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Signature homology

By Augusto Minatta at Bochum

Abstract. In this note we give a new construction of Signature homology, and we ex-
plain how to associate to any oriented manifold M a characteristic class in Sig, (M) which
is an integral analog of the L-class. A connection with the Novikov conjecture is explained.
Further applications are in the construction of a 2-local characteristic class in the singular
cohomology of a topological manifold as well as in the determination of the homotopy
type of G/Top.
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Introduction

This paper is devoted to a new construction of a generalized homology theory denoted
by Sig,(—) which we call Signature homology (in earlier versions the name ‘“‘Hirzebruch
homology” was also used). This homology functor has been firstly considered by Dennis
Sullivan in the proof of the Hauptvermutung (see [Su|) and defined by means of the so
called Sullivan-Baas construction. More recently, Matthias Kreck has observed that Signa-
ture homology also can be used to state an integral formulation of the Novikov conjecture.
In fact, according to Kreck, one can associate to every closed oriented smooth manifold M
a fundamental class in Sig, (M) and it can be shown easily that the rational reduction of this
class coincides with the L-class. This consideration allows then to get an integral formula-
tion of the Novikov conjecture just by requiring the homotopy invariance of the Signature
fundamental class for all singular manifolds over K (7, 1). Unfortunately this construction
is very artificial and cannot be extended to topological manifolds (this is particularly un-
satisfactory if one remembers that Novikov has defined rational Pontrjagin classes also
for topological manifolds). This paper has the twofold purpose of both providing a more
natural construction of Signature homology and of extending the considerations above to
the topological category. It is perhaps interesting to notice that, while doing so, we could
also prove a generalization of Novikov’s theorem about the topological invariance of ratio-
nal Pontrjagin classes.

This paper is essentially the fruit of a re-elaboration of my PhD thesis written under
Matthias Kreck at the Ruprecht-Karls Universitdt Heidelberg. There are some new consid-
erations, but most results are already contained in the old version (see [Mi]). The first sec-
tion contains a short introduction to the theory of stratifolds and provides a proof of the
transversality theorem. Section 2 is devoted to the definition of H-stratifolds which are the
geometric cycles of Signature homology. Section 3 deals with the construction of the Signa-
ture homology functor and with the computation of its coefficients. Finally the last section
is devoted to the definition of the Signature fundamental class and to its interpretation in
terms of other known invariants like Pontrjagin classes.

Acknowledgments. [ wish to thank my advisor Professor Matthias Kreck for his con-
stant suggestions, ideas, and corrections. I also wish to acknowledge the Istituto Nazionale
di Alta Matematica “Francesco Severi” di Roma, whose financial support has made this
work possible. 1 gratefully recognize all my colleagues and friends for funny and helpful
discussions. A special thank goes to Markus Banagl and Gerd Laures. Finally I am infi-
nitely indebted to my parents, Silvia, and all my other friends.

1. Stratifolds and transversality

In this section we explain some properties of topological stratifolds. The notion of a
stratifold has been firstly introduced by Matthias Kreck in 1998. Through a series of mod-
ifications, the term “‘stratifold” has in the meanwhile come to indicate a different class of
spaces, while the original objects are now called p-stratifolds. For simplicity we will how-
ever adopt the original terminology. A more detailed treatment of the geometrical proper-
ties of stratifolds can be found in Anna Grinberg’s work (see [Gr]).
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_L1.1. Stratifolds. Let (W,0W) be a pair of spaces with 0 closed in W, and denote
by W the open set W — 0W.If 6 : W — (0,4 00) is a continuous function, then we set

(@0W x [0,+00)) " = {(x,1) € OW x [0,+0) | £ < 5(x)}.
Analogously one defines the sets (0W x [0, +oo))§d and (OW x (0, —|—oo))<(5.

A collar of 0W is a homeomorphism ¢ : V' — U where V is an open neighborhood of
dW x {0} of the form (OW x [0, —|—oo))<o and U is an open neighborhood of 0W in W, so
that for any x € W it is ¢(x,0) = x. Two collars are called equivalent if they coincide on an
open neighborhood of dW. An equivalence class of collars will be called a germ of collars.

Definition 1.1. An n-dimensional c-manifold is a pair (W,0W) where

— W is a metrizable space;

— W and oW are (metrizable topological) manifolds of dimension respectively » and
n—1

together with a germ of collars [c]. The manifold 0 W is called the boundary of W.

If ¢: V— U is a representative of the germ of collars of a c-manifold W, then we
denote by 7 the composition

US v oaw.
If M is a manifold, then a continuous map
f-w-M

is called a c-map if there is a representative of the germ of collars ¢ : V' — U such that for
all x e U it holds

f(x) = f(n(x)).
Observe that every continuous map can be approximated by a c-map.
Definition 1.2. Let 1] and W, be two c-manifolds. A homeomorphism
Wi — W,

is called an isomorphism if there are representatives of the germs of collars ¢; : Vi — U
and ¢, : ¥, — U, such that for all (x,7) € V; with f (¢ (x,1)) € U, it holds

fle(x,0) = ea(f(x),1).

If W, and W, are two c-manifolds, then by smoothing the corners one defines the
structure of a c-manifold on the product W, x W.
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Let X be an arbitrary topological space. A k-dimensional strat of X is a pair (W, f)
where W is a k-dimensional c-manifold, and f is a proper continuous map from W to X
such that f1; : W — f(W) is a homeomorphism.

Definition 1.3. An n-dimensional stratifold is a pair (X, %) where X is a topological
space X, and Z is a sequence of strats { W, fi}, ., which satisfy the following conditions:

- LA = X
—dim W; =1

- filawi) = U fi(Wy);

jsi-1
— asubset U < X is open if and only if for all i the set f;~!(U) is open in W;.

The sequence 2 = { W, f;} is called the parametrization of X, and the restrictions f;
called the attaching maps of X.

aw, are

For simplicity a stratifold (X, #) will be generally denoted just by X.

If X is a stratifold, then the subspaces
k
Zk(X) = U f,(I/V,) c X and Xk = Ek(X) — Zk,l(X)
i=0

are called respectively the k-th skeleton and the k-th stratum of X. A stratifold is said to be
purely n-dimensional if X, is dense in X. The k-th stratum of a stratifold X is by construc-
tion a (possibly empty) k-dimensional manifold. The depth of a stratifold X is by definition
the difference in dimension of the highest and lowest dimensional non-empty strata.

Definition 1.4. An n-dimensional stratifold X is called oriented if X, ; is empty and
the top stratum X, is oriented.

A standard argument (see [Gr]) shows that the collars of the manifolds W; define, for
any k, a canonical germ of retractions

e s Vie — Xi
where V is an open neighborhood of X in X.

Example 1.5. Let X and X’ be two stratifolds. Then the following spaces inherit a
natural structure as stratifolds.

(1) Any open subset U < X.
(2) The cone over X, if X is compact.

(3) The product X x X'.
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Definition 1.6. If X and X' are two n-dimensional stratifolds with stratifications re-
spectively 2 = {W,, f;} and 2’ = { W/, f/}, then an isomorphism from X to X" is a homeo-
morphism

p: X — X'

together with a sequence of isomorphisms of c-manifolds ¢, : W;(X) — W;(X’) which make
the following diagram commutative for every i:

x 2. x

i T

Wi(X) —2 wi(X').

Now, let X be a topological space and let {U; | i € J} be a family of open subsets of X
with the property that every U; is a stratifold with parametrization ;. Furthermore assume
that there are isomorphisms of stratifolds

Vi (Ui Uj7<J/)i|Uint) = (Uin Ujagjj|u,-muj)
which satisfy
vy = 1d, ¢U ° wji = 1d, ¢g o ‘ij oy =1d.

Gluing together the strata of the stratifolds U;, one proves the following

Lemma 1.7. There is up to isomorphism a unique parametrization 2 of X together
with a family of isomorphisms

¢ (U, 2|y) = (Ui, )
so that for any i, j the diagram

(Ui M (J]"@|U,('WU])

¢| JinU;
¢1U,»ntJ/ 09
v )
(Ui N l]/’gilU,-mUj) —— (Ui N Uj)’yj"U;mUj)
commutes.
The class of all stratifolds can be turned into a category taking the isomorphisms as
morphisms. In particular, for a stratifold X we denote by Aut(X) the group of all isomor-
phisms from X to X.

Now we want to explain the notion of a morphism from a stratifold to a manifold.

Definition 1.8. Let X be a stratifold and M a manifold. A morphism is a map
g : X — M with the property that the composition
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gofi:Wi— M
is a c-map for all i < n.
One can easily show that every continuous map X — M is homotopic to a morphism.

Definition 1.9. A morphism f : X — M is called a stratifold bundle if there is a
stratifold F so that (X, f, M) is a locally trivial bundle (in the sense of Steenrod, [St]) with
fibre F and structure group Aut(F).

As a consequence of lemma 1.7 we have the following result.

Corollary 1.10. Let F be a stratifold. If (X, f, M) is a locally trivial bundle with fibre
F and group Aut(F), then X admits the structure of a stratifold so that f : X — M is a strati-
fold bundle.

The notion of stratifold bundle allows to distinguish an important class of stratifolds.

