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Lectures on Characterigtic Classes

by John Milnor

Notes by James Stasheff
(Springl957)

I. n-plane bundles:

In the study of characteristic classes, we will be
concerned with n-dimensional vector space bundles or, briefly,

n-plane bundles.

Definition: An n-plane bundle consists of a triple (E,B,w} with

T & map (i.e. continuous function) from a Hausdorff space E 3232
a Hausdorff space B, and the structure of an n-dimensional vector
space over the reals R in the fibres W’l(b) for all beB, satis-
fylng the further requirements that

1) there exist a distinguished class of open sets (U}
covering B and n maps c¢, : U—>E for each U, such that

1

2) each c, 1s & cross-section, that is w'ci(b) =b for

each b elU, and
3) the map leffl———>'ﬂfl(U) defined by
(byhppeen, M) — Zhaye; (0}, A, eR, 18 a homeomorphism, (This 1is
the local product structure on E.)
We call B the base space, E the total space, 7 the projection
gnd denote the triple and structure by & Greek letter e.g.{= (E,B,T }.

A superscript on a bundle indicates the dimension of the fibre

Tr—l(b)) €,8. gn.

These notes sponsored by Princeton University under Alr Force
Contract No. AF 18(600) ~ 149k



Remark: Althcugh not necessary for what follows, 1t should be
noted that aii n-plane bundle is an example of a fibre bundle.

(See Steenrod; Topolcgy of Fibre Bundles, 1951.) 1In fact, an

n-plane bundle is exactly a fibre bundle with real n-~dimensional
vector space as fibre and GL(n,R) as sgtructural group.
Examples of n-plane bundles:
1) The product bundle B % R©
2) The tangent bundle 7 of a differentiable manifold
M’ of class Cl Oor more., Here B =M" and E 1is the set of
all pairs (b, contravariaut vector at b).
3) The normal k-plane buidle vk of a differentiable

menifold M= RO ¢

For a differentiable manifold '—" 1s alweys

to be read "differentiably imbedded in".)  Here the base space B

is again M and E is the set of all pairs (b, normal vector at b).
b)Y The l-plane bundle or line bundle gi over real pro-

’~JectiVe n-gpace Pn defined as follows. Consider P" as the set

of all unordered pairs [x,-x] where x ranges over all unit vectors

in R™!. e total space E 1s to be the set of all pairs

([x,-x],N x) with X a real number.

Remark 1. Every cross-section of this bundle (i.e. a map

¢:1 B—=>E such that 7T¢ = identity on B) dis somewhere zero,

¢ (b) = (v,0,0,...,0) for some b. We call a "non-zero cross-section”

one which is never zero. Proof that the bundle gi of (4) has no



non-zero cross-sections, n > 1! Given any cross-section

¢: P* —> E we can define a8 map A:Sn —> R by

$(Ix,-x1) = ([x,-x],A(x)x). Since A(-x) = -A(x) and 8% is
connected, thereis a point x for which A(x) = 0 or

4, x1) = ([x,x 1,0).

‘Remark 2, The following alternative description of §t will
be useful later. As total space E1 take 8"% R with the identi-
fication (x,N) = (-x,-\). Evidently the element [(x,\),(-x,-A)] of
E, can be identified with ( [%,-x] ,X)eE. Therefore this new
bundle is equivalent (see the next paragraph) to the one defined

above,

Bundle maps and induced bundles;
—_— — e~ e e = §

Definition: A bundle map fi{ -—> n, where { = (E,B,7m) and

7 = (E',B',7'} are n-plene bundles, is & pair of maps (fB,fE)
such that

1) the following diagram is commutative

E ~———> E'

T (a (1.e. T = fBW) and
. .
B ——~&> B!

2) fElvr'l(b) is linear and non-singular for each b in B,



Special Case: B = B!

Definition: Two n-plane bundles £,m over B are equivalent
if there is a bundle map fi1§ —> 1 with fy= Identity on B.

This is an equivalence relation and using 1t we define

Definition: An n-plane bundle is trivial if it is equivalent to

the product bundle BxR".

Remark: A bundle is trivial if and only if there exist n 1independ-
ent cross-sections. (We use them to define fE.)

Using this concept, we have

Definition; A differentisble manifold M 1is parallelizable 1if

the teangent bundle 1 (M') is trivial.

Induced bundle: Given a bundle ¢ with 7mE —> B, another space

B' and a maﬁ fB,:B’ —> B, there 1s a construction by which we

get another bundle ({E',B',w'} and a bundle map f==&h',fB,)° Let

E' be the subset of B'>x E consisting of all pairs (b',e) with
b'e B!, ecE such that fB,(b') = m(e). Define 7'"tE' —> B' by
7' (b',e)=Db'. Bach fibre W*—l(b') will have the structure of a
vector space isomorphic to nfl(fﬁ.(b')). Thus we have constructed

the induced bundle, the bundle induced by fE" It is easy 1o

verify that the projection map fE,(b',e)==e gives a bundle map

ot of the 1nduced bundle into the original bundle.
B ’7E!



Remark: Given two bundles ¢ and 1 and a map fp of

thelr base spaces as indicated in the dlagram, it is often possible

to define a map fE s0 that the pair is a fE
E---wa > E!
bundle mep. This is pessible, 1f and only
1
if ¢ 1is equivalent to the bundle induced ey L
k1 v v
by f, from 7. For example, PCP’ s
B ’ B 7 > B!
B

E(éi’)C:E(g}”l) and there i1s the obvious

B’ iB are the indicated inclusion

is equivalent to the l-plane bundle over Pk in-

bundle map f = (iE’iB) where 1
1
£k

1 k+1
duced from gl%l by iB. PK_C:P .

maps. Thus

We need one more relation between n-plane bundles;

The Whitney Bundle Sum: Given an m-plane bundle t= (E,B,7) and

il

an n-plane bundle 7 (E',B/;,’IT’ ), let E" be the subset of E X E'

consisting of all pairs (e,e!') such that 7(e)=7'(e’).

Define p: " —> E by ople,e!) = e B
p/ '
P'1E"—>E' by p'(e,e') =g Py X}

. E 7"
THE" —> B by ®=7p=7'p! W\ (s
B

8ince 1w,m' are projections of m, n-plane bundles respectively,

U

T" 18 the projection of an (m#n)-plane bundle, the Whitney sum
) Y. ,

t@n = (E",B,7"}



k
Example 5 : For a differentisble manifold M C::.'Rn+ we

have that 'rnQVk is trivial (equivalent to the product bundle

Mx R,

II. Btiefel-Whitney classes!

We begin to look at the cohomology of n-plane bundles,
Henceforth unless otherwise stated, we will use some cohomology
theory with 22
H¥(X), the direct sum H(X)®H (X)@® +++ .  We have the following,

as coefficients, Hi(X) will mean Hi()(gze) and

similar to the axioms for Chern classes given in Hirzebruch,

Neue topologische Methoden in der Algebraischen Geometrie, Berlin,

1956 p. 60:

Axioms for Btiefel -Whitney Classes

1) fTo each n-plane bundle ¢ over a paracompact base space B,
there corresponds an element W(f)= 1+ Wl(§)+ ceoy Wn(g) of H*(B)

‘where WieHi(B), such that

2) For a bundle map f = (fE,fB); t —> n we have fE(W(n))=W(§)

3) Te Whitney Product Theorem holds; W(t@®n) = W(¢{W(n) |

Leeo W (t@n) =, 5 W (6w, (n)

[originally proved by Whitney "On the Theory of Sphere-Bundles™

Proceedings Nat. Ac. Sci. 26 p. 148 (1940) 1.



L) For the non-trivial 1ine bundle over: Sl (which can be

represented as the open Moebius band or, since Sl= P

of Ex 4)

1
Wy (£) # 0

1

1
, 88 gl

We will call wi(g) the Stiefel-Whitney classes and W({) the

total Stiefel-Whitney claes.

Consequences and examples.

A. Axioms 2) and 4) imply

4') For the bundle gi of example 4 , w(gi)= 1+ a where

a 1s the non-zero element of Hl(Pn).

For we have Sl= P¥C:P2C:--C:Pn and using the inclusion maps

in the bundle spaces as well; we define bundle maps

1 1 1
e b —> -2 by
£ -

. P _ s 1
Call the composgition f = (fE,fB).gl —— gn .
Then for fgz g*(P") —> p*(gl) we have

£% 4y (£5)) = Wy (g]) 4 0,

hence wl(gi) is the non-zero element of Hl(Pn).

Whitney classes wi(gi),1> 1, are zero by Axiom 1.

The Stiefel-



Axiom 4') may be used instead of 4) in which case it would
not be necessary to specify in Axiom 1) that w(gn) has at most
n-dimensional classes.

B. Axiom 2) gives us that W 1s a function of equivalence
classes. In particular, if ¢ 1s trivial then W(f{) =1 since

£ iBXR® —> R"j f.1 B —> (point),gives a bundle map and

E B
Hi(point) =0 for 1> 0,

c. W(t™(s")) =1 where (™) 1s the tangent bundle of

the n-sphere,

Proof: Let fB: g® —> P be the natural map and define the

bundle map f:T9<Sn) —> Tn(Pn)'in the obvious manner. Then

W, («%(8%)) =0; 0<1<n since K (8") = 0; 0<1<n,

and fg}Hn(Pn)‘———> H'(8") 1s zero so that O = fg(wn(Tn(Pn))) =

wn(Tn(Sn), Therefore W(t"(8")) = 1.

This can also be found through Axiom 3) since

D. Axiom 3) is "solvable," that is, given any two of W(L), W(n),
or W(QQ}n) we can solve for the third. For example, given W({)

and W({@®n), let us write W(E) = W= LW +W + et W W) = W' =

2

! oo o ! = L n ce s H
L4 Wi+ oo+ W, and W(E@N )=W" = 1+W'+ oot W' .  Expanding

Axiom 3) we find

fl

WY = 1W!+ Wl.,l

1 1
" o_ ’ 1
WE = 1vw2 + lewl + Wevl
"o ! 1 '
Wr = lvwr + lewr_l+ ses 4 wr_lv Wl+wr w1



We can solve for w; in terms of Wi,i< r and the known wd and Wﬁ:

' = T = "_ 1)

|
r v“wl+ erl ).

r=-1

Vo
1= Wl Wl to start things off, gives &

complete recursive solution for the wi (Note that this procedure depends

This formila together with W

on the fact that wo is always equal to 1.) This discussion can be
simplified by noticing that the set of all infinite sequences:

1+ oi+-Oé-+°°° where aie Hi(X) forms & group under ~~, which is
abelian since we are working mod 2. For example, (14-01)-1 =
14+0.+0° + o+ . Thus we can write W({) = w(geq)w'l(q) to

1 71

indicate the solyability of Axiom 3). In particular, for Mt B,

we know that Tn(Mn)divk(Mp) is trivial and that therefore W(ﬂgvk) =1,

Thus we have:

Theorem 1. The Whitney Duality Theorem [see Lectures in Topology

Univ. of Michigan Press, l9hl, p. 133, especially (21.9]1: If we have

k n

e differentiable Manifold M'cR™™ with tangent bundle < and

normal bundle vk, then

W(rn)w(vk) =1 or W(vk) = w"l(rn). ‘

-1 —
We write W -1+wl+\72

(Note that by the above theorem, W-1(1®) has classes of at most

LN = qu'+ .
+ oo+ W with as usual W=1+W +W+ W,

dim k.)} Bolving as above



10

ﬁl =¥,

W, = wf+-w2

W, = W3 + W

Wh = w;f+w§w2 + wg + wu etc.

In particular, we have another proof for assertion C. Taking

the usual imbedding of gh in Rn+l we have‘

WER™) = W), But vF(8Y) is trivial

which implies W(<"(s%)) = 1.

IIT. Applications:

We will often be concerned with the situation of example 2 )
the tangent bundle ™ toa differentiable manifold M". Though
we have defined W only for bundles and not for manifolds , we will
extend our use of classes by writing W(Mn), defined as W(Tn). -For
the sake of exposition, these ‘are called the Stiefel class (of a

menifold) and the Whitney class (of a tangent bundle) respectively.

Consider, for instance, 'rn(Pn)o This can be represented in

terms of the unit Snc:Rn+l as follows,



=l
<y
&l
3

let E(1"(P)) be the set of all unordered pairs [(

where (@,V) 1s an ordered pair with v “
- y
perpendicular to the unit vector 1?.

In other words, E(7(F")) 1s the set

-> - -
of all pairs (u,v) with v per-
pendicular to the unit vector o
- -
)e

modulo the identification (W, V)= (<iy=v

~p

On the other hand, conslder the
(n+1)~fold Whitney sum §i"$°” @gi where gi is the line bundle
over P" of example 4 , The bundle space E(gi’@ cos @gi) con-

sists of all (n+2)-tuples (T} to,-..tn) where

(ujt_,ees ) 15 ldentified with (<, =t seees-t, ),

or @;7) = (-0 -W), |Id] = 1. (See Remark 2 after
Example 4 ,) Notice U need not be perpendicular to W , though at
least
1
E(")CE(6@ - @E ).

y—

n+l

Let nl be the l-plane bundle over P with E(nl) = ((4,tq))
medulo the identification (¥,t2) = (-, -t¥). Clearly n* 1s a
trivial bundle.

As can readily be seen,

@ nl is equivalent to gi@ @g:;

St
n+l
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Mus W)W (T) =w(grll)n+l and since n° 1is trivial,

w(t®) =w(§3;)n+l= (l+a)n+l, e EJ‘(Pn). Thus

Theorem 23 The Stiefel class of projective n-space 1s glven by

w(Et) = (1 +(x)n+l where O 1s the non-zero element of Hl(Pn).
+1 '

In other words, Wi(Pn) = (ni ) ctj';aeHl(Pn).

The following 1s a tabl:: of binomial coefficents mod 2,

We do not use the vi
\
last coeffliclient since W has 1 O\l
11?@
no n+l-dim component, e.g. 100 O\l
WEP) = 1+a + oF 11001
WEd) =1 101010\
W(Ph) =1l+Q+ <le‘L etc,

In making use of these formulas 1t is important to know that
the powers a, az,..., a” are all non-zero. We will assume this to
be known. (A proof based on the Gysin sequence will be gilven later

in these notes.)

Parallellzability: Now we are ready to ask:; which P® are

parallelizable? We have necessary conditlons at hand since p?
parallelizable implies that W(P") =1,

Theorem 3; W(Pn) =1 1f and only 1f n+1 18 a power of two,

(From the above work, this reduces to an exercise in arithmetic

mod 2)
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Proof': Since (Oc+ﬁ)2 - a4 ﬁe mod 2

r r
we have (l+a)2=l+a‘2 .

Therefore, for n+l =2F%, W(P") = (1+a)n+l= 1+ - 1.

Conversely n+l= 2rm, m odd >1, implies that
w(p) = (l+a)n+l= (1+a2r)m = 1+(’1n)a2r+ se0 = 1+a2r+ cee #1
since 2¥< n+1,

Thus the only " vwhich can be parallelizable are
PLe3,pT, 2, p3t et | It 15 known that P1,p3,P7 are in fact

parallelizable and that Pl5 is not,

Immersioni

Definition: An immersion of Mn in Rm‘k is a differentiable map

M Rn+k such that the Jacobian is never singuler (this means
there 15 a well-defined tangent Plane at svery point)., This differs

from an imbedding in that "nice" self intersections are permitted,

Theorem 4 If the manifold M' can be immersed in Rn+k, then the

dual Stiefel-Whitney classes Wi (M) mst be zero for 1> k.
Proof; As in the €ase of an imbedding, Tn$vk is trivial so
that w“l(r“) = w(vk), But wi(vk) =0 for 1 > k.

Applying this to Pt lmmersed in Rnﬂ, we have that

w(vl)-—-l or 1+a .~ W(P") = W(Tn)#'l(vl)=1 or 140+ QS +eeet Q1

We have seen that W(P") =1 1if and only if n+1 = 2%, On the

other hand 1if W(Pn) = (l+a )n+l=l +a+ **"+ o then (1 +a)n+2 =

1+ mod 2 and again () =0 o oRtrs o e (L+a )% =1,
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As before this Implies that n+2 = o, Thus the only P” which

can be Immersible in Rn+l are P P P3,P6 p7,plh’Pl5,...

. It
is known that Pl,P2,P3 are in fact immersible but that PlS is not.
(See Milnor, "The immersion of n-manifolds in (n+l)-space", Comm., Math,
Helv. 30 (1956), pp. 275-284.)

On the other hand, consider the case n = 2%, Then

pr

= (1+a)? (1+a) = (1+a° ) (1+a) =1+a+a”

= @+ (a4t

B
=
1
H
—~
g
=
~—
i

(1 +a®) (l+a+a2+ crer )

= (l+a+a2+-u+an"l) (mod 2),
In other words W;(Pn) =0, 1i=n
#0,1=1,e00,n-1,

Therefore by Theorem 2, for n=2%, P* 1is not immersible in R-°"2,

We would like to know how good an answer this is. I.e. for what
dimensions q>2n -2 can P be immersed in R  There is, in
fact, the Theorem of Whitney: any Mp,x1> 1, can be jmmersed in

Rgn -1 [See Whitney, "Singularities of a Smooth n-Manifold in

(2n-1) space”, Ann, Math, 45 (1944)p. 247.] Bo for n=2" we have the
exact result; P° 1s immersible in REn—l’ but not immersible in R2n -2

Our results can be extended somewhat, as follows:

9 is immersible in th, so 1s P%::Pg, but this we know is im-

2 1s not immersible in th, Similarly, we have in

Ir P
possible, so P

general, 1f n= 2r+-q where 1r 18 the largest power of 2 in n, then
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r+l

P" 15 not immersible in R° -2,

Imbedding: Simllar results can be obtained for imbedding. We will
show later that if M" 1s imbedded in Rn+k, then the highest Btiefel-
Whitney class wk(vk) 1I's zero. Hence if Mn is imbeddable in Rn+k
then W,(M') =0 for 1>k. In particular, for n=2"+gq as above,

r+1_
P 1is not imbeddablein R° T,

Division algebras: Another application of Stiefel~Whitney classes

is in the question: for what n does there exist a division algebra of
dim n over R? (Again we will get necessary but not sufficient condi-
tions.) We are looking for a product operation in Rn which

1) 1is bilinear, and

2) has no zero-divisors.
Suppose such exists and choose a basis (el,...,en} for R'. Let a
vary over R" so0 that arey varies over the unit Sn'l in Rn,
(a-el,...,a-en} are linearly independent by 1) and 2), and the pro-

Jections of a-e ---,a-en on the tangent plane to the unit sphere

2)
at a-e, are still linearly independent., This in effect gives us
n-1 linearly independent tangent vector fields on Sn_l, as a-el

varies over Sn~l. If we identify a and -a we have that (—a)-e1 =

-(a°ei) 1s identified with ase, and thus we have n-1 linearly

independent tangent vector fields on P°-1°
P"! 15 parallelizable or n = 2r

In fact, we know that there are the follow-

ing division algebras:
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n =1 R, n =k Quaternions,

n= 2 Complex numbers, n=8 Cayley numbers.

IV. Stiefel-Whitney numbers,

We will now construct a tool which will allow us to compare
cohomology classes of different manifolds. (So far we have only com-
pared W's which could be represented in terms of the cohomology
of a fixed manifold, P")

M' will be a closed, possibly disconnected differentiable manifold.

Let p be the fundamental class in Hn(Mn, Z,). (There is one
since we use coefficient group ZQ)

For eny 7y eHn(X,ZE), there is defined the Kronecker index

<7, w> € Z, [#ee Lefschetz Algebraic Topology, AMS, 1943, p. 118]

As usual, write W(M')= LW + Wyt oo W

Now consider any monomial in Wl,-.., wn which 18 an element of

r r
Hn(Mn,ZE), that is, has total dimension n, 1i.e. Wll--’ Wnn with
ry > 0, Ty |
dimension to obtain a Kronecker index; therefore we define

1

+ 2r2+ et nr =n. Each such monomial is of the proper

Definition: The -Stiefel-Whitney number of the manifold M correspond-~
ing to the monomial 1y = Wl W2 .--Wn 1s the integer mod 23 <y, u>.

In using Stiefel-Whitney numbers as a tool, we will usually be concerned
with the complete set of numbers. When we compare the 3tiefel-Whitney

numbers of different manifolds, we naturally compare the numbers corres-

ponding to the same monomial.
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Let us apply this to projective spaces, about all we can work
with at this point. For n even, wn(Pn) = (n+l)a® #£0 8o that
<W,u>#0.  Similarly Wl(Pn) = (n+l)a #0 8o that <inl ,1u> # 0.
(In the special case n=2", we know that w(P*) = 1+a+a” so that
these are the onlf Stiefel-Whitney numbers different from zero, )
For n odd, on the other hand, we can set n+l= 2m
W(PY) = (1+0)™ = (1+0°)™. Terefore W, =0 for all odd 1.

Any monomial of dim n contains a factor of odd dimensional and
therefore is zero, Thus all Stiefel-Whitney numbers are zero.

This gives some indication of how much detail and structure this invar-
iant overlooks. On the other hand, these n?mbers are very useful as

is indicated by the following theorem and its converse.

1

Theorem of Pontrjagin: For Bn+ » & manifold with boundary Mp, the

Stiefel.-Whitney numbers of M® are all zero. [see Pontrjagin,
"Characteristic Cycles on Differentiable Manifolds," Math. Sbor., (NI)
21 (63), p. 233, AM3S Translation 32].

In this case we represent the fundamental class of Hn(Mn) not by u

but by du where u is the fundamental class of H +l(Bn+l,Mn).

Proof: By a standard result for arbitrary cohomology classes

r r. T r -
1 n . 1 n
<Wl=~-wn,.8p>=<b(wl---wn >
As usual, let 7' be the tangent bundle to M*. Let g"*! be the

1

tangent bundle to BT , and let Bp+lan be the restriction of



18

8" to M. (That is the bundle with total space 7 +(M),
base space Mn, and projection WIMF where T denotes the
projection map of pn+l);' Choosing a Riemann metric on ﬁn+l (see

the next section) there is a unique unit inward normal vector to M

This generates a trivial bundle 61. Clearly ﬁn+lﬁ$1 is equlvalent
to the bundle T%Ql . In other words, 1M —> Bn+l 18 covered

by a bundle map f:1 @ ot — ﬁn+l, f==(fE,i).

D+l))

Therefore i*(Wi(ﬁ = Wi(Tn).

But in general we have the exact sequence

Pty s PRy —o (et ey,

I‘l.

I
1 --wnn) = 0 and so all the Stiefel-Whitney

Thus, by exactness, &(W
numbers of Mn are O,

The converse, due to Thom, is true, although much harder to prove:

Theorem of Thom: If all the Stiefel-Whitney numbers of Mn are

zero, then M' bounds. [see Thom "Quelques proprietres globale
desvarietes differentiables"”, Comm. Math. Helv, 28 (1954) pp. 17-86,
Thm I¥.10]. |

For example, Mn(,an, where we mean the union of disjoint copies,
always bounds (This can be thoughtof as the two ends which bound a

cylinder. )
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More generally we define cobordism class:

Definition; belong to the same cobordism ¢lass 1f
jrhbnduniuyinih it 2

there exists B with boundary Mi\,;Mg 3 and obtain the:

Theorem: M? N Mg belong to the same cobordism class 1f and
only 1f corresponding Stiefel-Whitney numbers are equal, [sée Thom,

op.cit, Cor IV.11].

