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ROCEDURE FOR KILLING HOMOTOPY GROUPS
OF DIFFERENTIABLE MANIFOLDS

BY
JOHN MILNOR!

n g differentiable manifold W of dimension n = p + g+ 1
of removing an imbedded sphere of dimension p from W, and
1 imbedded sphere of dimension ¢ (see §1). This construction
ted to cobordism theory (§2). The main objective of this paper
study the extent to which this construction can be used to simplify

groups of a given manifold. A typical result is the following.
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7o TaeoreM 3. Let W be a triangulaied differentiable monifold
Sup'pose that W s compact and that tis tangent bundle resiricled
skeloton is a trivial bundle. Then by performing o series of surgeries
obtain a manifold W' which s (m — 1)-connecled.

& All manifolds are to be oriented and differentiable of class
etter W is used for a manifold which may have boundaries. The
served for a manifold without boundaries.
ful to R. Thom for describing “surgery” to me, and for pointing
hility of using it to kill homotopy groups.

Much of the material below has been obtained independently

onstruction. Let D**" denote the unit disk in the euclidean space
boundary S and with center 0. The product manifold S° X S8 ean
either

: as the boundary of §” X D**,

as the boundary of D*** X §°.

ny imbedding of & X D' in a manifold W of dimension
-1, a new manifold W’ can be formed by removing the interior of
' d replacing it by the interior of D*** X S° This procedure will be
v... T'o he more precise:

Given a differentiable, orientation preserving imbedding

f:S”XDq-H'—’W

r holds a Sloan fellowship.
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with p - ¢ + 1 = =, let x(W, §) denote the guotient manifold obtained frorn
the disjoint sum

(W — (8" X 0) + (D' X 89

by identifying f(u, 6v) with (8u, v) foreach u ¢ 8", v e 8% 0 < ¢ < 1. Thus

x(#, f} is an oriented differentiable manifold. The boundary of W (if any) is
equal to the boundary of x(W, f). If W’ denotes any manifold which is dif-
feomorphic to x(W, f) under an orientation preserving diffeomorphism, then we
will say that W' can be obtatned from W by surgery of type (p + 1, ¢ + 1).

This construction clearly makes sense in the range 0 < p < n (that is the
range p, ¢ = 0). It will be convenient to extend it to the casesp = —lorp = n
by defining

D’ = R" = the point 0; §~' = the vacuous set.

With these conventions, a surgery of type (0, n - 1) replaces W by the disjoint
sum W + 8" while a surgery of type (n + 1, 0) replaces W 4 S" by W.

It is clear that W and W' play a symmetrical role in this construction. If
W' = x(W, ) is obtained from W by a surgery of type (p -+ 1, ¢ -+ 1), then
W can be obtained from W’ by a surgery of type (g + 1, p + 1).

Given a sequence W,, -«- , W, of manifolds such that each W,,, can be
obtained from W; by a surgery we will say that W is x-equivalent to W,.

2. x-equivalence and cobordism. Consider manifolds V without boundary
whieh are compact and oriented.

Tuaeorem 1. Two such manifolds are x-equivalent if and only if they belong
to the same cobordism class.

Proor. - Let L denote the locus of points (z, ¥} in B™** X R*** which satbisfy
the mmequalities

—1 5 |l = il <
and
Hel| [|lg!] < (sinh 1)(cosh 1).

Thus L is a differentiable manifold with two boundaries. The ‘“upper” boundary,

llz}|* — Jiglf® = 1, is diffeomorphic to S* X (Interior D™") under the corre-
spondence

(2, ®) <> (v cosh 6, v 5inh 6), 0=9<1.

The lower boundary, ||z]* — ||y]|* = —1, is diffeomorphic to (Interior D**!) X 8¢
under the correspondence ’

(8w, v) <> (usinh 8, v cosh 6).

Consider the orthogonal trajectories of the surfaces ||z]|* — ||yi|* = constant.
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The trajectory which passes through the point {(x, y) can be parametrized in
the form
- (tz, 1Y),

[Thus the product ||z|| ||y|| is constant along any orthogonal trajectory.] If
% or ¥ is zero this trajectory is a straight line segment tending to the origin. For
2 and y different from zero it is a hyperbola which leads from some well defined
point {u cosh 6, v sinh 6) on the upper boundary of L to the corresponding point
(« sinh 8, ¥ cosh §) on the lower boundary.

Now let ¥V be a differentiable manifold without boundary of dimension
n=p+q-+1,andlet f: 8 X D" -+ V be an imbedding. Construct an
(n + 1)-dimensional manifold w(V, f) as follows. Start with the disjoint sum

(V — (8" x 0)) x D' + L.

Foreach ue 8, ve 8% 0 < 6 < 1, and ¢ ¢ D' identify the point (f(u, ), ¢) in
the first summand with the unigue point {(z, ) = L such that

() llell” — Ilyll* = ¢, and

(2) (z, ) Lies on the orthogonal trajectory which passes through the point
{(u cosh 8, v sinh ). _

It is not difficult to see that this correspondence defines a diffeomorphism

(8" X (Interior D' — ) X D' = LN @ — 0) X B — 0).

Tt follows from this that (¥, f) is a well defined differentiable manifold.

