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A pilecewise linear mierobundle is an object something like a
vector space brindle, but havinglonly a "germ" of a pilecewise linear
n-cell £3 fibre. This paper develops a theory of such bundles, end
uses it to study piecewise llnear manifolds. ;o'}y?

In §1 the concepts are defined, and meny standard constructions
i : for vector bundles are modlfled so as to apply to microbundles. 1In
E ' particular every PL-manifold M has a tangentlmicrobundle TM- Any
] microbundle over M determines a homotopy class of meps from M to
a classifying.space B(Pbm).

§ 2 shows that microbundles have inverses with respect to the
Whitney sum operation, and § 3 describes a& theory of normal micro-
bundles. In § 4 the problem of smoothing & PL-menifold (i.e. 1mpesing
a well behaved differentiable stnzcture) is conﬂidered. It is shown

M 1is smoothable if and only 1f there exists a map £ from M toa

certain universal" manifold U s0 that the disgram

M mmeee==> U

L 'l

n(PLm) C B(PLn):”.."}

. is homotopy comnutative; where the'vertical'arrows are classifying naps

for the tangent microbundles. This manifold U is eesentially a

lassifying*space for the orthogonal group O(n) It follows th?t one ‘;-
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can set up an obstruction theory for the problem of smoothing a
PL-manifold. (Compare Thom [18], Munkres [13].)

In a later paper these methods will be used to show that the
tangent- vector bundle of a certain differentiable manifold is not a
topological invariant. (Compare § 4 Corollary 6.k4.)

I em indebted to useful discussions with M. Hirsch, B. Mazur,

A. Shapiro, and C. T. C. Wall.

1. Microbundles

This paper will work in the category of locally finite simplicial

complex and piecewise linear maps. (Briefly: PL-maps.) However the

definitions, and many of the theorems, would also make sense in the

larger category of topological space and meps.

Definition: A function £ : K —» L between locally finite

simplicial complexes is piecewise linear if there exists a rectlinear

subdivision XK' of K so that £ maps each simplex of K' 1linearly

into a simplex of L. (Compare Lemma 9 on page 27.)

Note that any open subset of a locally finite simplicial

complex can be triangulated so that the inclusion map is plecewise
linear. (See Alexandroff and Hopf [1, pg. 143].) The resulting
simplicial complex is unique up to PL-homeomorphism.

‘Pefinition: ‘A PL-microbundle ¢ of dimension n (or briefly

a "bundle") is a diagram

\
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3.

where B, E are locally finite simplicial complexes and i, ) -are- -

" PL-mars; such that £he following local triviality condition is
satisfied. For each b € B , there should exist neighborhoods BO

of B, E of i(b) end & PL-homeomorphism h: B, —> B, x.R® so

that the diagram

il . o JlE
B-/’SL;T lh‘\\\\‘:g
5 p, A0

X 0
\Boan

is commutative. Here the notion X O stands for the map
b —> (b,o), pl denotes the projection into the first factor, and
Rn denotes euclidean nespace.

B will be called the base space of & , E the total space,
i the injection map, and J the projection map. ‘Note that the
composition Jji : B —=> B 1is the identity map of B.

Definition: A second PL=-microbundle
<+ 1 1
t': B—>E' 453

over the same base space is isomorphic to & (written &' =¢) if

there exist neighborhoods E, of 1(B) end E; of 1'(B) , and a

1
PL-homeomorphism E, —> E! so that the diagram

’1 1\JE1
NE.»@

Lo

is commutétive.




Example 1. For any B and eny n > O the trivial bundle

sg ~1s defined to be the diagranm

X 0 Py
B =3 B X R ——> B.

Any bundle isomorphic to Eg is also called a trivial bundle.

Example 2. A simplicial complex M will be called a PL=-
1l
manifold 1f each point has & neighborhood U which is PL-homeomorphic

to Rn. The tangent microbundle TM is then defined to be the diagram
p
JAY 1
M~—>MXM-—>M ,

vhere A denotes the diagonal map.

Proof that TM is a microbundle. First consider the special

case M = RT. The PL-homeomorphism h(x,y) = (x,x-y) makes the diagram

R XR
/‘ ' pl
)/Rn
\)R x R®

comutative. Thus 7 , is a microbundle. (In fact = n is & trivial
R R
microbundle.) Since each point of M has a neighborhood which is

PL-homeomorphic to Rn it follows that TM is also a-nmicrobundle.

Just as in the theory of vector space bundles, there are a
number of ways of building new PL-microbundles out of old ones. Given

two bundles

i J
¢ : B—2>E —2>B , a=l,2,

over the same base space, the Whitney sum

lThe terms "formal manifold” and "combinatorisl nnnifol " have
also been used for this concept.




