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Signature homology

By Augusto Minatta at Bochum

Abstract. In this note we give a new construction of Signature homology, and we ex-
plain how to associate to any oriented manifold M a characteristic class in Sig�ðMÞ which
is an integral analog of the L-class. A connection with the Novikov conjecture is explained.
Further applications are in the construction of a 2-local characteristic class in the singular
cohomology of a topological manifold as well as in the determination of the homotopy
type of G=Top.
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Introduction

This paper is devoted to a new construction of a generalized homology theory denoted
by Sig�ð�Þ which we call Signature homology (in earlier versions the name ‘‘Hirzebruch
homology’’ was also used). This homology functor has been firstly considered by Dennis
Sullivan in the proof of the Hauptvermutung (see [Su]) and defined by means of the so
called Sullivan-Baas construction. More recently, Matthias Kreck has observed that Signa-
ture homology also can be used to state an integral formulation of the Novikov conjecture.
In fact, according to Kreck, one can associate to every closed oriented smooth manifold M

a fundamental class in Sig�ðMÞ and it can be shown easily that the rational reduction of this
class coincides with the L-class. This consideration allows then to get an integral formula-
tion of the Novikov conjecture just by requiring the homotopy invariance of the Signature
fundamental class for all singular manifolds over Kðp; 1Þ. Unfortunately this construction
is very artificial and cannot be extended to topological manifolds (this is particularly un-
satisfactory if one remembers that Novikov has defined rational Pontrjagin classes also
for topological manifolds). This paper has the twofold purpose of both providing a more
natural construction of Signature homology and of extending the considerations above to
the topological category. It is perhaps interesting to notice that, while doing so, we could
also prove a generalization of Novikov’s theorem about the topological invariance of ratio-
nal Pontrjagin classes.

This paper is essentially the fruit of a re-elaboration of my PhD thesis written under
Matthias Kreck at the Ruprecht-Karls Universität Heidelberg. There are some new consid-
erations, but most results are already contained in the old version (see [Mi]). The first sec-
tion contains a short introduction to the theory of stratifolds and provides a proof of the
transversality theorem. Section 2 is devoted to the definition of H-stratifolds which are the
geometric cycles of Signature homology. Section 3 deals with the construction of the Signa-
ture homology functor and with the computation of its coe‰cients. Finally the last section
is devoted to the definition of the Signature fundamental class and to its interpretation in
terms of other known invariants like Pontrjagin classes.

Acknowledgments. I wish to thank my advisor Professor Matthias Kreck for his con-
stant suggestions, ideas, and corrections. I also wish to acknowledge the Istituto Nazionale
di Alta Matematica ‘‘Francesco Severi’’ di Roma, whose financial support has made this
work possible. I gratefully recognize all my colleagues and friends for funny and helpful
discussions. A special thank goes to Markus Banagl and Gerd Laures. Finally I am infi-
nitely indebted to my parents, Silvia, and all my other friends.

1. Stratifolds and transversality

In this section we explain some properties of topological stratifolds. The notion of a
stratifold has been firstly introduced by Matthias Kreck in 1998. Through a series of mod-
ifications, the term ‘‘stratifold’’ has in the meanwhile come to indicate a di¤erent class of
spaces, while the original objects are now called p-stratifolds. For simplicity we will how-
ever adopt the original terminology. A more detailed treatment of the geometrical proper-
ties of stratifolds can be found in Anna Grinberg’s work (see [Gr]).
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1.1. Stratifolds. Let ðW ; qWÞ be a pair of spaces with qW closed in W , and denote
by W̊ the open set W � qW . If d : qW ! ð0;þyÞ is a continuous function, then we set

�
qW � ½0;þyÞ

�<d
:¼ fðx; tÞ A qW � ½0;þyÞ j t < dðxÞg:

Analogously one defines the sets
�
qW � ½0;þyÞ

�ed
and

�
qW � ð0;þyÞ

�<d
.

A collar of qW is a homeomorphism c : V ! U where V is an open neighborhood of
qW � f0g of the form

�
qW � ½0;þyÞ

�<d
and U is an open neighborhood of qW in W , so

that for any x A qW it is cðx; 0Þ ¼ x. Two collars are called equivalent if they coincide on an
open neighborhood of qW . An equivalence class of collars will be called a germ of collars.

Definition 1.1. An n-dimensional c-manifold is a pair ðW ; qWÞ where

– W is a metrizable space;

– W̊ and qW are (metrizable topological) manifolds of dimension respectively n and
n� 1

together with a germ of collars ½c�. The manifold qW is called the boundary of W .

If c : V ! U is a representative of the germ of collars of a c-manifold W , then we
denote by p the composition

U !c
�1

V !p1
qW :

If M is a manifold, then a continuous map

f : W !M

is called a c-map if there is a representative of the germ of collars c : V ! U such that for
all x A U it holds

f ðxÞ ¼ f
�
pðxÞ

�
:

Observe that every continuous map can be approximated by a c-map.

Definition 1.2. Let W1 and W2 be two c-manifolds. A homeomorphism

f : W1 !W2

is called an isomorphism if there are representatives of the germs of collars c1 : V1 ! U1

and c2 : V2 ! U2 such that for all ðx; tÞ A V1 with f
�
c1ðx; tÞ

�
A U2 it holds

f
�
c1ðx; tÞ

�
¼ c2

�
f ðxÞ; t

�
:

If W1 and W2 are two c-manifolds, then by smoothing the corners one defines the
structure of a c-manifold on the product W1 �W2.
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Let X be an arbitrary topological space. A k-dimensional strat of X is a pair ðW ; f Þ
where W is a k-dimensional c-manifold, and f is a proper continuous map from W to X

such that f jW̊ : W̊! f ðW̊Þ is a homeomorphism.

Definition 1.3. An n-dimensional stratifold is a pair ðX ;PÞ where X is a topological
space X , and P is a sequence of strats fWi; figien which satisfy the following conditions:

–
F
i

fiðW̊iÞ ¼ X ;

– dim Wi ¼ i;

– fiðqWiÞH
S

jei�1

fjðWjÞ;

– a subset U HX is open if and only if for all i the set f �1
i ðUÞ is open in Wi.

The sequence P ¼ fWi; fig is called the parametrization of X , and the restrictions fijqWi
are

called the attaching maps of X .

For simplicity a stratifold ðX ;PÞ will be generally denoted just by X .

If X is a stratifold, then the subspaces

SkðXÞ :¼
Sk
i¼0

fiðWiÞHX and Xk :¼ SkðXÞ � Sk�1ðX Þ

are called respectively the k-th skeleton and the k-th stratum of X . A stratifold is said to be
purely n-dimensional if Xn is dense in X . The k-th stratum of a stratifold X is by construc-
tion a (possibly empty) k-dimensional manifold. The depth of a stratifold X is by definition
the di¤erence in dimension of the highest and lowest dimensional non-empty strata.

Definition 1.4. An n-dimensional stratifold X is called oriented if Xn�1 is empty and
the top stratum Xn is oriented.

A standard argument (see [Gr]) shows that the collars of the manifolds Wi define, for
any k, a canonical germ of retractions

pk : Vk ! Xk

where Vk is an open neighborhood of Xk in X .

Example 1.5. Let X and X 0 be two stratifolds. Then the following spaces inherit a
natural structure as stratifolds.

(1) Any open subset U HX .

(2) The cone over X , if X is compact.

(3) The product X � X 0.
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Definition 1.6. If X and X 0 are two n-dimensional stratifolds with stratifications re-
spectively P ¼ fWi; fig and P 0 ¼ fW 0

i ; f 0i g, then an isomorphism from X to X 0 is a homeo-
morphism

j : X ! X 0

together with a sequence of isomorphisms of c-manifolds ji : WiðX Þ !WiðX 0Þ which make
the following diagram commutative for every i:

X ���!j X 0

fi

x???
x???f 0i

WiðXÞ ���!ji
WiðX 0Þ:

Now, let X be a topological space and let fUi j i A Jg be a family of open subsets of X

with the property that every Ui is a stratifold with parametrization Pi. Furthermore assume
that there are isomorphisms of stratifolds

cji : ðUi XUj;PijUiXUj
Þ !F ðUi XUj;PjjUiXUj

Þ

which satisfy

cii ¼ Id; cij � cji ¼ Id; cij � cjk � cki ¼ Id:

Gluing together the strata of the stratifolds Ui, one proves the following

Lemma 1.7. There is up to isomorphism a unique parametrization P of X together

with a family of isomorphisms

fi : ðUi;PjUi
Þ !F ðUi;PiÞ

so that for any i, j the diagram

ðUi XUj;PjUiXUj
Þ

fijUiXUj

???y fj jUiXUj

ðUi XUj;PijUiXUj
Þ ���!cji ðUi XUj;PjjUiXUj

Þ

 ������
�������

��

commutes.

The class of all stratifolds can be turned into a category taking the isomorphisms as
morphisms. In particular, for a stratifold X we denote by AutðX Þ the group of all isomor-
phisms from X to X .

Now we want to explain the notion of a morphism from a stratifold to a manifold.

Definition 1.8. Let X be a stratifold and M a manifold. A morphism is a map
g : X !M with the property that the composition
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g � fi : W i !M

is a c-map for all ie n.

One can easily show that every continuous map X !M is homotopic to a morphism.

Definition 1.9. A morphism f : X !M is called a stratifold bundle if there is a
stratifold F so that ðX ; f ;MÞ is a locally trivial bundle (in the sense of Steenrod, [St]) with
fibre F and structure group AutðFÞ.

As a consequence of lemma 1.7 we have the following result.

Corollary 1.10. Let F be a stratifold. If ðX ; f ;MÞ is a locally trivial bundle with fibre

F and group AutðFÞ, then X admits the structure of a stratifold so that f : X !M is a strati-

fold bundle.

The notion of stratifold bundle allows to distinguish an important class of stratifolds.

Definition 1.11. A stratifold X is called locally trivial if, for each k, there is a repre-
sentative pk : Vk ! Xk of the germ of retractions which is a stratifold bundle. Furthermore
it is called locally conelike if, for any x A Xk, the fibre of pk over x is the cone over some
compact stratifold.

It is straightforward to translate the definition of a c-manifold in the category of strati-
folds so that we can also speak of c-stratifolds and c-morphisms.

1.2. Transversality. In this subsection we show how to extend the transversality the-
orem to the class of locally trivial topological stratifolds.

We begin by recalling the notion of a bicollar. Let ðM;NÞ be a pair of spaces with N

closed in M. If d1 : N ! ð�y; 0Þ and d2 : N ! ð0;þyÞ are two continuous functions, then
we set

d1<ðN � RÞ<d2 :¼ fðx; sÞ A N � R j d1ðxÞ < s < d2ðxÞg:

A bicollar of N is a homeomorphism j : V ! U where V is an open neighborhood of
N � f0g of the form d1<ðN � RÞ<d2 and U is an open neighborhood of N in M, so that for
any x A N it is jðx; 0Þ ¼ x.

