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§1. Introduction

The compact simply connected simple Lie groups are classified
as follows:

A.=8SU(n+1), B,=Spin(2n+1), C.=Spn), D,=Spin(2n)
GL‘J F-h Eﬂ: E?l Ea.

where A,=B,-C,, that is, SU(2)=Spt'n(3)=Sp(l)
Bi=(, , that is, Spin(5) =Sp(2),

and As=D, , that is, SU4) = Spin(6).
The first four types are called the classical Lie groups, and the last
five are called the exceptional Lie groups.

The purpose of this paper is to determine the first 23 homotopy
groups of G,, F,, and of B, and D, of low rank.

This paper is divided into two parts. The first part consists
of §2 and §3. In §2 we calculate the cohomology groups of the 3-
connective fibre space over G, and F,. In §3, we computs the odd
primary components of the homotopy groups of G, and F, by the
killing-homotopy metiod [6].

We study in §4 some properties in the homotopy theory of the
fibze spaces, especially, of the bundles. These are used in §6 for
the determination of 7 (Ga)

2

Section 5 is an intermediate one. It is the preparation for the
second part, which consists of §6, §7, §8 and §9. In §6 we deter-
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mine the 2-primary components of =,((;) by making use of the
exact sequence associated with the well-known fibering G./SU(3) =
S¢. F, operates trarsitively on the octonioric projective plare I7, and
the isotropy group is isomorphic to Spin(9). Hence F./Spin(9)
_I7. The hometopy groups of 7T will be determined in §7. The 2-pri-
mary components of m, (Fy) will be computed in §8 by making use
of the exact sequence associated with the homogeneous space F./G,.

The last section, §9, is devoted to the determiration of the
homotopy groups of spinor groups of low rank.

The results are summarized in the following table:

i G)
~~__ il 4y o 3 4 5 6 T & 9 1w 1
G T |
oo 2 H sa - 2
SpiniT) 0 0 e 0 0 0 (2 (2)’ B oot
Spin® | 0 0 e 0 0 0 e (2 (@ B w2
G: | 0 0 e 0 0 3 0 2 B8 0 eo-2
F. | 0 0 e 0 O 0 0 2 2 D cos2
: 2
7 0 0o 0 0 0 0 0 = 2 2
e~ 1 1 14 15 16 17 18
Spin(T) | 0 2 280-8+2 (@' @ (3)!*(2): 945 f-1a-is+2
Spin(® | 0 2 8+2 w2 () 8+(2)" 2835-16+8+2
G: 00 1682 2 B+(2)}  8+2 210
Loo 2 vo @ 2 7203
F‘ L ; 120 @ (2 252
n 00 2
et | 18 20 21 22 23
= 5 4 £ 5
Spim(T) | 2 @ 24+4 10393+(8)*+Ez) G.(Z),
; | 2 2 12 111/32-8+(2) G+ (2)
Spin(®) | -
G | 6 2 0 1386 - 8 G2
F. o2 0 3 27 or 9 . ng,m(z),
o 504+2 0 6 1 oo +120 =

where G=4 or (2)°

In the above table an integer » indicates a cyclic group Z, of
order #, the symbol ‘=" an infinite cyclic group Z, the symbol
“." the direct sum of the groups, and (2)* indicates the direct

The Homotopy groups of Lie greups of low rank 133

sum of k-copies of Z,.
For the other spinor groups of low rank we have the iso-
morphisms
= (Spin(3)) =m (5%,
7 (Spin(d)) ==, (Spin(3) x S,
. (Spin(5))=n.(Sp(2)),
= (Spin(6))=m (SU)),
7 (Spin(8)) ==, (Spin(T) x 87,
s0 that the homotopy may be obtained from the known results;
[13], [14], [15], [16], [18).
For the convenience of the reader we indicate the various fiber-

ings used in this paper in the following diagram.

Vi

s\
SUB) ——— G,

5 pE S
§'=8p(1)=SU(2) = Spin(3) SU4) =Spin(6)—Spin(T)—Spin(9)
Sy 75 & |n
Sp(2)=Spin(5) F,
Here FEE denotes the fibering E—B with fibre F.

All spaces considered in the present work are these which have
the homotopy groups of finite type. Let X be such a space. Then
m(X) is isomorphic to the direct sums of free parts F and p-
primary components of (X} for every prime p. We denote by
7.(X: p) the direct sums of a certain subgroup F* and the p-primary
components of #,(X), where the index [F: F'] is prime to p.
Given an exact sequence for such spaces 4, B and C:

---—’rz,-(A)——»n:,-(B)———»m(C)ﬂ---,

we can form the following exact one in our cases by suitable choice

of n,( :p):
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oA Py ——m (B p) —— i (Cip) — .
The notations and the terminologies of [14], [15] and [18] are
carried over to the present work.
The author wishes to thank Professor A. Komatu for his en-
couragement and Professor H. Toda for his advices and criticism
throughout the preparation of the manuscript.

§2. The cohomology of the 3-connective fibre space
of G, and F..
Borel [3] calculated the cohomology groups of G, and F; and

their results are stated as follows.

Theorem 2.1.
(i) H*(Gy; Z)y=2Z,[ %)/ (x5 E A(Sgxs).
H*(Gy: Z)=A(%s, %) for each prime p=3,
where xi=8q'Sq’xs, Sg'x; is trivial for the other cases, Fix,
=x, and P, is trivial for the other cases.
(i) H*(Fi Z)=2.(2:] /(s E A(Sg%, X1, Sq*%15) -
H(F; ZD=Z[6P%:) / ((6F %:) ) Z A{%s, F'x5, %1z, Pl2n1).
H¥(F: Z)=4(%s, X, X3, Xz) JO¥ each prime p=5,
where Pixs= %, and Flxs= Xy,
Note that the following relations hold:

@210 Sq'Sq*x,=0 in H*(F,; Z.).
(2. 2) £P3_(P‘x,=0 in H*(F4; Z:).

(2.1) follows from Théoréme 19. 2 of [3] and (2. 2) follows from
the fact that there are no primitive elements in H"(Fy; Z,).
Recently Kumpel [12] has proved the following

Proposition 2. 2.

(1) Plxp=2xs in H*(Fy Zs).

(i) Pxy==xa in H*(F.; Z,).
(iil) Phxa==xy in H*(F; Z,).

Denote by G, the 3-connective fibre space over G., so that,
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B P S 2t
for i<4,

Then we have two fiberings

©.8 K(Z,2)—G,—G,,

(2.4) C—G—K(Z,3),

where G, has the same homotopy type as G, and K(Z m) is the
Eilenberg-MacLane space of type (Z, m).

Let {Ef} be the cohomology spectral sequence with Z.-coeffi-
cient associated with (2.3). Then we have

EX=H*(G:; Z)®H*(Z,2; Z,)
=(Z[ 1] /(4D RA(SFx)) S Z, ).

Elear[y d:=0 and we have Ef==E¥* We have d:(121) = x,, since
G; is a 3-connective fibering over G,. This implies

Ef=H(E3)=Z,174) &A(Sg 221, K3Zu).

d, is trivial by the dimensional reason, and hence E¥=F},
Next we get ds(159u*) = Sq*xy 31, since the transgression commutes
with S¢* and since Sgw—=#*. It follows that

£ = HEN=Z1Rw|Q4(S¢x%w, BZu).
By the dimensional reason d,—0 for r>>6 and hence EX=F¥ As
EY is associated to H*(G,: Z,), we have obtained
H*(@;: Zy)= z[fo]@/f(yo.J’n)n

To investigate the relations among these elements we consider
the spectral sequence {E7#} associated with (2.4). Then

EY=H*(Z,3; Z)ZH*(G,: Z,).

It is known that

H*(Z,3; Z))=Z(u, Sg°u, Sq'Sq*u, -]

1s

where # is a fundamental class of BNZ. 3:Z). It is easy to see
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that &, (18 y:) =0 for <8, whence EJ*Z0. Let p be the projec-
tion Gi—~K(Z, 3), Then we have p*Sqg'Sq°u—= Sq'Sq°xs=0 by Theo-
rem 2.1, whence S¢'Sg'u 21 must be a d,-image, that is, do(1Ry,)
=S8g'Sq'u1. By the Adem's relation, S¢'S¢'Sq'u=Sg’Squ=
(Sq'u)*. As Sq'ys is also transgressive, so we have

di(12.5q'ys) = Sg* (Sq'Sq°u) & 1 = (Sg°u)*$H1.
Here (Sq'u)*®1+0 in EJ, since it is not a d,-image for »<<9. Thus
Sq'ys=y,. Moreover, by Adem's relation we have S¢’Sq'Sq'Sq'n =
Sq'Sq*Sq*u = Sq"Sq'Sq*u = Sq°Sq'u=1u'. As Sq¢*Sq'ys is also transgres-
sive, we have

d1:(1i2 5¢°Sq'ys) = Sq*Sq'Sq'Sq'u 31 = w'& 1.
The fact that #'315:0 in E} implies the relation y,=S¢'Sq'ys.
Thus we have shown
(2.5) H*(Gai Z)2=Z,[3)@4(Sq's, Sa*Sq'ss).

Next we will calculate H*(_@,; Z,) for p=25. For this, we
consider the spectral secuence over Z, associated with (2.3). We
have

Ef=H*(Gy; Z)GRH(Z,2; Z,)=A4(%:, x)% Z)[1].

Clearly d.=0, whence Ef=FEf. We may choose uc H'(Z 2;
Z,) so that dx(1&u) = x1. Then

Ef=Z,[1&u? | QAKX !, 2,°31).
Obviously, d,=0 for r>>4. Hence E*==FE}.
Thus

H*(é;; Z) =2, [ 34 ) & A(Yu, Yaser) .

