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ON SPACES HAVING THE HOMOTOPY TYPE
OF A CW-COMPLEX

BY
JOHN MILNOR(Y)

Let W denote the class of all spaces which have the homotopy type of a -
CW-complex. The following is intended as propaganda for this class W.
Function space constructions such as

(4; B, ao)(l0.11;001,011)

have become important in homotopy theory, and our basic objective is to
show that such constructions do not lead outside the class W (Theorem 3).

The first section is concerned with the smaller class ‘W, consisting of all
spaces which have the homotopy type of a countable CW-complex. §§1 and 2
are independent of each other.

The basic reference for this paper is J. H. C. Whitehead [15].
1. The class W,.

THEOREM 1. The following restrictions on the space A are equivalent:

(a) A belongs to the class Wo;

(b) A is dominated by a countable CW-complex;,

(c) A has the homotopy type of a countable locally finite simplicial complex.
(d) A has the homotopy type of an absolute neighborhood retract(?).

Proof. The assertions (a)¢=>(b)e=(c) are due to J. H. C. Whitehead. In
fact the implications (c)=>(a)=>(b) are trivial; and the implication (b)=(c),
for a path-connected space, is Theorem 24 of Whitehead [16]. But if the
space 4 is dominated by a countable CW-complex, then each path-component
of A is an open set; and the collection of path-components is countable.
Therefore it is sufficient to consider the path-connected case.

The assertions (c)=>(d)=(b) are due to O. Hanner [8]. (Hanner’s Corol-
lary 3.5 asserts that every countable locally finite simplicial complex is an
absolute neighborhood retract; and Theorem 6.1 asserts that every absolute
neighborhood retract is dominated by a (countable) locally finite simplicial
complex.) This completes the proof of Theorem 1.

As consequences of Theorem 1 we have:

COROLLARY 1. Every separable manifold belongs to the class W,.

Received by the editors April 16, 1957.
(*) The author holds an Alfred P. Sloan fellowship.

() Following Kuratowski [11] an absolute neighborhood retract is required to be separable
metric, but not necessarily compact.
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HOMOTOPY TYPE OF A CW-COMPLEX 273

This follows since every separable manifold is an absolute neighborhood
retract. (See Hanner [8, Theorem 3.3].)

COROLLARY 2. If A belongs to Wy and C is compact metric, then the function
space A€ (in the compact open topology) belongs to W,.

Proof. By Theorem 1 we may assume that 4 is an absolute neighborhood
retract. But according to Kuratowski [11, p. 284] this implies that ACis
also an absolute neighborhood retract, which completes the proof.

REMARK. The assumption that Cis compact is essential here. For example
let 4 have two elements and let Z be a countable discrete space. Then 4% is
a Cantor set and certainly does not belong to the class W.

It would be possible to generalize these results so as to apply to pairs,
triads, etc. (Compare §2.) However we will not try to do this here.

Whitehead has made the following observation [16, Appendix A]:

ProrosITION 1. If a compact space A belongs to the class W, then A is
dominated by a finite complex.

REMARK. It would be interesting to ask if every space which is dominated
by a finite complex actually has the homotopy type of a finite complex. This
is true in the simply connected case, but seems like a difficult problem in
general.

The same argument shows the following:

PROPOSITION 2. If a space A in W has the Lindelsf property(®), then A be-
longs to the class W,.

Procf. Let f: A—>K be a homotopy equivalence, where K is a CW-
complex. Let L be the smallest subcomplex of K which contains f(4). Then
4 is dominated by L. But if 4 has the Lindelsf property then f(4) also has
the Lindelof property. Therefore L must be a countable complex. (Compare
Whitehead [15, §5(D)].) In view of Theorem 1, this completes the proof.

In conclusion we mention an interesting example. Borsuk [2] has con-
structed a locally contractible compact metric space Csuch that the homology
groups H,(C, Z) are nontrivial for every integer # =0. It follows from Proposi-
tion 1 that this space C cannot belong to the class W.

2. The class ‘W*. By a CW-n-ad K=(K; K;, - - -, Kn1) we mean a CW-
complex K together with #—1 numbered subcomplexes Kj, - - -, Kn_1. Let
= denote the class of all #-ads which have the homotopy type of a CW-#n-ad.

THEOREM 2. The following restrictions on an n-ad A=(4; Ay, - -+, Aasr)
are equivalent:

(a) A belongs to the class Wr,

(b) A is dominated by a CW-n-ad,

(®) The space 4 has the Lindelif property if every covering of 4 by open sets is reducible
to a countable sub-covering.
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(c) A has the homotopy type of a simplicial n-ad in the weak topology,
(d) A has the homotopy type of a simplicial n-ad in the strong topology.

