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On the homology of Lie groups made discrete 

J. MILNOR 

w Introduction 

Let G be an arbitrary Lie group and let G ~ denote the same group with the 
discrete topology. Then the natural homomorphism G~--* G gives rise to a 
continuous mapping "0: BG 8---~ BG between classifying spaces. This paper is 
organized around the following conjecture which was suggested to the author by 
E. Friedlander, at least in the complex case. (Compare Quillen, p. 176.) 

ISOMORPHISM CONJECTURE. This canonical mapping BGS--~ BG induces 
isomorphisms of homology and cohomology with mod p coefficients, or more 
generally with any finite coefficient group. 

Here the homology of BG ~ is just the usual Eilenberg-MacLane homology of 
the uncountably infinite discrete group G 8. These homology groups are of interest 
in algebraic K-theory  (see for example Quillen), in the study of bundles with flat 
connection (Milnor, 1958), in the theory of foliations (Haefliger, 1973), and also 
in the study of scissors congruence of polyhedra (Dupont and Sah). They are 
difficult to compute, and tend to be rather wild. For example if G is non-trivial 
and connected, then Sah and Wagoner show that HE(BG~;Z) maps onto an 
uncountable rational vector space. (See also Harris.) The homology and cohomol- 
ogy groups of BG, on the other hand, are much better  behaved and better 
understood. (Borel, 1953.) 

In w we will see that this Isomorphism Conjecture is true whenever the 
component  of the identity in G is solvable. If it is true for simply-connected 
simple groups, then it is true for all Lie groups. It is always true for 1-dimensional 
homology, and is true in a number of interesting special cases for 2-dimensional 
homology. (See w For higher dimensional computations which tend to support 
the conjecture, see Karoubi, p. 256, Parry and Sah, as well as Thomason. 

Another  partial result is the following (w If  G has only finitely many 
components, then for any finite coefficient group A the homomorphism 
H.(BGS; A) --~ H,(BG; A)  is split surjective. Thus we obtain a direct sum decom- 
position 

Hi (BG 8; A)  ~ Hi (BG ; A )Et) (unknown group), 

72 



On the homology of Lie groups made discrete 73 

where the unknown summand is of course conjectured to be zero. The proof is 
based on Becker and Gottlieb, and generalizes a theorem of Bott  and Heitsch. As  
an immediate corollary, it follows that the integral cohomology H*(BG ; Z) injects 
into H * ( B G  5 ; Z). 

An appendix discusses the analogous homomorphisms with rational coeffi- 
cients, which behave very differently. For example the homomorphism 
Hi(BGS; Q) --~ Hi(BG; Q) is identically zero for i > 0  whenever G is compact, or 
complex and semi-simple with finitely many components. More generally, even 
when these homomorphisms are not identically zero, it is often possible to 
describe the precise kernel of the associated ring homomorphism H*(BG;Q)- -~  
H*(BG ~ ; Q). 

The methods used in this note are all more or less well known. I am 
particularly grateful to J. F. Adams, E. Friedlander, A. Haefliger, and D. McDuff 
for pointing out some of the necessary tools to me, to A. Bore] for pointing out 
an error in an earlier version, and to the Institut des Hautes Etudes Scientifiques 
for its hospitality. 

w The solvable case 

First some general definitions. We will always use singular homology theory 
with constant (ie. ,  untwisted) coefficients. 

For any topological group G, let G be the homotopy fiber of the map G ~ --* G. 
(Compare Thurston.) Thus G is the topological group consisting of all pairs (g, f) 
where g is a point of G ~ and f is a path from the identity element to the image of 
g in G. We will be particularly interested in the classifying space B(~. Mather calls 
the homology of B(~ the "local homology" of the topological group G, since it is 
completely determined by the germ of the group G at the identity element. (See 
also Haefliger 1978, which uses the notation B9 for our space BG, and McDuff 
1980, which uses the notation/~G.) If G is locally contractible, so that the identity 
component  Go has a universal covering group U, note that the natural 
homomorphisms U ~ Go ~ G induce isomorphisms 0- -~  G0 ~ (~. Hence the 
homology groups of BCJ depend only on the universal covering group of G. In the 
case of a Lie group, it follows that they depend only on the Lie algebra of G. 