V. Paracompactness:

We next glve some basic tools necessary for the study of n-plane

bundles., First let us define some of our terms:

Definition: A partition of Unity on X is an indexed collection
(pa}

such that

1) each jSs amap X —> [0,1],
2) each xeX has a neighborhood U, such that p (Ux) =0
for all but a finite number of a's, and

3) Zp(x)=1, each xe X
O.O'

Definjtion;, Given an lndexed open covering {Ua } of a space X,

an associated partition of unity is a partition of unity (p. )} with
———— Q

the same index set such that P, = O outside a closed subset Va of Ud

Definitian: X 1is Paracompact 1f X 1s Hausdorff and given any indexed

open covering of X there is an associated partition of unity,
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Remark: The usual definition, which is equivalent, is: X is para-
compact if X 1is ﬁausdorff and 1f every open covering has an open
locally finite refinement., [For this definition and other properties

of paracompactness, see Kelley, General Topology, VanNostrand, 1955,

p. l56].v

In particular, every metric space is paracompact as is every
regular space which is a countable union of compact subsets. [see
Morita, Math. Jap. vol 1 (1948) p. 60-68, Tm. 10 ]. These are all
we will need. Note that separable manifolds are paracompact since

they fall in both of these categories.

Illustrations of the Use of Paracompactness in Bundle Theory.
—— .

First: Definition. A Riemannian metric on an n-plane bundle is an

inner product defined in each fibre [e = reR for all e €k

1'% 1°%2

such that w(el) = W(ee) ] such that

e.*e, 1is 1) symetric: e, -e

1 %2 12" €p€

2 %1}
2) bilinear;

3) positive definite; e;'e,> 0

except for 0:¢0= 0; and
L) e,+e, 18 a continuous function of two

variables (Although e 1s defined only

1%

for in the same fibre, we require con-

€1°%2
tinuity with respect to the topology of E, not

Just that of the fibre. I.e, if ei,eé are
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close to e ,e, respectively and if el°e2

1’72
(PN 1,0t
ang el e2 are defined then el e2 is
close to e ‘e, in R.)

Remark: The term Riemannian metric 1s ordinarily used only in

the tangent bundle, but this seems like & natural generalization.

Theorem 5: Every n-plane bundle t{ over a paracompact base X admits

a Riemannian metric,

Proof': Case I: product bundle

We need only define the inner product on a basis of each fibre and ex-
tend by bilinearity. We can use as a basis for w’%xbxezx the {ci(x))
given by the cross~-sections, which in the case of a product bundle can be

taken to be global., We define ci(x)'cj(x)= 8,.; the Kronecker

1j
1i=j

O, , = {O i#j R

1
Case II: In general, let {Ua } be the distinguished class of
open sets of X glving the local product structure for £ . Let [pa }
be an associated partition of unity and [(el.GE)Q-] the associated
Riemannian metric defined as in case I for each Q%Ua
Define e ‘e, to be é pa(W(el))(el-eEva [ with the convention
0+ (undefined) = 0 since (el-eg)a is defined only for W(el) eUa].
It is easy to verify that this is
1) symmetric - since v(el) = v(ee),
2) bilinear - since it is a welghted sum of bilinear
functions,
3) positive definite

and k) continuous - since locally it is a finite sum of
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continuous functions. (For some nelghborhood of x, all but a finite

number of p, = 0.)

Second Illustration: Grassman manifolds,

In classlcal differential geometry, there is encountered
Gauss' construction of the spherical image of a manifold M&ZZRn+l.

This is a mapping of M*  into Sn given by mapping a point x

n+l
of M' into the unit vector at the origin of R with the same
direction as the normal to M at X More generslly, for M?
n+k Mp

immersed in R we associate with xe the n-plane through the
origin parallel to the tangent plane at x., [Tangent planes correspond
1-1 with the undirected normal in the case k=1]. This glves a

map not of M into 8" but rather into G e
J

Definition: The Grassman manifold Gn Kk is the set of all
- 2

n-dimensional subgpaces in (n+k)-space (n-planes through the origin).
This set has a natural structure as a differentiable manifold and is

in fact compact.[see Steenrod, op.cit. p. 35] Note that there is no
natural structure for the symbol for a Grassman manifold; there is no
agreement in the literature.

By the usual duality between n-dimensional subspaces of Rn+k and

(ntk)-n or k-dimensional subspaces, G_ , =~ G .- One example of
)

n,k
Gn X is easy to pilcture: We obtain S" as the set of unit vectors in
J
R+ or, what is equivalent, the set of directed lines through the
origin of Rn+l, Since the n-planes in Gn x Bare unoriented, we see
. )

-
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that

Now let 7§ be the n-plane bundle over Gn X with
2

E(yi) = set of all pairs (n-plane through origin, vector in that plane);

1

_ WA
€.8. 7k<Gl)k) - gk'

And we obtain

Theorem 6: For M' immersed in Rn+k, there is an associated bundle
o n
map fit (M) —> 4" such that fB is the generalized Gauss map:
M — Gy x

This theorem is expressed by saying 72 is 'iniversal" for sufficiently
large k: 1.e. every tangent bundle maps into it.

The map fE is defined in the obvious fasion and the verification
that the pair is a bundle map is left to the reader.

In a still more general situation, we define

Definition: The infinite Grassman manifold G (i.e. k=w ) 18 the

set of all n-dimensional subspaces of R™ , countably infinite dimensional
Euclidean space, with the topology given as follows. Let [bi] be a

basis for Rm,i=1,,2,..- and let R" be the gubspace spanned by

1
bl,..a,bm, Then R C:R2

sequence of inclusions induces a topology on Gn by defining I{C:Gn

C oooC:R ) Gn,OCGn)lCo-QCGn) and thiS
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to be closed if and only if H/) G, is closed for all k. Note:

,k

Gn is not metric, but is regular and a countable union of compact

subsets G and therefore is paracompact. (We will omit the proof

n,k
that Gn is regular, since we will see presently that Gn 1s actually
8 CW-complex, Every CW-complex is known to be normal. ([See J.H.C.
Whitehead, "Combinatorial homotopy I", Bull., Amer.Math.Soc. 55 (1949),
pp.213-245.]

As above we define 7n, an n-plane bundle over Gn’ with total
space

E(y")= set of all pairs (n-dimensional subspace of R ,vector in

that subspace ).

The following is a generalization of Theorem 6.

Theorem 7. For any n-plane bundle Qn over a paracompact base X
n n
there exists a bundle map { —> 7 .
(Actually a somewhat stronger result holds. Any two such bundle
maps §n —_ 7n are homotopic. Purthermore any two homotopic maps
X —> Gn induce equivalent bundles. For this reason 7n is called

a universal bundle and Gn a classifylng space for n-plane bundles. )

Proof': Case I: product bundle.
There exists a linear homeomorphism hi E(g) —_— X)cRn
Let p Dbe the projection: X xI%n —F~> Rn. Then ph  1is linear
and non-singular in each fibre. Let f: Rn ~> origin, g: X —> origin.
Then (ph,g) 1is a bundle map into the bundle (R,0,f), which maps into 9"

in the obvious fashion,
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Case II: There is a countable distinguished covering [Uil

Let (pi] be an assoclated partition of unity. Rm can be
represented as R'® "@RrR"® * +- .

Map E(t) <> R” by F(e)=(p, (m(e))r, (e),p,(m(e))2y(e), )
where fi:nfl(Ui) —> R% as in case 1.

F is continuous and is linear, non-singular on each fibre since each

fi is.

Let gB(x) = subspace C= R~ spanned by (F(e)l|e eﬂrl(x)}.
therefore gB(x) is an element of G . That g, is continuous

can be checked easily since locally 8p lies 1in some finite Gn,k;:Gn'
Define gpiE(L) — E(Y") by
gE(e) = (gB(’n—(e))}F(e))°
Then (gE,gB) is the required bundle map.
Thus we will have proved the theorem as soon as we show

Lemma: Given an n-plane bundle ¢ over a paracompact base space X,
there is a countable covering (Un) of X such that the restrictions

¢|u, are trivial.

Proof; Let (Va] be the distinguished covering. Choose an
associated partition of unity {pa}. Call the index set A and for each
finite SCA

let Wy = (x|Min pa(x) > Max pﬁ(x)}

e Q nda



{WS] is an open covering of X since

1) Wy 1s open by continuity of all P, » and

2) x €Wg for 3§ = (aeA|lp, (x) >0} for each xeX.
% Pe o
Let Uh be the union of Ws over all 8 with n elements. Again

[Un) is an open covering.,

Notice the wS in Un are disjoint since the 8 all have the same

length and therefore for Sl fse, there exist a,? such that

a €8, ,af 8,5 Be S,,Bf 8y

Thus for xewh,gﬁx)>péxh

(x). Therefore W. [} W, = 0.

8" 8

On the other hand for each Qe S, pa==0 outside Va and therefore

and for X ewsg, Pa(x) < Py

WgC Ve Thus {UN] is a countable open covering giving the local

product structure of (.

VI. The cohomology ring H*(Gn,ZE).

In a little while, we will need to know something of the structure
of Gn as a cell complex, and this we investigate by means of matrices
over the reals, We need the following notions and theorems of matrix

theory., [See, for example, Bilrkhoff and MacLane, A Survey of Modern

i)
Algebra, The Macmillan Co. 1946 p. 271.]



Definltion: Two nxm matrices A,B are row equivalent if A

can be obtained from B Dby a succession of elementary row operations

i.e.

1) interchanging any two rows,

2) mltiplication of a row by a non zero scalar,

3) eaddition of one row to another,

Definition: The row space of an nx(n+k ) matrix is the subspace of

n+k

R spanned by the n row vectors of the matrix (=/"range" in

Birkhoff and MacLane op. cit.)

Theorem; Two matrices are row equivalent 1f and only if they have

the same row space.

Theorem: Every matrix 1s row equivalent to a matriX of canonical

form, the reduced echelon matrix i.e,

loo*...novno

O lOooou-o

0 0 y 1

n
. n-1 * 0
. : n"2 :
. eoal
0 : Y s
—— o ——’ —— ——
n Tha Thap ry

where each r1 > Op and the

the original matrix.

rix:i blocks are arbitrary depending on



By these matrix tools, we have reduced the study of n-dimensional

k

subspaces of Rn+ to the study of reduced echelon matrices. Since given

a pattern as above, we can vary the entries in the blocks independently,
each such pattern determines a vector space over R or a cell in Gn K’
2

Thus we have a cell subdivision of Gn . [For full detalls, see
)

k
Ehresmann, Ann. Math. 35 (1934) p. 396.]

Example;
in

) N represents a T-cell

oo @
H Ao
loN oM o
o+ O
R OO
OO
(oNoNe
loNeRel

G3,5

Similarly for Gn,' we look at such patterns in n x o matrices e.g,

o o p
ol el
o O
O .
H O .

. > an 8-cell in G3.

That 18, for each sequence of n non-negative integers TyspeoerTy

we obtain a cell of dim r .+ 21,4+ ese+nxr in G . This gives G
1 2 n n n

the structure of a CW-complex. Thus there is a unique O-cell in each
1, O
ll
n ‘e ’
O™
50O

and a unique l-cell; O’

‘100
0Oal

For the speclal case G = Pk, we have one cell of each dimensional

1,k

0<r, <k.

1

Looking at the Stiefel-Whitney classes of 7n, we seey
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N .
Theorem 8: The cohomology ring H (Gn,Ze) is a polynomial algebra

over 7, generated by wl(yn),°--,wn(7n).

Proof': First we show
Lenma: There are no relations among the Wi(yn)
Proof: if a polynomial p(wl(yn),...,wn(yn)) = 0 then

p(wl(gn),...,wn(gn) = 0 for any (P over a paracompact base X,
since the bundle map given by Theorem 6 induces a homomorphism g*

such that g*(wi(yn)) = wi(gn) and thus

p(8*(Wy (7)), 00 0,8™ (00 (™))

]

(W, (6%), 0o W (67))

g () (7), e 0u W ("))

g*(0) = o.

To prove the lemma, we need only find some gn with no relations among
the W, (¢%).
Consider gi: w(gi) =1+0 o€ Hl(Pk;Z )
2
k k

et X=P x...xP with projections 1T
. v _—y 1
n

into the n factors, Pk; i=1,...,n
It is known that

H*(Pm,ze) is the polynomial algebra generated by (ZeHl(Pé;ZQ)
and for k = o, H*(X) is the polynomial algebra generated by

_ %
Qsees,Q  where Q=) (a)
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1 1
Let gn be the bundle ni@ ---Qqn over X where Ny is the

1
bundle over X i1nduced from gk by Tye

Thus
WD) = W) e W(nL)

() TR (E)

(l+al)(1+a2). . .(l+an)

In other words

wl(gn) =0gt eee + Q)

L3

L

v .n
W) = @ *** Q, where the polyncmials which

appear on the right are just the elementary symmetric functions o

in the Q&. From algebra we have [cf., Van der Waerden, Modern Algebra 5

Ungar, 1953 p. 79 or 176]

Theorem: For A a commutative ring with 1 and X)seeerXy indeterminate
symbols, the symmetric elements of A[xl,.,.,xn] form a polynomial ring
A[ol, ceey o 1.

This means in particular that if some polynomial p satisfies
p(oi,...,on) = 0, then p= 0, Thus for t" as above,
p(Wl(7n),,.., Wn(yn)) = 0 dimplies p(wl(gn),,,.,wn(gn)) = 0 and thus

P = 0; or there are no (polynomial) relations among the,{wi(yn)], which



proves the lemma.

Thus we.know that H*(Gn) contains the polynomial algebra
generated by {wi(yn)].
Let Ci(Gn) represent the 1i-cochains of G and 7t (Gn)’ the
i-cocycles. The dimension of Ci(Gn) as & vector space over Z,
is the number of i-dimensional cells, which is finite since they corres-
- pond to sequences rl,...,rn with rl+ 2r‘2+ ceo + nrn =1, Moreover
it 18 > dim 7t (Gn) > 10 Betti number mod 2 > number of monomials in
{WJ (7))} of total dimension i, since Hi((}n) O 1i-dimensional part of
the polynomial algebra generated by (W 3 (")},  on the other hand, such
monomials correspond to sequences TyseeesTy with

rJZ 0, r,+ 2r2+ s+t nr = i. That is, there is a one to one corres-
pondence between cells and monomials of the same dimension. Thus all
the above g;i,nequz:s.litiers are in fact equalities or:
dim ¢! = aim Hi((}n) = number of monomials of dim i. Therefore
H‘i (Gn) i; the 1-dimensional part of the polynomial algebra and
H*(Gn ;22) is the polynomial algebra over 22 generated by

wl(Vn))"') wn(7n)- QED

Further for g* as above g*:H*(Gn) —> H*(P*x...xP") 1is an iso-
n

morphism onto the subalgebra consisting of all symmetric polynomials in

%,‘o ro,ano
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Uniquenegs of Stiefel-Whitney classes:

At this polnt, we stlll have not shown that there exlsts a collection
of classes satisfying the given axioms, but before investigating that

question we willl prove

Theorem 9 There 1is at most one collection of classes compatible with
the axioms.

Proof: Suppose we have two collections {W} and {’ﬁ] satisfying

the axloms. As we showed in proving alternative Axiom 4'), w(gi) and
?f(gi) must both equal 1+, where « 1s the non zero element of Hl(P‘l).
This still holds true for P> w(gi) = 1+a='ﬁ(gi);aeﬁl(1>°°). By
naturality of W and ff under mappings, in particular the projections
P** P”x XP® —=> P” of the previous section, W(ni’) = W(ni‘) By
Axiom 3) therefore, W(ni@ SRRy ] ni‘l) = /\T(T]:ILQ ---@ni). For

g:me vee XP” > Gn as before

1 1
g*(W(y")) = W(nj@ -+ - @n))
~, 1 1
WO =W(n®...en))
and g* 1s a monomorphism so W(y" ) =W("). But G, 18 a classify-

ing space; for any bundle gn over a paracompact base X, there is a

bundle map f: gn —> 9", and 8o £ (W(H")) = w(e™), f*:(ﬁ_(yn))=g”(7n).
Thus for every t" over a paracompact base space, w(t?) = W), QED

Remark; It 18 possible to prove this for bundles restricted to manifolds

for base, but not Just for tangent bundles of manifolds.
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VII. Existence of Stiefel-Whitney classes

We now proceed to prove the existence of Stiefel-Whitney
classes by giving a construction in terms of known operations. For
any n-plane bundle { with total space E, base space B and projection
T, we denote by Eo the set of non-zero elements of E and by Fo’ the
set of all non-zero elements of F = vﬁl(b), a fibre, Clearly FO = Ff)Eo.
Using singular theory and one of several techniques (e.g spectral

sequences or that of the appendix) we have that

7., for i =n HL-B(B) for i > n

Hl(F,FO;ZE) = {o for i #n  and Hl(E,EO;Ze) = {.O.for i<n
2

(This can be seen intuitively, though not rigorously, without spectral
sequences as follows: The unit n-cell is a deformation retract of Rn
and the unit (n-1)-sphere is a deformation retract of'(Rn—origin) = Rg.
For B paracompact, we know that we can put a Riemannian metric on E.
Looking at the cohomology of (E,Eo), we might just as well look at the
cohomology of (E',E;) where E' 1s the set of all elements of E with
nom< 1, E; is the set of all elements of E with norm 1, since as
indicated above E and Eo have the same homotopy type as E' and E;
respectively. Now assume that B is a cell complex. Teke a fine
enough cell subdivision of B so that we have a prodﬁct bundle over each
cell c'. I (E*, Eé) we are looking at cix(n—cell) mod cix(the boundary
of that n—cell), thus we have a collection of cells covering E' and can
extend it in a trivial fashion to give a cell subdivision of (E',Eé).

The relation between the cell structure of B and that of (E',Eé)

indicates why the dimension of the cohomology gets shifted by n. As
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can be seen, there are no cells at all of dimension: < n which are
not in E;.) Rigorously and more explicitly, it is possible to prove (see

appendix)::

Theorem 10: 1) Hi(E,EO) =0 for 1<n
2) There exists a unique class U in Hn(E,EO) such that
for each fibre F = W’l(b), we have J U = the non-zero element U of

Hn(F,FO) where is the inclusion map J,: F,F —> E,E_.

jb 0

3) Hi(E) —_— Hi+n(E E ) is an isomorphism for all i.
Now m*:H*(B) —> H*(E) is an isomorphism, since there is the trivial
zero cross-section of B ——> E given by b > (b,O) and the image of
B under this cross-section is a deformation retract of E and homeomorphic
to B. Following Thom, we combine these two isomorphisms in a new iso-

morphism

?
#= (U)o H‘](B\ﬂ\3 T— 1" (8,8 )

and then define the Stiefel-Whitney classes as follows: Wi(§)=¢4lsq;¢(l)
To stﬁdy this definition, we will assume as known the following properties
of the Steenrod squares, Sqi (read: square upper i):

1) For spaces X,Y with oY, Sqi is an addlitive homomorphism

sq: B (X,Y) —> B, Y) such that

2) 1t is natural with respect to maps f:X,Y —> X',Y’ i.e.Sqif*= f*Sqi

i, % 0 for i >k
3) Sq(a”) = where k indicates the dimension of &

O% u'ok for 1 =k

L) Sqo = identity
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5) (Cartan) Sq*(aup) = £ Sqt(a)wsd(p)
i+ 3=k

Writing Sq(a) for (qu+ Sq}-% cee 4 qu+ s+2*)(a), property 5) becomes
Sa(avp) = Sq(a)w8q(B). (Note that for dim o = k, Sq(a) reduces to

(Sqo+ Sq;+ cees + qu) (@) «) Thus Sq is a ring homomorphism
Sa:H*(X,Y) —> H*(X,Y)
We can now write our construction of Stiefel-Whitney classes as
-1 -1
W(t) = ¢78qf (1) = ¢ squ .

Verification of the Axioms:

Axiom 1: Our construction gives elements of the proper dimension,
i.e. Wi(g)eHi(B) and by property 3) above W, =0 for 1>n and
by property L), Wy = 1.

Axiom 2: DNaturality under bundle maps: For f = (fE,fB), fE induces
& map g: E,E —> E',E(; and by the definitio‘n of U, g*(U') = U. Thus
¢ is natural and 2) above gives us that 8Sq 1s natural, and so W 1is
natural,

Acdom 4: (We will return to Axiom 3) in a moment.) Let gi be as
usual the twisted line bundle over Sl = Pl, otherwise representable as the
Moebius band. As can clearly be seen by homotopy type arguments similar
to those above, we have H*(E,EO) ~ H* (Moebius band, Boundary of the
Moebius band). Since we can obtain a Moebius band by removing a 2-cell
from the projective plane, we have H*(E,EO) ~ H*(Pg, 2-cell) which we
know to be HO = 0, Hl = 22’H2= Ze. Further 1t is known that for o the

non-zero l-dimensional class, ao( 1is the non-zero 2-dimensional class.

1
1
Therefore Sq (a) #0 and so w1(§ ) # O



Axdom 3: We prove
Theorem 11: W(L@E') = w(tw(er),
Proof: ILet (" = {@¢' and represent the total space of ¢{
by E, that of ¢' by E' and so on, with similar notation for the res-

pective fibres F,F',F", etc, From the structure of the Whitney bundle sum,

we know FX F' =F",
"
L1 -
Let E; = U F xF' E
all fibres
B! = U FXF;.
all fibres
8
: " 1" " " " "o n
Obviously EaCEo’ Ecc:Eo and 1t 1s clear that EauE(2 = Eoo

The following diagrams will be helpful in following the rest of the

proof:

n " i " n m!l 1" n
EaCECE,Ea ECC_‘J C:E,EC
1Py % Jfb lpe lqe
b 1 H 1
EOC_EC. E,EO EOC_‘_E C;E,EO

ll i

2

Diagram 1

Hexre pl and p2 are the p and p' of the definition of the bundle
sum (cf. Diagram 3 and page 5 ) and the restrictions of 9 and 4
Just as ry and r, are the restrictions of Py and p2.

Since the fibres are contractible s r,and T are homotopy equiva-~

1 2
lences. Similarly for Py and p2 and so on the cohomology level, we have
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*
9

~

Ue H*(E,EO) > H*(E",E;)

- *
%
U'eH*(E',E(')) ——=—> H*(E",E})

We assert that q;(U)\,q;(U') = U". By the uniqueness of U" as glven
in Theorem 10, we need only show, for each Jj :F',F' c> E",E" , that
b""b’"b,o0 o]
ET * yrt 1] "o s
jb(q_lUuq2 U') 1is the non-zero element U, of HF(F£5Fb,o)' Con51d§r

the following diagram

@
UQU'eH(E,E ) ®K"(E',E! ) > B (E", E@E(E",EB) ———> Hn+m(E",Ec';)
) eI’ J
3 L
Hn(F,FO)®Hm(F’,F5) > Hn(F”,F;)®Hm(F",Fg) ~ > F!)

Diagram 2

where we have written systematically F for the arbitrary fibre F »

b
s . " o syt " " "o,
E, for Fb,o etc., and vhere Jl.F ,Fa —> E ;Ea,Jg-b ,Fc > B ’Ec ;
j3:F,FO —_— E,EO; jh: F‘,Fé — E',Eé are the inclusion maps.
*
The element J (QTIJ\,@;LV ) is obtained by following the out=

1
side edge of the diagram clockwise from Hn(E,EO)QQHm(E; EO) to Hn+m(F",Fg).
By commutativity of the diagram, the same element is reached by the outside
counter clockwise path. By the definition of U and U' we have
* _ <K orrt _ ogr? : . .
j3 U = Ub’JhI] = Ub‘ Since the projections q3,qh yield isomorphisms
q§,qﬁ, the element we reach in anm(F",Fg) is the non-zero element Ug.

QED.



Since
* *y' = y"
1) o Uqu U U
we have SqU" = Sq(qf UuqjU "),

By property of 5) of Sg,
*
SqU" = 8a(g) U) wSa(a} '),
Using the naturality of Sq this becomes

2) squ"=(af sqU) u(qf 8qu'),
Our definition of W: W(t)= @ 1saf (1)= ¢1sqU cen be rewritten

3) mH(EU = SqU
and similarly for (' and t".