Now, let M be a topological manifold and consider a continuous function

r : M ! R:

Definition 1.12. A real number t A R is called a regular value of r, if

– N :¼ r�1ðtÞ is an ðn� 1Þ-dimensional manifold together with a germ of bicollars
½j�;

– there exists a representative j : V ! U of the germ of bicollars so that it results
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r
�
jðx; sÞ

�
¼ sþ t

for all ðx; tÞ A V .

Equivalently, we also say that r is transverse at t.

A very sophisticated argument (see [KiSi], [Ma] and [Qu1]) shows that the transver-
sality theorem holds also in the topological category.

Theorem 1.13 (The transversality theorem). Let A be a closed subset of M and sup-

pose that there is an open neighborhood O of A such that 0 is a regular value of rjO. Then

there exists a homotopy

H : M � ½0; 1� ! R

of Hð�; 0Þ ¼ r so that

– Hðx; sÞ ¼ rðxÞ for x A A and for all s A ½0; 1�;

– 0 is a regular value of Hð�; 1Þ.

Next, we want to extend the transversality theorem to the class of all c-manifolds. Let
r : W ! R be a continuous c-function from an n-dimensional c-manifold to R. A real num-
ber t A R is a regular value of r, if t is a regular value of rjqW and of rjW̊ . It follows from
the definition that if t is a regular value of r, then Z :¼ r�1ðtÞ is a c-submanifold of W with
boundary qZ :¼ qW XZ.

Remark 1.14. Observe that, even though r has been assumed to be a c-function, the
transversality of rjW̊ at a point t does not imply automatically that of rjqW . A counter-
example is provided by the map

R4 � ½0; 1Þ ! Y � R� ½0; 1Þ !p2
R

where Y is the non-manifold constructed in [Bi].

Lemma 1.15. Let K HW be a closed set and let LH qW be another closed set so that

K X qW H L̊ (where L̊ denotes the interior of L). Then there is a representative of the germ

of collars c : V ! U so that it holds

x A K XU ) pðxÞ A L:

Proof. If c 0 : V 0 ! U 0 is any representative of the germ of collars, then there is by
definition a continuous function d 0 : qW ! ð0;þyÞ such that V 0 ¼

�
qW � ½0;þyÞ

�<d 0
.

Since the projection p is a closed map and K is closed, the number

mðxÞ :¼ minft j ðx; tÞ A Kg

is defined and for x A ðqW � L̊ÞXK it holds mðxÞ > 0.
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For this reason, we can define a function d over the closed set K W ðqW � L̊Þ setting

dðxÞ ¼
d 0ðxÞ if x A K;

min
mðxÞ

2
; d 0ðxÞ

� �
if x A qW � L̊:

8><
>:

By Tietze’s extension theorem, d can be extended to a continuous function qW ! ð0;þyÞ,
which we denote again by d. Using this new function, we set

V :¼
�
qW � ½0;þyÞ

�<d
;

c :¼ c 0jV ;

U :¼ cðVÞ:

The new collar c : V ! U is by construction equivalent to c 0.

Finally observe that, if pðxÞ A qW � L for some x A U , then it must be
d
�
pðxÞ

�
< minft j ðx; tÞ A Kg and so x B K . r

The transversality theorem has now the following consequence.

Corollary 1.16. Let

r : W ! R

be a c-function. Furthermore assume that there is a closed c-set AHW and an open neigh-

borhood O of A such that 0 is a regular value of rjO. Then there exists a homotopy

H : W � ½0; 1� ! R

of Hð�; 0Þ ¼ r so that:

– Hðx; sÞ ¼ rðxÞ for all x A A and all s A ½0; 1�;

– the map Hð�; sÞ is a c-function for all s A ½0; 1�;

– 0 is a regular value for Hð�; 1Þ.

Proof. Let us choose a representative of the germ of collars c : V ! U such that
rðxÞ ¼ r

�
pðxÞ

�
for all x A U . Since W and qW are normal spaces, there exist two closed

sets K HW and LH qW so that

– AH K̊HK HO;

– K X qW H L̊HLHOX qW .

By assumption, 0 is a regular value of rjOXqW , and so, by theorem 1.13, there is a
homotopy
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h : qW � ½0; 1� ! R

of hð�; 0Þ ¼ rjqW such that

– hðx; sÞ ¼ rðxÞ for all x A L;

– 0 is a regular value of hð�; 1Þ.

Now, using lemma 1.15, we can find a representative of the germ of collars so that

x A K XU ) pðxÞ A L:

Composing with the projection p : U ! qW , we get a homotopy h 0

U � ½0; 1� ��!p�id
qW � ½0; 1� ��!h R

with the property that

h 0ðx; sÞ ¼ h
�
pðxÞ

�
¼ r

�
pðxÞ

�
¼ rðxÞ

for each x A K XU .

On the closed subspace B :¼ K W c
��
qW � ½0;þyÞ

�ed=2�
HW we define a homotopy

h 00 setting:

h 00ðx; sÞ ¼ rðxÞ if x A K;

h 0ðx; sÞ else:

�

The c-manifold W is a metrizable space and so it is in particular binormal (recall that a
space X is called binormal if the product X � ½0; 1� is a normal space). According to Bor-
suk’s homotopy extension theorem (see [Sp]), there is an extension

B� f0g ���! B� ½0; 1�???y
???y

W̊� f0g ���! W̊� ½0; 1�

 
���

���
���

���
���

h 00

���������!

H 0

 ������
��������

�����

r

R

and the function r 0 :¼ H 0ð�; 1Þ has the following properties:

– r 0 is a c-function;

– r 0ðxÞ ¼ rðxÞ for all x A B;

– 0 is a regular value of r 0jB̊.
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By construction B̊X W̊ is an open neighborhood of c
��
qW � ð0;þyÞ

�ed=3�
W ðAX W̊Þ

and so, applying the transversality theorem 1.13 to H 0ð�; 1Þ, we get a homotopy

H 00 : W̊� ½0; 1� ! R

of r 0jW̊ which fixes
�
AW

�
qW � ½0;þyÞ

�ed=3�
X W̊ and such that 0 is a regular value of

H 00ð�; 1Þ. The map H 00 extends uniquely to a homotopy H 000 : W � ½0; 1� ! R with the
property that H 000ð�; sÞ is a c-function for all s, and finally we define H as the composition
of H 0 with H 000. r

Now let us pass to the category of stratifolds.

Definition 1.17. Let r : X ! R be a morphism from an n-dimensional stratifold X to
R. A number t A R is called a regular value of r, if

– Y :¼ r�1ðtÞ is an ðn� 1Þ-dimensional stratifold together with a germ of bicollars
½j�;

– there is a representative of the germ of bicollars j : V ! U with

r
�
jðx; sÞ

�
¼ sþ t

for all ðx; sÞ A V .

A basic step in the proof of the transversality theorem for stratifolds is given by the
following

Lemma 1.18. Let p : X !M be a stratifold bundle and consider a continuous func-

tion r : M ! R. If r is transverse at zero then the map defined by the composition r � p is also

transverse at zero.

Proof. By definition, the set N :¼ r�1ð0Þ is a bicollared submanifold of M, i.e. there
is a homeomorphism j : V ! U where V is an open neighborhood of N � f0g in N � R

and U is an open neighborhood of N in M. Now, the set E :¼ p�1ðNÞ is the total space of
the bundle

pjE : E ! N

and therefore, by corollary 1.10, E is a stratifold. Since U is homeomorphic to a space of
the form d1<ðN � RÞ<d2 , we get a bundle isomorphism

d1<ðE � RÞ<d2 ���! p�1ðUÞ

pjE�Id

???y
???ypj

p�1ðUÞ

U U

which defines a bicollar of E in X . r

Using these facts we are now able to prove the following
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Theorem 1.19 (Transversality for stratifolds). Let X be a locally trivial stratifold and

let

r : X ! R

be a morphism. Moreover assume that there is a closed set A and an open neighborhood O of

A so that 0 is a regular value of rjO. Then there exists a homotopy

H : X � ½0; 1� ! R

of Hð�; 0Þ ¼ r with the following properties:

– Hðx; sÞ ¼ rðxÞ for all x A A;

– Hð�; 1Þ is a morphism;

– 0 is a regular value of Hð�; 1Þ.

Proof. For simplicity we suppose A ¼ j. As explained in the previous subsection,
the assumption that X is locally trivial means that, for any i, there is a representative of
the germ of projections pi : Vi ! Xi which is a stratifold-bundle. The proposition will be
proved by induction on the depth of X , which we denote by dðXÞ.

If the depth of X is zero, then X is a manifold and the proposition is a consequence of
the transversality theorem.

Let X be a stratifold of depth k þ 1 and denote by Y the lowest non-empty dimen-
sional stratum of X . Since Y is a manifold, the transversality theorem provides a homotopy
of rjY

h : Y � ½0; 1� ! R

so that hð�; 1Þ is transverse at 0. Now, if p : V ! Y is a representative of the germ of pro-
jections which is a stratifold-bundle, we define h 0 as the composition

V � ½0; 1� ��!p�Id
Y � ½0; 1� ��!h R:

The map h 0 is by construction a homotopy of rjV and it follows from corollary 1.18 that
h 0ð�; 1Þ is transverse at 0. Now, let A, B, and C be three open neighborhoods of Y with

AHBHBHC HC HV :

The restriction of h 0 to C can be extended to a homotopy of r

H 0 : X � ½0; 1� ! R

and, since the map H 0ð�; 1ÞjC is a morphism, we can find a homotopy H 00 of H 0ð�; 1Þ
which fixes B and so that x :¼ H 00ð�; 1Þ is a morphism. Now, the morphism x is by con-
struction transverse at zero on B, and so it follows that in particular xjðX�YÞXB is transverse
at zero.
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The open set X � Y is by construction a stratifold of depth k and by inductive as-
sumption there exists a homotopy of xjX�Y

k : ðX � Y Þ � ½0; 1� ! R

which fixes ðX � YÞXA and so that kð�; 1Þ is transverse at 0. The map k can be extended
to a homotopy over X setting

H 000 : X � ½0; 1� ! R;

ðx; tÞ 7! mðx; tÞ if x A X � Y ;

xðxÞ if x A A:

�

Finally, we define the homotopy H as the composition of H 0 �H 00 �H 000. r

A procedure similar to the one used at the beginning of this subsection can be used to
extend the transversality theorem to the class of c-stratifolds.

2. H-stratifolds

In this section we use the notion of a perverse self-dual complex of sheaves due to
Markus Banagl (see [Ba1]) to introduce the concept of an H-stratifold.

2.1. Perverse self-dual complexes of sheaves. From now on we will make the follow-
ing two assumptions:

� All stratifolds are assumed to be locally conelike, oriented, and purely n-
dimensional.

� All complexes of sheaves are assumed to be constructible (see [GM] for the defini-
tion).

Let X be an n-dimensional stratifold with k-th skeleton Sk. For any integer 0e k e n,
we indicate by Uk the open subset X � Sn�k and by ik the inclusion

Uk ,! Ukþ1:

Moreover, let us denote by DbðXÞ the derived category of all bounded complexes of sheaves
of real vector spaces over X and recall that an orientation of X is the same as an isomor-
phism

o : D�U2
!F RU2

½n�

in the derived category DbðU2Þ, where D�Z denotes the Verdier dualizing complex on a
space Z.

