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The 1950’s and 1960’s were exciting times to study the topology of manifolds.
This lecture will try to describe some of the more interesting developments. The
first two sections describe work in dimension 3, and in dimensions n ≥ 5, while
§3 discusses why it is often easier to work in higher dimensions. The last section
is a response to questions from the audience.

1 3-Dimensional Manifolds.

A number of mathematicians worked on 3-dimensional manifolds in the 50’s.
(I was certainly one of them.) But I believe that the most important contribu-
tion was made by just one person. Christos Papakyriakopoulos had no regular
academic position, and worked very much by himself, concentrating on old and
difficult problems. We were both in Princeton during this period, and I saw him
fairly often, but had no idea that he was doing such important work. (In fact,
I don’t really remember talking to him—perhaps we were both too shy.)

Let me try to explain what he accomplished. In 1910, Max Dehn had claimed
a proof of the following lemma:

If a piecewise linear map from a 2-simplex ∆ into a triangulated 3-
manifold is one-to-one near ∂∆, and if the image of the interior is
disjoint from the image of the boundary, then there exists a piecewise
linear embedding of ∆ which agrees with the original map near ∂∆.

As an easy corollary, he concluded that if the fundamental group of a knot com-
plement is free cyclic, then there exists a spanning disk, so that the curve must
be unknotted. This was a happy state of affairs for twenty years or so until 1929

∗I am grateful to Gabriel Drummond-Cole and Elisenda Grigsby for their help in preparing
these notes, and to Rob Kirby, Larry Siebenmann, and John Morgan for their help in getting
the history straight.

1



when Helmut Kneser studied the proof and discovered that Dehn’s argument
was seriously incomplete. The lemma remained as an unsolved problem for an-
other thirty years or so, until Papakyriakopoulos, working by himself and using
classical methods for finite simplicial complexes and their covering spaces, gave
a correct proof. Closely related is his “Loop Theorem”:

If M2 is a boundary component of a 3-dimensional manifold-with-
boundary W 3, and if the homomorphism π1(M

2) → π1(W
3) has a

non-trivial kernel, then some essential simple closed curve in M 2

bounds an embedded disk in W 3.

Another fundamental result which Papakyriakopoulos proved at the same time
and with similar methods is the “Sphere theorem”:

Consider a map from the sphere S2 to an orientable 3–manifold
which is essential (i.e., not homotopic to a constant map). Then
there exists an essential embedding of S2 in the manifold.

Conversely, if there is no such essential embedded sphere (for example if M 3 is
the complement of a knot in S3), then it follows that π2(M

3) = 0.

In the 60’s, the major progress in 3-manifold theory was again by individuals,
working by themselves and using classical piecewise linear methods. Wolfgang
Haken pioneered the study of 3-manifolds which contain what we now call
incompressible surfaces, that is two-sided embedded surfaces of genus ≥ 1 whose
fundamental groups map injectively into the fundamental group of the manifold.
Whenever such a surface exists, he showed that the manifold could be simplified
by cutting along it. This technique was strong enough, for example, to give an
effective procedure for deciding whether or not a simple closed curve in S3 is
unknotted. Friedhelm Waldhausen demonstrated the usefulness of these ideas
by a number of important applications.

2 Higher Dimensions.

The progress in the study of higher dimensional manifolds was quite different,
It involved many people, making use of many different techniques. Some of the
necessary tools had been established much earlier, and some were just coming
into being:

• Cohomology theory had been created by Alexander, Whitney, Čech,
and others.

• Cohomology operations had been studied by Steenrod, and others.

• Fiber bundles were developed by Whitney, Hopf, Steenrod, and others.
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• Characteristic classes were introduced by Whitney, Stiefel, Pontrjagin,
and Chern.

• Homotopy groups had been studied but were very poorly understood.

• Morse theory had been developed, but its many applications had not
been realized.

The first big step in the 50’s was by Jean-Pierre Serre, who showed in 1951
that the machinery of spectral sequences has very important applications in
homotopy theory. He proved for example that the group πm(Sn) of homotopy
classes of maps of Sm to Sn is finite except in the special cases πn(Sn) ∼= Z

and π4n−1(S
2n) ∼= Z + (finite). Although this seems to have nothing to do with

manifolds, it played a big part in what follows.

