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ANNALS OF MATHEMATICS
Vol. 67, No. 1, January, 1958
Printed in Japan

THE STEENROD ALGEBRA AND ITS DUAL!

By JOHN MILNOR
(Received May 15, 1957)

1. Summary

Let .* denote the Steenrod algebra corrresponding to an odd prime
p. (See §2 for definitions.) Our basic results (§3) is that .>°* is a Hopf
algebra. That is in addition to the product operation

! *
y X ® y* ._(/)*
thel‘e iS a homomorphism

L .
oL R R o*

satisfying certain conditions. This homomorphism ¢* relates the cup prod-
uct structure in any cohomology ring H*(K, Z,) with the action of .&*
on H*(K, Z,). For example if &7 e .&#**(*~D denotes a Steenrod reduced
p™ power then

¢*(@n):gn®1+(@n—l®ﬁl+ cee +1®9§n A
The Hopf algebra
¢* ¢*
¥ L FEFRFF L FF
has a dual Hopf algebra

The main tool in the study of this dual algebra is a homomorphism
¥ HYK, Z,) > H*K, Z,) ® .~

which takes the place of the action of .&“* on H*(K, Z,). (See §4.) The
dual Hopf algebra turns out to have a comparatively simple structure. In
fact as an algebra (ignoring the “diagonal homomorphism” ¢, ) it has the
form

E, ) Q B, 2r — 1)@ -+« Q P&, 20 —2)® PG, 20" —2)® - -+,

where E(r;, 2p' — 1) denotes the Grassmann algebra generated by a cer-
tain element 7, € 54,:_,, and P(&;, 2p° — 2) denotes the polynomial algebra
generated by &, € .5 _,.

1 The author holds an Alfred P. Sloan fellowship.
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In §6 the above information about .~ is used to give a new description
of the Steenrod algebra . *. An additive basis is given consisting of ele-
ments

QfoQ,f1 -+ Ty

with & =0,1; r, = 0. Here the elements Q, can be defined inductively
by

g i
Q =9, Q= F7Q, — QP ;

while each &’71*** "t is a certain polynomial in the Steenrod operations,?
of dimension

r(2p — 2) + 7(2p* — 2) + -+ + 1u(2pF — 2) .
The product operation and the diagonal homomorphism in .&°* are ex-
plicitly computed with respect to this basis.

The Steenrod algebra has a canonical anti-automorphism which was
first studied by R. Thom. This anti-automorphism is computed in §7.
Section 8 is devoted to miscellaneous remarks. The equation 6.%°' = 0 is
studied ; and a proof is given that .&"* is nil-potent.

A brief appendix is devoted to the case p = 2. Since the sign conven-
tions used in this paper are not the usual ones (see §2), a second appendix

is concerned with the changes necessary in order to use standard sign
conventions.

2. Prerequisites: sign conventions, Hopf algebras,
the Steenrod algebra

If a and b are any two objects to which dimensions can be assigned,
then whenever a and b are interchanged the sign (— 1)%medim? wi]] bhe
introduced. For example the formula for the relationship between the
homology cross product and the cohomology cross product becomes

(1) Cpxyaxfy= (=" dpadly, ).
This contradicts the usual usage in which no sign is introduced. In the
same spirit we will call a graded algebra commutative if
ab — (_ l)dimadimbba .
Let A=(---, 4., A, A4, ---) be a graded vector space over a field F.
The dual A’ is defined by A4, = Hom (A_,, F'). The value of a homomor-
phism @ on a € A will be denoted by <{a’,a)>. It is understood that

<ad',a) =0 unless dima’ + dima = 0. (By an element of 4 we mean an
element of some A,.) Similarly we can define the dual A” of A’. Identify

2 ThlSh;S r;(;rieriation to the generalized Steenrod operations .&°7 defined by Adem.
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each a € A with the element a”” € A” which satisfies

(2) a”,a' )y = (=1 e (al,

for each a’ € A’. Thus every graded vector space A is contained in its
double dual A”. If A is of finite type (that is if each A, is a finite dimen-
sional vector space) then A4 is equal to A”.

Now if f: A — B is a homomorphism of degree zero then f’': B’ — A’
and f”: A” — B"” are defined in the usual way. If 4 and B are both of
finite type it is clear that f = f”.

The tensor product A ® B is defined by (A X B), = D _i+j-n 4;: ® By,
where “} " stands for “direct sum”. If 4 and B are both of finite type
and if A4, = B, = 0 for all sufficiently small ¢ (or for all sufficiently large
1) then the product A ® B is also of finite type. In this case the dual
(A ® B)’ can be identified with A’ ® B’ under the rule

(3) & ®b,a@®b)y = (—1)m*tm" (o, a>{b,b) .

In practice we will use the notation A, for a graded vector space 4
satisfying the condition A4, = 0 for ¢ < 0. The dual will then be denoted
by A* where A" = A", = Hom(A4,, F). A similar notation will be used
for homomorphisms.

By a graded algebra (A, ¢,) is meant a graded vector space A4, to-
gether with a homomorphism

9”*: A*®A*—>A* .
It is usually required that ¢, be associative and have a unit element
1 e A,. The algebra is connected if the vector space A, is generated by 1.

By a connected Hopf algebra (A, ¢, ¢4) is meant a connected graded
algebra with unit (4,,, ¢,), together with a homomorphism

Pt Ay > A, Q A,

satisfying the following two conditions.