One can easily see that &y,= ¥, by the same argument as above.
Thus we have shown

(2.6) H*(G: Z,)=Z,[y] @A(¥u, 3%s) for p25.

Finally consider the case p=5. The calculation of the spectral
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sequence is quite similar to that of the case p=25 until E?.
Namely, for the spectral sequence of (2.3), we have

Ef=Z, 11" @Az Ru', £,/D1).
Obviously d,=0 for 4<{r <10 and hence E}=E%. The relation
Plxy=x, implies di (1Zu%) = 2,21, since 1*=%"% is also transgres-
sive. It follows

B2 1QuP) @A XL, 20 F ™).

By the dimensional reason d,=0 for 7>12, and hence E*=E%.
Thus we obtain
27D H*(Gy; Z)=2Z[ 93] @ A Yr, Yor).
The relation y; =3y, is easily seen.

Thus we have shown the following

Theorem 2.3. Let G. be the 3-connective Sibering over G..
Then we have

(1) H*(Gy; Z)=Z( 9] 24(Sq'v:, Sg°Sq'y).
(i) H*(Gs; Z)=Z[ 36 DAY, 8355).
(iii) H*Gu; Z,)=Z,|9:)@A(Yu,89:) for a prime p=25,

where deg.y,—1i.

Next we study the cohomology of the 3-connective fibering I:‘:
over I;. We have two fibering:
(2.8) K(Z,2)— F—F,
(2.9) E—aF—sK(Z3),

where F{ has the same homotopy type as F..

First we consider the spectral sequence {£}*} over Z, associated
with (2.8).
Then

Ef=H*(F; ZIEH*(Z,2; Z)
={Z, [ %] /(xR A(SG %3, Xus, Sg°2,0) )X Z, (1]
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As the degree of %y is 15, so the computation of this spectral
sequence is dore by the same way as that of G,. That is,

Er=Z, 1R u' | K A(S@xZut, 23K 1, 201, §¢°xK1).
But by the dimensional reason it is easily seen that d,=0 for »>>15.
Thus EX=Ef;, and hence

H*(ﬁ. Z)=Z,[y5] G A( Yo, Yu, Y5, Sg°yie).
By the same argument as that of G., one can cbtain the relations
y,=Sq'ys and Sg*Sq'ys=¥a. Thus
(2.10) H*(Fo: Z)=2Z.[3) & A(5q"ys, Sa°Sq' Vs, ¥10, 54" ¥).-

Now we introduce the transgression theorem due to Kudo [11].
Let {E*} be the cohomclogy spectral sequence over Z, associated
with a fibre space (E,p, B, F) in the sense of Serre. Fcz acErh,
let #=0{a) be defined as follows:

dpn(a)=0 for p=wr,r+1, e =1,
+0 for p=0.

@ is called trangressive if 0(a)>b=DF(a) (the fibre degree). If
« is transgressive, there exists a base element pe Egtt® such that

dbd(ﬂi) =§.
Theorem 2.4. (Kudo) Let a=E* be transgressive, then we
have
(i) @Pra=a’ and raP e’ are also transgressive
(it) the following relations hold:
(2.113 o (1R a?) = Plralll,
(2.12) d,(,_“,”(ray}‘a}'"l) = ﬁ_(P*ra:gil,

where § denotes the Bockstein operator associated with an exact
>7Z,—0.

sequence 0—Z,— Zy
For the proof see [11].
Let us consider the spectral sequence {£*} with Zyccefficient
associated with (2.8). Then
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Ef=H*(F; ZuoQH*(Z,2; Zy)
=(Zs[6P"xs) / (8P x5)%)
A(xs, Plas, 2y, Pay) )R Zy (1)

Clearly d,=0 and hence Ff=FE}. We may choose uc H*(Z, 2: Z.)
so that dy(1&u) =221, It follows that

=2 (17, 09 %, X1 /(8P 2, R1)%)
RA(xREu, PR, 2,1, Pray&l).

Clearly d.=0 and hence Ef==Fj. It follows from Theorem 2.4
that dy(%Z u*) =6FP'%, T 1. Hence

Ef=Z 18w @AL(6P %) 255 18, Pty3 1, 4021, Pran@1).

Ef=FE}, since d,=0. As the transgression commutes with P, we
get d,(1&u*) =P'x,Z1 and hence

Ei=Z, 18 u'] @ A(P 2T u", (3P %) 25802, 2,1, Pxy (1)
By the dimensional reason it is seen that d,=0 for #>-8, and hence
E¥f=FE¥. Thus we obtain
H*(Fy; Z)2=Z,[ ) @431, F'¥u, Yu, ).

In order to see the relations among ¥, ¥. and y., we consider
the spectral sequence {E}} associated with (2.9).
Then

Er=H*(Z,3; Z)QH"(F; Z).
According to Cartan [5],

H*(Z,3; Zy)y=A(u, P'u, PP, - )& Zy | 6Fu, 5P Py, -],

It is easy to see that &,(1Xy.)=0 for »<(18. Then E}"0.
Let p be the projection F;—K(Z,3). Then the element x,(8%'x;)*
of H"(F,; Z,) is the p*-image of u(6P'u)*. On the other hand the
element P*P'ut1 is not a d,-image for 7<C19. Thus it must be
a dirimage, since P*P'x,=0 by (2.2). By changing the ccefficient
of yu, if necessary, we have dp(1@ ) =P P'u@1. As 6y, is also
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transgressive, we have dn(1@dys) =3P Pudl. Here FPPuR is
not a d,-image for 7<:20, whence sF*Pu@150. This shows 30,
and 50 8y = . Similarly F'6y, is transgressive and so d.a{(12P8 )
= PP Py, where PEPPu=PoPu= (3%Pu)* by the Adem’s
relation. It is easily seen that (8%')*%1 is not a d,-image for
r<-93 and hence (3%P'w)*%1=0 in Ef which indicates Pray=0.
Thus P'8Y;= Y.

Next we will show Pyu=P'y,=0. Note that p*xy=yn for
the projection ﬁ:ﬁ‘:—»F‘ of (2.8). The elements of the degree 19
in H*(F; Z,) are (8%'xs)xn and (8P'x;)*xy. These two elements
are mapped to zero by p*. Hence Py, = p*(Pxy)=0. Similarly
Py, =0 follows.

Thus we have shown

(2.13)  H*(F; Z)=Z:[ 9l @40, D'z, 3y, L820),
where Py =Pyn=0.
Consider the spectral sequence {E}} over Z, associated with
(2.8). Then we have
Er=H*(F; ZYQH*(Z,2; Zy)
=A%y, Pa, Xus, Px2s) K 2o ]
Clearly d,=0 and hence Ef=E;. We may choose the fundamental
class ne HH(Z, 2; Zy) so that d:(1Zu)=x201. It follows that
Er=Z,1@u") @A4(xEu, PayD1, 521, PxuD1).
By the dimensional reason d,=0 for 4<{r<(10 and hence EX=FE}.

There we obtain dn(1@%) =F'x,1, because the transgression com-
mutes with &*. Therefore

Et=Z,10u*] @Ay Zu', Pt:Ru”, 281, P'251).

It follows from the dimensional reason that d, is trivial for »>>12,
and hence EX=FEf}. Thus we get

H*(F:: Zs) = Zy[ Yl R A(Dur, Yo Pss, Yud
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It is easily checked by the spectral theory associated with (2.9)
that 6¥s=Ya.
Thus we have shown

(2.14)  H*F; Z)=2,1 Y] @Ay, Y5, P'¥us, 8¥m).

The same calculation as that for the case p=5 shows

(2.15)  H*(Fi; Z)=Z:[9u] @4(¥n, %5, Py, 83s).
(2.16) H*(F; Z)=Zu[¥:a @4, s, s, 33s0).

The calculation for the case p>>13 is easier than the other
cases, since there are no relations among generators of H*(F,; Z,).
The results are stated as follows.

217 H*F; Z)=Z, 3] @AIn. Y1, ¥u, 820).
Summing up these results,

Theorem 2.5. Lel F, be the 3-connective fibering over F..
Then we have
(1) H*Fo Z)=Z ) QA(Sa'ys, Sa°Sq'Ys, ¥, S¢*s).
(i) H*(F]; Z) =23 yu) QA Yy, Ly, 8Y1s, P34s),

where Fy, =Py, =0.
(iit) H*(Fi; Z)=Z,(3:)Q4A(¥n, Y5, ¥a, 892s7)

for $p=5,7,11, where Piyu= "3, Piyn=>Ya.
Civ) H*(Fi Z)=Z,15)@4(Pu, Y, yu, 3%) for p=13.
In the above deg. y;=i.

Theorem 2.3 and 2.5 give much informations for the homotopy
groups of G, and F,. In the below we will investigate them.

§3. The odd primary components of z,(G.,) and = (F,).

Let G be a compact connected, simply connected, simple Lie
group. According to Hopf, we have

H*(G; R)=dAg(%,,, Xuy-, X.),
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where deg. x,,=n,: odd(1<i<]), I=rank G and n=dim Gﬂﬁﬂ,.
We set X(G)=S8"x---- SIS
Serre defines a prime p to be regular for G if there exists a
map f: X(G)—G such that f.: H.(X(G); Zy)—H.(G; Z,) is an
isomorphism for iZ>>0.
Put N(G)=(dim. G/rank G)—1. Then the following theorem
is due to Serre [17] and Kumpel [12].
Theorem 3.1. A prime p is vegular for G if and only if
p=N(G).
For the cases G, and F,, we have
H*(G:; R) = Ap(xs, xn),
H*(F;; R} =/fﬁ(x3; Xn, X, xu)-
Hence N{G,) =6 and N(F,)=12. It follows frcm these facts

Corollary 3.2,
(G2 pr=r,(§*%S": p) for each prime p=T.
m(Fo P =n (88 xS x §*x S*: p)  for each prime p>>13.
1o the below we will compute =,(G,: p) for p=3,5 and #,(Fi.: p)
for p=3,5,7,11 by making use of the Serre’s C-theory [17].
(1) m(Gy:p) p=3 and 5.
It follows immediately from (i) of Theorem 2.1
(3.1) 7 Gy: == (S p)
for i<9 and for each prime pZ=3.