Definition 2.1. Let ðX ; oÞ be an oriented stratifold. A constructible complex of
sheaves A� A DbðXÞ is said to be perverse self-dual if it satisfies:
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(SD1) There is an isomorphism (called normalization):

n : A�jU2
!F RU2

½n�:

(SD2) H iðA�Þ ¼ 0, for i < �n.

(SD3) H iðA�jUkþ1
Þ ¼ 0, for i > nðkÞ � n, k f 2, where n denotes the upper middle

perversity.

(SD4) There is an isomorphism d : DA�½n� !F A� (D denotes here the Poincaré-
Verdier duality functor) such that

Dd½n� ¼ ð�1Þn � d

and the diagram

RU2
½n�  ���n

F
A�jU2

o

x???F F

x???djU2

D�U2
���!F
Dn½n�

DA�jU2
½n�

commutes.

For any oriented stratifold X , we denote by SDðX Þ the full subcategory of DbðXÞ
whose objects are the perverse self-dual complexes of sheaves over X .

Lemma 2.2. Any open inclusion i : U ,! X induces a functor

i� : SDðXÞ ! SDðUÞ;

A� 7! A�jU :

Proof. This is an easy consequence of the fact that there is a natural equivalence of
functors

i !ð�ÞF i�ð�Þ: r

Let E� and F� be two perverse self-dual complexes of sheaves over X , and let us de-
note by HomSDðX ÞðE�;F�Þ the set of all morphisms from E� to F� in SDðX Þ.

Lemma 2.3. The restriction on the top stratum induces a monomorphism

HomDbðXÞðE�;F�Þ ! HomDbðU2ÞðE
�jU2

;F�jU2
Þ:

Proof. The statement follows by an iterated application of [Ba1], Lemma 2.2. r

This lemma has the interesting consequence that the self-duality isomorphism is—if
existent—completely determined by the orientation and the normalization.
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The problem of determining the structure of the category SDðXÞ can be reduced to
the determination of the relation between the categories SDðUkÞ and SDðUkþ1Þ. For the
comfort of the reader we recall here the most important results. We assume for simplicity
that n is even, but analogous considerations hold for the case n odd.

Theorem 2.4 (Goresky-MacPherson). If k is even, then the restriction functor

i�k : SDðUkþ1Þ ! SDðUkÞ

is an equivalence of categories whose inverse is given by the functor

temðkÞ�n Rik�ð�Þ : SDðUkÞ ! SDðUkþ1Þ:

The case k odd is more di‰cult and has been investigated by Banagl in the above
cited work.

Let A� be a perverse self-dual complex of sheaves over the open set Uk, with k odd and
set s :¼ nðkÞ � n. The lifting obstruction of A� is by definition the complex of sheaves

OðA�Þ :¼ HsðRik�A�Þ½�s� A DbðUkþ1Þ:

Definition 2.5. A Lagrangian structure on A� is a morphism

f : L! OðA�Þ

which induces injections H�ðfÞ : H�ðLÞ ! H�
�
OðA�Þ

�
and such that some distinguished

triangle on f is a null-bordism for the perverse self-dual lifting obstruction (see [Ba1], Def.
2.3).

For the application there is an alternative approach to Lagrangian structures (see
[Ba1], Remark 2.4) which is particularly useful. Let i and j denote respectively the inclu-
sions Uk ,! Ukþ1 and S :¼ Ukþ1 �Uk ,! Ukþ1 and set H :¼ Hsð j �Ri�A�ÞFOðA�ÞjS.

By [Ba1], Lemma 2.3, the self-duality isomorphism d induces an isomorphism
d : DOðA�Þ½nþ 1� !F OðA�Þ and therefore a non-singular pairing

HnH! RS:

A subsheaf EHH is called Lagrangian if, for every x A S, the stalk Ex is a Lagrangian sub-
space of Hx. The connection between Lagrangian structures and Lagrangian subsheaves is
explained by the following lemma due to Banagl.

Lemma 2.6. The map

Lagrangian structures
of A�

� �
! Lagrangian subsheaves

of H

� �
;

ðL; fÞ 7!
�
HsðfÞðLÞ

�
jS HOðAÞjS

is a bijection.
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A morphism of Lagrangian structures is by definition a commutative diagram in
DbðUkþ1Þ

LA ���!fA
OðA�Þ???y
???yOð f Þ

LB ���!fB
OðB�Þ

for some f : A� ! B�. It follows from the functoriality of the lifting obstruction that the
composition of morphisms of Lagrangian structures is well defined and thus that the La-
grangian structures form a category denoted by LagðUkþ1 �UkÞ.

The categories SDðUkÞ and LagðUkþ1 �UkÞ can be used to construct a new
category which is called the twisted product category and which is denoted by
SDðUkÞzLagðUkþ1 �UkÞ. By definition this is the category whose objects are the pairs

�
A�; f : L! OðA�Þ

�
A SDðUkÞzLagðUkþ1 �UkÞ;

and whose morphisms are the pairs ð f ; gÞ with first component a morphism
f A HomDbðUkÞðA

�;B�Þ and second component a commutative square

LA ���!fA
OðA�Þ

g

???y
???yOð f Þ

LB ���!fB
OðB�Þ:

If A� is a perverse self-dual complex of sheaves on Ukþ1, then there is a constructive
way to extract from A� a lagrangian structure on i�k A�. This procedure allows to define a
functor

L : SDðUkþ1Þ ! LagðUkþ1 �UkÞ

and Banagl’s main result can be thus formulated as follows.

Theorem 2.7 (Banagl). The functor

ði�k ;LÞ : SDðUkþ1Þ ! SDðUkÞzLagðUkþ1 �UkÞ

is an equivalence of categories whose inverse is denoted by rþ.

Putting together Goresky-MacPhersons’s and Banagl’s results one obtains the follow-
ing fundamental result (see [Ba1], Theorem 2.10).

Theorem 2.8. Let X be an n-dimensional stratifold. If n is even, then there is an equi-

valence of categories

SDðXÞFConstðU2ÞzLagðU4 �U3Þz � � �zLagðUn�2 �Un�3ÞzLagðUn �Un�1Þ:
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If n is odd, then there is an equivalence of categories

SDðXÞFConstðU2ÞzLagðU3 �U2Þz � � �zLagðUn�1 �Un�2ÞzLagðUnþ1 �UnÞ:

2.2. H-stratifolds. Let X be an n-dimensional oriented stratifold. By definition an
H-structure over X is a pair S ¼ ðA�; nÞ where A� is a perverse self-dual complex of
sheaves over X and n is a normalization of A�. If S1 ¼ ðA�1; n1Þ and S2 ¼ ðA�2; n2Þ are two
H-structures over X , then an isomorphism of H-structures

j : S1 !S2

is an isomorphism of complexes of sheaves j : A�1 ! A�2, for which the diagram

A�1jU2
�����!jjU2

A�2jU2

 ���
��

n1

 ��
��

n2

RU2
½n�

commutes.

Definition 2.9. An H-stratifold is a pair ðX ;SÞ, where X is an oriented topological
stratifold and S is an H-structure over X .

If ðX ;SÞ is an H-stratifold, then we denote by �ðX ;SÞ the H-stratifold ð�X ;SÞ
obtained reversing the orientation of X and considering S as an H-structure over �X .

Let j : X ! Y be an orientation-preserving isomorphism of stratifolds and let
S ¼ ðA�; nÞ be an H-structure on Y .

Lemma/Definition 2.10. The pair j�S ¼ ðj�A�; j�nÞ is an H-structure on X which is

called the pull-back of S.

Proof. We have to check that j�A� is a perverse self-dual complex of sheaves over
X . Axiom (SD1) is satisfied with the normalization j�n. Axioms (SD2) and (SD3) are sat-
isfied since it holds respectively

H iðj�A�ÞF j�H iðA�Þ

and

H i
�
ðj�A�ÞjUkþ1ðX Þ

�
F j�H iðA�jUkþ1ðYÞÞ:

Finally, axiom (SD4) is satisfied using the self-duality isomorphism

Dðj�A�Þ½n�F j !ðDA�½n�Þ !F j !A�F j�A�: r

Let H-stratifolds ðX1;S1Þ and ðX2;S2Þ be two H-stratifolds. An H-isomorphism
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j : ðX1;S1Þ !F ðX2;S2Þ

is a pair ðj1; j2Þ, where j1 : X1 !F X2 is an orientation-preserving isomorphism of strati-
folds and j2 : S1 !F j�1S2 is an isomorphism of H-structures.

Observe that an isomorphism of H-stratifolds is automatically compatible with the
self-duality isomorphisms. In fact applying lemma 2.3 one can prove the following

Lemma 2.11. For any isomorphism of H-stratifold

j ¼ ðj1; j2Þ :
�
X1; ðA�1; n1Þ

�
!F

�
X2; ðA�2; n2Þ

�
;

the diagram

DA�1½n�  ���Dj2½n�
F

Dj�1 A�2½n�F j�1DA�2½n�

d1

???yF F

???yj�
1

d2

A�1 ���!F
j2

j�1 A�2

commutes.

Remark 2.12. The class C of all H-stratifolds can be turned into a category with the
H-isomorphisms as morphisms.

Example 2.13. Let M be an oriented n-dimensional topological manifold. The trivial
sheaf RM ½n� is a perverse self-dual complex of sheaves with the self-duality isomorphism

DðRM ½n�Þ½n�FDRM FD�M !
F

RM ½n�:

Definition 2.14. If S ¼ ðA�; nÞ is an H-structure over a stratifold X and U is any
open subset of X , then we denote by SjU the H-structure ðA�jU ; njUÞ.

2.3. Product structures. The purpose of this subsection is to define the product of
two H-stratifolds. In the second part we specialize to the case when one factor is the real
line and we consider the problem of determining all H-structures on a bicollared substrati-
fold of an H-stratifold.

Consider two oriented stratifolds X1 and X2 of dimension m and n respectively, and
let p1, p2 denote the projections of X1 � X2 to the first and second factors. For i ¼ 1; 2,
consider furthermore the map pi defined by the restriction of pi to the top stratum
U2ðX1 � X2Þ ¼ U2ðX1Þ �U2ðX2Þ.

A central role in the definition of the product-structure is played by the tensor product
of complexes of sheaves. It is perhaps convenient to recall here that, if A� and B� are com-
plexes of sheaves of real vector spaces, then, by [GM], Section 1.9, there is an isomorphism

A�n
L

B�FA�nB�:

Using [Bo], Corollary V,10.26, an orientation of X1 � X2 is induced by the orienta-
tions of X1 and X2 through the isomorphism
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D�X1�X2
F p�1D

�
X1

n
L

p�2D
�
X2
:

In fact, if o1 and o2 are the orientations of X1 and X2 respectively, then p�1o1 n
L

p�2o2 induces
an isomorphism

ðD�X1�X2
ÞjU2ðX1�X2ÞF p�1 ðD�X1

jU2ðX1ÞÞn
L

p�2 ðD�U2ðX2ÞÞ

!F p�1 ðRU2ðX1Þ½m�Þn
L

p�2ðRU2ðX2Þ½n�Þ

FRU2ðX1�X2Þ½m�n
L

RU2ðX1�X2Þ½n�

FRU2ðX1�X2Þ½mþ n�:

Now, let S1 ¼ ðA�1; n1Þ and S2 ¼ ðA�2; n2Þ be two H-structures over X1 and X2 respec-
tively.