2.1. ¢, is a homomorphism of algebras with unit. Here we refer to the

product operation ¢, in A, and the product
(0 ® @) (a5 Q @) = (— 1) %45 (g, q,) @ (@, ay)
in 4, ® A,.

2.2. For dima > 0, the element ¢,(a) has the forma X1+ 1R a +
> b; ® e; with dim b, dim ¢, > 0.

Abpropriate concepts of associativity and commutativity are defined,
not only for the product operation ¢, , but also for the diagonal homomor-
phisms ¢, . (See Milnor and Moore [3]).

To every connected Hopf algebra (4., ¢, ¢,) of finite type there is as-
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sociated the dual Hopf algebra (A*, ¢*, ¢*), where the homomorphisms
. ¢ b
A* 5 AFRQ A* 5 4*
are the duals in the sense explained above. For the proof that the dual is
again a Hopf algebra see [3].

d
(As an example, for any connected Lie group G themaps G — G x G

2, G give rise to a Hopf algebra (H.(G), vy, d,). The dual algebra
(H*(G), ~, p*) is essentially the example which was originally studied
by Hopf.)

For any complex K the Steenrod operation &°" is a homomorphism

G4 H(K, Z,) —» H**0-)(K, Z,) .

The basic properties of these operations are the following. (See Steenrod
[41.) )

2.8. Naturality. If f maps K into L then f*&°t = &7!f*,

2.4. For « € H'(K, Z,), if © > j/2 then &'a = 0. If i = j/2 then &'a
= a?, If 1 =0 then Z¥'a = «a.

2.5. P A~ PB) = irjen Pla—~ FIB.

We will also make use of the coboundary operation ¢: H(K, Z,) —
H'*\(K, Z,) associated with the coefficient sequence

0>2,>Zp—>72,—0.

The most important properties here are

2.6. 606 = 0 and

2.7. 8(a— f) = (da)— f + (— 1)"™*a — 58, as well as the naturality
condition.

Following Adem [1] the Steenrod algebra .#* is defined as follows.
The free associative graded algebra .# * generated by the symbols J,
P Pl ... acts on any cohomology ring H*(K, Z,) by the rule
(0,0, 0)-a = (0,6, (0,x)---)). (It is understood that ¢ has dimen-
sion 1 in .#* and that ~°* has dimension 2i(p — 1).) Let _#* denote
the ideal consisting of all f e .# * such that fa = 0 for all complexes K
and all cohomology classes a € H*(K, Z,). Then ./* is defined as the
quotient algebra .# */._# *. It is clear that .~“* is a connected graded as-
sociative algebra of finite type over Z,. However . * is not commutative.

(For an alternative definition of the Steenrod algebra see Cartan [2].
The most important difference is that Cartan adds a sign to the operation
d8.)

The above definition is non-constructive. However it has been shown
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by Adem and Cartan that .&#* is generated additively by the “Dbasic
monomials”

0%0. 575108 o o o P3Ok
where each &; is zero or 1 and

$1 =P8, + &1,y S = DS;+ &y v, 81 = VS, + Ei-, S = 1

Furthermore Cartan has shown that these elements form an additive
basis for <7*.

3. The homomorphism ¢*

LEMMA 1. For each element 0 of . * there is a unique element ¢*(0) =
DU R 07 of F* R A* such that the identity

O(a—f) = 37 (— 1)imoame gia) — 0/ (B)
8 satisfied for all compleves K and all elements «, € H*(K). Further-
more
¢>¥4

8 @& ring homomorphism.

(By an “element” of a graded module we mean a homogeneous element.
The coefficient group Z, is to be understood.)

It will be convenient to let & * X &* act on H*(X)® H*(X) by the
rule

(0" ®0")a® B) = (— 1) e (a) ® 67(B) .
Let ¢: H¥(X) ® H*(X) > H*(X) denote the cup product. The required
identity can now be written as
Oc(a Q@ f) = cd*(0)a ® P) .

PROOF OF EXISTENCE. Let %2 denote the subset of .&°* consisting of

all 6 such that for some p € &* ¥ .&* the required identity
be(a @ B) = cp(a @ B)

is satisfied. We must show that .&Z = .&*.
The identities

Base f) = da s f 4 (— 1y v of
and
P~ B) =3 isjon Pl FIB

clearly show that the operations 6 and . belong to .%# If 0,, 0, belong
to .7 then the identity
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0.0.c(a @ P) = O.cp(a ® B) = cppfa @ P)

show that 6,0, belongs to 2% Similarly .22 is closed under addition. Thus
7 18 a subalgebra of .~** which contains the generators 8, & of ~*,
This proves that <% = *,

PROOF OF UNIQUENESS. From the definition of the Steenrod algebra we
see that given an integer n we can choose a complex Y and an element
v € H*(Y) so that the correspondence

0 — Oy

defines an isomorphism of .&¢* into H**(Y') for ¢« < n. (For example take
Y = K(Z,, k) with k > n.) It follows that the correspondence

0 @07 L (— 1y ) x 0°)

defines an isomorphism j of (& * & & *) into H**{(Y x Y) for ¢ < n.

Now suppose that p,, p, € & * X .&* both satisfy the identity fc(a ¥ £)
= cp(a ® P) for the same element 6 of &". Taking X=Y x Y, a =
rx 1, =1 x71,wehave cp,(a @ ) = j(p;). But the equality j(p,) = j(p.)
with dim p, = dim p, = n implies that p, = p,. This completes the unique-
ness proof. Since the assertion that ¢* is a ring homomorphism follows
easily from the proof used in the existence argument, this completes the
proof.