The 5-components of m,(G.) are deduced immediately frem (ii)
of Theorem 2.3 and the results are the following

Proposition 3. 3.
7:(Gy: 5)=n,(S":5) for 3<i<C49.

Further results are seen in [19].
In order to calculate the 3-components of m(G:), we consider

the fibration G./S’= V;,. Associated with it we have the exact

1

-
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sequence:

....-»71’11(83: 3)—’111](G1: 3) —bn-n( V;A: S)i”m(\g:: 3)‘*7770(6:: 3)_;'

\\fhere mu(S%: 3) =0 and =,(S*; 3)=2Z, by [18]. And (G 3)=0
since we have mo(Spin(7): 3)=m,(SH(3): 3)=0 by [8] in the fol-
lowing exact sequence which is associated wi
with the fiberi [
o e ring Spin
0=ﬂn(S’)_'H:u(cz)_’ﬂ:u(sﬁm(”)—’""

Next we need

Lemma 3. 4.
(Vi 3)=2Z,

This follows from the exact sequence associated with the fiber-
ing V../8°=8°:

e (80— Vr:) ‘*TEU(SED —*mu(sﬁ)_’ ity

where 7n(S°%: 3) =m,(S%: 3) =0 and =, (S°: 3)=7 by [18].

We choose a map f: §"— V;, representing a generator of m,¢ V,.:
3)=Z, then f*: H*(V,,; Z,)=H*(S"; Z,). We consider the i.n-
duced bundle f*G, of f from the bundle G./S°=V,,.

d’
Tfu(;vr,:: 3)"—’7!19(8'12 3)—*0
I
;-;“(S“: 3)—"?&9(8!1 S)EZ;,.

The characteristic class of the bundle (7*G,, p, S", 5%, 4y, equals
to A'fyen by the commutativity of the above diagram, where .0 is
the boundary homomorphism of G./S*= Vi,. So den is a generator
of my(8®: 3)==Z;, since the map f induces an isomorphism Faimn
(8™: 3)=nyu(V;.: 3). Consider the homomorphism between the exact
sequences associated with G,/S°= V;, and f*G,/S°=S8". Then the
homomorphism is identical on =,(S*) and Cysisomorphic between
7:( V2a) and =,(§"). Hence it is also Cyisomorphic between =.(G,)
and 7,(f*G,). Thus we have
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(3.2} 7,(Gy: 3)=n,{f*Ga: 3).

In order to calculate this group we need some results in [18].
{2(G.: 3) for i< 9 are obtained from the known results of [18]).

i 10 11 12 13 14 153 16 17 18 19 20 21 22 23

i (S £ 0 0 Z3 0 0 0 Zs 0 0 Zs Zy 0 Za
gen. 1311 a [+ 5] Bt @ 1B

SN2 0 0 Zn Zs 0 22 2y Zs 23 Zi Zi & 0
gen. o, a0 ap al o alf @ e as

In the above table, the generators of =, (5% 3) for i=10, 14,16,
18 and 22 are given in Chapter XIII of [18]. The other generators
are checked as follows.
Consider the exact sequence in Proposition 13.3 of (18] ;
4 G H
s (ST 3)"’71-'(851 3)’_"“1”(5!: 3)"*75”1(37: 3) s,

where G(B)=apSp for AEm(S*:3).
Note that H({w)=a,. Then we have H{apy) = ayp7F0. Thus

_ aufi %0, Moreover we have

S {ar, 3, and ab= — e (3, an, al) = —anfad, a, 3 S —aw.

Hence asa=—aa, mod {3ama(S": 31Dy (S°: 3)asy =0. Here we
have a0, since @, is not a dimage. Thus ayyx=0. We have
the relation a?= — aay, since ai€ {aq, 3¢, aitan=—a (3e, ), a} Dy
mod 0. So =(S*:3) is generated by auai. Similarly it follows
from the relation ajay= — asey that m3(8%: 3) is generated by e,
We have aifi=Glad,) and af; is not a Jimage. Hence aif 0.
So me(S*: 3) is generated by aifi.

Now the characteristic class of the bundle f*G, is deu=c:. By
making use of the above table one can obtain

(3.3) 7. (Gy: ) =n,(f*Gy: 3)
¢ Zy for i=(6,9,)14,16,18,19
Z, for 1=22

Elz for i=(3)11
0 otherwise for 1<C24,

. et
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The only difficulty to determine =,(f*G,: 3) will be found in
the case 1=22. In this case one has the extension
i
00— Zi— > f*G,:S)&»Z;—%}.

It follows from Theorem 4.3 in §4 that for an arbitrary element &
of {a.,as, 3t} Cru(S*: 3), there exists an element eSm(f*G,: 3)
such that p,e=a; and 7,6=3c. Consider the stable secondary com-
position {a., as, 3¢ =S8"{a:, s, 3¢}. Then we have
{as, a5, 3tp= Kan, o, 300, az, 3t
= *{an, e, 3¢, as), 3e)
= <ﬂ-': L, 36
= s,
Hence the order of ¢ in the above is 9. Thus we have shown
?C:m(f*Gu: 3)%2,,
Remark 3.5. Analogously one can calculate the 5-components
of m(Gy).
(I =(Fep) p=3,57 and 11

Hereafter we denote by F{” the (n—1)-connective fibre space
over F,, so that

= (F) for i=n

)y —
i )_{ 0 for i<n.

For example F{"=F,.
It follows directly from (iii) of Theorem 2.5 that
(3.4) m(Fo 1) =m,(S"x S®x 5%: 11) for 3<{<I241.
Consider the cohomology spectral sequence over Z, associated
with the following fibering: K(Z,10)—~F{»—F,. Then
E¥=H*(F,;; Z)RH*(Z, 10; Z,)
=7, [ ¥is) @A(Yu1, Y15, PV, 6¥ss)
R2Z,[u, Pu, Pu, -1 @ABCP Y, 8Pu,---).,
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Obviously Ef=FE%. We choose us H"(Z,10; Z;) so that dy(13u)
=¥ 1l. Hence
Ei=Z 18P, 1% u, -]
KAV XL, Pryn¥l, 16265, L8P, ---) for dim.<<70,
By the dimensional reason d,=0 for 11<{r<<23, whence EX=FE¥%.
Here we have d(1XPwu)=Py, %1, since the transgression com-
mutes with &'. Thus
EX=Z.[14%Pu, -]
RA(PwR1, 1L 6P, 18P u, ---) for dim.<70.
It is easily seen that d,=0 for r>>24, and hence Ef=FE} (dim.<<

<70). The degree of the elements 6P'u and P are 23 and 34
respectively. So we obtain that

H*(FM; Zy= {2y, 2} for dim.<<34,
where { } represents the additive basis.
It follows that
(3.5) 7 (Fo Ty=n(S®x 8% ) for 11<<i<32.
Recall that H*(Fe Zy) = Zs[90] @ 4(Pu, Y, P95, 0yw). Let f

be a map: SR, representing a gererator of =, (F: 5)=2Z. We
may regard this map as a fibering. Let F be its fibre. Then it is
easily obtained that

H*(F; Z,) = {2y, Pz} for dim.<25.

Associated with it we have the exact seguence
o (SB: B) o m (F: 5= m (F: 5)—m (8% 5)—-e,

_ (£ for i=14 and 22
Hewe we: have mil#: 5)21 0 otherwise for 1<C24.
It follows directly that

Z for i=11,15,23
(3.6) m(Fo: 5)y=1( Z; for i=18

0 otherwise for 3<3<23.

!
:
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As to the 3-components of =,(F,) we need more computations.
Consider the spectral sequence with Zs-coefficient associated with

a fibering K(Z, 10)—I>F£m£ﬁ. Then we have
Er=H*(F; Z)®H*(Z,10; Z)
=Zs[ Y] @A(Yu, Pyu, 8%, P'or)
R Zs \u, P, Pu, Pou, - 16340P u, P, 6P, ).
We choose an element ue HY(Z,10; Z:) so that it may satisfy the
relation d,(1&u) =3,&1. (Obviously d,=0 for »<C11, and hence
Ef=E}). The element P'u is also transgressive and du,(1G%Pw) =

P91 holds. The other elements of EM* are d,-cocycle for r>11.
Hence we obtain

Er=7Z[yX1, 1EPu, 1P, -]
RKA(BysR1, PoywR1, 106P %, 18P u, LEPu, )
for dim.<30,
where 1Q0%u and 1Eé%Pu are of degree 47+ 10(i>>2) and 47+11
(i==1) respectively. Thus
H*(F{; Zy) = {24, 021, P02, @y, s, bus, b, by} for dim.=<226,

where @, @, correspond to 1E Pu, 1C Fu and by, by, ba to 1%
8Pu, 126Pu, 123Fu respectively. Here we have the relations as
follows:
i*(P'hy—by) =0, and hence Pbi=b, mod sy
*(Py—bs) =0, and hence Phy=5b,; mod Py,
i*(6aw—by)=0, and hence dap=by mod ¥
i*(8an—byn) =0, and hence 8@n=bs mod P'dys.
But it is easily seen that one may choose appropriately @, by and
b,, so that the next relations hold:

(3- 7) gmb:u= bmz Sals
Pbyy= by + APSYs, bun=dan. (A=0,1,2.)

(We cannot determine whether or not 4 is zero.) Thus we have
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shown
(3.8) H*(th) '-Za) = {yia, %18, EE[EJ":!. bis, Eplbm, b, G, Ga}

for dim.<226, where the relations (3.7) hold,
It follows from (3.8) that
r(Fe:3)=0 for 12<i<14
=Z for i=15.