In 1954, René Thom developed cobordism theory: If two compact manifolds
cobound a smooth, compact manifold of one dimension higher, they are said to
be cobordant. One can make an analogous definition for oriented cobordism.
Thom showed that cobordism classes form an additive group, which isn’t so
surprising; but then he proved very sharp results about these groups, using
ingenious geometric constructions together with the algebraic techniques which
had been pioneered by Serre, Steenrod, and many others.

The n-dimensional oriented cobordism classes form a finitely generated abelian
group Ωn, and the topological product of manifolds gives rise to a bilinear prod-
uct operation

Ωm ⊗ Ωn → Ωm+n ,

thus making the direct sum Ω∗ into a ring. In order to eliminate the problem of
torsion, Thom tensored this ring with the rationals, and proved that the result
is a polynomial algebra with generators represented by the complex projective
spaces of even complex dimension:

Ω∗ ⊗ Q = Q[CP2, CP4, CP6, . . .] .

In particular, he showed that Ωn ⊗ Q is non-zero only in dimensions divisible
by 4.

Thom also provided an effective test to decide when a 4n-manifold is zero in
this group: Take any product of Pontrjagin classes of the correct total dimension,
and apply it to the fundamental homology class to obtain an integer, called a
Pontrjagin number . Thom showed that a manifold is cobordant to zero (i.e., is
a boundary) modulo torsion if and only if all of these Pontrjagin numbers are
zero.

He also defined the signature of an oriented 4n-dimensional manifold.
I will describe it in terms of homology: Take two homology classes α, β ∈
H2n(M4n; Z). If we think of these intuitively as being represented by 2n-
dimensional submanifolds, then we can make these manifolds intersect transver-
sally in a finite number of points. The signed count of the resulting intersections
is an integer α · β called the intersection number . Now pass to rational coef-
ficients, and pick a basis {αi} for the vector space H2n(M4n; Q) so that the
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intersection bilinear form is diagonalized: αi · αj = 0 for i 6= j. The sum of the
signs of the diagonal elements αi · αi is an integer called the signature, denoted
by σ = σ(M4n).

Thom proved by a geometric argument that if the manifold is a boundary,
then σ = 0. It followed easily that the signature of any 4n-manifold can be
expressed as a linear combination of Pontrjagin numbers; but with rational co-
efficients. Hirzebruch had conjectured such a formula, and worked out its exact
form, which Thom’s proof then established.

As an example, in the 8-dimensional case there are two Pontrjagin numbers,
p2[M

8] and p 2
1 [M8], and the formula reads:

σ(M8) =
7

45
p2[M

8] −
1

45
p 2
1 [M8] . (1)

(To prove this formula, one need only evaluate both the Pontrjagin numbers
and the signature for the two generators, CP4 and CP2 × CP2, and then solve
the resulting linear equation.) We can also rearrange terms in formula (1) so
that p2 is expressed in terms of p1 and σ with rational coefficients:

p2[M
8] =

45σ(M8) + p 2
1 [M8]

7
. (2)

Suppose that we try to apply this last formula, but with the closed manifold M 8

replaced by a manifold-with-boundary, W 8. If the boundary ∂W 8 is a homology
7-sphere, then the signature still makes sense. Furthermore, the first Pontrjagin
class, p1, is well defined as an element of

H4(W 8) ∼= H4(W 8, ∂W 8) ;

and p 2
1 , considered as an element of H8(W 8, ∂W 8), is non-zero, so that the

Pontrjagin number p 2
1 [W 8] can be defined. However p2[W

8] cannot be defined.

But suppose this boundary is actually diffeomorphic to S7. Then we can
paste on an 8-ball to get a closed manifold, and compute its Pontrjagin number
p2[M

8] by formula (2). Thus, if the boundary ∂W 8 is a standard 7-sphere then
this expression must be an integer, and we can conclude that

45σ + p 2
1 ≡ 0 (mod 7).

If we can find any W 8, bounded by a homology sphere, where this fails, then
we’ve found a homology sphere which cannot be diffeomorphic to the standard
sphere.