This manifold (¥, £ has two boundaries, corresponding to the values
¢ = |lz||* — |lyl> = -1, and —1. The upper boundary, ¢ = -1, ean be identi-
fied with V, letting 2 £ V correspond to:

{(z, De(V — (5 X 0)) X D' for zg§(8° X 0).
{1« cosh 8, vsinh 6) = LL N for 2z = f(u, 6v).

The lower boundary can be indentified with x(V, f): letting 2 e ¥V — (8" X 0)
correspond to (z, —1); and letting (8u, v) ¢ D' X §° correspond to (u sinh 6,
v cosh ).

It is clear that w(V, f) is compact if and only if V is compact, Since orientations
can be chosen appropriately, this completes the proof that x-equivalent manifolds
belong to the same cobordism class.

An immediate consequence is the following,

Corourary (Trom). The Stiefel-W hitney numbers, Ponirjagin numbers, and
the index of o compact manifold V are invarions under surgery.

Now suppose that ¥V and ¥V’ are compact manifolds which belong to the same
cobordism class. Thus ¥V and V' together bound a compact manifold W.

Lmvua 1. There exisis o differentiable map ¢ : W — [0, 1] with the following
three properties:

O gy =V, M=



42 JOHN MILNOR

(2) The gradient of g vanishes only ait isolated interior points wy, +++ , w, e W.
Furthermore the malriz of second derivatives of ¢ ot each w; 7s non-singular.
(3) The values ¢; = g{w,) are distinct; say 0 < 6, < +++ < g, < 1.

Using a partition of unity, it is eagy to construct a funetion g, : W — [0, 1]
which satisfies condition (1), and has non-gero gradient along the boundary of
W. Hence g, has non-zero gradient along some compact neighborhood X, of
the boundary.

Choose open sets By, +-+ , B, C Interior W which are diffeomorphic to open
subsets of euclidean space, and which cover the compact set Closure(W — K).
Then g, restricted to B, can be approximated by a function g§ which satisfies
condition (2) throughout B,. (See Morse [8, Theorem 16], or Whitney [13,
Theorem 12A].)

Let A;, --- , A, be an open covering of Closure(W — K,) such that
Closure A; C B;. Let \; : W — [0, 1] be s differentiable function which takes
the value of 1 on 4;, and has carrier contained in B,. Now define

gw) = (1 — M) go(w) + M@)gi(w) for weB,,
(w) = glw) for wgBi.

Then ¢, : W — B will satisfy condition (2), at least throughout Closure A,
Furthermore, if ¢4 is sufficiently close to ¢, then

(a) the modified function g, will still have values between 0 and 1; and

{(b) g, restricted to K, will still satisfy condition (2).
In other words g, will satisfy condition (2) throughout the compact set

K, =K,\U Closure A,.

Now continue by induction, constructing functions g; : W — [0, 1] which satisfy
condition (1), and which satisfy (2) throughout the set

K,,' = K.'._l ' Closure A".

Since K, is equal to W, it follows that g, satisfies condition (2) everywhere.

If g, takes on the same value at two of its critical points, then by adding a
function which is equal fo ¢ in a small neighborhood of one point, and is zero
outside a larger neighborhood, we can separate the two values. This completes
the proof of Lemma 1.

The proof of Theorem 1 continues as follows. Define ¢, = 0, ¢4y = 1. If
both ¢’ and ¢’ lie between ¢; and ¢;., note that the manifolds g™(¢") and ¢~*(¢’)
are diffeomorphic. This is proved by taking any Riemannian metric on W, and
using the orthogonal trajectories of the surfaces ¢ *(e) to define the diffeo-
morphism. Call any one of these surfaces V,. Thus V, is diffeomorphic to ¥’
and ¥, is diffeomorphic to V. We will prove that each V;_, can be obtained
from V; by surgery.

Let B(r) denote the open ball of radius r in B""'. According to Morse [T,
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p. 172] there exists a neighborhood U of w, in W, and 2 coordinate diffeomorphism

¢ B2 — U
5o that the function g@(zy, --- , z.) takes the form
Gtz = — e —

for some —1 < p £ n, and some ¢ > 0. We will abbreviate this as

go(@, ) — c: = |[2[|° — [lyll’s
where z e R**Y, y e R**', p + ¢ + 1 = n. Note that (0, 0) = w,.
We may assume that g (¢; + ¢) = V, and that ¢ '(¢; — ¢") = Vi_,. Define
an imbedding

f: 8 X DMV,

by f(u, 8¢) = ¢(eu cosh 0, e sinh 6). It will be shown that V,_; is diffeomorphic
to x(Vs, f).

An imbedding h: L — W is defined by h(z, ¥) = ¢(er, ey). Choose a
Riemannian metric on W which reduces to the euclidean metric

day + + o+ duy + dys + -+ Ay

throughout the closure of #(L). The imbedding h carries the surfaces [|o||* —
[[4}|> = constant into surfaces ¢ '(¢). Hence it carries orthogonal trajectories
into orthogonal trajectories.