As a biproduct of the proof we have the following explicit formulas:

PO =0®1+1®
PP =P"QRX14+ PR AP+ -+ 1R .
THEOREM 1. The homomorphisms

¢* L
GFF L, FFR S . T

give . * the structure of a Hopf algebra. Furthermore the product ¢* is

asseciative and the “diagonal homomorphism” ¢* is both associative and

commutative.

PrOOF. Itis known that (.&°*, ¢*) is a connected algebra with unit; and
that ¢*is a ring homomorphism. Hence to show that .&“* is a Hopf al-
gebra it is only necessary to verify Condition 2.2. But this condition is
clearly satisfied for the generators 8, and .&°" of .&°*, which implies that
it is satisfied for all positive dimensional elements of .&7*.

It is also known that the product ¢* is associative. The assertions that
¢* is associative and commutative are expressed by the identities

(1) (* @ 1)¢*0 = (1 & ¢*)¢*0,
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(2) T*0 = ¢*0

for all 0, where T(¢'. % 6”) is defined as (— 1)%m®dimé” g7 ) 4. Both
identities are clearly satisfied if 6 is one of the generators 6 or " of
~*. But since each of the homomorphisms in question is a ring homo-
morphism, this completes the proof.

As an immediate consequence we have:

COROLLARY 1. There is a dual Hopf algebra

%t s0u s g

with associative, commutative product operation.

4. The homomorphism 1*

Let H,, H* denote the homology and cohomology, with coefficients Z,,
of a finite complex. The action of .&°* on H* gives rise to an action of
& * on H, which is defined by the rule:

{pl, ay = p, by

forall pe H,, 0 € &#*, ae H*. This action can be considered as a homo-
morphism

i H, Q S* > H, .
The dual homomorphism
P H* > H*® .9,
will be the subject of this section.

Alternatively, the restricted homomorphism H,., ® .~* — H, has a
dual which we will denote by

ﬂi‘: Hn _)Hn+z® L(/1// .
In this terminology we have
z*:,{()_'_'{l_'_z?_'_ cee

carrying H" into Y, H"*'® .. The condition that H* be the cohomolo-
gy of a finite complex is essential here, since otherwise 1* would be an
infinite sum.

The identity

£(0,0,) = (16,)0,

can easily be derived from the identity (6.0,)a = 6,(6,«) which is used to
define the product operation in .&°*. In other words the diagram
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1 3
H®or®o 180 g @ .o
lz* ®1 lz*
l*
H,Q .&* - H,
is commutative. Therefore the dual diagram
1
e %e .5 8% e .o
e B
2*
H*®.9% H*

is also commutative. Thus we have proved:
LEMMA 2. The identity

(* Q@ D*(a) = (1 ® )% (@)
holds for every a € H*.

The cup product in H* and the ¢, product in .4 induce a product opera-
tion in H* ) %% .

LEMMA 3. The homomorphism *: H* — H* R . is a ring homomor-
phism.

PROOF. Let K and L be finite complexes, let 6 be an element of &%,
and let ¢*(0) = Y_ 0, ® 0; . Then for any « € H*(K), B € H*(L) we have
O-(a x B) =3 (— 1)4mei’dime 'y x §;8. Using the rule

<:u X v, 0+(a x 48)> =<(/1 X V)'aya x 48>
we easily arive at the identity
(¢ X v)+0 =3 (— 1)Mmvaimé pf x u0; .

In other words the diagram

HE@HLDR .o 2218 4 (k)@ H()® 5* = HyK x D® 5*
11 RT®1 11.
H(EK)® o @ Hil) @ 5 — 28X b (k)@ HAL) ~ H(Kx L)

is commutative (where T interchanges two factors as in §3). Therefore
the dual diagram is also commutative. Setting K = L, and letting d: K —
K x K be the diagonal homomorphism we obtain a larger commutative
diagram

) % a®1
H*@[{t@%@%%H*@H*@%:H*(I{XK)®$-§—»H‘®5§
ners! e L3
*R a*

H*

H'Q@AQH*® &% «—— H* Q@ H* = H*(K x K)
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Now starting with « Q e H* ¥ H* and proceeding to the right and
up in this diagram, we obtain 1*(a — f3). Proceeding to the left and up,
and then to the right, we obtain 1*(a)-4*(8). Therefore

*(af) = ()™ (P)
which proves Lemma 3.
The following lemma shows how the action of .&“* on H*(K) can be
reconstructed from the homomorphism 2*.
LEMMA 4. If () = 3 a; Q o, then for any 6 € &* we have

o = E (_ l)dimabidimwi <0’ wi>ai .
Proor. By definition

<f“’ 0a> = </’0’ a> = <'{*(ﬂ® 0)7 C(>
= <#®0’ '{*a> = E * <IU, ai><0’ wi> .
Since this holds for each # € H,, the above equality holds.

REMARK. To complete the picture, the operation 7*: &¥* R H* - H*
has a dual »,.: H, > .9 & H,. Analogues of Lemmas 2 and 4 are easily
obtained for 7, . If a product operation K x K — K is given, so that H,,
and hence .%, X H,, have product operations; then a straightforward
proof shows that 7, is a ring homomorphism. (As an example let K de-
note the loop space of an (n 4+ 1)-sphere, or an equivalent CW-complex.
Then H,(K) is known to be a polynomial ring on one generator » € H,(K).
The element

7)€ (% ®H)D (A RH,.)D - D (¥ @ H,)

is evidently equal to 1 X g#. Therefore 7, (#*) = 1 Q ¢* for all k. Passing
to the dual, this proves that the action of .~* on H*(K) is trivial.)