Lemma/Definition 2.15. The pair

S1 �S2 :¼ ðp�1 A�1 n
L

p�2 A�2; p�1n1 n
L

p�2n2Þ

is an H-structure over X1 � X2. The H-stratifold ðX1 � X2;S1 � S2Þ is called the product of

ðX1;S1Þ with ðX2;S2Þ.

Proof. Observe first of all that, for p ¼ ðx1; x2Þ A X1 � X2, it holds

�
H iðp�1 A�1 n

L

p�2 A�2Þ
�

p
FH i

�
ðp�1 A�1 n

L

p�2 A�2Þp
�

ð1Þ

FH i
�
ðp�1 A�1Þp n

L

ðp�2 A�2Þp
�

FH i
�
ðA�1Þx1

n
L

ðA�2Þx2

�
F

L
aþb¼ j

Ha
�
ðA�1Þx1

�
nHb

�
ðA�2Þx2

�

where the last step is a consequence of the algebraic Künneth formula. According to [Bo],
V,10.25, if L�1 A DbðX1Þ and L�2 A DbðX2Þ are two constructible complexes of sheaves, then
there is an isomorphism

p�1DX A�n
L

p�2 B�FR Hom�ðp�1 A�; p !
2B�Þ:

Now, let us show that p�1 A�1 n
L

p�2 A�2 A DbðX1 � X2Þ is a perverse self-dual complex of
sheaves. Axiom (SD1) is of course satisfied with the normalization

p�1n1 n
L

p�2n2:

Axioms (SD2) and (SD3) can be checked looking at the stalks and using formula (1). Since
both A�1 and A�2 satisfy (SD2), it follows, for i < �m� n,

H iðp�1 A�1 n
L

p�2 A�2Þ ¼ 0;
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and so p�1 A�1 n
L

p�2 A�2 satisfies (SD2). In order to show (SD3), let us consider an integer k f 2
and a point p ¼ ðx1; x2Þ A Ukþ1ðX1 � X2Þ. The structure of stratifold on the product space
X1 � X2 has the property that for any integer k f 2 there exists a partition of k of the form
k ¼ aþ b, so that x1 A UaðX1Þ and x2 A UbðX2Þ. Now, for any i > nðkÞ �m� n and any
partition aþ b ¼ i, it results

aþ b > nðkÞ �m� nf nðaÞ þ nðbÞ �m� n

and so it must also hold

a > nðaÞ �m or b > nðbÞ � n:

On the other hand, A�1 and A�2 satisfy (SD3), and consequently it must be

�
HaðA�1Þ

�
x1
¼ 0 or

�
HbðA�2Þ

�
x2
¼ 0:

Finally, using formula (1), we obtain:

�
H iðp�1 A�1 n

L

p�2 A�2Þ
�

p
F

L
aþb¼i

�
HaðA�1Þ

�
x1
n

�
HbðA�2Þ

�
x2
¼ 0:

The last to point to prove is the existence of a self-duality isomorphism

d : Dðp�1 A�n
L

p�2 A�2Þ½mþ n� ! p�1 A�n
L

p�2 A�2:

Using (among other facts) the identity provided by [Bo], Theorem V,10.25, we define d as
the composition of isomorphisms

Dðp�1 A�1 n
L

p�2 A�2Þ ¼ RHom�ðp�1 A�1 n
L

p�2 A�2;D
�
X1�X2

Þð2Þ

FRHom�ðp�1 A�1 n
L

p�2 A�2; p
�
1D
�
X1

n
L

p�2D
�
X2
Þ

FRHom�
�
p�1 A�1;RHom�ðp�2 A�2; p

�
1D
�
X1

n
L

p�2D
�
X2
Þ
�

FRHom�
�
p�1 A�1;RHom�

�
p�2 A�2; p

�
1ðDX1

RX1
Þn

L

p�2D
�
X2

��
FRHom�

�
p�1 A�1;RHom�

�
p�2 A�2;RHom�ðp�1RX1

; p !
2D
�
X2
Þ
��

FRHom�
�
p�1 A�1;RHom�

�
p�2 A�2;RHom�ðRX1�X2

; p !
2DX2

Þ
��

FRHom�
�
p�1 A�1;RHom�ðp�2 A�2; p

!
2D
�
X2
Þ
�

FRHom�
�
p�1 A�1; p

!
2RHom�ðA�2;D�X2

Þ
�

FRHom�
�
p�1 A�1; p

!
2ðDX2

A�2½n�Þ
�
½�n�

!F RHom�ðp�1 A�1; p
!
2A�2Þ½�n�

F p�1
�
DX1
ðA�1Þ½m�

�
n
L

p�2 A�2½�m� n�

!F p�1 A�1 n
L

p�2 A�2½�m� n�:
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The compatibility of d with the orientation of X1 � X2 and with the normalization of

p�1 A�1 n
L

p�2 A�2 follows from the naturality of the construction. r

Observe that the product has the following two properties:

– The switch map induces an isomorphism

ðX1;S1Þ � ðX2;S2Þ !F ð�1Þdim X1�dim X2ðX2;S2Þ � ðX1;S1Þ:

– There is a canonical isomorphism

�
ðX1 �S1Þ � ðX2;S2Þ

�
� ðX3;S3Þ !F ðX1;S1Þ �

�
ðX2;S2Þ � ðX3;S3Þ

�
:

Remark 2.16. If the second factor is an oriented n-dimensional manifold M (with the
trivial H-structure RM ½n�), then this construction becomes much easier and can be explained
as follows: according to [KaSc], Prop. 3.3.2, there is a natural equivalence of functors

p !
1ð�ÞF p�1ð�Þn p�2D

�
M :

In particular the orientation of M induces a natural equivalence

p !
1ð�ÞF p�1 ð�Þn p�2D

�
M !

F
p�1 ð�ÞnRX�M ½n�F p�1 ½n�ð�Þ

and so we get an isomorphism

p !
1A�1 F p�1 A�1½n�F p�1 A�1 n

L

p�2RM ½n�:

Next we want to restrict our attention to the case M ¼ R. This case is particularly
interesting, since, it plays an important role in the definition of the boundary operator for
the Mayer-Vietoris sequence of signature homology. Let us assume R to be endowed with
a fixed orientation, and denote by j and j2 the inclusions X ¼ X � f0g ,! X � R and
U2 ,! X � R respectively.

Lemma 2.17. If S ¼ ðA�; nÞ is any H-structure over X � R, then there is a unique (up

to isomorphism) H-structure j !S over X such that

SF p !j !S:

Proof. According to the remark above, the orientation of R induces an isomorphism
p !ð�ÞF p�½1�ð�Þ. Moreover, according to [Ba1], Lemma 5.2, there is a natural identifica-
tion p�j �ð�ÞF Id and consequently it results

j !½1�ð�ÞF j !p�j �½1�ð�ÞF j !p !j �F j �ð�Þ:

The H-structure j !S is defined setting:

j !S :¼ ð j !A�; j !2nÞ:

The orientation of X is here given by the isomorphism j !2ðoÞ. As usual, we only have to
show that j !A� is a perverse self-dual complex of sheaves.
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� (SD1) is clear since a normalization is given by

j !2ðnÞ : j !2ðA�jU2
Þ !F j !2ðRU2

Þ½n�FRU2XX ½n� 1�:

� (SD2) and (SD3) are consequences of the fact that j !A�F j �A�½�1�.

� The self-duality isomorphism is given by the composition

Dð j !A�Þ½n� 1�F j �DðA�Þ½n� 1�F j !DðA�Þ½n� !F j !A�:

The only thing left to show is the isomorphism

p !j !SFS

but this is just a consequence of the functorial identification

p !j !ð�ÞF p�j �ð�ÞF Id: r

2.4. Existence of a small subclass. This subsection is devoted to the construction of
a small subcategory C0 of C which has the property that every H-stratifold is isomorphic to
an H-stratifold in C0. This construction is based on the following

Lemma 2.18. For a fixed n-dimensional stratifold X , there is a small subclass

SD0ðX ÞH SDðXÞ such that any perverse self-dual complex of sheaves over X is isomorphic

to a complex of sheaves in SD0ðX Þ.

Proof. We proceed by induction on the codimension of the strata of X . By defini-
tion, every perverse self-dual complex of sheaves on U2 is isomorphic to the trivial complex
RU2
½n�ðo;RU2

½n�; nÞ and so we can set SD0ðU2Þ ¼ ConstðU2Þ. Now, suppose to have already
defined SD0ðUkÞ and let us show how to construct SDðUkþ1Þ.

Let k be even. According to Goresky-MacPherson (see [GM]), the restriction functor
i�k induces an equivalence of categories SDðUkþ1ÞF SDðUkÞ and the subclass SD0ðUkþ1Þ
can be defined as the preimage under i�k of SD0ðUkÞ.

Now let k be odd. According to Banagl (see [Ba1]), there is an equivalence of catego-
ries

SDðUkþ1ÞF SDðUkÞzLagðUkþ1 �UkÞ:

By inductive assumption, there is a small class SD0ðUkÞH SDðUkÞ so that every complex
A� A SDðUkÞ is isomorphic to a complex in SD0ðUkÞ. Let Lag0ðUkþ1 �UkÞ be the subclass
of LagðUkþ1 �UkÞ defined setting:

Lag0ðUkþ1 �UkÞ :¼ fLHOðA�Þ jA� A SD0ðUkÞ;L A LagðUkþ1 �UkÞg:

In other words an element of Lag0ðUkþ1 �UkÞ is a Lagrangian subsheaf of OðA�Þ, for some
A� A SD0ðUkÞ. The class Lag0ðUkþ1 �UkÞ is by construction a set and, moreover, every
Lagrangian structure is isomorphic to an element of Lag0ðUkþ1 �UkÞ. In fact, if ðL; fÞ
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is a Lagrangian structure over A� A SDðUkÞ, then there exist a complex B� A SD0ðUkÞ
and an isomorphism a : A� !F B�. The Lagrangian structure ðL; fÞ is now isomorphic to�
L;OðaÞ � f

�
and consequently, since the map OðaÞ � f : L! OðB�Þ induces an injection

in cohomology, L can be identified up to isomorphism with its image under OðaÞ � f (here
we are using the fact that the cohomology of L is concentrated in degree s, and that
for this reason L is canonically isomorphic to HsðLÞ½�s�). Finally, SD0ðUkþ1Þ is defined
as the set of all complexes of sheaves of the form A�rþL for A� A SD0ðUkÞ and
L A Lag0ðUkþ1 �UkÞ. r

A consequence of this result is the

Proposition 2.19. There is a small subcategory C0 HC of the category of H-stratifolds

so that every H-stratifold is isomorphic to an element of C0.

