
WHITEHEAD TORSION 

BY J. MILNOR 

In 1935, Reidemeister, Franz and de Rham introduced the concept 
of "torsion" for certain finite simplicial complexes. For example let X 
be a finite complex whose fundamental group TTIX is cyclic of order 
m. We can identify TT\X with the group of covering transformations 
of the universal covering complex X. If ir\X operates trivially on the 
rational homology H*(X\ @), then the torsion of X is defined as a 
certain collection of elements in the algebraic number field 
Q[exp(27ri/m)]. This torsion is a kind of determinant which describes 
the way in which the simplexes of X are fitted together with respect to 
the action of ir\X. The actual definition will be given in §8. (See 
Franz [1935], de Rham [1950], Milnor [1961].) 

In 1950, J. H. C. Whitehead defined the "torsion" of a homotopy 
equivalence between finite complexes. This is a direct generalization 
of the Reidemeister, Franz, and de Rham concept; but is a more 
delicate invariant. (See §7.) I t has gradually been realized that the 
Whitehead torsion provides a key tool for the study of combinatorial 
or differentiable manifolds with nontrivial fundamental group. 
Closely related is the concept of "simple homotopy type" (White
head [1939], [1950]). 

The Whitehead torsion is not defined as an algebraic number, but 
rather as an element of a certain commutative group Wh.(iriX) which 
depends on the fundamental group. For many years these "White
head groups" were completely impossible to compute, except in a 
very few special cases (Higman [1940]). But recent work by H. Bass 
and others has made these groups moderately accessible. 

The first six chapters of this presentation will be concerned with 
the algebraic part of the theory, and the remaining six chapters with 
the geometric applications. There are two appendices: one to show 
the relationship of Whitehead groups to the work of Bass and 
Mennicke on congruence subgroups, and one to help motivate the 
notation KiA which is used for the Whitehead group of a ring. 

1. The Whitehead group K\A of a ring. Let A be an associative 
ring with unit. The group of all nonsingular nXn matrices over A 
will be denoted by GL(n, A). Identifying each l fGGL(w, A) with 
the matrix 

(M 0 \ 
(^ J G GL(II + 1, il) 
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we obtain inclusions 

GL(1, A) C GL(2, A) C GL(3, A) C • • • . 

The union is called the infinite general linear group GL(^4). 
A matrix is called elementary if it coincides with the identity matrix 

except for one off-diagonal element. 

LEMMA 1.1 (J. H. C. WHITEHEAD) . The subgroup £(^4)CGL(^4) 
generated by all elementary matrices is precisely equal to the commutator 
subgroup of GL(-4). 

PROOF. Let aE^ denote the matrix with entry a in the (i, j)th place 
and zeros elsewhere. The identity 

(ƒ + aEi3)(I + En)(I - aEij)(I - EjJc) = ( J + aEa)f 

for i^j^k^i, shows that each elementary matrix in GL(w, A) is a 
commutator, providing that n^Z. 

Conversely the following three identities show that each commuta
tor XYX~1Y~1 in GL(w, A) can be expressed as a product of ele
mentary matrices within the larger group GL(2w, A). 

/XYX-lY~l 0 \ _ /X 0 \ /Y 0 \/(YX)~l 0 \ 

\ 0 / / " \0 X-1) \0 Y-1) \ 0 Yx) ' 

\0 Z- 1 / \0 I/Kl-X-1 l)\0 l)\I-X I/' 

( I X\ n 2n 

n j = n n (/+*«£«>. 
This completes the proof. 

I t follows that E(A) is a normal subgroup of GL(^4) with commu
tative quotient group. The quotient will be called the Whitehead group 

KXA = GL(A)/E(A). 

We will usually think of KiA as an additive group. 
Clearly K\ is a covariant functor: tha t is, any ring homomorphism 

A—>A' gives rise to a group homomorphism K\A—>KiA'. 
If the ring A happens to be commutative then we can also consider 

the special linear group SL(4) , consisting of all matrices in GL(^4) 
with determinant 1. The quotient Sh(A)/E(A) will be denoted by 
SKi(A), and called the special Whitehead group. Note the direct sum 
decomposition 

KXA SS U(A) 0 SKtU), 
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where U(A) denotes the group of units in A. This follows immediately 
from the existence of the determinant homomorphism 

det: GL(il)/JE(il) -> U(A), 

together with the inclusion 

U(A) = GL(1, A) C GL(il). 

For many important rings the second summand SKi(A) is zero. 
In other words every matrix in GL(A) with determinant 1 can be 
reduced to the identity matrix by elementary row operations.1 

EXAMPLE 1.2. If F is a field, then SKi(F)=0. So the Whitehead 
group K±F can be identified with the group 

U(F) = F-{0} 
of units. 

EXAMPLE 1.3. For the ring Z of rational integers, SKi(Z) = 0, so 
K\Z is equal to the group 

U(Z)= { + 1} 

with two elements. More generally, if A is any commutative ring 
which possesses a euclidean algorithm, then SKiA = 0 . 

The proofs of these statements are well known. 
EXAMPLE 1.4. If A has only finitely many maximal ideals, then 

SK\A = 0. (See Appendix 1 ; as well as Bass, Lazard and Serre [1964, 
Lemme l] .) 

EXAMPLE 1.5. If 0 is the ring of integers in a finite extension field 
of the rational numbers, then SKio — 0. (Bass and Milnor [to ap
pear].) 

More important for the applications is the following. 
EXAMPLE 1.6. If ZII is the integral group ring of a finite abelian 

group, then SKi(ZU) = 0. This will be proved in a forthcoming paper 
by H. Bass. (Compare Appendix 1.) 

Added in proof. Unfortunately, there seems to be serious difficulties 
with the proof of 1.6. If II is cyclic of prime order, the statement is 
certainly correct, but the general case remains in doubt. Care should 
be taken with §§6.4, 6.7, 8.1, 12.8, and other places in which 1.6 is 
used. 

To break the monotony, here are some examples with SKi^O. 
EXAMPLE 1.7. Let R[x, y] denote the Dedekind ring which is ob

tained from the real numbers R by adjoining two indeterminates, 
subject to the single relation 

1 An elementary row operation on a matrix means the operation of left multiply
ing by an elementary matrix. 
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3* + y* « 1. 

Then the matrix 

( * y)esLQ,R[*,y]) 

represents a nontrivial element of SKiR[x, y], 
(See Appendix 2. More precisely it is possible to show that the 

group SKiR[x, y] is cyclic of order 2.) 
EXAMPLE 1.8. Let A=Z{TXT2z) be the integral group ring of 

the cartesian product of an infinite cyclic group T and a cyclic group 
of order 23. Then SKtA^O. 

This follows from Bass, Heller and Swan [1964], and will be dis
cussed in Appendix 2. (In fact SK\A is the direct sum of a cyclic 
group of order 3 and an unknown 23-primary group.) 

Finally, here are some examples in which the ring A is noncom-
mutative. 

EXAMPLE 1.9. If F is a skew-field, and U— F* the group of units, 
then K\F can be identified with the abelianized group U/[U, U]. 
The natural homomorphism 

GL(n, F) -> KxF 

is just the "noncommutative determinant" of Dieudonné [1943]. 
(See also Artin [1957].) 

LEMMA 1.10. Let Mn(A) denote the ring of all nXn matrices over the 
ring .4. Then 

KlMn{A)^K1A. 

PROOF. Any kXk matrix with entries in Mn(A) can be thought of 
as a knXkn matrix with entries in A. In other words 

GL(*, Mn(A)) S GL(*n, A). 

Passing to the limit as k—» <*>, and then abelianizing, we obtain the 
required isomorphism 

KiMn(A) & KiA. 

For one important class of rings the group K\A has been studied 
by Bass [1964]. We will say that A is an order in a semisimple 
Q-algebra if the additive group of A is a free abelian group of finite 
rank; and if the associated algebra Q®A over the rational numbers 
is semisimple. For example the integral group ring ZU of any finite 
group II is an order in the semisimple algebra QIL 
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THEOREM 1.11 (BASS [1964]). If A is an order in a semisimple 
Q-algebra then K\A is a finitely generated group of rank r — q, where q 
denotes the number of simple factors of the algebra Q®A, and r denotes 
the number of simple factors in the corresponding real algebra R®A. 

As an example, let A — ZTP be the integral group ring of a cyclic 
group Tp of prime order p ^ 3 . Then it is easy to verify that 

so the Whitehead group 

K^ZT») = U(ZTP) 

is a finitely generated abelian group of rank (p — 3)/2. (Compare 
Higman [1940].) In particular, this group has positive rank, provid
ing that p^5. 

We will pursue these ideas further in §6, and in the two appendices. 
The reader may prefer to skip immediately to §6. 

2. Elementary constructions with free modules. The word 
"module" will always mean "finitely generated left .4-module." 

Following Whitehead, we impose the following mild restriction on 
the ring A : The free module of rank r over A should not be isomorphic 
to the free module of rank s if r^s. This restriction will always be 
satisfied, for example, if A can be mapped homomorphically into a 
commutative ring. 

Before proceeding it will be important to make a slight modifica
tion of the Whitehead groups studied in §1. Let [ — l]Ç:KiA denote 
the element of order 2 corresponding to the unit 

( - l ) G GL(1, A)C GLU)-

DEFINITION. The quotient KiA/{0, [ — 1]} will be denoted by 
JKI^4, and called the reduced2 Whitehead group of A. 

Here are two important examples. For the integers Z the group 
"KiZ is zero. For the real numbers J?, ~KiR is isomorphic to the multi
plicative group R+ of positive reals. A specific isomorphism is given 
by the correspondence (a*/)—>| det(a^) | . 

The advantage of passing to this quotient is that two matrices 
which differ only by a permutation of the rows represent the same 
element of K\A. This follows, for example, from the fact that every 
permutation matrix represents the zero element of ~KxZ(ZK\A. 

Let F be a free A -module and let & = (&i, • • • , bk) and c = (ci, • • • , Ck) 
be two different bases for F. Setting d~ X/^v&i w e obtain a non-
singular matrix (a^) with entries in A, The corresponding element of 

2 In some noncommutative cases it may happen that [ — l] = 0, so that KXA =KiA. 
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the reduced Whitehead group K\A will be denoted by \c/b\. If [c/b] = 0 
then we will say that b is equivalent to c (briefly b~c). The identities 

[d/c] + [c/d] = [d/b], 
[b/b] = 0 

show tha t this is an equivalence relation. 
EXAMPLES. For a free module of rank 2, the bases (fa+ab2, £2)1 

(&i, abi+b2), and (b2, h) are all equivalent to (61, b2). 
Next consider a short exact sequence 

0 - > £ - » F - > G - » 0 

of free modules. Given bases e = (eu • • • , ek) f or E and g = (gu • • • ,gi) 
for G we can construct a basis £g for JP as follows. Lift each giÇiG to 
an element gl of F. Then 

^ = («1, • • * , * * , # ' , ' • ' , « / ) 

is the required basis. Of course this basis eg depends on the choice of 
the gi. However the equivalence class of eg depends only on e and g. 

(Throughout §2, the proofs are easy, and will be omitted.) 
Note also the following identity. If e and g are alternative bases for 

the modules E and G respectively, then 

(2.1) [ég/eg] = [ê/e] + [g/g]. 

The following reformulation will often be convenient. Suppose that 
we are given free modules 

FQ d FiCZ F2 

together with bases b% for the free quotient module FI/FQ and 62 for 
the quotient module F2/Fu Then we obtain a basis b\b2 for F2/F0, 
using the exact sequence 

0 -> Ft/Fo -> F2/FQ -» F2/Fi -> 0. 

(2.2) This construction is associative: Given modules 

FQ Q FiQ F2Q Fz 

and bases bi for the (free) quotient modules Fi/Fi-u the basis (bib2)ba 
for Fz/FQ is equivalent to the basis bi(b2bz). 

More generally, given modules 

and given bases b{ for the quotients Fi/Fi-u we obtain a basis 
bib2 • • • bk for FJC/FQ which is well defined up to equivalence. 
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I t will be convenient to represent situations such as this by lattice 
diagrams such as the following. 

bibibz 

bzbz 

Each arrow represents an inclusion map. The letter associated with 
each arrow denotes a basis (or equivalence class of bases) for the 
corresponding quotient module. 

Our construction is also commutative, in the following sense. Let 
E and F be submodules of G, and let E + F denote the smallest sub-
module containing both. Thus we obtain a lattice: 

t 
E + F / v 

\ / 

t 
Ef\F 
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Suppose that E/EC\F^(E+F)/F is free with basis b and that 
F/Er\F^(E + F)/E is free with basis c. Using the left hand inclu
sions we form the basis be for (E + F)/EC\F, and using the right hand 
inclusions we form the basis cb. Then clearly 

(2.3) bc~cb. 

I t is essential at this point tha t we are working in K\A rather than 
KiA. 

3. The torsion of a chain complex. Let Cn—>Cn-i—> • • • Ci—>Co 
be a chain complex of modules over the ring A such that each d 
is free with a preferred basis d, and each homology group Hi(C) is 
free with a preferred basis hi. (The case Hi(C)=0 is of course not 
excluded. By definition, the zero module has a unique basis.) We 
wish to define the torsion r(C)ÇzKiA. Let Bi denote the image of 
the boundary homomorphism d: Ci+i—>d and let Z*+i denote its 
kernel. In order to simplify the discussion we will assume the follow
ing. 

HYPOTHESIS. Each Bi is also a free module. 
The more general situation in which this hypothesis is not satisfied 

will be put off until §4. 

Choose a basis bi for each Bi. Using the inclusions OCBiCZiQCi 
where Zi/B—Hi, Ci/Zi=Bi-i we see that the bases bi, hi, 6t-_i com
bine to yield a new basis bihibi-i for C,-. Now define r{C) 
— X} ( — îytyihibi-i/Ci]. This does not depend on the choice of the 
bi since, choosing different bases hif we have 

D (-i)<[M<w*l = Z (-mttihibi-t/a] + [h/bi\ + M M ] ) , 

where the last two terms sum up to zero. 
Of course r(C) does depend on the Ci and hi. 
Now consider a short exact sequence 0—>C/-~>C--~>C/,—>0, in the 

category of chain complexes and chain mappings over A. We will 
assume that the modules C[, Ci, C" are free with preferred bases 
c/, Ci, c[' which are compatible, in the sense that Ci~c{ c{'. 

We wish to prove tha t r{C) is equal to r{C) +T(C") plus a correc
tion term which depends on the homology groups of the three chain 
complexes. First consider the special case where all three complexes 
are acyclic. 

THEOREM 3.1. If the homology modules H*C, H*C and H*C" are 
all zero, then r{C) =T{C)+T(C). 
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The proof will be based on the following lattice of submodules of 
d. 