5. The structure of the dual algebra &

As an example to illustrate this operation 1* consider the Lens space
X = §*¥+1/Z, where N is a large integer, and where the cyclic group Z,
acts freely on the sphere S***!, Thus X can be considered as the (2N + 1)-
skeleton of the Eilenberg-MacLane space K(Z,, 1). The cohomology ring
H*(X) is known to have the following form. There is a generator a €
H'(X) and H*X) is generated by g = déa. For 0 <1i¢ < N, the group
H*(X) is generated by f¢ and H**'(X) is generated by af’.

The action of the Steenrod algebra on H*(X) is described as follows.
It will be convenient to introduce the abbreviations

M=1, M,= ', M,= FP*P, «.-, M, = F*

k-1
.o

C PVP e,
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LEMMA 5. The element M, € .&7**"~* satisfies M, = ﬂ”k. However if 0
is any monomial in the operations o, P, G2, <« which is not of the
form P <. Pv P then 08 = 0. Similarly (M0)a = B*" but 0o = 0
if 0 is any monomial in the operations 6, ', F°2, « -+ which does not have
the form 0 = FP* ™ coo P5or =1,

PRroOOF. It is convenient to introduce the formal operation & =1+
P+ P24 ... . It follows from 2.4 that &# 3 = § + 3*. Since & is a
ring homomorphism according to 2.5, it follows that & 8¢ = (8 + #?)%. In
particular if ¢ = p” this gives 78" = (3 + 57" = 5 + """, In other
words

B if j=0
P = ‘gp”l if j=yp
0 otherwise .

Since 07 = 13-108 = 806 = 0 it follows that the only nontrivial oper-
ation ¢ or .22’ which can act on 87" is .Z°?". Using induction, this proves
the first assertion of Lemma 5. To prove the second it is only necessary
to add that Z%a = 0 for all 7 > 0, according to 2.4.

Now consider the operation 1*: H*(X) - H*(X) ® %% .

LEMMA 6. The element *a has the form a Q1+ Rz, + > R 7 +
ceo +07 ® 7, where each T, i8 a well defined element of S5,x_,, and where
p" 18 the largest power of p with p” < N. Similarly 2*P has the form

BRE+FRE+ - +87 ®E,,

where & = 1, and where each &, is a well defined element of 5 x._,.

Proor. For any element 6 of ¢, Lemma 5 implies that 68 = 0 unless
¢ is the dimension of one of the monomials M,, M, --- : that is unless ¢
has the form 2p* — 2. Therefore, according to Lemma 4, we see that 23
=0 unless ¢ has the form 2p* — 2. Thus

BB = 2(B) + 7 B) + -+ + 2TB)

Since P”k‘z(ﬂ) belongs to H***(X) ® ks, it must have the form ﬁ”k R &
for some uniquely defined element &,. This proves the second assertion
of Lemma 6. The first assertion is proved by a similar argument.

REMARK. These elements &, and 7, have been defined only fork < r =
" [log, N]. However the integer N can be chosen arbitrarily large, so we
have actually defined &, and ¢, for all £ = 0.

Our main theorem can now be stated as follows.

THEOREM 2. The algebra & is the tensor product of the Grassmann al-
gebra generated by t,, ., - -+ and the polynomial algebra generated by &,
£y, vee .
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The proof will be based on a computation of the inner products of mo-
nomials in z; and &, with monomials in the operations .5 and §. The fol-
lowing lemma is an immediate consequence of Lemmas 4, 5 and 6.

LEMMA 7. The inner product

My, &>
equals one, but {0, &, > = 0 if 0 is any other monomial. Similarly

MG, =1

but {0, t.> = 01f 0 is any other monomial.
Consider the set of all finite sequences I = (&, 7, &, 74, - -+) Where
&=0,1land r,=0,1,2, .--. For each such 7 define

‘”(I) = 7,508 1T "1, 2 . o

Then we must prove that the collection {w(I)} forms an additive basis
for &.
For each such I define

0(I) = 0%.F 51015752 « « -
where
8§ = Ez“é (& +r)pit eee, 8, = Etik (& + r)ptF .

It is not hard to verify that these elements 6(I) are exactly the “basic
monomials” of Adem or Cartan. Furthermore 0(I) has the same dimen-
sion as w(f). Order the collection {I} lexicographically from the right.
(For example (1, 2,0, ---) < (0,0, 1, ---).)

LEMMA 8. The inner product { 0(I), o(J) > is equal to zero if I < J and
+ 14 I=.

Assuming this lemma for the moment, the proof of Theorem 2 can be
completed as follows. If we restrict attention to sequences I such that

dim w(I) = dim 6(I) = n ,

then Lemma 8 asserts that the resulting matrix {6(I), »(J)> is a non-
singular triangular matrix. But according to Adem or Cartan the ele-
ments 6(I) generate .~ . Therefore the elements w(J) must form a basis
for .;; which proves Theorem 2. (Incidentally this gives a new proof of
Cartan’s assertion that the 6(I) are linearly independent.)

ProoF oF LEMMA 8. We will prove the assertion {0(I), o(I)> = + 1
by induction on the dimension. It is certainly true in dimension zero.