L E M M A  1. The Isomorphism Conjecture of w is true for a connected Lie group 
G if and only if the associated space BG has the mod p homology of a point, for 
every prime p. I f  it is true for a connected group G, then it is true for any Lie group 
H, connected or not, which is locally isomorphic to G. 

Proof. This follows easily from the mod p homology spectral sequences as- 
sociated with the fibrations BG --~ BG ~ --~ BG and BCJ ~ B H  ~ --~ BH. (Note that 
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B G  is simply-connected.) The passage from mod p coefficients to arbitrary finite 
coefficients can be carried out by induction on the order of the abelian coefficient 
group A, making use of the homology exact sequence associated with a coefficient 
sequence A'  --~ A --* A / A ' ,  where A '  is some non-trivial proper  subgroup of A. 
Details will be omitted. �9 

L E M M A  2. If  a discrete abelian group F is uniquely divisible, then its classify- 
ing space BF has the mod p homology of a point. 

Proof. A "uniquely divisible" group is just one which is isomorphic to a vector 
space over the rational numbers Q. First suppose that this vector space is 
1-dimensional. Then F is a direct limit of free cyclic groups, hence its homology is 
trivial in all dimensions greater than one; and evidently the group 

HI(BF; Z/pZ)  ~ HI(BF; Z ) ~  Z/pZ  ~ F ~  Z /pZ  

is also zero. Next suppose that F is finite dimensional over Q. Then the conclusion 
follows inductively, using the Kiinneth Theorem.  Finally, the infinite dimensional 
case follows by a straightforward direct limit argument. �9 

Combining these two results, we obtain the following. 

L E M M A  3. If the component of the identity of G is solvable, then the 
Isomorphism Conjecture is true for G. 

Proof by induction on the dimension. By Lemma 1 it suffices to consider the 
case of a simply-connected solvable group. In the 1-dimensional case, G mR,  the 
conclusion follows immediately, since B R  is contractible, and B R  8 has the mod p 
homology of a point by Lemma  2. In the case of a higher dimensional simply- 
connected solvable group, choose a homomorphism from G onto R with kernel 
N. Then the short exact sequence N--~ G--~  R gives rise to a Serre fibration 
B/V--~ Bt~ ~ BR.  We may assume inductively that B/V has the mod p homology 
of a point, and a spectral sequence computat ion shows that Bt~ does also. �9 

More generally, for any Lie group G, the associated Lie algebra fl has a 
maximal solvable ideal n, and the quotient g/n splits as a direct product of simple 
Lie algebras s~. Let  S~ be corresponding simple Lie groups. 

L E M M A  4. If  the Isomorphism Conjecture is true for each simple Lie group Si, 
then it is true for G. 

The proof, based on the fibration B/V ~ B G  ~ I-I Bgi, is easily supplied. �9 
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w The Gottlieb transfer 

Let 7r: E ~ B be the projection map of a smooth fiber bundle, with a closed 
manifold as fiber. The Gottlieb transfer tr:H~E---~ H~B can be defined intuitively 
as the cup product with the Euler  characteristic along the fiber, followed by 
integration along the fiber. (For a precise definition see Gottlieb.) Here, and 
throughout most of this section, some fixed coefficient group A is to be understood. 
There is a completely analogous transfer homomorphism in homology. One basic 
property is that the composition 

is equal to multiplication by the Euler  characteristic of the fiber. 
Let G be any Lie group with finitely many components,  and let K be a maximal 

compact  subgroup. According to Mostow, the quotient space G/K is contractible, 
hence the natural map  BK--~ B G  is a homotopy  equivalence. Let  N be the 
normalizer of a maximal torus in K. According to Hopf  and Samelson, the 
quotient manifold K I N  has Euler characteristic + 1. Note that there is a canonical 
fibration Ir :BN---~BK with fiber K/N. Following Becker and Gottlieb, this 
implies the existence of a transfer homomorphism tr:H~BK---~I-I~BN such that the 
composition H, B K  ~ H~BN ~ H~BK is just the identity map of H~BK. Therefore 
the natural homomorphism 7r,:H~BN---~H~BK is a split surjection. A similar 
argument shows that the corresponding cohomology homomorphism 7r* : HtBK---~ 