Each capital letter in the diagram represents a submodule of C». Note 
tha t Cir\Bi = Bi. The natural isomorphisms 

d/(Ci + Bi) S Ci'/Bl' S BiLu 

and 

Ci/Bi S B / - 1 

Bi/Bi^(Ci+Bi)/Ci^Bif 

are easily verified. 
Each lower case letter in the diagram represents a basis for the 

corresponding quotient module. We are assuming that the modules 
Bi, Bi, Bi' are free. Let 6/ , bi, bi' be bases for these modules. Since 
we can choose any bases we like, we may as well choose bi to be equal 
to bib'i . Hence, pushing to the left across the diagram, we have 

W*-i = W « - i ) « ' - i ~ (WW-i) (« '«- i ) , 

using §2.3. Therefore 

<C) = £(- l )<[J«W*] 

= E ( - 1)'[(W W-i) («' «'-i)A/ *" ] 

-r(C0 + r(COi 
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using §2.1. This completes the proof of Theorem 3.1. 
More generally suppose that the homology groups of C', C, and C" 

are not zero ; but are free with preferred bases. Then the exact homol
ogy sequence 

Hn —> Hn —> Hn —> H.n—1 —* • * * —* n o —* So —> HQ 

can be thought of as a free acyclic chain complex3 3C of dimension 
3n+2. Hence the torsion r3C is defined. 

THEOREM 3.2. With these assumptions the torsion T(C) is equal to 

T ( 0 + T ( C " ) + T ( 3 C ) . 

PROOF. Let Xi QHi and XiQHi be the kernels of the homo-
morphisms Hi —>iTt- and Hi—>Hi' respectively. Similarly let XI' be 
the kernel of Hi' —*Hi_v Thus the sequences 

0 -> Xi -> Hi ~> Xi —-» 0 

0 -> X» --> IT» -* X / ' -> 0 

0 -> X/ ' -> #/'--> XU-+ 0 

are exact. We are assuming that the modules Xi, Xi and X " are 
free. Choose bases and xl' respectively. 

Consider the following lattice of submodules of C». 

8 To be more precise, we defineX by setting 3C*« = # / ' ,3C«.|4«i7<l3Ci<+s->JEr/. 
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The notation is mostly self explanatory. For example d~l(Cl-\) de
notes the set of all Y EC* such that d(y) belongs to C7-i (and hence 
to Ci-.ir^Bi„i = Zi-ir\Bi-.i). The verification that this diagram exists 
as advertised will be left to the reader. 

Again we have c^clc" by hypothesis. We are free to choose the 
bases bj , bi} b{', so we may choose bi equal to b{x[b". By definition 

T(3C) = E ( - 1 ) W 2 [ * / * < / * / ] 

+ £(-i)8*fl[*<*/7*<] 
+ £ ( - I ) " W ' * / V A / ' ] . 

Hence 

T(C') - T ( 0 +T(C") +r(JC) 

= Z(-i)'([WW*/-i/^3 - M<W*1 + [«'*<" W'-iA/'l 
+ [xixi/hi] - [xiXÎ'/hi] + [xïxU/hï]). 

We must prove tha t this expression is zero. But, upon inspecting the 
expression, we see that it does not depend on the choice of hi, hi 
and hi'. Hence we may as well assume that 

Hi ~~~ vvj Xi* rli ~—~ XiXi • tli *~— »v̂  ivj_i 

so tha t r (3C)=0 . 
Similarly, after substituting clc" for ct-, the expression does not 

depend on the choice of c[ and c". Hence we may as well assume that 

Ci = bi hi bi—iy Ci = bi hi # t ~ i 

s o t h a t r ( C ' ) = T ( C " ) = 0 . 
Making these assumptions, it only remains to verify that r(C) = 0 . 

Pushing to the left across our diagram, we have the following equiva
lences. 

bihibi-t = b!x!(bl'Xi)(xl'bLù*i-ibi-i 

~ b'ix'iXiib'i'b'i-ùx'i'xLib'iU by 2.3 

~ bi (*ƒ Xi)bUbi' ixl' */_i)W'-i by 2.3 

= WhlbUW'hl'KU) 
= Ci Ci1 ~ a. 

Therefore 

KO = E(-1)<[M«W*] 
is equal to zero. This completes the proof. 
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4. Stably free modules. A module M over A will be called stably 
free if the direct sum of M with some free module is free. (Recall that 
all modules are to be finitely generated.) If M®FÇ=F' then the 
difference between the rank of F' and the rank of F will be called the 
rank r of M. 

LEMMA 4.1. Consider a short exact sequence 0—>X—» Y—>Z—K) of 
A-modules. If Y and Z are stably free, then X is also stably free. 

PROOF. Since Z is projective the sequence splits; so that Y is iso
morphic to X 0 Z . Thus if Z®F^Ff and Y®F^F,f, where F, F', 
F" are free, it follows that X@F'^F". 

Now consider a free chain complex 

G» > Cn_i > • • • >• Co 

over Ay and assume that the homology modules Hi — Hi(C) are also 
free. Using the exact sequences 

0 -> Zi -» d -» Bi-i -» 0 

0->Bi->Zi->Hi —>0 

it follows by induction tha t all of the modules Zi and Bi are stably free. 
We will show tha t the constructions of §2 can be carried out using 

stably free modules in place of free modules. I t will then follow easily 
that all of the constructions and proofs of §3 can be carried out with
out the extra hypothesis that the Bi (and Xi) are free. 

Let Fi denote a standard free module of rank i, with standard basis 
fu ' ' • » f%- We may think of Fi as the submodule of Fi+i generated 
by the first i basis elements. 

DEFINITION. An s-basis b for a stably free module M is a basis 
(6i, • • • , br+t) for some direct sum M@Ft. Here t can be any non-
negative integer. 

Given two s-bases b = (&i, • • • , br+t) and c = (ci, • • • , cr+u) for M", 
the symbol 

[c/b] G KXA 

is defined as follows. Choose an integer ü ^ M a x ( ^ ) . Extend 
(&ii • • • i br+t) to a basis for M@FV by setting 

br+i=* 0@fi, i^t+1. 

Similarly extend (ci, • • • , cr+u) to a basis for M(&Fvby setting 

Cr+i = 0 0 ƒ,-, i â M + l . 

Now c* = ^2a>ijbj where the matrix (a^)£GL(r+z>, ^4) represents the 
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required element [c/b\Çz~KiA. Clearly this construction does not de
pend on the choice of v. As in §2, we write b~c if [c/&]=0. The 
identities 

[d/b] = [d/c] + [c/b] 

[b/b] = 0 

are again satisfied. 
Next consider a short exact sequence 

0 - > X - > F - > Z - » 0 . 

Given s-bases x for X and z for Z we can construct an s-basis xz for Y 
as follows. Suppose that x is a basis for XÇ&Ft and that z is a basis for 
Z 0 .Fw. Consider the exact sequence 

a P 
0-*Ft->Ft+u->Fu->0 

fiifd = i 
V»-* 

where « denotes the inclusion homomorphism, and 

for i ^ t, 

[fi-t for i > t. 

Forming the direct sum 

oeo->xeF*->F0 Ft+u -^zeF«->oeo, 
the bases x and s combine to yield a basis xz for F © ^ + w , which is 
well defined up to equivalence. This is the required construction. 

LEMMA 4.2. This composition operation for s-hasis is "associative" 
and "commutative" in the sense of §2. Furthermore, if % and z are alterna
tive s-bases for X and Z respectively, then 

[xz/xz] = [x/x] + [z/z], 

just as in §2. 

The proof, which is rather dull, will be omitted. 
I t is now possible to revise §3 by substituting "stably free" and 

"s-basis" wherever the words "free" and "basis" occur. With these 
changes, all of the arguments still go through; but no extra hy
pothesis is needed to guarantee that the modules Bi and Xi are 
stably free. 

5. An algebraic "subdivision" theorem. This section will prove an 
algebraic theorem which will enable us later to handle the geometric 
operations of subdividing a complex, or triangulating a smooth mani
fold. 
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The following situation is frequently encountered in homology 
theory. Let C be a chain complex and let 

C*(o) Q CW C • • • C C (n) = C 

be a "filtration" of C by subcomplexes such that the following is 
satisfied. We set C(~1) = 0. 

HYPOTHESIS. The homology group £Ti(C(X)/C,(X~1)) is zero f or *VX. 
Then we can define a new chain complex C by setting 

The boundary homomorphism 3 : C\—»Cx-i is to be obtained from the 
exact sequence of the triple C(X), C^""^, C(X~2). The following is well 
known. 

LEMMA 5.1. The homology groups H^C are canonically isomorphic to 
the groups HiC. 

For completeness, here is a proof. The fact that 

HiC^/CM = 0 for i > X or i g M 

is proved by an easy induction on X—/z. Hence 

Now consider the diagram 
0 
i 

Cx+i -* HxC<»/C*-*> -> HxC*+»/C*-» -> 0 

Cx 

Cx-i 

where the vertical line comes from the homology exact sequence of 
the triple C(X\ C(X-1}, C(X"2); and the horizontal line from the triple 
C(X+1), C(X), C(X_2). Inspection shows that the cycle group Zx of C can 
be identified with 2JxC(X)/C(X-2). Hence 

^xC = Zx/Sx S #xC(X+1)/C<x-2> = #xC, 

which completes the proof. 
We wish to examine the behavior of the torsion in a filtered chain 

complex of this type. 
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FURTHER HYPOTHESES. Each Cf°/Q (x 1} should be free with pre-
f erred basis c\ ; so that d is free with basis 

0 1 2 n 

Also each C\ = H"\C(X)/C(K~1) should be free with preferred basis c\; and 
the modules 

HiC :~ HiC 

should be free with preferred basis hi. Finally C should be finitely gen
erated so that the torsions rC and rC are defined. 

With these hypotheses we will prove: 

ALGEBRAIC SUBDIVISION THEOREM 5.2. If each quotient complex 
CW/CCA-D has torsion T(C(A;)/C(fc-1)) equal to zero, then r(C) =r(C). 

PROOF. Let Cik) denote the truncated chain complex 

• • • 0 -» Ck -> Ck-i - > • • • - > Co -> 0 

which is obtained from C by chopping off the chain modules of de
gree >k. We wish to look at the torsion r(C(/k)). I t follows from 5.1 
that H£w^H%C<*\ Note that HiCW^HiC™ is zero for i>k\ and is 
isomorphic to HiC, with preferred basis hi, for i<k. In order for the 
torsion to be defined we must also choose a preferred basis (or at 
least s-basis) for HkC

m=HkC^\ But clearly HkC
ik) can be identified 

with the cycle group ~Zk of C, which is known to be stably free. Hence 
some preferred s-basis zk can be chosen. It then follows that r(Cik)) 
and r(C(k)) are defined. 

We will prove by induction on k that 

T(C»>) = T(C<*>). 

Taking k = n, this will complete the proof. 
Let 3C denote the homology exact sequence of the pair (C(/fc), 

ç(ft-D). o r equivalently of the pair (C(A)
f C(*""1}). Then according to §3 

we have 
TC™ = TC«-V + TC^/C^-V + T3C, 

But TC^-V^TC^» by induction, and T C ( * ) / C ( * - 1 ) = 0 by hy
pothesis. Since TC(JO)/C(&_1) is trivially zero, it follows that TCW 

= TCik). This completes the proof. 

6. The Whitehead group Wh(II) of a group. Let II denote a multi
plicative group and ZII the corresponding integral group ring. Then 
clearly II itself is contained in the group of units 
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U(ZU) = GL(1, ZU) C GL(Zn). 

Hence there are natural homomorphisms4 

n-> K^ZU) ->Zi(zn). 

DEFINITION. The cokernel 

Zi(Zn)/image (n) 

is called the Whitehead group Wh(II). This construction can be de
scribed by the exact sequence 

o -» n/[n, n] -> XiCzn) -> wh(n) -> o. 

Clearly Wh(II) is a covariant functor of II. In other words, any 
homomorphism ƒ: III—VEI2 induces a homomorphism ƒ*: Wh(IIi) 
~>Wh(n2). 

LEMMA 6.1. If f: II—>II is an inner automorphism, then/*: Wh(II) 
—>Wh(II) is the identity. 

PROOF. Let f (a) =<ficr4>-1 for each <r£II. The corresponding auto
morphism of GL(n, ZU) is clearly given by 

(fly) 

Passing to the abelian group KiZIL, or to Wh(II), we therefore obtain 
the identity automorphism. 

DEFINITIONS. If a= ^jn^i is an element of ZU (with n»GZ, 
(TiGII) then the element ^niOT1 is called the conjugate of a> and will 
be denoted briefly by â. This conjugation operation is an anti-
automorphism of the group ring. Tha t is the conjugate of a+b is â + 5 
and 

ab = hd. 

A corresponding anti-automorphism of the general linear group 
GL(Zn) is obtained by sending each matrix (at-y) into its conjugate 
transpose (%). Passing to the abelianized group KiZU. this gives rise 
to an automorphism. Hence one obtains an automorphism of Wh(0) . 
The image of an element co£Wh(II) will be denoted by the symbol œ, 
and called the conjugate of co. 

Miscellaneous quoted theorems. If II is infinite cyclic, or is finite of 
order 2, 3 or 4 then Higman [1940] proved that Wh(II) is zero. Bass' 
Heller and Swan [1964] have shown that the Whitehead group of any 
free abelian group is zero. Stallings [l965i] and Gersten [l965i] have 

* Here "RiA^KiA/lO, [-1]}, as in §2. 
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shown tha t the Whitehead group of any free group is zero. In fact 
the Whitehead group of a free product is given by 

Wh(n*n') = wh(n) e wh(n'). 
(There is no corresponding formula for the Whitehead group of a 
cartesian product. For example W h ( r 3 ) = 0 and W h ( r 4 ) = 0 , but 
W h ( r 3 x r 4 ) = ~ Z ; where Tm denotes the cyclic group of order m.) 

If II is finite then Bass [1964] has shown that Wh(II) is finitely 
generated. In fact, more precisely: 

THEOREM 6.2 (BASS) . If II is finite then Wh(II) is a finitely gen
erated abelian group of rank r — q, where r is the number of irreducible 
real representations of II, and q is the number of irreducible rational 
representations. 

(This is a special case of §1.11.) These numbers can be described 
quite explicitly as follows: q is the number of conjugate classes of 
cyclic subgroups5 of II, and r is the number of conjugate classes of 
unordered pairs {c, a*"1}. Hence for II finite we have: 

COROLLARY 6.3. The Whitehead group Wh(II) of a finite group is 
itself finite if and only if, for every two elements <r, r £ I I which generate 
the same cyclic subgroup, either a is conjugate to r or cr~l is conjugate 
to T. 

As an example, the symmetric group Sn consisting of all permuta
tions of n elements satisfies this condition. (In fact it is true tha t 
every complex representation of Sn is actually rational.) Hence 
Wh(Sn) is finite. I do not know whether or not Wh(5n) is zero. 

Now suppose tha t II is finite abelian. Then, according to §1.6 the 
group KiZR is isomorphic to the group UC.ZR of units in ZII. (See 
also Appendix 1.) But according to Higman the only elements of 
finite order in U are the group elements and their negatives. Hence: 

THEOREM 6.4 (BASS) . If II is finite abelian then Wh(II) is a free 
abelian group of rank r — q. 

