX) =

If q(X) contains a non-zero field element f, then clearly X splits as

an orthogonal direct sum

X = <f>eoX’

Here <f> denotes the one-dimensional inner product module spanned by a

. . . . rect sum
single vector X with q(x) = f. By induction, this leads to a direct su

decomposition
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X =<f;>o... ea<fn> ® H,

with H hyperbolic. (Compare [2, p. 23].)

It follows easily that the square of every element inﬁthe Witt ring is
either 0 or 1. Those elements with square 0 (corresponding to inner
product modules of even rank) form a maximal ideal, which we denote by
§C W(F). Since every element not in § is a unit, we see that W(F) is a
local ring. (Compare [3, §10]. Pfister proves the corresponding state-
ment for fields of characteristic # 2, assuming only that —1 is a sum of

squares.)

3. The Clifford algebra C

Again let F be a field of characteristic 2, and let S = F2 be the sub-
field consisting of all squares in F. The degree d of F over S is either
a power of 2 or infinite.

We will think of F as a quadratic vector space over S, using the

function

frf?es

as canonical S-quadratic mapping from F to S. Hence we can form the
Clifford algebra C = C(F) associated with this quadratic vector space.
(See for example [1, p. 139].) This is a (Z/2Z) — graded algebra,

C=C,oCy,

of dimension 29 over . By definition, C is generated (as a ring) by the

image of a canonical S-linear embedding, which we denote by

CZF—>C1.

If {al,...,ad} forms a basis for F over S, then the products c(ail)...’c(ai )

with i; <...< ip form a basis for C over S. The square of each generator

c(f) of C is equal to £2 times the identity element 1 ¢ C,. (Caution.
Note that c(f)e(g) + c(fg), and that c(1) £ 1.)
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It will be convenient to identify S with the set of S multiples of the
identity element. This Clifford algebra C has the unusual property of
being commutative. It follows easily that the square of every element of
C belongs to the ground field S. Clearly those elements with square zero
form a maximal ideal N, and those elements with square different from
zero are units. Thus C is a local ring. Note that the quotient algebra

c/M over S is canonically isomorphic to F.

4. The additive structure of W(F)

Now we will relate the Witt ring of a field F of characteristic 2 to

the Clifford algebra C over the subfield S.

An element of C is called decomposable if it can be written as a prod-

uct c(fy)...c(fy) with f, ¢ F. Let C* be the group of all units in C, and

let S° be the subgroup consisting of all non-zero elements of S.

THEOREM 1. The additive group of W(F) is canonically isomorphic
to the multiplicative group consisting of all decomposable elements in the
quotient C*/S".

Thinking of C as a vector space over S, each element of C*/S°® can
of course be identified with a line through the origin in C. It follows that
W(F) is canonically embedded in the projective space consisting of all

lines through the origin in C.

While proving Theorem 1, we will also prqve the following.

THEOREM 2. Every element of W(F) is represented by one, and up to
unique isomorphism only one, anisotropic inner product module X.

(Compare (3, §8.2.1]. An inner product module is anisotropic if
a7'0) = 0.

The proofs will be based on the following elementary remark. If (Cij)
is a symmetric n x n matrix over a commutative ring of characteristic 2,
let c(i) stand for the diagonal entry cy;, and let c(ij) stand for the

square of the off-diagonal entry cij-
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LEMMA 1. The determinant of (Cij) is equal to E C(pl)"'c(Pk)’ to

be summed over all partitions of the set {1,...,n} into one and two element

subsets: . o

{1,...n} = PyUu...UPy.

Proof. This is jﬁst the classical formula det(cij) = E icln(l)"'cnrr(n)

together with the remark that the term corresponding to a permutation =
cancels the term corresponding to 7! unless 7 = n~ 1,

Now consider an inner product module X over F. Choosing a basis
Xq,...,x, for X, consider the r x r matrix (cij) over C whose ij-th entry
is

).

c.. = c(xinxJ

1)

The determinant of this matrix will be called the Clifford determinant of X.
This determinant belongs either to C; or to C according as the rank r

is odd or even.