Case 1. A=0.
By calculeting the spectial sequence associated with fiberings

Fio - F and F{"—F{“ one may easily obtain that
(3.9 H* (FE“": )= Vs, 6, .‘?‘ﬁym, s, Bollrg, Aoz, O2llsn=P'8.@10}

(3. 10) H*(Fsmi Zs) = {du ¥ adn, dza: Exx, 62211 gy, 853:3}
for dim.<C26,

where 6, is the Bockstein operation assoctated with an,exact sequence
0> Zy—Zypn—Z=—0, (5,=0)
It follows (3.9) and (3.10) that

(0 i=16,17,19,20
J ZDZ, i=18
n(F: 3=/ ZBZ, i=21
Za i=22
Z 1=23.

Case 2. A=0.
Similarly one may easily obtain that

(3.9) H*(Fi“’; Za) = {y;s, Y, 9133&1: 88y, G, 0uy, Poays, Az}
(3.10)" H*(F:Zy)={dn, ddy, s, 6:u, n, 0€y, €u}

for dim.<26.
It follows from (3.9)" and (3.10)" that
{0 1=16,17,19, 20
aFe 3 | BOZ i=18

| ZPZ, i=12

%
4
51
¥

S
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| Z, i=22
\z =23,
In any way we have shown
l Z:@Zg 1118
(3:11) w(F:3)=1Z, 00 Z,, =00
A £=3,11,15,23
L 0 otherwise for 1<24,

§4, Some properties in the fibre theory.

We denote by =(A, B; C, D) the set of the homotopy classes of
maps f:(A4, B, a,)—(C, D, ¢,) for topological pairs (A, B, a,) and
(C,D,e,).

Let X be a CW-complex with a base point x,. Let S"X=XAS8"
the smashed product of X and the unit #-sphere S" and let CS"X
be the cone over S"X.

Then for an arbitrary topological pair (4, B, @,) we have the
following exact sequence:

;. 5 .
(4.1) s (5K, AY32(CS'X, §°X; A, BYSn(SX, BY'S ..
Let (E,p, B) be a fibre space with a fibre F in the sense of

Serre, that is, it has a covering homotopy property. Then we have
a one-to-one correspondence

(4.2) b, w(CX, X; E, F)==r(SX, B).

Define a boundary homomorphism 4: z{S""X, B)—=(S5"X, F) by
the commutativity of the following diagram.

3 a
(S X, EYiR(CS*X, §'X; E, F) Sn(S'X, Fy— -
T i P4 S
o svxp 4

For this boundary homomorphism 4, we have

Proposition 4.1. Let Y be another C W-complex with a base
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point y,. Then
A(aoSB) = (da)op for a=x(S'MX,B) and p<a(S'Y,S5X).

Here § is a suspension homomorphism given by the commu-
tativity of the diagram:

(S, S X)— s n(S™Y, STIX)
A
=\ /o
<(CS"Y, S"Y: CS"X, X

where p pinches S"X.
As to the secondary composition (the definition is referred to
[18]) we have the following

Proposition 4.2, Assume that acSp=pgoy=0 for ac- (51X,
B) ge=(S'Y,5'X) and +==(8"Z,5'Y), where X, Y, Z are CW-
complexes with base points. Then we have

Ala, SB, Sy} C {da, B, 7}
The proof may be found in §5 of [15].

Theorem 4.3. Assume that a=z(S"'X, B), pez(8'Y,S'X)
and y==(8'Z, 8'Y) satisfy the conditions (da)cf=0 and Boy=0.
Then for an arbitrary element & of {da, 8,7} Ca(S*™Z, F), there
exists an element e=x(SY, E)such that p.e=acSB and i.05=
eoSy.

This is a generalization of Theorem 2.1 of [14] but proved by
the quite similar manner.

Let G be a compact Lie group. For a principal G-bundle (£,
b, S=E/G) the element de,,,=x(E)=n,(G) is called the charac-
teristic class of the bundle and it determines the bundle up to eg-
uivalence.

Theorem 4.4, Let j=>2 and let C, be the class of finite ab-
elian groups without p-torsion (p a prime).

Suppose that gx(E)=qx(E") for two G-bundles E, E' with the
same base and for q, g’ prime to p.

!
k
]
]
i
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Then =(E) and n,(E") are C -isomorphic to each other for all
i

This is Lemma 2,3 of [14]. The following is a direct con-
sequence of this theorem.

Corollary 4.5. If the order of x(E) is finite and prime to
b, then we obtain

m(E )CE?U(S'“) Bn, (G,

Proposition 4.6, In a fibre space (E, p, B, F) we suppose
that 2B has the homotopy type of a CW-complex. Then there
exists a map h: 2B—F such that the following diagram is com-
mutative:

4

7 (B) :n,(F)
2l // by
7, (2B)

where 4 is the boundary homomorphism.

Proof. Consider the following commutative diagram:

= (2(E, F)) i .. (E, F)
l,,\ 8
= ‘(5215)* 7 (F) =\ p.
., N
=;(Q8) =  malB)
where / 1is the projection of the canonical fibering Q(E, F)—F.
There exists a map b: 2B—2(E, F) such that b, is the inverse of
(2p) ., since 2p: Q(E,F)—2B is the singular homotopy eguivalence
and 2B has the homotopy type of a CW-complex. Put h=I0b.
q.e. d.
As is well known [3], the exceptional Lie group G, contains the
subgroup SU(3) such that

4.3 G,/SU(3)=S5"
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According to [14], m(SU(3)) is isomorphic to Z and generated by
such an element [2¢]that p,[2:] =26 for the projection p: SU(3)
—=85*=8U(3)/SU(2). The characteristic class of the bundle (4.3)
is then 4de=[2¢], since =(G,) =0, which follows from Theorem
2.3.

It follows from Theorem 4.3

Corollary 4,7. Assume that [24]cf=np=0 for pS=,(S%
and an integer n>2. Then for an arbitrary element & in {[24],
B, ey Cr,a(SU3)), there exists an element ¢ in n,,.(G.) such
that p.e=Sp and i,0=rne.

It is well known that the classifying space By of S* may be
considered as the infinite quaternion projective space @P~=S*Jé&°J -
and that By has the cell structure S*lJe®|J-+-, where ¢° is attached
to S§' by a generator 5 of (89 =Z2,.

In the homotopy class of a generator of my(Bswa)=Z we choose
a map f: S'—> B so that the diagram may commute.

Vil
Tfnl(Sn) >7z,(SU(3))
Jf* /Asum
Mis1 (Bsucx))

where sy is the boundary homomorphism in the exact sequence
of tie universal bundle of SU(3).
It is easily seen that f represents a coextension of 2.
Consider the following commutative diagram.

4 e
711(8) < (SU(3)) < x, (57
f*\ E‘Asumi E]\ds’
Fa(Byo) — mis(Bar)

fox \ /ix*

K:;](S‘)

where %, #;, 7; are inclusions and 4 is the boundary homomorphism
of the universal bundle of S*

We note here that the next formula holds:

T ——
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(4.4) do(iy (Sa)) =a for any asz(8%.

Suppose that a=x,(S*) satisfies 240a=0. Then the secondary
composition {n, 2¢;, @} is well defined. According to Proposition
1.8 of [18] —7..{m, 24, a} coincides with the set of all composi-
tions Coext.(2¢)0Sa=f,(Sa). Therefore 4(Sa)= dyu [ fe(Sa))
belongs to — Aswsylox {74, 2ts, &} which is equal to 7,dei. {n, 26, a)
by the commutativity of the above diagram. Thus we have shown

Proposition 4.8. For any element ac=na,(S*) satisfying 2u0a
=0,

A(Se) Eiyodetse i, 26, a)

mod ,m{S%) oer + 0 Asr0du, (peom, 1 (S%)).

Corollary 4.9. Suppose that a=n, .(S;) satisfies 2a=0.

Then
H(iodoS%) 25 mod H(dslypen,a(8Y),

where H is the Hopf homomorphism: =,(S*)—r,(S%).

Proof. The above proposition says that #;'(4S5%) is a subset
of dgiuy {m, 2¢, $*a}. On the other hand, the secondary compesition
{7, 20, Sa}y 1s equal to dsituy {m, 26, S’} by (3,4), which is a
subset of sy {73, 20, S*}. Thus we obtain

131(45%) = {53, 20, Sa};  mod Aetyymiem (S + 2( S 0 Sa.
Hence we have that
H(ii'odoSa)=H{ps, 20, Sty mod H(dstuepom,1(S%)
=—429,)o8% by Propesition 2.6 of [18]
=S, g.e d.

Remark 4.10. It is easily checked that pom, ., (S C Sn, (S for
i<26. and hence H(4stzumon1(S®)) is easily obtained by making
use of (4.4) and the relations in [18] etc.

§5. Some lemmas.

This section is a preparation for the following one. Let X




Leek LKy

e e A N
Tk e 4

b

s
i
1

T

T et LN,

154 Mamoru Mimura
be a cell complex S Je* where ¢* is attached to S¥ by a generator
as of TT;%EZH.

Lemma. 5.1. First few groups =.(Xyu' 2) are listed as fol-
lows.

i i=14 15 16 17 18 19 20 21 22 23

n(Xe:2) 0 Z Z, Z, Z 0 0 Z 0 ZOZ

gen f5  Un 7?;: Vs Vis <16¢25>, 513

where .(166s) =160 Em:(S™) for a shrinking map p: S*|_Je*—S™

Proof. Clearly =,(Xi)=n(S%) for i<21. We have the next
exact sequence, since =;(Xy;, §™)=x,(5*) for {-"36.