Definition 1.11. A stratifold X is called locally trivial if, for each k, there is a repre-
sentative 7y : V), — X of the germ of retractions which is a stratifold bundle. Furthermore
it is called locally conelike if, for any x € X}, the fibre of 7, over x is the cone over some
compact stratifold.

It is straightforward to translate the definition of a c-manifold in the category of strati-
folds so that we can also speak of c-stratifolds and c-morphisms.

1.2. Transversality. In this subsection we show how to extend the transversality the-
orem to the class of locally trivial topological stratifolds.

We begin by recalling the notion of a bicollar. Let (M, N) be a pair of spaces with N

closedin M.1If 9, : N — (—0,0) and , : N — (0, +00) are two continuous functions, then
we set

AN x R)™ := {(x,5) e N x R|61(x) < 5 < 5(x)}.
A bicollar of N is a homeomorphism ¢ : V' — U where V' is an open neighborhood of
N x {0} of the form ®<(N x R)~** and U is an open neighborhood of N in M, so that for
any x € N it is ¢(x,0) = x.
Now, let M be a topological manifold and consider a continuous function
p:M— R.

Definition 1.12. A real number ¢ € R is called a regular value of p, if

— N :=p7!(¢) is an (n — 1)-dimensional manifold together with a germ of bicollars
[o):

— there exists a representative ¢ : V' — U of the germ of bicollars so that it results
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p((p(x, S)) =5+t
for all (x,7) e V.

Equivalently, we also say that p is transverse at .

A very sophisticated argument (see [KiSi], [Ma] and [Qul]) shows that the transver-
sality theorem holds also in the topological category.

Theorem 1.13 (The transversality theorem). Let A be a closed subset of M and sup-
pose that there is an open neighborhood O of A such that 0 is a regular value of p|,. Then
there exists a homotopy

H:Mx[0,1] — R

of H(—,0) = p so that

— H(x,s) = p(x) for x € A and for all 5 € [0, 1];

— 0 is a regular value of H(—,1).

Next, we want to extend the transversality theorem to the class of all c-manifolds. Let
p: W — R be a continuous c-function from an n-dimensional c-manifold to R. A real num-
ber 7 € R is a regular value of p, if 7 is a regular value of p|,;;, and of p| ;. It follows from
the definition that if 7 is a regular value of p, then Z := p~!(¢) is a c-submanifold of W with
boundary 6Z := oW n Z.

Remark 1.14. Observe that, even though p has been assumed to be a c-function, the

transversality of p|; at a point ¢ does not imply automatically that of p|;;,. A counter-
example is provided by the map

R*x[0,1) = Y xRx[0,1) 3R
where Y is the non-manifold constructed in [Bi].
Lemma 1.15.  Let K = W be a closed set and let L = OW be another closed set so that
K n0W < L (where L denotes the interior of L). Then there is a representative of the germ

of collars ¢ : V — U so that it holds

xeKnU = =(x)elL.

Proof. 1If ¢’ : V! — U’ is any representative of the germ of collars, then there is by
definition a continuous function &’ : 9W — (0, +o0) such that ¥’ = (W x [0, +0))~

Since the projection 7z is a closed map and K is closed, the number
m(x) ;= min{¢| (x,7) € K}

is defined and for x € (W — L) n K it holds m(x) > 0.
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For this reason, we can define a function & over the closed set K U (dW — L) setting
d'(x) if xeK,
o(x) = .
) min{me),a’(x)} if xeow — L.
By Tietze’s extension theorem, ¢ can be extended to a continuous function 0W — (0, +0),
which we denote again by J. Using this new function, we set
V= (W x [0,4%))
= C/| Vo
U:=c(V).
The new collar ¢ : V' — U is by construction equivalent to ¢’.

Finally observe that, if 7n(x)edW — L for some xe U, then it must be
d(n(x)) <min{z|(x,7) e K} and so x ¢ K. [

The transversality theorem has now the following consequence.
Corollary 1.16. Let
p:W-R

be a c-function. Furthermore assume that there is a closed c-set A < W and an open neigh-
borhood O of A such that 0 is a regular value of p|,. Then there exists a homotopy

H:Wx|[0,1]—-R

of H(—,0) = p so that:

— H(x,s) = p(x) forall x e A and all s € [0, 1];

— the map H(—,s) is a c-function for all s € [0, 1];

— 0 is a regular value for H(—,1).

Proof. Let us choose a representative of the germ of collars ¢ : V' — U such that
p(x) = p(n(x)) for all x e U. Since W and 0W are normal spaces, there exist two closed
sets K < W and L < 0W so that

~AcKcKc 0;

“KndWcLcLcOnW.

By assumption, 0 is a regular value of p|,.,,, and so, by theorem 1.13, there is a
homotopy
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h:0W x1[0,1] = R

of h(—,0) = p|,y such that

— h(x,s) = p(x) for all xe L;

— 0 1is a regular value of h(—, 1).

Now, using lemma 1.15, we can find a representative of the germ of collars so that

xeKnU = n(x)elL.
Composing with the projection 7 : U — W, we get a homotopy /'
Ux[0,1] 24w x[0,1] 2= R
with the property that
W (x,5) = h(x(x) = p(r(x)) = p(x)

foreach xe K n U.

On the closed subspace B := K U ¢((0W x [0,40)) ;5/2) c W we define a homotopy

h" setting:

p(x) if xe K,
h// —
(x,9) {h’(x, s) else.
The c-manifold W is a metrizable space and so it is in particular binormal (recall that a
space X is called binormal if the product X x [0, 1] is a normal space). According to Bor-
suk’s homotopy extension theorem (see [Sp]), there is an extension

Bx {0} —— Bx|[0,1]

and the function p’ := H'(—, 1) has the following properties:
— p’ is a c-function;
— p'(x) = p(x) for all x € B;

— 0 is a regular value of p’| ;.
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By construction B W is an open neighborhood of ¢((0W x (0,+oo))§(5/3) uAnW)
and so, applying the transversality theorem 1.13 to H'(—, 1), we get a homotopy

H":Wx[0,1] - R

of p'|;;, which fixes (4 U (OW x |0, +oo))§o/3) A W and such that 0 is a regular value of
H"(—,1). The map H” extends uniquely to a homotopy H"” : W x [0,1] — R with the
property that H"”'(—,s) is a c-function for all 5, and finally we define H as the composition
of H with H". [

Now let us pass to the category of stratifolds.

Definition 1.17. Let p: X — R be a morphism from an n-dimensional stratifold X to
R. A number 7 € R is called a regular value of p, if

— Y :=p~!(¢) is an (n — 1)-dimensional stratifold together with a germ of bicollars
[#];

— there is a representative of the germ of bicollars ¢ : V' — U with
p(go(x, s)) =5+t
for all (x,s) e V.

A basic step in the proof of the transversality theorem for stratifolds is given by the
following

Lemma 1.18. Let n: X — M be a stratifold bundle and consider a continuous func-

tion p: M — R. If p is transverse at zero then the map defined by the composition p o 7 is also
transverse at zero.

Proof. By definition, the set N := p~!(0) is a bicollared submanifold of M, i.e. there
is @ homeomorphism ¢ : V' — U where V' is an open neighborhood of N x {0} in N x R
and U is an open neighborhood of N in M. Now, the set E := n~!(N) is the total space of
the bundle

g E— N

and therefore, by corollary 1.10, E is a stratifold. Since U is homeomorphic to a space of
the form 1<(N x R)~, we get a bundle isomorphism

I<(E x R —— 77 1(U)

n|E><Idl J{ﬂnlw)

U p— U
which defines a bicollar of Ein X. [

Using these facts we are now able to prove the following
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Theorem 1.19 (Transversality for stratifolds). Let X be a locally trivial stratifold and
let
p:X—-R

be a morphism. Moreover assume that there is a closed set A and an open neighborhood O of
A so that 0 is a regular value of p|,. Then there exists a homotopy

H:Xx[0,1]—R
of H(—,0) = p with the following properties:
— H(x,s) = p(x) for all x € A4;
— H(—,1) is a morphism;
— 0 is a regular value of H(—,1).

Proof. For simplicity we suppose 4 = (). As explained in the previous subsection,
the assumption that X is locally trivial means that, for any i, there is a representative of
the germ of projections 7; : V; — X; which is a stratifold-bundle. The proposition will be
proved by induction on the depth of X, which we denote by d(X).

If the depth of X is zero, then X is a manifold and the proposition is a consequence of
the transversality theorem.

Let X be a stratifold of depth k + 1 and denote by Y the lowest non-empty dimen-
sional stratum of X. Since Y is a manifold, the transversality theorem provides a homotopy

of ply

h:Y x[0,1] - R
so that i(—, 1) is transverse at 0. Now, if 7 : V' — Y is a representative of the germ of pro-
jections which is a stratifold-bundle, we define 4’ as the composition

v x 0,128 vy x0,1] - R

The map /4’ is by construction a homotopy of p|, and it follows from corollary 1.18 that
h'(—,1) is transverse at 0. Now, let 4, B, and C be three open neighborhoods of Y with

AcBcBcCcCclV.
The restriction of 4’ to C can be extended to a homotopy of p
H :Xx[01 >R
and, since the map H'(—,1)|, is a morphism, we can find a homotopy H"” of H'(—,1)
which fixes B and so that & := H”(—, 1) is a morphism. Now, the morphism & is by con-

struction transverse at zero on B, and so it follows that in particular &| y_y,p is transverse
at zero.
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The open set X — Y is by construction a stratifold of depth k£ and by inductive as-
sumption there exists a homotopy of &|y_

k:i(X—Y)x[0,1]]—R

which fixes (X — Y) n 4 and so that k(—, 1) is transverse at 0. The map k can be extended
to a homotopy over X setting

H" : X x[0,1] - R,

m(x,t) if xeX—-Y,
(x, 1) H{é(x) if xed

Finally, we define the homotopy H as the composition of H' « H" x H". [
A procedure similar to the one used at the beginning of this subsection can be used to
extend the transversality theorem to the class of c-stratifolds.
2. H-stratifolds

In this section we use the notion of a perverse self-dual complex of sheaves due to
Markus Banagl (see [Bal]) to introduce the concept of an H-stratifold.