LEMMA 2. The Clifford determinant of X is a decomposable unit of
C, well defined up to multiplication by units of S. Furthermore every de-
composable unit of C occurs as the Clifford determinant of some X.

Thus, setting AX) = det(cij)S'. it is evident that the function A ex-

tends to a well-defined homomorphism
A W(F) » C°/S".

Proof of Lemma 2. We must see what happens to the determinant of
(cij) when we change the basis for X. If one basis vector Xp, of X is re-

placed by a multiple fx, then clearly:
cpp is replaced by fzchh ,
2 . 2 2 .
(c;p)” is replaced by f“(c;p)” for i+ h,

and cij is left unchanged for i,j + h. Using Lemma 1, it follows that the

determinant of (c.;) is multiplied by the element 2 ¢ S°.
1
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Now consider an elementary change of basis in which some xy is re-

placed by xp + Xy, with h £ k. Then:

chp 1S replaced by epp + Cpgs
2 .
(cih)2 is replaced by (cih)2 + (e5p)° for it h,

and c.. is left unchanged for i,j + h. Hence the determinant of this new
i

)
matrix car be expressed as a sum

det(Clj) + det((';l)

where (c?.) is a singular symmetric matrix in which the h-th row is equal
1)

to the k-th row. In other words, the determinant remains unchanged. Since
every basis change can be built up out of these two particular types of
basis change, this proves that A(X) is well defined.

Finally, if

X=<ap>e.. ® <a > e H,

where H has inner product matrix ((I) (I)> with respect to a suitable basis,

then clearly

AX) = c(al) c(an)S.

is decomposable. Since any decomposable unit can be obtained in this
way, this proves Lemma 2.

LEMMA 3. An anisotropic inner product module is determined up to

(unique) isomorphism by its Clifford determinant A ¢ C*/S°.

Proof. Consider two anisotropic modules,

say
X= <a;>@...9 <a >

and

Y = <b;> ®... ea<bn>,
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with A(X) = A(Y). We will prove by induction on m that X = Y.

Since X is anisotropic, the field elements ay,...,a8, must be linearly

independent over S. Similarly by,...,b, are linearly ind&pendent over S.

Case 1. Suppose that the m + n field elements ay,...,8y, by,...,b

’“m’ n

are all linearly independent over S. Then the relation
c(ap)... c(ap) € c(by)... c(bn)S.

in the Clifford algebra implies that m = n = 0, so that X = Y = 0.

(Note in particular that if m = 0, then we are certainly in Case 1. So

this case starts the induction.)

Case 2. Otherwise, there must exist some field element f 0, which
belongs both to the value space Sa; + ... + Sap, of X and to the value

space Sby + ... + Sb, of Y. It follows easily that

X=<f>eX" Y =<f>o0Y’,

where X” and Y’ are (necessarily anisotropic) submodules. Since
A(X") = A(Y"), it follows by induction that X’ = Y’ and hence X = Y.
The isomorphism is unique, since each element of X is uniquely

characterized by its image x-x ¢ F. This proves Lemma 3.

LEMMA 4. Every inner product module X over F can be expressed

as an orthogonal direct sum
X = XpY oY oH,

with X, anisotropic and with H hyperbolic.

Proof by induction on the rank of X. If x-x = 0 for every element of
X, then X is hyperbolic, and we are finished. Otherwise X = <f> o X’
for some f and X' Setting

X = X(’)an’an’eaH’

by induction, ther2 are two possibilities. If f belongs to the value space
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q(Xgp), then X also splits as a sum <f> @ X3 s so that
X = X{ o> oY) o> aY") ®oH’,

as required. On the other hand if f does not belong to q(Xp), then the

direct sum <f> ® X is anisotropic, and
X = (<> e X)) oY oY eH’,
as required. This proves Lemma 4.