Combining 2) and 3) we have

k) 8qu" = aF(rW(E)U) c (W (E) v Ut ),

We will make use of the relation qf(yg,ﬁ) = pfyx;qf'B which holds for

*
yeH*(E), BeH (E,Eo)(see. Diagram 1). And the corresponding relation for

* and pY. Thus &) becomes
£ 2

*

SaU" = (p; W(L) o aU)L X T* W(thear Ut),
1 1 5 9

By commtativity of w« mod 2, we obtain

8qU" = py TN (E)ep} 1 (¢1 ) ual Vv U

Referring to diagram 3,

"
. " Pj/E \P2
— t — .
thus, using 1) we have T;\\‘ z//%:
B

Dlagram 3



5) 8qU" = w"(W(t) W (£ U ",

But the class W({") is uniquely defined by the equation

Sq no_ W”(W(g”))uU",

This completes the proof that W(t") = W(iEhw(e) .

b

VIIT.Oriented Bundles:

Up to this point, we have been:working strictly with 22 as co-
efficients for the cohomology we have used, This of necessity means that
we overlook some detail in the structure; now we take a closer look using
Z as coefficient group. Slince part of the study we have conducted so far
made strong use of the existence of a non-zero element of Hn(E,EO) which
was guaranteed by using 22 as coefficients, we will have to limit ourselves

when using Z as coefficients to oriented bundles, as will be seen in what

follows. First, some preliminary definitions:

Definition: Two bases of a finite-dimensional vector space are equivalent
if the determinant of the matrix expressing one 1n terms of the other is

positive,

Definltion: An orientation of a vector space V of dimension n is an
equivalence class of bases. »

This corresponds to choosing a generator (there are two) of Hn(V’V§5Z)
(and incidently to the intuitive geometric idea of orlentation). The
correspondence can be given as follows: Let vl,...,vn be a basis for V
and Ah’ the standard n-simplex with vertices AO’A1’°'°’An' The linear
nmap Ah —> V given by( A.O ——>—vl-v2....~vn, Ai — \A for 1 =1,2,...,n
determines a generator of Hn<V’VOJZ) in the singular theory. Two bases



will determine the same generator under this correspondence if and only

if they are equivalént.

Definition: An oriented n-plane bundle is an n-plane bundle together

with an orientation for each fibre such that these orientations are
locally compatible, in the following sense., For each point bo of the

base space there should exist a neighborhood N and cross-sections
cl’ooo,cn: N """-"> E

such that for each beN the vectors Cl(b)’°"’cn(b) form a basis for

the fibre F% which is compatible with the given orientation of Fb.

In terms of cohomology this means that for each fibre Fb we have a

distinguished generator Ube Hn(Fb,Fb O;Z). The local compatibility
2
condition can then be put in the following form. For each boeIS there
should exist a neighborhood N and a cohomology class uerCW—l(N),er(N)O;Z)
-1 -1
R ,F —> T (M), (N)O

b’ B

denotes the inclusion map, The proof that these two definitions of

* _ .
such that jb(u) = U for each beN, where Jy,
"oriented n-plane bundle" are equivalent is not difficult.

For an oriented bundle { with total space E, base B, and projection T,

Theorem 10 can be generalized as follows:

Theorem 10': For ¢ an oriented n-plane bundle as indicated,

1) Hi(E,EO;Z) =0 fori<n

2) There exists a unique class UeHn(E,onz) such that J; U =1
for all beB where J :F,F —> E,E, and F = w'l(b)

3) Hi(E;Z) ~U Hi+n(E,Eo;Z) is an isomorphism for all 1i.

More generally, any commtative ring with unit may be used as coefficlent
b

group.) The proof will be given in the appendix,



Recall that before we had W*:Hi(B) ——;-> Hi(E) and we defined
g = (U )o'rr*:Hi(B) —_— Hi+n(E,EO) and then working mod 2 we had
w(t) = ¢"lSqU . In particular this meant W = ¢'lSan = ¢'1(UVU)
Now using our new U, this last construction can go through with coeffi-

clent group Z if we omlt the reference to Sqn.

Definition: The Fuler class X of an n-plane bundle ¢ 1is the class

- ©
of H(B;2) defined by X =¢ l(UVU) where U is as in 'Iheorem)LZ’.

Remark 1: X(t) reduced mod 2 is WD(C). X(t) 1s a strengthened Stiefel-

Whitney class,

Remark 2: If n 1is odd, X 1s of order 2 since for U of odd <imension

JoU = -(UuU ),

[heorem 12, X = g®*i*U where g 1s the homeomorphism of B into E
riven by any cross section, and 1:E ——> E’Eo is the injection.

Proof': Since ¢ is an isomorphism, we need only show that
g*1*U is equal to gX = UU. But g = («U)e* so0 Feg*i*U = (r¥g*i*u)w U

ince g(B) is a deformation retract of E, gw identity £

nd thus ®

T*g* = identity.

herefore we have

Pe*i*U = (1*U)_U.
Ince 1 1is the injection: E —> E,Eo we have (1*U).U = UuU the
1p products being defined in the proper groups and therefore
:*1%0 = ULU . QED.
It is always possible to define X this way since there 1s always

\€ zero cross section. If, however, g is a non-zero (never zero)



cross section, g®i* = 0 and thus we have

Corollary: An oriented n-plane bundle ¢ wi£h x(g) % 0 cannot have any
non-zero cross section.

We won't attempt an axiomatization of Euler classes here, but note
that Axiom 2), naturality under bundle maps, holds for Eulef classes and
Axiom 1) is satisfied except for the modification that we have an Euler
class only in the dimension of the fibre. As for Axiom 3), let 'ﬁfx Vg,
where V& and V- bave orientations Vyseess V), and vi,...,vé 5 be

1 2

given the obvious orientation Vi

that the orientation of VZ)(VT is (-1)™ times the orientation of

,...,Vﬁ,vi,...,v;. By the way this means

VTX-VZ. Corresponding to Axiom 3) for Stiefel-Whitney classes, we have
Theorem 13: X(¢t@n) = X(&)X(n)

The proof here is completely analogous to the proof of Theorem 11,
using the same notation and the uniqueness of U”elfn+n(E",Eg;Z) as given

by Theorem 10', to prove that pr~,pZ[f = U" and thus to show X" = XuX'.

Note: Although the product formula loocks completely analogous to the
formuila for Stiefel-Whitney classes, 1t works out rather differently .
in practice, since W({) is a unit in the cohomology ring ];TH;(B3ZE),
the complete direct product, while X{¢) is never a unit in71;Ei(B;Z).
Given’ X(n) and X(t@®n ), this means it is not usually possible to solve

~ for X(t).

Corollary: For ¢ an oriented n-plane bundle, if X({) is not of order 2,
then ¢ 1s not the sum of two odd dimensional bundles. In particular,

this shows there does not exist a continuous field of oriented odd dimensional
subspaces in the tangent bundle of a manifold with X # 0. (The hypothesis

that the subspaces are oriented is not actually necessary. )



Corollary 2: ,an oriented n-plane bundle over a paracompact base B
with X(¢) # 0, cannot have any non-zero cross section. (This gives an
alternate proof for the corollary to the preceding Theorem 12 under the res-
tricted condition that the base be paracompact, )

For if { has a non-zero cross section, let Ol be the line bundle
spanned by the cross section and let nn-l be the (n-ﬁ-plane bundle ortho-
gonal to Ql (in the Riemannian metric which we can assume since the base

is paracompact)., Since ot is trivial, we obtain X(@l) = 0 and hence

the contradiction O # X(t) = X(Ql) X(nn-l) = 0.

IX. Computations in a differentiable manifold.

1) The normal bundle

Using Theorem 12, we need knowledge of the maps

B-£> 2> E,E_ (g = zero cross section, i = inclusion)

in order to study X, but this knowledge is available in a neighborhood
of the zero cross section as will be seen in what follows. Let us first
consider a simple case to illustrate the situation.

Let vk be the normal bundle to a closed differentisble manifold M-
imbedded in Rn+k° Instead of looking at the entire total space E, con-
sider small vectors in each fibre, that is vectors of length < € 1in the
Riemannian metric which we know we can define. Denote this subset of E
by E(e). Similarly, the non-zero small vectors are to be denoted by
Eo(e). The inclusion map E(e),EO(e) —> E,E_ 1s an excision so we have
that Hk(E,EO) sz(E(e),EO(e)). Assuming the manifold M  1is

differentiable of class C?',Since 1t is compact, we can pick an € so



that the map which assigns to each vector in E(e) its endpoint in

R 45 e 1-1 correspondence between E(e) and a neighborhood N of

M in Rn+k. Thus we have Hk(E(e),EO(e)) ~ Hk(N,N-Mp). Again by the
excision axiom, we know that Hk(N,N-Mn)zsIIk(Rn+k,Rn+k-Mn).

Putting these three isomorphisms together we have an isomorphism

¥ Hk(E,EO) —> FN(RTE REL )

Now assume that the normal bundle is oriented. (This is equivalent to
the assumption that the tangent bundle is oriented.) Then the class

Ue;Hk(E,EO) is defined and determines Y UeH (Rn+k n+k-bP)

The inclusions
1 + + +
Mnc:: Rn kc::jRn k n k Mn

gives maps of cohamology: Hk(Mn Hk(Rn+k) <Z---‘j——-Hk(Rn+k nk M)

under which, using the above isomorphisms, YU goes into Xe Hk(Mn).

But Hk(Rn+k) =0 so X =1%*y U= 0. Thus we have proved

Theorem 1h: If MY 1is imbedded in R*T with an oriented normal bundle
vk, then X(vk) = 0. (Alternatively, without orientability, the same

argument shows Wk(vk) = 0, a fact we used on page 15.)

Remark: These results are trae for imbedding but definitely do not
carry over to immersions. For instance, consider the well known immersion
of P° 1in RS (Boy's surface). According to the Whitney duality theorem,
we have Wl(vl) # 0. Recently, S. Smale has shown that s° can be
Immersed in Ru 80 as to obtain any desired even multiple of the generator
of He(sz;z) for x(vz). Roughly, this multiple corresponds to the self-

intersection number of 82 as immersed. (See Bull. Amer. Math. Soc. 63,



(1957), p. 196)
2) 'The tangent bundle of an oriented manifold.

Now let us turn our attention to the tangent bundle of a

manifold M® which is differentiable of class C3. Such a manifold

2

. *
can be given  a Riemannian metric of class C°. Let Fb(e) denote the

set of all tangent vectors at b of lendd < e. Then for e suffi-

clently small a homeomorphism

F, (¢) > NaM
is defined by mapping each vector ¥V into the endpoint of the geodesic
which starts at b in the direction of ¥ and has length ||V ]| .

The image N is a neighborhood of b in M". Thus we have isomorphisms

=~

B, (R By =B (B (e), R, (&) —==> B (W,N-0) > 1 (4,100),

L ¥y T

Call the composite isomorphism, Wb'

We will say that M2 is oriented if its tangent bundle 1s oriented.
If the orientati?n of each F, is specified by a generator abeHh(Fb,Fbo)
then the corresponding generator wb(Ub) of Hn(Mn,Mp-b) will be denoted
by Eg. (Integer coefficients should be understood. )

Lemma 1. If M" ig a closed oriented differentiable manifold then
there is a unique homology class Eean(Mn) such that for each point b
> H (M M'-b) carries p into -

n J

the inclusion homomorphism Hh(Mn)
The class § 1is called the fundamental class of Mn . Proof of

Lemma 1. A theorem of Cairns asserts that every differentiable manifold

can be triangulated. For a recent proof see Whitney, Geometric integra-

tion theory, Princeton, 1957. However, under the hypothesis that M

is triangulated, a proof of this Lemma has been given by Steenrod, Fibre

* The proof 1s the same as our previous proof of the existence of a

Riemannian metric, except that differentiable partitions of unity must be
used.



B

Bundles, p. 200. (3teenrod works with the system of local coefficients

nh_l(Fo). However the hypothesis that M~ is oriented implies that

7Tn--]_(Fo) ~ Hn-l(Fo> = Hn(F’Fo)

is canonically isomorphic to our coefficient group Z.) This completes

the proof.

Lemma 2. If M is connected, as well as being closed, oriented,
and differentiable, then the homology group Hn(Mn) is infinite cyclic
with generator W . The cohomology group H(M") is also infinite cyclic
wilth a unique generator u such that the Kronecker index <;J,§f> is + 1.
This 1s also proved by Steenrod (See the reference cited above. Com-

pare Ellenberg and Steenrod, Algebraic Topology, p. 106.)

M will be called the fundamental cohomology class of Mp. (It is

definitely not defined unless the manifold is connected., )

Now consider the total space E of the tangent bundle. A map
E(e) —> M*XM* 1is defined by sending (x,@” into (x,y) where y is
the end point of a geodesic, as above. For ¢ sufficiently emall this
glves a homeomorphism of E(e) onto a subset D of MxM>. Clearly D
is a neighborhood of the diagonal A in M x M-. Thus Hn(E(e),Eo(e))
is isomorphic to Hn(D,D-A )o Let ¥y denote the éon@osition of the

following 1somorphisms:

Hn(E,EO) = HY(E( e),E_(e)) <= 17(D,D- 5 )< B (kMM MP-a ),
L v f)

The class U din the first group corresponds to a class



¥ U el (M MY M% MR - A )o Flnally define U =1*U where

1:MOx M —_— (M%rMn,MI}cMn-A ) 1s the inclusion map. Thu: we have

B (E,E,) —F s P 0P - 4) ~ s o)
U U

3) Computation of the class U.

In the next sections, we will be engaged in investigating pro-
Perties of Stiefel-Whitney classes and Fuler classes through computa-
tion of the class U. Our most important result will be Wu's formula
for the Stiefel class of a manifold anw = 8qV where V 18 characterized
by the equation <Sqa,u> =<auV,i> for all ae (M),  This glves
a direct computational construction for W which does not require know-
ledge of the tangent bundle. For Euler classes, we will elucidate a
relation the reader has probably been suspecting, that of the BEuler class
to the Euler characteristic of a manifold. In the course of this develop-
ment, we will obtain a proof of the Poincare duality theorem.
) Assume that the manifold M® 1is connected. For the remainder of the
section, we will consider two cases sinmmltaneously.

Case 1: Mn is not necessarily oriented, but the coefficient group
is Z2.
Case 2: Mt is oriented and the coefficient group 1s a field A,

usually the rational numbers, Q. 'The coefficient homomorphism Z ——> A
carries the fundamental class ueHn(Mn;Z) into a class in Hn(Mp;A) which
will also be denoted by p.

In either case the group Hn(Mn) 18 a one dimensional vector space

over the coefficient field with generator He Let Ol,...,aN be a basis



for the cohomology of Mn. In particular, let ql==l. u, as the
generator of Hn(Mm)'will be same @;. Using a field for coefficients,
we know that H*(M)® H*(M) —> H*(MXM) given by a@b —> axb 1is an
isombrphism. (This is a well-known result on the cohomology of products

of finite complexes.) We can represent U consequently in terms of the

generators
U= s J ¢y 403X ay .(Since U is of dimension n, ¢y = O unless

dim o + dima = n.) Consider the map fy: M —> MM defined by
fb(y) = (b,y). As indicated in the diagram below, the compatibility

* = ¥ =
condition on U reduces to fb(g) =1Ly

'u >y

H*(EjEO) ——-lié—-——> XM M M MR -a ) 10 H*(M‘X—M}‘)

JZ ' f}-);
y i \%
H*(F, F > EXM,M =) > m* (M)
Ub > Hy, > 1

On the other hand, by the very definition of fb 1t is clear that

fy (axa ) = (0 for dim > 0

(a for dim o, =0, that is for oi,which is equal to 1.

Mus the coefficient of the 1x u term must be 1-and we have

formula 1: U = 1Xu+ &' €4 404X @5 where thevsummation)z"extends over

all 1,3 with dim1032> 0, dim @, < n,
J

To get more information about U , consider the projections PysP, of

PX M into its first and second factors respectively. Observe that

'llD corresponds to W]E(e) under the homeomorphism we have set up (see



illustration). On the other hand, pllA = pe{A and since A 1s &

deformation retract of D 1t follows that pl|D2p2|D. (2~ 1s to be

read "is homotopic to".) £,
—2t—
M 2
i
'”“C@"%H 5.
i
l l/’i
M b 1
Formula 2. U (1x ak) okxn. for all «.

Proof: 1xaq = pg(ak), o X 1 =p§_(0‘k).

Consider the commutative diagram

*
VU ¥ U 12095 3%
B (MX M,MXM = A) —eeee> H¥(MXM ) <———— H*(M)
e-)(- ~s d*
% \
B (D,D- A) J > B*(D)

We obtained U as the image under 1* of the class VU in Hn(MxM,Mx M- 4)
determined by U, so to compare y’_v(lxak) and _I{v(okx 1) we can first
cup with VU and then apply 1%, If the respective products with VU

are equal, then the products with U will also be equal, Further, since
the excision homomorphism e® 1is an isomorphism we can check the equality
by taking d¥* of pg(ok) and Pl(ak) respectively and then cupping with

e*yU . Since plIDL"png we know that d*pi?(ork) = d*p;(ak) hence the cup



products with exyU are equal and 1ifting back up into H*(MAM,MXM-A )

we have that \VUv(pg*ak) = Y Uu( pi*ak) QED.

Calling the coefficient field A, define a homombrphism y:H¥(M) —> A

by y(a) = <a,m>; 7, the fundamental class of Hn(M). Using this homo-

morphism, define coefficilents Yix by Yig = 7(03“’Qk)' Extend 7 to
M)e*M) by 1@y : HX(M)QH' (M) —> H*(M)@ A ~ E¥(M) and denote by h the

corresponding homomorphism h: Hn+i(MX14)-——> Hi(M).

Now apply - this homomorphism h to Formula 2.

On the left side we have

h(Uv (1x ok)) = cijh((oix (Ij)u(lxak) )
1,3
= & c,.h(a,xa, = BoC, . Vi Oy e
iy 13 (ayx a50) 1“5 137k ™

On the right slde we have

2

jh (aiokx aj).
Formula 1 asserts that Cij7(oj) = 0 except for the single term

c,.C,XQ

15%4 3 = 1x g, Therefore

B(Uv (oAl D= (-1)Rd® Ok o

Comparing these two formmlas we have

0 for 1 £k
= ndim &
L ¢y Vi k

(-1) for 1 = k

J

Let C be the matrix (Cij) and Y the matrix (yij)' Then

we have proved;:



Theorem 15. The class _geHn( MxMY) is equal to ZlciJ X aj
where the matrix C of coefficients is, up to sign, the inverse of the
matrix Y, where Yik = <(1jucxk,u>>. CY = * l* 1

+l
If n is even, then C is actually the "
. . 'tl

inverse of Y.

From Theorem 15, there follows as a corollary one of the classic results

of combinatorial topology:

Corollary 1: (Poincar€ Duality Theorem): For M° a closed, connected
manifold (oriented unless the coefficient field A is Ze)’ the groups
Hi(Mn,A) and Hn_i(Mn,A) have the same rank. Furthermore, these groups are

dually paired to A Dby the correspondence (@,B) —> < auB,u > ,

Proof: Arrange the basis

Aim 0 dim 1 dim n

o e 0 i i d i it
), ,QN in increasing order of dimen dim O ~ e
sion. Y will then have the form at the
right, Since Y 1s a square matrix and diml .
the theorem shows 1t to be non-singular, |

dim 2 ‘

each of the blocks in this form must be .
square, as can readily be seen from an .

elementary argument with matrices. Thus

th f th ired c;—-*J
e ranks o e palred cohomology groups dimn

are equal and the pairing of the genera-

tors is given by <Ockv0;j,ﬁ>



Note: We have given a proof only if Mp is differentiable of class C3.

The more general result can be obtalned by somewhat finer ressoning.

L) The Euler Characteristic X .

We will now carry our computations over to the investigation of the

Euler class X, and we will show

Theorem 16: If M is a closed connected oriented manifold,differ-
entiable of class C 3, then the Euler class X(t (M")) is equal to the
Euler characteristic X (i.e. the alternating sum of the Bettl numbers)
times the fundamental class peHn(Mp;Z).(Ihis result is actually true
for a ¢ manifold.)

Proof: For n odd, we have seen that X 1is of order 2. Since

Y (M'3Z) 1s infinite cyclic, this means that X = O. By the Poincaré
Duality Theorem, the Bettl numbers in complementary dimensions all cancel
out to give X = 0.

For n even, we will make a computational investigation of (S ))
using coefficients in a fleld, e.g. Q, the rationals. The theorem
will follow for Z as coefficients since Hn(Mn;Z) —_— Hn(Mn;Q) is
an isomorphism into. Recall that according to Theorem 12, X = g*1*u

£ > x = > E,EO, g 1s the zero cross section. The

where B

.

following diagram relates these maps to our homeomorphism and VU -



U YU
¢)) ——> H*(D,D- 4 ) € H*(MAM,MX M - )

o E(e
- b
B*(E) H*(Mx M)

vhere d: M —> MXM 1s the diagonal map which as can be seen corres-

1C

bonds to the zero cross section. Thus X = d*g.

Now representing U again by X 43 03)<Oh, we see that
i,d
( = ij(olgﬂl which for the yij defined as before shows that
J
(= Cyy¥yyp oF in terms of matrices X = Trace (CYTranspose)u

ince dimM® is even, X = Trace (Y-lYT)u.

irrange the basis as follows( the ordering of the basis has not been

sed 1n our work so far except in corollary 1)

QryeeesQ, Cpyoeesy .
—_—

even dim odd dim

With respect to this basis, Y has the form

Y O
Y = e where Ye refers to the even

0 1 dimensional elements, Y  the odd.



YO

-1 €
Thus Y = 0 Y-l
o}
Y 0

and YT = €
0 =Y
0

because of the anticommtativity of the cup product.

Therefore 1
YO0 Y O
Trace'(Y']Yr‘[TanSpose) = Trace Oe ¢

YO 0 -Yo

I 0 |
= Trace (O -I) = I (even Betti numbers) -% (odd Betti numbers) =

QE)-

5) Wu's Formula

Returning to Stiefel-Whitney classes, recall the. definition according
to Thom, SqU = UwTW. Under our canonical isomorphism H*(E,EO ) H* (MeM, MxM-A)
and the inclusion homomorphism 1*:H*(MxM ,MrM=~ A ) -~ H*(MfM) U goes into
U (see page 47 ) and the above relation becomes SqU = Hu(WXi).

Again applying h (see page 50 ) after substituting U= Zcijaixa , we have

first hSaq(ze, .o X & ) = W.

i Oy
Using known properties of 8Sg, this gives W = ZciJh(Sqai)(Sq QJ).
Defining BJ = 7(Sqa ) = <Sqaj,ﬂ> we can rewrlte our formula as
W= 5,9 Oy
»eyy8,59

[
or writing V = X ¢ we have W = 8qV. Now, following Wu, observe

iJ J %
that V 1s characterized by the equation < Sq a,_ﬂ >=<auV,u>,



s/

In each dimension 1 the correspondence a —> < Sq?_ia;ﬁ > defines

an additive homomorphism of Hi(MP;Ze) into Z2. According to the
Poincaré duslity theorem there is a unique element Vn_ieIIn_i(Mn;ZQ)

such that

<sta,u> =< QuV K>

for each . (Note that v, =1,V = 0 for n-1 > 1.) Defining

n-1
vV = VO + Vl +eeet Vn =1 + Vl+ oot V[n/2] this formula becomes

< 8q qu> =<oauV, > for all Qe H*(Mn;ZE). The element V defined
in this way 1s equal to ZCHJ sJC%} Certainly V can be expressed 1n the

form ka}}K for some coefflclents Ve Then the identity

<Sqay ye> =< wV,p>

J

can be rewritten as

Now multiplying on the left by ¢ j and suming over J we have

QED

Hence we have

Theorem 17 (Wu): W(M) = SqV where V 1s characterized by the equation

<oV ,i>=<Sqa,n> for all aeH(M). Since W is thus

defined entirely in terms of cohomology and homology operations, we have:

Corollary: The Stiefel-Whitney clasees of manifoldsare invariants of the

homotopy type.

Examples:

PP(c): For complex projective L-space (eight real dimensions ) we



0

,221+3H6

have the following system of generators: I.er, Qed ,0"ed ,07¢

I

Q = JlE H8’ on which Sg operates as follows

Sql=1, Sqoc=a+oc2, Squi = o:i(l+cx)l .