Case 1. The last non-zero element of the sequence I = (&, 7, -, &_1,
T, 0, <o-)is 7. Set I' = (&, 1y, +++, &1, 7% — 1, 0, -+ +) s0 that w(l)=
o(I')é;. Then
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<O, w(I)> =01, $(0(I’) ® &)Y
= g*0(I), o(I') R &> .
Since 0(1) = 6%.5°°1 «++ §%-1.5”x we have
¢*0(1) — E 0% e T ® O vee P

where the summation extends over all sequences (&;, -, s;) and (&, - - -,
sy) with & + & = ¢, and s; + s8] = s,. Substituting this in the previous
expression we have

COI), (1)) = 35 & (0% - %%, w(I) Y O% -o o T, 6D .

But according to Lemma 7 the right hand factor is zero except for the
special case

k-1
L¥44 o8y D o1
O eee TH = PP . PR

in which case the inner product is one. Inspection shows that the corre-
sponding expression 6% - -+ .5’ on the left is equal to 6(I'); and hence
that (0(1), o(I)> = + {0I'), o(I')» = + 1.

Case 2. The last non-zero element of I = (&, 7, «++, 7, &, 0, «++) is
& = 1. Define I' = (&, 7y, »++, 74,0, --+) so that

o(l) = o)y .

Carrying out the same construction as before we find that the only non-
vanishing right hand term is ¢ .#2#™" ... 2?15, r,> = 1. The correspond-
ing left hand term is again {O(I'), w(I')>; so that {0(I), w(I)> = +
{O0(I"), o(I')> = + 1, with completes the induction.

The proof that {0(I), o(J)> =0 for I < J is carried out by a similar
induction on the dimension.

Case la. The sequence J ends with the element r, and the sequence [
ends at the corresponding place. Then the argument used above shows
that

<O, o(J)> = = <0), o(J)>=0.

Case 1b. The sequence J ends with the elements 7, but I ends earlier.
Then in the expansion used above, every right hand factor

(o e e, £,
is zero. Therefore < (1), w(J)> = 0.
Similarly Case 2 splits up into two subcases which are proved in an
analogous way. This completes the proof of Lemma 8 and Theorem 2.

To complete the description of & as a Hopf algebra it is necessary to
compute the homomorphism ¢, . But since ¢, is a ring homomorphism it
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is only necessary to evaluate it on the generators of S, .
THEOREM 3. The following formulas hold.
¢*(Ek) = ELo Egi-t ® &
bulre) = Lk L Q@+ @1 .

The proof will be based on Lemmas 2 and 3. Raising both sides of the
equation

*E) =X 8 Q¢
to the power p* we obtain
HEpY=Xpr'ed .
Now
FRUIE=FQRINL ' Q¢
=2 s 7 ® Efi X &
Comparing this with

1 ® ¢ (B) = 1 5 @ ulEw)
We obtain the required expression for ¢, (&;).
Similarly the identity
(2* @ (@) = (1 ® ¢4)1*(a)

can be used to obtain the required formula for ¢,(z;).

6. A basis for .&7*

Let R = (ry, 7, + - -) range over all sequences of non-negative integers
which are almost all zero, and define &(R)= &2 ---. Let E=
(&, &, -+ +) range over all sequences of zeros and ones which are almost all
zero, and define «(E) = oz -+ . Then Theorem 2 asserts that the
elements

{«(E)&(R)}

form an additive basis for .&, . Hence there is a dual basis {o(E, R)} for
&*. That is we define p(E, R) € &* by

1 if E=FE,R=FR
o, B), «(BER) > =

0 otherwise.

Using Lemma 8 it is easily seen that p(0, (7, 0, 0, ---)) is equal to the
Steenrod power .Z°7. This suggests that we define* .Z°% as the basis
element p(0, R) dual to &(R). (Abbreviations such as .Z°°' in place of
P @100, wi]] be frequently be used.)
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Let @, denote the basis element dual to z,. For example Q, =
r1,0, ---), 0) is equal to the operation §. It will turn out that any basis
element p(E, R) is equal to the product + Q,%Q"1--- F %,

THEOREM 4a. The elements

Q@1 - - FF
form an additive basis for the Steenrod algebra & * which is, up to sign,

dual to the known basis {t(E)&(E)} for . The elements Q, € . *" !
generate a Grassmann algebra: that is they satisfy

QJQk + QkQJ =0.

They permute with the elements .7 * according to the rule
'g)RQk - Qkh/'R = Qk+1'\q)R_(pk’o' ) + Qk+zgR_(0’ #¥, 0,000 + cet .

(By the difference (v, 7., ---) — (81, 8;, - - -) of two sequences we mean
the sequence (r, — s,, 7, — 8,, +--). It is understood, for example, that
P R=5,0.09 {5 710 in case 7, < PF.)

As an example we have the following where [a, b] denote the “com-
mutator” ab — (— 1)4medimd pg,

COROLLARY 2. The elements Q, € 1 cam be de Jined inductively by
the rule

Qu =0 ’ ch+1 = [L&}pk, Qk] .