Define a diffeomorphism k: x(V:, f} — V.., as follows. Starting at any
point z of V; — §(8° X 0) the orthogonal trajectory is a non-singular curve
which leads from z to some well defined point k(z) in V,_,. In the case z =
flu, 8) = h{u cosh @, v sinh 6) this orthogonal trajectory leads from z to the
point A(u sinh 8, » cosh 8) of V,_;. Hence defining

k(e v) = pleusinh @, ev cosh 6)

for all (8u, v) e D**' X 8% we obtain a well defined diffeomorphism from x(V., f)
to V;_;. This completes the proof that cobording manifolds are x-equivalent.

REMARK. A similar proof shows that the region g *[c. — &, ¢, -+ €'] between
Vv, and V,_, is diffeomorphic to (¥, f).

3. Killing homotopy classes. Let W be a manifold of dimension # and let
A & 7,(W) be 2 homotopy class which we wish to kill. To simplify the discussion,
assume that W is connected.

DzriniTion. An imbedding f : 8 X D" — W represents the homotopy
class M if A = £,(¢), where ¢ is a generator of the infinite cyclic group (8" X D).
[To be more precise one should specify base points for these homotopy groups,
but this will be left to the reader.]

Suppose that A is represented by such an imbedding f : 8 X D" — W.
Suppose further that n = 2p + 2. Let W' = x(W, f).
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Lemya 2. Under these condilions, the homotopy groups w; (W") are isomorphic
to w(W) for i < p; and =, (W') is isomorphic lo m,(W) modulo a subgrowp which
contains h.

Briefly: the effect of the surgery is to kill the homotopy class A.

Proor. Asusualset¢ = n — p — 1. Note that p < ¢. Let X denote the
space which is formed from the topological sum W + (D" X D'} by identi-
fying (u, y) with f(u, y) for each (u, y) £ S X D", The subset W \J (D**' X 0)
is clearly a deformation retract of X. This subset is formed from W by attaching
a (p + 1)-cell; using the map u — f(u, 0) as attaching map. It follows immedi-
ately that the inclusion homomorphism #;(W) — #,(X) is an isomorphism for
1 < p, and is onto for ¢ = p. Furthermore the homotopy class A of the attaching
map lies in the kernel of this homomorphism.

But W’ is also imbedded topologically in X, and a similar argument shows
that the homomorphism =, (W) ~» =;(X) is an isomorphism for ¢ < ¢. In
particular it is an isomorphism for ¢ < p. Together with the preceding para-~
graph, this completes the proof.

Remark. The manifold (W, f) could be used in place of the space X in
this argument.

The above argument can also be applied to the ease p = 0. In this case the
appropriate statement is:

Luvma 2'.  Let W be @ manifold of dimension n g 2 with k components, & = 2.
Let f : 8° X D" — W be an orientation preserving® imbedding which cariies the
two components of 8° X D" into distinct camponents of W. Then x(W, f) has
only k — 1 components.

The proof will be left to the reader.?

In order to make use of Lemma 2 it is necessary to answer the following
question. For which homotopy classes X & (W) does there exist an imbedding
8? X D" — W which represents \?

Let +" denote the tangent bundle of W and let f, : 8* — W denote any map
in the homotopy class of A. Let f%+" denote the induced bundle over S,

Lemma 3. Assume that n = 2p + 1. Then there exisis an tmbedding
87 X D" — W which represents \ if and only tf the induced bundle %™ is trivial.

The proof of Lemma 3 will be baged on the following,

Lmvuva 4. Let £ be an m-dimensional vector space bundle over a complex K
of dimension p < m. Let o' denole the trivial line bundle over K. Then " is a
trivial bundle if and only if the Whilney sum £ €D o' is trivial.

Proor. Let B(80,.,) denote any classifying space for the rotation group.
First observe that there exists a fibre bundle over B(S0,...) with fibre ™ and

2 The sphere S° must be oriented as the bounda,ry of D1,
# Compare the definition of “connected sum” of manifolds, as given in Mll]’.'lol‘ [8]. .
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total space B(SQ,). [This is seen as follows. The group 80,.., acts freely on
the total space E of its universal bundle, with orbit space £/80,.. = B(50,.1).
Henee the subgroup 80, also acts freely on E. Define B(S0,) as the orbit
space E/80,. It follows easily that B(S0,) is a bundle over B(S0.,.,) with
fibre 80,,../80, = 8"] Let = : B(80,) - B(80,.,) denote the projection
map.

Let § : K - B(S0,,) be a classifying map for the bundle £”. Then «f : K —
B(80,,.,) is a classifying map for the Whitney sum £” @ o". If #f is null-homo-
topic then it follows from the covering homotopy theorem that f is homotopic
to a map of K into the fibre §”. Since K has dimension less than m, this implies
that f is null-homotopie.*

Proor oF Lemua 3. If n = 2p -+ 1 then any homotopy class of maps from
§” to W contains an 1mbeddmg

fa 1 8 — Interior W.

(See Whitney [11, Theorem 2].} Let r° denote the tangent bundle of S” and
let »**' denote its normal bundle. Then the Whitney sum °@ »**' can be
identified with f%": the tangent bundle of W restricted to S

If {%7” is trivial then it follows that »** is trivial. To see this, let o* denote
the trivial k-dimensional vector space bundle over S”. Then o' P +* is known
to be trivial. (Identify o' with the normal bundle of 8 in R*"'.) Combining
the relations

o PPt PP "
it follows that o' +»**'¢ o*"". Together with Lemma 4 this implies that
vt is trivial.