(By the strong topology on a simplicial complex K we mean the strongest
topology such that the barycentric coordinates, considered as functions from
K to [0, 1], are continuous. This is the same as the metric topology considered
in Eilenberg and Steenrod [5, p. 75].)

For the case n =1 this theorem can be proved as follows. The implications
(c)=>(a)=>(b) are clear, and the implication (b)=>(c) follows from Whitehead
[16, Theorem 23]. The implications (c)«3(d) follow from Dowker’s result [3]
that a “metric complex” has the same homotopy type as the corresponding
complex in the weak topology.

Although these proofs could easily be generalized to the case n>1, we
will instead give a self-contained proof, based on the following lemma. A map
f: A—B will be called a singular homotopy equivalence if fi carries (4, a)
isomorphically onto m4(B, f(a)) for each a €4 and each £=0. Here m; denotes
the set of path-components.

Now consider an n-ad A=(4; Ay, - -+ -, An_1). For each nonvacuous set
S of integers between 1 and #n—1 define 4 s=N;cs A;. For the vacuous set ¢
define A4=4. Then a map f: A— B of n-ads induces 2! maps fs: 4 s—Bs.
We will say that f is a singular homotopy equivalence if each fs is a singular
homotopy equivalence.

LeMMA 1. If A and B belong to the class “W*, then every singular homotopy
equivalence f: A— B is a homotopy equivalence in the ordinary sense.

For the case n=1 this follows from [15, Theorem 1], and for n=2 it
follows from [10, Theorem 3.1].

Proof. We may assume that A and B are CW-z-ads, and that f is cellular.
This implies that the mapping cylinder M= (M; My, - - -, Mn_;) of fis
itself a CW-n-ad. (Here M, is defined as the mapping cylinder of f;: 4,—B;.)
Considering A as a sub-n-ad of M, we will prove that A is a strong deforma-
tion retract of M. That is we will construct a homotopy #: MX [0, 1]—M
satisfying

h(x, 0) = x forallx € M,
* h(z,1) € 4 forallx € M, and
h(a, t) = a foralla € 4, t € [0, 1].
This will complete the proof of Lemma 1.
According to the hypothesis each fs: As—Bg is a singular homotopy

equivalence. This implies that each inclusion 4 s— Mgy is a singular homotopy
equivalence; and therefore that

m(Mg, As, a) = 0
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for each a €A s and £=0. This is equivalent to the following assertion, where
E* denotes a closed k-cell.
(**) Every map of the pair

((BF % [o]) U (&* X [0, 1]), E* X [1])

into (Mg, Ag) can be extended to a map of (E¥ X [0,1], E¥X [1]) into (Ms, As).
The homotopy % can now be constructed as follows, by induction on the
skeletons M* of M. Define X* as the subset

(M X [0]) U (4 X [0, 1]) U (a1 X [0, 1])

of MX [0, 1]. The conditions (*) define %z uniquely on the set X,. Suppose
that % has been defined on the set X*. Let ¢* be any k-cell of M —A4, and let
S be the set of integers i such that ¢* C M;. Then % has already been defined on

(& x [0]) U (& X [0, 1]),

and maps this set into M. Furthermore it maps é*X [1] into ANMg=As.
Therefore, according to (**), & can be extended over & X [0, 1] so as to map
this set into Mg, and so as to map & X [1] into 4. Continuing by induction,
this completes the proof.

Proof of Theorem 2. The implications (c)=(a)=>(b) are clear. To prove
that (b)=(c) let ]S(A)] denote the geometric realization(*) of the singular
complex of A. M. Barratt [1] has recently proved that the realization of any
semi-simplicial #-ad can be triangulated. In other words I S(A)| can be con-
sidered as a simplicial #-ad in the weak topology.

If K is the CW-z-ad which dominates A, then there exist maps A->K->A
such that gf is homotopic to the identity. Consider the commutative diagram

sl —b S(K) MNP
j 7|l j
A / >Ié § +A

Note that | g| |f| is homotopic to the identity. (See [12, Corollary to Theo-
rem 2].) Since K is a CW-n-ad, Lemma 1, together with [12, Theorem 4],
implies that j/ is a homotopy equivalence. Let k be a homotopy inverse to j';
and consider

|g| k: A— | S(A)].

It follows from the above diagram that this map is a homotopy inverse to j,
which completes the proof that (b)=(c).

() We will use realizations in the sense of the author’s paper [12] (making an obvious
generalization to #-ads), although Giever [7] or Whitehead [16] could equally well be used.
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Proof that (c)«>(d). Let K, denote a simplicial #-ad in the strong topology,
and let K, denote the same n-ad in the weak topology. We will show that the
natural map

1. K, — K,

is a homotopy equivalence.