To complete the description of .&™* as an algebra it is necessary to find
the product .2’ %55, Let X range over all infinite matrices

of non-negative integers, almost all zero, with leading entry ommitted.
For each such X define R(X) = (r,, 1y, ++-), S(X) = (s, s,, ---), and
T(X) = (tly tZy b ')y by
=Y, P (weighted row sum),
S, =2 %y (column sum),
tn= 2 i+j-n®y (diagonal sum).
Define the coefficient 8(X) = [] ¢.!/ [1z:,!-
THEOREM 4b. The product .&° %575 4s equal to

ER(X)=R, S(X)=8 b(X)@ T
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where the sum extends over all matrices X satisfying the conditions R(X)
=R, S(X)=S.
As an example consider the case R = (,0, ---), S= (s, 0, --+). Then
the equations R(X) = R, S(X) = S become
x10+px11+"'='r, x“=0 fOI"I:>1,
Ty +Tn+ =8, wx,;=0 forj>1, respectively.
Thus, letting « = @,,, the only suitable matrices are those of the form
* s—ax 0 -
r—pr « 0 -
0 0 0-

with 0 < « < Min (s, [»/p]). The corresponding coefficients 5(X) are the
binomial coefficients (» — px, s — «). Therefore we have

COROLLARY 3. The product F°"F* is equal to

Elgl_no(s,[rlp])(r — px, s — m)ﬁr—pz+s—x,z A

(For example F°**1. 71 = 2779+ 11

The simplest case of this product operation is the following

COROLLARY 4. If < 0,7, < D, +++ then FPEF5=(r,8)1:,8,) -+
‘_&/“) R+S .

As a final illustration we have:
COROLLARY 5. The elements 7 C© %2 can be defined inductively by

P = [FP?, P, P01 — [@pz’ 0, ete.
The proofs are left to the reader.

PROOF OF THEOREM 4b. Given any Hopf algebra A, with basis {a,}
the diagonal homomorphism can be written as

Pulay) = Ej,k cffa; @ ay .

The product operation in the dual algebra is then given by

da* = ¥ ® a¥) = Et(_ 1)dima-’ dim a® ciat
where {a'} is the dual basis. In carrying out this program for the algebra
< we will first use Theorem 3 to compute ¢,(&(T')) for any sequence
T= (tly t’z’ °° ')’

Let [¢,, 45, *++, 4] denote the generalized binomial coefficient
[ e A R LYK R K R S

so that the following identity holds
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W+ ty)= Eil+"' +ig=n [iyy oo, tpltfit oo Y
Applying this to the expression

¢*(Ek):Ek®1+E£—l®€l+ cee Efk—l®5k—1+1®5k
we obtain

Bu(&0) =D [@os =+, To](EFROE, P11 -« 7 kot) ® (£f-11 - -+ £00)
= E [Tros == oy X6 @y oty ==y Tao) Q E@ioryy + -, Zox,)

summed over all integers xy,, - -+, T, satisfying @, .-, = 0, &p + ++ - + Zu
= t,. Now multiply the corresponding expressions for k. =1,2,83, ---.
Since the product [z, y][®x, T, Too][@s, =+, T3] -+ 18 equal to b(X),
we obtain

P4(E(T)) = Lorcor-r HX)E(R(X)) ® £(S(X)) ,

summed over all matrices X satisfying the condition 7(X) = X.
In order to pass to the dual ¢* we must look for all basis elements
(E)&(T) such that ¢, (-(E)&(T)) contains a term of the form

(non-zero constant)-&(R) ® &(S) .

However inspection shows that the only such basis elements are the ones
&T) which we have just studied. Hence we can write down the dual for-
mula

(PP Q) F) = Y ncxrmr, scayes U X) FTE
This completes the proof of Theorem 4b.

PrROOF oF THEOREM 4a. We will first compute the products of the basis
elements p(E, 0) dual to z,or1 ---. The dual problem is to study the
homomorphism ¢, : .9 — 9% ® % ignoring all terms in . ® %4 which
involve any factor &,. The elements 1 ® &,1® &, +--, £X®1, -+ of
4 K & generate an ideal .~ Furthermore according to Theorem 3:

Pu(te) =1 Q1+ 1R 7 (mod _7)
(&) =0 (mod _#) .
Therefore ¢.(«(E)E(R) =0 if R+ 0 and ¢u(r(E)) = 2p in-n + «(E) @
7(E,) (mod .#). The dual statement is that
p(E,, 0)p(E,, 0) = + p(E, + E,, 0),

where it is understood that the right side is zero if the sequences E, and
E, both have a “1” in the same place. Thus the basis elements p(E, 0)
multiply as a Grassmann algebra.

Similar arguments show that the product p(E, 0)p(0, R) is equal to
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p(E, R). From this the first assertion of 4a follows immediately.
Computation of Z”*Q,: We must look for basis elements #(£)é(R’) such
that ¢, (7(£)&(R’')) contains a term

(non-zero constant)-&(R) ¥ 7, .

Inspection shows that the only such basis elements are 7, &(R), 7,.,&(R —
(p*, 0, - ++)), tpe.l(R — (0, D% 0, «+-)), --- ete. Furthermore the corre-
sponding constants are all + 1. This proves that

) k
u&/jRQk = ng?R + Qk+1ij_(p R ’

and completes the proof of Theorem 4.

To complete the description of .&#* as a Hopf algebra we must compute
the homomorphism ¢*.

LEMMA 9. The following formulas hold

¢*(Qh)=Qk®1+1®Qk
ACOED DL I
(For example ¢*(.7°") = PR 1+ 1R FPUM 4 FUER PO 4 0K
e
RE?VIARK. An operation 0 € &7* is called a derivation if it satisfies
b(a~ f) = (a)— B + (= 1)moame o 4f .
This is clearly equivalent to the assertion that ¢ is primitive. It can be

shown that the only derivations in .&“* are the elements Q,, Q,, ---, &},
P o0l .. and their multiples.