§10§2: B—iéE-ﬁéB

is obtained as follows. et E( E, X E, be the set of (el,e2)

with 'jlel = 32e2 ; and let

b = (1;b,150) , J(epsey) = 3y -

It is easily verified that §l ® §2 is & PLemicrobundle.

i S e e

Given a microbundle‘

E: B-—i—>E41—>B

oy
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and given a subcomplex B o C B the restricted bundle §|B o is defined

to be the diagram

i|B JIE
o, o,
B, > E, > B,

where E o = ,j-lBo. More generally given a complex Bl and & PL-map

£ Bl —> B the induced bundle

i J
1
HE .
pig ] Bl —5 El -_— Bl
is obtained as follows. Iet ElC B X E be the set of (bl,e) with

f(bl) = j(e); and let
il(bl) = (b]_:if(bl)) ’ J]_(bl’e) = bl‘

The verification that f ¥¢ 1is a microbundle is straightforward.

Theorem 1 (Covering homotopy theorem) Ilet f and g be

two homotopic PL-maps from Bl

£*¢ and g%t over Bl are isomorphic.

to B. Then the induced bundles

The proof given in Steenrod {15, § 11] applies without essential

change. It is only necessary to be sure that all maps occuring in the

the proof can be made piecewise linear. In particular, one must show



that there exists a homotopy

h:B XI-—B

1
between f and g which is & PL-map. [Proof. Starting with any
homotopy Bl X I —> B and applying the simplicial approximation
theorem one concludes that there exist simplicial epproximations f£!'
to © and g' to g so that f' 1is PL-homotopic to g'. But it is
easlly seen that any PL-map is PL-homotopic to its simplicial approxi-
metions.] Further details will be left to the reader.

Theorem 2. (Universal pundle theorem). There exists a

PL-microbundle

A B(r1 ) — E(p1 ) — B(0L )
n n n

which is "universal" in the following sense. For any locally finite

complex B and any bundle & over B of dimension n there is a

unique homotopy class of maps f£: B —> B(PLn) such that f*7n =~ g,

A proof based on the theory of semi-semplicial complexes will
be given in § 5 at the end of this paper. (A. Shapiro has pointed
out that an easier proof could be given uslng the methods
of E. Brown [2].

A theory of characteristic classes can also be developed for
nicrobundles. For example the Thom definition of Stiefel-Whitney
classes (see [16]) epplies easily to microbundles. The combinatorial
definition of Pontrjagin classes (see Thom [17], Rohlin and Svaf; [14])

can be used to define Pontrjagin classes

2,(8) e B4B 5 Q)




o il koot i e At e S ALK 5, 5 i i 75

Te

Por a PL-microbundle. No detalls will be given, since these character-

istic classes will not be used in the present paper.

2. Inverse bundles

Definition Two bundles §, n over B are inverse to each

other if the Whitney sum § & n 1s trivial.

[Note: Inverses are not unique. For example the tangent micro-

vundle T 5 ©of the 2-sphere can be considered as an inverse to &.trivial
S

bundle over §°. Yet 7, is not trivial.]
s
Theorem 3. Every PL-microbundle ¢ over & finite dimensional

complex B has an inverse. .

It is sufficient to consider the case of an orientable
microbundle. Por even if £ 1s not orienteble, the sum § & §
clearly is orilentable.

First suppose that B 1s a suspension. It is necessary to be
careful here since the usual double cone construction destroys local
finiteness. However if one imbeds & given complex B' in a contractible
locally finite complex C(B') and thm takes two copies of C(B')
matched along B', one obtains an acceptible substitute for ﬁhén
suspension of B': |

Iet B have this form, and let r: B —>» B be the "reflection”
vhich interchanges the two copies of C(B').

lemma 1. If ¢ 1is en orientable microbundle over such &

complex B, then £ @ r¥ is trivial.
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Proof. Let BVB denote the union with a simple point bo in -

common. Gilven oriented microbundles ¢ and n over B with the

same fibre dimension q , let & v i denote an oriented bundle over
Bv B whose restriction to the first summand is £ and whose

restriction to the second summend is 7. This construction is well .

defined up to orientation preserving isomorphism: the only choice

involved in forming & v 1 is the choice of how to identify the fibre

of & over bo with the fibre of 1 over bo. But according to

Gugenhain [6, Theorem 3], this identification is unique up to plecewise
linear isotopy. A

Note that
(1) (evme(erva)~(coe')v(nen).
If theée four bundles all havé the same fibre dimension q then,
since 1@ n' ~9%' & 7, ‘thﬁssimplies:
(2) (evna)e(e'vn')=(evn)e (e vn)

et ¢ : B—> BvB be such that the composition with each of

e "nrojection .eps
BvB —> Bvb_ = B or BvB —> bovB =B
is homotopic to the identity. Then clearly
(3) ex(tvel) moxelve) ~e
Furthermore
(%)  c*(e v ree) ~ e

since E v r*¥¢ 1is lsomorphic to f*¢ for a suitible mgp f: BVB — B,

with f¢ homotopic to zero.