COROLLARY 6.5. The Whitehead group Wh(II) of a finite abelian 
group II is zero if and only if the group II has exponent 1, 2, 3, 4, or 6. 

For the cyclic groups of order 1, 2, 3, 4 and 6 are the only ones 
which have the property that any two generators are equal up to 
sign. 

Here is a simple example worked out in more detail. 
EXAMPLE 6.6. Let T6 be cyclic of order 5 with generator t. Then 

Wh(T5) is infinite cyclic; and the unit 
6 In the abelian case q ~ £ order (n ®Zm)/m, summed over all m dividing order (n). 
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u = t + r1 - i G zr6 
represents a generator.6 

(In fact the identity 

(j + r 1 - i)(*2 + r 2 - l) = l 

shows tha t u is a unit; and the homomorphism 

/1-> exp(27ri/S) = £, 

w l-> £ + r 1 - 1 = 2 cos 72° - 1 

from ZT& to the complex numbers can be used to show that no power 
of u is equal to 1. The rest of the argument is much more difficult.) 

REMARK. This unit uCiZT$ is clearly self-con jugate. I t is interest
ing to note that the automorphism t\-^t2 of T$ carries u to ur1. If we 
embed T$ in the group G of order 20 in which t is conjugate to t2, this 
implies that the unit u represents an element of order â 2 in the finite 
group Wh(G). I do not know whether or not Wh(G) is zero. 

Here is a more general statement. 

LEMMA 6.7. If U is finite abelian, then every element of Wh(II) is 
self-conjugate. 

PROOF. If u is a unit of ZII, it is sufficient to show that ü/u is an 
element of finite order in the group of units. The rational group ring 
QH is isomorphic to a cartesian product Fi X • • • X Fr of cyclotomic 
number fields. Note that the conjugation operation in 011 corre
sponds to the usual complex conjugation operation in each Fit Let Ei 
be the maximal real subfield of F^ I t follows easily from the Dirichlet 
unit theorem that for every unit v in the ring of integers of Fi, there 
exists a power vk, fe>0, which belongs to the subfield E{. Therefore 
some power uk of 

u G Z n C Ft X • • • XFr 

must belong to the invariant subring E iX • • • XEr. This implies 
that uh is self-conjugate, and hence that (#/#)* = 1; as was to be 
proved. 

Bass has also proved a functorial version of Theorem 6.2. [To 
appear]. Two consequences are striking: 

THEOREM 6.8. Let Y range over all cyclic subgroups of the finite 
group II. Then the images 

8 This was proved by Kaplansky (unpublished), before Bass's more general results 
were obtained. 
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;*wh(r) c wh(n) 
together generate a subgroup of finite index in Wh(II). 

Consider next an orthogonal representation IL~>0(n) of our finite 
group II. This representation gives rise to a ring homomorphism 

h:ZIL->Mn(R) 

and hence to an induced group homomorphism 

h*: Ki(ZU) -> KiMn(R) ^ R+. 

(Compare §1.10.) Since the group R+ has no elements of finite order, 
there is clearly a corresponding homomorphism 

Wh(n) -> R+ 

which will also be denoted by fe*. 

THEOREM 6.9. An element co£Wh(II) has finite order if and only if 
A*(co) = 1 for every irreducible orthogonal representation h of the finite 
group Et. 

This follows easily from Bass [to appear]. 

COROLLARY 6.10. For any finite II and any co£Wh(II), the difference 
co—co is an element of finite order in Wh(II). 

PROOF. This follows immediately from 6.7 and 6.8. Alternatively it 
follows easily from 6.9, making use of the fact that the determinant of 
a real matrix is equal to the determinant of its transpose. 

7. Torsion for CW-complexes. First consider the following situa
tion. Let (K, L) be a pair consisting of a finite, connected CW-
complex7 K, and a subcomplex L which is a deformation retract of K. 
The fundamental group TTX(K) will be denoted briefly by II. (Of 
course wiL—iriK.) The Whitehead torsion 

r(K, L) £ Wh(n) 

can then be defined as follows. 
For any pair (X, Y) of CW-complexes the associated chain com

plex C(Xy Y) is defined by setting 

CP(X, Y) = H , ( | X » U F | , | I - ' U Y\ ) , 

where H denotes singular homology with integer coefficients, and 
where \XP\ denotes the underlying topological space of the p-skele-

7 See Whitehead [1949]. The reader may substitute "simplicial complex" for 
"CW-complex" and "simplex" for "cell" if he prefers. 
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ton of X; i.e., the union of all cells of dimension i£p. This pth chain 
group is free abelian with one generator for each p-cell of X — Y. Note 
that the homology group HPC(X, Y) of this chain complex is canoni-
cally isomorphic to the singular group Hp( \ X | , | Y\ ). (Compare §5.1.) 
These mutually isomorphic groups will be denoted briefly by HP{X, Y). 

Now consider the universal covering complexes K~Z)L of K and 
L. The fundamental group II will be identified with the group of 
covering transformations, so that each c Ç I I determines a mapping 

er: (Ê, L) -* (K, L). 

Note that a is cellular. (That is it carries the ^-skeleton into the 
^-skeleton for each p.) Hence each or G i l determines a chain map 

<rr.C(K,L)-^C(K,L). 

This action makes each chain group CP(K, L) into a module over the 
integral group ring ZU. Clearly the resulting chain module is Zll-free 
with one generator for each p-cell of K—L. Since K is finite it follows 
tha t C(K, L) is finitely generated over ZU. 

Thus we obtain a free chain complex 

Cn(K, L) -> Cn^(K, L) -> > Co(K, L) 

over ZU. The homology groups H^K, L) of this complex are zero 
since \L\ is a deformation retract of \K\. 

If we were given a preferred basis cp for each module CP(K, L) then 
the torsion __ 

rC(K, L) G Zi (Zn) 

would be defined, as in §3. But the geometry of the situation deter
mines a class of preferred bases, as follows. Let ei, • • • , ea denote the 
£-cells of K — L. For each d choose a representative cell êi of K lying 
over d. Furthermore choose an orientation, so that êi determines a 
basis element of CP(K, L), which we may also denote by êi. Then 
cp = (êi, • - - , êa) is the required basis for Cp(Ky L). 

Using these bases, the torsion TC(K, L) is apparently defined as an 
element of Xi(ZII). However we have made an arbitrary choice of the 
representative cells êi] which leads to a certain arbitrariness in the 
resulting torsion. To eliminate the indeterminacy it is necessary to 
pass to the quotient group 

Wh(n) = Zi(Zn)/image(n) 

which was studied in §6. 
DEFINITION. The image of rC(K, L) in the quotient group Wh(II) 

is called the Whitehead torsion r{K, L). 
To justify this definition we must prove that T(K, L) does not de-
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pend on the choice of ê{. But if êi is replaced by a different representa
tive cell ±cr#êi then a straightforward verification shows that 
TC(Ê, L) is replaced by 

rC(^, I) - ( -1 )*W G Ti(Zn). 

Thus the difference ± [a] belongs to image (II), and is annihilated 
when we pass to the quotient group Wh(II). This completes the proof. 

REMARK 1. In making use of the group Wh(II) =Wh(7i*i.K) we 
never need to worry about base points, since any inner automorphism 
of II will induce the identity automorphism of Wh(II). 

REMARK 2. Of course we can generalize the definition. Instead of 
assuming tha t L is a deformation retract of K it is sufficient to assume 
tha t iJ*(iT, L) is free over ZII with a preferred basis. Here K denotes 
the universal covering of K; and L denotes the appropriate subcom-
plex. As group II we must take TiK, rather than TTIL. More generally 
II might be the group of covering transformations for any regular 
covering of K. With a little more effort one could even define a 
sharper invariant using the group TTI(K-L) in place of TTI(K). 
(Compare 7.2.) 

FUNDAMENTAL UNSOLVED PROBLEM. We would like to assert tha t 
the torsion T(K, L) is a topological invariant of the pair (| K\, | L\ ), 
i.e., tha t it does not depend on the cell structure. However no one 
has been able to prove this, or to produce a counterexample. (Com
pare Milnor [1961].) The best result tha t one has is Whitehead's 
theorem tha t r is invariant under subdivision : 

DEFINITION. A second CW-complex X is a subdivision of K if the 
underlying space \x\ is equal to | JK"|, and if each open cell of X is 
contained in a (possibly higher dimensional) open cell of i£, so that 
the identity map K—+X is cellular. (Compare Figure 1.) Similarly 
the pair (X, Y) is a subdivision of the pair (K, L) if X is a subdivision 
of K and F is a subdivision of L. 

COMBINATORIAL INVARIANCE THEOREM 7.1. The torsion r (X, L) is 
invariant under subdivision of the pair (K, L). 

K X 
FIGURE 1. Subdivision of a CW-complex. 
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Our proof will depend on the machinery set up in §5. (For a differ
ent proof see Whitehead [1950], Milnor [1961].) The geometrical 
kernel of the proof is contained in the following. 

LEMMA 7.2. Suppose that each component of K—L is simply con
nected {where L is a deformation retract of K). Then T(K, L) = 0. 

PROOF. First suppose that K—L has a single component T. Choose 
a representative component t of K — L. Clearly £ projects homeo-
morphically onto T. 

FIGURE 2. Judicious choice of representative cells in K. 

For each cell e oi K—L choose the representative cell t as the 
unique cell in f which lies over e. (Compare Figure 2.) Now notice 
that no representative cell &° of Ê — L can be incident to a proper 
translate ore*"""1, c r ^ l , of a representative cell. For crth~l must be con
tained in a component at which is disjoint from P. This means that 
the boundary dêk can be expressed as a linear combination of representa
tive fe — l cells with coefficients which are integers (rather than group 
ring elements). Thus in computing the torsion of the complex 
C(K, L) we need only work with the subring ZC.ZXI. I t follows that 
the torsion of C(è, L) belongs to the subgroup 

KxZ = 0 C ^ i ( Z n ) . 

Therefore r ( X , L ) = 0 . 
li K—L has several components the proof is essentially the same. 

I t is only necessary to choose a representative component f\ lying 
over each component I\- of K—Lt and to choose representative cells 
éCf* as before. 
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More generally suppose that L is not a deformation retract of K. 

LEMMA 7.3. Suppose that H*(J£, L) is not zero, but is ZIL-free with 
preferred basis, where each basis element can be represented by a cycle 
lying in a single component of K — L. Assume as before that each com
ponent of K—L is simply connected. Then r(Kf L) = 0. 

PROOF. Choose representative components t and representative 
cells ê as before. Replace each preferred basis element ö£Hi(J£, L) 
by the translate crb, chosen so that ab is represented by a cycle lying 
within one of the representative components f. Clearly this change 
of basis will not alter the torsion. 

Again we see that T(K, L) can be computed within the subring 
ZCZn, and hence that T(K, L) = 0. 

PROOF OF THEOREM 7.1. Let C=C(X, Y) be the chain complex 
associated with the subdivided pair ; so that 

T(C)\->T(X, Y) ewh(n) . 

We will define a sequence of subcomplexes 

C(o) C CM C C(2) C • • • C C (n) = C 

so tha t the associated chain group 

can be identified with C\(K, L). In particular the torsion r(C) 
EKi(Zn) will correspond to r(K, L)GWh(II) . We will then show 
tha t the hypotheses of §5.2 are all satisfied. Thus Theorem 5.2 will 
imply tha t __ 

r(C) = r(C); 

and therefore tha t 

r(X, Y) = T(K, L). 

The construction follows. Let X(p) denote the subcomplex of X 
consisting of all cells of X which are contained in the subspace 
| i£>VJZ,| C | -X*|. Let X(p) denote the corresponding subcomplex of jt. 
Finally, let 

C<*> = C(X(p), F) . 

Then 
Hi(p™/C<*~») = B{(X(p)y Z(p - 1)) 

S H i ( | ^ U J t | , \Ê*~l\Jt\). 

Clearly this group is zero for i^p, and is equal to CP(K, L) for i~p. 
Hence the associated complex C can be identified with C(K, L). 
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In order to apply §5.2, we must verify that the torsion 

T(C(p)/C^x>) = TC(Ê(P), Ê(p ~ 1)) 

is zero. But this follows from 7.3 since: 
(1) each component of | X(p) \ — | X(p — 1) | is a p-cell of the com

plex K, and therefore is simply connected; and 
(2) each preferred generator for Hp(X(p), X{p-\))^LCP{K, L) is 

represented by a cycle which lies in a single component of | X(p) \ 

-\Z(P-D\. 
Hence we can apply 5.2, and conclude that r (X, Y) —r(K, L). This 

completes the proof of the Combinatorial Invariance Theorem. 

To conclude this section we will discuss the torsion of a mapping 
cylinder, and the concept of "simple homotopy equivalence. " First 
let us state an obvious consequence of §3.1. 

LEMMA 7.4. If KZ^L"2>M where both L and M are deformation re
tracts of K, then 

T(K, M) = r (Z , L) + HT(L, M), 

where i: TIL—TTIK. 

Next a familiar definition : 
The mapping cylinder of a cellular mapping ƒ : X—» Y is denned to 

be the complex Mf whose underlying space | M/\ is obtained from 
( | Z | X [ 0 , l ] ) W | F | by identifying each (x, l ) e | x | x [ l ] with 
/ ( x ) G | Y\. (Compare Figure 3.) The cell structure is chosen in the 

FIGURE 3. A mapping cylinder. 
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obvious way so tha t I ( = I X [ 0 ] ) and F are disjoint8 subcomplexes 
of Mf. Clearly F is a deformation retract of Mf. 

LEMMA 7.5. The torsion r(Mf, Y) is zero. 

PROOF. Let ƒ(£) : Xp—> F denote the restriction of ƒ to the ^-skeleton 
of X, so that 

F = M/(_i) C Jf/co) C M/a) C • • • C Mf(n) = M/. 

Then 

r(Jf>, F) = X) T(lf/(p), Jf/c^-i)) 

by repeated application of 7.4. But each term on the right is zero 
by 7.2. 

If ƒ happens to be a homotopy equivalence then clearly X too is a 
deformation retract of Mf. However the torsion 

r(Mh X) G Wh(7TiM/) 

is not always zero. 
DEFINITION. For any cellular homotopy equivalence 

f:X^Y 

the torsion T(J) is defined to be that element of Wh(7TiF) which corre
sponds to r(Mf, X) under the natural isomorphism 

Wh( i r i l f / )SWh(TiP) . 

If r(J) = 0, then ƒ is called a simple homotopy equivalence. 
Here are some of the basic properties of this concept. 

LEMMA 7.6. If i: L—*K is an inclusion map, then T(Ï) — T(K, L). 

The proof is straightforward. 

LEMMA 7.7. If f o and fi are homotopic then r( /0) = T ( / I ) . 

LEMMA 7.8. If f: X—+Y and g: Y—*Z are cellular homotopy equiva
lences, then 

r(gof) = r(g) + g * r ( / ) . 

I t will be convenient to prove a more general statement which im
plies both 7.7 and 7.8. Let h: X-+Z be any cellular mapping which is 
homotopic to g of. 