7. The canonical anti-automorphism

As an illustration consider the Hopf algebra H,(G) associated with a
Lie group G. The map g — g~! of G into itself induces a homomorphism
¢: H,(G) — H,(G) which satisfies the following two identities:

D ec)=1

(2) if ¢ (@) =Y a; ® @i, where dim a > 0, then Y aje(a;’) = 0.

More generally, for any connected Hopf algebra A, , there exists a unique
homomorphism ¢: 4, — A, satisfying (1) and (2). We will call ¢(a) the
conjugate of a. Conjugation is an anti-automorphism in the sense that

c(a,a,) = (— 1)t e(a,)e(ay)

The conjugation operations in a Hopf algebra and its dual are dual homo-
morphisms. For details we refer the reader to [3].

For the Steenrod algebra .&* this operation was first used by Thom.
(See [5] p. 60). More precisely the operation used by Thom is 0 —
(— 1)3=9¢(0).
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If 6 is a primitive element of .&* then the defining relation becomes
6.1+ 1-¢(0) = 0 so that ¢(f) = — 6. This shows that ¢(Q,) = — Qx, «(F°")
= — !, The elements ¢(.°"), n > 0, could be computed from Thom’s
identity

E J)n -4 C( i) — O
however it is easier to first compute the operation in the dual algebra and

then carry it back.

By an ordered partition « of the integer n with length () will be
meant an ordered sequence

((X(l), a(2)9 ) a(l(ac)))

of positive integers whose sum is n. The set of all ordered partitions of
n will be denoted by Part (n). (For example Part (3) has four elements:
(3), (2,1) (1,2), and (1,1,1). In general Part (r) has 2*~* elements.) Given
an ordered partition « € Part (), let o(i) denote the partial sum } iz} a(j).
LEMMA 10. In the dual algebra % the conjugate c(§,) is equal to
cr(t)

> weranen (— 1) JTE &ao
(For example ¢(&;) = — & + EIE” + £67 — EErET)
PROOF. Since ¢,(&,) = D 0 &_; X &, the defining identity becomes
Yoo £l e(€) = 0.
This can be written as
&) = — bn— (6D — -+ — AEa-)ET

The required formula now follows by induction.

Since the operation w — ¢(w) is an anti-automorphism, we can use Lem-
ma 10 to determine the conjugate of an arbitrary basis element &(R).
Passing to the dual algebra .~°* we obtain the following formula. (The
details of the computation are somewhat involved, and will not be given.)

Given a sequence R = (r,, =+ +, %, 0, - - -) consider the equations

(*) r = E:=l Ewer ) Elj(f% Osa(s) " PY, ,
fori=1,2,8, ---; where the symbol 8,,¢;, denotes a Kronecker delta; and
where the unknowns ¥, are to be non-negative integers. For each solu-
tion Y to this set of equations define S(Y) = (s,, 8., *++) by

8y = E a€Part(n) Ya -
(Thus 8, =¥, 8$: = ¥ + Y1) ete.) Define the coefficient (YY) by
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(YY) = [, vull¥s, Yo1, Yiz» Yrus] + -
=TIInsa!/ [lava! -
THEOREM 5. The conjugate c¢(.5° %) is equal to
(__ 1)1‘1+---+rk E b(Y)Q"S(Y)

where the summation extends over all solutions Y to the equations (*).
To interpret these equations (*) note that the coefficient

259 B PP
of y, in the ¢** equation is positive if the sequence

a = (a(l)’ tty a(l(a)))
contains the integer ¢, and zero otherwise. In case the left hand side r,
is zero, then for every sequence « containing the integer 7 it follows that
Y, = 0. In particular this is true for all ¢ > k.

As an example, suppose that £k =1 so that R = (», 0,0, ---). Then the
integers y, must be zero whenever « contains an integer larger than one.
Thus the only partitions « which are left are: (1), (1,1), (1,1,1), ---.
Therefore we have s, = y,, 8, = ¥u, 8; = ¥, etc. The equations (*) now
reduce to the single equation

r=s$+0+ps,+A+p+ )85+ ---.

But this is just the dimensional restriction that dim 7% = (2p — 2)s, +
(2p* — 2)s, + --- be equal to dim .°" = (2p — 2)r. Thus we obtain:

COROLLARY 6. The conjugate c(.°") s equal to (— 1) >, 7”5 where the
sum extends over all % having the correct dimension. (For example
c(g2p+3) — . Ppd gﬁ P+2,1 __ glz)

8. Miscellaneous remarks

The following question, which is of interest in the study of second
order cohomology operations, was suggested to the author by A. Dold:
What is the set of all solutions 0 € #* to the equation 0.°' =07 In view
of the results of §7 we can equally well study the equation <°'6 = 0.
The formula

gj lg) 717‘2"’ — (1 + ,'.l)g)' 1+7‘1, TZ'”

implies that this equation .°'@ = 0 has as solution the vector space
spanned by the elements

gj Tyt Qoeleel cee

with r, = — 1 (mod p). The first such element is &° -1, and every element
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of the ideal 2”7~ 9°* will also be a solution. Now the identity

PG = (p — 1, 8).7 b sy
B {o if s, % 0 (mod p)
— ZP5rrbspf g = 0 (mod p)

shows that every element .2°"1>" Q% - -+ with r, = — 1 (mod p) actually
belongs to the ideal. Applying the conjugation operation, this proves the
following :

PROPOSITION 1. The equation 0. = 0 has as solutions the elements of
the ideal #* o771, An additive basis is given by the elements

QR + -+ (™) with v, = — 1 (mod p) .