When I came upon such an example in the mid-50’s, I was very puzzled and
didn’t know what to make of it. At first, I thought I’d found a counterexample
to the generalized Poincaré conjecture in dimension seven. But careful study
showed that the manifold really was homeomorphic to S7. Thus, there exists
a differentiable structure on S7 not diffeomorphic to the standard one. (By
taking connected sums, it follows easily that there are at least seven distinct
differentiable structures on S7. In fact there are precisely twenty-eight.)
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Another important contribution from the 50’s is due to Raoul Bott, who
exploited Morse theory in a way that no one had thought possible to study
homotopy groups of classical groups. Although this seems to have nothing to
do with manifold topology, it turned out to be very important for developing
the theory. The easiest case to describe is the stable unitary group U, that is,
the union of the increasing sequence U(1) ⊂ U(2) ⊂ · · · . He showed that

πn(U) ∼=

{

Z if n is odd,

0 if n is even.

This was a fantastic achievement; at this point very few homotopy groups were
completely known, and having such a fundamental example with such a simple
answer was mind-boggling. One important consequence was the rapid develop-
ment of topological K-theory.

The study of topology of manifolds came even more alive in the 60’s. The
first development was Steve Smale’s proof of the generalized Poincaré Conjecture
in high dimensions. He showed that:

If a smooth manifold Mn of dimension n > 4 has the homotopy type
of Sn, then Mn is homeomorphic to Sn.

In fact, he actually proved a sharper result (for even dimensions in [1961] and
for odd dimensions in [1962]). Smale’s argument in dimensions ≥ 6 runs as
follows. (Dimension 5 requires a different and very special argument.) Start
with a self-indexing Morse function

f : Mn → R.

By careful moves which cancel critical points in pairs, he reduced to the case
where f has only two critical points, one of index 0 and one of index n. Now,
choose a level set f−1(r) of this Morse function which lies between the two
critical points (0 < r < n). Looking at the flow lines running to f−1(r) from the
index n critical point, we see that the subset f−1[r, n] is diffeomorphic to a disk.
Similarly, the set f−1[0, r] is diffeomorphic to a disk. This shows that one can
obtain Mn by taking two disks and gluing them together by a diffeomorphism
of the boundary spheres.1 In particular, Mn is homeomorphic to the standard
n-sphere. Furthermore, this manifold Mn is determined, up to diffeomorphism,
by the diffeomorphism Sn−1 → Sn−1 between boundary spheres. I call such an
n-manifold a twisted sphere. Thus Smale showed that every smooth manifold
of dimension n > 4 having the homotopy type of a sphere is in fact, a twisted
sphere.

One can form an abelian group Γn, equal to the set of twisted n-spheres up to
orientation-preserving diffeomorphism, and arrive easily at the exact sequence:

π0(Diff+(Dn)) → π0(Diff+(Sn−1)) → Γn → 0 .

1Compare Reeb [1952], Milnor [1956].
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In 1962, Smale proved the h-cobordism theorem. The manifolds Mn and Nn

are said to be h-cobordant if there is a cobordism W n+1 between them such
that the inclusion maps

iM : Mn → Wn+1 and iN : Nn → Wn+1

are homotopy equivalences. He proved:

If Wn+1 is a compact, smooth h-cobordism between Mn and Nn, and
if in addition Mn and Nn are simply connected with n > 4, then W
is diffeomorphic to M × [0, 1]; hence M is diffeomorphic to N .

Using the group Γn of twisted n-spheres, Jim Munkres and Moe Hirsch inde-
pendently constructed an obstruction theory for the problem of imposing a com-
patible differentiable structure on a combinatorial manifold2 of any dimension.
The obstructions to the existence of a smooth structure on a combinatorial man-
ifold lie in the groups Hk+1(Mn; Γk); while the obstructions to the uniqueness
of such a smooth structures, when it exists, are elements of Hk(Mn; Γk). The
first few coefficient groups are relatively easy to compute: Γ1 = Γ2 = Γ3 = 0.
Jean Cerf proved the much harder result that Γ4 = 0 in 1962.3 Kervaire and I
had studied the group Θn consisting of homotopy n-spheres up to h-cobordism,
showing that these groups are trivial for n = 4, 5, 6 and finite in higher dimen-
sions, with Θ7

∼= Z/28. Combining all of these results, we see that Γn = 0
for n < 7, and that Γ7

∼= Z/28. Furthermore, if we accept Perelman’s proof
of the Poincaré conjecture, then Θ3 = 0, and it follows easily that Γn maps
isomorphically to Θn in all dimensions.