Thus 8 6
8g°1=0 and V8 =0, Sqga=0 and V6 =0

I
Sq Q’e = ())4 and VL}.:: ch, Sq2a3= ozu and VE =«

J
_ 2
or V=1+Qa+ Q.

Thus

W =8qV =1 +(oz+oz2) + a‘?(l +2a +oz2)

il

i

l+oc+o}+,

In general, to calculate W(Pn(C)) we go through a procedure which
is formally identical with the calculation for W(Pn(R)),jBthe already

know the results in that case; thus we have !

Theorem 8: W(Pn(C)) = (1 + a)n+l for & the non-zero class in e

Similarly W(Pn(Quaternions)) = (l-l-a)n+l

W(Cayley plane) = 1 +0+G° for o the non-zero class in th

(These are the only known examples of differentiable manifolds M such
that H*(Mn;ZQ) is a truncated polynomial ring. In fact, according to a
theorem of Adem, if a complex K exists such that H*(K;Ze) is generated

by a el ,r > 1, with relation o<t

=0, k > 2, then r must be a power
of 2, If k >2, then r mst be 1,2, or 4.  Thus for r <16 the

above manifolds give the only possible truncated polynomial rings. )

X, Obstructions:

In the section which follows, we will assume famlliarity with the

L

for o the non-zero class in H
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definitions of obstruction and primary obstruction. (see, for example,

Steenrod, Topology of Fibre Bundles §32,35). With terminology close

to that of Steenrod, p. 19Q’given an n-plane bundle gn we have for each

g < n the assoclated bundle ng'with base B and fibre Vé,n-q? the
Stiefel manifold of (n-q)-frames in n-space. By an(n-q}frame, we mean
Just a set of n-q linearly independent vectors. (Note: Steenrod uses
orthogonal unit(h—q}frames in n-space; the modification does not affect
the argument. ) Explicitly, a point in the associated bundle fibre over
beB can be represented as (b, frame (vl,...,vn_q) in the n-plane Wfl(b)).
The primary obstruction to a cross section of‘Q3q' 1s an element Oq+l of

Hq+l(B;Wq(V' )).  This coefficient group is either 2 or % , depending

n,n-q 2
on the dimensions. In general these are twisted coefficients, but this
complication can be avoided by reducing mod 2; this we write as (01)2.

(In general, we lose nothing by this reduction since 0, cen be recovered
from (oi)2 but for the one dimension where we can calculate X. See
Steenrod p. 195) Now it is possible to interpret Stiefel~Whitney classes

as follows:
Theorem 19; oi(g)g =W, (t)

Proof: Consider the bundle map f = (fB,fE) mapping t into o
the canonical bundle over Gn' Since obstructlons are natural with res-
* n - * .
pect to bundle maps, we have 3 01(7 )2 = oi(g)g o Since H (Gn’ZQ) is
a polynomial algebra in the wj, for each pair 1i,n we have that oi(yn)2
can be given as a polynomial P 4 in the Stiefel-Whitney classes Wj(yn).
2

The above relation shows that 01(5)2 = pijn(wl(g),...,wn(g)) and this



formula is valid for all n-plane bundles, dependent only on 1 and n.
We need to know the exact form of this polynomial, but this can be deter-
mined from a special case. For fixed i, let B = G, , and g? = i1t

Qn-i+l is the trivial (n—i+l)—plane bundle. Now in general the

where
associated bundle 03(1 has a cross section 1if and only if ¢ can be split
into a bundle sam with the trivial n-q bundle " d &s one summand. (Given
the cross-section and using the usual Riemannian metric defined in an
n-plane bundle over s baracompact base, we can split £ by taking the
orthogonal complement to the n-q dimensional subspace spanned by the

frame specified by the cross section. Conversely, the decomposition
specifies a non-zero cross section of B 4 by taking the n-q frames which
are the bases for the fibres of Qn”q.) Thus we see that oi(gg) = 0 and
therefore oi(gg)g = 0. On the other hand wj(gf) = Wj(yi-l). Together

-1, 1-1),0,0,...,0) where

1

this means that g pi,n(wl(7 3 eeey wi—l(7

wl""’wi 1 generate a polynomial algebra, Since oy is always of dimen-
s - '
sional i, pi,n must have the form pi,n(xl""’xn) A% + P i,n(xl"'°’xi-l)'
—_ . . {
Now the equality o = Pi,n( X)3eees%; 950,...,0) implies that Pin
must be identically zero, Thus we have proved: for each i,n there is g

i,n

n-plane bundles.

number A such that the identity oi(§)2 = N nwi(g) holds for all
2

A) Let 1 =n., We know that A p=1lor 0. To prove the theorem

2
in this case we need only show that for each 1, there exists a bundle gi
with oi(gi)g £ 0. Let B =P and let 7 (b) be the set of all vectors
i+1 1 . i
orthogonal to x in R , where p 1s considered as the unit § with

antipodal points identified i.e. b = [x,-x]. We can start with a cross

sectlon on the (1 -l}-skeleton as illustrated in the second figure. This
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extends without trouble until we reach a

singularity at the poles which can be
seen to correspond to a generator of the

homotopy group. Thus oi(gl)2 £ 0 for
this particular Ql.

B) Suppose n > i. Repeat with

Qn =7f€59n_i where nl is the bundle of

A) . By the same reasoning, oi(gn)2 o

— — 3
and so for all i,n we have shown Ao, =1 or oi(x)2 = wi(g,.

b4

To follow the same procedure in order to relate the Euler class
Lo an obstruction, we must work with the integers as coefficients and
vill introduce the oriented analogue of 7n. Let ‘E; be the get of all

oriented n-planes in R” with topology defined to correspond to that of
lad

A As can easily be seen, the obvious map Gn —_— Gn is a two-fold

overing. Call‘;ﬁ, the bundle induced by this map from 7n. Note that

Dol —_
1s naturally an oriented bundle. For an oriented bundle £, we can
A
ift the map B —> Gn into Gn by using the orientation of the fibre
b to determine which leaf of Gn to map b into (the local compatibility

f orientations insures that this will be a continuous mep). From this,

Ut 18 easy to complete the diagram’to

n
¢ v
. . - In ~
>t an oriented bundle map t >y, _ /’7Gn
A
n
ieorem 20: For ' an oriented n-plane bundle over a paracompact base

P~
~ there is an orilentation preserving bundle map f into 7n with fB

€ canonical 1lifting of the map B —> Gn'
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Gysin Sequence:

Using Z as coefficients throughout this section and assuming ¢
to be oriented, we have determined an element UeIin(E,EO;Z) and know
that LU:H (E) —> Hn+i(E,Eo) 15 an isomorphism, as is

¢:H1(B) ~ Hn+i(E,EO). From the exact sequence of the pair E,Eér'

N Hi(E,EO) XS E) — Hi(Eo) —_ Hi+l(E,EO) —_

N\ N A
2| ¢ | i 21)¢

T

*
— BB (s) X5 miE) 2> Hi(EO) — B ) —

we get the lower exact sequence by the indicated isomorphisms.
The indicated map is ,5’X since

P Lixgo = i (ke LU) = (e u1* U) = oo M = auX .
That 1s,

Theorem 21 (Gysin): For an oriented n-plane bundle we have an exact

sequence

— w(3) XX gP(B) ety Hi+n(Eo) > T (B) —————>

where Wb is the restriction W[EO.

Note: For unoriented bundles, we would get a corresponding exact

sequence using 22 as coefficients and Wn in place of X,



61

The Fuler class as an obstruction.

1

Now consider the top obstruction class on(gn)e 1 (B3 Wn_l(V

n,l))’

For an oriented bundle the coefficient group

1

”@ﬂ%g)z%an”Hmﬁ%)“%@Jﬁ

is canonically isomorphic to the integers Z. Hence the following

statement makes sense.

Theorem 22: For an oriented n-plane bundle gn, we have on(gn) = x(e™).
Yol d
Proof: Consider the Gysin sequence in the speclial case B = Gn'
o
A Pand
—_— Ho(Gn) v X Hn(Gn) 2> Hn(Eo) ———

~~ lad
We want to show the special case of the theorem)x =on(7n)€ Hn(Gn}Wh l(Vé l))'
- )

First we show Wg(on(yn)) = 0. Let 7 Dbe the bundle over E_ induced by
~

WO from 7n. By definition of the induced bundle, a point in E(n) is
~
a pair (e,e!) where e 1is a point in Eo(yrﬁ and e! is any point
~
in E(yn) which belongs to the same fibre. The projection

~—

> B(n) = E (y") is given by (e,e')

E(r) > e, Now the map

> (e,e) 1s clearly a non-zero section

- B{n) —> E(n) glven by e

s

of mn. Therefore on(n) = 0, but by naturality with regpect to bundle
maps o (n) =T o (;h) Hence T © (;El) = 0 as asserted.
’ n o n * o n

Vad
By exactness of the above sequence, this implies that on(yn) = AvX

o, ) B
for some A\ eII(Gn). That is o = A X where XN, is an integer since



Ho(Gn) =~ Z. We write Xn to emphasize that the integer Kn depends
on the dimension of the bundle and not on the particular bundle,since the
above formula relating o, and X holds for all bundles by naturality
(cf. the similar discussion for Stiefel-Whitney classes). Thus we can
determine xn from special cases:

For n even, consider the tangent bundle 1 (3"). By Theorem 16,
we know that X 1is X(8") times the fundamental class, that is twice

the fundamental class. On the other hand it is easy to verify that °,

is also twice the fundamental class in this case. ‘Therefore

A= + 1.
n

For n odd, xn =0 or 1 since X 1is already of order 2. To show
Kn = 1 we need only show that o, is not zero for all n-plane bundles,
but we have already done this while relating Stiefel-Whitney classes to
obstruction. In fact, we even showed (on)2 was not ldentically O.

Thus we have shown that the relation on(gn) = X(Qn) holds true for all n.

XI. Complex n-plane bundles

For many investigations in other branches of mathematics, e.g. the
study of complex analytic manifolds, the structure of a real n-plane
bundle is not a sufficient tool; it 1s therefore natural to give the

following generallzation of the definition of an n-plane bundle:

Definition: A complex n-plane bundle w consists of a triple (E,B,7]}

where 7 1s a map from a Hausdorff space E onto a Hausdorff space B
together with the structure of a complex n-dimensional vector space 1n

each fibre v—l(b) satisfying the further conditions
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1) there exist a distinguished class of qpen sets [U} covering
B and n maps gi:U —> E for each U such that
2) each g, 1s & cross section and
3) the map UxC" —> 775(U) defined by (0,000 05N,) —> g, (b),

where xieC, is a homeomorphism,

Note: Throughout these notes we will represent the complex numbers by C.

Example: The tangent bundle ™ of a complex analytic manifold Mn. A
complex analytic n-manifold is defined analogously to a differentiable
manifold except that we use n complex variables as local coordimtes, and
require that the functions relating the local coordinate systems must be

analytic.

Remark: A complex n-plane bundle w”  can be regarded as a real 2n-plane

bundle wﬁ by ignoring the multiplication by complex numbers.

Canonical orientation of w;

We can choose & basis 81,85,ee0,8  OVEr C for each fibre Wﬁl(b).
The real fibre, that is, the underlyling real vector space of er(b),
has a canonical orientation al,ial,a2,...,an,ian. This orientation 1s
independent of the choice of the complex basis 81285500058, since
GL(n,C) is connected and we can pass from this basis to any other continuous-

ly d.e. without change in sign.

Corollary: Every complex manifold has a standard orientation. As we
have already seen in the real case, an orientation of the tangent bundle

corresponds to an orientation of the manifold.



Corollary: For every complex n-plane bundle w®  there is & well defined

2n

Buler class X(ME)EH (B;2).

If we take the bundle sum wn¢B¢k of two complex plane bundles W
and ¢k, with bases &,...,8) and bl,...,bk the vectors a.l,...,an,bl,...,bk
form a basis for R ¢k, This means that the canonical orientation of

b ib Thus we see that in a

n .k
(v og g 18 ap,iay,...,e ,la LIPS PP

1771
natural way (W @@ )R’ML)RG&R as orlented bundles. (This was one reason

for defining the canonical orientation this Way. ) From this it follows

that X(w' @ ¢k)R = X(wn)X(¢;)

Chern classes

We will now give an inductive definition of characteristic classes
for a complex n-plane bundle, mnu We define a canonical complex (n—l)—plane
bundle wg-l over Eo(wn). (As in the real case, Eo(wn) denotes the set
of all non-zero vectors in E(w™) = E(wa).)

A point in Eo is specified by a fibre of w® and a non-zero vector
in that fibre., We will obtain wg_l by considering the orthogonal
(n-1)-space in that fibre. This can be done using the Hermitian metric,
which can be defined in any complex n-plane bundle over a paracompact base
B by a procedure analogous to that for real n~plane bundles (see Theorem 5)e
Alternatively 1t can be obtained algebrailcally by looking at the factor
space. E(wg_l) will consist of all palrs (el,_e2 + Cel) where e; 1s the
non-zero vector, e, is another vector in the same fibre and e, + Cel is &
coset. The projection W‘:E(wg—l) — Eo(wn) is defined by W%el,e24~Cel) = e-

Recall that for real oriented 2n-plane bundles, we have a Gysin sequence

*
s ) A e -——-> ql(E ) > EE(R)
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for 1 < 2n-2, Hi+l~2n(B) =~ o . s8nd 80 Wg:H;(B)zs Hi(EO) .

Definition:  The Chern classes 04(wn)eH21(B,Z) are defined as follows,

by induction on n.

0] for i>n
n n
ci(w ) = X(wR) for 1 =n
=1 n-Ll
T ci(wo ) for 1 <n.

The last expression is well defined since

wg': Hgi(B) ——> Hzi(Eo)

is an isomorphism for 1 < n. The expression c(W®) = l+—cl(wn)4A---+ cn(mn)

15 called the total Chern class of W .

Lemma 1: Chern classes are natural with respect to bundle maps 1l.e.

for a bundle map f = (fE,fB):w —> w' we have fg c(w') = c(w).

proof: 1) f*c (w') = c_(w) since Buler classes are natural.

B n n
1
. PR, ¥ —
2) fpt By > E! can be covered by a bundle map w_ —> O, ,
between the canonical (n-1)-plane bundles over Eo and E;. But
-1
" ny, _ % n-1 n-1, _ n-1
un_l(w ) = Cn-l(wo ) and cn_l(wo ) = X(wo.R) which 1s natural
with respect to bundle maps. Since LT, Ty We see that cn_l(w )
is natural with respect to bundle maps. £
E i '
Descending this way, we show naturality 0 i Eo
of each ci(mn) and so naturality of the 1y Wg
V \
total class c(w ).
B > B'
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Lemma 2: Let Qk be the trivial complex k-plane bundle, then

c.(wn@ Qk) = c(wn')“

Proof': It is sufficient to prove the assertion for Ql since
the general case then follows by induction -« Changing the
notation for convenience, write o = ¢n—16> Ol. We want to show that

c(w?) = c(¢n‘l), Since the bundle w_ has a non-zero cross-gection it

is certainly true that cn(wn) = X(w%) = 0 is equal to cn(¢n_l). Let

fyr B—> EO(¢n-lG>Ol) be the canonical cross-section, Then o is

covered, in an obvious way, by a bundle map ¢n—l —_— mg-l . Thus by

, n-=-1
Lemma 1, % c(wo )

Wg ci(wn) by definition; so that

= c(¢n—l)n But for i < n, ci(wg-l) is equal to

ey () = {egmie, (W) = rp(mg ey (4 )
= (e, (05™) = ¢, (g°7h).
This complete§ the proof.

We continue our complex analogy of real bundle theory with the following.

Definition: The complex Grassman manifold G k(C) is the set of all
J

n-dimensional subspaces in cn+k (When working with complex structures,

dimensional notation will always refer to complex dimension unless other-
wise stated.)

Just as in the real case, Gn,k(c) has a natural structure as a
differentiable manifold; in fact, Gn,k<C) has & natural structure as a
complex analytic manifold., For example, still paralleling the real case,
Gl)k(C);% Pk(c) 1s a complex projective space,

Similarly let 7E(C) be the n-plane bundle over G, k(C)’ where
9
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E(yi(c)) is the set of all pairs (n-dim subspace, vector in that subspacél

We investigate the structure of H*(Pk(C)5Z)° Applying the Gysin

1 k 1 1
sequence to 7. over G, , (C) =~ P (C) and using the fact X(y. _) = c, (7 )
K 1,k x R’ T %1k

we nhave

—> E(E ) —> 1 P (o)) Y R (pk TEE ) — .
Toe spece E_ = Eo(yi(C)) is the set of all pairs (complex line through

origin in C 7, non-zero vector in that line). Clearly, this is Just the
set C of all non-zero vectors, which has the sume homotopy type as

241 . , R . 2k+-1 )
S . Hence E_ has the same conhomology ring as S . Thus tae sequence

o
bacomes
NIV A B 2NN S L .
0 —=> I (P7(C)) —= T ""(@(C)) —> 0 Zor 0-1<2k-2,
r . s Ha 1 - M
gt 1s, EC(P(C)) ~ EE(PN)) m eer ~ PEPR(C))  and each grous Eo-(PU(C))
-
is infinite cyclic generated by c, (7°)° . Tor 1 = -1 and x > 0 *tlc
L FaS
secusnce becomes
> HTT(ENC)) — TP () > g (n ) —
H H
O 0]

Coricining This with the [somorphiam
WYY = TP E)) = e R )

i+l . . .
we obtain Hot “(P(C)) = 0 wor all di. That is:

1
\

Theorer 23:  HY(, L (C)) = 1¥(FY(C)) is the truncated polynominl ine

e

terminating 1o Cimeonsion 2k and jenerated by cl(yﬁ(C) .



A formally identical procedure can be carried through in the
real case to show that H*(Pk;ZE) is the truncated polynomial ring
terminating in dimension k and generated by «, the non-zero element

of Hl(Pk;Zz). In particular this means that aéioﬁ,'_.,ak are all

different from zero, a fact of which we made extensive use in sections

IIT and IV.

If we let k —> o we have shown explicitly that H*(Gl(C)) is the

polynomial ring generated by cl(yl(C))° In general we will show

Theorem 2k: H*(Gn(C)) is the polynomial ring generated by
n n
e (P (0)), ey, (R (0D,

Proof (by induction): We have already shown it to be true for n= 1.

Using the Hermitian metric defined in Cn+k, i.eo (Al,oo.,x +k)‘(“l”"’un+k) =

n

n+k

izlxiﬁi, we know what is meant by orthogondity. For a point of Eb(yi(c))
. X

given by an n-dimensional subspace of Cn+ and a non-zero vector therein,

we take the complementary (orthogonal)(n-1)-dimensional subspace in the
given subspace and thus obtain a map p: E —> Gn—l,k+l(c)' On the other
hand, given an (n-1)-plene in Cn+k, any orthogonal non-zero vector deter-
mines an n-plane and hence a point of Eo' In other words, p 1s a fibre

map and the fibre is C§+l . For 1 <2k, the Gysin sequence of this

bundle glves p*:Hi(Gn_l K+l(C)) R¢H1(Eo),
>

Letting k ——> o as usual, we have ,

—> Hi(cn(c))“’ff_> 16 (0)) > (e () — B e () -

Referring to diagram i, we see that by naturality of Chern classes under



69

bundle maps p*-lvg takes the Chern classes of »7(C) into those of
7n—l(C) which by the induction hypothesis, are the generators of
H*(Gn_l(C)). This means that p*-lﬂg is an epimorphsim [onto H*(Gn_l(C)) ].

In other words the exact sequence becomes:

o > Hi(Gn) eI Hi+2n(Gn) —_— Hi+2n(Gn_l) 2

n-1 7n-l
o
V/ \V4
n
£,(") ———> 6 (C)
P
T
\/
G, (c)
Diagram L

We want to show 1) that every element a of H*(GD(C)) is a poly-
nomial in CyreeesCy and 2) that no non-trivial polynomiel is zero. We
wlll prove both assertions by induction; 1) will be proved by induction
on the dimension of a. [At the same time, we have the induction hypothesis
~on the structure of H*(Gn_l(C)) IR

Certainly the assertion is true for dim a = -1. Since
prims(e)en™ (G, (€)1t 1s a polynomial 1n o (H(C)),uuu,e, L (PH(0))

i.e. D*—lﬁ*(a) = ole (Y2 10y . (=L NNy e g e g
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-1
we will write ¢, for c. (¥7(c)) and ci for ci(yn (C)), and A for

i
p*flﬂg} Thus we have shown A(a) can be written as some polynomial

4 . *
! ! ! = -
P<Cl’02""’cn-l)' Consider a a p(cl,...,cn_l)eH (Gn(C)). We see

that Af{a')= o which by exactness of the above sequence means there 1is

n

some a”sz*(Gn(C)) such that a' = a"ucn. Now a" has a smaller dimen-

sion than a and hence by our speclal induction for 1) can be written as

a polynomial in CqyeessCpe Therefore a' = a"u,cn is a polynomial in

. . _
cyyeersCy.  But this implies a = a' + p(cl,...,cn_l) is a polynomial in
Cl""’cn' WED

As for 2), suppose P(cl,...,cn) = 0. Then Mp(ep,eense )] =
p(;i;...,c;_l,o) =0 . This memns that p(¥*,...,%,0) mst be
identically zero as & polynomiel.  In other words, P(Xi""’xn) has
X as a factor; p = xnp'. Again we use a subsidlary induction, this
time on the dimension of p. \Certainlny) .holds for dimp = -1l.
gaving P, = xnp', we know p(cl,...,cn) = p'(cl,...,cn)\,cn = 0,

Since _c_ = is a monomorphism, this means p'(cl,...,cn) = 0., By the

induction hypothesis, p'= 0 thus p = p'\_,cn = Q. QED

Just as for real n-plane bundles we prove:

Theorem 25: Every complex n-plane bundle over a paracompact base has a
bundle map into 7' (C) covering the generalized Gauss map into Gn(C).

(As in the real case, Gn(C) is assumed to have the weak topology.)
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Product theorem for Chern classes

We will use this universal bundle construction to prove the product
theorem for Chern classes. Let w and on be complex plane bundles over
the same paracompact vase B, Then there exist bundle maps W —— 7'm
and \)n —_ 7n, {The C%s will be omitted whenever they are clear from

the context.} The corresponding maps B —> Gm’ B ——> Gn of the base

spacs combine to gilve a map

fpt B—> 06 x G .

Let 71111 and 72 be the bundles over Gmx Gn induced by the projection
maps pl: Gm;'(Grl —_— Gm, Pt Gmx Gn —_— Gn respectively, Then we have
a bundle map W — 7;1, where the dotted arrow in the following diagram

1s defined so that the diagram is commutative.

B(w™) > 5Q™)

Similarly we have a bundle map o > 72 s and hence a bundle map
m n m n
w P v —> 716 Yo
Thus we have proved the following: The bundles 7@111 and 72 over

Gmx Gn are universal for pairs of bundles, in the sense that given any

m
+wo Hhiimdleac oy and nn P - RO . I U S N
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n
75

of the base space,

B, there exlst bundle maps R 7111, - and

m n
w @ v

> 72@ 72 covering the same map fB

The existence of these bundle maps, together with Lerma 1, gives us
my, ¥ m Ny _ % n o Dy _ % m,. n
1) e(w?) = £y clry), c(0) = fye(n); e (w@v) = £ c(r]@7,).

