SOME FREE ACTIONS OF CYCLIC GROUPS ON SPHERES

By J. MILNOR

Let p > 5 be an integer different from 6 and let n > 5 be odd. This note will show that the cyclic group II of order p can act differentiably on the n-sphere, without fixed points, in infinitely many different ways. These actions are "different" in the sense that the corresponding quotient manifolds $M = S^n/\Pi$ can be distinguished by their Reidemeister-Franz-de Rham torsion invariants. Hence two such "different" manifolds M, M cannot have the same simple homotopy type, cannot be piecewise-linearly homeomorphic, and cannot be diffeomorphic. (It is not known whether or not M and M can be homeomorphic.)

First let me review the basic properties of the torsion invariant, following [3], [4]. Let K be a finite, connected † CW-complex and let H denote the fundamental group of K. Let

$$f: Z[\Pi] \rightarrow C$$

be a ring homomorphism from the integral group ring to the complex numbers. If the homology groups $H_i(K; \mathbb{C}_f)$ are all zero (homology with local coefficients twisted by f) then the torsion invariant $\Delta_f \widetilde{K} \in \mathbb{C}_0 / \pm f\Pi$ is defined. (Here \widetilde{K} denotes the universal covering complex, \mathbb{C}_0 the multiplicative group of non-zero complex numbers, and $\pm f\Pi$ the subgroup generated by $f(\Pi)$ and ± 1 .) To simplify the notation we will henceforth leave off the tilde, and write simply $\Delta_f K$.

Similarly, given a pair K, L with $H_*(K, L; \mathbb{C}_f) = 0$ the torsion $\Delta_f(K, L)$ is defined. This satisfies the identity

$$\Delta_f(K, L) = \Delta_f K / \Delta_f L$$
, (1)

providing that the three terms are defined. (If two out of three are defined, then the third is automatically defined.)

4 For a complex with several components the torsion can be defined as the product of the torsions of the components. If W is a triangulated orientable manifold of dimension n with boundary bW, then the following duality theorem holds. We must assume that |f(t)| = 1 for $t \in \Pi = \pi_1(W)$. Then

$$\Delta_f(bW) = (\Delta_f W) (\overline{\Delta}_f W)^{e(n)}$$
 (2)

where $\overline{\Delta}$ denotes the complex conjugate and $\epsilon(n) = (-1)^n$. We will also need the following variant form. If M is a triangulated manifold without boundary of dimension n-1 then

$$\Delta_t M = (\overline{\Delta}_t M)^{d(n)}$$
. (3)

Now consider an h-cobordism (W; M, M'). That is, assume that W is a smooth manifold with boundary M+M', and that both M and M' are deformation retracts of W. Choosing a C^1 -triangulation of (W; M, M') we will assume that the torsion

$$\Delta_f M \in \mathbb{C}_0 / \pm f \Pi$$

is defined.

Lemma 1. With the above assumptions, $\Delta_f M'$ is defined and equal to

$$(\Delta_f M) \Delta_f(W, M) (\overline{\Delta}_f(W, M))^{d(n)}$$
.

PROOF. Since M is a deformation retract of W it is clear that $\Delta_f(W, M)$ is defined. Thus $\Delta_f W$ is defined, and similarly $\Delta_f M'$ is defined. Consider the duality statement

$$\Delta_f(bW) = (\Delta_f W) (\overline{\Delta}_f W)^{r(n)}$$
.

Since $\Delta_f(bW) = (\Delta_f M) (\Delta_f M')$ and since $\Delta_f W = (\Delta_f M) \Delta_f(W, M)$, this can be rewritten as

$$(\Delta_f M)$$
 $(\Delta_f M') := (\Delta_f M) \Delta_f (W, M) (\overline{\Delta}_f M)^{e(n)} (\overline{\Delta}_f (W, M))^{e(n)}$.

Now dividing through by

$$\Delta_f M = (\overline{\Delta}_f M)^{c(n)}$$

we obtain the required formula

$$\Delta_f M' = (\Delta_f M) \Delta_f(W, M) (\overline{\Delta}_f(W, M))^{a(n)}$$
.

Henceforth we will assume that the dimension n of W is even. Thus Lemma 1 can be rewritten in the form

$$\Delta_{f} M' := (\Delta_{f} M) |\Delta_{f} (W, M)|^{3}.$$
 (4)

Suppose that we are given the manifold M with fundamental group Π , and wish to construct the h-cobordism (W; M, M').

LEMMA 2 (Stallings). If dim (M) > 5 then the h-cobordism (W: M, M') can be constructed so that $\Delta_f(W, M)$ is equal to the image, in $C_0/\pm f\Pi$, of any unit of the group ring $Z[\Pi]$.

PROOF. Stallings actually observes that the h-cobordism can be constructed so that the Whitehead torsion invariant $\tau(W, M)$ is any desired element of the Whitehead group

Wh(
$$\Pi$$
) = $GL(\infty, Z[\Pi])/(Commutators, $\pm \Pi$).$

(See Stallings [6, § 2]. The manifold W is constructed by adjoining handles of index 2 and 3 to $M \times [0, 1]$ along one boundary, in such a way that the matrix of "incidence numbers" between the two types of handles is equal to a given invertible matrix over $Z[\Pi]$.) In particular if u is a unit of $Z[\Pi]$ then W can be chosen so that $\tau(W, M)$ is the element of Wh (Π) corresponding to the matrix

$$\left\{\begin{array}{c} u \\ 1 \\ 1 \\ \cdot \\ \cdot \\ \cdot \\ \cdot \end{array}\right\} \in GL \left(\infty, \ Z[\Pi]\right).$$

It is then clear that $\Delta_f(W, M)$ is equal to the image of u in $\mathbb{C}_0/\pm f\Pi$. (Compare Cockeroft [1], or [3, p. 589].) This completes the proof.