Now combining (2) and (4) one has
elo et~ ox((e v ) o ved)) mer(e vel) o or(elv ) .
Together with (3) this implies that
et o eng o r*¥t ,

which proves Iemms 1.

25922 of Theorem 3 by induction on the dimension of B. If
B has dimension 1 then it has the homotopy type of a suspension and
the coneclusion follows. Suppose that B has dimension n + 1, and
that § restricted to the skeleton Bn has an inverse 1. First we
will show that 1 @ e can 5e extended in some way over B ; where
q 1s the fiber dimension of &. Clearly a bundle over Bn can be
extended over a given (n + 1)-simplex if and only if its restriction
to the boundery n-sphere E° is trivial. Thus ¢|=% is trivial.
Hence (7 ® &3)|=" is isomorphic to (7 ® &)|=” which is known to
be trivial. This proves that n @ Eq extends to some bundle 17!
over B.

Consider the complex B U C'(B") obtained from B by adjoining
a contractible complex over the n-skeleton. Since ¢ @ 7' restricted
to B" is trivial, i1t follows that £®& n' extends to some bundle
{ over B UC'(B"). But B UC(B") has the homotopy type of a
suspension: namely of a bouguet of (n + l)-spheres. Hence { has
an’'inverse {* ; and ¢ @ n' @ ((*[B) is trivial. This completes

the proof of Theorem 3.
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Definition. Two PLemicrobundles & and &' over B belong
to the same s-class if & @ Eg is isomorphic to &' & 8; for some
Q, r. We will also say that £ is s-isomorphic to ('. The s-class
of ¢ will be denoted by (&).

As an immediate consequence of Theorem 3 we have:

Corollary 3.1. The s-classes of PL-microbundles over a finite

dimensional complex B form an abelian group under the composition

operation:

)+ () =(t&n) .

The proof is striaghtforward.
Definition. This group will be denoted by kPL(B).

Clearly the correspondnece

B ----- > kPL(B)

defines a contravariant functor from complexes to abelian groups.

The analogues of Theorem 3 and of Corollary 3.1 for vector
bundles are well known. We will use the notation k (B) for the %
group of s-classes of vector bundles over a finite dimension complex b

B. Individual vector bundles will be denoted by lower case latin letters.

cie v b b ik iat s A

Tt will be seen later (§ 4, Lemma 6) that taere is a naturel
transformation
T : kO(B) —_— kPL(B)

between these two functors. Intuitively, T(v) is obtained by

triangulating the vector bundle Vv s0 as to make a PL-bundle out of it.




3. Normal bundles

Consider PL-manifolds M(C N with inclusion mep i1i: M —> N.

Definition. M has a normal microbundle v in N if there

exists a neighborhood U of M in N and a retraction J: U-—>M

50 that the diagram
vi Misydsy

is a PL-microbundle over M. In particular M has a trivial normal

bundle in N if U and J can be chosen so that v isa trivial bundle
It is not known that M has a normal bundle in N even if

the imbedding M N is locally flat. Furthermore, even, if the normal

bundle does exist, it is not known to be unigue up to isomorphism.

However the following two results will be proved.

Theorem 4. Given PL-manifolds M(C N there exists an integer

q so that the submanifold M X 0 C N X R® has a normal microbundle.

Theorem 5. If MC N hes a normal microbundle v then the

Whitney sum TM ® v 1is isomorphic to the restriction TNIM.

This result implies that v is at least unique up to s-isomorphism:

Corollary 5.1. If MC N has two distinct normal bundles

v, v' (corresponding to two distinct choices of J : (neighborhood) —> M)

then v and V! belong 1o the same s-class.

The proofs will depend on the concept of the composition of

two microbundles

A

t: BLs>E-d>B , and

1 ELispr Iy




where the total space of ¢ coincldes with the base space of 1.
This composition is defined to be the microbundle

p-ilsp 35,

Exemple. Given bundles £ .a.nd ¢! over B, consider the
induced bundle J*E' over the,toté.l space E of B. Then it is
easily verified that the composition of ¢ and jI¥t* is eicactly the
Whitney sum ¢ & £'. In fact this example is the most general one:

lerma 2. Given & and 1 as above, the composition of ¢

and 7 1is isomorphic to the Whitney sum § & i¥*n.