Now take a tubular neighborhood of f,(S™) in W. This ean be identified with
the total space of the normal D***-bundle. Henece this neighborhood ig diffeo-
morphic to 8* X D", The resulting imbedding

Sn x Dq+1 — W

certainly represents the homotopy class of fo.
Conversely suppose that such an imbedding is given. Since S8 X D' is
parallelizable, it follows immediately that f%7" is a trivial bundle. This com-

pletes the proof of Lemma 3.
This lemma can also be formulated as follows. Let B(S0,) denote a classifying

space for the rotation group, and let
T :W — B(80,)

be & classifying map for the tangent bundle of W. Then there exists an imbed-

ding 8% X D" — W which represeats A if and only if the homomorphism
T, : % (W) - =,B(80,)

annihilates A.

4 This proof is due to A. Dold,
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Combining this assertion with Lemmas 2 and 2’ it is easy to prove the following.

ASSERTION. Hvery compact (oriented, differentiable} manifold 1s x-equivalent -

to a manifold W which is connected (if n > 2), and which satisfies the following
condition: the homomorphism

T* : "Tp(W) — m,B(80,)

is @ monomorphism for 1 < p < n/2 — 1.

The proof proceeds by induction on p. First surgeries of type (1, n) are
used to connect the manifold. Then surgeries of type (2, n — 1) are used to
kill its fundamental group, and so on. The kernel of T, is finitely generated
at each stage since W is compact and, for p > 1, simply connected.

4. w-manifolds. It is not possible to kill the entire homotopy group =,(W)
by this construction, even if the dimension n is large, unless W satisfies some
further restriction.

[As an example consider the second homotopy group of the ecomplex pro-
jective space P,.(C). The Stiefel-Whitney number wi™[P,,(C)] is non-zero;
but for any 2-connected manifold ¥ the number w3™[V]is zero. Hence my(Ppn)C**
cannot be killed by the surgery.]

As a first attempt one might try the hypothesis that W is parallelizable.
However this condition is too easily destroyed by the surgery.

[For example consider the parallelizable manifold S* X 8°. Killing the funda-~
mental group of §' X $° we obtain a manifold such as S* which has positive
Luler characteristic; and therefore is not parallelizable.]

As a second attempt consider the following:

DermvirioN. W is a w-manifold if the Whitney sum of its tangent bundle
and a trivial line bundle is trivial. The notation (+* @ o)W will be used for
this Whitney sum. For example any sphere is a x-manifold.

REmARES. A trivial vector space bundle of higher dimension could be used
in place of the line bundle. {Compare Lemma 4.) If W is imbedded in a high
dimensional euclidean space then W is x-manifold if and only if its normal bundle
is trivial.”

Taronrem 2, Let W be a w-manifold of dimension n > 2p 4+ 1. Then any
homotopy class in m,(W) is represented by an imbedding

(88X D7PW
such that the new manifold x(W, f) 4s also a m-manifold.
Together with Lemmas 2 and 2’ this clearly implies the following,.

CoroLrary. Any compact m-manifold of dimension n is x-equivalent fo o m-
mantfold which 1s [n/2 — 1]-connected.

8 This assertion is essentially due to J. H. C. Whitchead. It can be proved using Lemma 4
together with the relation o @ 72 (D »* = ol*ntt,
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Remarx 1. In the case of a compact m-manifold ¥ without boundary one
can prove the stronger statement that V is x-equivalent to 8", (See Milnor [4],
Wall [10) together with Theorem 1.) This stronger statement is muech more
difficult to prove.

Remarx 2. T is definitely not true that x(W, f) is a mmanifold for any
imbedding f. If this were true then any manifold in the trivial cobordism
class would have to be a w-manifold. But a counter-example is provided by
the disjoint sum P,(C) - (—P:(C)) where the minus sign stands for reversal of
orientation,

Proor or TaroreM 2. Since the boundary of W plays no role in this theo-
rem, we may delete it. Then, given any imbedding f: 8° X D"? — W, the
(n + 1)-dimensional manifold w(W, f) is defined. (Compare the proof of Theo-
rem 1.} If f is suitably chosen, we will prove that «(W, f) is parallelizable.
Since x (W, ) is one of the two boundaries of w(W, f), this will imply that x(W, f)
is a w-manifold.

Since n > 2p + 1, any element of =,(W) is represented by some imbedding
fo: 8 — W, Since W is a w-manifold, there exist » - 1 linearly independent
cross-sections of the bundle (+* @ o )W. Restricting this bundle to f,(S7) it
splits up into the Whitney sum of (+" ( 0")f,(8") and the normal bundle »"7".
Note that the burndle (+ @ 0')S” can be identified with the tangent bundle of
R?**, vestricted to the unit sphere. Hence it has p + 1 canonieal cross-sections,
which will be denoted by e, - + -, ¢, The corresponding sections of (7 @ 0")f,(S%)
will be denoted by fo.eo, * - -, fouts.