Proof. Let C0 be the class defined by

C0 :¼ fðX ;SÞ jX A K0;S ¼ ðA�; nÞ with A� A SD0ðX Þg

where K0 is a small subclass of the class of all stratifolds, such that every stratifold is iso-
morphic to an object in K0 (in the case of compact stratifolds this can be proved by show-
ing that a compact stratifold can be embedded in some Euclidean space).

Let ðX ;SÞ be any H-stratifold and take an isomorphism j : Y !F X with Y A K0.
The pull-back construction provides an H-structure j�S over Y with the property that
ðY ; j�SÞ is isomorphic to ðX ;SÞ as an H-stratifold. Now, according to Lemma 2.18,
there is an isomorphism a : B� !F j�A� with B� A SD0ðYÞ and in particular it results

j�SFT :¼
�
B�; ðjjU2

Þ�ðnÞ � ðajU2
Þ
�
:

Collecting these facts together, we get an isomorphism

ðX ;SÞF ðY ; j�SÞF ðY ;TÞ A C0

and so the only thing left to show is that the class C0 is small, but this is clear since the
orientations of a stratifold are a set, and the same holds for the class of all normalizations
of a fixed complex. r

2.5. Collared H-stratifolds. In this subsection we introduce the notion of an H-
stratifold with boundary or, more precisely, of a collared H-stratifold.

Let ðX ; qX Þ be a pair of spaces with qX closed in X , and suppose that ðX̊;SÞ and
ðqX ; qSÞ are two H-stratifolds of dimension n and n� 1 respectively. Moreover, denote
by i and j the inclusions in X of X̊ and qX , and by p the projection qX � ð0;þyÞ ! qX .

Definition 2.20. A collar of qX is a pair ðc; jÞ where

– c : V ! U is a collar of qX as a topological stratifold;

– j is an isomorphism of H-stratifolds

100 Minatta, Signature homology



j :
�
V � qX � f0g; ðp !qSÞjV�qX�f0g

�
!F ðU � qX ;SjU�qX Þ

whose first component j1 is equal to cjV�qX�f0g. Here p !qS is the product structure on
qX � ð0;þyÞ.

Two collars ðc; jÞ : V ! U and ðc 0; j 0Þ : V 0 ! U 0 are said to be equivalent if there is
an open subset V 00HV XV 0, such that ðc; jÞjV 0 ¼ ðc; j 0ÞjV 00 . An equivalence class of collars
is called a germ of collars. If qX is compact, then it is possible to assume the collar to be of
constant length, that is to say of the form

ðc; jÞ : qX � ½0;þeÞ ! U :

Definition 2.21. A collared H-stratifold is a pair of spaces ðX ; qXÞ, where ðX̊;SÞ
is an n-dimensional H-stratifold, qX is a closed subspace and an ðn� 1Þ-dimensional H-
stratifold with H-structure qS, together with a germ of collars ½ðc; jÞ�. The H-stratifold
ðqX ; qSÞ is called the boundary of ðX ; qXÞ.

Example 2.22. Let ðX ;SÞ be an H-stratifold with S ¼ ðA�; nÞ.

(1) The product X � ½0; 1� is a collared H-stratifold with boundary

ðX ;SÞ þ ð�X ;SÞ;

where�X denotes the stratifold obtained reversing the orientation of X and the H-structure
on X � ð0; 1Þ is given by the product structure p !S described in subsection 3.3.3.

(2) Let i denote the inclusion of X � ð0; 1Þ in CX . If there exists an H-structure T
on CX so that i�T is isomorphic to p !S, then ðCX ;TÞ is a collared H-stratifold whose
boundary is isomorphic to ðX ;SÞ. We will see in the next subsection under which condi-
tions such an H-structure T exists.

The H-structure on the boundary of a collared H-stratifold X can be deduced directly
from the H-structure on the interior of X , as we are going to show. In order to simplify the
notation, we assume the collar to be of constant length, but the same argument applies
in the general case. Using the collar we can restrict our attention to a space of the form
X � ½0;þeÞ and we denote by i, j, p the maps indicated in the following diagram:

X � ð0;þeÞK�����!i
X � ½0;þeÞ

 ���
���

p

K����
�!
j¼ j0

X :

Furthermore let p denote the projection X � ½0;þeÞ ! X . As an easy consequence of the
Vietoris-Begle theorem one has the following identity (see [Bo], V,10.22).

Lemma 2.23. For any complex A� A DbðXÞ it holds

Ri� p
�A�F p�A�:
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In particular it follows that there is a natural equivalence

j �Ri� p
�A�FA�:

Now, it is showed in [Ba1], Lemma 4.1, that there is an equivalence of functors

j �Ri� p
�ð�ÞF j ! Ri! p

�ð�Þ½1�

and thus, for any complex of sheaves A� A DbðXÞ, we get an isomorphism

A� !F j ! Ri! p
!A�:

Corollary 2.24. Let X be a collared H-stratifold with boundary ðqX ; qSÞ and denote

by i and j the inclusions of X̊ and of qX in X . If S ¼ ðA�; nÞ is the H-structure on X̊, then

there is an isomorphism

ðqX ; qSÞF ðqX ; dSÞ

where dS ¼
�

j ! Ri! A
�; j !2 Ri2!ðnÞ

�
is the H-structure on the boundary defined in [Ba1], Sec-

tion 4.2.

Observe that the product of two H-stratifolds defined in subsection 2.3 can be ex-
tended to the case when one of the factors is a collared H-stratifold.

The final part of this subsection is devoted to the gluing of H-stratifolds along the
boundary. Let X be an n-dimensional oriented stratifold, Y1 and Y2 be two open subsets
such that X ¼ Y1 WY2 and assume Y1 and Y2 endowed with the induced orientations.

Lemma 2.25. Let S1 ¼ ðB�1; n1Þ and S2 ¼ ðB�2; n2Þ be two H-structures over Y1 and

Y2 and furthermore suppose that there is an isomorphism of H-stratifolds

j : ðY1 XY2;S1jY1XY2
Þ ! ðY1 XY2;S2jY1XY2

Þ:

Under these assumptions there is up to isomorphism a unique H-structure S ¼ ðA�; nÞ over X

together with isomorphisms cj : SjYj
!Sj which make the diagram

S1jY1XY2
�����!j

S2jY1XY2

�����
!

c1j ����
!

c2j

SjY1XY2

commute.

Proof. An H-structure consists essentially of a perverse self-dual complex of sheaves
and we will show how to define such a complex of sheaves by constructing inductively a se-
quence of complexes A�k A SDðUkÞ together with isomorphisms

ðcjÞUk
: A�kjUkXYj

!F B�j jUkðYjÞ:

Let us write cj instead of ðcjÞUk
in order to simplify the notation.
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For k ¼ 2, let us set

A�2 :¼ RU2
½n� A SDðU2Þ:

The isomorphisms c1 and c2 can be easily defined setting cj :¼ n�1
j and the commutativity

of the diagram

B�1jU2ðY1XY2Þ �����!jj
B�2jU2ðY1XY2Þ

�����
!

c1j ����
!

c2j

A�jY1XY2

is now just a consequence of the definition of isomorphism of H-structures.

Now, assume to have already defined A�k A SDðUkÞ, c1, and c2, and consider the in-
clusions

i : Uk ,! Ukþ1;

i 0 : UkðY1 XY2Þ ,! Ukþ1ðY1 XY2Þ;

j : S ¼ Ukþ1 �Uk ,! Ukþ1:

In order to define A�kþ1 we have to distinguish two cases.

� For k even, we set

A�kþ1 :¼ temðkÞ�n Ri�A�k A SDðUkþ1Þ:

The functor temðkÞ�n Ri�ð�Þ is by [GM] the inverse of i� : SDðUkþ1Þ ! SDðUkÞ, and con-
sequently A�kþ1 is a perverse self-dual complex of sheaves over Ukþ1. The isomorphisms
ðcjÞUkþ1

are defined through the composition

A�kþ1jYj
¼ ðtemðkÞ�n Ri� B�ÞjUkþ1ðYjÞ �������!temðkÞ�n Ri�ðcjÞ

F
B�j jUkþ1ðYjÞ:

� Consider now the case k odd. By Banagl’s main result (see theorem 2.8), there are
two natural isomorphisms

B�1jUkþ1ðY1ÞFB�1jUkðY1Þrþ LðB�1Þ and B�2jUkþ1ðY2ÞFB�2jUkðY2Þrþ LðB�2Þ

where LðB�j Þ ¼ ðLj; fjÞ is the ‘‘canonical’’ Lagrangian structure over B�j jUk
. Identifying

B�j jUkðYjÞ with A�jUkðYjÞ through the isomorphism cj, one has

B�j jUkþ1ðYjÞF ðA
�jUkðYjÞÞrþ LðB�j Þ:

On the other hand, restricting j to Ukþ1ðY1 XY2Þ one obtains an isomorphism

B�1jUkðY1XY2Þrþ LðB�1ÞjUkþ1ðY1XY2Þ �����!i 0�jrþLðjÞ
F

B�2jUkðY1XY2Þrþ LðB�2ÞjUkþ1ðY1XY2Þ:
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By the inductive assumption, the diagram

B�1jUkðY1XY2Þ �����!i 0�j
B�2jUkðY1XY2Þ

�����
!

c1j ����
!

c2j

A�kjUkðY1XY2Þ

commutes, and this allows to identify jjUkþ1ðY1XY2Þ with the isomorphism

L1jUkþ1ðY1XY2Þ ���!f1
OðA�kjY1XY2

Þ

a

???yF

???y1

L2jUkþ1ðY1XY2Þ ���!
f2

OðA�kjY1XY2
Þ

where a is given by LðaÞ.

If we set H ¼ Hsj �OðA�kÞ and Ej ¼ Hsj �ðLjÞjUkþ1ðYjÞ, then we get a diagram

E1jY1XY2
���!g1

HjY1XY2

b

???yF

???y1

E2jY1XY2
���!

g2

HjY1XY2
:

Now, we can glue the sheaves E1 and E2 through b and we obtain thus a sheaf E; the maps
g1 and g2 extend to an injection g : E ,! H. The image gðEÞ is a Lagrangian subsheaf and,
by lemma 2.6, this determines a Lagrangian structure ðL; fÞ over A�k such that, for j ¼ 1; 2,
there is an isomorphism ðL; fÞjUkþ1ðYjÞFLðB�j Þ. The complex A�kþ1 is finally defined by set-
ting

A�kþ1 :¼ A�k rþ ðL; fÞ:

The isomorphisms

ðcjÞUkþ1
: A�kþ1jYj

!F B�j jUkþ1ðYjÞ

are defined through the compositions

A�kþ1jYj
FA�kjUkðYjÞrþ ðL; fÞjUkþ1ðYjÞFB�j jUkðYjÞrþ LðBjÞFB�j jUkþ1ðYjÞ: r

The preceding lemma allows to prove the following result.