. e AL L N N
where =ii=2Z,= {3}, mn=ZsBZ, = {ews, ¥}, n=Z= {os} and nmli=
Ziw={ow}. By the difinition of Xy, 4:af—=ll is epimorphic and
hence 7, (X)) =0. It follows from Propesition 4.1 that s = 1z
=enpt+iy and its cokerrel is Z,. Thus mu{(Xy) = ZDZ, = ({166, ex) .

Consider the Stiefel manifold V;. of orthogonal 2-frames in eu-
clidean 7-space. There associates a fibering

54— V3.~ 8¢,

whose characteristic class is 2¢. Let S% be the reduced product
space of S* in the sense of James [18]. This space S has a cell
structure S$*l_Je™ -+, where ¢" is attacked to S° by the Whitehead

product [e, ] = vepe, which is of order 2. Then we have the fol
lowing

Lemma 5.2. There exists a map f: S.—~5° such that f|S°
has @ mapping degree 2 and the Jollowing diagram is com-
mutative:

x,-“(S")i'*m(SU(?:))
o L n
= (88 —5 1 (S,

« 4.
:

f
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where 4 and A are the boundary homomorphisms associated with
the fibering G,/SU(3)=S" and V,./S5°=S® respectively and p is
the projection; SU(3)—S*=SU(3)/SU2).

Proof. By Proposition 4.6 there exists a map h: 05°-S§* such
that the following diagram commutes:

mist (5L rmi(59

Al

(28
Let i: §.—025° be a cancnical injection. We set f= hoi: S5—05°
—S8®.  Then the commutativity of the lemma is clear, since &=
Qeiy: 7, (SL)—m (25D —x,.. (5.

The map f|S® represents an elemert fy, where 4=m,(S% is
identified with its image in =(S%). By the commutativity, we
have fyw= 4" Here Oy is obviously equal to ¢. Hence foo=
26, since A'tw=2: (the characteristic class of the bundle V,,/S'=
S*). g. e d.

Remark that the restriction f]S*lJe™ is an extension of 2 in
S*Ue™ whose attaching element is [, o) = vsys.

Let us recall that = (SU(3):2)==Z7, and generated by |wgil,
where [wwi] is such an element that p.|esi] = vt for the projection
p: SU(3)—-S* ([14]). Then we have the following

Corollary 5.3. For the boundary homomorphism 4: wn,(S%)
—au(SUR)) we have A(A ) = [wspi].

Proof. First we show that 2,(A«s) is a coextension of 2:, in
S*Ue”. For this it is sufficient to show g,(2;Aes) =2y, for the
pinching map ¢: S*\Je"—>S". The restriction of %, (for the defini-
tion see [18]) on S° Je" is the map gq. By Proposition 2.7 of [18]
we have H(Ae) =24,. By the definition of H this is equivalent to

-Q;lhﬂ*g:l( A !15) = 2!11.
Hence R (A ts) = 2, (261y) = 20y
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Thus G2 (A 6s) =269.

It is already seen that the map f|S°Je" is an extension of 2¢. So
Suh(Aew), which equals p,4(Aqs), belongs to {2¢, vem, 26 by
Proposition 1.7 of [18]. This secondary composition is wugyi by
Corollary 3.7 of [18]. Thus we have shown p,A(A &) =uyi, which
implies the corollary. g.e. d,

Next we consider some elements in =,. We have relations 2y,
=0, 26"=0,8'=0,160,5=0,85=0 [18]. So the secondary composi-
tion {y, 2es, p™}, {¢’, 8e1s, 200} and {5, 8ew, 200} are well defined, We
will prove

Lemma 5. 4.

(i) HE)=G5.

(1) fn, 26, 0" =@ mod  {preon, 257} .

(iii) {¢, Bus, 200} =p'ony  mod {¥'es, 7ozt -

(iv) {7, Btus, 200} =C’ mod {5},

Proof.
(i) We apply Lemma 5,2 of [18] for the element &Ex},. Then
H(B) =% for an arbitrary element 8 of {n,2t, 5} Such a B be-
longs to =% and 2f=yis=2:. Hence we have =& mod {g, apuos,

2:'}. Note that g survives in the stable range. On the other hand

we have
S=g'=2u=0
and S=pE(y, 26, ) = (3, 2¢, ye)
Oy, 2¢, 7or

22u=0 mod {ym*, pus}.
Thus =3 mod ({puon, 28}, whence
HE)=H@E) =% mod {H(pspown), 2HED} =0.
(ii ) We have
{r0 265, 0™} = (s 205, {6™, 20, 8o} }
= — {p, {26, 6", 260}, Baws} — {{mr 2t5, @™}, 2013, Bous)

L
-
|
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by Proposition 1.5 of [18]
= {4, 23, Bra}, since {(26,0", 20,3 =0
=p, mod G,
where G=yomh+ {1eSp™} + mli-Bey+ momii = {mmon, 257} .
(iii) We have
HA{e', B, 20y} © {H ("), 8t1a, 2013} = {5, Bz, 2003}
by Proposition 2.3 of [18].
Moreover we have the following relations in the stable secondary
composition (note that the equality holds, since the largest composi-
tion {7, 8¢, 20) is a coset of {yse, 2p6} =0).
{g, 8¢, 20> = {5+ ya, 8¢, 2a)
= (3, 8¢, 20) + {30, 8¢, 20)
={pag, 8¢, 26y, since (5 8, 2s>=0
=gy, 8, 2a)
=opu by the definition of s
Hence {es, 8es, 201} = o= H(p'my) mod {e=15}, since the kernel
of §”:nh— (Gy: 2) is generated by 78. Thus

{e, B, 200} =p'o mod {v', mm}.

(iv) We have H {5, 80, 201} C{HGY), 8eu, 200} = {wa, 86w, 200} by
Proposition 2,3 of [18]. According to (9.2) of [18], &n=H{")
is equal to {vy, 8tu, 20}. The kernel of H: zh—ni: is generated by
negr and ey, Thus we have
&'= {55, Btu, 21y} mod {7, padps}.

Though peays survives in the stable range, but &', &; and {s, 8eu, 201}
do not. For, S"¢'=207e=0, S™pe:=¢'=0 and S~ {5, 8ew, 201} =5,
8¢, 26> =0. Hence &'= {5, 8ay, 20, mod {yues}. q.e.d.

Next we will prove the following lemma which is due to Toda.

Lemma 5. 5.
mu(F) =2,
Proof.
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Consider the following commutative diagram where the horizont-
al sequences are exact ((11.4) of [18]).

—ma(SOUT)) — il Vi) (S O(D)) 2o, (SO17))—
s M = 2l o
Toma(S) (@57, §) L (89 oy (87—

— a1 Vipa) — s (SO(8)) —0
|= Ve
— (257, §*) — 1 (5%) e (87) —0,
where

ma(SO7)) =2, m(SO17))=0, r,(S")=Z D7,
7(8%) = 2D Z,, (ST =Z/57Z:, ma(SN=2Z,, my (SM=2Z,

and §°: n,(8")—m,,:(S") are epimcrphic for /=22, 23 and Cokernel
of 8% 7,(8")—ms(S") is isomorphic to Z, ([18]). It follows easi-
ly from the lower exact sequence that the sequence

0—Zy—mia( Vara) —]’Z»@Zz—>0 is exact and that
me(S09)) =2, and Jrs(SO(9))==Z,= {sni}.
As the image of Z, in the above sequence into ms( Virs) coincides
with that of Ju.(SO(17))=Z., we have 7:(S0(9)) = Z,BZ, and
Jmi(SO(9)) is generated by {26}, 2= iqi}.
Thus we have shown that
(5.1 m (SO =ZDZ;, ns(SO9))=2Z,, and that J-homo-
morphisms on these groups are monomorphic.
Let « be a generator of =,(SO(9))=Z. Then J(a)=u., if it is
restricted on 2-components. It follows that
J(a-6") =6,05% =242 which is of order 8,
Jad) =ay00%; which is of order 2.
Consider the exact sequence associated with a fibering F,/

Spin(9)=1. Tt follows from Proposition 4.6 that there exists a
map k: 2IT—Spin(9) such that the following diagram commutes

e ——
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ﬂ-‘MII(II)—AI’m (Spiﬂ (9))
@“ /h,,
=, (QIT)

Let f=/hoi be a composition of % and a natural inclusion 7: §'—@IT.
Then we have the following commutative diagram:

(1) —mu (Spin(9)) — m (F) —my () —nu (Spin(9))
1ru’g.§2ﬂ) S mis (21T /fa
m:(S’) m:T(ST)

Here fy4 is a generator of = (Spin(9)), since we have = (F)
=0 by Theorem 4. 4.
Let P be a covering map Spin(9)—=S0(9). Then we have

JPyfo(d')=J(aca’) =24i and hence fom(S)=2Z,
and TP, fo 07 = J(@we') =gui, and hence fy: nu(S7)
—m3(Spin(9)) is monomorphic.

Thus we have obtained

T (Fd)zzz g.e. d.

§6. The 2-primary components of =z,(G,).

In this section we compute =,(G,; 2) by making use of the ex-
act sequence associated with the fibering G./SU(3) =5

3 4
ED o SUD) 2er (G B (89 Lo (SUBY) —rooe
Theorem 6.1. =,(G,: 2) are listed as follows

i \ 12 3 45 6 7 8 9 10 11 12 13
%(Gax2)| 00 Z 0 0 0 0 2z z: 0 2@z 0 0
gen. futa <nix  Inim <25n>, ix[vi]
i 1 15 16
(G2 2) ' ZDZ: Z ZDZEDZ,
gen. <+ 8> du[vl]vn <be+Ee >N <mimeos, <mepi>. ulvsia]
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i 17 18 19 20 21
il Ga: 2) ZiDZ: Zs Z, Z: Q
£gen, B>, <ni>p <2Ats>en g [weds Juig <isvn v
i 22 23
7621 2) | 2@z, @z

gen. ' perasT>, meEr e ae

where G=2Z, or Z;DZ, and generated by {{ A S0+ v} 07 (<A SH
ey, Ly} respectively.