Lumma 5. The n + 1 independent cross-sections ¢, **+, ¢, of (*° @ o' YW can
be chosen in such a way that, for each point w = fy(u) of fo(8%), the first p + 1
of these vectors are given by

es(w) = fo.e:(u), i=10,-,p.

Assuming this lemma for the moment, the proof of Theorem 2 proceeds as
follows. We may assume that the remaining n—p vectors, £,,(W), +++, ¢.(W)
are normal to the submanifold f,(S"C W. Hence these vector fields determine
a specific product structure for the normal bundle »*®. Making use of this
product structure, a tubular neighborhood of fo(8”) can be identified with
8% X D"*, This gives the required imbedding f: §° X D"7" — W,

AssERTION, If f is chosen in this way, then w(W, f) is parallelizable.

To prove this assertion, identify (+" (D o')W with the restriction to W of the tan-
gent bundle of (W, f}. Thus ¢, - - -, ¢, can be considered as independent cross-
sections of 7*'w(W, ) which are defined only on W. We must extend these
cross-sections throughout o(W, f). :

Consider first the problem of extending over the disk D**' X 0 C L C (W, f).
The boundary of this disk is 87 X 0 = f,(8") C W, and the sections ¢y, -+, ¢,
have been chosen so that, on 8” X 0, they reduce to the standard cross-sections
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e, ***, & of (D™ X 0). Thus the first p + 1 cross-sections can certainly

be extended over D**' X 0.

But the remaining cross-sections ¢,.1, + - -, €., on 8* X 0, are just the standard

basis for the normal bundle of D*** X 0in L. Hence these can be extended over
D™ X 0. This extension can be carried out so that all n + 1 vectors remain
independent.

Thus the tangent bundle of w(W, f), restricted to WU (D™ X 0), is a trivial
bundle. To complete the argument it is only necessary to observe that
W \J (D™ X 0) is a deformation retract of (W, f). This can be proved in
two steps as follows.

Stee 1. The manifold w(W, f) can be deformed into the subset W\ (Closure L)
by a deformation which leaves W \U (D™*' X 0) pointwise fixed. (The proof
is not difficult.)

Step 2. The space W \J (Closure L) has W \U (D"** % 0) as deformation
retract. In fact a retraction can be defined as follows, for (z, ¥) e Closure L:

(@, 9) — (@0 i# |} =1,
(=, ) — (&, y(|leli* — DV*/||yl) otherwise.

This retraction is clearly homotopic to the identity.

This proves that W \U (D' X 0} is a deformation retract of w(W, f), and
therefore proves that w(W, f) is parallelizable.

To prove Theorem 2 observe that x(W, f) is imbedded as a boundary of
o(W, f). Hence (+* @ o)x(W, ) can be identified with the tangent bundle of
(W, f) restricted to x{W, f). Since this is trivial it follows that x(W, §) is a
w-manifold. This completes the proof of Theorem 2, except for Lemma 5.

Proor or LemMMa 5. Start with any n + 1 independent cross-sections
bo, =+, b, of ("D o )W. For each u e 8 the required vectors fo.e; at w = fo(u)
can be expressed as linear combinations

foei(u) = Ezu(u)bi(w)-

The correspondence % — (2:;(%)) defines a map z from S? to the Stiefel manifold

consisting of all (p 4+ 1) X (n + 1) matrices of rank p + 1. But this Stiefel -

manifold is (n — p — 1)-connected;’ hence z is null-homotopic. Using the
covering homotopy theorem it follows that z can be lifted to a nuli-homotopic
map £ which carries 8” into the Stiefel manifold of all non-singular (n + 1) X
(n + 1) matrices. Let Z,;(u) denote the ¢jth component of (). Then z,, = z;;
for0 <4 <np.

Now define new sections ¢y, - -, ¢, as follows. Let e,{(w) = b,(w) outside of
some neighborhood of §,(S™), and let :
eiw) = Zzii(u)bi(w) for w= fo.(u)-

¢ Seo Steenrod [8, §25.6] together with §7.7 and §12.9.
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The null-homotopy of 2 can be used to extend throughout the neighborhood.
This completes the proof of Lemma 5 and of Theorem 2,

b. k-parallelizable manifolds. The next step will be to extend the above
procedure so that it applies to something more general than a w-manifold.

Dermrrion. A bundle £ over a space B is I-trizial if for every complex
k of dimension <k, and every map f: £ — B, the induced bundle f*# is trivial.
In case B itself is a complex, this is equivalent to the requirement that the
restriction of # to the k-skeleton of B should be trivial. -

Dermnation. A manifold is k-parallelizable if its tangent bundle is k-trivial.
Thus every (orientable) manifold is 1-parsllelizable. Tor large values of F,
this condition implieg that the manifold is actually parallelizable.

Turorem 3. Let W be a compact manifold which is k-parallelizable, 1 < k < n.
Then W is x-equivalent fo o k-parallelizable manifold W' which is ec-connected
where ¢ = Min (&, [n/2 -- 1]).