Combining Lemmas 3 and 4, we have evidently proved Theorem 2. For
the sum Y ® Y ® H has trivial Clifford determinant, and represents the
zero element of the Witt ring.

Theorem 1 follows also. Forif AX) = AX, eY @Y o H) = AXy)
is the identity element of C*/S°, then Xy = 0, and hence X represents

the zero element of W(F).

We are now ready to classify inner product modules. Given X, let X,
be the unique anisotropic module which satisfies AXy = A(X), and hence

represents the same element of W(F) as X.

THEOREM 3. An inner product module X over F is characterized up
to isomorphism by its associated anisotropic module X, by its value
space q(X) which must contain q(X), and by its rank 1 which must have

the form

2 dimS q(X) — rank X, + 2h

for some integer h > 0.
(Here 2h is the rank of any maximal hyperbolic subspace.)
The proof will be given in outline only. First note the identity
1) <a> ®<b> @ <b> = <a> @ <fla+b> o <f2a+b>.

In fact if x,y,z are mutually orthogonal vectors with
x-X=a yy=22z=Db,

then the three vectors x” = x + (y+2)fa/b, y’ = fx+y, and z" = fx"+z are

mutually orthogonal, with
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(Compare [2, p. 24].)

Similarly note the identity
(2) <a> ®<a> @ <a> = <a> @ (hyperbolic).
For if x,y,z are orthogonal with x-x = y-y = z-z = a, then the three vec-
tors x+y+z, x+y, and x+z have the required inner products. (Compare §2.)

Now, starting with Lemma 4, and noting that the anisotropic summand
X, is determined by A(X) = A(XO), it is not difficult to reduce X to a
normal form depending only on Xy» 9(X), and the rank. This proves
Theorem 3.

Now suppose that the degree d of F over S is finite. Let P(C) de-
note the (2d—1)-dimensiona1 projective space over S consisting of all

lines through the origin in C. We have defined a canonical embedding
A W P(C),
the image A(W) consisting of all lines which are decomposable.

THEOREM 4. This set A(W) C P(C) of decomposable lines through
the origin is precisely the set of S-rational points of a certain non-singular
algebraic set 3 defined over S. This algebraic set 3. consists of two
components, each of which is a rational variety of dimension d(d—1)/2.

The two components of X are of course just the closures of the two

subsets

A(@) C P(C,) and AW-9) C P(C)),

corresponding to inner product modules of even rank or of odd rank respec-

tively.
Proof. Choose a basis fl,...,fd for F over S. For each subset
I=1ip,...,ip} C{1,...,d}, let e, denote the product c(f; )...c(f: ) in C.
I i iy

Evidently these products e form a basis for C over S.

We may assume that the field S is infinite. For if S is finite then

* “
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Next we will construct a rational parametrization of an open subset of
A(W). Let X be an anisotropic inner product module, and suppose first
that its image space q(X) is the entire field F. (This is equivalent to the

assumption that X has rank r = d.) Then there exists a unique basis

Xq,.%g for X so that q(xi) = fi. Setting
c(xi~xj) = cjj
the diagonal entries of the matrix (cij) are just the generators

c(f) c(fd) and the squares of the off-diagonal entries cyj are com-
172 ’

2 t below.)
pletely arbitrary elements (x;- Xj) of S. (See the argumen

Let D—I stand for the complement of I in the index set D = {1,2,...,d}.

It will be convenient to define field elements sp € S by setting
det(c;;) = S S e r

i 1. Thus the co-
These coefficients sy can be read off easily from Lemma u

S = S eq 1 li e f 4—'— ' the C ff -
f ) C(f ) 1 ual to 1. utth rmore, or 1 oelll
¢ Of eD C( I) d
;% i1 y t I nsi tlng o m
cient S{l ]} Of eD {_ _} 1S Equal to ¢ j- For any se consis i 2

elements the coefficient S is now given by

d over all partitions of I into two

3) s = s_ ...s_ , tobe summe

@) s =% sp ~Sp |
i i dd number o

element subsets: I = P; U ... U Py Finally, if I has an o

elements, then sI = 0.