8 This language is convenient; but can be unfortunate if (for example) X is equal 
to Y. More precisely one should say that Mf contains a "copy" of X and a disjoint 
"copy" of F. 
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PROOF THAT TQI) =T(g)+g*r(jO. Choose a cellular homotopy 

X X [0,1] - > Z 

between h and g of. (This is possible by Whitehead [1949, §5(i£)].) 
This homotopy can be pieced together with the mapping g : Y-+Z to 
yield a cellular mapping 

H:Mf->Z 
where 

H\XX [0] = A, H\ Y = g. 

Note that the mapping cylinder MH contains the mapping cylinders 

FIGURE 4. Schematic drawing of MH. 

of ƒ, g and h as subcomplexes. (Compare Figure 4.) In fact we have 
the following diagram of inclusion maps. 
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According to 7»5: 

r(Mf, Y) = 0, T(M0) Z) = 0, 

r(MH , Z) = 0 and r(MA, Z) = 0. 

These facts have been indicated on the diagram by inserting the sym
bol ~ (for simple homotopy equivalence) on the appropriate arrows. 
Applying 7.4 to the second and third of these equations, we see that 

T(MH, Mg) = 0. 
Similarly 

T(MH, Mh) - 0. 

In other words j and k are simple homotopy equivalences. Now apply
ing 7.4 to the right hand square we see that 

r(MH, Mf) + Û0 » 0 +j*r(Mg, F). 

Similarly from the left hand square: 

0 + k*r(Mh, X) = T(MH, Mf) + HT(Mf, X). 

Hence 

*»r(JfA, X) = j*r(Mg, Y) + ur{Mh X). 

Now applying the isomorphism 

Wh(iriAftf) ^ WhfaZ) 

to each of these three terms, we obtain the required equation 

r(A) = r<£) + g*r(f). 

This completes the proof of 7.7 and 7.8. 
REMARK. I t follows from 7.7 that the torsion can be defined even 

for a homotopy equivalence X—> Y which is not cellular. For White
head showed that any map between CW-complexes is homotopic to a 
cellular map. 

I t is not however possible to dispense with the hypothesis that X 
and Y are finite complexes. 

8. Change of rings: the iMorsion. This section will study an 
alternative form of torsion, to be called the "Reidemeister, Franz, 
de Rham real representation torsion," or briefly "jR-torsion." This 
.R-torsion has two advantages over the Whitehead torsion: I t is more 
likely to be defined; and its value is an honest real number, instead of 
an element of an esoteric group. On the other hand the Whitehead 
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torsion, when defined, is a sharper invariant. 
First consider the general problem of changing rings. Let C be a 

free complex of left A -modules, where each C* has preferred basis c*. 
Let 

h: A~*A' 

be a ring homomorphism. Then a free complex C' over A1 is obtained 
by setting 

Ci = A' ®Ck 
A 

(using the homomorphism h to make A' into a right A -module). 
Furthermore the basis 

Ck = (Ckl, * ' * > £*«) 

for Ck determines a basis 

Of « (1 ® Gfcl, • • • , 1 ® Gb«) 

for a ' . 
HYPOTHESIS. Suppose that C' is acyclic (that is HkC = 0 for all k). 
Then using the preferred bases d the torsion r ( C ) E ^ 4 ' is de

fined. I7m element will be denoted by Th(C) and called the torsion of C 
associated with the representation h of A. 

For example if the original complex C is acyclic then the new com
plex C will certainly also be acyclic. Hence in this case both r(C) 
and Th(C) are defined. However the relation 

rh(C) = h*r(C) 

shows that we have not really produced anything new in this case. 
The real interest lies rather in the fact that Th may be defined even when 
r is not. Examples will be given presently. 

The simplest choice for the ring A' is a field: say the field of com
plex numbers. However, if we are interested in noncommutative 
situations, then it is necessary to look at more general possibilities. 
This section will emphasize the possibility of using a real matrix ring 
for A'. 

Now for the geometry. As in §7 consider pairs (Kt L) of finite 
CW-complexes. We again assume that K is connected, with funda
mental group II; but we no longer require that L be a deformation 
retract of K. As before the chain complex C(K, L) is free over ZII 
with preferred bases. We will discuss two different procedures for 
changing the ring, so as to obtain a more manageable torsion. A third 
procedure will be discussed in §12. 
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First procedure. Consider a homomorphism 

h:IÏ->F* 

from II to the multiplicative group of a field F, say the field of com
plex numbers. Then h gives rise to a ring homomorphism 

ZIL-+F 

which will also be denoted by h. Using h we can form the chain com
plex 

a = F ® C(Ê, L) 
ZIL 

over F. If H*(C) = 0 then the torsion 
T(C')eKiF = F*/{±l} 

is more or less well defined. To be more precise, this torsion is well 
defined providing that we pass to the quotient group 

ZiF/image (II) = F*/{ ±l}h(IL). 

As in §7, torsion is invariant under subdivision. We will use the 
notation 

Ah(K, L) G F*/ ± h(U) 

or 

±h(U)Ah(K, L)CF* 

for this torsion.9 The use of this new symbol A will help to distinguish 
Ah(K, L) from the Whitehead torsion T(K, L). Also the new notation 
will emphasize that A belongs to a multiplicative rather than an 
additive group. 

This is the original construction as used by Reidemeister and 
Franz. I t is particularly effective if II is a finite cyclic group, and F is 
the field of complex numbers. But it can also be used in other cases: 

EXAMPLE 1. Let K be the circle Sl and let L be vacuous. The 
Whitehead torsion T^S1, <f>) cannot be defined, since the module 
HoiS1) is not zero, and is not Zll-free. However if the homomorphism 

A:ir*S1->F* 

maps a generator into the field element ƒ ̂ 1 , then computation shows 

9 Caution. Due to a difference in sign conventions, this A corresponds to A~l in de 
Rham [1950] and Milnor [1961], [1962]. 
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tha t the associated torsion 

AfcCS1) E F*/ ± h(U) 

is well defined, and is equal to 1 — ƒ (up to multiplication by plus or 
minus a power of ƒ). 

EXAMPLE 2. Let X be obtained from the 3-sphere by boring out the 
interior of a knotted tube. Let 

map each loop with linking number + 1 into the field element ƒ5^1. 
Then Ah(X) is well defined, and is equal to (1 —f)/A(j) (up to multi
plication by ±/*)i where A(t) denotes the Alexander polynomial of 
the knot. (Compare Milnor [1962].) 

In general, if we want to work with a noncommutative group II, 
it is better to allow representations of II by nXn matrices, with n>l. 
Once we have made this step, the complex numbers no longer seem 
to have any advantage over the real numbers. 

Second Procedure. Let h: II—»0(n) be an orthogonal representation 
of the group II. Then h extends to a unique ring homomorphism from 
ZII to the ring Mn(R) of all real nXn matrices. Using h we can form 
the complex 

C - Mn(R) ® C(K, L). 

n 
If this complex happens to be acyclic, then the torsion 

r(C') E KxMn(R) = KXR 
is defined. 

The group "K^R can be identified either with the multiplicative 
group R+ or with the additive group R, using the correspondence 

(aij)\—• | det(a</) | or log | det(a^) | 

respectively. I t doesn't really matter which identification is used; 
but the multiplicative notation is customary in this context. We will 
again use the notation A instead of r to emphasize the switch to a 
multiplicative notation. 

DEFINITION. The positive real number corresponding to r{C) 
EiKxR will be denoted by àh(K, L), and called the R-torsion of 
(iC, L) with respect to h. The iMorsion also is invariant under sub
division. 

This .R-torsion is completely well defined. In particular, there is no 
ambiguity coming from the lack of uniqueness of representative cells 
in the universal covering space. For if the £-cell t of Ê is replaced by 
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a translate ae, then Ah(K, L) will be multiplied or divided by 
| det h(a) \ according as p is odd or even. But this determinant is ± 1, 
since h{a) is orthogonal. 

Let us compare -R-torsions with Whitehead torsions. Recall from 
§6 that any orthogonal representation 

h:IL->0(n) 

determines a homomorphism 

h*: Vth(IL)~>KiR9*R+. 

THEOREM 8.1. Suppose that the Whitehead torsion invariant 

T(K, L) G Wh(n) 

is defined] and suppose that II is a finite group. Then T(K, L) is an 
element of finite order in Wh(II) if and only if Ah(K, L) = 1 for all pos
sible orthogonal representations h of IL, If II is finite abelian, then r = 0 
if and only if Ah—1 for all possible h. 

PROOF. This follows immediately from §6.9 and §6.4 together with 
the identity 

Ah(K, L) = h*r(K, L), 

REMARK. Of course one need only consider representations h which 
are irreducible. Furthermore one need consider only "irrational" 
representations. For if h is equivalent to a representation by rational 
matrices, then it is equivalent to a representation by integer matrices; 
and hence A* is trivial. 

As a final illustration of J?-torsions, consider the following. 
By a spherical Clifford-Klein manifold Mn will be meant a manifold 

of the form Sn/H where II is a finite fixed-point free group of ortho
gonal motions of the w-sphere. (If II is cyclic then 5n / II is called a 
lens space,) I t will be shown in §9 that torsion can be defined for such 
smooth manifolds. 

THEOREM 8.2 (DE R H AM). A spherical Clifford-Klein manifold is 
determined up to isometry by its fundamental group II together with the 
collection {Ah(M

n)} of R-torsion invariants. 

Hence two such manifolds which are diffeomorphic must actually 
be isometric. 

For the proof the reader is referred to de Rham [1950]. In the case 
of a lens space this result is due to Franz [1935], and will be studied 
further in §12. 
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9. Torsion for smooth manifolds. Let W be a smooth ( = C°°) 
manifold whose boundary is the disjoint union M\JM' of two closed 
submanifolds. If W is compact, connected, and both M and M' are 
deformation retracts of W, then the triad (W\ Mf M') is called an 
h-cobordistn. 

If the fundamental group 

H = TiM S VXW S TTiifcf 

is trivial, and the dimension w of W is ^ 6 , then a theorem of Smale 
[1962] asserts tha t W is necessarily a product: 

IF « i f X [0, 1]. 

We will be interested in the case when II is nontrivial. According to a 
theorem of Stallings [19652], the &-cobordism is then completely de
termined by M, together with the torsion invariant T(W, M) £ Wh (II), 
(See §11.) 

To define this torsion, one must somehow construct an algebraic 
chain complex out of the geometric situation. Three ways of doing 
this are known to me: 

(1) The construction can be based on Whitehead's theory of 
C^-triangulations. 

(2) I t can be based on the Smale-Morse theory of handlebodies 
(or of nondegenerate functions). 

(3) I t can be based on the nerve of a covering by geodesically 
convex open sets (de Rham [1950 ]). 

We will study only the first two possibilities. The first is the easiest. 
Let 

I: ( | t f | , \L\)->(W,M) 

be a CMxiangulation. (See Munkres [1963]. Here \K\ denotes the 
underlying topological space of the simplicial complex K.) Now de
fine T(W, M) to be /*r(.K, L), where 

U: m ( * i | JT | ) - » WhGriWO 

denotes the isomorphism induced by t. 

LEMMA 9.1. This element r(W, M) does not depend on the choice of 
the ^-triangulation t. 

PROOF. Let u: (\x\, | Y\)—>(W> M) be a second ^-triangulation. 
By a fundamental theorem of Whitehead, there exist rectilinear sub
divisions (X', L') of (K, L) and (X', F ) of (X, Y) which are iso
morphic to each other under an isomorphism 



390 J. MILNOR [May 

*: (K', L') -» (X', Y') 

of simplicial complexes. Furthermore, given e > 0 , these subdivisions 
can be chosen so tha t the composition 

u\+\t-u.{W, M)->(W, M) 

is an e-approximation to the identity. (See Munkres §10.5.) 
If e is sufficiently small, then clearly w*|<j{>| *t*1 must be the identity 

automorphism of Wh(II). Hence 

t*r(K, L) = t*r(K', L') = w* | <t> \*T(K', L') 

= U*T(X', Y') = * * * T ( X , F) ; 

which completes the proof. 
Next we will discuss the definition based on Smale-Morse theory. 

Let W be a smooth manifold with boundaries M and M'. A smooth 
function 

f:W^[a,b] 

is called a Morse function if /_ 1(a) = M,f~l(b) ~M'\ and if the critical 
points of ƒ are interior and nondegenerate. Now suppose that a = — J, 
& = w + | . Definition, ƒ is a nice f unction (or self-indexing function) if 
all critical points of index X lie in the subset/"^(X) C W. A theorem of 
Smale asserts that such functions always exist. 

Defining W^=f~l[a, X+£] it then follows that 

M = W<-» C WW c W™ C • • • C W(n) = W, 

where each W0^ is a smooth manifold which contains precisely the 
critical points of index ^X. 

Given such a nice function ƒ we will define the torsion T(W, My f) 
relative to ƒ. I t will then be established that this coincides with our 
earlier definition of r{W, M), and hence does not actually depend 
o n / . 

Let W denote the universal covering manifold of W, and 
ƒ: ffi—>[a, b] the map corresponding t o / . Then W'^ =f~1[ai X + J ] is 
the portion of W which lies over W0^. 

LEMMA 9.2. The singular homology group H^W0^, W'ÇK~l)) is zero 
for i?£\ and is free abelianfor i=X, with one generator for each critical 
point of index X in ffî. 

PROOF. I t is well known that T7(X) contains as deformation retract 
a subset W^-l)\Je^<J • • • \Jea where ei, • • • , ea are disjoint X-cells 
which pass through the critical points # ! , • • • , # « of index X in W, 
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and which are attached to W0""^ only along their boundaries. (See 
Milnor [1963, §3.3].) Hence the covering space I^(X) has a similar 
description. However each X-cell d is covered by a collection of dis
joint X-cells crêi where a ranges over the group II of covering trans
formations, and where ti denotes a single representative cell. Pre
cisely one cell aêi passes through each of the points <r%i lying over Xi 
in W. This completes the proof. 

If we take account of the action of II then it is evident that 
Hx(^ ( X ) , tfr<x"~1>)9 becomes a free module over the group ring ZIL, with 
a generators. Setting ifx(J^(X\ W0""^) equal to C\ we have thus con
structed a free chain complex 

Cn —* Cn-l —»•••—> Co 

over ZIJ. The homology of this chain complex is isomorphic to 
H*(T^, M) (compare §5) and hence is zero; since M is a deformation 
retract of 'W. 

The above construction also yields a preferred basis for "C\. [The 
procedure can be described more invariantly as follows. For each 
critical point Xi in/ - 1(X) choose a covering critical point #*. Now if U 
is a small neighborhood of %i note that the group 

Hx(UnMa,\], £ / n M a , X ) ) 

is infinite cyclic, and maps monomorphically into 

tfx(f-xk x],.M«, x)) s Hx&n, &«-») = Cx. 
Thus the choice of £»• determines a basis element for V\ up to sign.] 

Just as in §7 the torsion rC is defined, apparently as an element of 
~K\ZR. But if we alter the choice of representatives xif then, as in §7, 
this torsion will be altered by an element of the subgroup 

image(n) C 'KiZR. 