For dimensions n 6= 4, the group Γn
∼= Θn classifies all possible differen-

tiable structures on Sn, up to orientation preserving diffeomorphism. However,
in spite of the tantalizing fact that Γ4 = Θ4 = 0, we don’t know anything about
possible exotic spheres in dimension 4. That is, we do not know that every
4-dimensional manifold M 4 with the homotopy type of S4 is actually a differen-
tiable S4. Furthermore, if an exotic S4, does exists, we don’t know whether the
complement of a point is necessarily equal to the standard R4, or is necessarily
an exotic R4, or whether both cases can occur.

Near the end of the 60’s, Kirby and Siebenmann developed an obstruc-
tion theory for the much harder problem of passing from topological manifolds
to PL-manifolds. For a topological manifold Mn (where the dimension n is
assumed to be five or more), there is only one obstruction to existence of a PL-
structure, living in H4(Mn; Z/2), and only one obstruction to the uniqueness
of this structure (when it exists), living in H3(Mn; Z/2).

2A combinatorial or PL n-manifold is a triangulated space which is locally piecewise linearly
homeomorphic to Euclidean n-space.

3Compare Cerf [1968]. For an alternative proof, see Eliashberg [1992, §2.4].
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Fig. 1: The black circle does not bound an embedded disk in the com-

plement of the dotted circle.

3 Why are higher dimensions sometimes easier?

Today we know that there are clear differences between low dimensions (< 4),
high dimensions (> 4), and dimension 4 which is a jungle! Back in the early 50’s,
we knew that 1–manifolds were easy to understand, 2–manifolds were fairly easy,
3–manifolds were hard, and we assumed that it would get harder as we went
up. So it was a big surprise in the 50’s to discover that higher dimensions are
often easier than lower, roughly speaking because there is much “more room”
to carry out geometric constructions in higher dimensions.

Perhaps a simple example will illustrate the special difficulties which arise
in low dimensions. In all dimensions it is important to study embeddings of
the circle S1 into a given manifold Mn. If n ≥ 5, then using an argument
which goes back to Whitney it is not hard to see that such an embedded circle
bounds a smooth embedded disk if and only if the inclusion map S1 → Mn is
homotopic to a constant. But this argument breaks down in dimension 3. As
an example, suppose that M 3 is the complement of the dotted circle in Figure
1. Then the black circle can be shrunk to a point in M 3 (if it is allowed to
cut across itself); but it does not bound any embedded disk in M 3. One can
immerse a disk missing the dotted circle, and one can find an embedded disk
that intersects the dotted circle, but one cannot do both.

This particular difficulty doesn’t seem to arise in dimension 4, since there
can be no non-trivial knotted or linked circles in the interior of a 4-manifold.
However, circles on the boundary of a 4-manifold again give rise to problems.
As an example, a trefoil knot which is embedded in the boundary of the 4-
dimensional disk D4 does not bound any smoothly embedded disk within D4.
(Compare Fox and Milnor [1966].)
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4 Questions from the audience.

The five questions which follow have been permuted; and in several cases, the
rather brief answers which were given during the lecture have been very sub-
stantially augmented.

(1) Are there any themes from the 50’s and 60’s that have
been forgotten and shouldn’t have been?

It’s hard, I think, to find any branch of mathematics that has been completely
neglected.

(2) One thing you’re famous for is your list of problems
from the 50’s. Do you have any problems that you want to
see solved now?