. . _1y/2
Thus the determinant of (cij) is completely specified by the d(d-1)/

i .-x., with i +£j, can
elements sg; ;i of S. Clearly the inner products X; - X; £

be completely arbitrary* elements of F. Hence their squares s¢; i can be

is non-singular. But a sym-

: ; atrix
*We must check that the resulting inner product matr er S can

over F whose diagonal entries are linearly independent ov

. ix '
metrie mat‘.'l 4a-  TAe if it waea then the associated (degenerate) inner product
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completely arbitrary elements of S. Thus we have established a one-to-one
correspondence between the subset of W(F) consisting of all anisotropic
X with q(X) = F and the set consisting of all d(d—1)/2-tuples of elements
S{l ]} Of S.

Now consider the invariant

AX) = (det e(x; - xj))S'

in the projective space P(C). We continue to assume that X is anisotropic

of maximal rank d. Setting

AX) = (3, s ep S,

it is evident that the homogeneous coordinates s_ must satisfy the homo-

I
geneous equations

, m—1 _ 4
39 (Sﬁ) S| = > sPl...sPm
with Sg # 0. (Again this is to be summed over all partitions of I into two
element subsets.)

On the other hand, if X is an anisotropic module of rank r < d then
choosing an arbitrary basis Xy,...,x, for X, an easy computation shows

that the algebra element

det(c(xi-xj)) = 2 SI°p_y

satisfies the equation s¢ = 0. Thus the grgument above has given a
rational parametrization precisely of the ‘‘open’’ subset of

A(W) C P(C)

consisting of all (3, S; ep_pS’ in A(W) for which Sy # 0.

To prove Theorem 4, we must give an analogous parametrization, for

each J C D, of the open set consisting of all (S s_e_ e® in Aun
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for which sJ £ 0. But multiplication by eJ gives rise to an involution of
P(C) which carries A(W) onto itself, and transforms the open set SJ £0

onto the open set s ¢ +£ 0. The corresponding homogeneous equation

4) s ™ 1s = s ...S
@ s)7 sy = % Sp iyt 4]
for sJ £ 0 now follows. Here I+] stands for the symmetric difference

(IU]) = (IN]), and again we sum over partitions of I into two element sub-

sets. The coordinate SL4J is zero if I has an odd number of elements.

Note that the equation (3”) is actually valid for every point
(3 syep_pS

in A(W), even when Sg = 0. In fact if the given point lies in

AW) n P(Cy),

then evidently both sides of (3") are zero. So it suffices to consider a

point in A(W) N P(Co). Choose some index set J for which sJ + 0. Nor-
malizing the homogeneous coordinates by setting s 7= 1, the remaining

coordinates can then be expressed as polynomial functions of d(d—1)/2
among them, by (4). Substituting these polynomial functions into 39, we

obtain an identity between polynomial functions which is valid wherever

the polynomial function S is not zero. Since s¢ is not identically zero

on the set s, & 0, and since the field S is infinite, it follows that (3")

J

is valid everywhere.
To work within the usual framework of algebraic geometry, we must

Similarly the equations (4) are valid throughout AW).

choose some large algebraically closed extension Q O S, and consider

points (2 o) ep_p Q° with coefficients in Q. The equations (4) define

an algebraic set X in the projective space P(Q @ C) over Q, and it is

now easy to check that each of the two components of X is rational and

~ o 4
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Remark. The set A(W) can also be described as the set of S-rational
points of an algebraic group G, which is an open subse£ of 3. Recall
that J denotes the maximal ideal in C. Evidently the product operation
in C gives rise to a well-defined polynomial product operation in the
open set P(C) — P(1). Extending the field S of scalars to ihe algebrai-
cally closed field Q, consider the algebra Q ® C and its maximal ideal
M. Clearly P(Q ® C) — P(’) is a commutative algebraic group defined
over S. The relatively closed subset G = 3 — 3 N P(") is also an al-
gebraic group, and the set of S-rational points of G is precisely A(W).