H i B N  is a split injection. 
Now let us assume that the coefficient group A is finite. Then H ,  B N  ~ ~- H ,  B N  

by w We continue to assume that G has only finitely many components.  

T H E O R E M  1. The canonical homomorphism "O,: H~BG ~ ~ H~BG is a split 
surjection. That is some direct summand of H~BG ~ maps isomorphically onto H~BG. 
Similarly, the cohomology homomorphism rl * : H~BG ---~ H~BG 8 is a split injection. 

Proof. This follows by inspection of the commutative diagram 

H i B N  8 ~ HiBG 8 

I-I~BN "" , H~BK-~ HiBG, 

or the analogous cohomology diagram. I 
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C O R O L L A R Y  1. The homomorphism rl*: Hi(BG; Z) --~ Hi(BG~; Z) 
of integral cohomo!ogy is injecfive. 

Proof. This follows from the commutative diagram 

H i (BG;  Z) " , H i (BG; Z) ~ H i (BG; Z/n Z) 

1 1 
H i (BG 8; Z) --* H i (BG ~; Z/n Z), 

using the fact that H i (BG; Z) is finitely generated, so that the intersection 
of the subgroups nHi(BG;Z) is zero; and using the fact that the right 
hand vertical arrow is injective. �9 

The corresponding statement in homology would be false. For example if G is 
the unitary group U(n) or the special linear group SL(n, C), then we will see in 
the Appendix that ~I,:Hi(BGS;Z)---~ Hi(BG; Z) is identically zero for i > 0 .  
However  we can prove the following weaker statement. 

C O R O L L A R Y  2. Every element of finite order n in Hi(BG; Z) lifts to an 
element of order n in Hi(BGS; Z). 

Proof. This follows from the commutative diagram 

Hi+I(BG ~ ; Z /nZ)  --* ~ (BG 8 ; Z)--~ 

l o 'o 1 
Hi+I(BG; Z/nZ)  --~ H~(BG; Z)2-~. I 

w Examples for H2 

Homology with integer coefficients is to be understood throughout this section. 
We will need the following observation to relate integer homology to mod p 

homology. 

LEMMA 5. A path-connected space X has the mod p homology of a point for 
every prime p if and only if the integer homology group H~X is uniquely divisible for 
i > 0 .  

In particular, a connected group G satisfies the Isomorphism Conjecture if and 
only if the integer homology H~BG is uniquely divisible for i >  0. 
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Proof. This follows from the homology exact sequence associated with the 
coefficient sequence 0 --~ Z - % Z  --~ Z / p Z  --~ 0. �9 

Recall from w that it would suffice to prove the Isomorphism Conjecture for 
connected semi-simple groups. 

L E M M A  6. If G is connected and semi-simple, then H1BG is zero, and there is 
a split exact sequence 0 --~ H2BCJ ~ H2BG 8 ~ HEBG --~ O. 

Here  H2BG can be identified with the fundamental  group wiG, since G is 
connected. So the last statement means that H2BG 8 splits as the direct sum of the 
finitely generated group w~G, and a group H2BCJ which is conjectured to be a 
rational vector space. 

Proof. For the computation of H1BG, we may assume that G is simply- 
connected (compare w and hence that H2BG = 0. Since G is perfect, the group 
H~BG ~ -~ G/[G, G] is zero. The statement that HIBCJ = 0 then follows from the 
spectral sequence of the fibration BCJ-~ BGS---~ BG. 