The only question in manifold theory which came to mind immediately is the
possible existence of exotic differentiable structures on S4. I have no idea how
one can attack that problem. One further important question is the following:
Can every manifold of dimension n 6= 4 be triangulated? (See the discussion on
the next page.) John Morgan points out that the Novikov Conjecture provides
another example of an important unsolved problem in manifold theory. One
form of this conjecture states that certain rational cohomology classes

f∗(x) ∪ Li(M
n) ∈ Hn(Mn; Q)

are homotopy type invariants. Here Li ∈ H4i(Mn; Q) is the Hirzebruch poly-
nomial which expresses the signature of a 4i-manifold in terms of Pontrjagin
classes, while f is the canonical map from Mn to the classifying space Bπ1(M

n),
and x can be any cohomology class of dimension n−4i in this classifying space.
(For an extended discussion, see Ferry et al. [1995].)

(3) Can you give us an update on the list of questions you
asked in the 50’s ?4

Five of the seven questions had been completely answered by the mid 80’s.
However, the possible existence of a non-triangulable manifold of dimension > 4
remains open; and details for the proof of the 3-dimensional Poincaré Conjecture
have not appeared. (Furthermore, the differentiable or PL-version of the 4-
dimensional Poincaré Conjecture is untouched.) Here is a more detailed report.

• Let M3 be a homology 3-sphere with π1 6= 0. Is the double suspension
of M3 homeomorphic to S5 ?

4The problem list was probably first circulated during a summer workshop at Seattle in
1963. See Lashof [1965, p. 579].
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This was partially proved by Bob Edwards [1975], and in a sharper form
by Jim Cannon [1978, 1979]. (Compare Latour [1979].) It provided the first
example of a triangulated manifold which is not locally PL-homeomorphic to
Euclidean space.

• Is simple homotopy type a topological invariant?

Proved independently by T.A. Chapman [1973] and by R.D. Edwards. (Com-
pare Siebenmann [1974], Edwards [1978].)

• Can rational Pontrjagin classes be defined as topological invariants?

Proved by Sergei Novikov [1965].

• (Hauptvermutung.) If two PL-manifolds are homeomorphic, does
it follow that they are PL-homeomorphic?

Answered negatively by the work of Kirby and Siebenmann [1969]. For
an explicit counterexample see Siebenmann [1970]. (The Hauptvermutung for
2-dimensional polyhedra had been proved by Papakyriakopoulos [1943], and for
3-manifolds by Moise [1952]. A counterexample for arbitrary simplicial com-
plexes had been given by Milnor [1961]. For the many others who contributed,
see Ranicki [1996].)

• Can topological manifolds be triangulated?

The same work of Kirby and Siebenmann shows that topological manifolds
cannot always be triangulated as PL-manifolds. However, it is possible that
every manifold of dimension n > 4 does possess some triangulation (which by
Kirby-Siebenmann can not always be locally PL-homeomorphic to Euclidean
space). This is a fundamental unsolved problem. For further information and
partial results, see Matumoto [1978], Galewski and Stern [1980]. (For triangu-
lation of 3-manifolds, see Moise [1952].)

In dimension 4, there is a specific counterexample, as follows. V.A. Rokhlin
[1952] proved that any closed simply-connected differentiable 4-manifold with
Stiefel-Whitney class w2 = 0 (or equivalently with self-intersection form α 7→
α · α ∈ Z which takes only even values) must have signature σ ≡ 0 (mod 16).
(Compare Guillou and Marin [1986].) On the other hand, Mike Freedman [1982]
constructed a topological 4-manifold with these properties, but with signature
σ = 8. Thus Freedman’s manifold is essentially non-differentiable. In fact, it
cannot have any PL-structure since there would be no obstruction to smoothing
a PL-structure.5 Andrew Casson, circa 1985, sharpened Rokhlin’s theorem
by showing that if a homotopy 3-sphere bounds a simply-connected smooth
or PL manifold with w2 = 0, then this 4-manifold must have signature σ ≡
0 (mod 16). (Compare Akbulut and McCarthy [1990].) It follows easily that
the Freedman manifold has no triangulation at all. For given a triangulation,
a small neighborhood Nv of any vertex v can be described as the cone over

5If we assume the 3-dimensional Poincaré Conjecture, then every triangulated 4-manifold
is automatically a PL-manifold, so that we can skip Casson’s argument, which can be thought
of as an early step towards the Poincaré Conjecture.
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a homotopy sphere ∂Nv. Now replace each such Nv by a simply connected
PL-manifold with w2 = 0 and with the same boundary. According to Casson,
each such replacement patch would have signature ≡ 0 (mod 16). It would then
follow easily that the resulting PL-manifold must have signature ≡ 8 (mod 16),
contradicting Rokhlin’s theorem.