Proor, Suppose by induction that W is (p — 1)-connected with 1 < p <
Min (%, [n/2 — 1]). Cousider some triangulation of Interior W, together with
its dual cell subdivision., Let W' denoto the r-skeleton of one of these ceil
subdivisions and W, the r-skeleton of the other. Then the skeleton W* is a
deformation retract of (Interior W)—W,_ ..., Therefore the open manifold
(Interior W)—W,_,_, is parallelizable, and hence is a »-manifold. Sincep = ,
any element of «,(W) is represented by & map of §° into the skeleton.

W* C  (Interior W) — W, ;1.

Bince n > 2p -+ 1 it follows from Theorem 2 that this homotopy class is repre-
sented by an imbedding

f:8° X D" — (Interior W) — W,_;_,

such that the manifold x{(Interior W)—W,_,_,, f) is again a m-manifold.
But f can also be considered as an imbedding of 8 X D" 7in W. We assert
that the manifold x(W, f) is k-parallelizable. The above arpument shows that

(Interior x(W, f)) — W.sy = x(Interior W) — W, p1, )

is a m-manifold. But any map of a k-dimensional complex K into x(W, f) can
be deformed into a map

g K— (Interior x(W, ) — W.i1,

since the set W._,_; i3 a countable union of imbedded simplexes, each having
codimension > k 4 1. Hence g*(+"P o") = (g*)P o' is a trivial bundle.
Using Lemma 4 and the assumption that k& < n, this implies that ¢*+" is trivial.
Therefore x (W, f) is k-parallelizable.

SBince W is compact and {p — 1)-connected it follows that », () is finitely
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generated. Hence a finite number of iterations of this construetion will kill
the pth homotopy group. This completes the proof of Theorem 3.

6. Killing the middle homotopy group. Consider compact manifolds W of
dimension 2m. Using Theorem 2 or 3 it may be possible to kill the homotopy
groups (W) in dimensions p < m. This section will study the possibility
of killing =,.{W).

Remark. If one succeeds in obtaining a manifold W’ which is m-connected,
then the homotopy type of W’ is almost determined by that of Boundary W.
The Poincaré duality theorem implies that’ H,(W’, Boundary W) = 0 for
m < i < 2m — 1; and hence that H;(W’) is isomorphic to H; (Boundary W)
form < i < 2m — 1. As an example, if Boundary W is vacuous, then it follows
eagily that W' has the homotopy type of a 2m-sphere.

In order to kill =, (W), the first problem is to represent a given homotopy
class by an imbedded sphere.

Lemma 6, If W is a simply connecled manifold of dimension 2m > 4, then
every element of w,(W) is represented by an imbedding fo : 8™ - W.

More generally, if ¥ is a compact connected manifold of dimension m, the
proof will show that any homotopy class of maps V' — W is represented by
an imbedding. For the special case W = R™" this result is due to Whitney [12].
The present proof makes use of Whitney’s method. I do not know whether
the assertion is true in the case m = 2.

First any map can be approximated by an immersion f : ¥ -» W which has
no singularities other than a finite number of double points:

fla) = f(a), flas) = flas), -+,

where a,, - -, ag, are distinct points of V. (See Whitney, [11, Theorem 2].)
Since V is connected there exists an are joining @; to a, in ¥V which misses the

points g, +* +, @z This are projects into a simple closed curve C in W which is

differentiable except for one angle.

Identify C with a simple closed curve in R®, having one angle. Since W is
simply connected of dimension > 5, the unbeddmg of ¢'in W ean be extended
to an imbedding ¢ of B® in W. Now a tubular neighborhood N of g(B”) in W
will be diffeomorphic to E*™.

Consider the immersion f~'(3) — N. This has a double point, f(a,) = f(a.),
where a, and a, belong to the same component of f*(N). Apply the construction
described by Whitney [12, Theorems 3, 4] to this immersion. This has the
effect of first adding one double point and then removing two double points.
The map § is altered only in a compact subset of {7 (). Therefore the modi-
fied immersion f*(N) — N gives rise to 2 new immersion /' : V — W which
has only £ — 1 double points.

7 Integer coefficients are to be understood.
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Since the set N C W is homeomorphic to £%” it follows easily that 7 is homo-
topie to f. Iterating this construction & times we obtain an imbedding f; of ¥V
in W, which completes the proof.

The next problem is to decide whether the normal bundle »™ of f,(S™) is
trivial, This turng out to be a difficult question for m odd. Hence we will
concentrate on the case m even.

ILmvma 7. Let W be m~parallelizable of dimension 2m with m even. Lelfq: 8" —
W be an imbedding which represents the homology class” 8 ¢ H,,(W). Then the nor-
mal bundle »™ of f,{8™) 7s trivial if and only if the inlersection number (8, B} is
zero.

[Here the notation (e, «') stands for the intersection number of two homology
classes a e H{ (W), &' & H;,—o(W). Bee Lefschetz [2].]