Proposition 2.26. Let ðX ;SÞ and ðX 0;S 0Þ be two H-stratifolds, and suppose that

there is an orientation-reversing isomorphism

j : ðqX ; qSÞ !F ðqX 0; qS 0Þ:

Then there is up to isomorphism a unique H-structure over X W
qX1qX 0

X 0 which restricts to S
over X and to S 0 over X 0.
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Proof. The stratifold X WX 0 is naturally decomposed in the union of the two open
sets

Y1 :¼ X̊W X̊ 0;

Y2 :¼ qX � ð�e;þeÞ:

Both Y1 and Y2 are naturally endowed with an H-structure and these two structures are iso-
morphic if restricted on the intersection. Applying the previous lemma, we can thus obtain
an H-structure over X WX 0 which extends S and S 0. r

3. Signature homology

This section is devoted to the construction of the Signature homology functor Sig�ð�Þ
and to the investigation of some of its properties. In particular we show that Sig�ð�Þ is a
multiplicative homology theory and we compute its coe‰cients.

3.1. The functor Sig
*
(C). In order to simplify the notation let us indicate an

H-stratifold by its underlying stratifold. An n-dimensional singular H-stratifold over a
topological space X is a pair ðS; f Þ where S is an n-dimensional closed H-stratifold and

f : S ! X

is a continuous map. We denote by CnðX Þ the class of all n-dimensional singular
H-stratifolds over X . Two singular H-stratifolds ðS; f Þ; ðS 0; f 0Þ A CnðXÞ are called iso-
morphic if there is an isomorphism of H-stratifolds

j : S !F S 0

such that, if j1 denotes the first component of j, then the following diagram commutes:

S ���!j1
S 0

f

???y
X :
 ���

��
f 0

If ðS; f Þ is a singular H-stratifold, then we denote by �ðS; f Þ the singular H-stratifold
ð�S; f Þ, where �S is the H-stratifold obtained reversing the orientation of S.

Definition 3.1. Two singular H-stratifolds ðS; f Þ; ðS 0; f 0Þ A CnðXÞ are called bord-
ant, if there exists a pair ðT ; gÞ where T is a collared compact H-stratifold and g is a map
T ! X so that

ðqT ; gjqTÞF ðS; f Þ þ ð�S 0; f 0Þ:

Using the standard argument one sees that the bordism of H-stratifolds is an equiva-
lence relation (observe that for transitivity one needs to glue H-stratifolds along the bound-
ary as explained in the last part of subsection 2.5) and let us denote by ½S; f � the bordism
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class of ðS; f Þ. Furthermore we denote by SignðX Þ the quotient set of CnðX Þ under bordism
(due to proposition 2.19 there are no set-theoretical problems here).

Definition 3.2. The Abelian group SignðXÞ with the sum defined by the disjoint
union of bordism classes is called the n-th Signature homology group of X .

If g : X ! Y is any continuous map, then we can associate to g a group homomor-
phism

g� : SignðX Þ ! SignðY Þ;

½S; f � 7! ½S; g � f �:

In particular, this assignment allows to define a multiplicative functor

Sig�ð�Þ : Top! AbZ;

X 7! Sig�ðX Þ :¼
L

n

SignðXÞ

where AbZ denotes the category of graded Abelian groups. Furthermore, since every ori-
ented topological manifold can be naturally realized as an H-stratifold we also obtain a
multiplicative functor

WTOP
� ð�Þ ! Sig�ð�Þ:

Now, we want to show that Sig�ð�Þ is a multiplicative homology theory (here we are
following a general strategy developed by Matthias Kreck in [Kr]).

The proof of homotopy invariance of Sig�ð�Þ is identical to the usual one and will
therefore be omitted. So we only have to consider the Mayer-Vietoris sequence.

Proposition 3.3. Let U and V be open subsets of a space X . Then there is an exact

sequence of Abelian groups

� � � ! SignðU XVÞ ! SignðUÞl SignðVÞ ! SignðU WVÞ ! Sign�1ðU XVÞ ! � � � :

Proof. All morphisms except the boundary operator are clear by functoriality. To
define the boundary operator, consider a singular H-stratifold ðS; f Þ A CnðXÞ. The sub-
spaces AS :¼ f �1ðX � VÞ and BS :¼ f �1ðX �UÞ are closed and disjoint in S, and for this
reason there is a morphism

r : S ! R

with rðASÞ ¼ þ1 and rðBSÞ ¼ �1.

Applying the transversality theorem 1.19, one gets a homotopy of r relative to
AS WBS

h : S � ½0; 1� ! R
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with the property that 0 is a regular value of s ¼ hð�; 1Þ. The subset Z :¼ s�1ð0ÞHS is an
ðn� 1Þ-dimensional stratifold and there is a bicollar

i : Z � ð�e;þeÞ ,! S

such that s
�
iðx; tÞ

�
¼ t. We indicate by j : Z ! Z � ð�e;þeÞ the inclusion x 7! ðx; 0Þ and

by p : Z � ð�e;þeÞ ! Z the projection on the first factor.

Since i is an open embedding, the H-structure of S can be pulled back to an H-
structure i�S over Z � ð�e;þeÞ and, by lemma 2.17, there exists a unique H-structure
T ¼ j !i�S over Z so that it holds

p !TF i�S:

Finally, if Z denotes the H-stratifold ðZ;TÞ, we define

d : SignðU WVÞ ! Sign�1ðU XVÞ;

½S; f � 7! ½Z; f jZ�:

The proof that d is well defined as well as that of the exactness of the Mayer-Vietoris se-
quence are analogous to the ordinary ones and therefore left to the reader. r

Putting together the considerations above we obtain the

Theorem 3.4. The functor Sig�ð�Þ is a multiplicative homology theory and there is a

natural transformation of multiplicative homology theories

WTOP
� ð�Þ ! Sig�ð�Þ:

3.2. The coe‰cients of Sig
*
(C). In this subsection we show that the signature of an

H-stratifold defined by Banagl allows to construct a ring isomorphism

Sig�ðptÞFZ½t�

where the degree of the variable t is equal to 4.

Let S be a compact ð4kÞ-dimensional H-stratifold and denote by S ¼ ðA�; nÞ the
H-structure of S. The self-duality isomorphism d : DA�½4k� !F A� induces by Verdier du-
ality an isomorphism in hypercohomology

H�2kðS;A�ÞFH�2kðS;DA�½4k�ÞFH2kðS;DA�ÞFHom
�
H�2kðS;A�Þ;R

�
or, equivalently, a non-degenerate symmetric bilinear form

H�2kðS;A�ÞnH�2kðX ;A�Þ ! R:

Following Banagl, we call the index of this pairing the signature of S. If the dimen-
sion of S is not divisible by 4, one sets sigðSÞ ¼ 0.
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The following three properties of the signature can be easily deduced from the defini-
tions:

(1) sigðS þ S 0Þ ¼ sigðSÞ þ sigðS 0Þ;

(2) sigð�SÞ ¼ �sigðSÞ;

(3) if S and S 0 are isomorphic H-stratifolds, it results

sigðSÞ ¼ sigðS 0Þ:

Moreover, the signature is multiplicative with respect to the product of H-stratifolds.

Proposition 3.5. If S1 and S2 are two H-stratifolds then it holds

sigðS1 � S2Þ ¼ sigðS1Þ � sigðS2Þ:

Proof. Let S1 ¼ ðA�1; n1Þ and S2 ¼ ðA�2; n2Þ denote the H-structure on S1 and S2 re-
spectively. It follows from [Bo], Theorem V,10.19, that there is an isomorphism of com-
plexes of real vector spaces

GðS1;A�1Þn
L

GðS2;A
�
2ÞFGðS1 � S2; p

�
1 A�1 n

L

p�2 A�2Þ;

and so, by the algebraic Künneth formula, there is an isomorphism

HkðS1 � S2; p
�
1 A�1 n p�2 A�2ÞF

L
iþj¼k

H iðS1;A
�
1ÞnH jðS2;A

�
2Þ:

Finally, one can apply the usual argument used to show the multiplicativity of the signature
of a manifold. r

Another fundamental property of the signature is given by the next proposition.

Proposition 3.6. If S is a ð4k þ 1Þ-dimensional H-stratifold with boundary, then the

signature of qS is zero.

Proof. Let S and qS denote the H-structure of S̊ and qS respectively. By corollary
2.24, there is an isomorphism of H-stratifolds

ðqS; qSÞF ðqS; dSÞ

where dS is the H-structure defined in [Ba1], Section 4.2. In particular, since sigðqS; dSÞ is
zero by [Ba1], Corollary 4.1, it results

sigðqS; qSÞ ¼ sigðqS; dSÞ ¼ 0: r

The proposition above implies that the signature can be used to define a homomor-
phism of graded rings

g : Sig�ðfptgÞ ! Z½t�;

½S � 7! sigðSÞ � tdim S=4:

108 Minatta, Signature homology



Remark 3.7. If M is a 4k-dimensional compact oriented manifold, then it results

H�2kðX ;RM ½4k�Þ ¼ H 2kðX ;RÞ

and in particular the signature of M as an oriented manifold equals the signature of
ðM;RM ½4k�; IdÞ as an H-stratifold.

Proposition 3.8. The ring homomorphism g is an isomorphism.

Proof. The map g is evidently surjective and therefore we only have to prove its in-
jectivity. Since the case n ¼ 0 is trivial, we can assume the dimension of S to be strictly pos-
itive. The general strategy will be to show that, if S is an n-dimensional H-stratifold with
gðSÞ ¼ 0, then there exists an H-structure on the cone over S, so that S F qðCSÞ. Let v be
the vertex point of CS, and denote by p, i and j the maps indicated in the diagram:

S � ð0; 1ÞK���!i CS̊ ���Lj fvg

p

???y
S:

Using the notation introduced in subsection 2.1, one has

Unþ1 ¼ S � ð0; 1Þ and Unþ2 ¼ CS̊:

We have already seen in subsection 3.5 that the problem is to extend the product structure

ðp !A�; p !nÞ

over S � ð0; 1Þ to an H-structure over CS̊. If n is odd, this can always be done applying
theorem 2.4 and so it is enough to consider the case n ¼ 2m.

Now, since we have supposed sigðSÞ ¼ 0, it follows that there exists a Lagrangian
subsheaf

LHH�mðS;A�Þ

and we have to show how such a Lagrangian subspace gives rise to a Lagrangian structure
on p !A�. Note that a Lagrangian subspace always exists if 4F n.

As we have seen in lemma 2.6, a Lagrangian structure over p !A� is the same as a
Lagrangian subsheaf

H :¼ Hnðnþ1Þ�ðnþ1Þð j �Ri� p
!A�Þ:

In our case, however, H is a sheaf over fvg and so it can be identified with the vector space
Hv. Since we have assumed n ¼ 2m, it results

nðnþ 1Þ � ðnþ 1Þ ¼ 2mþ 1� 1

2

� �
� 2m� 1 ¼ �m� 1:
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Substituting this expression and the canonical identification p !F p�½1�, we can also write

HFH�m�1ð j �Ri� p
�A�½1�ÞFH�mð j �Ri� p

�A�Þ:

By slightly adapting the proof of lemma 2.23 one can easily show that, if A� !F I� is
the canonical injective resolution of A�, then the resolution

p�A� !F p�I�

can be used to compute Ri�. Using this fact, the vector space H can be identified with the
stalk at v of the sheaf H�mði�p�I�Þ.