2.1. Perverse self-dual complexes of sheaves. From now on we will make the follow-
ing two assumptions:

e All stratifolds are assumed to be locally conelike, oriented, and purely n-
dimensional.

e All complexes of sheaves are assumed to be constructible (see [GM] for the defini-
tion).

Let X be an n-dimensional stratifold with k-th skeleton X;. For any integer 0 < k < n,
we indicate by Uy the open subset X — X, ; and by i the inclusion

Ui = Urp.
Moreover, let us denote by D?(X) the derived category of all bounded complexes of sheaves
of real vector spaces over X and recall that an orientation of X is the same as an isomor-

phism

o: Dy, = Ryy,[n]

in the derived category D’(U), where D% denotes the Verdier dualizing complex on a
space Z.

Definition 2.1. Let (X,0) be an oriented stratifold. A constructible complex of
sheaves A* € D?(X) is said to be perverse self-dual if it satisfies:
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(SD1) There is an isomorphism (called normalization):
VA, = Ry ).
(SD2) H'(A®) =0, for i < —n.

(SD3) H"(A'|Uk+l) =0, for i > (k) —n, k = 2, where i denotes the upper middle
perversity.

(SD4) There is an isomorphism d : ZA®[n] = A® (2 denotes here the Poincaré-
Verdier duality functor) such that

and the diagram
Ropn] ——  A°ly,

[ e

DO ~ AO
U> W 9 |U2[”]

commutes.

For any oriented stratifold X, we denote by SD(X) the full subcategory of D?(X)
whose objects are the perverse self-dual complexes of sheaves over X.

Lemma 2.2. Any open inclusion i : U — X induces a functor
i* : SD(X) — SD(U),
A*— A%,

Proof- This is an easy consequence of the fact that there is a natural equivalence of
functors

(=) ~i*(-). O

Let E* and F* be two perverse self-dual complexes of sheaves over X, and let us de-
note by Homgpx)(E®, F*) the set of all morphisms from E°® to F* in SD(X).

Lemma 2.3. The restriction on the top stratum induces a monomorphism
Home<X’) (E., F.) — Homewz) (E. | Uy F.| Uz)’
Proof. The statement follows by an iterated application of [Bal], Lemma 2.2. []

This lemma has the interesting consequence that the self-duality isomorphism is—if
existent—completely determined by the orientation and the normalization.
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The problem of determining the structure of the category SD(X) can be reduced to
the determination of the relation between the categories SD(Uy) and SD(Uy. ). For the
comfort of the reader we recall here the most important results. We assume for simplicity
that n is even, but analogous considerations hold for the case n odd.

Theorem 2.4 (Goresky-MacPherson). If 'k is even, then the restriction functor

i : SD(Us41) — SD(Uy)

is an equivalence of categories whose inverse is given by the functor

T<in(k)—n Rigx(—) : SD(Ux) — SD(Up41).

The case k& odd is more difficult and has been investigated by Banagl in the above
cited work.

Let A® be a perverse self-dual complex of sheaves over the open set Uy, with k odd and
set s := 7i(k) — n. The lifting obstruction of A® is by definition the complex of sheaves

O(A%) := H*(Ri. A®)[~s] € D’ (Ugy1).
Definition 2.5. A Lagrangian structure on A® is a morphism
¢: L — O(A%)

which induces injections H*(¢) : H*(#) — H*(¢(A®)) and such that some distinguished
triangle on ¢ is a null-bordism for the perverse self-dual lifting obstruction (see [Bal], Def.
2.3).

For the application there is an alternative approach to Lagrangian structures (see
[Bal], Remark 2.4) which is particularly useful. Let i and ;j denote respectively the inclu-

sions Uy — Uy and X := Uy — Uy — Uy and set H := H*(j*Ri, A®) ~ O(A®)]s.

By [Bal], Lemma 2.3, the self-duality isomorphism ¢ induces an isomorphism
0:20(A%)[n+ 1] = O(A®) and therefore a non-singular pairing

H®H — Rs.
A subsheaf E = H is called Lagrangian if, for every x € X, the stalk E, is a Lagrangian sub-
space of H,. The connection between Lagrangian structures and Lagrangian subsheaves is
explained by the following lemma due to Banagl.
Lemma 2.6. The map

Lagrangian structures - Lagrangian subsheaves
of A* of H ’

(Z.¢) — (H'($)(2))lz = O(A)]g

is a bijection.
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A morphism of Lagrangian structures is by definition a commutative diagram in
D’ (Ui11)

2 oA

for some f : A* — B®. It follows from the functoriality of the lifting obstruction that the
composition of morphisms of Lagrangian structures is well defined and thus that the La-
grangian structures form a category denoted by Lag( Uy — Uy).

The categories SD(Uyx) and Lag(Uii — Ux) can be used to construct a new
category which is called the twisted product category and which is denoted by
SD(Uy) > Lag(Uxs1 — Uy). By definition this is the category whose objects are the pairs

(A',¢ ¥ — (Q(A.)) € SD(Uk) bgl Lag(UkH — Uk),

and whose morphisms are the pairs (f,g) with first component a morphism
S € Homps g, (A%, B*) and second component a commutative square

If A® is a perverse self-dual complex of sheaves on Uy, then there is a constructive
way to extract from A® a lagrangian structure on i;A®. This procedure allows to define a
functor

A : SD(Uy1) — Lag(Uy1 — Ux)
and Banagl’s main result can be thus formulated as follows.
Theorem 2.7 (Banagl). The functor
(i, A) : SD(Up1) — SD(UL) % Lag(Us1 — U)
is an equivalence of categories whose inverse is denoted by H.

Putting together Goresky-MacPhersons’s and Banagl’s results one obtains the follow-
ing fundamental result (see [Bal], Theorem 2.10).

Theorem 2.8. Let X be an n-dimensional stratifold. If n is even, then there is an equi-
valence of categories

SD(X) ~ Const(U,) > Lag(Uy — Us) > --- X Lag(U,_, — U,_3) X Lag(U, — U,_).
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If n is odd, then there is an equivalence of categories
SD(X) ~ Const(U,) > Lag(Us — U,) > --- X Lag(U,_1 — U,_») > Lag(Uy,,1 — U,).
2.2. H-stratifolds. Let X be an n-dimensional oriented stratifold. By definition an
H-structure over X is a pair & = (A®,v) where A® is a perverse self-dual complex of

sheaves over X and v is a normalization of A®. If ¥, = (A}, v;) and %, = (A}, ;) are two
H-structures over X, then an isomorphism of H-structures

Q: y] — yg
is an isomorphism of complexes of sheaves ¢ : A] — A3, for which the diagram

olu
° 2
Ally,

N

4
RUZ [l’l]

Aslu,
V

V2

commutes.

Definition 2.9. An H-stratifold is a pair (X,.¥), where X is an oriented topological
stratifold and & is an H-structure over X.

If (X,9) is an H-stratifold, then we denote by —(X, %) the H-stratifold (—X,.%)
obtained reversing the orientation of X and considering % as an H-structure over —X.

Let ¢: X — Y be an orientation-preserving isomorphism of stratifolds and let
& = (A®,v) be an H-structure on Y.

Lemma/Definition 2.10.  The pair p*% = (p*A°, ¢*v) is an H-structure on X which is
called the pull-back of & .

Proof. We have to check that ¢*A® is a perverse self-dual complex of sheaves over
X. Axiom (SD1) is satisfied with the normalization ¢*v. Axioms (SD2) and (SD3) are sat-
isfied since it holds respectively

HZ(Q*A.) ~ (ﬂ*Hl(A.)
and
Hi(((ﬂ*A.”UM(X)) = W*Hi(A.|UH1(Y))-
Finally, axiom (SD4) is satisfied using the self-duality isomorphism
Z(p*A")n] ~ ¢ (ZA%[n]) = 9'A" ~ 9"A". [

Let H-stratifolds (X7,.%) and (X3, %) be two H-stratifolds. An H-isomorphism
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(X1, %) = (X2, 92)

is a pair (¢;,,), where ¢, : X; = X, is an orientation-preserving isomorphism of strati-
folds and ¢, : &1 = ¢; %> is an isomorphism of H-structures.

Observe that an isomorphism of H-stratifolds is automatically compatible with the
self-duality isomorphisms. In fact applying lemma 2.3 one can prove the following

Lemma 2.11.  For any isomorphism of H-stratifold

Y= ((01 ’ (pZ) : (le (A;7 V])) = (X27 (A57 Vz)),
the diagram

. D9, 1] “ae KoaA®
ZA 1] ‘N; @¢1A2[”]’1€”19A2[”]

dllw Nl(ﬂf‘dl

. >~ *x A®
ﬁ/} PrAS
2

—_

commutes.