We have the following relations

Asavn) =14 3] 04
3<2Afu>0n:i*[l'n7?aﬂnj mod (G, 3)
2CA SO+ voro) =1, [wE)] in the case G==Z,.

Here the notation [«] means such an element of =,(SU(3): 2)
that g, [a] =a=x (5% 2) for the projection g: SUB)—=S*=SU(3)/
SU(2), and the notation () means such an element of (G 2)
that p.{F>=8€n(S" 2) for the projection p: G,—S".

In order to prove this theorem we need the following results on
(8% 2) and =, (SU(3): 2) ([13], [14] and [18]).

For simplicity we denote =,(SU(3): 2)= U3

(6.2)

i |1 2 3 4 5 6 7 8 910112 13 14
at 00 0 0 Zz 22 Zi 22 0 Z Z: Z ZDZ:  Z{DZ{DZ:
gen e ome mi v Aus vl o b, 8, uE, e, meEr
(75 Jo 0 2 0 Z 2 0 2,0 2 Zi 2. 2z 28z
gen. | iwer [2es] i’ [2eslus [wsml] (03] (o8] ine”  [wllvnn, fg’
¢ 15 16 17 18 18
e | 2@z 2@z Zu z: 2@z
gen Vg, et e, Fsun Ao Vearsvyg oo, vty
i Zy Z{DZ: ZADZ: Z:DZ: Z{DZ2
gen [2esIvsas  [2650s, [vspa] [MIvinIvemes] £4s, [wometss] [ol]ea, [vsbs e
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i 20 21 22 23
xt. ZBZs ZiDZ:DZx ZiDZDZ:DZ, Zi{DZ2:DZx
gen. PIIES Ty puass, mEr ASO, vers, B, moprare ASOonas, Looir, mefir
u? ZDZx Zz Z{DZ Z{DZs
gen [pV]. ¥ faftou B, [2es]vsm [2¢s]{s0r1e, [wsEs]

The exact sequence (6.1) induces an exact ome:

(6.3)  0—Coker.(d: wu—UD—>m,(Ga: 2)
&Ker.(d: ai—U}4) —0.
It follows from Proposition 4.1
Proposition 6. 2.
ASa=[25)0a  for aSn_. (5.
Furthermore we will prove

Proposition 6.3. For the homomorphism 4. at,—U! we
have the following table.

a= moni ove Aus wi e b & vy meEr e ey
Ao = i*0 0 [2es]ws [wsn?) 2001] [oB] f4& 48" 2[pdlon 2068lui dap’ [265]0s0s
o= l nelir s Pabia Ao wews o' Bl pll &
Aot \ 0 [2)¢s 0 [widel+[vsm&e] dnEs  [eXM]enn 0 [pN]  dxE’
a= l [ Herys mEr ASO Viks B mepacie ASOnas T2t
Ao — | fapai Expfan 0 [2e]vses [BesIvsms 148" 0 0 [2es]gs01s

Proof. The cases a=us, veay, (o, vors, Ceary are easily obtained by
Proposition 4. 1.

For the cases a=7;, ea, 1o, &, 5n We apply Corollary 4. 8.

H{i'4y,) =7 mod H(4}) =0, on the other hand H(w)=v, by
(6.3) of [14]. Hence dpe=14+'. Similarly we have

H(i deo) =es= H(e') mod H({pui, 7sp, 73es}) =0 by Lemma 6.6
of [18], whence dey=1i,c".

HG dn) =m=H(¢') mod H(ewu+v'e) by (7.7) of [18],
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whence duw=1t*y" mod 7, (eavyy +v'ee) =0,

H(i3 se) =&,= H(&") mod H({nswly, 7mbpis)) =0 by Lemma 5. 3,
whence gg=1,¢.

H(iy dpe) =7;= H(7") mod H(v pwes) by Lemma 12.4 of [18],
whence Az =i.% mod v pteo15=0.

For the cases a=.i,q", o™

we use Proposition 4.8. By Lemma
5.14 of [18] we have 24"=Ss"". Hence we can apply Proposition
4.8 for 2:"=584". We have 246" = A4Se™ =i, dsis, (51, 26, o™,
which contains f,Asius sz by the definition of m. By (4.4) #,doisep
=14, which is equal to 2[s"™] by (4.1) of [14]. Thus we have
obtained
de"'=[¢"] mod 2[s"™].
Similarly,
420" = ASp" =ty dsrtan by 26, 0%} Diadsrivai=ixTs
mod {2£4&, {ypueos) =0 by (ii) of Lemma 5.3, whence we have
Ap™=1[p"] mod {2[p"],i,&'}, since i m=2[p"] mod i*s.
It follows from Proposition 4.8 that
=1y dsTay (90, 205, 13} mod {Zemivd+ iy dstlanno™} =0
Sy dsrfage by (6.1) of [18]
which is equal to Z,e=2[s}] by (4.4) and (4.1) of [14]. Thus
Aig=2[15].
The cases a=1j, Lo, 71, Toltry Fovu, 0 G1ss Petaly Tokr, Tothrtro, tadss ANd
vem; are proved by making use of the relations of elements in U?
and = as follows (see §4 of [14]).
Api=0, since Ui=0.
Aee; = Tyv'ea= teavn = 2[1f] 3, in e
W= A = terPe=213] vy in U}
dns=148, since Mj= A(y) 0 implies 4r,==0.
dgepry = Tyv =0 in Ui,
Avpu=14evy=0, since £vy=0 in Zes

da" o= (46" )orn= [6"]) a1, by the above.
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Avgie= A(Beir) v =0.
dpesi =146 =0, since '&=0 in Uh.
dpopncre= A (gonr) o= 0.
Apteo1s= 1w pt o1
Apein=142"7s=0, since v'm=0 in U
Corollary 5.3 says that 4{ Aey) = [wws). This relation indicates that
ACA an) = [B]vh+ [vemess], since Py (A(A o)) = vagian = vi— vegecs.
Next we will prove A(vedotus) = IxEs.
Consider the exact sequence associated with the fibering

o

i
SUM)/SUB) =8": -+ —> Ui Ul—rnf—,
where Ui=Z,= {[2u]w), Ult=Zi={[vsBw]}, ni=Z,= {3} (see §4
of [14]). There we obtained already % [2e]vs=2[wDr:] and 2[uD
i) den = lxisgs. It follows that 7 ( dueserss) = (i Ave) oo =2 [#sn: ] darns =
t4i4& and hence A(vggoms) =14, since 7, is monomorphic.
For the cases a«={', AS# we apply Proposition 4.2. By (iv)
of Lemma 5.3 we have
AC’EA {is: 8ew, 201} mod {dneE =0}
C {fPe, 8trs, 2003} by Proposition 3.2
— {i*E,, 8!]:, 2&:3}
Dy e, B, 201}
where {¢/, Bus, 200} =plonc mod {5, pem}. Hence A" =i, u'on
mod {i*ﬁ'ﬁuy ine' T, 2} =0,
It follows from Lemma 12.11 of [18] that
Dy d(ASE) EPyrd{A e, vis, paa},
which is a subset of {pxA(Aaws), 17, 720} = {¥3+ veyseo, 117, 70} . Here
we have
{5+ vomues, var, 9.t = (wobat wsgn) (e, v1r, 70} oA {msr003s}
= py(Ta+e) 1is by Lemma 5.12 of [18]
= ysaris by (7.13) of [18]
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= 2usky by Lemma 10.1 of [18].
Thus ped( A S8) =2 mod {yseois}. Hence we obtain
ACA §6) = [2t]vees  mod {L42'}.
It follows from this relation that p,d4( A Sfys) =0 and hence A( A SO
‘pm) =0, since p,: Uh—>nl is monomorphic, Thus the proof is
completed. q.e d.
The following lemma follows directly from the table (6.2) and

Proposition 6. 3.

Lemma 6. 4.
i) The homomorphisms A: Sy~ U} are epimorphisms for 5<%
<10 and i=12,13,15,20,21,22. For the other values of i, 4<t
<24, we have the following table of the cokernel of 4.

; |11 14 16 17 18 19

Coker-4 zZ,  Z, Z Z Z, Z,
repr. of gen.| G (B, (uwsy (Anii=(vmaes) (vmsm) {vevayvis

5[23

Coker-4 2y
repr. of gen.| {vie)

ii) The homomorphisms 4:=—Ul., are monomorphisms for i=
6,7,10,12,13,19,21. For the other values of i, 4<i< 24, we have
the following table of the kernel of 4.

i l g 9 11 14 15 16 17
Kerd| 2,2, z 1z % Z®z Z.®z,
gen. | m v 28 Gate (Btedmu wids, mess Vista, Dav

i |18 2 22 23
Ker-4| z, 2z, ZDZ, PRy

gen. 2A s B O pemis, peir (A SO vexo), mostion

't
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We prove Theorem 6.1 by dividing into three cases.

Case 1. 5<i=<C10, 1=12,13, 15, 20,21 and 22.

For these values of 7, it follows from the exactness of (6.3)
and i) of Lemma 6.4 that =,;(G.: 2) is isomorphic to the kernel
of 4: n%~>U?_, under the projection homomorphism p,. Thus Theorem
6. 1 is established for these values of ¢ by making use of ii) of Lemma
5. 2.

Case 2. i=19.
For this case, =,(G;: 2) is isomorphic to the cokernel of 4:
nt,,—U? under the injection homomorphism i..