The Kirby-Siebenmann obstruction class can be defined for a 4-manifold
(although it is not the only obstruction to existence of a PL-triangulation); and
it is non-zero for the Freedman M 4 discussed above. More generally, Casson
showed that any 4-manifold with non-zero Kirby-Siebenmann obstruction can
have no triangulation at all. (For other non-triangulation results, see Handel
[1978].)

• The Poincaré hypothesis in dimensions 3, 4.

Freedman [1982] proved the Poincaré hypothesis for topological 4-manifolds;
and Grisha Perelman [2002], [2003a,b] has claimed a proof for 3-manifolds.

In retrospect, it would be clearer to distinguish between three different ver-
sions of the Poincaré hypothesis, depending on whether we work in the topo-
logical category, the PL category, or the differentiable category. If we accept
Perelman’s proof, then the topological Poincaré hypothesis is true in all dimen-
sions (using Kirby-Siebenmann to reduce to the PL-case in dimensions > 4).
The PL-Poincaré hypothesis (that is, the statement that a closed PL-manifold
with the homotopy type of Sn is PL-homeomorphic to Sn) is true except possi-
bly for the case n = 4. On the other hand, the differentiable Poincaré hypothesis
is false in dimensions 7, 8, 9, 10, 11, and in many higher dimensions; but is true
in dimension 12. (Compare Kervaire and Milnor.)

• (The annulus conjecture.) Is the region bounded by two locally flat
n-spheres in Sn+1 necessarily homeomorphic to Sn × [0, 1]?

Proved by Kirby [1969] for dimensions n+1 6= 4, and by Frank Quinn [1982]
in the 4-dimensional case.

(4) Is Perelman’s work related to the proof that Γ4 = 0?

There is no relation. Perelman is concerned with the topology and geometry of
3-manifolds, while the statement that Γ4 = 0 says that a very sharply restricted
differentiable 4-manifold must be diffeomorphic to the standard 4-sphere.

Recall that Γn can be described either as the group of twisted n-spheres
up to orientation preserving diffeomorphism, or as the group of orientation
preserving diffeomorphisms of the (n−1)-sphere, modulo those which extend to
diffeomorphisms of the n-disk. Cerf proved that Γ4 = 0 back in 1962. (In fact,
Cerf proved the stronger result that the group Diff+(S3) is connected. Much
later, in 1983, Alan Hatcher proved the much sharper result that Diff+(S3)
deformation retracts onto the rotation group SO(4).) Since Kervaire and I had
shown that the group Θ4 of homotopy spheres up to h-cobordism is also trivial, it
certainly follows that Γ4 maps isomorphically onto Θ4. If we accept Perelman’s
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claimed proof of the classical Poincaré Conjecture, then it follows trivially that
Θ3 = 0, which is all that was missing in order to show that

Γn

∼=
−→ Θn (3)

for all n. However, this uniform statement conceals the fact that we know
much less in dimension 4. In all dimensions n 6= 4, the statement is much
stronger since these mutually isomorphic groups (3) can be identified with the
group of all possible differentiable structures on Sn, up to orientation preserving
diffeomorphism. But in the 4-dimensional case, we don’t know whether or not
there exist exotic spheres which are not twisted spheres.

(5) I’ve heard you were once challenged to write a limerick
involving Papakyriakopoulos.

I’ve heard many variations over the years, but I believe that my original version
went as follows:

The perfidious lemma of Dehn
drove many a good man insane
but Christos Pap-
akyriakop-
oulos proved it without any pain.
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T. Chapman et R. D. Edwards]. Séminaire Bourbaki 1972/1973, No. 428,
pp. 186–209; Lecture Notes in Math. 383, Springer, Berlin, 1974.
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