Proof. let E, be a meighborhood of i(B) in E which is

sufficiently small so that the map

i,jo: Eo —> B

is homotopic to the inclusion map (vhere J, = JlEO). Thus the

bundle j *i%n over By will be isomorphic to T]IEO. But the

0
composition of § and jg( i%*n) is isomorphic to the Whitney sum
¢t @ i*n. (Compare the example above.) This proves Lemma 2.

Proof of Theorem 5. The bundle

a Py
TNIM: M—>MXU—>H

can be considered as the composition of the tangenf bundle
a Py

TM: M—>MXM——>M

and fhe T":I.i'ld.uced. bundle

DAV : Mx M syxy b yxm




Hence by ILemma 2 we have

M

{ 'rNIM N Ty L] A*p"a"v = Ty v ;
H which completes the proof. ‘ :% |
; The corollary 5.1 follows immediately. For if v' 1s a ' j
second normal bundle, then choosing 1 so that 7,0 1 = eq‘, we have

1 ,
V' § € z(v'@'cm)e'q'z(vg'ru)@nmvesq.

Proof of Theorem I. Replacing N by a neighborhood of M if

1 necessary, we may assume that some PL-retraction r: N—> M exists.

Consider the induced bundle

P AT

i . P
T BBy -1y ;

where (I,r) denotes the map x —> (x,r(x)). Choose a bundle 19

z over N 8o that r*TM & n 1s trivial; |
: r*'rM & n e~ eN.
g This implies that the bundle 81% is isomorphic to the composition of

r*'rM and the bundle pl*n over NXM. 7

If V 1is a sufficiently small neighborhood of (I,r)N in

N X M, it follows that we have a commutative diagram

N X 0 > N x R

e deva it niiulod S DA Ao e d b § -
i
4

I,r) it
\'f

where 1' 1is the inclusion mep of the PL-microbundle pl*ﬁ.*‘on the

i
1
i
H
i




1k,

other hand the composition

w-tsy LIy

is also the inclusion map of a microbundle. In fact this composition

is the diagonal msp A: M —> V( N X M, which is the inclusion msp I
for TNIM. Now the map M X O —1-2(-9——9- ¥ x RY is equal to the composition I
i'4s of the inclusion maps of two microbundles. Hence M X O has a . 1
normal bundle v in N X Rq which is isomorphic to the composition r
of these bundles. This completes the proof of Theorem L. %

(Remsrk: By Lemma p, v is isomorphic to

TNlM @ n|M:)

Combining Theorems 4 and 5 we have:

Corollary 5.2 M X O has a triviael normel bundle in N X R®

for large q if and only if TM and TNIM belong to the same s-class.

Definition (J. H. C. Whitehead [20]) A PL-manifold M 1is of

class @I if for any imbedding of M in a high dimensional Buclidean
space, the regular neighborhood of M 1is PIL-homeomorphic with the

product M X (simplex).

Corollary 5.3 (Theorem of M. Curtis and R. Iashof.) M 1s of

class I if and only 1f its tangent bundle Ty is s-trivial.

Proof It is only necessary to observe that every imbedding

of M 1in a high dimensional euclidean space can be deformed so that
it lies in & (2m + 1)-dimensional hyperplane. Thus Corollary 5.2

applies .
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4. Differentisble structures

The notation Mo will be used for a PL-manifold M together
with a differentiable structure o of class Cr on M which satisfies
the following:

Compatibility condition. For some rectlinear subdivision M'

of M, the identity map
Yii
Y* —> Mo

should be a C'-triangulation of the smooth menifold M. (see
J. H. C. Whitehead [19]. o must induce the usual differentiable
structure on each simplex of M'.) Here r denotes some fixed
integer, 1 <r <o.

Definition. If such a o exists then M will be called a
smoothable PL-manifold; and o will be called a smoothing of M.

According to Cairns [3] as corrected by Whitehead [22], every
PL-manifold of dimension < L4 is smoothable. On the other hand
according to Thom [17] and Rohlin-?s';laré, [14] there exists a PIrmanifold
of dimension 8 which 1s not smoothable.

‘The following basic re;s.ult is due to S. Cairns [4] and
M. Hirsch [8].

Theorenm C-H. A PL-manifold M is smoothable if and only if

the product M X R is smoothable.

It follows by induction that M 1is smoothable if any product

M x RY is smoothable. Since an open subset of R & 1is certainly

smoothable, ~ this implies the following.




Y
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Corollary C-H.l Every manifold of class I is smoothable.

If the manifold M 1is contractible then its tangent microe

bundle TM is trivial (Theorem 1), hence M 1is of class II . This

gives a new proof of the following result.

Corollary C-H.2 (Theorem of A. Gleason [5].) Every contractible

PL-manifold is smoothable.