Thus in order to construct examples of h-cobordisms, we need only look for units in $Z[\Pi]$. To be more specific, let us now assume that Π is cyclic of order p with generator t. Define $f: Z[\Pi] \to \mathbb{C}$ by $f(t) = \exp(2\pi i/p)$. The following case is particularly easy.

Lemma 3 (Higman). If p > 5 is an integer of the form $6k \pm 1$ then $Z[\Pi]$ contains a unit u with $|f(u)| \neq 1$.

Proof. This follows from Higman [2]. Alternatively, here is a direct proof. Let

$$u = t + t^{-1} - 1$$

so that $f(u) = 2\cos(2\pi/p) - 1 \neq \pm 1$. To see that u is a unit it is only necessary for the reader to verify the identity

$$u(1+t-t^2-t^4+t^6+t^7-\cdots++\cdots-+t^{p-1})=1$$

for $p \equiv 1 \pmod{6}$; or

$$u(-1+t^2+t^3-t^5-t^6++--...-+t^{p-3}+t^{p-2})=1$$

for $p \equiv -1 \pmod{6}$. This completes the proof. (Some further discussion of this lemma is included as an appendix.)

Now combining the three lemmas we have the following.

THEOREM. Let M be a smooth manifold of odd dimension > 5 whose fundamental group is cyclic of order $p=6k\pm 1$, p>5. Suppose that the torsion Δ_j M is defined. Then there exist infinitely many manifolds M_1 , M_2 , M_3 , ... which are h-cobordant to M, but such that no two have the same simple homotopy type.

PROOF. For each integer m we can choose the h-cobordism $(W_m; M, M_m)$ so that

$$|\Delta_t(W_m, M)| = |f(u^m)|.$$

Then

$$\Delta_f M_m = (\Delta_f M) |f(u)|^{2m}$$
.

Since $|f(u)| \neq 0$, 1 the real numbers $|\Delta_f M_m|$ are all distinct. This does not yet prove that the M_m all have distinct simple homotopy types, since the invariant $|\Delta_f M_m|$ depends on the choice of f. But there are only finitely many homomorphisms from $Z[\Pi]$ to C, so out of the infinite sequence M_1, M_2, \ldots one can certainly extract an infinite subsequence consisting of pairwise distinct manifolds. This completes the proof.

In particular let us apply this theorem to a lens space

$$L = S^n/\Pi$$
, n odd.

The resulting h-cobordant manifolds $L_1, L_2, ...$ will all have universal covering spaces diffeomorphic to the sphere. (See Smale [5].) Thus we have infinitely many distinct free actions of the cyclic group

II on S^n . But there are only finitely many orthogonal actions of II on S^n . Thus we have:

COROLLARY. For n odd > 5 and $p = 6k \pm 1 > 5$ there exist infinitely many smooth fixed point free actions of the cyclic group of order p on S^n which are not smoothly equivalent to orthogonal actions, and are not smoothly equivalent to each other.

It would be interesting to know whether any corresponding phenomenon occurs in dimension 3.

APPENDIX: FURTHER DISCUSSION OF LEMMA 3.

Higman's theorem actually applies more generally to any finite abelian group Π which does not have exponent 1, 2, 3, 4 or 6. Hence the theorem also applies in this generality. In fact suppose that $t \in \Pi$ is an element whose order p is different from 1, 2, 3, 4, 6. Then the Euler ϕ -function satisfies $\phi(p) > 2$. Hence there exists an integer a, with 1 < a < p/2, which is relatively prime to p. Choose b so that $ab \equiv 1 \pmod{p}$, and set

$$x = (t^a - 1)/(t - 1) = 1 + t + t^2 + ... + t^{a-1},$$

 $y = (t^{ab} - 1)/(t^a - 1) = 1 + t^a + t^{2a} + ... + t^{(b-1)a}.$

Then (t-1)xy = t-1, from which it follows easily that xy-1 is a multiple of the element $s = 1 + t + t^2 + ... + t^{p-1}$. Thus x is a unit modulo s. To obtain an actual unit, choose integers k, l, m so that $a^k = l p + 1$, $b^k = m p + 1$. Then $(x^k - ls)(y^k - ms) = 1$; so that $u = x^k - ls$ is the required unit.

As before we can choose $f: Z[\Pi] \to \mathbb{C}$ so that $f(t) = \exp(2\pi i/p)$. Then f(s) = 0, hence $|f(u)| = |f(x)|^k > 1$.

For any integer p > 5, $p \neq 6$, it follows that the cyclic group of order p can act freely on a sphere in infinitely many different ways. **Problem.** Can a cyclic group of order 2, 3, 4 or 6 act freely on a sphere in infinitely many different ways?

REFERENCES

- W. H. COCKCROFT: Simple homotopy type torsion and the Reidemeister-Franz torsion, Topology, 1 (1962), 143-150.
- G. Higman: The units of group rings, Proc. London Math. Soc. 46 (1940), 231-248.
- J. Milnor: Two complexes which are homeomorphic but combinatorially distinct, Annals of Math. 74 (1961), 575-590.
- J. MILNOR: A duality theorem for Reidemeister torsion, Annals of Math. 76 (1962), 137-147.
- S. SMALE: On the structure of manifolds, American J. Math. 84 (1962), 387-399.
- J. STALLINGS: On infinite processes leading to differentiability in the complement of a point, to appear.

Princeton University Princeton N. J., U.S.A.