Case 3. i=11,14,16,17,18 and 23.
For these values of 7, we must determine the extension (6.3).
For the case i=11, the kernel of 4: zl,— U}, is isomorphic to
Z, so the sequence obviously splits:

ra(Ga: 2)=ZDZy= (2 A Jud, 1x [}

Consider the case {=14. Suppose #.[1ilu;=8(F+e, then
iy V] vh =8(i+epru=0. This contradicts the fact that #,[.3]+L3=0.
So there are no relations between 7,[si]v, and (¥ ey, which im-
plies

w1 (Ga? D=2 P2 = {{vs+ oy, 15 [13] via} -

Consider the case i=16. Obviously the order of (yi)ysss is 2.
We apply Corollary 4.7 for the element yu;. Then for an arbitrary
element 8 of {[2¢s], s, 265} © Uy, there exists an element (ppury in
me(Ga: 2) such that P, (e =yapr and #,8=2{pu). On the other
hand we have that p,{[2e], yse, 205} is a subset of {p.[26], parse,
206} = {265, vspta, 205 wWhich contains 4¢;. This means that the se-
condary composition {[2¢], ysu, 205 contains 2[24]8,. But 2[24]0s
is already known to be zero in mw(G.: 2). So (pemy is of order 2,
whence

ma(Gy: 2)=Z/DZDZ.= {{niymess, {naprd, tx [vema]}.
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As we have the relation 25g,=uw, which is a suspension ele-
ment, we may apply Corollary 4.7 for 2pu,. Corollary 4.7 says
that for an arbitrary element & in {[2], vbe, 20}, there exists an
element {p¥y) =2{pgs,y such that p.ude) =2 and iyd=2{vmp=
4{van». As the secondary composition {2¢, s, 20} is equal to
vsUsme=v;, S0 We have {[2¢], vBs, 200} = 13104 and hence i, [u3]uh=
4{pg,y. Thus

i ( Gy 2)3256-22: {<(Pevie, <7?§>ﬂe} .

Consider the case /=18. Since the relation 8 A o= vepe= S (vsus)
holds, we can apply Corollary 4.7 for this element. For an arbitrary
element § of {[2:], vous, 207} there exists an element (you) Empe(Gy: 2)
such that pa{vem) =vee=8A 0, and 1,8=2{pemy =8{2 A tysyeu. Since
{2¢s, vorts, 2011} =vapeye  mod 27(S®) by Corollary 3.7 of [18], we
obtain  {[2t], vssts, 2617y = [vepets].  This implies that the order of
{2 Aepyoy is 16, and hence

m(Gat 2)=Z= {{2 A Yoy}

and iy [vegess) =8¢2 A edoy,  mod np(Ga: 3).
Obviously {peu;pes is of order 2. But we cannot determine
the order of (A SO+ pwyy. In any way

mn(G: 2)=Z,BZDZ, or ZDZ. g.e.d

§7. Homotopy groups of the octonionic
projective plane II.

As is well known the homogeneous space F,/Spin(9) is the
octonionic projective plane . It has a cell structure S?Uée* in which
€ is attached to S® by the Hopf-map As: S¥*—S%

Let @ be a base point of II. We set Ey,.={f: [=II; f(0)=a,
f(1) ="} with a compact-open topology. Then we have a fibering :

(7.1 Q—Ey . —11.

Obviously Ep,. is contractiblee. We will calculate H*(Qm) by
making use of the spectral sequence {E}} associated with (7.1).

a
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We have E¥=H*(MRH*(am
=Z[x)/(x) @ H*(Qm)

First there must exist an element y,&H'(2) such that d(1Ry,)
=21, since E¥ is trivial. The element *i®)y, is cocycle, since
da(x3Xy:)=0. So x}®y, must be killed by a certain element, say,
Y€ H®(QM); namely diy(1®ys)=x4Xy;. The third element which
will appear in H*(2I) to kill x3®y:¥s, is of dimension 44.

Thus we obtain

(7.2) H*(QM)=A(yr, yu) for dim.<<44,
It follows from (7.2) that
(7.3) M (1) =r, (O =m,(S7)  for 1< 20.
Consider the exact sequence of the pair (I, §%):
...%,r,(S“)im(H) &m, T, % in,4(s’)—>---.
By Blakers-Massey theorem (or Theorem 1.4 of [10]) we have
the commutative diagram for <22
(1, S")—a—-a-n,_,(s i)

= g+ Ihe*
J'I:.'(Sm) = 75:..1(8“).

First we show that j,: nn(l)—ry (10, S%) is trivial. For, B STH(1Ay)
=gwi; is non-trivial for a generator ., of 72 (S*) =Z,=n, (1T, S°).
Thus we have the exact sequence:
a i f
o3 (I, S —> s (S®) s (I1) k’ﬂ:s(ﬂ, 5
7 i
—> 1 (S%) > (1) —0.
Let ZE€m,(MT, S*) be a characteristic map, whence 85 is repre.

sented by /s and it belongs to m,(SY)=ZZys. Then it follows
from Theorem 1.4 of [10] that

7 (1T, S%) =T,ms(CS®, S P { [es, 21},
We have 85,ms(CS", §%) = hyermn (S™) =Z,,. According to the for-
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mula due to Barcus-Barratt (Corollary 7.4 of [1]) we have
(7.4) 9(es, 51 = [ea {Ma} ]
= (205— SaVawat [ (s, ta], 0a] SH( {1} )
=24t — So'ais+ [ s, ts], tel,
where [ [, ], ts) is non-trivial and belongs to Smu(S":3)=2Z, by
Corollary 2.4 of [9].
Thus s (I, SV =Z, P Z,, and hence
(I =Z,= {x}.
Let 2, be a cell complex S'Ue¢® with an attaching map «€
zn(S7) such that there exists a map g: &—2IT and
(7.5) gy m(@)=n,(QI) for i<2T.
We should investigate the attaching map a€ma(S7).
It is easily seen that there is an exact sequence associated with
0, for 1<27; (dtu=a)
(7.6) o (87—, (2r) ——»sri(S”)—A)m_l(S’)—v--
Consider the following commutative diagram:
s @) = w(S® D aw(S) — ma(@) 0
R (@S 7 i

— 1, (@) — wa(Q0, 8 — ma(S) — m(el) —0
I Vi lig [
— () — 7u(QH, 85%) — an(25%) — mp(eO) —0
i N il i
— aa(M) —  ma(l, 5§ — (S8 — ma () —0
where : (@I, §")— (21, 25®) is a natural injection and the third
vertical homomorphism 7, (S") = (S®) is a suspension S.
The fact that m,(@)=m,(0)=Z, indicates {den}=Zu, since
an(SN=Z,PBZ,. It follows from (7.4) and the commutativity of
the diagram that

.7 dm=a= —d'my+ [[ts, ts), ta].

B e

3
i
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Thus we have shown

Proposition 7.1. For <27, we have the isomorphisms

(i) mall: 2)=n,(0: 2)=x,(S"Ue™: 2)

(ii) mua(T: 3)=n(0I:3) zn.(S’U:z‘“: 3)

(i)  m.(0: p)==r,(Q0: p)zm(S’ax S=: p) for any primes
92,3, where o' =S"([[w, a6l al)Era(S": 3).

Finally we determine =,(Z7). We have the exact sequence:

vor 1133 (§7) — 7153 (ST) — 7 (@) — Z—0,
where mu(S®=Z,= {g}, 7a(SN=Z,BZ,DZ,MDZ, and the gene-
rators of ma(S7: 2) = {p”, o'Bu, d'se, &}, By (7.7) we have
Ae=d'ornpa

=¢'Pu+a'ew by Lemma 6.4 of [18].

Hence
s () = 70 (2)) = ZRZ:nPZ.D Z..

Thus we have shown

Theorem 7.2. The homotopy groups of the octonionic pro-
fective plane for i< 23 are stated as follows:

i|ig789101112131415 16
ﬁ,ml i 2 2 Z Zu l 0 & Zu £LDID%

i ' 17 18 19 20 21 22 23

fri(U)‘ ZDZDZBZ, 207, ZnDZ, 0 Zy Z, ZDZnDZDZ,

§8. The 2-primary components of =,(F,).

In this section we compute =, (F,: 2) by making use of the exact
sequence associated with a homogeneous space F,/G,:

8.2 corm (Ga) o, (F) —m (B Go) —m 1 (Gy) — .

It follows from Theorem 2.1 that
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H*(F./Gy; Z,) E/f(xm Sq"-"-’u)-
Hence, by the Serre’'s C-theory [13] the 2-primary components of
m;(Fy/Gy) are isomorphic to =, (Xys: 2), which are already computed
in §5 to some extent,
Thus (8.1) is reduced to the following
1 4
(8- 15 ‘“—"Tf(G:: Z)LNI(FH 2)&1!1(}(155 2)_*7&-1((;13 2)—-ee,
As 7, (X,) =0 for i=<14, it follows directly
(8.2) mGe: 2)=m,(F: 2) for i<13.

Moreover, as to the so-called boundary homomorphism 4, we
have the relation

(8.3) Aty= (Tp+ ey +aiy [vi] vy, where a=0 or 1,
since . (Fi: 2)=Z, by Lemma 5.5,

By making use of (8.3) one may easily show that 4: m.,(Xy:
2)—n,(Gy: 2) is a monomorphism for {14, 1<21 and that the
kernel of 4 is isomorphic to Z for i=14. Hence we obtain
(8.4) m (Fy: 2)=Cokernel of 4: n(Xss) =7, (Ga: 2)

Sfor i%15, 1<22,
The easy calculations show that the cokernel of 4: 7 (X 2)—
7,(Gy: 2) are as follows.
(8.5)
i l 14 15 16 17 18 19 20 21 22 23

‘z, 0 Z®Z Z Zw Z 0 0 G

where G=Z, or Z,8BZ, It follows that mu(F,: 2)=2.
Next consider the case i=22:

Aty (Xt 2) =1 (Gy: 2),

where my (X1 2)=ZDZ,= {{(16tn), &5} and 7, (Gy: 2)=Z,PH7,= {{{’
+ toris), {mEry}.  Obviously dep= (1), since ey=r7e; in mu(Ss: 2).
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-Let X, be a cell complex S"[Je” with an attaching map ox&E
7u(S¥: 2), a generator. Then SX.=X,. Let g be a map repre-
senting an element ¥y+e in m,(S*: 2). Then g may be extended
to Xy, since (By+e)©0=0 by Lemma 10.7 of [18]. We denote
by g this extension of g, g: X, —S"

Let p be the projection map in the fibering G,/SU(3) =S*. Then
we have a commutative diagram.