Remark 2.12. The class € of all H-stratifolds can be turned into a category with the
H-isomorphisms as morphisms.

Example 2.13. Let M be an oriented n-dimensional topological manifold. The trivial
sheaf Ry,[n] is a perverse self-dual complex of sheaves with the self-duality isomorphism

D(Ry[n))[n] ~ 2Ry ~ DY, = Rug[n].

Definition 2.14. If ¥ = (A®,v) is an H-structure over a stratifold X and U is any
open subset of X, then we denote by .|, the H-structure (A*|,,v|).

2.3. Product structures. The purpose of this subsection is to define the product of
two H-stratifolds. In the second part we specialize to the case when one factor is the real
line and we consider the problem of determining all H-structures on a bicollared substrati-
fold of an H-stratifold.

Consider two oriented stratifolds X; and X, of dimension m and »n respectively, and
let 7y, 7 denote the projections of X} x X5 to the first and second factors. For i = 1,2,
consider furthermore the map p; defined by the restriction of #; to the top stratum
U2(X] X Xz) = U2(Xl) X U2(X2).

A central role in the definition of the product-structure is played by the tensor product
of complexes of sheaves. It is perhaps convenient to recall here that, if A* and B* are com-
plexes of sheaves of real vector spaces, then, by [GM], Section 1.9, there is an isomorphism

L
A"®B ~A*®B°.

Using [Bo], Corollary V,10.26, an orientation of X; x X; is induced by the orienta-
tions of X7 and X, through the isomorphism
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L
. ~ X ke
DX]XXQ - 751 [D)X] ®TC2DX2

L
In fact, if 0y and o, are the orientations of X; and X> respectively, then p{o; ® p;o;, induces
an isomorphism

*

L
([D:Y1><X2)’U2(X1><X2) = pik([l:]):\/] ’Uz(X])) ®p2(Dz]2(X2))
=~ * L *
= i Ry [m]) ® py (Rus () 1))
L
= RUZ(XIXXZ)[m] ® RUz(XIXXz)[n]

= RUZ(XI xX2) [m + n]

Now, let %1 = (A, v1) and &> = (A}, v2) be two H-structures over X and X, respec-
tively.

Lemma/Definition 2.15. The pair
L L
F1 x S = (n]A] @ Ty A5, pivi ® p5Vv2)

is an H-structure over X| x X,. The H-stratifold (X X X2, %1 X S2) is called the product of
(Xl, 5”1) with (Xz, yz).

Proof. Observe first of all that, for p = (x1, x2) € X7 X X, it holds
1) (H' (A © m5A3)), ~ H' (A} © 73A3),)

~ HI((n/A}), ® (m3A3),)

~ H((A7),, ® (A3),)

~ @ H((A}),,) ®H’((A3),)

a+b=j

where the last step is a consequence of the algebraic Kiinneth formula. According to [Bo],
V,10.25, if L} € D’(X;) and L € D?(X;) are two constructible complexes of sheaves, then
there is an isomorphism

L
i ZyA® ® n;B* ~ RHom® (] A®, n)B"*).

L
Now, let us show that 7fA} ® 75A5 € D?(X; x X3) is a perverse self-dual complex of
sheaves. Axiom (SD1) is of course satisfied with the normalization

L
* *
Pivi ® pyva.

Axioms (SD2) and (SD3) can be checked looking at the stalks and using formula (1). Since
both A and A satisfy (SD2), it follows, for i < —m — n,

. L
H'(m A} ®@ m;A3) = 0,



Minatta, Signature homology 97

and so 7; A§ ® 75 Aj satisfies (SD2). In order to show (SD3), let us consider an integer k = 2
and a point p = (x1,x2) € Ur11(X1 x X2). The structure of stratifold on the product space
X1 x X, has the property that for any integer k = 2 there exists a partition of k of the form
k = a+ p, so that x; € U,(X;) and x, € Ug(X>). Now, for any i > 7i(k) —m — n and any
partition a + b = i, it results

a+b>nk)—m—nz=n(a)+a(f) —
and so it must also hold
a>n(e)—m or b>na(f)—n.
On the other hand, A} and A satisfy (SD3), and consequently it must be
(H'(A})),, =0 or (H"(A3), =0.
Finally, using formula (1), we obtain:

(Hi(zi AT ®@ mAY), ~ @ (HU(AD), ® (HP(A3)), = 0.

a+b=i

The last to point to prove is the existence of a self-duality isomorphism
L
d: 2(n{A®* ® n;A%)[m +n| — n;A* ® nyAS.

Using (among other facts) the identity provided by [Bo], Theorem V,10.25, we define d as
the composition of isomorphisms

L L
(2)  Z(m A} ® myA3) = RHom® (7 A} ® my A3, Dy, x,)
L] * L] L * L * L] L * L]
~ RHom"(7{A] ® m,A5, 7y DY, ® n5D%,)

L
~ RHom" (7 A}, RHom"® (7; A%, 7; D% ®n§‘|D;(2))

(m
~ RHom" (n; A}, RHom" (75 A5, 71} (Zx, Ry,) @ m;0%.))
~ RHom" (z{ A}, RHom"® (1A}, RHom® (7} Ry, , 75D%,)))
~ RHom" (A}, RHom" (n;A%, RHom® (Ry, «x,, 75Dy,)))
~ RHom* (7} A}, RHom" (73 A3}, 1, D%,))

~ RHom" (n{ A}, 7, RHom" (A3, DY)

~ RHom" (A}, 75 (Zx,AS[n])) [—n]

= RHom" (7} A%, 73AS)[—7]
~ 1} (D, (A}]) @ 75A3[—m — 1]

N L
— n{A] ® ;A5 [—m — n].
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The compatibility of d with the orientation of X; x X, and with the normalization of

L
n;A] ® n; A’ follows from the naturality of the construction. [
Observe that the product has the following two properties:
— The switch map induces an isomorphism
(X1, %1) X (X2, %) = (=1)ImHdm (x, 9) x (X1, %1).
— There is a canonical isomorphism
((Xl X Spl) X (XQ,Qyz)) X (X3,5ﬂ3) = (Xl,tgﬂl) X ((Xz,&ﬂz) X (X3,<9”3)).

Remark 2.16. If the second factor is an oriented n-dimensional manifold M (with the
trivial H-structure Ry,[n]), then this construction becomes much easier and can be explained
as follows: according to [KaSc], Prop. 3.3.2, there is a natural equivalence of functors

7 (=) = 7j(-) ® m3 Dy,
In particular the orientation of M induces a natural equivalence
71 (=) = 7{ (=) @ ;DY = m{(=) ® Ryxarln] =~ mi[n](~)
and so we get an isomorphism
A ~ i A ] ~ nfAS (>L§ 7y Ry[n].

Next we want to restrict our attention to the case M = R. This case is particularly
interesting, since, it plays an important role in the definition of the boundary operator for
the Mayer-Vietoris sequence of signature homology. Let us assume R to be endowed with
a fixed orientation, and denote by j and j, the inclusions X = X x {0} — X x R and
U, — X x R respectively.

Lemma 2.17. If.¥ = (A®,v) is any H-structure over X x R, then there is a unique (up
to isomorphism) H-structure j'& over X such that

S ~n'i'.

Proof. According to the remark above, the orientation of R induces an isomorphism
n'(—) ~ n*[1](—). Moreover, according to [Bal], Lemma 5.2, there is a natural identifica-
tion 7*j*(—) ~ Id and consequently it results

J(=) = 7 1) (=) = jalj” = ().
The H-structure j'¥ is defined setting:
J 7= (A, ).

The orientation of X is here given by the isomorphism jj(0). As usual, we only have to
show that j'A® is a perverse self-dual complex of sheaves.
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e (SD1) is clear since a normalization is given by
AW A ]5) S (R = Reyexln — 1.
e (SD2) and (SD3) are consequences of the fact that j'A® ~ j*A®*[—1].
e The self-duality isomorphism is given by the composition
DA — 1] = DA — 1] = [ D(A")n] = j'A".
The only thing left to show is the isomorphism
S~
but this is just a consequence of the functorial identification
nj (=) =7’ (=) ~1d. O

2.4. Existence of a small subclass. This subsection is devoted to the construction of
a small subcategory % of ¥ which has the property that every H-stratifold is isomorphic to
an H-stratifold in %,. This construction is based on the following

Lemma 2.18. For a fixed n-dimensional stratifold X, there is a small subclass
SDy(X) = SD(X) such that any perverse self-dual complex of sheaves over X is isomorphic
to a complex of sheaves in SDy(X).

Proof. We proceed by induction on the codimension of the strata of X. By defini-
tion, every perverse self-dual complex of sheaves on U, is isomorphic to the trivial complex
Ry, [n](0, Ry, [n], v) and so we can set SDy(U,) = Const(U,). Now, suppose to have already
defined SDy( Uy ) and let us show how to construct SD( Uy ).

Let k be even. According to Goresky-MacPherson (see [GM]), the restriction functor
i induces an equivalence of categories SD( Uy, 1) ~ SD(Uy) and the subclass SDo( U 1)
can be defined as the preimage under i} of SDo(Uy).