For any connected Lie group G, note that H3BG is finite, since the rational 
cohomology of BG is a polynomial algebra on even dimensional generators 
(Borel, 1953). Therefore  H3BG 8 maps onto H3BG by Corollary 2 of w If G is 
semi-simple, so that HIBt~ = 0, an elementary spectral sequence argument now 
yields the required short exact sequence; and it follows from Corollary 2 that this 
exact sequence splits. �9 

L E M M A  7. If G is a Chevalley group over the real or complex numbers, then 
H2BG is uniquely divisible and uncountabIy infinite. 

For the proof, which is based on deep results of Steinberg, Moore and 
Matsumoto,  the reader is referred to Sah and Wagoner,  p. 623. �9 

Note  that any complex simply-connected simple Lie group is automatically a 
Chevalley group. In the complex case, the proof shows that HEBCJ is naturally 
isomorphic to the group KEC of algebraic K-theory,  which is uniquely divisible by 
a theorem of Bass and Tate. 

Typical examples of real Chevalley groups are special linear group SL(n, R), 
the rotation groups SO(n, n) and SO(n, n + 1), and the symplectic group consist- 
ing of automorphisms of a skew form on R 2n. In the real case, H2BC_t is 
isomorphic to the "real par t"  of K2C, that is the subspace fixed under the 
involution arising from complex conjugation, 
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For non-Chevalley groups, the known information is rather sparse. Alperin 
and Dennis have proved an analogous result for the stable special linear group 
over the quaternions. Their  paper also contains an ingenious argument due to 
Mather, which proves the following. I f  T ~ S  1 is a max imal  toms in the 3-sphere 
group SU(2), then H 2 B T  ~ maps onto H 2 B S U ( 2 )  8. Since H 2 B T  8 is known to be 
uniquely divisible, it follows that H 2 B S U ( 2 )  ~ is at least divisible. I do not know 
how to prove the corresponding statement even for SU(3). Alperin has shown 
that the successive homomorphisms 

H 2 B S U ( 3 )  ~ ~ H a B S U ( 4 )  ~ --~. . . 

are surjective (and bijective from SU(6) on); but no more precise information 
about these groups seems to be available. 

Appendix: Real or rational coefficients 

The cohomology of B G  8 with real or rational coefficients behaves quite 
differently from cohomology with finite coefficients, and is somewhat better 
understood. In fact, there are two basic tools which help to make the real case 
tractable, namely the Chern-Weil  theory of characteristic classes expressed in 
terms of curvature forms, and the van Est theory of continuous cohomology. One 
consequence of these theories is the following. 

LEMMA 8. I f  G is compact, then the canonical homomorphism HiBGS---~ 

I-I~BG, with real or rational coefficients, is zero for i >  O. 

If the integer homology H i ( B G ;  Z) happens to be free abelian, then it follows 
easily that the corresponding homomorphism with integer coefficients is also zero. 
This is the case, for example, when G is the unitary group U(n).  

More generally, let G be any Lie group with finitely many components, and let 
K be a maximal compact subgroup. 

L E M M A  9. In  this case, the homomorphism HiBG~---~ I-t~BG is zero for i 

greater than the dimension of  G/K.  

Here and elsewhere, real or rational coefficients are to be understood. 
Evidently this reduces to the previous statement if G itself is compact. 

Here is a different generalization. Let G be any Lie group which contains a 
discrete cocompact subgroup F. Such a subgroup exists, for example, whenever G 
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is connected and semi-simple (see Borel and Harish-Chandra), or whenever G is 
simply-connected and nilpotent with rational structure constants (Mal'cev). 

L E M M A  10. Then the image of rl, : I-I~BG ~ ~ HIBG is precisely equal to the 
image of the composition 

HiF ~ HiBG ~ --~ HiBG. 