5. The multiplicative structure of W(F).

Recall that § C W(F) denotes the unique maximal ideal. We will con-

sider the successive powers

§54#>54 >,

THEOREM 5. If the degree of F over S is d = 2k<w, then the ideal

gk is non-zero, but §k+1 = 0.

Remark. This integer k, which measures the ‘‘imperfection’’ of F,
is invariant under finite extensions of F, and increases by 1 under a
simple transcendental extension.

The following definition will be convenient. Elements aj,...,a, of

[3

F are ‘“‘independent’’ over S if the field S(al,‘..,an) has degree 2" over S.

LEMMA 5. Suppose that the elements ay,...,a, of F are ‘‘independent’’

over S, and that b + 0 is an element of S(al,...,an), Then the inner prod-

uct module
X = (Kap> ®<1>)®...®(<an> ® <1>)
is isomorphic to X ® <b>.

Proof. For each subset I

1

{il,...,ir§ of {1,...,n} let

a. =a. ...a; ¢ F.
I 11 lr
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Thus X is isomorphic to an orthogonal direct sum:
X= @ <ap.
In other words X has an orthogonal basis consisting of vectors X with
q(xI) =ap
Since the elements a form a basis for S(al,...,an) over S, we can
write b uniquely as a sum

b=, flzaI.

Let J+I again denote the symmetric difference (JUTI) — (JNI), and let

J-1 stand fay J-(IN D). Consider the vectors
Yy = 2 fpean
I

in X. Evidently

Yy ¥k © 3 fJ+1 fka 4y-1 k11"
I

If J £ K, then the I-th term cancels the (I + J + K)-th term, so that

. = 0. If J =K, then
¥y Vg 0. If J

2 2 _ f2 a. = ba
ypvy= 2 fafat % fatpa®y T
1 1
This proves that

X = @ <baJ>aX®<b>,

which proves Lemma 5.

Proof of Theorem 5. To show that 9k+1 = 0, it suffices to show that

every product of the form
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(Ka;> + <1>)...(<ak+1> + <1>)

is zero in W(F). Given ag,...,ap,; in F, let n > O be the largest integer
such that a,...,a, are ‘“‘independent’’ over S. Then n < k, since F has

degree 2K over S. But Lemma 5 implies that
(Kap> + <)...(<ap> + <1>) <1>

= (Kap> + <)...(Kap> + <I>)<ay >,

from which the conclusion follows.

Conversely, choosing ‘‘independent’’ elements ag,...,ay, it is clear
that

(Kap> + <)...(Kap> + <1>) £0
in W(F). This completes the proof.

Concluding Remarks. It would be interesting to have further informa-

tion about this chain of ideals
WE) DI o.odkoo.

Presumably the homomorphism A carries each §? to a subvariety of A(W)?
The dimension of this subvariety should depend only on n and k.

Note that A(Y) is the intersection of A(W) and P(Cy). Similarly it
can be shown that A(gz) = AW) N P(S+m0), where mo =Mn C,. Per-

haps each A(§") is the intersection of A(W) with a suitable projective
space?

It would also be interesting to study the quotient groups §%/¢%+!, For
n = 1 this quotient is canonically isomorphic to F°*/S°. (Compare Pfister

[6].) As in [5], one can define groups K F which generalize the usual

groups of algebraic K-theory. There is a canonical surjection

1
K F/2K F > §1/42+1,
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For n = 0,1,2 this surjection is actually bijective, but the corresponding

question for higher values of n remains open.
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