Now let k& be odd. According to Banagl (see [Bal]), there is an equivalence of catego-
ries

SD(Uy41) ~ SD(Uy) < Lag(Ups1 — Ux).

By inductive assumption, there is a small class SDy(Uy) = SD(Uy) so that every complex
A® € SD(Uy) is isomorphic to a complex in SDy(Uy). Let Lag, (U1 — Uy) be the subclass
of Lag(Uyy1 — Uy) defined setting:

LagO(Uk+1 — Uk) = {g e (Q(A') |A. € SDQ(Uk), P e Lag(Uk+1 — Uk)}.
In other words an element of Lag,( Uy — Uy) is a Lagrangian subsheaf of (/(A®), for some

A® € SDy(Uy). The class Lag, (Ui — Ux) is by construction a set and, moreover, every
Lagrangian structure is isomorphic to an element of Lag,(Ui.1 — Ux). In fact, if (&, ¢)
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is a Lagrangian structure over A® € SD(Uy), then there exist a complex B* € SDy(Uy)
and an isomorphism o : A* = B®. The Lagrangian structure (£, ) is now isomorphic to
(&, 0(2) o ¢) and consequently, since the map ¢(a) o ¢ : # — O(B®) induces an injection
in cohomology, % can be identified up to isomorphism with its image under ((«) o ¢ (here
we are using the fact that the cohomology of . is concentrated in degree s, and that
for this reason % is canonically isomorphic to H*(%)[—s]). Finally, SD¢(Uk) is defined
as the set of all complexes of sheaves of the form A*H.¥ for A®* e SDy(Ux) and
K e LagO(UkH — Uk). [l

A consequence of this result is the

Proposition 2.19.  There is a small subcategory €y < € of the category of H-stratifolds
so that every H-stratifold is isomorphic to an element of €.

Proof. Let %, be the class defined by
Co:={(X,7)| X e H#y,¥ = (A®,v) with A®* € SDy(X)}

where ) is a small subclass of the class of all stratifolds, such that every stratifold is iso-
morphic to an object in # (in the case of compact stratifolds this can be proved by show-
ing that a compact stratifold can be embedded in some Euclidean space).

Let (X, %) be any H-stratifold and take an isomorphism ¢ : ¥ = X with Y € #%.
The pull-back construction provides an H-structure ¢*.% over Y with the property that
(Y,p*) is isomorphic to (X,.#) as an H-stratifold. Now, according to Lemma 2.18,
there is an isomorphism « : B* = ¢*A® with B® € SDy(Y) and in particular it results

S ~T = (B', (@’Uz)*(v) o (“‘UZ))
Collecting these facts together, we get an isomorphism
(X, &) = (Y, ") ~(Y,T) et
and so the only thing left to show is that the class % is small, but this is clear since the
orientations of a stratifold are a set, and the same holds for the class of all normalizations

of a fixed complex. [

2.5. Collared H-stratifolds. In this subsection we introduce the notion of an H-
stratifold with boundary or, more precisely, of a collared H-stratifold.

Let (X,0X) be a pair of spaces with 0X closed in X, and suppose that ()G( , ) and
(0X,0%) are two H-stratifolds of dimension n and n — 1 respectively. Moreover, denote
by i and j the inclusions in X of X and dX, and by 7 the projection 60X x (0,+00) — 0X.

Definition 2.20. A collar of dX is a pair (¢, ¢) where

— ¢:V — Uisacollar of 0X as a topological stratifold;

— ¢ is an isomorphism of H-stratifolds
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9 (V=X x {0}, (1'09)y_sxxioy) = (U= 0X, 7|y ax)

whose first component ¢, is equal to ¢|;_;y, o). Here 7'09 is the product structure on
0X x (0,400).

Two collars (¢, ) : V' — U and (¢’,¢') : V! — U’ are said to be equivalent if there is
an open subset V" < V' n V', such that (¢, ¢)|,,, = (¢, 9")|,,». An equivalence class of collars
is called a germ of collars. If 0.X is compact, then it is possible to assume the collar to be of
constant length, that is to say of the form

(c,p): 0X x [0,4¢) — U.

Definition 2.21. A collared H-stratifold is a pair of spaces (X,dX), where (X, %)
is an n-dimensional H-stratifold, 0X is a closed subspace and an (n — 1)-dimensional H-
stratifold with H-structure 0.4, together with a germ of collars [(c,¢)]. The H-stratifold
(0X,09) is called the boundary of (X, 0X).

Example 2.22. Let (X,.%) be an H-stratifold with . = (A®,v).
(1) The product X x [0, 1] is a collared H-stratifold with boundary
(X, %)+ (=X,9),

where — X denotes the stratifold obtained reversing the orientation of X and the H-structure
on X x (0, 1) is given by the product structure z'.# described in subsection 3.3.3.

(2) Let i denote the inclusion of X x (0,1) in CX. If there exists an H-structure .7
on CX so that i*7 is isomorphic to 7'%, then (CX,.7) is a collared H-stratifold whose
boundary is isomorphic to (X,.#). We will see in the next subsection under which condi-
tions such an H-structure .7 exists.

The H-structure on the boundary of a collared H-stratifold X can be deduced directly
from the H-structure on the interior of X, as we are going to show. In order to simplify the
notation, we assume the collar to be of constant length, but the same argument applies
in the general case. Using the collar we can restrict our attention to a space of the form
X x [0,+¢) and we denote by 7, j, # the maps indicated in the following diagram:

i

X x(0,4¢) =, X x[0,+¢)

\ J=Jo
X.

Furthermore let p denote the projection X x [0,+¢) — X. As an easy consequence of the
Vietoris-Begle theorem one has the following identity (see [Bo], V,10.22).

Lemma 2.23.  For any complex A* € D*(X) it holds

Ri, m"A° ~ p*A°.
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In particular it follows that there is a natural equivalence
JYRi, m"A* ~ A
Now, it is showed in [Bal], Lemma 4.1, that there is an equivalence of functors
J' Ri,w*(=) = j' Rim* (=)[1]
and thus, for any complex of sheaves A* € D”(X), we get an isomorphism
A" S j'Ri'A”.

Corollary 2.24.  Let X be a collared H-stratifold with boundary (0X,0%’) and denote
by i and j the inclusions of X and of 0X in X. If & = (A®,v) is the H-structure on X, then
there is an isomorphism

(0X,09) ~ (0X,0)

where 0 = ( J Ry A®, j3 Riz[(v)) is the H-structure on the boundary defined in [Bal], Sec-
tion 4.2.

Observe that the product of two H-stratifolds defined in subsection 2.3 can be ex-
tended to the case when one of the factors is a collared H-stratifold.

The final part of this subsection is devoted to the gluing of H-stratifolds along the
boundary. Let X be an n-dimensional oriented stratifold, Y; and Y, be two open subsets
such that X = Y; u Y, and assume Y; and Y, endowed with the induced orientations.

Lemma 2.25. Let &) = (B, v1) and 9> = (B3, v2) be two H-structures over Y| and
Ys and furthermore suppose that there is an isomorphism of H-stratifolds

@ (Yl @ Y2a‘¢1|Y1mY2) - (Yl N Y2792|Y1HY2)'

Under these assumptions there is up to isomorphism a unique H-structure & = (A®,v) over X
together with isomorphisms ; : | Y, S which make the diagram

¢1|Y1ﬁYz % 9p2|Y]f'\Yz

N

y|Y1ﬁY2

commute.

Proof. An H-structure consists essentially of a perverse self-dual complex of sheaves
and we will show how to define such a complex of sheaves by constructing inductively a se-
quence of complexes A} € SD(Uy) together with isomorphisms

(Wj)Uk : A7c|Uka, = B;|Uk(Y;)

Let us write y; instead of (i/;), in order to simplify the notation.



Minatta, Signature homology 103
For k = 2, let us set
Az = RUZ [I’l] € SD(Uz)

The isomorphisms v/, and v, can be easily defined setting y; := vj‘1 and the commutativity
of the diagram

. 4 .
B1|U2(Y1(WY2) B2|U2(Y10Y2)

W\ ﬁﬂ

A. | Y] ) Y2
is now just a consequence of the definition of isomorphism of H-structures.

Now, assume to have already defined A} € SD(Uy), ¥, and y,, and consider the in-
clusions

i: Uk = U,
i U(Y1 0 Ya) = Ugr (Y10 ),
J:Z= U1 — Up = Uiq.
In order to define Ay, ;| we have to distinguish two cases.
e For k even, we set
A% = T<i(i)—n Ri. Ay € SD(Ug1).
The functor 7<x)—n Ri.(—) is by [GM] the inverse of i* : SD(Uy1) — SD(Uy), and con-

sequently A}, is a perverse self-dual complex of sheaves over Uy, ;. The isomorphisms
(¥)y,,, are defined through the composition

. . ° T<m(k)—n Ri. (l///) °
Alntly, = (< RiB) g ) == B]lu,, -

¢ Consider now the case k odd. By Banagl’s main result (see theorem 2.8), there are
two natural isomorphisms

Bilv,.. (v = Bily, v, BAMB]) and B|y (v, =By, (v, HAB)

where A(B}) = (%}, 4;) is the “canonical” Lagrangian structure over B;|;, . Identifying
B;|Uk(Y/_ ) with A’ Ui(Y) through the isomorphism ;, one has

B;|Uk+1(Y,-) = (A.|Uk(Y,-)) EA(B;)-

On the other hand, restricting ¢ to Uy+1(Y; N Y>) one obtains an isomorphism

. . i"pBA ) e .
Bilv,vinr BAB) I (viar) ——= Bilurinr) BABY)|u. (rinr)-
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By the inductive assumption, the diagram

. i .
B1|Uk Y]ﬁYz B2|Uk Y]ﬁYz)
\ ﬂ?
.
Ak|Uk Y]ﬁYz

commutes, and this allows to identify ¢|y; | (y,~y,) With the isomorphism

¢
$1|UH1 (YinY>) - (Q(A ‘mez)

alA' ll
2|Uk+1 Y]('\Yz) Tz> O(A ‘Y]ﬁYz)

where o is given by A(«).