72 (X Z)iﬁza(—xul 2)

g 4

ma(S%: 2) ny(Gy: 2)
The element (16, may be considered as a coextension: S¥—S*| Je®
of 164;. Hence S7'(164,y is also a coextension: S2—S"|Je® of 16,
Thus the element p.4({166)) =F,S"({166,)) forms a secondary
composition {F--es, o1, 162} by Proposition 1.7 of [18]. By apply-
ing the Hopf homomorphism H for this secondary composition we
have

H{py+es, au, 166}  {H(Fo+ea), one, 166}
= {vu, ou, 16m} Dby Lemma 6.1 of (18],
which contains 2y, for an odd integer x mod 8G,,. Thus the order

of {Fs-<q, 034, 164}, and hence that of 4({16e)), is 8. This implies
that 4: mu(Xys) —7u(G.: 2) is epimorphic. Therefore we obtain
an(Fe: 2) =0,
‘We have shown

Theorem 8.1. The 2-primary components of =,(F.)) for i<
23.

i‘12845678910 112

n,(F;:Z)lO 0 Z 0 0 0 0 Z 2 0 zDZ 0

i |13 14 15 16 17 18 19 20 21 22 23

W(Fe2) | 0 202 20742 Za 20 0 0 G
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where G=Z, or Z,DZ,.

§9. Homotopy groups of spinor groups.
As to the spinor groups of low rank, there exist homeomor-
phisms as follows:
Spin(3)=8p(1)=SU(2)=85",
Spin(4) =Spin(3) x §'=5"% 5,
Spin(58) =S5p(2),
Spin(6) =SU4),
Spin(8) =Spin(7) xS
Thus r,;(Spin(k)), k<6, are obtained from the known results in
[13], [14,] (18] for j=<(23.
In this section we calculate =,(Spin(7)), which also gives
7, (Spin(8)), and r,(Spin(9)) for j<23.
Let p be odd prime for the moment. Then, according to
Harris (5], we have the isomorphisms:
(9.1) n,(Spin(2n+1): p)=m,(Sp(n): p) for all j.
Hence =,(Spin(7):p) and =, (Spin(9):p) are given by the
known results of =, (Sp(3): p) and =;(Sp(4): p) for j<<23 [15].
So we compute 2.components of these groups.
(D) o, (Spin(T): 2).
Consider first the fibration Spin(7)/G,=S8". The characteristic
class of this fibration belongs to =,(G,) which is isomorphic to Z,.
Therefore by Corollary 4.5 we have

Proposition 9.1. For each prime p=3,
w,(Spin(7) : pr==n,(Ga: p)Pn,(S™: p).

Thus ,(Spin(7)) will be obtained from the known results;
Theorem 6.1, [15], [18].

For later use we list their 2-primary components and their gener-
ators. (For simplicity we omit the homomorphisms 75, the inclu-

sion one, and 7,, the cross-section one of 2.components.)
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€9.2) o (Spin(7): 2)
i |12 3 4567 3 9 10 1 12
Q00 z 000 2z ZiBDZ, ZiDZx Zs Z®Z: 4]
gen. (% L] e 1, <l nl, <miDm w <2A0T>, 1y [v]
i | 13 14 15
X
Z1 ZiDZPDZ ZDZDZDZ
gent. v} f”: s+ &>, da [0l oM, vz, 81, <Ths + € >0
i 16 17
Z¥DZDZDZDZ:DZ:DZ ZPZPZDZ:
gen. | o'nly, vl B, mbe, <nl>naey, <usle>, ix[vwn]  vien, mps, B>, <nih
i 18 19 20 21
ZiDZ D7 Zy Z:DZ; ZiDZ.
gen. Cr, Prns, <2Aun e fxlwsPelvis vrarpabrs, <<wevh > a'o, k7
i 22 23
2D ZDZDZLPZDZ: 2:DZDZ:PDIPBDC
gen. Py e, o'Ew, Ery <O o, i o', ST, o ms, <nspaos

where G=Z,= {{ A S6+vors)} 07 =Z,PZy= ({450 +voxs), T4ists} .
(ID)  =,(Spin(9): 2)

Consider the well known fibration Spin(9)/Spin(7)=S" The
-characteristic class 4es of this fibration belongs to m,(Spin(7)).

Thus, if one restricts it to the 2-primary components, it is
written as follows (cf. (9.2)):
(9. 3) A= x{By+ ey + v’ + 21, [13] vur,

where x,y,z are integers.

In order to study the integers x and ¥ we consider the exact
sequence associated with Spin(9)/Spin(7)=S5":

1 *
‘_;?l’;:-—iﬁn (SPiJI('i) = 2)1_*..,1’1(31)”1(9) . 2) Lmﬁ
4
—ryy (SPin(7) : 2)—-r-,
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where my (Spin(7) : 2)=ZDZ,= {dov, r:}, maa(SPin(7) . D=Z.PH7,=
oo, G}, i=Ze= (o) and mfi=2Z,= (4}, It ‘follows from
(9.3) that Aoy = ye'ay; and Al =2 {Gald + Yuory, and hence

0—Z B Z—m (Spin (9): D—Zrr—0.

Here (a,b,¢), (d,e) are G.C. M of a, b and ¢, or d and e respec-
tively. Note that Z, is generated by ;.

Next consider the exact sequence associated with a fibration,
F/Spin(9)=m:

— a0 (77 : 2) —ay (Spin(9): 2)—au(Fy: 2)__‘7721(17: 2y,

If we take a map f in the proof of Lemma 5.5, the above a
is equivalent to the homomorphism f,.

ra(IT: 2) o (SPin(9) - 2)

I 7
Tfﬂ(gl]:: 2)%*
I
R,I(Sr: 2)

And a generator x; of nw(IT: 2)==Z, is mapped by it to xr of 7y
(Spin(9): 2).

Thus my(F,: 2) has (8, ») (%,9,2) elements at least. On the
other hand, according to Theorem 8.1 n,(F;; 2) =0, which implies
(8 (x, 92 =1. Hence ¥ must be odd.

If one supposes x even, the cokernel of 4: Mo (SPin(7) : 2)
is Z,= {{¥w},)}, and hence we obtain 70 (SPin(9) : 2)=2Z,= {(Fpl)).
Then the kernel of sy (I7; 2)—m(Spin(9)) is Z, and hence gy (Fy:
2)=Z,. This is also a contradiction. Thus we have shown

Propoesition 9.2. The characteristic class of Spin(9)/Spin
(M) =8 {s dog=x(Tp+e) + Yo'+ 2iy V] v, where x and y are odd
integers.

Now we compute =,(Spin(9): 2) by making use of the follow-
ing exact sequence:
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o (Spin(T) : 2)—m,(Spin(9) : 2)—m,(S%: 2)—s -,

Since #,(8") =0 for j<<15, we obtain
19.4) 0 (Spin(7))=n;(Spin(9)) for ;F<13.

Furthermore it follows from Proposition 9.2 and (9. 2) that 4:2%,—
n (Spin(7): 2) is monomorphic for 15<0i<(23 and the kernel of 4
for i=14 is isomorphic to Z
Hence we have
ZDCoker. A(: wfiy—n,(Spin(7): 2)) for j=15
Coker, d(:n¥—m,(Spin(7): 2))
otherwise for j<<23.

= (Spin(®): )=/

‘The cokernel of 4 are easily obtained and their results are as follows.
i ] 14 15 16 17 18 19 20 21
| 207, (2 2y 202> 2GZOL 7 7 Z

i | e 23
| ez coz)

where (Z,)* denotes the direct sum of k-copies of Z, and G is same
as in Theorem 7. 1.

Kyoto University.
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On the jacobian varieties of the fields
of elliptic modular functions IL

By

Koji Dor* and Hidehisa NacanuMa

(Roceived November 29, 1966)

The purpose of this note is to observe the Galois groups of nor-
mal extensions obtained by the coordinates of the ideal section points
of the jacobian variety J, of an algebraic curve uniformized by
elliptic modular functions, which was investigated in a previous work
[2] with the same title. Our result can be obtained by slight mod-
ification of the consideration due to G.Shimura [6]. In fact, in his
[6, footnote 9), p.281], our problem was suggested.

In §4 of the present paper, we treated a simple jacobian variety
J. of dimension 2, having a real quadratic number field Q(/d) as
its endomorphism algebra. By a numerical example, we shall show
that there occur two types of Galois group G(K(I)/Q), according as

(%):H or —1, which is isomorphic to GL(2 GF()) or
GF()*-SL(2, GF(I")) respectively, where [ (|/) denotes a prime
ideal in Q (/d) and K(1)/Q a normal extension generated by the

coordinates of the l-section points of J,.

Notations. Let F be an algebraic number field of finite degree
over Q and 0 be the ring of integers in F. Let (A" §) be an abelian
variety of type (F) in the sense of [4] i.e. a couple (4,8) formed
by an abelian variety A of the dimension n and an isomorphism #
of F into End@A=EndA®zQ such that #(1)=1, (=the identy
element of EndgA). In the following treatment, (A", ¢) will denote

* This work was partially supported by The Sakkokai Foundation.