On the other hand, the stalk at v of H�mði�p�I�Þ is isomorphic to the ð�mÞ-th co-
homology of the complex of vector spaces ði�p�I�Þv. The latter is by definition equal to

lim
U C v

GðU ; i�p
�I�Þ ¼ lim

U C v
G
�
i�1ðUÞ; p�I�

�
F lim

e!0
G
�
S � ð0; eÞ; p�I�

�
;

where the last isomorphism follows from the compactness of S.

Since p�I� is constant on the fibres, one has

lim
e!0

G
�
S � ð0; eÞ; p�I�

�
F lim

e!0
GðS; I�ÞFGðS; I�Þ:

In particular, this computation shows that we can identify H with the ð�mÞ-th cohomology
space of the complex GðS; I�Þ or, in other words, that there is an isomorphism

HFH�mðS;A�Þ:

It follows from the definition of the bilinear form on H (see [Ba1], Lemma 2.4 and
[GM], Section 5.2), that the diagram

HnH ���!H�mðS;A�ÞnH�mðS;A�Þ???y
R
 ������

�����

commutes. This means that the Lagrangian subspace LHH�mðS;A�Þ induces a Lagran-
gian subspace LHH and thus a Lagrangian structure on p !A�. Finally, by theorem 2.7,
there is an H-structure over CS̊ extending the product structure over S � ð0; 1Þ and there-
fore it results

S ¼ qðCSÞ: r

4. The Signature fundamental class of a manifold

In the following pages we show how to use Signature homology to construct a char-
acteristic class for closed oriented manifolds, and we explain the connection between the
Novikov conjecture and Sig�ð�Þ.
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Let M be an n-dimensional topological oriented closed manifold.

Definition 4.1. The Signature fundamental class of M is by definition the element

½M � :¼ ½M; Id� A SignðMÞ

where M has the trivial H-structure.

It follows from the definition that the Signature fundamental class is invariant under
orientation-preserving homeomorphisms. In order to understand the information carried on
by the characteristic class, we will restrict our attention to the case of a smooth manifold.

4.1. Signature homology with rational coe‰cients. Let us denote by W�ð�Þ the
smooth oriented bordism and by W� its ring of coe‰cients. Moreover consider the natural
transformation

W�ð�Þ !
u

Sig�ð�Þ

given by regarding an oriented smooth manifold as an H-stratifold with the trivial
H-structure and denote by u� the ring homomorphism induced on the coe‰cients. The
ring Z½t� is an W�-module with the multiplication induced by the genus

W� !
t
Z½t�;

½M n� 7! sigðMÞ � tn=4:

It is well known that for any space X there is an isomorphism

W�ðX ÞnQFH�ðX ;W�nQÞ:

In particular the functor W�ð�ÞntQ½t� is isomorphic to singular homology with coe‰cients
in Q½t� and so it is a homology theory. Now, the product of a singular manifold with an
H-stratifold induces a family of natural homomorphisms

W�ðXÞnu� Sig�ðptÞ ! Sig�ðXÞ;

½M; f �nu� ½S � 7! ½M � S; f � p1�:

After tensoring with Q and precomposing with

1n ðgnQÞ�1 : W�ðXÞnu� Q½t� !
F

W�ðXÞnu� Sig�ðptÞnQ

we get by the comparison theorem that the transformation

W�ðXÞntQ½t� ! Sig�ðXÞnQ

is an isomorphism.

On the other side Hirzebruch’s L-class (see [MS]) allows to define a natural transfor-
mation
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l : W�ðX Þ ! H�ðX ;Q½t�Þ;

½M; f � 7! f�
�
DLðMÞ

�
where D is the Poincaré duality isomorphism

H kðMÞ ! Hn�kðMÞ

and

LðMÞ ¼
P

kf0

Lkðp1; . . . ; pkÞ � tk A H 0ðM;Q½t�Þ

is the total L-class of M.

Passing to rational coe‰cients one gets an isomorphism

W�ð�Þnt Q½t� !
F

H�ð�;Q½t�Þ;

and collecting all these facts together one has the following

Proposition 4.2. There exists an equivalence

j : Sig�ðXÞnQ!F H�ðX ;Q½t�Þ

such that the diagram

W�ðXÞ ���!unQ
Sig�ðX ÞnQ

l

???y
H�ðX ;Q½t�Þ

 ����
����
j

commutes. Here unQ denotes the composition of the transformation u : W�ð�Þ ! Sig�ð�Þ
defined above with the inclusion Sig�ð�Þ ! Sig�ð�ÞnQ.

In particular for a smooth oriented n-dimensional manifold M one has

Corollary 4.3. If M is an n-dimensional smooth oriented manifold M, then it holds

j�ð½M; Id�Þ ¼ DLðMÞ A HmðM;Q½t�Þ:

Since the rational Pontrjagin classes of a manifold M determine and at the same time
are determined by the total L-class of M, one can also interpret this result as follows.

Meta-theorem. The rational Signature fundamental class of a manifold contains the

same information as the rational Pontrjagin classes.

For example, according to a theorem of Dold and Milnor, the rational Pontrjagin
classes of a manifold are not homotopy invariant and so we see that the Signature funda-
mental class cannot be a homotopy invariant.
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4.2. The L-class of an H-stratifold. The construction of the isomorphism j above
can be made more explicit by introducing the homology L-class of an H-stratifold. This
procedure is based on Thom’s work on the combinatorial invariance of Pontrjagin classes
(see [MS]) and has also been analyzed by Banagl in [Ba2].

Let Y be a compact H-stratifold of dimension n and let

f :n! S r

be a morphism, with n� r ¼ 4i. By a modification of the transversality theorem there is at
least one point y of S r which is a regular value of f . The inverse image f �1ðyÞ is a compact
oriented 4i-dimensional H-stratifold whose signature is independent of y and will be there-
fore indicated by sð f Þ. The integer sð f Þ depends only on the homotopy class of f . Further-
more, if 4i < ðn� 1Þ=2, then the correspondence f 7! sð f Þ defines a homomorphism

prðYÞ ! Z

where prðYÞ denotes the r-th cohomotopy group of Y . According to Serre (see [MS]), the
homomorphism

pn�4iðYÞ ! H n�4iðY Þ

is a rational isomorphism and therefore s induces a homomorphism

H n�4iðY Þ ! Q

or equivalently a class liðY Þ A Hn�4iðY ;QÞ. Putting these homology classes together one can
define the element

lðYÞ A HnðX ;Q½t�Þ

which is called the homology L-class of Y (observe that, due to the failure of Poincaré du-
ality, there only exists a homology L-class). The class lðYÞ allows to re-define the isomor-
phism j of the previous section as follows:

Sig�ðX ÞnQ! H�ðX ;Q½t�Þ;

½Y ; f � 7! f�lðY Þ:

Finally it is important to observe that by a result of Banagl the L-class of an
H-stratifold does not depend on the chosen H-structure (see [Ba2]).

4.3. An integral formulation of the Novikov conjecture. In this subsection we want to
show that the Novikov conjecture for a group p is equivalent to the homotopy invariance
of the rational Signature fundamental class for singular manifolds over Kðp; 1Þ.

Let p be any discrete group, and let us fix any rational cohomology class
x A H ��Kðp; 1Þ;Q

�
. By definition the higher signature sigx of a singular manifold ðM; aÞ

over Kðp; 1Þ is the rational number
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sigxðM; aÞ ¼ hLðMÞW a�x; ½M �i ¼
�
x; a�

�
DLðMÞ

�	
:

Moreover recall that the number sigx is said to be homotopy invariant if for every singular
manifold ðM; aÞ and for every orientation-preserving homotopy equivalence f : N !M it
holds

sigxðM; aÞ ¼ sigxðN; a � f Þ:

The Novikov conjecture. All higher signatures are homotopy invariant.

Before we come to the announced connection between the Novikov conjecture and the
signature fundamental class of a manifold we need to explain what we mean by homotopy
invariance of the latter.

Definition 4.4. The Signature fundamental class is homotopy invariant for a group
p if for every pair ðM; aÞ, and for every orientation-preserving homotopy equivalence
f : N !M, it results

½M; a� ¼ ½N; a � f � A Sign

�
Kðp; 1Þ

�
:

This terminology allows to formulate the following

Proposition 4.5. The Novikov conjecture for a group p is equivalent to the homotopy

invariance of the rational Signature fundamental class for p.

Proof. If ðM; aÞ is a singular manifold over Kðp; 1Þ, then one has

sigxðM; aÞ ¼
�
x; a�

�
DLðMÞ

�	
¼ hx; jnð½M; a�Þi

and thus it is clear that it results

sigxðM; aÞ ¼ sigxðN; a � f Þ

for any x A H ��Kðp; 1Þ;Q
�
, if and only if

½M; a� ¼ ½N; a � f � A Sign

�
Kðp; 1Þ

�
nQ: r

The proposition above suggests that an integral version of the Novikov conjecture can
be obtained requiring the homotopy invariance of the Signature fundamental class.

Integral Novikov problem (M. Kreck). Determine all discrete groups p for which the
Signature fundamental class is homotopy invariant.

Unfortunately nothing is known about this generalization of the Novikov conjecture.
However, if one replaces the homotopy invariance with the topological invariance then the
statement is always true (this follows from the topological invariance of the signature fun-
damental class).
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4.4. Signature homology at odd primes. Applying the Landweber exact functor the-
orem, we show in this subsection that the Z½1=2�-localization of Signature homology is iso-
morphic to connective KO-theory.

By the Landweber exact functor theorem (see [La], Example 3.4), the tensor product

W�ð�Þnt Z½1=2�½t; t�1�

is a homology theory and therefore u induces an isomorphism

W�ð�Þnt Z½1=2�½t; t�1� !F Sig�ð�ÞnZ½1=2�½t�1�:

On the other hand, the map of spectra

MSpin!MSO

is a Z½1=2�-equivalence and so one can define a map v : MSO! KO½1=2� through the com-
position

MSO½1=2� !MSpin½1=2� ! KO½1=2�

where the last map is induced by the Atiyah-Bott-Shapiro MSpin-orientation of KO-theory.
The map v defines a natural transformation

W�ð�Þ ! KO�ð�Þ½1=2�:

According to a theorem of Sullivan (see [MM]), the ring homomorphism v� induced by the
transformation v for X ¼ fptg coincides with the ring homomorphism t. In particular, it
results

W�ð�Þnt Z½1=2�½t; t�1�FW�ð�Þnv�

�
KO�ðptÞ½1=2�

�
:

and so, applying again the Landweber exact functor theorem, we get an isomorphism

W�ð�Þnv� KO�ðptÞ½1=2� !F KO�ð�Þ½1=2�:

The diagram

W�ð�Þnt Z½1=2�½t; t�1� !F Sig�ð�ÞnZ½1=2�½t�1�

F

???y
KO�ð�Þ½1=2�

�����������!

