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SOME CONSEQUENCES OF A THEOREM OF BOTT

BY JoHN MILNOR!

(Received February 11, 1958)

It will be shown that the following theorem, due to R. Bott [3], can be
used to solve several well known problems ; including the problem of the
existence of division algebras, and the parallelizability of spheres®. (Inde-
pendent solutions of these problems, also based on Bott’s work, have been
given by Kervaire and Hirzebruch.)

THEOREM OF BoTT. For any O,-bundle & over the sphere S*, the
Pontrjagin class p(§) € H*(S* ; Z) 4s divisible by (2k — 1)!. (This result
was conjectured, and proved up to powers of 2, by Borel and Hirzebruch
[1D.

The following result, which follows from Wu Wen-Tsiin [19], will also
be needed. Since Wu’s paper is in Chinese a proof is included in the ap-
pendix. The epimorphism Z — Z, induces a homomorphism H*(K ; Z) —
H*(K ; Z,) which will be denoted by a — (a),- Let ¢: Z, — Z, denote the
inclusion homomorphism.

THEOREM OF WU. For any O,-bundle & over a complex K, the class
(p(8)): € H*™(K ; Z,) is determined by the Stiefel-Whitney classes w(£) €
HYK ; Z,). In particular if the Stiefel-Whitney classes wy(§), « -« , Wy -1()
are zero then (Dy(£)): = 1,Wul(€).

Combining these two results, the following is obtained.

THEOREM 1. There exists an O,-bundle & over the sphere S™ with w,(§)
+ 0 only forn=1,2,4 or 8.

(Examples of such bundles can be given as follows : for » = 1 the 2-
fold covering of the circle, and for n = 2, 4 or 8 the O,-bundle over S»
associated with the Hopf fibering S**-! — S».)

ProoF. According to Wu [16] such a bundle can exists only if » is a
power of 2. Hence it is certainly sufficient to consider the case n = 4k,
k > 2. The identity

(P(8))s = ?:*wuc(‘f) € H*S*;Z) = Z,

is valid, since the lower Stiefel-Whitney classes must be zero. In other
words the class w,,(§) is zero if and only if p,(§) is divisible by 4. But

1 T he authd} Vhié)lrd's a Sloan fellowship.
2 A preliminary account of this work has been given in [20].
444



A THEOREM OF BOTT 445

p(§) is known to be divisible by (2k — 1)!. For k£ > 2 this proves that
wg(§) = 0.

THEOREM 2. The sphere S” 1s parallelizable only for r = 1,38,7. (Com-
pare Steenrod and Whitehead [10].)

ProoF. The fibering SO, — SO, ., —f—> S" associated with the tangent
bundle of S” has the following homotopy sequence :

— 7(SO;41) ELN m(S") 2 2 (80,) — 7, 1(SO,2) — 0 .
The group =,(S”) will be identified with the integers. Then 4(1) €
7,..(S0,) is the element which corresponds to the tangent bundle of S~.
(See Steenrod [9, §18]).

For each 1 e 7,(S0,.,) let ¢ denote the corresponding SO, .,-bundle over
S7+1, and let X(&) denote its Euler class (=top Stiefel-Whitney class with
integer coefficients). Let ¢ be the standard generator of H,,,(ST™';Z).
Then f,(2) is equal to the negative of the ‘‘ Euler number »’ (X(§), p)>.
[Proof. Let o(§)e H™*'(S™*'; n,(SO,.,)) denote the obstruction to the exist-
ence of a cross-section of £&. Then X(£), the obstruction to the existence
of a cross-section in the associated sphere bundle, is equal to f.(0(%)).
According to Steenrod [9, p. 180] the identity <{o(§), > = —1 is satisfied.
Therefore (X(¢), > = —f«(A)].

Now if S is parallelizable then 8(1) = 0, hence there exists 1 € =,(SO,.,)
with f, (1) = 1. For the corresponding bundle &, the class X(¢) generates
H+(S™*'; Z); hence the class w,..(§) = (X(£)). is non-zero. Together
with Theorem 1 this complete the proof.

It follows immediately that the real projective space P is parallelizable
only for » =1, 8, 7. (For consequences concerning the immersion of P” in
euclidean space see Milnor, Comm. Math. Helv. 30 (1956), p. 284).

COROLLARY 1. There ewists a division algebra of rank n over the real
numbers only for n =1, 2, 4, 8.

PrROOF. The existence of a bilinear product operation without zero-
divisors in the vector space R" implies that the projective space P"! is
parallelizable. (See Stiefel [11, p. 216]). [ALTERNATIVE PROOF. Suppose
that such a product operation in R” is given. Then the correspondence
S»-1 — GL,, defined by  — (left multiplication by x) gives rise to a GL,-
bundle & over S*. It is not hard to verify that w,(§) + 0].

COROLLARY 2. For r = 8 the groups n,_(SO,) are as follows :

r modulo 8: 0 1 2 3 4 5 6 7
fir1 (SO,): Z+Z g;‘g’;fff Z+ T T L+ Z T z Z
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ProoF. This follows from Bott’s computation [2] of the stable groups
7,_4(S0,.,), together with the exact homotopy sequence used to prove
Theorem 2.

THEOREM 3. Let M* be a simply-connected differentiable manifold such
that the cohomology group HYM™ ; Z) is infinite cyclic for ¢ = 0, n, 2n,
and zero otherwise. Then n must be 2, 4, or 8.