The theorem of Cairns and Hirsch can also be stated in the
following slightly sharper form. IlLet eﬁ denote the trivial vector
space bundle over M.

Theorem C- #} If MX R% has a smoothing oy with tangent

vector bundle +t, then & smoothing g of M can be chosen so that

1l
the tangent vector bundle t(Mo) is s-isomorphic to tl|M.

Proof This follows immediately from the argument in [4] or [8].

In order to study the smoothing problem for PL-manifolds, the
following concgpt will be useful.

Definition. A PL-manifold U of dimension n with a
smoothing p will be called m-universal if the tangent vector bundle
t(Uu) is an m-universal bundle for the orthogonal group O(n), in
the sense of Steenrod [i5;§ 19]. i

(Note: the dimension n is necessarily > 2m.)

Iemma 3. For every m there exists an m-universal manifold

Proof Start with the Grassmann manifold G(m,m) of m-planes
in 2m-space. This has the right homotopy type to be an m-univgrgﬁl

manifold: that is there exists & smooth m-universal vector bundle u
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over G{m,m). However the tangent bundle t of G(m,m) is not the
right bundle. To correct this, choose a smooth vector bundie v over
G{m,m) so that the Whitney sum t @ v is trivial. Now consider the

total space E(v ® u) of the smooth vector bundle v & u. It is

easily verified that the tangent bundle of this smooth manifold
E(v @ u) is an m-universal vector bundle. Choosing a ¢’ -triangulation
f: U —> E(v ® u), and letting p denote the induced smoothing of
U, this proves Lemmsa 3.

Iet M be a PL-manifold of dimension mn, .and let Uu be an
m-universal menifold of dimension n > 2m + 1.

Theorem 6. M is smoothable if and only if the Whitney sum

Ty @ e;'m is isomorphic to f£*T, for some PL-map f: M —>TU.

The proof will be based on two lemmas.
. Iet M and M' be PL-manifolds of dimensions m, m + Kk, and
suppose that M' 1s smoothable, with smoothing u.

Lemma 4  If there exists a PL-map f: M —> M' such that

f*TM, is s-isomorphiec to TM’ then M 1is also smoothable. In fact

there exists a smoothing o of M so that the tangent vector bundle

t(M ) is s-Lsomorphic to f*t(M'u).

Proof. Replacing M' by some product M' x R®, the msp f B

1s homotopic to & PL-imbedding f£.: M —> M' X R*. Since the restricted

1 :
T -i |
tangent bundle M'qulfl(M) is s-isomorphic to 'rfl(M) , it follows \!

from Corollary 5.2 that the submanifold £,M X 0C M' x R1x R® has f

& trivial normal bundle, providing that r 1is sufficiently large. In

k+-q41r

other words the product M X R can be PL-imbedded as an open subset
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Gt r k+q+r

of the smoothable manifold M' X R™~. Thus M X R is smoothable.

Using the Cairns~Hirsch theorem it follows that M 1is smoothable.

k+qtr

The smoothing of M X R obtained in this way will

evidently have a tangent bundle tl" such that
* . a+ry
tllM X0 =Ff lt(Mu X Ry );

where © denotes the standard smbothing of Buclidean space. Therefore
tllM X 0 1is s-isomorphic to f*t(M;L). According to the sharpened
form of the Cairns-Hirsch theorem, it follows that M has a smoothing

o with (M) s-isomorphic to f*t(M‘l). This proves Iemme k.

Conversely suppose that M and M' are both smoothable, with

smoothings o, p respectively. Iet f£: M —> M' bYe such that the
induced vector bundle f*t(M‘l) is s-isomorphic to 'b(Mc).

Iemma 5. Then the induced microbundle f*’rM, is s~isomorphic

to Ty In fact if the dimensions m + k eand m satisfy m+ k>2m+ 1,

k
then f*’TM, = TM o E:M .

Proof. Replacing M;':. by some product M‘l_x Rg the map f

is homotopic to a smooth imbedding

. 1 q
fl : Mc_.>M|.LXR6'

Since £HH(M} X Ry) is s-isomorphic to t(M ) 1t follows that the nor-

mal vector bundle of f£.M_ in M' X RY is s-trivial; and hence is

1o 1) 2]
trivial. (Compare [10, ILemma L4].) Therefore a tubular neighborhood
' s ' q k+q
N}\ of flMo in MIJ- X R9 is diffeomorphic to Mc X R6 .
According to J. H. C. Whitehead [19, Theorem 8] ahy - diffeomorphism
k+

g: Ma X Re 1 N). can be approximated by a PL-homeomorphism
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k+q

| g : MXR —>N .