Next we will study certain subalgebras of the Steenrod algebra. Adem
shown that .<* is generated by the elements Q,, .2°!, &*?, ---. Let
*(n) denote the subalgebra generated by Q,, .7}, +--, 77 '

PROPOSITION 2. The algebra .<~*(n)is finite dimensional, having as basis
the collection of all elements

Qoeo e Qngn.f/)Tv ST
which satisfy

,rl<pn,,r2<pn—1’ cee, T, <D

Thus .~* is a union of finite dimensional subalgebras .o *(n). This
clearly implies the following.

COROLLARY 7. Ewvery positive dimensional element of .~ * is nil-potent.

It would be interesting to discover a complete set of relations between
the given generators of ..“*(n). For n = 0 there is the single relation
[Q, Q] = 0, where [a, b] stands for ab — (— 1)¥™?4=*pg, For n = 1 there
are three new relations

[Q, [ QN=0, [Z,[,Q]l=0 and ()" =0.
For n = 2 there are the relations
[ [ =0, [ 2 =0,
and (J) ]))p — y) 1[&) r, Ky) 1]17—1 ,

as well as several new relations involving @,. (The relations (.2°?)* =0
and [.»°?, .’']* = 0 can be derived from the relations above.) The author
has been unable to go further with this.

PROOF OF PROPOSITION 2. Let .°/(n) denote the subspace of .&*

spanned by the elements @y - -+ @,*.”"1"""» which satisfy the specified
restrictions. We will first show that .2/ (n) is a subalgebra. Consider the
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product
P T G5 e = ER(XF(T;"')’ S(X)=(57, o) X))o’ e

where both factors belong to .27 (n). Suppose that some term b(X).Z” %"
on the right does not belong to . (n). Then ¢, must be = p**'~* for some
l. If @y, @11, ... @y Were all < p**+1-1, then the factor
t,!
Tyl oee wmv!

would be congruent to zero modulo p. Therefore x;; = p***~* for some
12+ =1{. If ¢ > 0 this implies that

r, = EJ pjwu _2_ pjpn+1—l — pn+1—i

which contradicts the hypothesis that .&°"1"" "= e .o7(n). Similarly if 7 =
0,4 =1, then

8; = Ez Xy, g pk+1—l — pk+1—J
which is also a contradiction.

Since it is easily verified that .7 (n)Q; C .o (n) for k < n, this proves
that (o7 (n) is a subalgebra of S7*. Since .%7'(n) contains the generators
of &#*(n), this implies that &7 (n) D .*(n).

To complete the proof we must show that every element of &7 (n) be-
longs to .&°*(n). Adem’s assertion that <#* is the union of the .&*(n)
implies that every element of .&°* with k& < dim (.2°*") automatically be-
longs to .&“*(n). In particular we have:

Case 1. Every element &' in o/ (n) belongs to .&7*(n).

Ordering the indices (r,, -+, r,) lexicographically from the right, the
product formulas can be written as

Lé/grl..-rng; 51708, — (7'19 Sl) cee (/rny Sn)gj Ty ESL e TS, _|_ (higher termS) .

Given &4 "' e 7(n) assume by induction that

(1) every &°"1""ne 7 (n) of smaller dimension belongs to .&*(n), and

(2) every “higher” " ™»e o7(n) in the same dimension belongs to
&*(n). We will prove that &7t e S7*(n).

Case 2. (t,+++t,) =(0---0t0---0) where ¢, is not a power of p.
Choose 7;, s, >0 with », +s, =¢,, (r;,s;) #0. Then F" """ =
(r;, 8,).°" % + (higher terms).

Case 3. Both ¢; and ¢, are positive, ¢ <j. Then

PUt Pt ty = P4t - (higher terms) .

In either case the inductive hypothesis shows that &°%" "= belongs to
S *(n). Since Q,, - -+, @, belong to .&*(n) by Corollary 3, this completes
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the proof of Proposition 2.

Appendix 1. The case p =2

All the results in this paper apply to the case p = 2 after some minor
changes. The cohomology ring of the projective space " is a truncated
polynomial ring with one generator « of dimension 1. It turns out that
() e H*(PY, Z,) ® .~ has the form

ARG+ R+ -+ R,

where £, =1 and where each ¢, is a well defined element of .4 _,. The
algebra .& is a polynomial algebra generated by the elements ¢, ¢,, = --.

Corresponding to the basis {¢,1{,2---} for .& there is a dual basis
{Sq®} for <*. These elements Sg"1">'"multiply according to the same for-
mula as the .&°#. The other results of this paper generalize in an obvious
way.

Appendix 2. Sign conventions

The standard convention seems to be that no signs are inserted in for-
mulas 1, 2, 3 of §2. If this usage is followed then the definition of 2*
becomes more difficult. However Lemmas 2 and 3 still hold as stated, and
Lemma 4 holds in the following modified form.

LEMMA 4'. If () = 3 a; Q o, then for any 6 € &#*:

O = (_ 1)%d(d—1)+ddimm E <0, wi>“z

where d = dim 6.
It is now necessary to define r, € .%,:_; by the equation

Ha)=a®1—-FR®n—FQr— -
Otherwise there are no changes in the results stated.
PRINCETON UNIVERSITY
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