(Examples are provided by the complex, quaternion, and Cayley pro-
jective planes. It will be shown in a later paper [7] that the condition of
simple-connectivity can be eliminated. This will give an answer to Problem
5 of [5]).

ProOF. If a generates H*(M*" ; Z), then the Poincaré duality theorem
implies that « _ « generates H*(M™ ; Z). Hence

Sq" : HNM™ ; Z,) — H™(M™ ; Z,)

in non-zero. The formulas of Wu [15] now imply that the Stiefel-Whitney
class w, of the tangent bundle 6 is non-zero. Choose a map ¢:S" - M*
which, under the Hurewicz homomorphism, corresponds to a generator of
H,(M®™ ; Z). Then the bundle ¢ over S” induced from 6 by g will satisfy
wy(0') # 0. Therefore » must be 1, 2, 4 or 8. Since the case n =1 is
easily excluded, this completes the proof.

Bott’s theorem is related to the question of the existence of maps with
Hopf invariant 1 as follows. Let J: 7,_1(SO,,) = mpsn-1(S™) be the homo-
morphism of G. W. Whitehead [13], and let 7, : 7,.n-1(S™) — Z, be the
generalized Hopf invariant of Steenrod [8], which is defined using the
functional Sg” operation. For each odd prime ¢ let

Tq,i . 7Tm+2t(q—1)—1(Sm) — Zq
denote the corresponding homomorphism based on the reduced ¢™ power
K748
THEOREM 4a. Theimage Jr,_(SO,,), m =n, contains an element JA with

generalized Hopf invariant y,(J2) different from zero only if n equals 2, 4,
or 8.

THEOREM 4b. The image Jry-»-1(S0,), m = 2i(q — 1), contains an
element JA with yv,(J2) different from zero only if i = 1.

PROOF OF 4b. Let & be the SO,-bundle over S” associated with 4,
where n = 2i(¢ — 1). Let E be the total space of the associated bundle

having the unit ball B™ as fibre, so that the boundary E is the total space
of the associated sphere bundle. According to [7, Theorem 3, Corollary 1],
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the collapsed space E|E can be obtained from the sphere S™ by attaching
an (m + n)-cell, using on attaching map in the homotopy class J4. Thus
the generalized Hopf invariant 7, ,(J2) is non-zero if and only if the homo-
morphism

& :H™E, E; Z)) — H""E, E; Z,)
is non-zero.

Let ¢ : H(S"; Z) - H'*""™(E, E; Z,) denote the isomorphism of Thom
[12]. According to Wu [18, § IV] the class ¢~ F'¢(1) € H*(S"; Z,) can
be expressed as a polynomial in the Pontrjagin classes of &, reduced
modulo g. But these Pontrjagin classes are zero, except for pi,1,(€)
which is divisible by (i(g —1) —1)!. For 4 > 1, since the number
(i(g — 1) — 1)! is divisible by g, it follows that the operation &°' must be
Zero.

Theorem 4a is proved in a similar way, using Theorem 1 together with
Thom’s definition of the Stiefel-Whitney classes. (See [12]).

Appendix

PROOF OF THE THEOREM OF Wu. Following Hirzebruch [6] define the
Pontrjagin class p, of an O,,-bundle as (—1)* times the Chern class ¢ of
the U,,-bundle induced by the inclusion O,,— U,,. This is slightly different
from the Pontrjagin class as defined by Pontrjagin and Wu. (Compare
[17, Theorem 4]).

Consider the exact sequence of cohomology group corresponding to the
coefficient sequence

0— Zy— Z,~ 2 Z,— 0 ;
as well as the Pontrjagin squaring operation

B:H™K; Z,)— H¥K; Z) .
(See for example Whitehead [14]).

LEMMA 1. The Pontrjagin class p, of any O,-bundle is related to the
Stiefel- Whitney classes w, - - , Wy, by an identity
(D) = P(war) + G Silws; - -+, Wi)

where [ 18 a polynomial with coefficients in Z,.

PROOF. It is clearly sufficient to consider the case of the universal
bundle over the Grassmann space G,(R), with m large. The identity
7+PB(w) = w_w holds for any cohomology class w. Comparing this with
the relation®

3 See Wu [17, Theorem 3].
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Jx((D)) = (Pr): = W Wi
it follows that
(p1)s — Pw,, € (kernel 5,) = i, H*(G,(R) ; Z,) .
Since the cohomology ring H*(G.(R); Z,) is generated by the Stiefel-
Whitney classes, this proves Lemma 1.

To prove the theorem it is only necessary to show that the coefficient
of w,, in f; is non-zero. Let T denote the universal U,-bundle over the
complex Grassmann space G,(C). Recall that the cohomology ring
H*(G,(C); Z) is a polynomial ring* generated by the Chern classes of T.
The inclusion U,, — O,,, induces an O,,-bundle over G, (C) which will be
denoted by T,. Applying Lemma 1 to this bundle T, the relations’

Di(Tr) = (TP — 2¢,-1(T)Cesr(T) + — =+ £ 2¢(T)csi(T)
and
WyreTe) =0, w,,(Te) = (¢(T)),
show that the polynomial f, must satisfy
Ji(0, Wy, 0, Wy, «++ ) Wyp) = Wa—gWop sy + Wop— Wy + +++ + Wy, -
Therefore f3(0, 0, ---, 0, w,,) = w,, ; which completes the proof.
PRINCETON UNIVERSITY
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