Clearly the induced microbundle g-er is isomorphic to 7 k+q
_ : MR

Since the diagram

M > '
X 0 Pl

g org
Mx RS N nC o xRS

is homotopy commutative, this implies that

*
Y Lt

3

vhich proves the first part of lLemma 5.

|
|
!,

If the dimension m+ k of M' is >2m+ 1, then f can
actually be spproximated by a smooth imbe&ding of b%_ into ML
iteelf (rather than M} X rY).

Proof. et £.: M —>M' be a simplicial approximation to

0

£ ; and let fl be a differentiable approximation to fo s0 that

R A S o B

oy €.

]
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a) f, 1s a one-one immersion of M in M‘l and

b) the image fl(M) is disjoint from the m-skeleton of M’.
This is certainly possible if m + k > 2m + 1. (Compare Whitney [23].)
" Now if the approximation is sufficiently close, then the limit set of

fl will equal the limit set of f.. Since this is contained in the

0
m-skeleton it will be disjoint from fl(M). Therefore f; will be an
imbedding.] The argument above now shows that f*TM, ~ Ty ® e ;

which proves lemma 5.

Proof of Theorem 6. If M possesses a smoothing o, then
o

M

isomorphic to f*t(Uu) for some f: M —> U. Hence by Lemma 5.

since t(Uu) is an m-universal bundle, the sum t(MU) ® is

%*

n-m
g TU = TM L] EM .
Conversely if f*'liI T, 0 sa'm then Iemma 4 asserts that M is

smoothable. This completes the proof of Theorem 6.
Using the universal bundle theorem (§ 5), Theorem 6 can be

reformulated as follows. Iet
c: U —> B(PLn) » ¢'+ M —>B(PL))

be classifying maps for the microbundles TU and TM @ Eﬁ'm respectively.

Corollary 6.1. M is smoothable if and only if there exists

a map f: M~—> U so that the diagram

is homotopy commutative.
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With this formulation it is natural to make use of obstruction
theory. Using a mepping cylinder construction, one can assume that
¢ imbeds U as a subcomplex of B(PLn).

Corollary 6.2. M is smoothable if and only if a seguence of

obstructions

o, € (M5 T, (B(PL ) ,u))

are all equal to zero.

The proof is standard. (As is usual in obstruction theory, the
higher obstructions need not be well defined.)

On the other hand Munkres [13] has defined a sequence of obstructions
2 UM e i .
gl e (Mj;r, ) ~sH(M;T, ;)

whose vanishing implies that M can be given a (not necessarily
compatible) differentiable structure. A similar theory has been

outlined by Thom {[18]}. This suggests the conjecture that the relative

homotopy group Wi(B(PLn),U), n>>1i, is isomorphic to the group

T considered by Thom and Munkres. Since the Pi- are now known

i-1 1l
to be finite groups, this conjecture would yield quite a bit of

information about the B(an).

Still another formuletion can be given as follows. Recall

thet the s-classes of PL-microbundles over a finite dimensional complex
B form an abelian group kPL(B)' Similarly the s-classes of vector

bundles over B form an abelian group ko(B). Define a natural

trensformation T from the functor ky to the functor k, as follows.
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Given a vector bundle v of dimension g over B, choose

& PL-manifold M with smoothing ¢, and a PL-map f: B —> M, so that -

n-q
vVoe, T~ f*‘b(Mo).

(For example one could choose Ma ﬁo be a universal manifold.)

Now define
T(v) = (f*TM).

This s-class T(v) does not depend on the choice of M(J and
f. For if UlLl is a k-universal manifold, where k > Max{m,dim B),

then there are maps

¢c:M—>U, ¢. :B—>U,

1

unigue up to homotopy, so that
n-m n-q
¥ * ~ R
c t(Up) s t(MG) $ e , clt(Uu) veée

Thus cf is homotopic to ¢, ; and (c*TU) = (TM) by lemma 5. Hence

1l
* = =
(c37,) = (grexr) = (£%1).
Therefore T(v) is well defined.

For a Whitney sur v ® v' one can use the product MU x Mc;,

of two suitible manifolds to show that
™{v & v') = T(v) + T(v?).

Since T clearly commtes with mappings, and carries trivial bundles

into zero, this proves the following.
 Iemma 6. The homomorphisms

T : ko(B) — kE;'L(B)




constitute a natural transformation from the functor k.O to the

functor kPL'
Now Theorem 6 cen be reformulated in a new way:

Corollary 6.3. The PL-manifold M is smoothable if and only

if the s-class TM lies in the image of the homomorphism

T : kO(M) —_ kPL(M).