Choose a locally finite open covering { U,g} of K,, indexed by the collec-
tion {8} of vertices; so that each Uy is contained in the open star neighbor-
hood of the vertex 8. For example if 5 denotes the Sth barycentric coordinate
of the point x in K,, then the sets

1
Us = {xl£ﬁ>—Maxg,}
2 4

form such a covering. Choose a partition of unity {pg} on K, so that
ps(Ks— Up) =0, and define p: K,—K, by letting p(x) be the point in K,
with barycentric coordinates pg(x). It is clear that p is continuous, and maps
each (K;), into (K;),. Since the composition ip: K,—K, maps each simplex
into itself, it is homotopic to the identity. Similarly pi: K,—K,, is homotopic
to the identity. This completes the proof of Theorem 3.

Given n-ads A and C let AC denote the subspace of the function space
AC consisting of all maps f: C—A.

THEOREM 3. If A belongs to the class W and if C is a compact n-ad, then
the function space AC belongs to “W. In fact the n-ad

(AC; (4, A1)©CCO, « o (A, Apy)C€Cr1)
belongs to the class W,

The first assertion follows from the second since A€ is equal to the inter-
section

(A, Al) ceoN ... N (A, An—1)(c'0"‘1).

As illustration of the way this theorem can be applied, let  denote the space
of loops in 4 based at ao, and let w, denote the constant loop at ay.

COROLLARY 3. If the pair (A, ao) belongs to W2, then the pair (Q, wo) also
belongs to W2,

Proof. Set C=(I; I, I), where I denotes the unit interval, and set A
=(4; ao, a¢). Then Theorem 4 asserts that the triad (47; Q, w,) has the
homotopy type of a CW-triad (K; K, Kj). Therefore (Q, wo) has the homo-
topy type of the pair (K;, KiNK5,).

The proof of Theorem 3 will be based on the following considerations(?).

(®) An alternative proof would be based on the concept of “NES (metric)” in the sense of
Hanner [9]. Compare [9, Theorems 2.11, 26.1, 28.6], as well as Dugundji [4, Theorem 7.5].
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A space A has been called “locally equiconnected” by Fox(%) [6] and “ULC”
by Serre [13] if there exists a neighborhood U of the diagonal in 4 X4 and
a map

AMUX[0,1]— 4
satisfying
1) Aea, b,0) = a, Aa, b,1) = b
for all (e, b) €U, and
(2 Aa, a,8) = a

for all a €4, tE]0, 1]. We will call the space ELCX (equi locally convex) if
it also satisfies:

(3) there exists an open covering of 4 by sets Vg which are convex, in
the sense that VgX Vs C U and N(VsX Vs X [0, 1]) = Vs

Similarly we will say that an #-ad (4; 44, + + -, Aay) is ELCX if the 4
are closed subsets of A4, if the above conditions are satisfied for the space 4,
and if the following condition is satisfied:

(4) if @, bEA; and (a, b) EU then \(a, b, t) EA; for every t& [0, 1].

We will prove the following lemmas.
LEMMA 2. Every simplicial n-ad in the strong topology is ELCX.

LemuMA 3. If Ais ELCX and C is compact then the n-ad
(A (4, Ap©@en ... (A4, Apy)©O-1) is ECLX.
LEMMA 4. Every paracompact ELCX n-ad belongs to the class “Wn.

Proof of Theorem 3, assuming Lemmas 2, 3, 4. If A belongs to W* then
it has the homotopy type of a simplicial #-ad K in the strong topology. Ac-
cording to Lemmas 2 and 3 the n-ad F = (K¢ (K, K;)©€:», ...
(K, K,1)©:¢»0) is ELCX. Since K is metrizable and C is compact, the
function space K¢ is metrizable, and hence paracompact. Therefore, by
Lemma 4, F belongs to the class W=, But it is easily verified that F has the
same homotopy type as the n-ad

(A% (4, 4@, - -+, (4, Apg) @Crm),

Hence this #-ad belongs to W», as asserted.
Another consequence of the same argument is the following. By the prod-
uct of the n-ad A with the m-ad B we mean the (z+m —1)-ad

(AXB;AIXBv'"7An—1><B7AX-Bla"'yAme—l)-

(¢) Fox requires an additional “uniformity” condition which we do not need.
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If A and B are metrizable and ELCX, then it is clear that AX B is metriza-
ble and ELCX. Therefore Lemmas 2 and 4 imply:

ProrosiTioN 3. If A belongs to ‘W™ and B belongs to W™ then A X B belongs
to Wwrtm—1,

(An alternative proof of this proposition would be based on Dowker’s
result that the product of two “metric complexes” is a “metric complex.”)
The rest of the paper will be devoted to proofs.