Since H*(Gm) and H*(Gn) are both polynomial rings generated by the
respective Chern classes, it follows that H*(Gm’( Gn) is a polynomial ring

generated by the Chern classes
m m n n
Cl<7l)}‘°°}cm(7l)} Cl(yg))’°’} Cn(72)-
(This is a consequence of the Kunneth sequence

0 —> H*(6, )®H*(G,) —X—> 1 (6 X ) —> Tor(5(G_),H¥(C_)) —> 0

"
0

which i1s known to be exact for any pair of finite complexes. Thils sequence

1s exact in this case also since each subcomplex Gn is finite.)

k
2

Now consider the Chern class c(ylfe 7121 )+ Since it belongs to this
polynomial ring H*(Gmx G, )’ there must be a unique polynomial

Pm,n(xl’ seesX ¥y 5000,y ) With integer coefficlents such that

c(} @ 75) = pm’ll(él(ﬁ),-»-,cm(rgl),--e,cnhg))-

Applying f’g to both sides of this equation, and using the naturality

conditions (1) we have:

Lemma { For any palr of complex plane bundles wm, o' over a paracompact

base B, the formula

(W@ o) = pm’n(cl(wm),...,cm(wm),cl(un),...,cn(un))
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Recall the definition of Chern classes. In particular cn(wn) = X(w;;)
and so we have the product theorem for the top Chern class from that for
Euler classes:

1) cm(wm)cn('on) = cm+n(wn® 0" .

Recall further that we have already proved a special case of the product
theorem

2) (@ Ol) = c(uw™) (see Lemma 2, of this sectiom),

Now we are ready to prove in general:
Theorem 26: (W@ v) = (W) e (V7).

In other words, the polynomial p_ n(x_l,...,xm,yl,”.,yn) of Lemma 3 is
2

in fact (1 + Xp heeet Xm)(l+yl+”.+yn)°

Proof: By induction on m+n. Certainly the assertion is true if

m+n = 0 or 1 or if either m or n 1is zero. By induction, assume
the theorem true for m+ n-1, Iook at W @ un—le ok,

Grouping it one way, (W@ Dn_lQQl) =c(W" @ Dn-l)e ot Je

(™ @ ™),

c(w™)e (Dn_l)

By 2) we have

]

By the induction hypothesis,

a

On the other hand, associating the other way :
(P v et = o(fe (M reel)),

m m n-1 n-1l
By the lemma and 2) this 1s = pm’n(cl(w ),“.,cm(w )’cl(b )’"”Cn-l(D %0 ) -

This is true for all complex bundle pairs)- in particular, considering the

bundle 7?@ 72-1 vwhere there are no polynomial relations, this must be a



T4

polynomial identity

(l + X‘l+. e+ X m) (l+yl+. ’ .+yn_l) = (Xl’ .o ')Xm}le o ")yn_l)o) .

pm,n
In other words

pm,n(xl,.“,xm,yl,...,yn) = (l+xl+ “'+xm)(l+yl+---+yn) mod (yn)

where (yn) is the ideal generated by Y,

If we repeat the same procedure with Ole wm~l @ Dn, we find

pm’n(xl,‘..;.,xm,yl,.,,.,ym)E (l+xl+°-=+ x YLy +eee+y ) maod (%)
It is a simple algebralc conseauence that
pm,n(xl"”’xm’yl""’yn)E (Lt xq+ oot Xm)(l+"'+yn) mad (xm),.@n) = (xmyn).
That is, pm,n = (L4 oeot xm)(l+aa»+ yn) +zx y where z belongs to
the polynomial ring concerned, By l), the only term of dimension 2> 2m+ 2n
(the dimension of the top class is twice that of the bundle over C) is
X Y3 that is, z = O . QED ,
Application (again analogous to the real case):
Theorem 27: c(1" (Pn(C)))= (l+oz)n+l where « 1s the standard generator
of He(Pn(C);Z) (i.e. the one corresponding to the standard generator of
K (%) under the irclusion S° = PY(C)CP™(C). As a complex manifold, S°
has a uniquely distinguished generator of HQ(SQ;Z).)
E_I_‘Q_c_)_i_"_: Complex projective n-space Pn(C) can be represented as the

2n+lCCn+l under the identification W = A& for all Ae c, ! A I= 1.

unit S
Then E(77(P7(C))) can be represented as the set of all pairs ( @,V ), with
” ﬁ)” =1 and 0.V =0 in the Hermitian metric, under the identification

W, v ) = (\W,\V) for all AeC,[r] =1, Consider the complex line bundle
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+1

over P'(C) obtained from o™X ¢ by the identification

g

i B+

»0) = (AIAp) where peC and A 1is as above and, as in the real

o

(
1 1 1 1
case, take the (n+l)-fold bundle sum £, @@ £ . Then E(gne-- . ® gn)
can be represented as the set of pairs (ﬁz ?3(;Scn+¥X(ln+l with the
identification (@, V) = (x{?,)h§3 where A is as above. Compsring
this with E(v"(P7(C)) we see E(gi&a oo grll)DE(Tn(Pn(c) )o On the

other hand gl‘e '~°9§l_ has a cross section (taking 1es®® L into (2,3)).
&E—r"(\‘.n/
n+l
By taking the orthogonal compliment tc this cross secticn, using the

Hermitian metric, gj}le- N grll splits into < (PP(c))@® oT. By the
\_,_/\f\/ t
nl
product theorem, we have c(Tn(Pn(C)))= c(gi)n+l = (l+cl(§i))n+l. The

inclusions S°= Pl<C)c:P2(C)C: *** are covered by bundle maps gi —>§é.4 cee
and by naturality cl(gi) goes into cl(gi). In fact, the homomorphism
HQ(PD(C)) —;HQ(PI(C)) is an isomorphism. Considering 82==Pl(C) as a
complex manifcld, there is a distinguished generator « of H2(82;Z) and
Cl(gi) mist be some multiple of this standard generator. We have shown
that o(+ (F1(C))) = (1+c(g1))? or e (7F(FHE))) = 20, (81). On the other
hand, by definition, Cl('{l(Pl(C))) =X(P'(C)) = x(s%).  As is known,

X(s2) = 20 which shows that cl(gi) =a or C(Tn(Pn(C))) - (l+a)n+l. QED

Corollary: o is the fundamental class of Hgn(Pn(C))f since

(n+1)d" = cn(Tn) = X(Pn(C))==)(p and it is known that the Euler charact-
eristic is n+ 1. ( Since H*(PH(C)) 1s the truncated polynomial ring, oM
is a generator., Here we have settled the ambiguity as to whether it was

+ or - the fundamental cohomolory class.)

ConJjugate bundle,

In order to gain more informetion about the characteristic classes
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of complex n-plane bundles, we introduce a new tool.

Definition: Two complex n-plane bundles w and v are conjugate equiva-
lent if there is a map f: E(w)—> E(v) such that 1) wp and vy are
equivalent under f and 2) f(Ae) = A f£(e) for all ecE(w). We will
denote v by .

Note;  Conjugate equivalence is not an equivalence relation since in

general w 1s not conjugate equivalent to itself. For example, consider

Tl(Pl(C)). (Ignoring the complex structure, this is just the tangent
bundle of the 2-sphere.) If this bundle were self-conjugate, there would
be defined a map of the tangent plane at each point into itself so that
the complex structure (rotation by i) was reversed. The only such maps
are obtained by reflection in some line of the plane. We would thus have
a continuous field of lines in the tangent bundle of the 2~-sphere, but this
is 1impossible according to the Corollary to Theorem 13.  Hence Tl(Pl(C))
1s not self-conjugate. An alternative proof of %ﬁis will be given below
using Chern classes. Conjugate equivalence 1s however an involutive re-
lation, like the relation between two oriented bundles which are equiva-
lent except that thelr orilentations are opposed, in that the conjugate
equivalent to the conjugate equivalent of a bundle is equivalent to thé
original bundle. There is a canonical representative of W ; namely;
the bundle with the identical total space and conjugate structure in each
fibre.

Example: Over P (C) = Gl,n(c) we have made use of two line bundles,
gi(c) and 7:;(0)a They are in fact conjugate equivalent,

Looking at the Chern classes of the conjugate bundle we see:
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Theorem 25%. c(w) = l-¢ (w)+ Cg(w)" c3(w) Foes

Proof: Let ViseeesV, be a basis for the complex fibre F ='ﬁ-l(b) of

w for some arbitrary be B. This gives Vi’ivi’v2’1v2’°"’vnfDG1 as the

orientation of the real fibre. Applying f which gives the conjugate
equivalence, f(vl),f(vg),...,f(vn) gives f(vl),if(vl),...,f(vn),if(vn)
as the orientation of (Ci%v On the other hand applying f to the orlenta-
tion of the real fibre we get f(vl),-if(vl),...,f(vn),—if(vn) which 1is
(-1)" times the orientation of Eﬁ. Thus we see X(Gﬁ) = (-1)"x (wR) and
so cn(G) = G-l)ncn(w) which checks with the formula.

To check the formula for the lower dimensional classes, recall the

n-l

definition ¢ _ . (u7) = 7*Le 2ly, But e W) = X(wg:i) 3 by

n-1 o n-l(wo n-l(
n-l, . .\n-1 -1
the above argument therefore, cn_l(wo ) = (1) cn_lsz ). Descend-

ing in this way, we obtain the above formmla for the total Chern class.

Note:  This gives us a new proof of our earlier assertion that fL(Pl(C))
1s not self-conjugate for cl(Tl(Pl(C)) = 21 (see proof of Theorem 21)

which is not of order 2.

XII, Pontrjagin Classes

To complete our study of characteristic classes of n-plane bundles,
we need one new tool: the construction of the complex n-plane bundle
induced by a real bundle. There are two ways of looking at the new

structure although the structure itself is the same.

Definition: Glven a real n-plane bundle { the induced complex n-plane
bundle gc with the same base B 1is obtained by considering as fibre over

b the set of all formal sums x + 1y where x,y efk, the fibre of ¢.
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(Each fibre of QC is an n-dimensional vector space over C as

desired. )

Alternative definition: Given a real n-plane bundle ¢, the induced

complex n-plane bundle gc with the same base space B 1is defined as
follows: E(gc) = E((®@t) and multiplication over C 1ig defined in
each fibre by 1-(x,y) = (-y,x).

Using this second definition, it is easy to see that

Lemms ¢ gc is equivalent to its conjugate EE, which is the same as
saying QC is conjugate equivalent to itself.

Proof: Let f:E(QC) —_— E(gc) be defined by f(x,y) = (x,-y).
Clearly f gives the equivalence of the real bundle structures. Further

£lis(x,7)]= £[(~y,x)] = (~y,-x) = -i+(x,~-y)s QED

-If we look at the Chern classes of §C we see c(gc) = C(E;) which,

by our result on the Chern classes of the conjugate bundle, gives us

c(gc) =1 + cl(gc) + cg(gc) F oo
= C(Z—C) =l—cl(€C)+ C2<gc)‘03(§c)+"'
Thus we have 2cl(gc) = 2c3(§C) = see =0

This means that these odd classes carry a limited amount of information;

we therefore confine our attention to the even classes.

Definltion: For a real n-plane bundle ¢, the i-th Pontrjagin class

pi(g) is defined to be (-1)ic21(gﬁ)e Hui(B). (The reason for (—l)i,
such as it is, will appear below. )

The total Pontrjagin class p(g) is defined to be
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1+-pl(§) + pe(g) + oeeet p[n/g](g). ( The highest Chern class is c,
since QC is a complex n-plane bundle and thus the highest Pontrjagin
class corresponds to [n/2], the integral part of n/fp.)

As for the other classes we have studied, we would like the Pontrjagin
clesses to satisfy the product formula, but we are likely to run into
trouble because we have thrown away the odd dimensional Chem classes of
QCe The factors (--l)i we have introduced will caise no trouble since if

¢ U == ¥ LI I
(1+c ST u)(l+«c2+ c) + ees) = (Lt ¢ b+ cu+ ) then
(1-c ot ¢ - H-Ml-cﬁ+ch-.o.)=(l~c"+ch-»-J. In fact, throwing
away the odd dimensional classes forces a revision of the product theorem

as follows:

Theorem 29: p(t @ n)-p(t)p( 1) 1s a sum of elements of order 2

Proof'; Qj@ Ng = (te q)c and by the product theorem for Chern

classes

e(t @ n)g = e(tg)e (n,)

We know the odd dimensi onal classes not included in the Pontrjagin

classes are all of order 2. QED

Example: If we look at p(r"(8")) we see that it is trivially 1

1

unless n = 4k, in which case p(i") = 1 + p, . However, @ v is

trivial as is v! so p(Tnﬁ)Vl)—p(Tn)P(Vl) = l-(l%-pk) = -p, must be
of order 2. But Hn(Sn) = Z has no element of order 2 other than zero.
That is, pk(Thk) =0 and so p(r'(s")) = 1 for all n.

‘“We see that the Pontrjagin classes of spheres are uninteresting;

it turns out that the things to loock at are complex projective spaces;
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but first let us consolidate our gains. At this point, we have a
situation which is represented symbolicly at

complex
the right. Glven a real n-plane bundle we

now can obtain the induced complex n-plane

bundle. Given a complex n-plane bundle real oriented

we can look at its underlylng real struct- VK\\\§__-_—_‘////

ure to obtaln a real oriented 2n-plane bundle.,

Glven a real oriented 2n-plane bundle, we can always ignore the
orientation to get a real 2n-plane bundle. In otherwords, we can
startat any point on the circle above and traverse it in the clockwise
directionj notice that when we return to the original point we do not
have the original bundle but rather one of twice the dimension., We
would next like to investigate the behavior of characteristic clasees

under this sequence of operations. In particular, we have

Theorem 30: For w' a complex n-plane bundle,
i n
(-1)'py (o) = = (1) ey (ue, (o)
k j=2i

Proof: By definition

b, (W) = (-1)'ey, (W]

where wﬁc is obtained by neglecting the complex structure to get

an oriented real 2n-plane bundle, ignoring the orilentation, and then
complexifying to get a complex 2n-plane bundle. By definition,
Therefore E(wﬁc) = B(w e o).

E(wn) = E(w;) and E(wﬁc) = E(w%ep wg)_

Our problem is to compare the complex structure of E(wﬁc) with that of

E(u® @ w*). A point in E(wgc) is given by a palr (x,y) where x and y
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belong to the same fibre of wn. The multiplication by 1 defined in

W™ ‘will always appear inside the pralr; the multiplication by 1 for

WP
RC

example, i+ (x,y). Let E(wl) be the subspace of E(wﬁc) consisting of

will appear outside the pair and will be written with - as, for

all pairs (x,-ix). This space E(wl) is invariant under i. as we have
defined it, for 1°+(x,-ix) = (ix,x) which is of the required form.
Similarly E(we), defined as the subspace of all pairs of the form (x,ix),

1s invariant under i. since 1.(x,1x) = (ix,x). Now w;C

x+1ly y-ix X-1ly y+ix
7o ) ).

Moreover w, is equivalent to w". Consider the map f:(x,-ix) —> x

=W Bu,

since any point (x,y) of E(wgc) can be written as (

taking E(wl) into E(w). Since i.(x,-ix) = (ix,x), we have
f(i-(x,-ix)) = ix = 1f(x,-ix) and £ gives the equivalence of the complex
bundles. Similarly, wy 1s equivalent to W, et g(x,1x) = x take
E(w2) into E(wn), then g(i-(x,ix)) = g(-ix,x) =-ix = -1g(x,ix)ap required.
Thus we have shown:

n

Lemma “)EC is equivalent to w @ 2.

By the product theorem for Chern classes

c(mgc) = c(w)e(w) = (l+Cl(wn) + Cg(wn)+-°- )(l-cl(wn)4-02(wn)- cos)

Observe that the minus signs in this formila coooperate to cancel out all

the odd dimensinnal classes in the product. The result can be stated

l-ri(wg)+-p2(w§)- soe = (14-cl(wn)+---)(l-cl(wn)+ce(wn)- see)

i

J n . n
éij(~l) ck(w )cj(w )
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Broken down this is

) (W) =2 (-1Pe (e, (P), .
(-1)'p, (o} B L o (e )

These formulas can be written as follows

py (D) = o (w)-2e, (")

pz(wﬁ) = cg(wn)-ch(wn)c3(wn) + 2cbr(wn)
p3(w§) - cg(wn) -202(wn)cu(wn)+QCl(wn)c5(wn)- 2e (o)
etc,

Example: We already know c(Tn(Pn(C)))= (1+a )n+l where
ae.Hg(Pn(C)). It is clear that c(7 %) = (l—(x)n4q' and by the above
formila

- n ny Dy, oo n My _ (1_~ 0L
1-p, (1) + 2, (1p) = By (Rt ors=e(e) e (M) = (1-F)
Therefore p(TE(Pn(C))) = (l%-ag)n+l.
. ) n
Since there will be no ambiguity we will write p(M') for p(TR(Mn)) where
M’ is a complex menifold. In particular p(fl(c)) = (l-FO?)2 =1

where aezHg(Pl(C)), since Hi(Pl(C))

0O for i > 2. (This checks

with our previous result since Pl(C) =8".)
Further
p(P°(C)) = (1+a®) = 14307,
p(®3(C)) = (1+a?) = 1447,
p(PH(C)) = 1+a2)? = 1450° + 100", ete.



83

These last results were obtained from the sequence

complex > oriented real ——> real > complex

(see diagram above.,) If we follow the sequence
oriented real =—> real —> complex —> oriented real

instead we find that starting with an oriented n-plane bundle gn we

have
tog = T @27)

the only question being the agreement of the orientations.

The orientation in each fibre is given by a basis ViseessVy
for that fibre. The corresponding orientation for 616 Qn 1s given by
1) (vl,o)--'(vn’o),(o,vl),--o,(o,vn)° On the other hand using Vy,...,V,
as a basis for the complex fibre of gg, the corresponding real basis for
ggR is given by (vl,o),i-(vl,o),(ve,o),i-(vg,o),...,(vn,o),i.(vn,o) or
2) (Vi!o)’(O’Vl)’<Vé’°))(O:Vg))"':(vh’o)’(O’Vh)' It is easy to deter-
mine the sign of the permutation relating these two bases (and therefore
relating the corresponding orientations of gCR and 616 gn). The
permutation can be effected by moving each (o,vi) to the left in 1) until
it is 1n the proper place for 2), and the sign can thus be seen to be

1 v
(_l)(n-l)+(n—2)+ so s D41 _ (_l)§n (n—l)

If we confine our attention to even dimensional bundles (where the Euler

class is not necessarily of order 2) we have
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Lerma.: §§§ = (-1)“(551@ ggn) for any oriented 2n-plane bundle §2n.

Therefore, locking at the Fuler classes we have,

Theorem 31. For any oriented 2n-plane bundle pn(ggn) =(X(§2n))2.

Proof: p (¢%) = (1) e, (¢2%) = (-1)"x(¢2D)

i

"X (D0 7)) = x(te 5.

Thus by the product theorem for Euler classes, pn(gen) = (X(gzn))2 QED

(This is the one place where we find it convenient to have defined

pi(ggn) with the factor (-1)".)

Structure of H*(ag(R);A)

For A a coefficient ring which contains 1/2 (so that we need not
worry about elements of order 2, e.g. the rationals Q), we can now give
the structure of the cohomoclogy ring H*(én(R);A). (See pg. 59 for definition.)
The result will be only slightly more complicated than the cases

H*(Gn(R);Zg) and H*(Gn(C);Z) which we have already computed.

Theorem 32. If A 1s an integral domain containing % then the
cohomology ring H*(aém+l; A) 1is a polynomial ring generated by
2m+1 2m+1
Pl(7 ))"':Pm(7 ).

The cohomology ring H*(aém;tA) is a polynomial ring generated by

2m 2m 2m
P (T ), eeeyp, (7)), and X7
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This can be summarized by saying that H*(Gn;A.) is the poly-

nomlal ring generated by pl,c.e,p[n/e], and X, modulo the relation
X=0 for n odd
X2==pn/2 for n even.

Proof by induction on n. Since 50 is a polnt, we can clearly
start the induction. Just as in the complex case we have an exact

sequence

>

s X ~ A ~r ~
— () —> B0E ) 2 ©#E ) — ')
n n n-1 n
where A\ = p*-lw* carries the Pontrjagin classes of 5; into those of
o

Case 1. Assume that the theorem is true for E That is

2m-1"

X r~
H (sz_l)
argument used in the proof of Theorem 24 shows that H*(aém) 1s a

is a mlynomial ring generated by Pl""’pm-l' Now the

polynomial ring generated by pl,..,,pm_l and X.

e

Case 2. Assume that H¥(&, ) has this form. Since x(y7y = o

(with coefficient group A ) the above sequence, for n=2m+l, j=1i+2mtl,

becomes
0 3 N, W j-2m 0
> B (G2m+l) —> H (sz) —_— | Gy ) —> -
*,~ o
Thus H (G2m+l) can be considered as a subring of H (Gem), This subring
is known to contain the elements PyseeesP 95 and pm = Xe, Thus, 1if

R* denotes the subring generated by Py e3P s we have
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R*cxH( )CH (G

which implies that

a) rank RY < rank HJ(G ).

2m+1l
(For the concept of rank, see for example Ellenberg and Steenrod, p. 52.)

From the exact sequence above we see that

I J-2m -
rank B (G, ) + rank H ( oy ) = Tank HJ(G ).
But the equality
Y . . M
rank RO + rank RO-° = rank HJ(sz)

is easily verified. (In fact HJ(GEm) = RJGB X2mv RJ-gm.)

Therefore

') = rank Rj + rank RJ-Zm

j-om, Y
) + rank H (2ml

j ;

rank H (Gngrl
. .

Usging a) for both j and j-2m, we have rank RY = rank HJ(G2m+l)° From

this it follows easily that RJ HJ(G ) which completes the proof.
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XIII. Pontrjagin numbers

1. Partitions

A partition w of an integer k 1s an unordered sequence
11"'ir of positive integers with sum k. The set of all such parti-
tions will be denoted by 1(k) and the number of partitioms by =n(k).

[For k = 0,1,2,3,4 the number =(k) is equal to 1,1,2,3,5
respectively., As k tends toinfinity,a thecrem of Hardy snd Ramanujan
asserts that

1
b3

(k) ~ e

For further information see Ostmann [1L].

The natural composition operation (k)X II{£) —> I(k+ £) will

be denoted by Jjuxtaposition;:

= "o L s L
£ wo= el w'=3ttt), then ww' = i...d di...d

This composition operation is associative, commutative and has an
identity element, which is denoted by . It 1s also possible
to define & partial ordering relation among partitions. A refine-
ment of il"'ir will mean any partition which can be written in the

form w ***w = with wlezn(il),..., wre]I(ir).

2. Pontrjagin numbers

Let M  be a compact, oriented, differentiable manifold with

tangent bundle Tn and fundamental homology class Hy e Given any

partition 1. ... 31 eli(k), define the (1. ...1 )oth Pontriasin number
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p, +--p, [M] of M® to be the integer < p Crn)...p (Tn), uoo> .
il ir il ir n

Note that this is zero unless n = hk.

(Compare Stiefel-Whitney numbers page 16.)

As an example consider the complex projective space PEH(C).

Recall (pg. 82) that

b, (P2(c) = (1) 2t

P&%ChZ) and <a2n’“hn>

il
[

where @ ¢ H2(

Hence

Py ...pi [pen(c)] - (2§+l),..(2§+l)
1 T 1 -

for any 1 ---ireII(n).

1
It is frequently useful to consider various linear combinations
of the Pontrjagin numbers of a manifold. The rest of this chapter will

be concerned with one such set of linear combinations. Others will

occur in Chapter XV.

3. Symmetric functions; the polynomials 5.,

Consider a polynomial ring in n variables over the integers:
Z[tl,...,tn]. This is made into a graded ring by defihing the degree

of each ti to be 1. The elementary symmetric functions 0yreres 0,

are defined by

1) degree o, =1, and

2) 1 + ot eeet %1=(i+tl%-%l+tnh
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[There is an important connection between symmetric functions
and Pontrjagin classes due to Borel. For our purposes thls can be
motivated as follows. Suppose that a bundle ggn splits into a sum

229 MR -/ 2 of 2-plane bundles, Then the identity
1 n

2n 2n 25y, .. 2
Loy (80 e p (677) = (Lpy (8)) (2ep (25 )
shows that pi(ggn) i1s the 1-th elementary symmetric function of

Py (67) 5eenpy (850 ]

Let - 5 denote the graded subalgebra of Z[tl,...,tn] consisting
of the polynomials which are left fixed by all permutations of tl,...,tn.
A standard theorem asserts that § = Z[ql,...,an], where O)seees O
are algebraically independent.