In fact a given s-class (v) € kO(M) contains the tangent vector
bundle t(MU) of some smoothing of M if and only if (v) € oY T
The proof is straightforward, making use of Lemma L.
As a final consequence of Theorem 6:

Corollary 6.4. Suppose that for some finite complex B the

homomorphism

T : ky(B) —> K, (B)

has a non-trivial kernel. Then the tangent vector bundle of any

manifold having the homotopy type of B 1is not a topological invariant.

For example a suitable open subset M of euclidean space can be given

a new smoothing o so that MG is not.parallelizable.

The proof is immediate.

In a subsequent paper it will be shown that this phenominon
actually occurs. For example if B consists.of a T-sphere with an

8-cell attached by a map of degree T, then the homomorphism

T ko(B) — kPL(B)

- -

is zero. However the group kO(B) is eyclic of order T generated by

{

any s-class  (v) with Pontrjagin class p2(v) # o.
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5. The universal bundle theorem.

This section will construct a classifying space B(PLn) for
PlL-microbundles of dimension n.

It is first necessary to define the concept of an "isomorphism-

gern" between microbundles. Let

g, B >E, —>B , a=1, 2

be two PL-microbundles over B. Recall that gl and §2 are isomorphic
if there exist neighborhoods Ucr of ia(B) “in Ea for a =1, 2, and

a PL-homeomorphism f: Ul — U2 so that the diagram

"
N

Definition. Two such PL-homeomorphisms, f and

is commutative.

. ? 1
£t U]_—-—>U2

define the same isomorphism-germ F from gl to §2, if the two naps

coincide on some sufficiently small neighborhood of il(B). (Thus -an- -

isomorphisn-germ

F: —> §2

3
is an equivalence class of such PIL-homeomorphisms.)

Now . consider the bundles g*&l and g*§2 induced by sOme

PLe~uzp o B' .g? B. Any 1odmorphis 1-geril  F: gl — ,2 Q'Learl ?gi’v‘es .

rise to an isomorphism-germ g*gl —n g*gg. This induced igombrghism—

germ will be denoted by g¥F.
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. g;*gl - g*§2. This induced isomorphism-germ will be denoted by g*F.
For each integer n, construct a c.s.s. group complex2
PLn as follows. Iet AK denote the standard ordered k-simplex. As

usual let szk denote the trivial m:l.crobundle

s X%sn x & -—P—l—-;-ok

Definition. A k-simplex F of the c.s.s. complex PL is an
isomorphism-germ ¥F: Ezk —_— EZK.

The operation of composing isomorphism-germs makes the set
PLn(k) of k-simplexes into & group. For each monotone simplicial

map A: A ) — Ak define a homomorphism

N PLn(k) — PLn(‘e )

as follows. let x# carry each isomorphism-germ F to the induced
isomorphism-germ A¥F. Thus PLn = (PLn(k),A.#} is a c.s.s8. group
complex.

Note: PLn seems to play & role for PL-manifolds which is

analogous to the role of the orthogonal group O(n) in the theory of
differentiable manifolds. Roughly speaking Plh may be thought of as
the singular complex of the group of ge‘rms”gf» PL-automorphisms of the
pair (R",0).

Now consider a PL-microbundle €& of dimension n over a

simplicial complex B. Choose some ordering for the vertices of B.

2 For the theory of c.s.s.- (complete semi slmplicial) con;plexes,

see for example Moore [11], Heller [T7].
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Definition. The associated principal bundle £ is the

c.s.8. principal bundle with group PLn which is constructed as
follows. The base space B is the c.s.s. complex consisting of all
monotone simplicial maps f: Ak —> B ; with A#: E(k) —_— ﬁ(z)
defined by Ne=tonr a k-simplex of the total space E consists
of

1) & k-sinplex £ e B(%), together with

2) an isomorphism-germ F: azk —> %,

The functions A#: ﬁ(k) — ﬁ(z) are defined by the formula
k#(f,F) = (£ O A,A¥F). The right translation function
E X PL_ —> E
is just the operatiorn of composing isomorphism germs. Since each group
PLn(k) permites the set (5 freely, with orbit set B ; it

follows that E is a principal PLh-bundle.

lemma T. Iet B be locally finite. Then two PL-microbundles

‘§, n over B are isomorphic if and only if the associated c.s.s.

principal bundles E, § are isomorphic.

Proof. Suppose that an isomorphism ¢: £ —> 5 of e.s.8.
bundles is given. In other words, to each monotone simplicial map

f: Ak —3> B and each isomorphism-germ fp;ezk ~3> P¥t there is

assigned sn isomorphism-germ ((F): e — £%1. Note that the composition

Ak

L(F)F-l ¢ L% —> f¥q

k]

does not depénd on the choice of F.
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For each k-simplex X of B let f be the unique element of

ﬁ(k) which maps Ak onto Z. then there exists a unique isomorphism-germ

I t|]z —> 1z

5 ¢
so that f¥I.: f*% —> f*3 1is equal to L(F)F'l. If X' 1is a face of

L, then it is easily checked that IZIZ' =1 Now, using the fact

A
that B 1is locally finite, it follows that these isomorphism-germs

IZ piece together to yeild the required isomorphism-germ
I: €&—>1 .