Hence the image of rC in the quotient group Wh(II) = Xi2H/image(II) 
is independent of the choice of representatives. This image will be 
denoted by T(W, M; jOGWhfll). 

THEOREM 9.3. Ift:(\K\,\L\)-+(W,M) is a Cl4riangulation then 

r(W, M;f) = Ur{K, L). 

Hence r (W, M; f)=r(W1 M) does not depend on the choice of nice 
function ƒ. 

REMARK. A corresponding theorem holds for i?-torsions. 
PROOF OF 9.3. We are at liberty to choose whatever Cx-triangula-
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tion we please. In particular we can choose the triangulation so tha t 
each PF(X) corresponds to a subcomplex K^CLK. (Munkres §10.6.) I t 
will be convenient to suppress the map t by identifying \K\ with its 
image t\K\ **W. 

Thus the chain complexes C(X) = C(J£(X), L) yield a nitration 

C<°> C C(1) C • • • C C (n) = C(K, t). 

The relative homology groups HiC
(K)/C<:K~l) can be identified with 

HiiW™, TF(X"~X)), and hence satisfy the hypotheses of §5. Further
more we have used the geometry to choose bases for the free modules 

Cx = flrxC<*>/C<*-l> = # x ( # ( X \ ^<x-x>). 

We will prove: 

LEMMA 9.4. For each quotient complex C(X)/C'(X~1) the torsion 
TC (X)/C (X-x)GWh(n) is zero. 

Using the Algebraic Subdivision Theorem of §5, this will prove 
tha t TC=T(W, M;f) is equal to TC = t*r(K, L) ; which will prove the 
theorem. 

PROOF OF LEMMA. Let us recall something of the geometry of the 
region /"^[X — J, X + è ] which contains the critical points of index X. 
(Compare Milnor [1963, §3] and [1965].) I t will be convenient to set 

We must prove tha t r{X, B) = 0 . 
Through each critical point X{ one can construct a "left hand cell" 

ex which meets B in the sphere 3ex, and a corresponding "right hand 
cell," which we will denote by ej~x, and which meets B' in a corre-

FIGURE 5. The "left and right-hand cells* for a critical point of index X ~ 1 on a surface. 
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sponding sphere ôe?~\ These cells are all disjoint except tha t 
e$r\el~x — Xi. Using the trajectories of a suitable vector field one can 
show tha t the two boundary manifolds 

B — dei — • • • — dea, B' — dei — • • • — dea 

are diffeomorphic. In fact the entire region 

X - ( e Ï U e r ' ) ( / „ W C " ) 

is diffeomorphic with the product 

{B-dei del) X [X ~ | , X + §] . 

Let Bo denote the manifold obtained from B by removing an open 
tubular neighborhood of each de\ ; and let 

Xo « B0 X [X - | , X + J] 

denote the corresponding subset of X. (Compare Figure 5, in which 
Xo is shaded and Bo is emphasized.) We may assume tha t X0 is 
triangulated as a product. (Compare the proof in Munkres [1963, 
§10.6].) 

Now we will apply two lemmas from §7. We have 

r(X, B) = r(X0 U B} B) + r(X, X0 U B) 

by Theorem 3.2. (To be accurate here, each of the symbols X, X0, B 
should be replaced by the symbol for the corresponding simplicial 
complex.) But the last term is zero by Lemma 7.3 since each com
ponent of X — Xo — B is clearly contractible. The first term on the 
right is zero by Lemma 7.5 since X0 is a product: XQ^BOX [X — h 
X + i ] . (Such a product is clearly an example of a mapping cylinder. 
Furthermore the product triangulation of X0 can be regarded as a 
subdivision of the product cell structure which was used in the dis
cussion of mapping cylinders.) 

Thus T(X, B) = T C ( X ) / C ( X " " 1 ) is zero; which completes the proof. 

10. The duality theorem. The following basic theorem has been 
proved by Mazur [1963], Barden [1963] and Stallings. We will not 
try to give a proof. 

S-COBORDISM THEOREM. Let (W; M, Mf) be an h-cobordisrn of di
mension n^d. Then the torsion r (W, M) vanishes if and only if W is 
diffeomorphic to the product MX [0, 1]. 

Suppose tha t we interchange the roles of M and ikf'. Clearly we 
can also say tha t r ( W, M') is zero if and only if W is a product. This 



394 J. MILNOR [May 

suggests that there should be a formula relating r(W, M) and 
T(W, M'). 

DUALITY THEOREM. For any orientable h-cobordisrn (W; M, M') of 
dimension n we have 

T(W, M') = ( - l ) * " 1 * ^ , M), 

where f denotes the conjugate of r. 

(For the definition of "conjugate" see §6.) 
The proof will depend on a comparison between the nice function 

ƒ on W and the "dual" nice function n —ƒ. 
As in §9, through each critical point x* of index X we can construct 

a "left-hand cell" 

and a right hand cell 

6rxc/_1[x,x + i]. 
These are to be oriented so tha t the intersection number £x-e?~x is 
+ 1. Furthermore we can cover e* and e*~x by representative cells in 
the universal covering space so tha t éx- a?~x = 1. 

If we think of éx as a basis element for the chain group 

then the boundary homomorphism d : C\+i—>C\ can be described by a 
matrix of "incidence numbers" auCzZH, where 

B- X ' B X+ B+ 

FIGURE 6. A highly schematic drawing of left and right hand cells for 
critical points of index X and \-\-l. 

Similarly, using the dual function w—ƒ, we can define incidence 
numbers between the right hand cells. 

file:///-/-l
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DUALITY LEMMA. The incidence number between $ and $ * is 
equal to the conjugate au of the incidence number between ê\+1 and ê*, 
multiplied by a sign ( — l)x + 1 which depends only on the dimensions. 

The proof will depend on some identities involving intersection 
numbers. It will be convenient to set 

x- = /-i[x - i x + hi x+ = Mx +1, x +§]. 

-y v-

X' X* 

t2^-2 

^n-2 

FIGURE 7. A more realistic drawing. (With »=2 . Note that B+ is vacuous.) The 
boundary formulas de*=(r1 - 1 )ê1, ôê"_1=(* - 1 )ên_» illustrate the Duality Lemma. 
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(Compare Figures 6 and 7.) We will show that the matrix (dkj) can 
be described in terms of intersection numbers, either within X~ or 
within the middle manifold B. 

Note that the homomorphism d: Cx+i—>C\ can be expressed as 
d = i*d where 

d: Cx+i = H H i ( ^ + , B) -> HXB, 

i*:H^B-*Hx(X-,B-) = Cx. 

(Here i denotes the inclusion map (JB, <£)—»(X"~, B~).) 
Let us compute the coefficient of a in the group ring element a^-. 

In other words let us compute the coefficient of <rê$ in 5e£+1. Clearly 
the element ae"~x of Hn-\(X~, B) has intersection number + 1 with 
aê}> but has intersection number 0 with all of the other basis elements 
pêx. This gives us the identity 

coefficient of a in akJ-

= coefficient of <rej in dek 

Now suppose tha t J3 is oriented as part of the boundary of X". Then 
for any elements 

u e HXB, v G iïn-x(X-, B) 

the identity 

i*u-v = (— l)xwd'fl 

is easily verified (where the first intersection number is evaluated 
within X" and the second is evaluated within B). Setting 

^X+l -^X+l n-X 

i*u = i*dek = dek , v = aêy 

this yields the formula 
coefficient of <r in a*/ 

Now let us look at the corresponding matrix (a'jk) for the dual homo
morphism 

d' = Uà'i Hn^(X-, B) ->Hn_x_i(X+, B+). 

Similar arguments show tha t 
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coefficient of a in ajk 

= coefficient of <rh in U d* îj 

- -(a^V(ô'«r*) 

Comparing these expressions, the coefficient of a in a# is equal to 
( — l ) x + 1 times the coefficient of a~l in aki. Therefore 

<4 = (—l)x + 1% 
as asserted. 

PROOF OF DUALITY THEOREM. First suppose that there exists a 
nice function ƒ on W such tha t all critical points have index X or 
X + l . Then the complex C associated with ƒ is completely described 
by the matrix (ak3) which corresponds to 

d : Cx+i —» C\. 

Since C is acyclic it is clear that (akj) is nonsingular, and that the 
canonical homomorphism 

V: GL(a, ZU) -> Wh(II) 

carries (akj) to ( —1)V(W, ikf). 
Similarly the dual complex Ü' is completely described by the ma

trix (a'jt) which corresponds to 

d' : Cn-\ —» Cn-x-i, 

so tha t 7? carries (ajfc) to (--l)n--x-'1T(TPr, ilf')- But (a#) is, up to sign, 
the conjugate transpose of (akj). Therefore 

( - l ) M ^ , M) « (~\y~*-lT{W, AT), 

which completes the proof in the special case. 
If the dimension n is ^ 6 this actually completes the proof, since 

such special nice functions are constructed as part of the proof of the 
s-Cobordism Theorem. (See also the proof of the Existence Theorem 
in §11.) ^ 

This simplification is not really necessary however. I t is better 
simply to prove in general that two chain complexes C and C' which 
are "dual," in the sense that they satisfy the Duality Lemma, will 
always have torsions satisfying the Duality Theorem. The argument 
is not too different from that given in Milnor [1962] ; and will be left 
to the reader. 
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REMARK. If the manifolds are not orientable then it is necessary 
to change the Duality Theorem and Lemma as follows. The conjuga
tion operation in ZIL must be replaced by the anti-automorphism 
a—>a* which satisfies 

<7* = o-""1 if a is orientation preserving, 

o-* = — 0--1 otherwise. 

This induces an automorphism of Wh(II) which is definitely different 
from conjugation. Here is an example. If T% is cyclic of order 8 with 
generator t, and if t*= — t~~l, then the fundamental unit 

u = 2 + (t + t7) - (t* + /6) - t* G ZTs 

satisfies ü = u, but u*=u~1. No power of u is equal to 1. 
The Duality Theorem has an analogue for jR-torsion which can be 

proved in essentially the same way. (Compare Milnor [1962].) The 
following application is particularly striking. 

THEOREM. If M is a closed orientable manifold of even dimension 
then every R-torsion Ah(M) which is defined is equal to 1. 

11. The classification of A-cobordisms. The following result is due 
to Stallings [19652]. Let M be a smooth, compact, connected mani
fold without boundary of dimension n — 1. 

EXISTENCE THEOREM 11.1. If the dimension of M is ^ 5 , then f or 
every ToGWh(7riilf) there exists an h-cobordism (W\ M, Ml) with 
T(W, Af)=ro. 

Here is an outline of the proof. I t is convenient to use the language 
of "attaching handles" (Small [1961 ]). 

Let (aij) be a kXk nonsingular matrix over ZII which represents 
r0. Start with the product MX [0, l ] and attach k handles of index 
+ 2 to the right hand side. The attaching maps 

S1 X Dn~2 -> M X [1] 

should be "trivial" so tha t the resulting manifold Wi can also be de
scribed as tha t obtained from MX [O, l ] by pasting k copies of 
S2XDn"2 along its right hand boundary. The left and right hand 
boundaries of W\ will be denoted by M and Mi respectively. 

The group x2(W
ri, M)^H2(Wi, M) is clearly free over Z(j\M) with 

k preferred generators. 

LEMMA 11.2. Each element of 7r2(IFi, M) can be represented by a 
2-sphere SCMi which is embedded with trivial normal bundle. 
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PROOF. Since wiWi~wiM we have 

T2W! -> T2(Wh M) -* 0. 

Furthermore 

T2M1 —» T2W1 —> 0 

since Wi has a dual handlebody presentation in which it is obtained 
from MiX [0, l ] by attaching k handles of index n — 2>2. Therefore 
the given homotopy class can be represented by an element of T2M1. 
Each element of 7r2Mi is represented by an imbedded sphere 5 since 
the dimension n — 1 is ^ 5 . 

We must try to choose 5 so that its normal bundle is trivial. To 
verify tha t the normal bundle of S is trivial it is sufficient to check 
tha t the Stiefel-Whitney class w2 of W\ annihilates the homology 
class of 5 in W\. But this Stiefel-Whitney class determines a homo-
morphism 

T2W1 - > fiWi - > Z2. 

By the construction of Wi it is clear that we can choose elements 
Mi> * ' * > M ^ G ^ W L which represent a basis for ir2(Wi, M) ; and so that 
w2 annihilates the homology class of each of the ju*. Hence, if the 
homotopy class of S in W\ is chosen carefully, the normal bundle of 
S in Wu and in Mi, will be trivial. This proves the Lemma. 

Now the k rows of the matrix (ai3) represent elements of ur2{Wiy M) 
which are represented by spheres appropriately imbedded in Mi. 
Using these k 2-spheres to attach handles of index 3 to Wu we obtain 
the required manifold W. Let M' be the right hand boundary. 

Clearly TTIM^XITFI^TTIT^; and H*(W, M ) = 0 since the matrix 
(at-y) is nonsingular. Therefore M is a deformation retract of W. (Com
pare Whitehead [1949].) On the other hand wiM'^inW since TFcan 
be formed from M'XtO, l ] by attaching handles of index n — 3 ^ 3 
and n — 2 ^ 4 . Furthermore, using the Duality Lemma of §10, we see 
that H*(W, Û') is also zero. Therefore (W; M, M') is an A-cobordism. 

Since r(W, M) is clearly equal to r0, this completes the proof. 
Combining the Existence Theorem with the s-Cobordism Theorem 

(§10), we obtain the following. 

UNIQUENESS THEOREM 11.3. Let (W; M, Mi) and (W2\ M, M2) be 

two h-cobordistns of dimension ^ 6 with the same torsion : 

r(Wu M) = T(W2, M) = r0. 

Then Wi is diffeomorphic to W2 under a diffeomorphism which pre
serves M. 
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PROOF. (Compare Figure 8.) Choose an fe-cobordism (W\ Mi, M') 
with T(W', MI) = —r0. (We are identifying the fundamental groups 

TTxM ^ TTiWk = 7TlMk 

Torsion Torsion Torsion 
To ~To To 

FIGURE 8. The composite ft-cobordism is diffeomorphic both to W\ and to W%. 

in the obvious way.) Let Wi^JW' be a smooth manifold obtained by 
pasting Wi and W' together along M\. Then 

r(JVi \J W', M) = T(WI, M) + r{Wx \J W', Wx) « r0 - r0 « 0, 

hence W\\J W' ~ MX [0, 1 ]. In particular we obtain a diffeomorphism 
<t>: M'-+M. 

Similarly form WiVJW'V* W2. Since Wi^JW' is a product it follows 
tha t 

ÏPi VJ W' \J* W2 « (M X [0, 1]) VJ PTt « Wi. 

But a similar argument shows that W'^J^ W% is a product, hence 

Wi U W U* TF2 « JFi VJ (Mi X [0, 1]) « W L 

This completes the proof. 
Let us try to test the power of these theorems by trying to classify 

manifolds which are ft-cobordant to a given manifold Mo. We must 
first ask the following question. Given an h-cdbordism (W; Af0, M') 
can it happen that M' is diffeomorphic to Mo even though W is not a 
product? 