An alternative description of 8 18 the following: Define two

monomials in tl,...,tn to be equivalent 1f some permutation of tl,...,tn

carrieé one into the other. Define

i 1
1 r
z tl ...tr

ooty

to be the summation of all monomials equivalent to tl ...tr . (For

example g, = 5 tl...'t

i i)

Lemma. An additive basis for Sk = pubspace of 3§ of dimension k,

k <n, 1s given by the set of polynomials

i i.
1t

Etl... r

where il...ir ranges over all partitions of k.

The proof is not difficult,
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Now define a polynomial in Xk +variables By 4 belonging

to Sk where 1....1 by the ldentity
¢ 1 rell <k))

Sil...i (0s00es0) = 28, et
r

(This polynomial does not depend on n, as long as the condition
k <n is satisfied.)
The first twelve such polynomials sre
s( ) =1;
sy(0) =0

52(01,02) =0 -20,

sll(cl)ge) = 02 ;
83(01,02,03) = 013- 30,0, + 303
812(01,02, 03) = *0102. - 303

a and

5111(01,02,03) = 33

L

2 2
o - hcl oy + 202 + 40103 - hou

2

2 - -

0,2, 202 0y 03 + hou
2

o, - 20103 + 2%

0103 - 1+01+

!

(For more information see van der Waerden [26] Chapter 26; in

particular the exercises.
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4, A product formula; the group FlA*

It will be convenlent to introduce the following concept. Given
any graded ring A* with unit, define a ring TA* as the cartesian
product

2% Atk Afx ...
with composition operations
(a s l"" + (b bl"") = (ao+ b al+-bl,...) and
(ao,al,... -(bo,bl,... = (aobo,aobla-alb s8 b+ 81Dy + agh_,...) .
Each element aie.Ai will be ldentified with the sequence
(O,...,O,ai,O,...) in TA®. Whenever no confusion 1is possible, the
sequence (a ,al,...) will be written as a formal sum Bt Byt eee

Let FlA C FA denote the subset consisting of sequences

) with leading term 1. Then T A* is 8 muitiplicative group.

1
As an example, given any commutative ring with unit A and given a

(l,al,ae,...
i Wy
space X, the groups A" = H (X;A) glve rise to a commtative graded
*
A-algebra, which will be denoted by Hh (X;A). The total Pontrjagin

class
=1 + Pyt e+ D = (l,pl,...,pn,o,...)
with coefficients in A of a bundle over X is an element of
Lx

rLH (X;A). Recall (p. 79) the identity
1

p(t®n) = p(¢)p(n)
Lx
holds whenever H' (X;A) has nc 2-torsion.
*
Given any partition w e II(k) and given ac FlA*, where A is

k
commtative, define sw(a)e.A to be Sw(al’aE""’ak .

Theorem 33, The polynomials 5, satisfy the didentity
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W W, = w W,

sw(a'b) = I L9y 8 l(a)-swg(b) ,

to be summed over all pairs wl,we such that Wy w, = Ww.
As an example, for w =k, this formula takes the particularly
simple form:

Corollary 1. sk(a~b) = sk(a) + sk(b).

Given any n-plane bundle ¢, the elements sw(p(g))e Hhk(X;A)

can be considered as new characteristic classes of ¢ .

Corollary 2. The identity
s,(p(t @ 1)) = Z@1w2=‘» sui(P(C))swe(p(n))

holds modulo 2-torsion.

Now consider a compact, oriented, differentiable manifold M.
For each w £§(k), define a new characteristic number by the formulas

s IM'] =0 if n £k

s, 0 =0 < (p(%)), 0, >

These numbers are linear combinations of the Pontrjagin numbers, and
conversely the Pontrjagin numbers can be expressed as linear combinations
of thsse. However the new numbers satisfy a very simple product formla.

Corollary 3 (Thom).

Sw[Mlx M2] = %ﬁﬁbz o %%FMI]SwQ[M2]°

Note that most of the terms on the right drop out for dimensional

reasons. For example:
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Corollary 4, If M, eand M, both have positive dimension

then
sk[M1><M2] = Q,

The characteristic numbers sk[Mn] will turn out to be particu-

larly important.

2 2.2n+l
" )

C), since p = (1+q , the

Example. For the manifold P

class p; can be considered as the 1-th elementary symmetric function in

o
O?,...,Of. Hence sk(p) is equal to

z:(a/?)k = (2n+l)012k .

In particulaxr
”
s [P7(C) ] =e2n+1 # 0.

It follows from Corollary k4 that Pgn(C) cannot be expressed as a product
of positive dimensional manifolds,

Proof of Theorem 33. Consider the special case A" = Z[tl,...,tgk],

a = (1+tl)-='(l+~tk), b = (l+¢;k+l)--‘(l-+t2k),
where the ti are algebraically independent of degree 1, Then the elements
al,...,ak and bl""’bk are algebralcally independent. Hence if

Theorem 33 18 true in this gpeclal case, 1t will be true universally.

i i
1T = . l T
Let w il...ir . By definit{;n Bw(? b) 18 equal to Ztl ...tr .
Each term of this sum has the form t 1‘-'-ta T where oi,...,a} are
‘ T
digtinct numbers between 1 and 2k. Let wl be the partition formed by

those exponents 1q such that 1 < aq < k, and let w, be the partition
formed by the remaining iq. The sum of all the terms corresponding to a

given decomposition w = W) W, is clearly Just

sq‘a)swib).

o
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Since every such decomposition occurs, this completes the proof.
Corollaries 1, 2 and 4 are clear.

Proof of Corollary 3. For 1 =1, 2 the tangent bundle Ty of

Mi’ together with the projection Mlx M2 —_— Mi’ induces a bundle gi
over Mi. The tangent bundle 1 of Mlx M2 may be identified with the

sum gle>§2 . Hence Corollary 2 takes the form

s, (p(7))= Zwlw2=u) Squ( Tl))swe(p(r2 )) (mod 2 torsion).

The fact that the Kronecker index with integral coefficients ignores

torsion, together with the identities Bo= Hlx Ko and

<ax B, Ky X p2> = <a,pl>< B,p2> s

completes the proof,

5. Linear independence of Pontrjagin numbers.

The object of this section will be to prove the following theoremn,
which shows that the x(n) Pontrjagin numbers of a general Yn-manifold

satisfy no linear relations.

Theorem 3%, (Thom) The x(n)X n(n) matrix
23 2J
Ipy-op, [P L(C)x - x P8() 1|,
1 T
where il...ir and Ji-+-J, range over II(n), is non-singular.
Remark, In place of the :ani )lds PQ(C), PA(C), ... one could

substitute any sequence MA,MB,... of manifolds which satisfy the

conditions sk[Muk] #0.
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Example. For n = 2,

25

]
’._J
(0]
H’d
n
Lauen
lav}
3
~—~
@]
g
i

p2rp?(c) x P2(c) )

pe[PQ(C)X PE(C) ] (c)1 =10,

it
\O
ke’
av}
las)

8o that the determinant is -45# 0. It is evident that the direct
approach of simply computing the matrix will not help much in the general
case,

Proof of Theorem 34, In place of the Pontrjagin numbers themselves

we will use the linear combinations sw[M]. The following formula is a

direct generalization of Theorem 33 Corollary 3.

(1) 5 MMy X oo XM ] = Z‘*’l""”rz‘" swl[Ml]---swr[Mr] .

Suppose that the manifolds M,,...,M  have dimensions hil,.,.,hir

respectively., Then the term

Swf Ml]... der[Ml‘]

is zero unless w, e (1

1 PRRRPTAN I{(i_). This proves:

l) T

(2) 8 [M;X+++xM ] =0 unless w is a refinement of 1i....i .
w L r 1 r

For the special case w = il...ir the formula becomes

(3) Sil”'ir.[MlX“.XMr] = sil[MlJ '--sir[Mr] s

since all the other terms are necessarily zero.

Now choose some sequence Mu,MB,...,Mlm of manifolds such that
hi, . _
5, M} £0 for 1 =1,2,...,n. Let M,
b1, by, 1" r
manifold M X +++XxXM .

denote the product

Then we will prove:

{(4) the matrix I‘Sw[Mw‘] I is non-singular.

w,w' eIl (n)
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In fact let wl,;..,wﬂ<n) denote the partitions of n,
numbered so that, if wj is a refinement of W s then ] > k.
Assertion (2) implies that

Bw; ka] =0 for J <k,
while (3) implies that

splM,] #0.

wj 3

Thus the matrix is triangular and nonsingular. This completes the

proof of (4), and therefore of Theorem 34, for the PyeeeDy [Mw'] are
1 r

linear combinations of the Sw[Mw'J so that dependence of the

former would imply dependence of the latter.

XIV. Cobordism

This chapter will give a bresentation of the cobordism theory of

Thom [23].

1. The ring Q*.

All manifolds considered are to be compact, oriented and differ-
entiable unless otherwise stated. The word "differentiable" will always
mean "differentiable of class (™", We construct an operation of
addition among manifolds of the same dimension:

n n n n

Definition. M1 + M willl represent the disjoint union Ml v M.

—_— 2 2
It is natural therefore to write kM for the union of disJoint
copies of Mn, k > 0. Further define -M" to be the same manifold but
with the opposite orientation.

This sum operation has a zero element: namely the vacuous manifold.

Note however that Mn—Mn 1s not equal to zero.
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An equivalence relationship between manifolds of the same

dimension is defined as follows (as was indicated briefly on p. 19):

Definition: Mn is a boundary if there exists a compact, oriented,

n+l
differentiable bounded-manifold B whose boundary is M*. The induced
differentiable structure on the boundary M should coincide with the
differentiable structure originally given. [The differentiable structure

on Bn+l may be specified by a coordinate system {(

n+l
)

U ,fa) } where

1) the U, @are open sets covering B

2) each fa:Ud —> Rn+l is a homeomorphism, either onto Rn+l

or onto a closed half-space; and

3) for each «,B the composition

-1 n+1
fafB : 5

1s differentiable (i.e.can be extended to & differentiable map defined

(U nU ) —> g%

on a neighborhood of fﬁ(Ua nU, )). For further details see [12]

p
Appendix 1, ]

Definition: B T (read; M. and M> belong to the same
— 2

2

cobordism class) if M{l— Mgl is a boundary.

It is clear that this relation is reflexive and symmetric; that

it ds transitive can be seen using the obvious construction. If Blg+l

n n +1 n n n+l
has boundary M1 - M2 and B, 3 has boundary M2 - M3 , then B12
and B 3 are identified along the common boundary h%?. The resulting

structure can be smoothed out to give a C”-manifold whose boundary is
Nhé— M;l. (See [12] Appendix I, Lerma 4.) If we denote by + the
Operation on equivalence elasses induced by the operation + on the

.

manifolds, the classes form an abelian group Qn under +,. Qn is the

cobordism group in dimension n.




A bilinear pairing from o™ and o to g is defined by
th d S Ve —> mx M2 Thus the sequence
e correspondence Ml M, M1 - us q
*
Q = (QO,Ql,QE,...) of cobordism groups has the structure of g graded
ring. It 18 easily verified that M£n>:M51 is isomorphic (as an
oriented manifild) to (-l)mnM2n><b5?. Thus the cobordism ring is
anticommitative,
The Pontrjagin numbers provide a basic tool for studying this
cobordlsm ring.

Theorem 35 (Pontrjagin). If M' 1is a boundary, then every

Pontrjagin number Dy-eeBy [Mn] is zero,
1 r

Proof: The argument is completely analogous to that on page 17.

Since the identity

P,evePy [Mo+ M) =pi.auup ] +pye..p;, [M.]
11 ir 1 D il iJMl il ir 2

18 clearly satisfied we have:

Corollary 1. For each il...ireII(k) the correspondence

Ly by
M™ —> py.oup  [MT]
1 T

defines & homomorphism of Quk into Z.
Comparing Theorems 34 and 35 we have:
Corollary 2: The manifolds

21
Pgil<c) X +++xP T(C)

with il...ire_ﬁ(k) represent linearly independent elements of the
Ly Lx
cobordism group Q. Hence the group § bas rank > x(k).
The principal object of Chapter XIV will be to show that this is
n

& best possible result. (That is Qhk has rank exactly sx(k); while @

has rank zero for n # 0 (mod k), )
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[Remark. The actual structure of the first few groups 1s the
following:

Q° = Z, since the only O-manifolds are finite sets of points,
and the algebralc number of polnts determines the cobordism class uniquely.

=0 =0 = 0. It is well known that every l-manifold or
(orientable!) 2-manifold bounds. The corresponding assertian. for
3-manifolds is non-trivial.

th Z generated by the complex projective plane PE(C).
5 6 8 2(

= ZE’ Q= Q7= 0, Q0 =72+7Z generated by P

For further information see Dold [1] and Milnor [13]. ]

4

0 c)xpg(c) and P (C).

2. 'The Thom space of a bundle.

Let { be an n-plane bundle over a compact base space B(t). By
the Thom space T(g) will be meant the one point compactification of the
total space E(f{). The base space will be identified with the subset of

E(g) corresponding to the zero cross-section. Thus we have

B(g) C B(£) C T(8).

The point at infinity will be denoted by to.

Remark 1. The following alternative definition is sometimes
more convenient. Choosing a Riemannian metric, let E' denote the sub-
space of E consisting of vectors of length <1, and let Eé denote
the subspace of unit vectors. Define T' as the identification space

1
E'/EO . Then the correspondence

V—> /(17 )
gives rise to a homeomorphism

h: T'-> T.
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Remark 2. Thom's notation is as follows. ILet G be a closed
subgroup of the orthogonal group On’ and let { be the n-plane bundle
assoclated with a universal bundle for G. Then Thom denotes T(t) by
M(G).

The following two lemmas describe the structure of the Thom space.

Lemma 1. If B({) is a finite cell complex then T(¢) is an
(n-1)-connected finite cell complex.

Proof. For each open g-cell e of B, the inverse image
< 1(e)(: ECT is an open (n+q)-cell. TIf the cells [ei} cover B then
the cells {n-l(ei)}, together with the point to’ cover T. Note that
there are no cells in dimensions 1 through n-1.

Let D? denote the unit ball in R%, and let £:0% —> B be a
characteristic map for the cell e. The induced bundle 1 over p? is

g n

necessarilly a product bundle Dq X Rn :)Dq,\ . Hence the composition of

the natural maps
p¥x D= B (n) — w(¢) —> 1 (t) B m(t)
gives the required characteristic map for n~l(e). This completes the
proof,
Lemms 2. If ¢ 1is an oriented n-plane bundle, then each cohomology
group Hn+k(T(§),tO) is isomorphic to Hk(B(g)), h > 0,

Proof, There are natural isomorphisms

) —2 HD+k(E,EO) <gxedslon ymtk n m gy
(See the appendix for the details of ¢.)

Since the space T-B is contractible to the point to’ this last group

can be replaced by Hn+k(T,tO), which completes the proof.
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3. Regular values of differentisble maps.

Let W be an open subset of euclidean space Rn, and let
f: W—> Rk be a differentiable map.

Definition: A point yeiRk is a regular value of if, for

each x«sf—l(y), the Jacobian matrix

|38, ) /s, |

hes rank k. (The case f~l(y) vacuous 1is not excluded. For example if
n<k then y 1s a regular value only if f_l(y) is vacuous.) More

generally, for any subset ( of W, we will say that y is a regular value

of f|C 1if the Jacobian matrix has rank X for all x ef—l(y) nC.
Motivation for this definition is provided by

1

(

Lemma 3. If y is a regular value of f then f ~(y) is a

differentiable submanifold of W, with dimension n-k.

Proof. This follows immediately from the implicit function thecrem.
(See for example, Graves [6] p. 138.)

The following extremely delicate theorem shows that regular values

exist.

Theorem of Sard. If f:W —> R* is differentiable (of class C~)

then the set of all y’eRk which are not regular valﬁes has measure zero.
For thce proof, see Sard [15].
The following lemma is based on this theorem. ILet C Dbe a com-
pact subset of W, and V a neighborhood of €, with V compact CW.
Lemma L4, Given any differentiable map f:W —> Rk, and given

€ > 0, there exists a differentieble map g:W —> Rk such that
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(1) g|C has the origin 0 as regular value;

(2) g coincides with f outside of V; and

(3) e (x)-1,(x)| <e,|2g <x>/ax3- o3 0 fae, | <e

for all x 1n W, all 1 <1<k, and all 1< Jj <n.

Proof. TLet A:W —> R be a differentiable function which takes
the value 1 on C and the value 0 on W-V. (See Steenrod [20] p. 26.)
If y 1is any regular value of f, then the function g defined by

g(x) = £(x) - Mx)y

will certainly satisfy conditions (1) and (2). But, according to the
theorem of Sard, the vector y can be chosen arbitrarily close to the
origin., Hence condition (3) can also be satisfied.

Finally, the following will be needed:

Lemma 5. Let C again denote a compact subset of W, and
g:W —> Rk a map such that g]C has 0 as regular value. Then there

exists g > O such that, if h:iW —> Rk satisfies

oy (-, (x) | <e, |dny(x)/ ax, - agi(x>/ax‘j | <e

for all x eC, then th also has O as regular value,

The proof is straightforward.

4. Transverse regularity.

Let f:M —> M' be a differentiable map, and M" a submanifold

Definition: f 1s transverse regular on M'" if, for each yeM"

snd each xe f_l(y), the induced map from the tangent vector space at

X to the normal vector space at y
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! H n
F > F >F /| F
X Y vy’ Yy

is onto. (Notice in particular that dim M > dim M'- dim M" if f£(M) inter-
sects M", and 1f n= n'- n" then f(M) must be normal to M" at the intersections.)
Using Lemma 3 it 1s not hard to see that the inverse image f—l(M”)
1s a differentiable manifold of dimension n-n'+ n", providing that f
is transverse regular on M".
Consider the following situation: Let M° and B be compact
differentiable manifolds, and let ¢ be a differentiable k-plane
bundle over B. That 1s we assume that the total space E has a differ-
.entiable structure compatible with the bundle structure. Then B is a
differentiable submanifold of E with normal bundle equivalent to (.
Theorem 36. Every map f:M —> T(¢) 1is homotopic to & map h
which |
(1) is differentiable on h-l(E) (i.e. where ever differentiability
makes sense); and
(IT) is transverse regular on B.

Proof:  First choose a map fO:Mn —> T(t) which coincides with

f on f'l(to), and which is differentiable on f’l(E). (Compare Steenrod

[20] §6.7.) TLet [BJ} be a covering of B by coordinate neighborhoods.

Thus the bundle { restricted to B, 1is equivalent to B, X Rk, and the

J J
projections of BJ X Rk into the two factors correspond to maps
-1 -1 k
IR B,)— B e B,) — R .
() =B, ,  pyxt(3,)

Choose a covering of f;} B by open sets wl,...,wm<: f;l(E).
These sets should be small enough so that

1) each wi is diffeomorphic to an open subset of Rn, and



2) each fo<wi) is contained in n—lBJ for some J = j(1i).

Choose smaller open sets Ui’vi with

uCvy, vCw

so that the union U =U +es vU  still contains f;lB.

iu
Now Lemma 4 will be used to construct a series of modifications

fl,...,fm of fo. Fach fi will colncide with fi—l except on Vi' Each

projection xf, :f'l(E) —> B will coincide with xf_ :f‘lE —> B. Thus
to construct these modifications, it is only necessary to construct maps

Wi _ Rk which colncide with the composition gy of

W — > R

i

£, W ) 0
i-11"1 l(Bg) 3 k

outside of V,j where J = J().

Assume by induction that £ :Mn-—~%> T(g) has been defined, as

i-1
above; so that

1) fi-ll Uyv...ulU, ; 1s transverse regular on B, and
-1
2) £, ,BCU.

For the case 1 =1, both conditions are certainly satisfied. Consider
the composition 8y above, carryling Wi into Rk. Choose an approxi-
mation g,':W, —> Rk, as in Lemma 4, so that

(a) g£ ]ﬁ; has the origin as a regular value,

(v) g{ coincides with g, outside of Vv,, and

(c) the approximation is sufficlently close so that

, —
&4 l (UixJ...u Ui—l

Lemma %); and so that gi'(w

)nW, has the origin as regular value (making use of

i

i-IJ) does not contain the origin.

Now define fi by the condltions
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-1
thi(x) = nfb(x ) for all xe £ (E)
- !
pin(x) = gi(x) for 8ll xe W,
il = .
i(x) fi—l(x) for all x¢Vi

Conditlons 1) and 2) above are clearly satisfied, since regularity of
the gi corresponds to transverse regularity of the fi along B, The
required map h:Mp —_ T(g) is now given by h = fm. The conditions that:
1) fmlff is transverse regular on B, and
2) r-1g C u;
m b
guarantee that fm is transverse regular on B.
Remark: Suppose that Mp 1s an oriented manifold and that t 1is
-1 Mn
an oriented bundle. Then the manifold h™(B)( has a standard
orientation induced as follows:
(1) The map h 1induces a bundle map of the normal bundle Vk
of h-l(B) in M® into the normal bundle of B in E, which is equivalent
to { . Hence vk is oriented.
(2) For any submanifold there is a bundle map

P s B

Hence 1f the tangent bundle 1 and the normel bundle vk are oriented,
there is an induced orientation for Tn—k.

Lemma 6: Let f and g be homotopic maps of M® into T(t) which
are both differentiable wherever possible and both transverse regular on
B.  Then the oriented manifold f—l(B) and g_l(B) belong to the same
cobordism class,

Proof: The homotopy will give the bounding manifold. That is,

choose a homotopy
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h : Mx [0,5] —> T(¢)

so that ho(x,t) = f(x) for t <2, ho(x,t) = g(x) for t > 3,
and s0 that h_ 1is differentiable on h;l(E).

Then, Just as in the proof of Theorem 36, hO can be approximated
by a map hm which 1s transverse regular on B. Furthermore this
approximation can be chosen so that hm(x,t) = ho(x,t) for t <1 or
t >k,

[Choose the open sets W1 in Mn><(l,H) 80 as to cover the compact
set h;l(B) X [2,3]. Then the argument of Theorem 36 shows that b
wlll be transverse regular over MnX [2,3]. It is only necessary to
choose all of the approximations close enough so that transverse
regularity 1s not lost on the remainder of Mnx [0,5] ]
The inverse imsge hm-l(B) will then be the required bounded-manifold

with boundary diffeomorphic to g_l(B) -i‘—l(B).

5, The main theoren,

In the place of the manifold M~ of the previous sectlon, sub-
substitute the (n+k)-sphere.

Lemma 7. ILet gk be an oriented differentiable k-plane bundle.

The correspondence which assigns to each transverse regular map

f:Sn+k _ T(gk) the manifold f_l(B(gk)) gives rise to a homomorphism

A of the homotopy group = (T(gk)) into the cobordism group &.

n+k

Proof; Theorem 36 and Lemma 6 imply that every element of the

homotopy group corresponds to a unigue element of the cobordism group.

It is clear that this correspondence is a homomorphism.
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Now consider the universal bundle ;k of orlented k-plares
through the origin in k+h-dimensional Fuclidean space (see p. 59).
The main result of cobordism theorem i1s the following:

Theorem of Thom. If k and h are sufficiently large, then the

homomorphism

~k n
K.nn+k(T(7h )) —> a

1s an isomorphism onto.