Similarly, the kernel of the ring homomorphism "O*:I--I*BG---~H*BG 8 is 
equal to the kernel of H*BG--~  H*BF. Here are some examples. If G is 
compact, then we can take F to be trivial, and recover Lemma 8. If G is the 
group PSL(2, ll) = SL(2, R)/{• then a maximal compact subgroup K is a circle, 
and G can be identified with the group of all orientation preserving isometries of 
the hyperbolic plane G/K. In this case we can take F to be the fundamental group 
of a closed surface F \  G/K ~-BF. The cohomology H * B G  ~-H*BK is a polyno- 
mial ring on one 2-dimensional generator, and it follows from either Lemma 9 or 
10 that the square of this generator maps to zero in H 4 BG  ~. However, the image 
of the generator itself in H2BG ~ is non-zero. (Compare Milnor 1958, as well as 
Wood.) 

Another closely related result is the following. 

L E M M A  11. I f  G is complex and semi-simple, with finitely many compo- 
nents, then again the homomorphism HiBG ~ ~ H~BG is zero for i > O. 

For a real semi-simple connected Lie group, the kernel of the cohomology 
homomorphism ~* can be computed as follows. Let h: G ~ Gc be a complexifi- 
cation of G. That is, let Gc be a connected complex Lie group whose Lie algebra 
is the complexification g @C of the Lie algebra of G, and let h be a homomorph- 

ism which induces the embedding of g into its complexification. Note that the 
kernel of h is necessarily discrete and central. 

T H E O R E M  2. With these hypotheses, the sequence of ring homomorphisms 
H * B G c  --~ H * B G  ~ H * B G  ~ is "exact",  in the sense that the kernel of the second 
homomorphism is equal to the ideal generated by the positive dimensional elements 

in the image of the first. 

Remark. If we use real coefficients, then the image of h* : H*BGc  --~ H * B G  
can be identified with the image of the Chern-Weil homomorphism associated 

with G. 

As an example, if G = SL(2n, R), then we can take Gc = SL(2n, C). The 
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cohomology ring H*BG is a polynomial ring generated by the Pontrjagin classes 
Px, �9 �9 �9 P~, together with the Euler  classs e, subject to the relation e 2 = Pn ; and the 
image of h* is equal to the subalgebra generated by the Pontrjagin classes. (See 
for example Milnor and Stasheff.) Thus it follows that only the Euler class survives 
to H*BG 8 (or to H*BF if F is a discrete cocompact subgroup). 

To begin the proofs, let us consider the Chern-Weil homomorphism 

0:InvG R[g']--~ H*(BG; R) 

associated with a Lie group G and its Lie algebra 9. Here  Inv6 R[9'] stands for 
the graded algebra consisting of all real valued polynomial functions on the vector 
space 0 which are invariant under the adjoint action of G. Given such an invariant 
polynomial  f:  g--~ R, homogeneous of degree n, and given a smooth principal 
G-bundle  over some manifold M, with a smooth G-invariant  connection, the 
curvature 2-forms O of the connection give rise to a closed 2n-form f ( ~ ) ,  and 
hence to a characteristic cohomology class 

( f (~ ) )  ~ H2"(M; R). 

This corresponds to the required class O(f)cHZ'~(BG;R) under the canonical 
homomorphism Hz"(BG; R) --~ Hz"(M; R). See Kobayashi and Nomizu or 
Spivak for details. 

Chern-Weil  Theorem.  If G is compact, then this homomorphism 
0: Inv6 R[ 9']  --* H*(BG; R) is bijective. 

In particular, BG has only even dimensional cohomology with real coeffi- 
cients. This theorem is proved in Cartan or Chern or Bott  1973. 

Proof of Lemma 8. Any homology class in H2n(BGS; Q) can be realized as 
the image of a homology class from some smooth open manifold which is mapped 
into BG ~. To prove that its image in H2n(BG; Q) is zero, it evidently suffices to 
evaluate on an arbitrary real cohomology class in H*(BG;R)~-Inv6 R[fl']. If 
n > 0, then choosing any homogeneous  polynomial f ~  Inv6 R[g ' ]  of degree n, the 
characteristic class (f(/2)) of the induced bundle over  M is zero since this induced 
bundle has curvature g2 = 0. The conclusion follows. �9 

In the case of a complex Lie group, there is an analogous homomorphism 

InvG C[fl'] --~ H*(BG ; C), 
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where now C[g'] must be interpreted as the graded algebra consisting of all 
complex polynomial functions on the complex vector space g, 

L E M M A  12. If G is complex and semi-simple, with only finitely many 
connected components, then this complex Chern-Weil homomorphism 
Invo C[g']---~ H*(BG ; C) is also bijective. 