If we set H = H’j"0(A}) and E; = H’j*(%))|y, (v, then we get a diagram

Y
1|Y1mYz — H|Y1ﬂY2

E2|Y1ﬁY2 T H|Y1f‘\Yz'

Now, we can glue the sheaves E; and E, through  and we obtain thus a sheaf E; the maps
y, and y, extend to an injection y : E — H. The image y(E) is a Lagrangian subsheaf and,
by lemma 2.6, this determines a Lagrangian structure (%, ¢) over A; such that, for j = 1,2,
there is an isomorphism (%, ¢)|y, .y, =~ A(B;). The complex Aj_, is finally defined by set-
ting

Al = ALB(Z,9).
The isomorphisms
(Wj)Uk+l : A7c+1|y, = B;|U,(+1(Y,)
are defined through the compositions
A2+1’Y, :A/'C|Uk( B (Z, ¢)|Uk+1 = |Uk HAB ) ~ B}‘UM(Y,)- (]
The preceding lemma allows to prove the following result.

Proposition 2.26. Ler (X, ) and (X', ') be two H-stratifolds, and suppose that
there is an orientation-reversing isomorphism

0 (6X,09) > (6X',09").

Then there is up to isomorphism a unique H-structure over X © X' which restricts to &
/ / 0X=0X'
over X and to &' over X'.



Minatta, Signature homology 105

Proof. The stratifold X u X’ is naturally decomposed in the union of the two open
sets

Y] = AX}U X//,
Yy :=0X x (—¢,+¢).
Both Y; and Y; are naturally endowed with an H-structure and these two structures are iso-

morphic if restricted on the intersection. Applying the previous lemma, we can thus obtain
an H-structure over X U X’ which extends ¥ and .%’. [

3. Signature homology

This section is devoted to the construction of the Signature homology functor Sig, (—)
and to the investigation of some of its properties. In particular we show that Sig,(—) is a
multiplicative homology theory and we compute its coefficients.

3.1. The functor Sig.(—). In order to simplify the notation let us indicate an
H-stratifold by its underlying stratifold. An n-dimensional singular H-stratifold over a
topological space X is a pair (S, f) where S is an n-dimensional closed H-stratifold and

f:S—-X

is a continuous map. We denote by %”"(X) the class of all n-dimensional singular
H-stratifolds over X. Two singular H-stratifolds (S, f), (S’, f') € €"(X) are called iso-
morphic if there is an isomorphism of H-stratifolds

p:S> S

such that, if ¢; denotes the first component of ¢, then the following diagram commutes:

SLS/
fl/
X.

If (S, f) is a singular H-stratifold, then we denote by — (S, f) the singular H-stratifold
(=S, f), where —S is the H-stratifold obtained reversing the orientation of S.

Definition 3.1. Two singular H-stratifolds (S, 1), (S’, f') € €"(X) are called bord-
ant, if there exists a pair (7, g) where T is a collared compact H-stratifold and ¢ is a map
T — X so that

(6T7g|67’) = (Saf) + (_Sl>fl)'

Using the standard argument one sees that the bordism of H-stratifolds is an equiva-
lence relation (observe that for transitivity one needs to glue H-stratifolds along the bound-
ary as explained in the last part of subsection 2.5) and let us denote by [S, /] the bordism
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class of (S, f). Furthermore we denote by Sig, (X) the quotient set of ¢”(X) under bordism
(due to proposition 2.19 there are no set-theoretical problems here).

Definition 3.2. The Abelian group Sig,(X) with the sum defined by the disjoint
union of bordism classes is called the n-th Signature homology group of X.

If g: X — Y is any continuous map, then we can associate to g a group homomor-
phism

g- : Sig,(X) — Sig,(Y),
[S, /1= 1[S,90 f].
In particular, this assignment allows to define a multiplicative functor
Sig.(—) : Top — Ab?,
X — Sig,(X) := @ Sig,(X)
where Ab? denotes the category of graded Abelian groups. Furthermore, since every ori-

ented topological manifold can be naturally realized as an H-stratifold we also obtain a
multiplicative functor

QI (~) — Sig,(-).

Now, we want to show that Sig, (—) is a multiplicative homology theory (here we are
following a general strategy developed by Matthias Kreck in [Kr]).

The proof of homotopy invariance of Sig,(—) is identical to the usual one and will
therefore be omitted. So we only have to consider the Mayer-Vietoris sequence.

Proposition 3.3. Let U and V be open subsets of a space X. Then there is an exact
sequence of Abelian groups

-~ — Sig,(Un V) — Sig,(U) ® Sig, (V) — Sig,(Uu V) — Sig, ,(UnV) — ---.
Proof. All morphisms except the boundary operator are clear by functoriality. To
define the boundary operator, consider a singular H-stratifold (S, f) € ¥"(X). The sub-
spaces As := f~'(X — V) and Bs := f~!(X — U) are closed and disjoint in S, and for this
reason there is a morphism
p:S—R
with p(4s) = +1 and p(Bs) = —1.

Applying the transversality theorem 1.19, one gets a homotopy of p relative to
A s Y BS

h:Sx[0,1] - R
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with the property that 0 is a regular value of ¢ = h(—, 1). The subset Z := ¢~ (0) = S'is an
(n — 1)-dimensional stratifold and there is a bicollar

i:Zx(—&+e) — S

such that ¢ (i(x,7)) = r. We indicate by j : Z — Z x (—¢, +¢) the inclusion x — (x,0) and
by 7 : Z x (—¢,+¢) — Z the projection on the first factor.

Since i is an open embedding, the H-structure of S can be pulled back to an H-
structure i*.% over Z X (—¢,+¢) and, by lemma 2.17, there exists a unique H-structure
T = j'i*% over Z so that it holds

T ~ i

Finally, if Z denotes the H-stratifold (Z,.7"), we define

d:Sig,(UuV)—Sig, ((UnV),
[Saf} = [Zaf|Z]

The proof that d is well defined as well as that of the exactness of the Mayer-Vietoris se-
quence are analogous to the ordinary ones and therefore left to the reader. []

Putting together the considerations above we obtain the

Theorem 3.4. The functor Sig,(—) is a multiplicative homology theory and there is a
natural transformation of multiplicative homology theories

QI (=) — Sig.(-).

3.2. The coefficients of Sig, (—). In this subsection we show that the signature of an
H-stratifold defined by Banagl allows to construct a ring isomorphism

Sig, (pt) ~ Z[1]
where the degree of the variable 7 is equal to 4.

Let S be a compact (4k)-dimensional H-stratifold and denote by % = (A®,v) the
H-structure of S. The self-duality isomorphism d : ZA®[4k] = A® induces by Verdier du-
ality an isomorphism in hypercohomology

HH(S,A%) = #7HK(S, DA [4k]) ~ #(S, ZA®) ~ Hom (# (S, A%), R)
or, equivalently, a non-degenerate symmetric bilinear form

RS A @ #7H(X,A%) — R.

Following Banagl, we call the index of this pairing the signature of S. If the dimen-
sion of S is not divisible by 4, one sets sig(S) = 0.
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The following three properties of the signature can be easily deduced from the defini-
tions:

(1) sig(S+ S’) =sig(S) + sig(S’);
(2) sig(=S) = —sig(S);
(3) if S and S’ are isomorphic H-stratifolds, it results
sig(S) = sig(S’).
Moreover, the signature is multiplicative with respect to the product of H-stratifolds.
Proposition 3.5. I S| and S, are two H-stratifolds then it holds

sig(S) x Sp) = sig(Sy) - sig(Sa).

Proof. Let %) = (A}, v) and %> = (A3, v,) denote the H-structure on S; and S, re-
spectively. It follows from [Bo], Theorem V,10.19, that there is an isomorphism of com-
plexes of real vector spaces

L L
[(S1;AY) @ IT'(S2;A%) ~ T(S) X Sy; A} @ 13A3),
and so, by the algebraic Kiinneth formula, there is an isomorphism

HK(S) X So, T A @ TEAS) =~ @ H(S),AY) ® A7 (Sy; AS).

i+j=k

Finally, one can apply the usual argument used to show the multiplicativity of the signature
of a manifold. [

Another fundamental property of the signature is given by the next proposition.

Proposition 3.6. If' S is a (4k + 1)-dimensional H-stratifold with boundary, then the
signature of 0S is zero.