(Thom's notation for T(;E) is M(SO(k)). ), Thus the computation of

the cobordism group is reduced to a problem in homotopy theory. For

our purposes it will be sufficient to prove half of this theorem.
Lemma 8. For k,h >n the homomorphism

~K n
k:nn+k(T(7h)) _ 0

is onto,

Proof, Start with any msnifold M. According to Whitney [28],
M can be imbedded in Rn+k providing that k > n. Let vk denote
the normal bundle and Ee(vk) the subset of the total space consisting
of normal vectors of length < g . Here € should be small enough so

that the correspondence

e

normal vector > end point
defines a diffeomorphism e of Ee(vk) onto & neighborhood U of M°.
Deflne a map
£ RME s p(yF)
transverse regular along Mn by

f(x) =t, for x gdu

f(e(¥)) = :\?/(E_Hw?”) for e(v)eU .
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Tet g:vk —_ ;ﬁ be the generalized .Gauss map, defined by the

correspondence

normal plane —> parallel plane through origin
(see p. 22-23) and let
k ~k
g (V) —> T(7 ")

denote the induced map of the Thom space. Then the composition

n+k ~k
gl R — T(yn)
is clearly transverse regular on B(;nk) = 5k n " Furthermore the
b

inverse lmage is

f_lg -1(5

T k,n) =M.
Now replacing euclidean space by its one-point compactification Sn+k,
this completes the proof that
~k n
x.xn+k(T(7n ))—> q

is onto. The more general case h > n 1s easily handled by the same

method.

6. Homotopy and cohomotopy groups modulo & .

Let &€ denote the class of all finite abelian groups. A homo-
morphism
h:A —> B
between abellan groups is called a Cz—isomorphism if the kernel and

cokernel ( = B/hA) belong to & . (This concept is due to Serre [16].)

Lemma 9. Let X be a finite complex which is (k-1 )-connected,
Then the Hurewicz homomorphism

¢*:nT(X) —> H_(X;2)
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is a C:-isomorphism for r<2k-2,

Instead of giving a detailed proof, it is sufficient to observe
that this Lerma is dual, in the sense of the Spanier-Whitehead duality
[19], to Lemme 10 below.

If X 1s a finite complex of dimension < 2n-2 then the set of
all homotopy classes of maps

£:X —> 8"
form a group nn(X), called the n-th cohomotopy group. The "co-Hurewicz

homomorphism"
*

¢ s (X) ——> Hn(X;Z)
is defined by
(£) —> £X(")
where o@ generates Hn(Sn;Z). (For further details see [18].)
Lemma 10 (Serre): The homomorphism
¢ i (X) —> HN(X;2)
is a C?-isomorphism (for dim X <2n-2).
For the proof see Serre [16].

Applying Spanier-Whitehead duglity, Lemme 9 follows.,

¥*
7. The structure of § modulo Ci

By the rank of an abelian group is meant the maximal number of
elements which are linearly independent,
Theorem 37. The cobordism group Qn is finitely generated and

has rank
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n(s) for n = bs
O for n# 0 (modulo 4).

The proof will be based on

Lemma 11: Assume that k and h are sufficiently large. Each
of the following groups is finitely generated, and has rank n(s) or 0
according as n = k4s or n # 0 (mod'k):

(1)  the cohomology group Hn(ék,h;z);

(2)  the cohomology group Hn+k(T(;Hk);Z) ;

(3) the homology group Hn+k(T(;£k);Z); and

~ k
()  the homotopy group “n+k(T(7h )).

Proof. Assertion (1) follows from Theorem 32. According to
Lemma 2 the cohomology groups of the Thom space are lsomorphic to those
of the base space; with a dimension shift. This proves (2). Assertion
(3) now follows from the universal coefficlent theorem, together with the
fact that T(?hk) is & finite complex (Lemma 1). Assertion (4) now
follows since the Hurewlcz homomorphism is a t:—isomorphism (Lemma 9).

Proof of Theorem 37, According to Lemms 8, Qn 1is a homomorphic

image of ﬂn+k(T(;hk)). Therefore & 1is finitely generated and
rank QMB < =n(s), renk 2" =0 for n # 0 (mod 4).
But according to Theorem 35 Corollary 2;
rank th > n(s).
This completes the proof.
Now consider the tensor product of O* with the rational numbers,

The argument shows that the vector space Qu88>Q has rank ﬁ(S), and alsc

gilves an explicit basis: namely the set of products
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P 7(C)x-++xP “(C), 10001 el(s) .
T

This proves:

Corollary 1. The algebra 0*¥® Q has the structure of a poly-

nomial algebra generated by the complex projective spaces Pgi(C), i=1,2,... .,

Corollary 2, If all of the Pontrjagin numbers of M® are zero, then

some multiple khdn, k>0, is a boundary.
For otherwise there would be too many linearly independent elements

of Qn.

Remark  Thom has made the following conjecture (unpublished). If
all the Pontrjagin numbers and the Stiefel-Whitney numbers of M> are zero,
then M 1is & boundary. This conjecture is supported by the fact that Qn
has no odd torsion (Milnor [13] ), that is, 1ir M" 15 not a boundary, no
odd multiple bounds. (Note that Thom has Proved a weaker statement 1if we
ignore questions of orientation (p. 18): if all the Stiefel-Whitney

numbers are zero, then M" is an (unoriented) boundary. )

XV  The index theorem

The material in this chapter 1s due to Hirzebruch [7], [9].

1. Multiplicative sequences,’

Let A Dbe a fixed commitative ring with unit. (In the main
application A will be the rational numbers, )

Review of Chapter XIII. The symbol A* will stand for s graded

commitative A-algebra with unit. To each such A* corresponds a group

FlA* with elements

a = (l,al,ag,...) =ltaj+a,+ 0.



112

For each well(n) there is a polynomial
. n
sw.FlA -—> A,

which satisfies the product formula of Theorem 33.

Consider a sequence of polynomials

Kl(xl), K2(xl,x2), K3(xl,x2,x3), cee

with coefficients in A such that, if the variable Xy is assigned
degree 1:

(1) Each Kh is homogeneous of degree n.

Then given A* as above and given a,efiA*, define a new element
K(a) e I{A" by the formula

K(a) = (l,Kl(al), Kg(al)az.):'“ )

Definition: {Kh} 18 a multiplicative sequence of polynomials if the

identity
(2) K(a-b) = K(a)'K(b)
. is satisfied for all A¥ and all a,b e]&A*.
[Examples.(I) Given any constant AN e€A the polynomials

n
Kn(xl,...,xn) = Nx

n
form a multiplicative sequence., The cases A\ = +].(identity map) and
A = -1 (compare Theorem 28 p. 77) are of particular interest.

(IT) The identity k(a) = o=t defines a multiplicative sequence

with

= _ .2
Kl(xl) = -x) Kg(xl,xg) = %7 -%,,

_ 3
K3(xlx2,x3) = XU 2x) %, - X3, ete.

These polynomials describe the relations between the Pontrjagin classes



113

of the tangent bundle and normal bundle of a manifold in Eucllidean space.
(III) The polynomials Konsl
2

KEn(xl""’XQn) =X - 2Xn—lxn+l

:O’

T FAGXy ) T Sy,

form & multiplicative sequence., (Compare p. 82). ]

The followlng theorem glves a description of the set of all possible

multiplicative sequences., Consider the polynomial ring A [t], with
degree t = 1. Then T, A[t] is the set of all formel power series

1
ﬂt)=l+%1t+x2t2+ cee

with coefficients in A . In particular 1+t 1s an element of
r, At].
Theorem 38 (Hirzebruch). Given a formal power series
£{t) eIE.A[t] , there 1s one and only one multiplicative sequence (Kn)
satisfying the condition

K(L+t) = £(t).

(The condition K(1+1t) = £f(t) is equivalent to the condition that the
coefficient of xfl in each K (x),...,x ) be A ).

Definition . ‘{Kn} will be called the multiplicative sequence
belonging to the power series f(t).

[Examples. The three multiplicative sequences mentioned above
belong to the power series l<+kit, 1-t+ te- +++0, and l+~t2
respectively.]

Remark. Suppose that {Kn} belongs to £(t). Then the
ldentity

K(l4—al) = f(al)

holds for any A* and any ale;Al. However this identity 1s no longer

true if something of degree % 1 is substituted for al.



114

Proof of existence. Gilven

£(t) =1 + M+ >\.2t2+
define
Kn(xl,...,xn) = %nen(n) xil.., xir Sil"'ir(xl""’xn)’ where
= = Ay e e
w=1...1 € I(n). Introducing the abbreviation }\.il,,,ir }\11 10

this means that
K(a) = Zn 2(.0 €H(n) }\.wsw(&)

or

Zxaxs (a)
ww W

where the summation 1s over all partitions of all the integers. Now

K(a*b) = Z x 8 (a b) =2 A X B s (a)s (b)
W w wlwz-w Ldl 0.)2
= A (a)s N 8 (b)
Wi kp=w ) Wo %

= L A 8, ()% s, (b)
") (A)l (;)2)\(02 0.)2

where again the summations are over all partitions of all the integers.
Hence

K(a*b) = K(a)-K(b).

For the special case a = 1+t, note that

s (L+t) = { if w=k

if W = il-.oir, r > lo

Hence K(1+1t) =1 + Z:kkt, = f(t), as required.

Proof of uniqueness. Consider the special case A*= A{tl,...,tn]
where the ti are algebralcally independent of degree 1, and

0=(l+tl)v~(l+tnL
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Then

K(o) = K(1+t ---I((l+tn) = f(tl)--- f(tn).

1)
Teking the homogeneous part of degree n, i1t follows that Kn(ol,...,on)
is completely determined by the power series f(t). Since 0yseevs0y
are algebraically independent, this completes the proof.

Remark. Hirzebruch has given the followlng, more convenient,
description of {Kn} in terms of f(t):

Assertion: The coefficient of xii.. xir in Kn(xl,...,xn) is
equal to sil,,,ir(xl,...,kn).

Comparing this with the uniqueness proof above, the following

identity 1s obtained

Kn(xl,...,xn) T hjeeedy By -.ir<X1”"’xn)

1 r "1’

= 3 sjl".JkO\.l,...,}\n)xji..xjk .

This evidently expresses a symmetry property of the collection of poly-
nomials s .
w
Definition: Given any multiplicative sequence {Ki(xl,...,xi))
with rational coefficients define the K-genus K[Mp] of a (compact, oriented,

differentiable ) manifold to be zero if n is not devisible by 4 and

L"S _ /
KS[M ] =< Kg\pl,...,ps), My >

for n = hs, where the Py denote the Pontrjagin classes of the tangent
bundle,

Egggg 1. The correspondence M -—> K[M] defines a ring homo-
morphism from the cobordism ring 0¥ to the rational numbers. (Or an

algebra homomorphism from Q*@)Q to Q.)
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Proof. It is clear that this correspondence 1is additive, and
that the K-genus of a boundary 1is zero. For a product manifold M x M'
with Pontrjagin class pxp', we have K(pxp') = K(p)xK(p'), hence

<K(pxp'),nxp> =<K(p),p><K(p'),u'>,

which completes the proof.
Remark: The converse is not hard to prove: Any ring homomorphism

of — Q 1is gilven by the K-genus for some uniquely determined K.

2. The index theorem

The index I of a manifold M is defined to be zero if n 1s not
a multiple of 4, and as follows for n = ks, Choose a bhasis oi,...,o%

for HQS(M S}Q) 50 that the symmetric matrix

” < ai Vaj’ H)-#S > ”

is diagonal. Then II(MMB) 1s the number of positive diagonal entries
minus the number of negative ones (l.e. the signature of the quadratic
form in the usual terminology). The following three properties will be

needed;

i

(1) 104+ M) = 1(m) + I(M,),

It

(2) TMx M) = 1(My) » T(M,)

(for the proof see Hirzebruch (9]1), and
(3) 4f M is a boundary then TI(M) = O.

(The proof, due to Thom [22], 1s based on the Poincaré duality theorem).

In other words I gives rise to a ring homomorphism from Q* to the integers.
Remark, Although these properties will be needed only for differ-

entiable manifolds, they are true for much more general (compact, oriented)

manifolds.



Theorem 39 (Hirzebruch). Let [Lk<pl""’pk)) be the multi-
plicative sequence of polynomials belong to the power series

- 1 1.2 ... k-1 2 k..
Jt/tatht-1+-3—t-H5t + +(-1) Gy Bt

Then the index I of any (compact, oriented, differentiable)
manifold Ml‘Lk is equal to the IL-genus Lk[Myk].

(Here B, denotes the k-th Bernoulli number: B, = 1/6s By = 1/30, +ov -

T™e first three polynomials are

1

_ 1 2 . 3
Py L2—4—5(7p2-pl ), L= 5 (62p3-l3p2pl+ 2py7) een)

w} -

le

Proof. Since both I and L[ ] define algebra homomorphisms

2% Q@ —> q,

it is sufficlent to check this assertion on a set of generators for the
algebra 0¥® Q . According to Theorem ¥ Corollary 1, such a set of
generators 1s provided by the complex projective spaces ng(C). Since

2 q
H k(ng(c);Q) is generated by ok, with < o o Ok, > =+1, 1t

follows that the index of ng(c) is +1 .
Recall that the Pontrjagin class p of ng(C) is (l+'02)2k+l.
(See p. 82.) We have
L(l+a’2+o+ «vo )= o/ tanh a ,
and hence
L(p) = (a/ tanh oz)gk+l
2k

The Kronecker index < L(p), My > is equal to the coefficient of «

in thils power series. Replacing « by the complex variable =z, this

2k+1

coefficient can be evaluated by (1) dividing by 2ni1z° and (2)

integrating around the origin. But the substitution wu = tanh z shows
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that
dz du 1 2
§ — o 95 =9 Cowie oo ja = 2xt .
(tanh z) wFHL 1 42) e 3ot

Therefore < L(p), My > = +1, which completes the proof.

Corollary 1. The L-genus of any manifold is an integer.
The index I is an integer by definition. In other words the
Pontrjagin numbers of any manifold satisfy congruences:
p '] = 0 (mod 3),

7p2[M8] - plE[MB} = 0 (mod 45), etc.

Corollary 2. The L-genus of & manifold is a homotopy type in-
variant of the oriented manifold, since I 1is a homotopy type invariant
by definition. It is likely that the Pontrjagin numbers themselves are
not homotopy type invariants. (The Pontrjagin classes are definitely not

homotopy type invariants: see Chapter XVI § 5.)

Unsolved Problem: Is the L-genus the only linear combination of

the Pontrjagin numbers which is a homotopy type invariant over the integers?

3. An axiomatic description of characteristic classes,

This section will sketch another application of multiplicative
sequences, without giving detailed proofs. For further Information see
Wul[29] as well as [7].

Lemma 2, Let A be an integral domain containing % . Then the
cohomology algebra

H*(Gn; A)

of the real Grassmann space is a polynomial algebra generated by
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Pl(7n))"')P[n/2](7n)

Proof. This follows from Theorem 32, together with the fact that
Gn is a 2-fold covering of Gn’ and the fact that the Euler class
changes sign when the orientation of a bundle is reversed.
It follows that characteristic classes with coefficients in A
can only be defined in dimensions divisible by L.
Let {Kn} be any multiplicative sequence with rational coefficients.

Then the forimilas
K, (8) = K (2 (8), 00,0 (0)),
clearly define "characteristic classes" of ¢ with the following properties:
(1) For each real n-plane bundle { over a paracompact base B, the
classes kn(g) eHAn(B;A) are defined.
(2) the operation ¢ —> kn(g) is natural with respect to bundle
maps; and

(3) the sum Xk =1 +ky+ «eo eFlH*(B;A) satisfies

k(te 1) = k(t)k(n).

The following converse is easy to prove. Consider the 2-plane

bundle gRl over P7(C). (Compare pages 63, 75. The total Pontrjagin
class of gé‘ is l+»02, where o? has dimension L4,)
Lemma 3. Suppose that an operation k satisfying (1), (2), (3)

1s given., Define a formsl power series f(t) by the condition
2 1
£(d7) = k(gg )

and let [Kn} be the corresponding maltiplicative sequence. Then

K, (6) = K (0, (8),...,p_(€))

for all ¢,
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As an example for any odd prime q, consider the reduced q-th

power operation

@: 1w (x52,) —> Hr+21(q'l)(x;zq).

In analogy with Thom's definition of Stiefel-Whitney classes (p. 35) 1t

is natural to define a characteristic class

Qi(é)eﬂzi(q'l)(B(C);Zq)
by the fdentity @ (t) = ¢ @ 4 (1).

Theorem (Wu) This characteristic class Qi(C) is equal to

K, (p(¢)) mod q where (K,} 1s the multiplicative sequence over
51(a-1) J
2
Z  corresponding to the power series
%(q-l)
f(t) =1+t

[Thus for q =3, Q(f) = p, (£); and

— ——t 2 L L N 3
for q= 5} Qi - pi - Epi_lpi+l+ + 2P21 ]

The proof 1is not difficult.

Remark Just as in the mod 2 case 1t can be shown that Qi(rn),
for the tangent bundle T of a manifold, is a homotopy type invariant,
(Compare Theorem 17 p. 55.) In fact

1 2
Y =Vt OV @V ot e
where Vj is characterized by the identity <Gja, pn> = < auVJ, p.n>

for all a‘an~23(q—l)(Mn;Zq). As indicated earlier, less 1s known about
the existence of linear combinatlons of the Pontrjagin numbers which are

homotopy type invariants with integral coefficients.
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XVI Combinatorial Pontrjagin classes.

For any triangulated manifold K" Thom [25] has defined classes
£ie Hui(Kn;Q) which are combinatorial invariants. In the case of a
differentiable manifold, suitably triangulated, these coincide with the
Hirzebruch classes Li(Pl""’pi) of the tangent bundle . Since
the equations £ = Li(pl""’pi) can be uniquely solved for the
Pontrjegin classes: 7

=38, By = B(M5a,-907)

it follows that the rational Pontrjagin classes pi(rn)e:Hhi(Mn;Q) are
combinatorial invariants. (This remark depends on the fact that the co-
efficient of pk in Lk is never zero. See Hirzebruch [9].)

Sections 1 to 4 will give a new version of Thom's construction.
Section 5 will give two applications.

(1) An example is given of two simply connected manifolds which
belong to the same homotopy type, but are not combinatorially equivalent.

(2) an example is given of a combinatorial manifold which does not
possess any differentiable structure compatible with the given combinatorial

structure.

1. The differentiable case.

In order to motivate the definition we will first give a new inter-
pretation for the classes Li(pl’°"’Pi) in a differentiable n-manifold.
The restriction n > 81+ 2 will be needed at first.

Consider a differentiable map f: M® —> Sn-hi of class C.
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Ly

Lemma 1. For almost every point y’eSn_ the inverse image

f-l(y) is a differentiasble manifold MuiC:Mn having trivial normal

bundle.
Here "almost every" means "except on & set of measure zero".

Proof: (Compare Chapter XIV §3.) It follows from the Theorem of

Sard that almost every y'eSn—ui is a regular value of f. But if y

is a regular value then f—l(y) is & manifold (Chapter XIV Lemma 3); and
the normel bundle of f-l(y) maps into the tangent bundle of Sn—hi at vy,
hence 1s a product bundle.

Let ok, w, denote the standard generators of Hk(Sk;Z), Hn(Mn;Z)

respectively, The class Li(pi(fn),...,pi(fn) )eHui(Man) will be

written as Li(rn).
T

Theorem 40: For every differentiable map f:Mp —_— Sn- and
almost every ¥y esn-hi the Kronecker index
<1 (M)t (P, >
n
-1 b
is equal to the index I of the manifold f ~(y) =M ~. In the case

n>8i+2 the class Li(Tn) is completely characterized by this identity.

Proof: Let Thi be the tangent bundle of Mui, and

s e

. 43 n-bi n
the inclusion map., Then J 1s covered by a bundle map 17 @ v —_— T,

n-4i L1
Since the normal bundle v is trivial, this means that Li(T ) 1s
equal to j*Li(Tn). Herice the index

L by

I(M ) —<L1(T ),péﬂ>

, n
is equal to < Li(T ), Jubyy > -

The Poincare dual of the homology class

Iy Myy € Ty (M757)
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is clearly the cohomology class

f*( Un-hi)e-ﬁn—hi(Mnjz)
Therefore

<L), dxn gy > =< (), (M), s

= <L (Mo eGP, s

(For a discussion of cap products, see the appendix. )
This proves the first assertion of Theorem 39,

To prove the second recall that, for n < 2k-2, the group
Hk(Mn;Z) 1s generated, modulo C:, by those cohomology classes of the
form f*(ok), where & 1is the class of finite abelian groups. (This
is a result of Serre [16]. See Chapter XIV Lemma 10.) Now substituting
kK =n-Ui, the restriction n < 2(n-41)-2 becomes n >8i+ 2.

[Remark, As a method for computing Li(Tn), Theorenléﬁfis probably
hopeless. However the following consequence might be useful in studying
cohomotopy groups of manifolds.

Corollary 1. For any element @*(f) in the image of

F M 0R)  PMa;g) |
the Kronecker index
<L (e gt (£), u, >
i1s an integer.
This is non-trivial since the class Li(Tn) is usually not an

integral class., For exemple, for the complex projective space Pm(C),

the class 1+ 1 + L2+ »e+ 1s glven by
1l
2
L) = (o tanh @ty B G8, MeIm o2 b

90
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A typlcal consequence is:

Corollary 2, If m= O (mod 3) then every element of the image

¢*nm'8(Pm(C)) C Hm'B(Pm(c);z) 18 divisible by 9. ]

2. 'The combinatorial case

The following will be a convenient class of objJects to work with,

Let K be a finite simplicial complex.

Definition: K is a (compact, simplicial) (rational) homdlogy
n-manifold if the star boundary of each simplex has the rational homology
groups of an (n-1)-sphere. [This condition can also be rut in the follow-
ing topologically invariant form: for each point xeK the local homology
groups

H (K,K-x;Q)
should be zero for i # n and isomorphic to Q@ for 1 = n. ]

Each component of such a complex K is clearly a simple n-circuit.

(See Eilenberg and Steenrod [k] P. 106.) Hence it makes sense to require

that K Dbe oriented. The orientation may be specified by an element
heH (K;2).

Similarly one can define the concept of a "bounded homology
n-manifold"” K. 1In this case the boundary K is g homology (n-1)-manifold,
and the orientation is specified by p eHn(K,k;Z).

Let Er denote the boundary of an (r+1)-simplex. 'The key lemms
wili be the following

Lemma 2. Let f be a plecewise linear map from & homology

n-manifold K to Zr, r =n-4j, Then:
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(L)  For almost every yex® the inverse image f'l(y) is &
homology 4 j-manifold. Glven orientations for X and Zr, there is
an induced orientation for f—l(y).

(2) The index If‘—l(y) is independent of y for almost all y.
Denote this constant value by I(f). Finally:

(3) The integer I(f) depends only on the homotopy class of f.

Here "almost every" can be taken to mean "except for y belonging
to some lower dimensional complex".

(Remark: There is some analogy between this definition of I(f),

and the definition of the Hopf invariant.)

The proof will be based on:

Lemms 3: Let f:K —> L be a simplicial map and let y Dbelong
to the interior A of a simplex of L. Then f-l(A) is homeomorphic to
ax e ),

(This assertion would be false for a closed simplex. )

Proof. Let Ao""’Ar denote the vertices of A and let

y = tOAO+ cee trAr
(where t, > 0, Zt,= 1). fThen any x ef_l(A) can be expressed uniquely

1

as ,
X =1t "A + crept A
o] r’r
with Ai'€‘f4-<Ai) being points of the boundary of the simplex of K
to which x belongs. The required homeomorphism
f“l(A) <—> A xT “l(y)
1s now defined by

1 e t ' v e !
X <—> (to A+ + b Ar,tOAO + + LAl ).
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Remark: Note that the composition

o) —> axtHy) —> &

is Just the original map. f (restricted to f"l(A) ). Hence f_l(y‘)

is homeomorphic to f-l(y) for all y'eA .

Proof of Lemma 2: (1). Subdivide K and X so that f 1is

simplicial. Assume that y Dbelongs to the interior A of a top dimen-

sional simplex. Then by Lemma 3, A X f_l(y) has the local homology

groups of an n-manifold. Since A has the local homology groups of an

(n-41 )-manifold, it follows easily that f'l(y) is a homology 4i-manifold.