Proof of Lemmas 12 and 11. Let K e G  be a maximal compact subgroup. 
(Compare  Mostow.) Since K is essentially unique, it coincides with the compact 
real form of G, as constructed by Weyl. Hence the Lie algebra g can be identified 
with the complexification ~@ C of the Lie algebra of K. It is then not difficult to 
check that Invo C[g'] can be identified with Inv,: R[I~'] |  so that Lemma 12 
follows from the Chern-Weil  Theorem applied to K. Evidently Lemma 11 follows 
easily. �9 

Next consider the following construction. Let G be any Lie group (with a finite 
or countably infinite number of components). Fixing some large integer N, let 
E ~ X be a smooth N-universal principal G-bundle.  That is, we assume that the 
total space E is (N-1 ) -connec ted .  Then the base space X = E / G  is a finite 
dimensional manifold such that the natural map X--* BG induces isomorphisms 
of homology and cohomology in dimensions less than N. Let A(E)  be the de 
Rham complex of smooth differential forms on E, and let I n v ~ A ( E )  be the 
subcomplex of G-invariant  forms. We will be interested in the cohomology 
groups H " ( I n v o  A(E))  in dimensions n < N. 

If G has only finitely many components,  then these groups H " ( I n v o  A(E))  are 
isomorphic to the continuous (or the differentiable) Ei lenberg-MacLane cohomol- 
ogy groups of G, as studied by van Est. (See for example Borel and Wallach, p. 

279.) Furthermore H"(InvoA(E) )  can also be identified with the group 
H" ( Inv~  A(G/K)),  where K is a maximal compact subgroup of G, or equivalently 
with the Lie algebra cohomology H"(g,  K). Thus this cohomology is zero in 
dimensions greater than the dimension of G/K. (Compare van Est, Borel-Wallach,  
Dupont ,  or Haefliger 1973.) The following two lemmas are essentially due to van 

Est. 

L E M M A  13. The natural homomorphism "0" : tP (BG;  R) --~ Hn(BG~ ; R) fac- 
tors through the group Hn(Invo A(E)),  providing that n < N. 

Clearly Lemma 9, with real coefficients, will follow as an immediate corollary 
once we have proved this statement;  and the corresponding statement with 
rational coefficients will then also follow. 
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L E M M A  14. I f  F is a discrete cocompact subgroup of G, then the composition 
H "  (Inv~ A (E)) ~ H" (BGS ; R) -~ H ~ (BF; li) is injective for n < N. 

Proof of Lemmas 13 and 9. Evidently we can identify H" (BG; R) with the de 
Rham cohomology H " ( A ( E / G ) ) ,  which maps naturally to H" ( Inv~  A(E)) .  On the 
other hand, if SE denotes the smooth singular complex of E, then G a operates 
freely and properly on SE, so the quotient complex SE/G 8 has the same 
cohomology groups as B G  ~ in dimensions less than N. A canonical cochain 
homomorphism 

Inv~ A "(E) ~ C"(SE/GS ; R) 

is constructed by integrating G-invariant  n-forms over smooth singular simplexes 
which are well defined up to right translation by G ~. This cochain homomorph-  
ism induces the required homomorphism from H " ( I n v 6  (A(E) )  to H " (BG ~;R) .  
Further details will be left to the reader. �9 