Proor. Let "] & #,-.(80,,} denote the homotopy class whieh corresponds
to the bundle »". (See Steenrod [8, §18].) Just as in the proof of Lemms 3
it is seen that »™@ o™'" is a trivial bundle and hence, by Lemma, 4, that »"@ o'
is trivial. Therefore {»"] is annihilated by the homomorphism

'i* : Wm—l(SOm) - TMAH(SOm+1)-
Now consider the exact segquence
T(8") D wpos(80) > Tpr(SOpas).-

The homomorphism d carries a generator of r,(8™) into the class [+™] which
corresponds to the tangent bundle of S,. Hence [»"] must be equal to some
multiple k[z™] where % is an integer,

The Euler class X (™) of an m-dimensional vector space bundle can be defined
as the first obstruction to the existence of & non-zero cross-section. Note that
the correspondence

[£7] — X (&™)

defines & homomorphism from ,_,(80,,) to the infinite cyelic group H™"(S"™).
[Proof: Let X e H™(B(S0,)) denote the universal Fuler c¢lass and let
g : 8™ — B(80,,) denote a classilying map for £*. Thus X (™) = g*X. This is
clearly an additive function of the homotopy class {g} & m.(B(S0.)) =~
‘"'m—l(SOm)‘]

For the tangent bundle +™ of 8™ the class X (+™) is known to be twice a generator
of H™(8™. (The hypothesis that m is even comes in here.) Smce [»"} = k[+"]
it follows that X (»™) is equal to 2% times a generator,

This argument proves that the group Image 8 = kernel 7, generated by
[r"] is infinite cyclie. An element [£"] in this group is zero if and only if the
Fuler class X{£™) is zero.

But for the normsl bundle »™, the class X{»™) can be interpreted as the inter-
section number {8, 8} multiplied by a generator of H"(S™). For given a normal
vector field with only finitely many zeros, we can deform f,(8™) along these
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vectors to obtain a new imbedding which intersects f,(8™) at only finitely many
places. The multiplicity of each such interseetion is equal to the index of the
corregponding zero of the normal vegtor field,

Thus »™ is trivial if and only if (8, 8) equals zero, which completes the proof.

Remarx. This argument also proves that {8, 8) is equal to 2% and henee
is always an even number. This fact will be important later.

Lemma 7 raises the following question: Does there exist a non-zero element,
B of H, (W) such that the intersection number (8, 8) is zero?

Assume now that W is compact and (m — 1)~connecled of dimension 2m, and

furthermore assume that the boundary of W has no homology in dimensions m, m — 1.
Then the Poincaréd duality theorem implies that H,. (W) is a free abelian group.
[The group H,.(W) is isomorphic to H,,(W, Boundary W) and hence, by duality,
to H"(W). Since H,_,(W) = 0, the universal coefficient theorem implies that
H™(W) is free abelian.]

Since m is even the correspondence o — {a, o) for e ¢ H,,(W) defines a quad-
ratic form with integer coefficients. The determinant of this quadratic form
iz &1, (Compare Lefschetz [2, p. 178] or Milnor [3, Lemma 1].) Our question
now becomes: does the quadratic form of W have a non-trivial zero?

Lmmma 8. A quadratic form ¢ with integer coefficients and with determinont
=1 has a non-trivial zero if and only #f 1t is indefinile.

Both Lemma 8 and Lemma 9 (which follows) are immediate consequences of-

[3, Theorems 1, 2]. The more direct proofs given below are due to H. Sah.
The basic reference for thege proofs is B. Jones [1].

Proor or LemMa 8. If ¢ is positive definite or negative definite then it
clearly has only the trivial zero. Assume that ¢ is indefinite of rank ». That
is, if » denotes the number of negative terms when ¢ is diagonalized over the
rational numbers, assume that 0 < » < r.

Casnl, r = 5. According to [1, Corollary 27d], ¢ has a non-trivial zero

over the rational numbers (that is in H,(W; €)). Clearing denominators it
follows that ¢ has a non-trivial zero over the integers,

Case 2. r = 3 or4. According to [1, Theorem 14], ¢ has a non-trivial zero
over the p-adic integers for p odd. It clearly has a non-trivial zero over the
real numbers. The Hasse symbol ¢.(p) can be computed as on pages 38-39
of [1], and turns out to be +1for» = 1, 2and ~1 for » = 3. The determinant
of ¢ is clearly equal to (—1)". Now using [1, Theorem 14] it follows that ¢ has
a non-trivial zero over the 2-adic numbers. Together with the Hasse-Minkowski
theorem, {1, Theorem 27], this implies that ¢ has a rational zero.

Case 3. # = 2. Then the determinant of ¢ is — 1, and the conclusion follows
by an elementary argument. (See [1, Theorem 14a}.) This completes the
proof of Lemms 8 ‘

The ¢ndex of a quadratic form is defined asr — 2». (For a diagonalized form
thig is the number of positive terms minug the humber of negative ones.) The
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index of the quadratic form « — {a, a) of W turns out to be invariant under
the x-construetion. (Compare the Corollary to Theorem 1.) Thus in order
to have any hope of killing H..(W) we must assume that this index is zero.

Now suppose that W is m-parallelizable. Then the quadratic form of W
takes on only even values. This follows from the remark after Lemma 7, together
with Lemma 6 and the Hurewicz theorem. (For an alternative proof, compare
[3, Lemmas 3)].)

The conditions which we have obtained for the quadratic form of W turn
out to be sufficient to characterize this form. Let U denote the matrix

(o)
1 o
Levma 9. Consider a quadratic form over the iniegers with deferminani 41

and 1ndex 0, which takes on only even values. The mairiz of this form, with respeel
to o suitable basis, 4s° diag (U, -+, U).