Furthermore, given orientations for A and A X f—l(y), there 1s clearly

).

an induced orientation for f
The remark above stated that f-l(yﬂ is homeomorphic to f-l(y) for
all y'e A . Therefore:
(4) £ y 15 chosen as above, then the index If";L(y‘) is independ-
ent of y' at least for y' in a neighborhocd of .

Now suppose that f and g are homotopic plecewlse linear maps

K —=> Z'. Then they are related by a plecewise linear homotopy
h:K x [0,1] —> .

Subdividing and choosing y € A as above, a similar argument shows that

h_l(y) is a bounded homology manifold with boundary f~l(y) - g_l(y).

Since the index of a boundary is zero, this implies that
(5) If f is homotopic to g, then I f-l<Y) =Z[g—l(y) for
almost all y.
Given f:Kn —> ¥ 1let MY and Yo be any two points satisfying
() above. Let

u:Zr —> Zr



be a plecewlse linear homeomorphism of degree +1 carrying yl into
Yoo Then uf is homotopic to £, hence
1(e a2tz = 1(2712)
for almost all z. Choosing 2z close to Yps 80 that u_lz 1s close to
y,» 1t follows from (4) that
17 ) = 157 ().
This proves assertion (2). Since (3) now follows from (5), this completes

the proof.

Lemma 4, If n > 81+ 2 then the correspondence f —> I(f)

defines & homomorphism from the cohomotopy group ﬂn-hi(Kn) to the
integers.

Proof. It follows from the definition of addition in the cohomotopy
group that (f +g )-l(y) is the disjoint union of f—l(y) and g"l(y),
providing f and g are chosen carefully within their homotopy chasses.
Hence I(f+g) = I(£)+ I(g).

The main theorem will now follow easily:

Theorem 41. For n > 8i+2 there exists a unique cohomology class

hq
2 e B (K5Q)
such that the identity
< 4y wf(a),u> = I(2)
is satisfied for every map f:K —> ZP_ui.

(Here o denotes the standard generator of Hn—hi(zp—hi;z)’)
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Proof': Consider the diagram

ﬂn—hi(Kn) I > 7

¢* inclusion

M) - s g

Since ¢* is a Ci—isomorphism (Chapter XIV Lemmsa 10), the bottom
arrow can be filledwin uniquely. By the Poincaré duallty theorem, the
resulting homomorphism I' is given by the formula

Bp—> < LiuByu >

for some unique £ eIfH(KP;Q ). This completes the proof.

i

3. The compatibility theorem 21(Mp) = Li(Tn)-

Now it is necessary to compare the combinatorial and differentiable

situations.r

By a triangulation of a space 1s meant a homeomorphism of a simplical

complex onto the space. J. H. C. Whitehead hes shown that a differ=ntiab]

manifold M" has a preferred class of triangulations

tiK —> M
which are called Cl-triangulations. (see [27], [12].) The complex K
which occurs 1s uniquely determined, up to combinatorial equivalence
( = plecewise linear homeomorphism)., Hence the class (t*)_l,LieHui(M?;Q)
does not dpend on the particular Cl-triangulation t which is chosen,

This class will be denoted by Ei(Mp). (It is of course defined only for

n>8i+2.,)
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Theorem L2, The cless Ei(Mn) (defined for a differentiable
manifold by a combinatorial procedure) is equal to the Hirzebruch class

Li of the tangent bundle.

Proof: ILet f:M' —=> 8% be a differentiable map. We will con-

struct a dlagram

K —tf> M®

fl lf
v

t
Kl_._.J£4> gt R

commutative up to homotopy, where t and tl are Cl—triangulations, 50

that

1
(

-1 _ -
11 (yl) =If (y)

for almost all y. €K, yeS . Together with Theorems 40 and 41, this
1 1’ ’

will complete the proof.
Iet yesr be any regular vdlue of f. If B 1s a sufficilently
small ball around y,then the inverse image f-l(B) can be considered as

l(y). Choose & Cl—triangulation

r
tl:Ki —> 8

80 that scme subcomplex K2 of Kl triangulates B; and choose a

the product Bx

Cl-triangulation K, —> f’l(y). Then the product triangulation

3
ol

K., X K, —> Bxf ~(y)

2 3
can be extended to a triangulation +t:K —> Mn.
The composition tij'f t 1K —> Ki will not, in general, be plece-
wise linear. However its restriction to KEX K3 is Just the projection

map into KE(: Kl’ hence 1is pilecewise linear, Choose a plecewise linear
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map f):K —> K, which agrees with tl'l

it elsewhere. Let y, denote fl—l(y). Then fl-l(yl) will be homeo-

ft on K2><K3, and approximates

morphic to f(y). Hence

1e My, ) =1 N () = 1e N y) = 12T

for all yl', y' close to MY and y respectively.

This completes the proof.

L. fThe unrestricted case:

So far the condition n > 81+ 2 has been imposed. However given
Kn one can always form the product space Kx 2™ with m large. The
class ﬁi(Kp) can then be defined as the class induced from 51(Kn>< )
be the natural inclusion map, It is not hard to show that thils new class
is well defined, and has the expected properties (For exsmple
< zi(Kui), My > = I(Kui).)

Another extension whilch can easily be made 1s to bounded homology
manifolds. It is only necessary to substitute the relative cohomotopy
groups

Kn—hi(Kn’Kn)
and the Lefschetz duality theorem 1n the above discussion.

5. Applications

The first example which will be discussed was discovered independently
by Thom [24] p. 81, Tamura [21], and Shimada [17].

Lemma 5: Given integers m and n with n > h, there exists an
n-plane bundle ¢ over Sh with pl(g) = 2mgo.

(0 = standard generator of Hu(Sh;Z).)
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Remark: A corresponding assertion for any sphere 8 k has
récently been proved by Borel, Hirzebruch and Bott. The integer 2
mst be replaced by

(2x-1)! G.C.D.(k+1 ,2).
This 1s a best posslble result.

Proof of Lemms 5: First assume that n > 8. Let T8 denote

the tangent bundle of the Quaternion projective plane PQ(K), and let
u generate HA(PQ(K);Z) ~ Z . According to Hirzebruch [8], the
Pontrjaegin class of T8 is 1 + 211+~7u2. Since this space is 3-connected,
there exists a map
£i8" — P (K)
satisfying f*(u) =mo . The induced bundle §8 over Sh will now
satisfy Lemma 5 for n =8. For n > 8m the Whitney sum
§8 & trivial (n-8)-plane bundle

will satisfy the Lemms.

Next consider the case n = 7. Using obstruction theory, it is seen
that §8 has a non-zero cross-section, In other words §8 is the Whitney
sum of the required 7-plane bundle §7  and a trivial line bundle. This

construction can be iterated until the case n=1.4 is reached, which com-

pletes the proof.

[The obstruction to further iteration is X(Qu)e‘Hu(Su;Z). This

is definitely non-zero since wu(TB) # 0. See Theorem 18, p. 56. ]
Lemma 6: TLet t° be a differentiable n-plane bundle over B and
r

let =« be the tangent bundle of B. Then the Pontrjagin class of the

total space E of gn 1s given by

p(E) =« (p(t")p(+")).



132

Similarly, if EO' is the set of unit vectors in E, then

p(E ") = x (et )p(<)).

Proof: The tangent bundle of E 1s the Whitney sum of

(1) the bundle of vectors tangent to the fibre, and

(2) the bundle of vectors normal to the fibre.

Since (1) maps into Qn and (E)Vmaps into Tr, the first assertion is
clear. Since the normal bundle of EO' in E is trivial, the second
assertion follows.

Example 1: Consider an n-plane bundle { over SlL where (for
convenience) n > 6. Then it follows from the Gysin sequence that the
homomorphism

:c*(Hl*(sl*;z) —_— Hl‘(EO';z)

is an isomorphism. If pl(C) =2m o, it follows that

p, (E')=2nx ' (o)
since p(7 (7)) =1 (p. 79.).
Since the Pontrjagin clasg of Eo' is a combinatorial invariant, it
follows that the integer ]ml is a combinatorial invariant of E& « Thus
&s m varies we obtain infinitely many manifolds which are combinatorially
distinct.

On the other hand, according to James and Whitehead [10], these’
manifolds EO', for fixed n, fall into a finite number of distinct
homotopy types (namely 13). This proves:

Assertion: There exist two differentiable simply conected 9-manifolds

which have the same homotopy type, but are not combinatorially equivalent.
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(The dimension 9 can easlly be improved to 7.) It is not known
whether these manifolds are homeomorphic. In dimension 3 there. do
exlst manifolds which have the same homotopy type but are not homeo-
morphic, although the proof in that case hinges on the fundamental group

The next example is due to Thom [25]. (See also Milnor [11, [12] and
Shimada [17].)

Lemma 7: Given integers 1,) satisfying 1 = 2] (mod 4), there
exists an oriented 4 plane bundle 17 over Sh having characteriétic
classes

p(n) =10, X(n) =30 .

Remark: The integers 1,J actually determine the equivalence
class of the bundle. This 1s due to the fact that the homotopy group
ﬁh(éu) ~ n3(sol+) is 7 + 2.

Proof of Lemma T: First let 1 range over all oriented k-plane

bundles over Su. Observe that the corresponding set of pairs pl(n),X(n)

forms a subgroup of the direct sum

H)*(sl*;z)e Hl*(sl*;z) ~72@ Z.

In fact sach such bundle is induced by some map T :Sl1L — éu.

N 1

Gliven two such maps fl,f2 form the sum or difference fl t f2 as

defined in homotopy theory, and let 1 be the bundle induced by fl + £,
o

Then 1t can be seen that the characteristic classes of 1 are:
py(n) = p(n) tpy(ny),  X(m) = X(ny) ¥ X(ny,).

Now consider the following two bundles: (1) The tangent bundle

Tu of Su; which satisfies

pl(Tu) =0 X(Tu) =20. (see p. 79.)
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(2) In Lemma 5 take n =4, m = 1. The resulting bundle gu will

satisfy
I
p, (¢4 = 20, W (th) 4o,
since Wh(Pe(K)) 4 0 [See Theorem 18, p. 56] and hence
x(gu) = gome odd multiple of ¢ .

But starting with the pairs (0,2), (2,2r+l) and forming sums and
differences, one can obtain any pair (i,J) which satisfies 1 = 23 (mod k).
This completes the proof.
Example 2: In particular consider the bundles for which J =1
(that 15 X = o). Then 1 can be any integer congruent to 2 modulo 4.
Using the Gysin sequence, it 1is seen that the corresponding total spaces
Eo' all have the homotopy type of the T-sphere. Actually each such EO'
is homeomorphic to 87(see [11]); and even combinatorially equivalent to
87 (see [12] ), Now consider the Thom space T of such a bundle. T can
be formed from the space E' of vectors of length < 1 by attaching a
cone over the boundary EO’. Since EO' is a 7-sphere, it follows that
E' is a compact 8-manifold. Furthermore any Cl-triangulation (in the
sense of Whitehead) of E' gives rise to a triangulation of T.

It follows from Lemma 2 of Chapter XIV that

7Z for k = 0,4,8

Hk(T;Z) =

0 otherwise.

Furthermore it 1s easily verified that the homomorphisms

.t a'* i i

H'(S';2) ———> H (E';2) <—H (T;Z)

are isomorphisms. Let o¢',0" be the elements in the second two groups
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corresponding to the standard generator g. By the Poincaré’duality
theorem, < o'y o“,;18 > must be *1. Hence, choosing the orienta-
tion g properly, the index I(T) is +1 .

According to Lemma 6, the Pontrjagin class ﬁl of thévbounded
manifold E' is 1¢' . Hence the combinatorial Pontrjagin classes
pl(E') and pl(T) are the rational classes corresponding to 1ig' and
10" respectively. Therefore the Pontrjagin number ple[T] is equal
to 12.

Using the index theorem
1) = & pyl7] - & » (1)
it follows that the other Pontrjagin number is given by

2
_ hs4y
pe[T] - —'":}—_"‘ .

But in general this is not an integer. (e.g. for 1=6.) Since a
Pontrjagin nunber of a differentiable manifold must be an integer, this
implies

Assertion: For 1 # *2 (mod 7) the triangulated 8-manifold T
possesses no differentiable structure which is compatible with the given
triangulstion,

As & corollary, 1t follows that the differentiable 7-manifold EO’
is not diffeomorphic to 87, For otherwise T could be given a differ-
entiable structure which was compatible,

In conclusion, here is an

Unsolved Problem. ILet QHn [or an] denote the analogue of the

cobordism group in which homology n-manifolds [or combinatorial (= formal )

n-manifolds | are used in place of differentiable n-manifolds. What is the
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structure of these groups, and what can be said about the natural homo-

morphism &t — QCN —_> le? It should be noted that in the combinatorial

case, Pontrjagin numbers are not invariants of homotopy type (cf. p. 118)

for it can be shown that among the 8-manifolds above for which p2[T] =
k5 4+ 12
7

(for any 1 = 2(4)), there are only finitely many homotopy types.

Appendix: The Thom isomorphism @

Let { be an oriented n-plane bundle with projection =n:E — B.
This Appendix will give a proof that the cohomology group Hn+1(E,EO;A)
is isomorphic to Hi(B;A). (See Theorem 10' p. 40.) A corresponding
theorem for homology groups 1s included as part of the proof. The corres-
ponding proof for the unoriented case, with coefficlent group ZQ, is left

to the reader.

1. Construction of the cohomology class u

Let SE denote the total singular complex of E, and define the

<

relative Eilenberg subcomplex Sn(E;EO) as the set of all singular simplexes

f:87 —> F
such that f maps the (n-1)-skeleton of A into E.  Then the

following assertion will be proved.

Temma 1: The inclusion Sn(E;EO) ——> SE 1induces isomorphisms of
homology groups.

Next & canonical cocycle dxsZn(Sn(E;Eo), SEO) will be defined.
Intuitively speaking, d(f) can be considered as the intersection number
of the image f(A") with B = E- E_. (Note that every n-simplex f in
Sn(E;EO) maps the boundary of A" into EO.)

-
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Finally uean(E,Eo) will be defined as the cohomology class
determined by 4.

Lemma 2. The correspondence § —> u(g) is natural with respect

to bundle maps. For the special case

B = point, E = R"

u 1is the standard generator of Hn(Rn,Rsl).
The proofs will be based on the following construction. Given any
map
i —> F
let 1 denote the bundle over A" induced from { by the composition

xf, and let f' Dbe the unique cross-section of 1 such that the diagram

E(n) ———>E

is commtative. Note that 1 1s necessarily a product bundle. (See
Steenrod [20] 11.6.) Hence the pair E(n),EO(n) is (n-1)-connected and

Hn(E(n),EO(n)) is infinite cyclic with a preferred generator.

Proof of Lemma 1: First observe that the pair E,EO 1s
(n-1)-connected, since in fact the above argument shows that any map
fl:AF,A? —> E,E_ can be factored through & pair E(n),Eo(n) which is
{n-1)-connected.

But now Lemma 1 can be proved by an argument completely analogous

to that given by Eilenberg [2] Chapter VI.
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Definition of d(f): Any n-simplex f of Sn(E;EO) gives rise

to a map
fl:An,A“ —> E,E_.
Define d(f) as the degree of the assoclated map

1

1
This defines a cochain de Cn(SD(E;EO),SEO).

£ :An:An — E(Tl);EO(ﬂ)-

Itis easily verified that the coboundary of d 1s zero.

The proof of Lemms 2 will be left as an exercise.

2. The homology isomorphilsm.

Recall that the cap product of a singular n-cochain ¢ with a
singular (n+i)-simplex is defined to be the product of the "front i-face"
of the simplex Ei;ththe integer obtained by evaluating c¢ on the '"back
n-face". The following properties will be needed.

(L) olcna)=cAda + @lf(&ﬂ a,

(2) <c,wec,,a>=<c
2)

1 s€

XAl > , and

1
(3) the cap product gives rise to a bilinear pairing

H(X,Y)®H  (X,Y) —> H, (X).

ILemma 3. The correspondence
a —> n,(una)

defines an isomorphism @ of H

e (EsE 32Z)  onto H, (B;2).

The proof will be divided into four cases.

Case 1: { is a product bundle so that (E,E ) = Bx (R%,R)). Let
u denote the standard generator of Hn(Rn,ROn). It follows from the
Kiinneth Theorem that the correspondence

a

>a X u
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defines an isomorphism of Hi(B) onto Hn+i(E’Eo)' (See Eilenberg and
Zilver [5] together with Eilberg and Cartan [3] p. 113.) But it follows
from Lemma 2, together with a short computation, that @(ax u) =
n,(ua(axu)) 1s equal to a. | '

Case 2; B 1s the union of open subsets B',B" with intersection
B" , where the Lemma is known to be true for ¢ restricted to B',B"

and B™M . It will be shown that the following diagram of Mayer-Vietoris

sequences 18 commutative:

m " t 1 ] 1" )
—> B G ELE) —>H (BLEDO R, (BYES) —> B, (BE) >
1¢m l¢, + ¢H ¢
" t "y, - d
_— Hi(B ") — (Hi<B ) O Hi(B ) e——— > Hi(B) LN

Since @',¢" and ¢™ are known to be isomorphisms, it will follow from
the Five Lemma ([ 4] p. 16) that ¢ is an isomorphism.
The Mayer-Vietorls sequence can be derived as follows: The natural

homomerphism of singular chaln groups

c(B)@ C (B") —> C,(B)

has kernel isomorphic to C,(B™) and an image C,(B,{B',B"}) which is
chain equivalent to C,(B). (See [4] p. 197.) Now the short exact

sequence

0 —> C (B") —> C (B') ®Cx(B") —> c*(B;{B',B"} ) —> 0

—
F..J
S~

gives rise to the required sequence of homology groups. Similarly the

short exact sequence
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(2) 0 C(EME") > C, (B, EO')+ Cx (B",E") » Cy(B,E; (E',E") ) - 0

glves rise to the relative Mayer-Vietoris sequence.
Choose a representative cocycle ze Zn(E,EO;{E',E"] ) -for the class

n

u, and let z',z",z' be the appropriate restrictions. Then a chain

mapping from the sequence (2) to the sequence (1) is defined by the

formlas

a" —> n#(z'"n a), ...,8—> ﬂ#(z aa).

This chain mapping induces the required homomorphism between the Mayer-
Vietoris sequences. |

Case 3. B 1s the union of finitely many distinguished open sets
l""’Vk' For k =1, the assertion follows from Case 1. For k >1
it follows by induction , applying Case 2 to the palr

v

t =
B Vl g ... UV

L -
k-1? B = Vk'

Note 1n particular that this argument applies whenver B 1s

compact.

General case: Let B range over all compact subsets of B.

Then Hi(B) is the direct limit of the groups Hi(B*); and Hn+i(E’Eo)
is the direct limit of the corresponding groups Hn+i(E*,Eo*). Since
the assertion 1s true for each B*} this completes the proof.

Remark: The arguments given for cases 2 and 3 would apply equally
well to cohomology. However the limiting argument does not apply to co-

homology.

3. The cohomology lsomorphism,

Consider the homomorphism of Iemma 1 on the chain jevel.. That is

-



1

choose a cocycle ze ZH(E,EO) which represents u, and define
¢#:Cn+i(E,EO) —> ¢, (B)

by ¢#(a) = ﬂ#(z na). Tt is easily verified that ‘¢# 1s onto. Let
Ci(K) denote the kernel of ¢#. Then there 1s a exact sequence

>H1(B)_____a__ PPN

e —> Hi(K) —> H

(E,E,)
It follows from Lemma 3 that the chain complex K has trivial homology.
Now for any coefficlent group A consider the corresponding co-

homology sequence

*
e —> Hi(B;A) -g%> Hn+i(Eo;A) —_ Hi(K;A) L.

It follows from the universal coefficient theorem that K has trivial
*
cohomology, so that ¢ is an isomorphism.
The identities

< ¢#c,a> = < c,¢#a > =< c,n#(zna) > =<n#c UZ,a >

*
show that ¢ is Just the correspondence
*
Yy —> Y VU,
Thus we have proved

Lemma 4. An isomorphism

g: H (BjA) —> Hn”(E,EO;A)
1s given by the correspondence
y —> 1¥(y) 9 u.

Now to complete the proof of Theorem 10' (p. 40), it is only

necessary to show that u 1is characterized by the condition

Jgﬁ ﬁbEFP(ﬂJb,K—H)OQQ

i
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for each be B. But applylng the isomorphlsm ¢-l, this is equivalent

to showing that the element

1 ¢1°(B)
is characterized by the fact that its Kronecker index -with each point

b 1s 1. Since this is clear, thls completes the proof.

References

1. A. Dold, Erzeugende der Thomschen Algebra 1&&, Math. Zeits. 65

(1956), 25-35.

2. . Filenberg, Singular homology theory, Annals of Math. hs (194k),

Lo7-k7.
3, S. Eilenberg and H. Cartan, Homologlcal algebra, Princeton 19%6.
4. §. Eillenberg and N. Steenrod, Foundations of algebraic topology,
Princeton 1952.

5. 9. Eilenberg and J. A. Zilber, On products of complexes, Amer., dJ.

Math. 75 (1953), 200-20k.
6. L. Graves, Theory of functions of real variables, (2nd eq,)
McGraw Hill, 19%6.

7. F. Hirzebruch, On Steenrod's reduced powers, the index of inertia,

and the Todd genus, Proc. Nat. Acad. Sci. USA. 39 (1953), 951-9%6.

8. 5 Uber die quaternionalen projektiven Réume, S.-Ber.

math. -naturw. Kl. Bayer. Akad. Wiss. Minchen (1953), 301L-312.

9. , Neue topologische Methoden in der algebraischen

Geometrie, Springer 19%6.

»



10.

12,

13.

1k,

15.

16.

17.

18.

19.
20.

21,

22,

23.

2L

-

143

J. James and J. H. C. Whitehead, The homotopy theory of sphere

bundles over spheres I, Proc. Lond. Math. Soc. L (1954 ), 196-218.

. J. Milnor, On manifolds homeomorphic to the T7-sphere, Annals of

Math. 64 (1956), 399-40s.

» On_the relationship between differentiable manifolds and

combinatorial manifolds (mimeographed), Princeton University 1956.

» On the cobordism ring Q*, to appear.

H. Ostmann, Additive Zahlentheorie, Springer 1956.

A. Sard, The measure of the critical values of differentiable maps,

Bull. A.M.S. 48 (1942), 883-890.

J.-P.Serre, Groupes d'homotopie et classes de groupes abéliens, Annals

of Math. 58 (1953), 253-294,

N. Shimada, Differentiable structures on the 15-sphere and Pontrjagin

classes of certain mainifolds, Nagoya Math. J. 12(1957), 59-69.

E. Spanier, Borsuk's cohomotopy groups, Annals of Math. 50 (1949),

203-2k5,

» Duality and S-theory, Bull. A.M,S. 62 (1956), 19%-203.

N. Steenrod, The topology of fibre bundles, Princeton 1991.

I. Temura, On Pontrjagin classes and homotopy types of manifolds,

Journ, Math. Soc. Japan 9 (1957), 250-262.

R. Thom, Espaces fibrés en sphédres et carrés de Steenrod, Ann. Sci.

Ecole Norm. sup. 69 (1952), 109-181.

» Quelque propriétés globales des varidtés différentiables,

Commentarii Math. Helv. 28 (1954), 17-86.

» Les singularités des applications différentiables,

Ann, de 1'Institut Fourier (Grenoble )6(1955-56), 43-87.

»



25.

26.

27.

28,

29.

1l

» Les classes caracteristiques de Pontrjagin des varidtes

triangulées, to appear.

Van der Waerden, Modern Algebra, Ungar 1949,

J.H.C.Whitehead, On Cl-complexes, Annals of Math. 41(1940),

809-824,

H. Whitney, The self-intersections of a smooth n-manifold in

2n-space, Annals of Math. 45 (194h), 220-246,

Wa, W.T., On Pontrjagin classes II. Sclentia Sinica 4 (1955,

455.490,



	m1.pdf
	m2
	m3
	m4