Proof of Lemma 2. Let K be a simplicial #-ad in the strong topology. Let
Vg denote the open star neighborhood of the vertex 8; and let U denote the
union over all vertices 8 of VX V. Given any pair (x, y) €U with bary-
centric coordinates {E,g} and {mg} respectively, define the “average” u(x, y)
as the point with barycentric coordinates

¢ = Min (&, 75) / > Min (¢, 7).
Y

The denominator is nonzero, since x and y belong to some common set V.
The resulting map

u:U—K

is clearly continuous (since we are using the strong topology!).
Note that u(x, y) lies in the intersection of the smallest simplex containing
x and the smallest simplex containing y. Hence we can define

1
A(x,y,—2‘5> = (1 - t>x + tl-‘(x) y)

1 1
>‘<x7y7_2—+ ?t> = (1 - t)”'(x) D’) + ty
for 0=¢=1. The resulting map

MUX[0,1]—-K

clearly satisfies Conditions 1, 2, 3, 4. In particular the star neighborhoods Vs
are convex sets covering K.
Proof of Lemma 3. Define U'CACXAC as the set of pairs (f, g) with
(f(e), g(e)) € U for all c&C. Define the map N': U’ X [0, 1]—A4C¢ by '
)\’(f! & t)((,‘) = A(f(d; g(c), t)°
Every point in A€ has a convex open neighborhood of the form
(A; Vﬁv Tty Vﬂk) (C;Dl'”"Dh))

where D;, - - -, D; are compact sets covering C. Since the necessary identi-
ties 1, 2, 4 are easily verified, this completes the proof.
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Proof of Lemma 4. We will first consider the case n=1. That is we will
prove that any paracompact ELCX space A is dominated by a CW-complex.

Choose a locally finite covering {Wy} of A which is sufficiently fine so
that the star of any point @ of 4 (that is the union of all sets W, which con-
tain @) is contained in some convex set Vs This is possible since every para-
compact space is fully normal. (See Stone [14, Theorem 2].)

Let N denote the nerve of the covering { W.,}, considered as a simplicial
complex in the weak topology. (To avoid confusion, assume that the sets W,
are nonvacuous.) Choose a partition of unity {pn,} on A4 so that p,(4 —W,)
=0. Then for each e €4, the numbers {py(a) } can be considered as the bary-
centric coordinates of a point p(a) in N. The resulting function p: A—N is
clearly continuous.

Choose a representative point w, in each set W,; and choose an ordering
of the simplicial complex N. Then a map q: N—A is defined as follows, by
induction on the skeletons of N. For each vertex v set ¢(y) =w,. Consider

any k-simplex of N with vertices yo< - + + <7 Each point x in this simplex
can be written uniquely in the form x = (1 —¢)yo+£{y where y lies in the face
spanned by 71, * - -, v& Now if ¢ has been defined on the (k—1)-skeleton

then the formula
q(®) = NMwyy, 9(9),

defines an extension of g over the k-skeleton. It is easy to see that this exten-
sion is well defined and continuous; which completes the induction.

For each point e €A we assert that the pair (e, gp(a)) belongs to the
neighborhood U of the diagonal. In fact let V; be a convex set in A4 which
contains the star of a. Then gp(a) is a convex combination of points in V5,
which implies that (a, gp(a)) E VX Ve C U.

Therefore the formula

(a, t) = N(a, qp(a), ¥)

defines a homotopy between gp and the identity map of A. This shows that
A is dominated by N, which completes the proof for the case n=1.

This proof extends without essential change to the case n=2. However
for n>2 it is necessary to be more careful in choosing the sets W,.

We will say that an open subset W of 4 is admissible with respect to A if,
whenever W intersects sets 4, - - - ,and 4;, of A, it also intersects the inter-
section A;, M + - - MA,,

ASSERTION. If Ay, -+ -, Auy are closed subsets of A, then every locally
finite open covering {Wy} of A has a locally finite open refinement { wy } con-
sisting of admissible sets.

Proof. Let { W{} consist of all sets of the form

Wy— A= - = 4,
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which happen to be admissible. It is easily verified that this is a locally finite
open covering of 4.

Proof of Lemma 4 for n>1. Let N’ denote the nerve of the covering
{Wa' }, and define subcomplexes N/ as follows. The vertices 8o, * + -, 0z span
a simplex of N{ if and only if W3 - - - N\Wj, intersects A;. We can map A
into the resulting simplicial #-ad N’ just as before.

Choose representative points wi ©W{ so that if Wj intersects 4; then
wi €4 .. This is possible since each W{ is admissible. Now the map ¢: N'—A
and the homotopy AX [0, 1]—A are defined just as before. This completes
the proof of Lemma 4 and Theorem 3.
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