Proor. It will be convenient to use the notation e — (o, ), o ¢ H, for this
quadratic form. According to Lemma 8 there exists a non-zero element 8, of
H such that (8, 8.) = 0. We may assume that 8, is indivisible. Since the
determinant is &= 1, it follows that there exists an element « of H with (8;, &) = 1.
Define

By = & — o, ).

It follows that {8, ) = 1 and {8,, 8;) = 0. Thus the matrix ||8;, ;|| for
Z, 9 =1, 215 equal to U.

Let H' denote the set of & in H with (8;, a) == {8, ¢} = 0. Since the deter-
minant of U is +1 it follows that H splits into the direct sum of A’ and the
free abelian group generated by 8, and f;. By induction on the rank we may
choose a basis 85, -« - , 8, for H' which has the required form. This completes
the proof of Lemma 9.

TamoreM 4. Let W be m-parallelizable and (m — 1)-connecled of dimension
2m where m is even ¥ 2. Suppose that the quadratic form of W has index zero,
and that the boundary of W has no homology in dimensions m, m — 1. Then W is
x-equivalent fo an m-connected manifold.

Proor. According to Lemmas 9 there exists a basis 8,, -+ -, 8, for H,,{W) =0
that the intersection matrix takes the form diag (U, --- , U). By Lemma 6
and the Hurewicz theorem, there exists an imbedding

fo: 8% — Interior W

which represents the homology class 8,. By Lemma 7 the normal bundle of

¢ Here diag(U, +++ , U) denotes the r X r matrix with /2 copies of ¥/ along the diagonal,
and zeros elsewhere,
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fo(S™) is trivial. Hence f, can be exfended to an imbedding
f 8" X D" —W.
Let W = x{(W, 1), W, — Interior f(8™ X D™).
Tirst consider the exact sequence
0~ H (W) — H (W) X Ho (W mod Wo) & -+

By excision it is seen that H,(W mod W,) is infinite e¢yclic. A generator of -

this group has interseetion number 4=1 with the cycle f,(8™). Thusforac H,.(W)
the image j,(«) is equal to the intersection number {w, 8;) multiplied by a
generator of H,(W mod Wy). Hence H,(W,} is isomorphic to the subgroup
of H,(W) generated by the elements 8,, 85, By, + -+ , By; with 8, omitted. It is
easily verified that Wy is (m — 1)-connected,

Next congider the exact sequence

- —> Her;(W’ mod Wg) _3) Hm(Wo> — Hm(W’) ad 0-

In this case the group H,.., (W' mod W,) is infinite cyclic. The homomorphism
3 earries a generator into the homology class represented by the imbedding

% — flu, vy)
of 8" in W,. But this is elearly the homology class 8,. Therefore H,,(W') is a
free abelian group with a basis corresponding to the elements 8, 84, -« , B\

The manifold W’ is (m — 1)-connected.
The effect of this construction on W is to replace the sphere f,(8™) by a
sphere of dimension m — 1. Any map of an m-dimensional complex into W’
can be deformed s0 as to miss this (m — 1)-sphere and hence can be deformed
into the subspace W,. This implies:
(1) that W’ is also m-parallelizable- and
(2) that the intersection number of any two elements of H,(W’) is equal to

the intersection number of two corresponding elements of H,(W). Thus the

quadratic form of W’ has matrix diag (U, --- , U), with rank r — 2.

Now iterate this construction r/2 times. The resulting manifold W' will
still be (m — 1)-connected and the group H,.(W") will be zero. Together with
the Hurewicz theorem, this completes the proof of Theorem 4.

Remark. If the hypothesis that W has index zero is replaced by the wesker

hypothesis that the quadratic form of W isindefinite, then it is at least possible
to reduce the rank of H,(W). The above argument shows that the intersection
matrix of I,,(W) has the form diag (U, X), for a suitable choice of hasis. Applying
gurgery one obtains a manifold W' with intersection matrix X.

In conclusion we consider the corresponding problem for m odd., Then the
quadratic form of W is replaced by a skew symmetric bilinear form. The
following result is well known. (See Veblen [9, p. 183].) Let U’ denote the

matrix
&
-1 o/

HOMOTOPY GROUPS OF DIFFERENTIABLE MANIFOLDS 55

AssErTioN. Bvery skew symmetric bilinear form with determinant =1 has
matrix diag (U, +-- , U"), for a suitable choice of basis.

This takes the place of Lemma 9, and is easier fo prove. Unfortunately,
however, Lemma, 7 is not so easy to replace, except in two special cases.

If m is equal to 3 or 7 then the group 7,.-,(80,.) is zero. Hence any m-sphere
in a 2m-dimensional manifold has trivial normal bundle. This makes it possible
to prove the following analog of Theorem 4,

Taworem 4/, If W 4s compact and (m — 1)-connecled of dimension 2m, with
m = 3 or 7, and if

H,._i(Boundary W) = H,(Boundary W) = 0,
then W is x-equivalent to an m-connecled monifold.

The proof goes just as before, with the assertion concerning skew symmetric
forms in place of Lemma 9.
TFor m odd but unequal to 1, 8, 7 the situation is more difficult, and will be

considered in a later paper.
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