Here is a method for constructing examples. Given any fe-cobordism 
(W; Mo, Mi) let 2W denote the "double" of W which is obtained by 
pasting together two copies of W along the right hand boundary Mi. 
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Then clearly (2W) M0, Mo) is an h-cobordism, where Mo and MÓ 
denote two copies of the same manifold. 

LEMMA 11.4. The torsion T{2W, MO) is equal to r(W, MQ) + ( — l)n""x 

T(W, MO). 

The proof is straightforward. 
Thus, surprisingly enough, 1W is not always a product. For ex

ample if II is finite commutative and the dimension n â 7 is odd, then 
T(2W, MO) = 2T(W1 Af0), so 2W is a product only if W is a product. 

An interesting consequence is the following. 

THEOREM 11.5. If M has even dimension and wiM is finite, then 
there are only finitely many distinct manifolds which are h-cobordant 
to M. 

In contrast, if M has odd dimension, there may well be infinitely 
many such manifolds. (Compare §12.9.) 

PROOF. Let GCWh(7TiAf) denote the subgroup consisting of all 
elements of the form co+cô. Since Wh(7Tilf) is finitely generated, and 
since 

cô s= o) (modulo elements of finite order) 

by 6.10, it follows easily that G is a subgroup of finite index. 
Consider two A-cobordisms (W';M, M') and (W"; M, M") which 

satisfy 

T(W', M) S r(W", M) (modulo G). 

Torsion 
T 0 

Copy of 

Torsion M 
To 

Torsion 
T(W,'M) 

M 

FIGURE 9. The composite ft-cobordism is diffeomorphic to W", 
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Setting T(W", M)=T(W', M)+T0+T0} construct an A-cobordism 
(W; M, Mi) with torsion r0. Paste the double of W onto W' so as to 
obtain an A-cobordism (2PFCWi M, Mf) with torsion r0 + 
( - l )*- 1 fo+T(I^ ,

> M') equal to T(W", M). Then 2WKJW~W" 
and hence M'^M". Thus the number of distinct manifolds h-cobordant 
to M is at most equal to the order of the quotient group Wh(II)/G. This 
completes the proof. 

12. Lens spaces. The lens spaces of Tietze and de Rham serve as 
marvellous examples for the study of torsion. First some notation. 
Let m ^ 3 be a fixed integer and let II = Tm be the cyclic group of order 
m with generator t. Let S2n~1CCn be the unit sphere in complex 
w-space, with a standard orientation. 

Given primitive mth roots of unity ai, • • • , an £ C define an action 
of II on S2n~l by the formula 

t(zh • • • , Zn) = (aiZl, • • • , anZn). 

The quotient manifold 52n"~Vn is then called a lens space. 
In order to index these manifolds conveniently we can introduce 

residue classes qi, • • • , qn modulo m by the formula 

aj = exp(2iriqj/m). 

Thus if aQ = exp(2Tri/m) is the standard root of unity, then a ; = a#. 
The "reciprocal" residue classes ri, • • • , rn are also important. That 
is, we define r,- by the congruence 

qpj s 1 (mod m) 

so that aQ = arf. Following Franz the notation Lm(ri, • • • , rn) (or 
briefly L(ri, • • • , rn)) will be used for the corresponding lens space 
S2*-7IL 

Note tha t L(ri, • • • , rn) is a Riemannian manifold with a pre
ferred orientation, and that its fundamental group II has a preferred 
generator t. I t will be convenient to say that two lens spaces are 
isomorphic if they are related by a diffeomorphism which preserves 
the Riemannian metric and the orientation and the preferred gener
ator. 

Some diffeomorphisms. Clearly the order of the numbers m, • • • , rn 

is not important. Thus if (r[9 • • • , r„) is a permutation of (ri, • • • , rn) 
then L(r[, • • •, r„) is isomorphic to L{r\, • • • , rn). If we change the 
sign of one of the r^ the only effect is to reverse the orientation. Hence 
every lens space is isomorphic to one of the form ±L(r i , • • • , rn) 
with 
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(Here —L denotes L with orientation reversed.) I t will turn out later 
that every lens space is isomorphic to one and only one lens space of 
this form. As an example, if m is equal to 3, 4, or 6 then every lens 
space is isomorphic to ± L ( 1 , • • • , ! . ) . 

If the preferred generator for II is altered, the effect is to replace 
(ju • • • f fn) by some constant multiple (kn, • • • , krn). Hence if we 
do not wish to distinguish any particular generator for II, the nota
tion L(ri: r%: • • • : rn) is appropriate. 

Metric properties. As Riemannian manifolds the lens spaces of a 
given dimension are all locally isometric. But they are clearly distin
guished by global properties. For example the space L ( l : 1: • • • : 1) 
of dimension 2n — l possesses a transitive ^2-dimensional group of 
isometries: namely the full unitary group U(n). In contrast, if the 
residue classes ± r i , • • • , ±rn are all distinct, then the group of 
isometries of L(ri, • • • , rn) is only the ^-dimensional group 
U(1)X • • • Xtf ( l ) . 

12.1. Homotopy type. According to Rueff [1938] and Olum [1953]: 
there exists a homotopy equivalence 

L(r{, • • • , r„') -» L(rh • • • , rn) 

which preserves the orientation and preferred generator if and only if 

r[ • • • fn = r\ • • • rn (mod m). 

Hence the necessary and sufficient condition for the existence of a 
homotopy equivalence which is not required to preserve orientation 
and generator is tha t 

fl • • • fn — ± knri • • • rn (mod m) 

for some integer k. 
12.2. Tangent bundle. The preferred generator / for II determines a 

preferred generator x for the dual group 

H\L) Z) S Ext(n, Z) S Hom(n, R/Z). 

The total Pontrjagin class p = l+pi+p2+ • • • of the lens space 
L(ri, • • • , rn) turns out to be given by the formula 

2 2 2 2 2 2 

P = C1 + ffl* ) ( ! + Q*X ) ' • " (1 + Qn% ) 

(where q^i^l). Thus the individual Pontrjagin classes are the ele
mentary functions of the (fix2 : 

2 2 2 

pi = (?i + • • • + qn)x , 
2 2 2 2 2 2 4 

p2 = (gi^2 + qiqz + • • • + qn-iqn)x , 
and so on. 
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EXAMPLE. A lens space can be parallelizable only if its dimension 
is 3, or its dimension is 7 and 

2 2 2 2 

q\ + Q2 + qz + q* = 0 (mod m). 
(For some values of m, e.g., if m is a multiple of 3 or 8, this congruence 
cannot be satisfied.) 

I will not try to give any details here. A complete determination of 
the stable tangent bundle of a lens space has been given by Szczarba 
[1964] and Folkman [1965]. In fact Folkman has proved the follow
ing remarkable result: If m is prime, then a high dimensional lens space 
Lm is determined up to isomorphism by its homotopy type and its stable 
tangent bundle. 

12.3. Cell structure. Each lens space L can be given the structure 
of a CW-complex with one cell in each dimension. The boundary re
lations in L = 52n~*1 then take the form 

dg**-l = (frh - l)g2fr-2 for 1 g k ^ tl, 

de** = (1 + / + t2 + • • • + r - 1 ) ^ * - 1 for 1 < k < n. 

(Compare Franz [1935] and de Rham [1950].) This CW-complex has 
a subdivision which is a ^-tr iangulation of L. (See Milnor [1961 ], as 
well as Franz and de Rham.) Hence any torsion invariants which can 
be computed from the cell structure will be diffeomorphism 
invariants. 

The R-torsion invariants can readily be computed, and can be 
used to classify lens spaces. Instead we will introduce an alternative 
form of torsion which is somewhat more convenient to work with. 

DEFINITION. A finite complex or a compact smooth manifold will 
be called special if the fundamental group II is finite abelian and 
operates trivially on the rational homology groups of the universal 
covering space. 

For such special complexes we will define a torsion invariant in the 
rational group ring QII. 

For any finite group II let NQ QII denote the kernel of the canoni
cal homomorphism QIL—^Q which caries all group elements to + 1 . 
Let 2 £ Z n denote the sum of all of the group elements. Then clearly 
the algebra splits as the direct sum 

QU = N 0 ( S) 

of two mutually annihilating two sided ideals (where (2) = Q2). 
Note tha t N itself can be thought of as an algebra which is iso

morphic to the QII/(S). (The identity element of N is equal to 
1 —S/w, where m is the order of II.) 
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Let X be a finite complex with fundamental group II. The direct 
sum decomposition of QII gives rise to corresponding decompositions 
of chain and homology modules 

C(X; 0 ) - NC(X; Q) ® XC(t; 0 ) , 

H(X\Q) - NH(XiQ) 0 2 # ( X ; 0 ) . 

Now if II operates trivially on H(Jt; Q) then clearly NH(%; 0 ) = 0 , 
so that the complex NC(X; Q) is acyclic. 

Clearly NC(X] 0 ) is iV-free, with a preferred basis which corre
sponds to the preferred basis for C(X; Z) under the natural homo-
morphism 

C(X; Z) -> C(X; 0 ) / 2 C ( Z ; 0 ) = NC(X\ Q). 

Hence the torsion 

r(NC(X; 0) ) G KXN/(image II) 

is well defined. As in §7, this torsion is invariant under subdivision. 
Now suppose tha t II is abelian. Then N is isomorphic to a cartesian 

product of (cyclotomic) fields, hence KiN can be identified with the 
group U(N) of units of N. We will switch to a multiplicative notation, 
and write A(X) £ [/(iV) for an element corresponding to the torsion 
r(NC(X; 0 ) ) . Thus we have proved: 

LEMMA 12.4. To each special complex X there corresponds the torsion 

A(X) G *7(i\0 C N C 011 

which is well defined up to multiplication by plus or minus a group 
element. This torsion is invariant under subdivision of X. 

I t will be convenient to use the notation A ^ A ' to mean that 

A = ± <rA', for some a £ 1 

The strength of this torsion invariant is shown by the following. 

LEMMA 12.5. A homotopy equivalence f : X—>Y between special com-
plexes is a simple homotopy equivalence ( that is r(J) =0) if and only if 
/ *A(X)~A(F) . 

PROOF. This follows easily from §8.1. 
Now let us look at a lens space L — L(ri> • • • , rn) . This is clearly 

a "special" manifold. Modulo the ideal (2) the boundary relations 
12.3 take the form 
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<^2* = 0. 

Since we know that NC(L: Q) is acyclic it follows that each (tr — 1) 
must be a unit of N. (Alternatively the identity 

(/ - 1)(1 + It + 3t2 + • • • + w r 1 ) = m - 2 

shows directly that J — l is a unit modulo (2).) Clearly the torsion is 
given by 

A(L) ~ (fi - l)(f ' - 1) • • • (** - 1). 

(This turns out to be an expression with integer coefficients, although 
a priori we could have expected rational coefficients.) 

In order to classify lens spaces we must know what relations exist 
between the cj>(m) elements tT — 1 of U(N). The identity 

(tr _ 1) = _ rty-r _ J) 

shows that ( * r - l ) ~ ( * - r - l ) . 

12.6. FRANZ INDEPENDENCE LEMMA. The </>(m)/2 units tr — l 
EU(N), where 

1 S r < m/2, (r, m) = 1, 

do not satisfy any multiplicative relations. 

Since the proof is rather difficult, we will simply refer to Franz 
[1935] or de Rham [19642]. (Actually Franz shows only that there 
can be no relation of the form U ( J r — l ) a r ~ l where the exponents ar 

add up to zero. But the possibility of such a relation in which ^2ar 5^0 
is easily ruled out. Compare Lemma 12.10 below.) 

CLASSIFICATION THEOREM 12.7. If two lens spaces have the same 
torsion invariant AG U(N)/±IL then they are isomorphic, up to orienta
tion. Each lens space is isomorphic to a unique lens space of the form 
±L(r i , • • • , rn) with l ^ r i r g • • • ^rn<m/2. 

In particular it follows that two lens spaces which are diffeomorphic 
must actually be isometric as Riemannian manifolds. (Compare §8.2.) 

PROOF. This follows immediately from the Franz lemma. 
Now let us study an A-cobordism (W; M, M') between two "spe

cial" manifolds. All three fundamental groups will be denoted by II. 

THEOREM 12.8. Suppose that there exists an h-cobordism between the 
odd dimensional special manifolds M, M' which is compatible with a 
given identification of fundamental groups. Then 

A(M') ~ u2A(M) 
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for some unit u of ZH, where u2~l if and only if T(W, M) = 0. Con
versely, if the dimension is ^ S, then given M and u one can construct a 
corresponding h-cobordism. 

PROOF. Given the fe-cobordism (W; M, M') we have 

A(W) ~ A(W, M)A(M) 

~ A(W, M')A(M'). 

Since M and M' are deformation retracts, the Whitehead torsions 
T(W, M) and T(W, M') are defined. Furthermore 

T(W, M) = - TQV, M') 

by §10. Switching to the multiplicative notation, let u and fir1 denote 
the units of ZII which correspond to these two torsion invariants. 
Clearly the homomorphism 

zu -> on/(s) ^ N 
carries u to A(W, M). Therefore 

A(W) ~ uA(M) — ü~lA(M') 

hence 

A(M') ~ uûA(M). 

Since u~ü by §6.7 this proves the first statement. 
If u2~l then clearly 2r(W, M)=0. Since Wh(II) is torsion free, 

this implies that r (W, M)=0. (In dimensions ^ 5 it implies that 
W~MX[0, 1].) 

Since the final statement of Theorem 12.8 follows immediately 
from §11, this completes the proof. 

COROLLARY 12.9. Let M be a special manifold of dimension 2n — l 
^ 5 . 7 / ZU has a nontrivial unit then there exist infinitely many distinct 
manifolds in the h-cobordism class of M. On the other hand if ZU. has 
only trivial units then every h-cobordism (W; M, M') is a product. 

The proof of 12.9 is immediate. (Compare Milnor [1964].) 
REMARK. According to Higman the ring ZU has a nontrivial unit 

unless II has exponent 2 ,3 ,4 , or 6. (See §6.5.) If II does have exponent 
2, 3, 4, or 6 then of course Wh(II) = 0 . 

To conclude the discussion of special manifolds, here are some 
further results whose proofs will be left as exercises for the reader. 

ASSERTION 1. A homotopy equivalence between even dimensional 
special manifolds is always a simple homotopy equivalence. 
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(I do not know whether A(ilf)^^l for every even dimensional spe
cial manifold.) 

ASSERTION 2. If X and Y are special complexes then A ( I X Y)~\. 
(Compare Kwun and Szczarba [1965].) 

ASSERTION 3. If M is an odd dimensional closed orientable mani
fold and if the i?-torsion Ah(M) is defined for some representation h 
such tha t 

h*: Wh(n)-+JR+ 

is non tri vial, then there are infinitely many distinct manifolds in the 
A-cobordism class of M. ("Distinct" in the sense that no two are 
related by a diffeomorphism which is compatible with the given iden
tification of fundamental groups.) 