Proof of Lemmas 14 and 10. We can identify H~(BF; R) with the nth 
cohomology of the complex I n v r A ( E ) - ~ A ( E / F )  of F-invariant  forms on E. Let 
a be a closed G-invariant  n- form on E, and suppose that o~ = d/3 for some 
F-invariant  (n - 1)-form/3. If we translate/3 by any element  of the compact coset 
space F \ G ,  which acts on the right, then we obtain another ( n -  1)-form with 
coboundary a. Averaging these translates with respect to the Haar  measure on 
this compact  coset space, we obtain a G-invariant  ( n -  1)-form with the same 
coboundary a. This proves Lemma  14; and Lemma  10 follows easily. �9 

Proof of Theorem 2. Part of this Theorem,  namely the statement that the 
composition H*BGc--~ H*BG ~ H~BG 8 with real or rational coefficients is zero 
for i > 0, follows immediately f rom Lemma  11 together with the commutat ive 
diagram 

B G  8 - 4  B G  

1 1 
BG~: --~ BGc.  

Note, by Lemmas  13 and 14, that an element  of H i ( B G ; R )  maps to zero in 
Hi(BGS; I I )  if and only if it maps to zero in the group H ~ I n v ~ A ( E ) ~  
H i Inv~ A ( G / K ) .  Thus, to prove the Theorem, we must check that the sequence 

H* B G c  --* H* B G  --~ H* Inv~ A ( G/ K), 

with real coefficients, is "exact" in the sense of Theorem 2. 
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A standard elementary argument shows that the chain complex Inv6 A(G/K)  
can be identified with the complex C*(g, K)~-InvKA*(g/[)'  consisting of all 
multi-linear skew forms on the vector space 9/[ which are invariant under the 
adjoint action of K, provided with a suitable coboundary operator.  If we pass to 
complex coefficients, then the cohomology of this complex can be computed in 
terms of the complexification h : G --~ Gc  as follows. Choose a maximal compact 
subgroup L of Gc  with h ( K ) c L .  Then G and L are both real forms of the 
complex Lie group Gc. Hence the corresponding real Lie algebras 9 and I have 
isomorphic complexifications. It follows easily that H*(9, K ) |  is isomorphic to 
H*( l ,  h ( K ) ) ~ C .  This can be identified with the cohomology of the complex 
Invc A(L/h(K)) |  in fact, since L is compact and connected, it can simply be 
identified with H*(L/h(K); C). 

Note also that h(K) is the quotient of K by a finite central subgroup, so that 
the cohomology of Bh(K), with real or rational coefficients is isomorphic to the 
cohomology of BK or of BG. To simplify the notation, let us assume that 
K~--h(K), so that we may think of K as a subgroup of L. The statement to be 
proved then reduces to the following. 

L E M M A  15 (Cartan, p. 69). Given compact connected Lie groups K c L, the 
sequence H*BL --} H*BK ~ H*(L/K) of ring homomorphisms (with real or ra- 
tional or complex coefficients) is "exact" in the sense of Theorem 2. 

Proof. The fibration sequence L - o  L/K--~ BK gives rise to a cohomology 
spectral sequence; or alternatively to the statement that H*(L/K) is isomorphic to 
the cohomology of the complex H * B K ~ H * L  under a coboundary operator  d 
which has the following properties. The image d ( H * B K ~  1) is zero; and further- 
more,  if v ~ H*L is universally transgressive so that its transgression ~ is defined 
and lies in the image of H*BL--~ H*BK, then d ( l ~ v ) =  ~5| (See Borel, 1953 
p. 187.) Since H*L is an exterior algebra generated by universally transgressive 
elements, it follows easily that the image of d intersected with H*BK@ 1 is the 
ideal spanned by the g. This proves the Lemma.  �9 

To prove the Theorem, we must identify the sequence H*BL--~ H*BK 
H*(L/K), of Lemma  15, with the required sequence H*BGc--~H*BG--~ 
H* Inv6 (A(G/K)), using complex coefficients. This can be done, making use of a 
purely algebraic construction of the last homomorphism. (See Haefliger 1973, 

p. 6.) Details will be omitted. �9 
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