Proof. Let ¥ and 0.4 denote the H-structure of Sand oS respectively. By corollary
2.24, there is an isomorphism of H-stratifolds

(0S,09) ~ (8S,0)

where 0.7 is the H-structure defined in [Bal], Section 4.2. In particular, since sig(dS,0%) is
zero by [Bal], Corollary 4.1, it results

sig(0S,09) =sig(dS,09) =0. [

The proposition above implies that the signature can be used to define a homomor-
phism of graded rings

v« Sig,({pt}) — Z[1],
[S] — sig(S) - rdimS/4,
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Remark 3.7. If M is a 4k-dimensional compact oriented manifold, then it results
H (X, Ry [4k]) = H* (X, R)

and in particular the signature of M as an oriented manifold equals the signature of
(M, Ry[4k],1d) as an H-stratifold.

Proposition 3.8. The ring homomorphism vy is an isomorphism.

Proof. The map y is evidently surjective and therefore we only have to prove its in-
jectivity. Since the case n = 0 is trivial, we can assume the dimension of S to be strictly pos-
itive. The general strategy will be to show that, if S is an n-dimensional H-stratifold with
7(S) = 0, then there exists an H-structure on the cone over S, so that S ~ J(CS). Let v be
the vertex point of CS, and denote by =, i and j the maps indicated in the diagram:

Sx(0,1) = €55 (v}
|
S.
Using the notation introduced in subsection 2.1, one has
Upi1 =S x(0,1) and U,y = CS.
We have already seen in subsection 3.5 that the problem is to extend the product structure
(n'A®, ')

over S x (0,1) to an H-structure over CS. If n is odd, this can always be done applying
theorem 2.4 and so it is enough to consider the case n = 2m.

Now, since we have supposed sig(.S) = 0, it follows that there exists a Lagrangian
subsheaf

L #(S,A%)

and we have to show how such a Lagrangian subspace gives rise to a Lagrangian structure
on 7'A®. Note that a Lagrangian subspace always exists if 4 } n.

As we have seen in lemma 2.6, a Lagrangian structure over n'A® is the same as a
Lagrangian subsheaf

H = Hr‘t(n+1)f(n+l)(j* Ri, 77.'IA.).

In our case, however, H is a sheaf over {v} and so it can be identified with the vector space
H,. Since we have assumed n = 2m, it results

2m+1—1

ﬁ(n—i—l)—(n—i—l):{ 5

]—2m—1:—m—1.
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Substituting this expression and the canonical identification 7' ~ 7*[1], we can also write
H~H"""(j*Ri,n*A*[1]) ~ H ™ (j* Ri, n*A®).

By slightly adapting the proof of lemma 2.23 one can easily show that, if A* = I° is
the canonical injective resolution of A®, then the resolution

n*AO ; TE*I.

can be used to compute Ri,. Using this fact, the vector space H can be identified with the
stalk at v of the sheaf H™" (i,7*1°).

On the other hand, the stalk at v of H " (i.,z*I°) is isomorphic to the (—m)-th co-
homology of the complex of vector spaces (i,7*I1*),. The latter is by definition equal to

: . xye\ _ 13 .1 *70\ ~ 1; 3 xye
EQF(U,l*nI)—}}glb‘F(l (U),nl)_l‘li}lgr(Sx(O,c),nI),

where the last isomorphism follows from the compactness of S.
Since 7*I°® is constant on the fibres, one has

lim T'(S x (0,¢),x"1*) ~ lim [(S,1*) ~ T(S.1%).
£—

e—0

In particular, this computation shows that we can identify H with the (—m)-th cohomology
space of the complex I'(S,I°) or, in other words, that there is an isomorphism

H~ #"(S,A%).

It follows from the definition of the bilinear form on H (see [Bal], Lemma 2.4 and
[GM], Section 5.2), that the diagram

HQH —— # "(S,A°) ® # (S, A")

|_—

R

commutes. This means that the Lagrangian subspace L — # (S, A®) induces a Lagran-
gian subspace L — H and thus a Lagrangian structure on n'A®. Finally, by theorem 2.7,
there is an H-structure over CS extending the product structure over S x (0,1) and there-
fore it results

S =0(CS). O

4. The Signature fundamental class of a manifold

In the following pages we show how to use Signature homology to construct a char-
acteristic class for closed oriented manifolds, and we explain the connection between the
Novikov conjecture and Sig, (—).
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Let M be an n-dimensional topological oriented closed manifold.

Definition 4.1. The Signature fundamental class of M is by definition the element

[M] :=[M,1d] € Sig,(M)
where M has the trivial H-structure.

It follows from the definition that the Signature fundamental class is invariant under
orientation-preserving homeomorphisms. In order to understand the information carried on
by the characteristic class, we will restrict our attention to the case of a smooth manifold.

4.1. Signature homology with rational coefficients. Let us denote by Q.(—) the

smooth oriented bordism and by Q. its ring of coefficients. Moreover consider the natural
transformation

Q.(-) = Sig.(-)
given by regarding an oriented smooth manifold as an H-stratifold with the trivial

H-structure and denote by u, the ring homomorphism induced on the coefficients. The
ring Z[t] is an Q,-module with the multiplication induced by the genus

Q. 5 71,
[M"] — sig(M) - t"/4,
It is well known that for any space X there is an isomorphism
QX)®Q~H,(X;Q.® Q).
In particular the functor Q. (—) ®, Q[7] is isomorphic to singular homology with coefficients

in Q[7] and so it is a homology theory. Now, the product of a singular manifold with an
H-stratifold induces a family of natural homomorphisms

Q.(X) ®,, Sig,(pt) — Sig,(X),
M, f]1®,, [S]— [M xS, fon].

After tensoring with @ and precomposing with
1®(®0)": Q.X)®, Q] = Q.(X) ®, Sig.(p) ® @
we get by the comparison theorem that the transformation
Q.(X) ®, Q] — Sig.(X) ® @
is an isomorphism.

On the other side Hirzebruch’s L-class (see [MS]) allows to define a natural transfor-
mation
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41 Qu(X) — H.(X;Ql]),
(M, f] = f.(AL(M))
where A is the Poincaré duality isomorphism
H (M) — H, (M)
and
L(M) = kgoLk(Ph copi) - 15 € HO(M; Q)
is the total L-class of M.
Passing to rational coefficients one gets an isomorphism
Q.(-) ®; Q[f] = H.(—;Q[1)),
and collecting all these facts together one has the following
Proposition 4.2. There exists an equivalence
¢ : Sig,(X) ® Q@ = H.(X; Q1))

such that the diagram

Q.(X) 2% Sig. (X)) ® ©

[ 7

H.(X; Q[1])

commutes. Here u ® Q denotes the composition of the transformation u : Q.(—) — Sig,(—)

defined above with the inclusion Sig,(—) — Sig,(—) ® Q.
In particular for a smooth oriented n-dimensional manifold M one has
Corollary 4.3. If M is an n-dimensional smooth oriented manifold M, then it holds
¢.(IM,1d]) = AL(M) € H,,(M; Q[1]).

Since the rational Pontrjagin classes of a manifold M determine and at the same time
are determined by the total L-class of M, one can also interpret this result as follows.

Meta-theorem. The rational Signature fundamental class of a manifold contains the
same information as the rational Pontrjagin classes.

For example, according to a theorem of Dold and Milnor, the rational Pontrjagin
classes of a manifold are not homotopy invariant and so we see that the Signature funda-
mental class cannot be a homotopy invariant.
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4.2. The L-class of an H-stratifold. The construction of the isomorphism ¢ above
can be made more explicit by introducing the homology L-class of an H-stratifold. This
procedure is based on Thom’s work on the combinatorial invariance of Pontrjagin classes
(see [MS]) and has also been analyzed by Banagl in [Ba2].

Let Y be a compact H-stratifold of dimension n and let
"=

be a morphism, with n — r = 4i. By a modification of the transversality theorem there is at
least one point y of S” which is a regular value of /. The inverse image f~!(y) is a compact
oriented 4i-dimensional H-stratifold whose signature is independent of y and will be there-
fore indicated by (/). The integer o(f) depends only on the homotopy class of f. Further-
more, if 4/ < (n — 1)/2, then the correspondence f — a(f) defines a homomorphism

n'(Y)—Z

where 7”(Y) denotes the r-th cohomotopy group of Y. According to Serre (see [MS]), the
homomorphism

nn—4i(y) N Hn—4i(y)
is a rational isomorphism and therefore o induces a homomorphism
H"™(Y) - Q

or equivalently a class /;(Y) € H,_4;(Y; Q). Putting these homology classes together one can
define the element

[(Y) e H,(X;Q1])

which is called the homology L-class of Y (observe that, due to the failure of Poincaré du-
ality, there only exists a homology L-class). The class /(Y) allows to re-define the isomor-
phism ¢ of the previous section as follows:

Sig,(X) ® @ — H.(X;Q[]),
1Y, [l £I(Y).

Finally it is important to observe that by a result of Banagl the L-class of an
H-stratifold does not depend on the chosen H-structure (see [Ba2]).

4.3. An integral formulation of the Novikov conjecture. In this subsection we want to
show that the Novikov conjecture for a group 7 is equivalent to the homotopy invariance
of the rational Signature fundamental class for singular manifolds over K (7, 1).

Let = be any discrete group, and let us fix any rational cohomology class
xe H*(K(m,1); @). By definition the higher signature sig, of a singular manifold (M, x)
over K (=, 1) is the rational number
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sig (M, o) = CL(M) vo'x,[M]) = (x,0.(AL(M))).
Moreover recall that the number sig, is said to be homotopy invariant if for every singular
manifold (M, «) and for every orientation-preserving homotopy equivalence f : N — M it

holds

sig,. (M, o) = sig,.(N,o0 f).