Theorem 12.8 suggests the importance of finding out precisely 
what units exist within the ring ZIL Here is a preliminary estimate 
when II is cyclic of order m>2. Let ri, • • • , rn and Si, • • • , sp be 
prime to m. 

LEMMA 12.10. There exists a unit u of ZH satisfying the equation 

(tn _ i) . . . ( f n - l) = u(t
81 - 1) • • • (/•* - 1) 

if and only if n — p and 

f\ • - ' rn s= + si • • • sn (mod m). 

This unit u is uniquely determined, if it exists. Furthermore the canoni
cal homomorphism ZH—^Z carries u to w(l) = ± 1 ; where 

u(X) s n • • • rn/si - • • sn (modm). 

(Compare the homotopy classification theorem 12.1.) 
PROOF. First suppose tha t u exists and that n = p. Let ri^SiXi 

(mod m) with x t > 0 . Since each (J** — 1) is a unit modulo 2 we can 
divide to obtain 

n 

* s 11(1 + t°< + /2s» + • • • + /<«-«•<) (mod 2) ; 
» - i 

or, more precisely, 

(1) u s I I (1 + *" + • • • + *(*»-1)*0 + £2 

for some integer fe. Mapping £ into 1 this equality in ZII transforms 
into the equality 

(2) w(l) = Xi • • • xn + km 

in Z. This proves that 
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u(l) s xi • • • xn ss n • • • rnAi •••$»» (mod w) 

where &(1) clearly must be ± 1 . Furthermore, since xi, • • • , xn are 
given, and ra>2, the equality (2) can be solved uniquely for k. 
Plugging this value of k into (1) we have shown that u is uniquely 
determined. 

Conversely suppose tha t we are given *ï, • • • , rn and s\, • * • , sn 

satisfying the required congruence. The above argument shows that 
there exist unique elements u and v of ZH satisfying the conditions 

(f* - 1) • • • (F* - 1) = «(/« - 1) - • - (*•» - 1), 

0*i - 1) • • • (*•» - 1) = *(n - 1) • • • (r* - 1) 

and 

„(1) = „(1) = ± 1. 

Multiplying the first equation by v this implies that 

(}S1 _ J) . . . (ft. ~ 1) = |«,(pi - 1) . . . (/•« ~ 1). 

But, by the uniqueness statement, this is only possible if uv = l. 
Therefore u is a unit. 

To complete the proof we need only exclude the case n^p. But 
if, say, n<p, then dividing as above we would obtain 

n p 

I I (1 + P* + h &*-»•<) s « I I (*•< - 1) (mod 2) 
1 n+ l 

Mapping t into 1 this would imply 

Xi • • • xn s + 0 (mod w), 

which is impossible. 
REMARK. Bass [to appear] has shown tha t the units described by 

Lemma 12.10 generate a subgroup of at most finite index in Wh(II). 
Now let us look at the question of cobordism between lens spaces. 

Atiyah and Bott (unpublished) have obtained an extraordinary new 
fixed point formula which can be used to prove the following. Let G 
be a compact group which operates smoothly on a sphere or homol
ogy sphere S n with two fixed points p and q, the action being free 
except at p and q. 

THEOREM 12.11. If these hypotheses are satisfied, then the action of 
G on the tangent space of Sw at p is equivalent to the action at q. 

In other words the group representation G—>GL(n, R) obtained 
from the action at p is equivalent to that obtained from the action 
at q. 
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Part of the proof of 12.11 is based on the Franz lemma 12.6. How
ever the main part of the argument involves the Atiyah-Bott fixed 
point formula for elliptic operators. No details will be given (although 
we will give the proof of a substantially weaker result in §12.15). 

COROLLARY 12.12. If two lens spaces are related by an h-cobordistn 
which is compatible with the preferred generators and orientations, then 
they are actually isomorphic. 

PROOF. Let (W\ Li, L2) be an Â-cobordism between lens spaces of 
dimension In—-1. Then the universal covering manifold ffi provides 
an fe-cobordism between the spheres L\ and L2. The group WILIÇ^TIW 
^7r iL 2 =II of covering transformations operates orthogonally on 
these two spheres. Hence we can attach one 2w-disk to W along L\ 
and another along X2 and extend the action of II, by letting II operate 
orthogonally on the disks Df and D?. The union ÏÏKJDfKJDf can 
be given a compatible smoothness structure; and is clearly a homol
ogy sphere. Applying the Atiyah-Bott theorem 12.11 we see that the 
orthogonal action of II on Df is equivalent to the action on Dln) and 
hence that L\ is equivalent to ± L2. 

In fact the sign must be + . For otherwise there would exist a 
homotopy equivalence L\—» —L\ preserving orientation and preferred 
generator. But this is impossible by 12.1. 

COROLLARY 12.13. Any h-cobordism (W\ L, L') between lens spaces 
must have trivial torsion. Hence {if the dimension is ^ 5) the manifold 
W must be diffeomorphic to Lx[0, l ] . 

PROOF. This follows from 12.12 and 12.8. 
I t is essential for these results tha t L and V should be precisely 

lens spaces. Here is an example of an fe-cobordism (W; L, M) with 
T(W, L)y^0t where M is a manifold which is indistinguishable from a 
certain lens space V by all of the more obvious tests. 

EXAMPLE 12.14. Let L = L35(1, 1, 1, 1, 1) and Z/ = L35(1, 6, 6, 6, 6). 
These nine dimensional lens spaces with 7ri=r35 are not A-cobordant 
to each other. Nevertheless L is fe-cobordant to a manifold M which 
has the same simple homotopy type and the same tangent bundle 
as V. 

PROOF. By 12.10, since 6 2 s l mod 35, there exists a unit u of ZEE 
so tha t 

(f* - l ) 2 = u(f - l)2 . 

By 12.8 there is an fe-cobordism (W; L, M) starting from L, and 
having 



1966] WHITEHEAD TORSION 411 

A(Af) ~ u2A(L) = u2(t - l ) 5 

- (f* - 1)4(/ - 1) — A(Z/). 

According to 12.1 there does exist a homotopy equivalence 

ƒ : M -* L'. 

Furthermore it follows from 12.5 that ƒ is a simple homotopy equiva
lence. We will prove that the induced bundle 

ƒ * (tangent bundle of L') 

is isomorphic to the tangent bundle of M. The obstructions to the 
existence of such an isomorphism lie in the cohomology groups 

H*(M; mb-iCSOJ). 

Thus there are obstructions in dimensions 4, 8 (namely the differ
ences of Pontrjagin classes) and in dimension 9. I t follows from 12.2 
that the Pontrjagin classes do not distinguish M from L'. But the 
9-dimensional obstruction is an element of order 2, and hence is not 
destroyed if we pass to the 35-fold covering space. I t follows easily 
that all of the obstructions are zero; which completes the proof of 
12.14. 

Thus 12.12 and 12.13 definitely cannot be proved, using only the 
methods of the present paper. Nevertheless we will persevere, and 
see how far it is possible to get making use only of torsions and 
tangent bundles. 

Let (W; L, L') be an fe-cobordism between two lens spaces with 
fundamental group of order m. 

THEOREM 12.15. If m is prime and less than 163, then the torsion 
T(W, L) is zero. More generally the same result will be true if L and I! 
are replaced by any manifolds having the simple homotopy types and 
the same Pontrjagin classes as suitable lens spaces.1® 

The proof of 12.15 will occupy the rest of §12. 
REMARK. The present proof works for many larger primes, but it 

definitely breaks down for the case m = 163. 
The following holds without restriction on m. 

LEMMA 12.16. If the indices Ti are equal in pairs, say L~L(ri> r\, 
?2, f2i • • • , f ft, rjc) with n — lk and correspondingly Lf — L(sit si9 s2, 
S2, • ' • , Sk9 Sk), then there cannot exist an orientation reversing h-
cobordism from L to V. 

Similar generalizations apply throughout the remainder of §12. 
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COROLLARY. There cannot exist an orientation reversing h-cobordism 
from L(ri:ri:r2:r2: • • • :rkirk) to itself, 

(In contrast if n is odd then every lens space L(rx: • • • :rn) admits 
an orientation reversing diffeomorphism. Similarly, if r2s= — 1 (mod 
ra), then the 3-dimensional lens space 

1,(1: r) « Z(r:r2) « L ( - l : r ) 

admits an orientation reversing diffeomorphism.) 
PROOF OF 12.16. For an orientation reversing ft-cobordism, the 

homotopy type classification theorem implies that 

rxTi - • • Thru — — $\Si ' • * SkSk (mod m). 

In particular, — 1 must be a quadratic residue modulo m. 
On the other hand for an ^-cobordism we must have 

(pri _ 1)2 . . . (fr* - 1)2 = ± ^ « 2 ( ^ 1 - 1)2 . . . (/«* - 1)2 

by 12.8. And by 12.10 the sign which occurs here must also be a minus 
sign. We will show that this is impossible. 

Note that m must have an odd prime factor. For otherwise m 
would be divisible by 4; and hence —1 would not be a quadratic 
residue. Map ZR into a cyclotomic number field by mapping t into 
an odd root of unity £. Then 

(fi - 1)2 . . . (f* _ i ) « = _ £MÖ2(£81 ~ I)2 • * • (?* - I)2-

Thus — £a can be expressed as a square within the field Q[§]; and 
hence —1 can be expressed as a square. But in an odd cyclotomic 
field this is impossible, q.e.d. 

The proof of Theorem 12.15 will depend on some results from 
algebraic number theory. Let £ denote a primitive mth root of unity, 
with m = 2d + l prime. Let U denote the group of units in the ring 
Z[£] of cyclotomic integers. Then it is known classically that 

(1) U is a finitely generated group of rank d — 1. 
(2) The only elements of finite order in U are the roots of unity 

±£*. 
(3) The "cyclotomic units" ( £ r - l ) / ( £ - 1 ) G U, with Kr^d, satisfy 

no multiplicative relations. (Compare Kummer [1851], or the Inde
pendence Lemma 12.6.) Hence they generate a subgroup of finite 
index in U. 

Let Z7o denote the subgroup generated by the cyclotomic units to
gether with ±£. The index of Z7o in U will be denoted by ~h<i(m)> In 
the customary terminology h^{m) is called the "second factor of the 
class number" for the cyclotomic field (?[£]. 
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LEMMA 12.17 (KUMMER.) For all primes m less than 163 the index 
h2{m) is an odd integer. However fe2(163) is even. 

PROOF. Kummer showed in [1851] that the number of ideal classes 
in the ring Z[£] can be expressed as a product h\h2 of integers, where 
h2 is equal to the index [U: Uo] as just described,11 and where hi is 
given by an explicit numerical formula. He tabulated the values of 
hi(m) for m < 100. A more extensive tabulation, for m = 257, has been 
given by Schrutka v. Rechtenstamm [1964]. Within this range, and 
for m prime, only 

*i(29) = 8, 

Ai(113) = 1,612,072,001,362,952, 

Ai(163) = 2,708,534,744,692,077,051,875,131,636 

and 

Ai(197), Ai(239) 

are even.12 

In [1870] Kummer proved tha t the second factor h2{m) can be 
even only if h\{m) is even. He made a particular study of the cases 
m = 29, 113 and 163; showing that ft2(29) and h2(113) are odd, but 
that h2(163) is even. (In fact, he gave an explicit example of an ele
ment of order 2 in U/Uo for m = 163.) This completes the proof of 
12.17. 

REMARK 12.18. The numbers h2{m) seem extraordinarily difficult 
to compute. However it is known that 

h2(m) = hi(m) = 1 

for w = 19. (See Minkowski [1891, p. 296] as well as Wolfskehl 
[1886] and Kummer [1851, p. 472].) I t has been conjectured that 
h2(m) = 1 for all m<91. (See Schrutka v. Rechtenstamm [1964, p. 4].) 
For further information see Hasse [1952], and Vandiver and Wahlin 
[1928]. 

Now consider the group ring ZS1 where II is cyclic of prime order 
ra = 2 d + l . 

LEMMA 12.19. Suppose that h2{m) is odd. If the equality 

(1) (*'i - 1) • • • (trn - 1) = ± tau\t*i - 1) • • • (t8n - 1) 

11 Alternatively JH is equal to the number of ideal classes in the real subring Z[£+ | ] 
of the cyclotomic field. For a modern account see Hasse [1952 ]. 

12 The last two numbers are very roughly equal to 6 X1086 and 2 X1049 respectively. 
They are divisible by 23 and 26 respectively. 
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holds f or some unit u of ZI1, where 

(2) l ^ i ^ - ^ ^ , 1 S st ^ • • • ^ sn ^ d 

then the 2n numbers n , • • • , r„, si, • • • , sn must be equal in pairs. 
Furthermore the congruence 

n - • • rn = si • • • sn (mod m) 

must be satisfied. 

PROOF. Mapping / into £ we obtain a corresponding equality in
volving a unit w(£) of Z[£]. Clearly w(£)2 belongs to the subgroup 
UQC.U generated by cyclotomic units. Since the order h2(m) of U/ Uo 
is odd, this implies that w(£) itself belongs to [/o- The statement that 
the numbers fi, • • • , r», Si, • • • , sn are equal in pairs now follows 
by inspection, making use of 12.6. 

Now the proof of 12.16 can be used to show that the plus sign must 
hold in Equation (1). In other words the congruence n • • • rw = 
+5i • • • sn must be satisfied. This proves Lemma 12.19. 

EXAMPLE. \in — 2 then the statement that the numbers ri, r2, Si, s% 
are "equal in pairs" means that either 

f\ = si, r2 = s2 

or 

r\ = r2 , $i = ^2. 

(The third possibility: ri = s2l r2 = s% may be ignored because of our 
assumption that r i ^ r 2 , Si^s2.) But if H — r2, S\ — s2 then the con
gruence r\r2 = s\s2 implies (since m is prime) that r i = ±$i and hence 
that ri = s\. Thus in any case we must have 

ri = si, r2 = s2 

so tha t L(riy r2)=L(sx, s2). This proves Theorem 12.15 for the case 
n = 2. 

PROOF OF 12.15 FOR n>2. Setting the total Pontrjagin class of L 
equal to the total Pontrjagin class of V we obtain 

(3) (1 + *Vr2) • • • (1 + *V„"2) = (1 + x*sr2) • • • (1 + x2Sn2) 

where xkÇ:H2k{L\ Z) is an element of order m for k<n, and is zero 
for k^n. 

The following result will be proved by induction on n. 

LEMMA 12.20. If Equations (1), (2) and (3) hold, and if h2(m) is 
odd, then ri = Si, • • - , r» = s„. 
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The proof will be divided into two cases. I t follows immediately 
from Lemma 12.19 tha t these two cases exhaust all of the possibilities. 

Case 1. Suppose that some r< is equal to some s3\ Then dividing 
Equation (1) by the equality (tri — 1) = (J8'—-1), and dividing Equa
tion (3) by the equality (I+XV72) == (l+x2sj"2) we obtain correspond
ing equalities with n replaced by n — 1. (The reader should verify 
tha t both divisions are legitimate.) Hence the desired conclusion fol
lows from the induction hypothesis. 