Iemma 8. Again let B be locally finite. Then any principal

PLn-bundle n over B is isomorphic to E for some microbundle £

over B.

Proof. Construct § as follows. For each k-simplex Z of
B choose a k-simplex ([Z£] in the total séace of n which lies over
the corresponding simplex f: A —> ZCB of g(k)_ Passing to the
i-th face 512 note that the two (k - 1)-simplexes [BiZ] and 31[2]

both lie over the same simplex Bif of ﬁ(k'l). Therefore
ai[z] = [aiz]-F

for some uniquely defined

P = #(1,z) e pr (D)

Now form the topological sum of all of the simplexes I of

B, and take the trivial microbundle 8; over each EI. Paste these

all together, identifying each sg £ with 82'312 using the

isomorphism-germ F'(1,L): eg g = eglaiz which corresponds to ©
i S




H

F(i,2) : € —> &2

By By

under the PL-homeomorphism aif: & —> aiz. It is not difficult to

verify that these identifications are compatible, when one passes to a

face of a face of E. Therefore, usi;ag the fact that B 1is locally

finite, we see that the identification space yields a PL-microbundle

E over B. PFurthermore E is isomorphic to =x. This proves Lemma 8.
According to A. Heller [7] (see also MacLane [9], Moore [12])

for any c.s.s. group complex G there exists a "classifying complex",

say W(G), with the following property. Any principal G-bundle over

any c.s.s. complex K 1s induced by a unique homotopy class of maps

K —> W(G). The next two lemmas will be used to show that the c.s.s.

complex W(PLn) has the homotopy type of some locally finite simplicial

complex.
Iemma 9. Q@Given a PL-mep f: X —> Y between finite simplicial

complexes, there exist rectilinear subdivisions X' of X and Y' of

Y so that the induced map X' —> Y' 1is simplicial.

Proof. First choose a subdivision X, of X =0 that each
simplex of Xl meps linearly into a simplex of Y. Next choose &
subdivision Yl of Y so that, for each simplex Z of Xl, the
image £(Z) ié a subcomplex of Yj. (The finiteness of X 1is used for

this step.)

For each simplex I of Xl and each simplex A of Yl - con-
sider the convex cell X N f'l(A)., ‘These cells form a cell-subdivision

X, of X,. let X3 be the first barycentric subdivision of . Xé-
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The new vertex v which is selected in each cell X N f-l(A) must be

chosen so that f(v) 1is the barycenter of A. ILet Y,

is clearly a

be the first

barycentric subdivision of Y

Then f£: X, — Y

1’ 3 2

simplicial map.

Temma 10. There are at most a countable number of non-isomorphic

PL-microbundles over a finite complex B. If B 1is a circle then

there are exactly two isomorphism classes of n-dimensional bundles

over B.

Proof. For any microbundle
1 Jo o
E: B—>E—>03B

it may be assumed that the total space E 1s also a finite complex,

and that 1B is a subcomplex of FE. Choose subdivisions E', B' so

that J 1is a simplicial map. Then 1 will automatically be simplicial.
Hence the subdivided microbundle &' can be completely described by a
finite scheme of incidence relations and mappings. Thus there are only

a countable number of such bundles E¢'. Since E¢t=f%t' where f: B —> B'
is the identity map, and since there are.aiso only a countable number

of homotopy classes of maps B —> B'. It follows that there are only
éountable many £, wup to isomorphism.

Any bundle over a circle can be obtained from the trivial
bundle over a line segment by matching the end fibres. It follows from
Gugenheim [6, Theorem 3] that there only two essentially different
ways of doing this. Thus there are only two bundles over a cirqle

(nemely the trivial bundle and the non-orientable bundle.) This

pfoves Lemma 10.
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It follows that the homotopy groups ﬂiﬁ(PLn) are all
countable. Now using [21, Theorem 13] it is not hard to show that W(th)
has the homotopy type of a locally finite simplicial complex B(Plh).

A homotopy equivalence ﬁ(PLn)-—> ﬁ(PLn) induces a principal
PLn-bundle over ﬁ(PLn) ; and therefore gives rise to a PL-~microbundle
7n over B(PLh). Clearly 7n is a universal n-dimensional microbundle.

This completes the proof of the universal bundle theorem (Theorem 2).
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