F

provides an isomorphism

Sig�ð�ÞnZ½1=2�½t�1�FKO�ðX Þ½1=2�

and passing to the connected coverings one concludes the proof of the following
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Proposition 4.6. There is an isomorphism

Sig�ð�ÞnZ½1=2� !F ko�ð�Þ½1=2�:

4.5. Signature homology at the prime 2. In this subsection we show that the 2-
localization of the signature homology is isomorphic to singular homology with coe‰cients
in the ring Zð2Þ½t�.

What we need is the following result due to Wall (see [CF]).

Theorem 4.7. There is a natural equivalence of functors

W�ðXÞnZð2ÞFH�ðX ;W�nZð2ÞÞ:

From the previous fact it follows

Corollary 4.8. There is a natural equivalence of functors

j�1 : H�ð�;Zð2Þ½t�Þ !F Sig�ð�ÞnZð2Þ:

Proof. First of all observe that the isomorphism of theorem 4.7 implies the existence
of a natural equivalence

W�ð�Þnt Zð2Þ½t�FH�ð�;W�Þnt Zð2Þ½t�

where the tensor products are taken as W�-modules.

Now the desired isomorphism is given by the composition of the following transfor-
mations:

H�ð�ÞnZð2Þ½t� !
F

H�ð�ÞnW�nt Zð2Þ½t� ! H�ð�;W�Þnt Zð2Þ½t�

F

???y
W�ð�Þnt Zð2Þ½t�???y
Sig�ð�ÞnZð2Þ:

���������������������������������!

Finally it is easy to check that the induced natural transformation is an isomorphism on the
coe‰cients. r

Observe that in the 2-local setting it is not possible to find a direct proof of the iso-
morphism above which uses the L-class of an H-stratifold. In fact, if one tries to mimic the
construction of section 4.2, one sees that rational coe‰cients are really necessary in order to
use Serre’s theorem.

The importance of the result above is explained by the following
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Corollary 4.9. For any closed oriented topological manifold M there exists a co-

homology class L0ðMÞ A H 4�ðM;Zð2ÞÞ with the property that the evaluation of L0ðMÞ on the

fundamental class of M is the signature of M. Moreover L0ðMÞ is a topological invariant.

Proof. The class L0ðMÞ can be defined as the image of the signature fundamental
class ½M � A SignðMÞnZð2Þ under the isomorphism

SignðMÞnZð2Þ �!j HnðM;Zð2Þ½t�Þ �!D�1

H 0ðM;Zð2Þ½t�Þ ¼
Ly
k¼0

H 4kðM;Zð2ÞÞ: r

4.6. The relation between Sig
*
(C) and the classifying space for surgery. In this last

subsection we use the signature homology to obtain an integral formulation of Kirby-
Siebenmann’s theorem about the homotopy structure of G=Top. The reader is referred to
[MM] and [KiSi] for more details.

Let Topn denote the topological group of homeomorphisms f : Rn ! Rn, f ð0Þ ¼ 0
and let Gn denote the topological monoid of homotopy equivalences of S n�1. The natural
map Topn ! Gn induces a sequence of maps BTopn ! BGn on the classifying spaces and
after stabilization one gets a map

BTop! BG:

Let G=Top be the fibre of the map above and recall that G=Top is the classifying space for
surgery problems on simply connected topological manifolds.

Now, let

nðMÞ ���!f̂f x???y
???y

M ���!f X

be the normal map associated to a map g : X ! G=Top. By the process of surgery we can
always assume f to be a homotopy equivalence for n odd and to be ðn=2Þ � 1 connected if
n is even. The obstruction to complete the surgery for n even is given by an Arf invariant
with values in Z=2 if n ¼ 4k þ 2 and by sigðMÞ � sigðX Þ A 8Z if n ¼ 4k. In particular this
procedure allows to define a map

s : ½X n;G=Top� ! Lnð0Þ

where L�ð0Þ ¼ L1ð0Þ;L2ð0Þ; . . . is the four-periodic sequence

i 1 2 3 4 5 6 7 8 9 . . .

Lið0Þ 0 Z=2 0 Z 0 Z=2 0 Z 0 . . .

By taking X ¼ S n we see that the surgery obstruction defines a map
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s : pnðG=TopÞ ! Lnð0Þ:

One of the main results in the theory of topological manifolds is the following theorem of
Kirby and Siebenmann (see [KiSi]).

Theorem 4.10 (Kirby and Siebenmann). The surgery map

s : pnðG=TopÞ ! Lnð0Þ

is an isomorphism for all nf 1.

In particular, it follows from the theorem above that the homotopy groups of G=Top

are given by the formula

pnðG=TopÞF
Z for n1 0 ðmod 4Þ; nf 1;

Z=2 for n1 2 ðmod 4Þ;
0 else.

8<
:

Now we want to look deeper into the surgery obstructions and their relation with the
signature homology.

Lemma 4.11. The surgery obstruction

½X 4k;G=Top� !s L4kð0Þ

factorizes through Sig4kðG=TopÞ as showed in the following diagram:

½X 4k;G=Top� ���!s Z???y
Sig4kðG=TopÞ:

��
��
��
��
!

sI

Proof. Let ½g� : X ! G=Top be a homotopy class. By the homotopy invariance of
signature homology, ½g� defines a unique bordism class ½X ; g� A Sig4kðG=TopÞ and so we
only have to show that, if ðX ; gÞ is zero-bordant in Sig4kðG=TopÞ, then it holds

sðX ; gÞ ¼ 0:

Let us assume that ðX ; gÞ is the boundary of a pair ðW ;FÞ where W is a closed 4k þ 1-
dimensional H-stratifold and F is a map from W into G=Top which is an extension of g.
The maps F and g define stable topological bundles l over W and h over X respectively so
that it holds ljqW ¼ h. Both of these stable bundles are trivial as a spherical fibration and so
taking representatives we have a fiber homotopy equivalence

l ���!F
c

W � R l

p

???y
???y

W ���!1 W :
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Now, by the transversality theorem we can assume c to be transverse to W � 0 and
we can set T :¼ c�1ðW � 0Þ. In particular, if M ! X denotes a representative of the sur-
gery problem associated to g, then we see that M is bordant to qT and so that it is zero-
bordant. Finally, this fact together with the bordism-invariance of the signature imply

sð½g�Þ ¼ sigðMÞ � sigðX Þ ¼ 0: r

The case n ¼ 4k þ 2 can be treated in a similar way: in fact one can prove that the
Kervaire invariant is a bordism invariant and thus one gets the following factorization

½X 4kþ2;G=Top� ���!s Z=2???y
N

Top
4kþ2ðG=TopÞ

���
���

���
!

sK

where NTop
� ð�Þ denotes the non-oriented topological bordism.

Next we need the following result from Anderson and Kainen (see [Yo]).

Theorem 4.12. Let h�ð�Þ be a multiplicative homology theory with the property that

multiplication induces an isomorphism

h�ðptÞ !F Hom
�
h��ðptÞ;Z

�
:

Then for any X there is a short exact sequence

0! Ext
�
h��1ðXÞ;Z

�
! h�ðX Þ ! Hom

�
h�ðXÞ;Z

�
! 0:

Unfortunately the signature homology functor does not satisfy the conditions of the
theorem above. However it is quite easy to overcome this problem by considering the peri-
odic homology theory associated to Sig�ð�Þ. This new functor, which we denote by Sig�ð�Þ,
is obtained by formally inverting the class of ½CP2� or more precisely by considering the ring
homomorphism Sig�ðptÞ ! Z½t; t�1� induced by ½CP2� 7! t and then by setting

Sig�ðXÞ :¼ Sig�ðXÞnSig�ðptÞ Z½t; t�1�:

Now, the homology theory Sig�ð�Þ satisfies the condition of theorem 4.12 and so it
follows that every homomorphism from Sig�ðX Þ to Z lifts to an (in general not unique)
element in Sig�ðX Þ.

Moreover, if

g : N ! G=Top

is a surgery problem over N and if M is a closed oriented manifold, then the surgery ob-
struction of the problem

M �N !p2
N !g G=Top
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satisfies

sIðM �N; g � p2Þ ¼ sIðN; gÞ � sigðMÞ:

In particular this formula implies that the homomorphism sI factorizes through
Sig4nðG=TopÞ and so we get a map

sI : Sig4nðG=TopÞ ���! Z???y
Sig4nðG=TopÞ:

���
���

���
�!

According to Kainen’s theorem the homomorphism

sI : Sig4nðG=TopÞ ! Z

can be lifted to an element of

K4n A Sig4nðG=TopÞ ¼ Sig0ðG=TopÞ ¼ ½G=Top;Wy Sig�

where Wy Sig is the Wy-space of the spectrum of Sig�ð�Þ. On the other hand, since Sig�ð�Þ
corresponds to the ð�1Þ-connected cover of Sig�ð�Þ, it follows that there is an equivalence

Wy SigFWy Sig:

Notice that an explicit construction of Wy Sig as a semi-simplicial set can be obtained using
the so called Quinn’s construction (see [Qu2]). The space Wy Sig has the form S� Z and
since G=Top is connected we get a homotopy class

G=Top!K S:

A similar construction for the Kervaire invariant provides a family of homotopy
classes

K4n�2 : G=Top! KðZ=2; 4n� 2Þ; for nf 1:

It is perhaps useful to notice that this construction requires the existence of an isomorphism

NTop
� ðX ÞFH�ðX ;NTop

� Þ;

which follows, for instance, from a more general result of Pazhitnov and Rudyak (see [PR]).

Taking representatives for the homotopy classes K and K4n�2 we can define a contin-
uous map

f : G=Top! S�
Qy

nf1

KðZ=2; 4n� 2Þ:

The main result of this last part can now be stated.
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Theorem 4.13. The map f is an homotopy equivalence.

Proof. Since we know that the homotopy groups of G=Top are given by the formula

pnðG=TopÞF
Z for n1 0 ðmod 4Þ;
Z=2 for n1 2 ðmod 4Þ;
0 else,

8<
:

it is clear that in order to prove the theorem it is enough to show that f induces isomor-
phisms on homotopy groups in every dimension. In particular we know that the generators
i2n A p2nðG=TopÞ are specified by the condition

sI ðS4n; i4nÞ ¼ 1; sKðS4n�2; i4n�2Þ ¼ 1

so that K and K4nþ2 evaluate to 1 on the homotopy generators in every dimension and the
theorem follows. r

As a corollary one gets in particular the following two results due to Sullivan and
Kirby-Siebenmann.

Corollary 4.14. There are the following homotopy equivalences:

(1) at two

G=Topð2ÞF
Q

nf1

KðZð2Þ; 4nÞ � KðZ=2; 4n� 2Þ;

(2) at odd primes

G=Top½1=2�FBO½1=2�:
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