Case 2. Suppose that ri = r2, n = r^ • • - , rn-i = rn and that Si = s2i 

• • • , sn-i = sn, where n = 2k. I t will be convenient to introduce the 
abbreviations 

^ s= f2i, bj s S2j (mod m), 

so tha t 

(3r) (1 + a^Y • • • (1 + akx*Y - (1 + M 2 ) 2 • • • (1 + bk%*)\ 

Since m is odd, note tha t every mixed cohomology class of the form 

l + ci% + c2x* + • • • G E H^(L; Z) 

has a unique square root l+dix+d2x
2 + • • • of the same form. That 

is the congruences 
2 

C\ s 2di, c2 s 2^2 + di, C3 s 2J3 + 2d\d2) • • • 

have a unique solution. Therefore we can take the square root of 
Equation (3') to obtain 

(1 + axx
%) • • • (1 + akx

2) = (1 + bix*) • • • (1 + bkx
2). 

Since x 2 tV0 for i<& this proves that the ith elementary symmetric 
junction of &i, • • • , ak is congruent to the ith elementary symmetric 
function of &i, • • • , bk for i<k. But the congruence 

#i • * • ak = bi • • • öfc (mod m) 

for the £th elementary symmetric function is also valid, by Lemma 
12.19. 

Consider the polynomials 

(y ~ ai)(y — fla) • • • (y — #*) and (y — bj)(y — J2) • • • (y — ô*) 

in one variable over the field Zm. Since the corresponding elementary 
symmetric functions are all equal, we have 

(y — ai)(y — a2) • • • (y — <*>*) = (y — &i)(y — 62) • • • (y — h). 

According to the unique factorization theorem for polynomials over 
Zm this is only possible if {ai, • • • , a&} is a permutation of 
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{h, - • • , bk}.Butii,say,ax^bj (mod m) then r%^ s%j, hence r^+Sïj, 
hence r2 = S2i (making use of (2)). 

Thus Case 2 has been reduced to Case 1. This completes the proof 
of Lemma 12.20, and therefore completes the proof of the Theorem 
12.15. 

Appendix 1. The congruence subgroup theorem. Let A be a com
mutative ring, and aQA an ideal such that the quotient ring A/a is 
finite. The kernel of the natural homomorphism 

SLO, A) -» SLO, A/a) 

will be denoted by Na, and called the congruence subgroup corre
sponding to a. Clearly Na is a normal subgroup of finite index in 
S L O , ,4). 

DEFINITION. The group Sh(n, A) satisfies the congruence subgroup 
theorem if every subgroup of finite index in SL(w, A) contains such a 
congruence subgroup. 

This theorem is true for SL(#, Z) providing that n^2>. (See Bass, 
Lazard and Serre [1964]; or Mennicke [1965].) I t is not true how
ever for SL(2, Z). (See for example Reiner [1958].) 

Now let 0 be the ring of integers in an algebraic number field. 
ASSERTION. If n is sufficiently large, then SL(n, 0) satisfies the con

gruence subgroup theorem* 
This result has been claimed by Mennicke [1965, p. 37]; and by 

Bass (unpublished). Assuming that it is true, we will prove the fol
lowing. 

THEOREM 1.6. If II is a finite abelian group, then SKi(2flI) = 0. 

The proof (due to Bass) will be based on five lemmas. 

LEMMA 1. If Sh(n, Ai) and Sh(n, A2) both satisfy the congruence 
subgroup theorem, then so does SL(n, ^4iX-42). 

PROOF. This follows easily from the natural isomorphism 

SL(», At X At) « SL(», At) X SL(», A2). 

Consider next a ring A and a subring AQCLA. Suppose that the 

* Added in proof. At this date (April, 1966) it is not at all sure that this assertion 
is true for all number fields. 
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additive group of A is finitely generated, and that A 0 is (additively) a 
subgroup of finite index, say X, in A. 

LEMMA 2. If Sh(n, A) satisfies the congruence subgroup theorem, 
then so does SL(w, A0). 

PROOF. Note tha t SL(n, A Q) is a subgroup of finite index in 
Sh(n, A). In fact SL(^, A0) clearly contains the congruence subgroup 
which corresponds to the ideal X^4C^4. The rest of the argument is 
now quite easy. 

Let II be a finite abelian group with k elements. 

LEMMA 3. If n is sufficiently large, then SL(w, ZH) satisfies the con
gruence subgroup theorem. 

PROOF. The semisimple algebra @II is isomorphic to a cartesian 
product of fields : 

@n S Fi X • • • X Fq. 

Let Oi be the ring of integers in the number field Fi. Then clearly 
ZH is a subring of the product 0i X • • • X 0fl. The additive group of 
this product ring is clearly Z-free of rank k. Similarly the additive 
group of ZII is free of rank k. 

Choose n so large tha t each of the groups SL(w, 0») satisfies the 
congruence subgroup theorem. Then Lemmas 1 and 2 imply tha t 
SL(#, ZII) must also satisfy the congruence subgroup theorem. This 
proves Lemma 3. 

Finally we will need the following. 

LEMMA 4. The group SL(w, 2H) is finitely generated. 

(Compare Siegel [1943], Borel and Harish-Chandra [1962, §6.12].) 
This is perhaps best proved by noting that SL(w, ZH) is a subgroup 
of finite index in 

SL(», 0i) X • • • X SL(n, 0,). 

Since each SL(w, 0t) is finitely generated by a theorem of Hurwitz 
[1895], the conclusion follows. 

LEMMA S.Ifn is sufficiently large, then the group SL(n, ZH) is equal 
to its own commutator subgroup. 

PROOF. Otherwise SL(n, Zn) could be mapped homomorphically 
onto some finite, nontrivial abelian group G, making use of Lemma 
4. The kernel of this homomorphism would contain a congruence 
subgroup Na, by Lemma 3. Hence the quotient 
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SL(n, zn)/Na 

would also map homomorphically onto G. 
Recall tha t Na is defined by the exact sequence 

( ) - > # « - * SL(», Zn) i> SL(», Zn /a ) . 

But Zll /a is a finite ring; and so has only finitely many maximal 
ideals. An easy argument then shows that the group SL(w, ZH/a) is 
generated by elementary matrices. (Compare Bass, Lazard, Serre 
[1964, Lemme l ] , as well as §1.4.) Hence the homomorphism j must 
be onto. Furthermore the group 

SL(», ZU)/Na S SL(n, ZIL/a) 

must be equal to its own commutator subgroup (assuming that n è 3). 
I t follows that this group cannot map homomorphically onto the 
abelian group G. This contradiction completes the proof of Lemma 5. 

Since Theorem 1.6 clearly follows from Lemma 5, this completes 
the argument. 

Appendix 2. The group K0A of virtual projective -4-modules. 
Closely related to K\ is the functor K0 which is defined as follows. 
For each ring A let KQA be the additive group having one generator 
(P) for each finitely generated projective module P over A, and one 
relation 

(P © Q) = (P) + (Q) 

for each pair of finitely generated projectives.18 Note that any ring 
homomorphism h: A—>A' gives rise to a group homomorphism 

h*:K0A->K0A' 

where 

*»(P) = (A' ® P). 
A 

Thus Ko is a covariant functor from rings to additive groups. 
(If A happens to be commutative then the product operation 

( P ) ( 0 = (P ® Q) 
A 

makes K0A into a ring. Thus K0 can also be considered as a functor 
from commutative rings to commutative rings.) 

The class of the free A -module of rank 1 generates a cyclic sub
group of K0A. The quotient 

13 In other words K0A is the "Grothendieck group" associated with the category 
of finitely generated projectives over A. 
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Ko A /(subgroup generated by free modules) 

is called the projective class group K0A. (Serre [1958], Rim [1961].) 
Clearly K0 is also a covariant functor. Here are some examples. 

EXAMPLE 1. If A is a simple algebra then KQA is infinite cyclic, 
and KoA is finite cyclic. 

EXAMPLE 2. If A is a Dedekind ring then KoA can be identified 
with the ideal class group of A. (See Kaplansky [1952], Rim [1959].) 
The ring KoA splits additively as a direct sum 

KoA^Z ® K0A, 

where K0A is an ideal, and where the product of any two elements in 
KoA is zero. More generally: 

EXAMPLE 3. If A is any ring which admits a homomorphism into a 
skew-field F then the homomorphisms 

Z-+A-+F 

give rise to a direct sum decomposition 

KoA^Z® KoA. 

EXAMPLE 4. Let Tp be the cyclic group of prime order p, and let 
% = exp(27ri/p). Then according to Rim [1959] the homomorphism 

ZTp-+Z[l] 

give rise to an isomorphism 

ÈoZTp->ÊoZ[t]. 

Thus KoZTp is a finite group, with order equal to the class number of 
the cyclotomic field. These groups are trivial for p<23; however14 

KoZT2Z^Zz® (?), 

K0ZT29 9ÉZ2® Z2® Z2® (?), 

KoZT31 S Zd ® (?), 

KoZTw 9Ë Z37 © (?), 

and so on. These groups are surely nontrivial for all p ^ 23. 
More generally consider the group ring ZII of an arbitrary multi

plicative group. 
EXAMPLE 5 (SWAN [i960]). If II is finite, then the projective class 

group Ko(Zn) is also finite. 
EXAMPLE 6 (BASS, H E L L E R AND SWAN [1964]). If II is free abelian, 

then Ko(Zn)=0. 
14 See Kummer [l85l] and [i860], as well as §12.18. Here (?) denotes a finite 

group which is probably zero. 
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In contrast, the following result has recently been obtained. 
EXAMPLE 7 (M. P. MURTHY; UNPUBLISHED). If II = r X 2 V is the 

product of a free cyclic group and a cyclic group of order p2, then 
Ko(2m) contains infinitely many distinct elements of order p. In 
particular, this projective class group is not finitely generated. 

To confuse matters, both K0 and Kx sometimes behave as covariant 
functors. Let 

h:A-+A' 

be a ring homomorphism with the special property that A' is finitely 
generated and projective when considered as a left A -module. Then 
every finitely generated projective module P over A' can be thought 
of as a finitely generated projective module h*P over A. Thus one 
obtains a backwards homomorphism 

h*:K0A'-+KoA 

which might be called the "transfer." Similarly a "transfer" homo
morphism 

WiKW-tldA 
can be defined.16 

The precise affinity between K0 and K\ is a little difficult to explain. 
(See Bass [1964], as well as the thesis of Gersten [1965].) One rela
tionship can be described as follows: Given rings AQA' there exists 
an exact sequence of the form 

KxA -> KXA' -> * -+ KoA -> K0A'. 

Here is a simple example. Let A be a Dedekind ring and F its quotient 
field. Then there is an exact sequence 

KXA -* KiF -» G -> KoA -> K0F -> 0, 

where G denotes the group of all fractional A -ideals in F. 
For any commutative A it is possible to define16 a product opera

tion 
KoA ® KxA-tKiA, 

making KiA into a module over the ring K0A. 
15 Represent an arbitrary element of KiA' by an automorphism a of the free 

module-4'® • • • ®A'. Choose a projective A -module Q so that h*(A'® • • -®A')®Q 
is A -free. Now the automorphism « 0 (identity) of this free module determines the 
required element of K\A. 

16 The product of an element (P) E:KQA and an element (a) of K\A, where a denotes 
an automorphism of an A -free module M, is represented by the automorphism 
(identityp) <g)a of the projective module P<g>M. (Compare the preceding footnote.) 
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Here is another example of a relation between Ko and Ki. Let T 
be an infinite cyclic group and II an arbitrary group. Then according 
to Bass, Heller and Swan [1964, §5] there is a direct sum decomposi
tion 

K!(z( TX n)) SS £i(zn) e ÜTO(ZÏÏ) e (?), 

where (?) denotes an unknown group. Hence 

wh(r x n) s wh(n) e K0(ZII) e (?). 

If II is finite abelian of order w, then Bass has recently shown that the 
unknown third summand is an w-primary group. 

As an example suppose tha t II is the cyclic group T^z of order 23. 
Then Wh(II) is free abelian of rank 10. The projective class group 
Ko(ZT2z) is isomorphic to the ideal class group of Q [exp(27ri/23) ] and 
hence (presumably) is cyclic of order 3. (Example 4 above.) Thus 

Wh(Z(T X 2«)) ÊË 10Z ® Zz® (?). 

The conjugation operation can be explicitly computed in this case. 
I t turns out to be multiplication by —1 on the Zz summand, and 
multiplication by + 1 on the Z@ • • • ®Z summand. 

As a second example let 11 = TXTP* where p is prime. Using Ex
ample 7 above (M. P . Murthy) we see that the Whitehead group 

wh(Txn) = w h ( r x r x av) 
is not finitely generated. 

The geometric applications of the functor Ki are strikingly paral
leled in Wall's theory of obstructions to finiteness for CW-complexes. 
Let X be a topological space which is dominated by a finite CW-
complex. Then Wall defines an obstruction 

a G Ko(Zin(X)) 

which vanishes if and only if X has the homotopy type of a finite 
CW-complex. (Wall [1965]. See also Siebenmann [1965].) This ob
struction can be considered as a generalization of the familiar Euler 
characteristic. 

Here is a quite different example from topology. Let Cx denote the 
ring of continuous complex valued functions on a compact space X. 
Then every finitely generated projective module over Cx is iso
morphic to the module of sections of a unique complex vector bundle 
over X. (Swan [1962].) Hence K0C

X can be identified with the 
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Atiyah-Hirzebruch group K°X of virtual complex vector bundles 
over X. (See Atiyah and Hirzebruch [1959], Adams [1962].) 

Similarly the special Whitehead group SKi(Cx) is isomorphic to 
the group of all homotopy classes of mappings from X to the infinite 
special linear group SL(C). This group of homotopy classes is in
timately related to the Atiyah-Hirzebruch group KrlX. 

Similarly the functors K0 and K\ applied to the ring Rx of con
tinuous real valued functions on X closely related to the Atiyah-
Hirzebruch groups KO°(X) and KOr^X). Consider for example a 
space X and a matrix 

(an) G SL(n, Rx). 

Then the correspondence 

x K> (aij(%)) 

maps X into SL(w, R). Clearly any elementary row operation on the 
matrix induces a homotopy of the corresponding mapping. 

EXAMPLE. Let X be the unit circle in the plane, and let 

x, y G Rx 

denote the two coordinate mappings. Then the matrix 

( X A E SL(2, Rx) C SL(RX) 
\—y x/ 

determines a mapping 

X->SL(2 , R) C S L ( J R ) 

which clearly represents a generator for the group nSL(R). (Recall 
tha t 7TISL(JR)^7TIO is cyclic of order 2.) I t follows that the matrix 

/ x y\ 

\—y %/ 

over Rx can not be expressed as a product of elementary matrices. 
This conclusion follows a fortiori if we restrict attention to the sub-
ring 

R[x, y] C Rx. 
(Compare §1.7.) 
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