The Novikov conjecture. All higher signatures are homotopy invariant.

Before we come to the announced connection between the Novikov conjecture and the
signature fundamental class of a manifold we need to explain what we mean by homotopy
invariance of the latter.

Definition 4.4. The Signature fundamental class is homotopy invariant for a group
n if for every pair (M, o), and for every orientation-preserving homotopy equivalence
f: N — M, it results

M.a] = [N,20 f] € Sig, (K (x. 1)).

This terminology allows to formulate the following

Proposition 4.5. The Novikov conjecture for a group 7 is equivalent to the homotopy
invariance of the rational Signature fundamental class for .

Proof. 1f (M, ) is a singular manifold over K(zx, 1), then one has
sig (M, 0) = (x, 0. (AL(M))) = {x,9,([M,a])>
and thus it is clear that it results
sig, (M, o) = sig,.(N,o0 f)
for any x € H*(K(m,1); Q), if and only if
[M,0) = [N,o0 f] eSig,(K(z,1)) @ Q. O

The proposition above suggests that an integral version of the Novikov conjecture can
be obtained requiring the homotopy invariance of the Signature fundamental class.

Integral Novikov problem (M. Kreck). Determine all discrete groups z for which the
Signature fundamental class is homotopy invariant.

Unfortunately nothing is known about this generalization of the Novikov conjecture.
However, if one replaces the homotopy invariance with the topological invariance then the
statement is always true (this follows from the topological invariance of the signature fun-
damental class).
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4.4. Signature homology at odd primes. Applying the Landweber exact functor the-
orem, we show in this subsection that the Z[1/2]-localization of Signature homology is iso-
morphic to connective KO-theory.
By the Landweber exact functor theorem (see [La], Example 3.4), the tensor product
Q.(-) ®. Z[1/2)[t, 1]
is a homology theory and therefore u induces an isomorphism
Q.(-) ®. Z[1/2)[t,r”"] = Sig,(-) ® Z[1/2][r'].
On the other hand, the map of spectra

MSpin — MSO

is a Z[1 /2]-equivalence and so one can define a map v : MSO — KO[1/2] through the com-
position

MSO[1/2] — MSpin[1/2] — KO[1/2]

where the last map is induced by the Atiyah-Bott-Shapiro M Spin-orientation of KO-theory.
The map v defines a natural transformation

Q.(-) — KO.(-)[1/2].
According to a theorem of Sullivan (see [MM]), the ring homomorphism v, induced by the

transformation v for X = {pt} coincides with the ring homomorphism z. In particular, it
results

Q=) @ Z[1/2][t,17'] = Q.(~) ®,, (KO.(pt)[1/2]).
and so, applying again the Landweber exact functor theorem, we get an isomorphism
Q.(-) ®,, KO.(pt)[1/2] = KO.(-)[1/2].
The diagram

Q.(—) ®. Z[1/2][t, '] = Sig,(—) @ Z[1/2][t""]

>
>
>
~ -
~
~ ~
~ —
>
-
>
«

provides an isomorphism
Sig,(—) ® Z[1/2][r"'] ~ KO.(X)[1/2]

and passing to the connected coverings one concludes the proof of the following
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Proposition 4.6.  There is an isomorphism
Sig.(—) ® Z[1/2] = ko.(-)[1/2].

4.5. Signature homology at the prime 2. In this subsection we show that the 2-
localization of the signature homology is isomorphic to singular homology with coefficients
in the ring Z ) [1].

What we need is the following result due to Wall (see [CF]).

Theorem 4.7. There is a natural equivalence of functors
Q(X)®Zp ~H (X;Q. ® Z).
From the previous fact it follows
Corollary 4.8. There is a natural equivalence of functors
¢~ Ho(— Zp)[t]) = Sig.(—) ® Z).

Proof- First of all observe that the isomorphism of theorem 4.7 implies the existence
of a natural equivalence

Q.(=) ®: Zp[t] = Ho(— Q) ®; Zpa)[1]
where the tensor products are taken as Q,-modules.

Now the desired isomorphism is given by the composition of the following transfor-
mations:

H, (=) ®Zp)[f] = H(—) @ Q. ®. Zp)lt] = Ho(—Q.) ®, Z)l]

-
-~
~
~
~
-~ ~
~_ =
~
~
~
-

oo Q. () ®; Zplt]

Sig, (=) ® Z(y).

Finally it is easy to check that the induced natural transformation is an isomorphism on the
coefficients. []

Observe that in the 2-local setting it is not possible to find a direct proof of the iso-
morphism above which uses the L-class of an H-stratifold. In fact, if one tries to mimic the
construction of section 4.2, one sees that rational coefficients are really necessary in order to
use Serre’s theorem.

The importance of the result above is explained by the following
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Corollary 4.9. For any closed oriented topological manifold M there exists a co-
homology class L'(M) € H* (M Z ) with the property that the evaluation of L'(M) on the
Sfundamental class of M is the signature of M. Moreover L'(M) is a topological invariant.

Proof. The class L'(M) can be defined as the image of the signature fundamental
class [M] € Sig, (M) ® Z») under the isomorphism

. A s
Sig,(M) ® Z2) —— Hy(M;Z3)[f]) = H*(M;Zp)[1]) = ke% H¥*(M;Z0). O

4.6. The relation between Sig, (—) and the classifying space for surgery. In this last
subsection we use the signature homology to obtain an integral formulation of Kirby-
Siebenmann’s theorem about the homotopy structure of G/Top. The reader is referred to
[MM] and [KiSi] for more details.

Let Top, denote the topological group of homeomorphisms f : R” — R", f(0) =0
and let G, denote the topological monoid of homotopy equivalences of S”~!. The natural
map Top, — G, induces a sequence of maps BTop, — BG, on the classifying spaces and
after stabilization one gets a map

BTop — BG.

Let G/ Top be the fibre of the map above and recall that G/Top is the classifying space for
surgery problems on simply connected topological manifolds.

Now, let
WMy L ¢
M L x

be the normal map associated to a map y : X — G/Top. By the process of surgery we can
always assume f to be a homotopy equivalence for n odd and to be (n/2) — 1 connected if
n is even. The obstruction to complete the surgery for n even is given by an Arf invariant
with values in Z/2 if n = 4k + 2 and by sig(M) — sig(X) € 8Z if n = 4k. In particular this
procedure allows to define a map

s: [X", G/Top] — L,(0)

where L,(0) = L;(0), L,(0),... is the four-periodic sequence

By taking X = S” we see that the surgery obstruction defines a map
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s : m,(G/Top) — L,(0).

One of the main results in the theory of topological manifolds is the following theorem of
Kirby and Siebenmann (see [KiSi]).

Theorem 4.10 (Kirby and Siebenmann). The surgery map
s: 7, (G/Top) — L,(0)
is an isomorphism for all n = 1.

In particular, it follows from the theorem above that the homotopy groups of G/Top
are given by the formula

z forn=0 (mod4),n =1,
m,(G/Top) ~ Z/2 for n=2 (mod4),
0 else.

Now we want to look deeper into the surgery obstructions and their relation with the
signature homology.

Lemma 4.11.  The surgery obstruction
[X4ka G/ TO])] _Y> L4k (0)
factorizes through Sigy, (G/Top) as showed in the following diagram:

[X*,G/Top] —— Z

o
~
-
-
-
e S7
-

Sig4(G/Top).

Proof. Let [y]: X — G/Top be a homotopy class. By the homotopy invariance of
signature homology, [y] defines a unique bordism class [X,y] € Sigy,(G/Top) and so we
only have to show that, if (X,y) is zero-bordant in Sig,;, (G/Top), then it holds

s(X,y)=0.

Let us assume that (X,y) is the boundary of a pair (W, F) where W is a closed 4k + 1-
dimensional H-stratifold and F is a map from W into G/Top which is an extension of .
The maps F and y define stable topological bundles A over W and # over X respectively so
that it holds 4|,,;, = 7. Both of these stable bundles are trivial as a spherical fibration and so
taking representatives we have a fiber homotopy equivalence

A —— W xR

&

|

w1, w.
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Now, by the transversality theorem we can assume ¢ to be transverse to W x 0 and
we can set T := ¢! (W x 0). In particular, if M — X denotes a representative of the sur-

gery problem associated to y, then we see that M is bordant to 07 and so that it is zero-
bordant. Finally, this fact together with the bordism-invariance of the signature imply

s([y]) = sig(M) —sig(X) =0. O

The case n = 4k + 2 can be treated in a similar way: in fact one can prove that the
Kervaire invariant is a bordism invariant and thus one gets the following factorization

[(X*+2 G/ Top)| —— 7/2
/

—
—

—~
-
7

—~ SK

—
-

Rii!5(G/ Top)
where 9t/””(—) denotes the non-oriented topological bordism.
Next we need the following result from Anderson and Kainen (see [Yo]).

Theorem 4.12. Let h.(—) be a multiplicative homology theory with the property that
multiplication induces an isomorphism

h.(pt) = Hom(h_.(pt), Z).
Then for any X there is a short exact sequence
0 — Ext(h,_1(X),Z) — h*(X) — Hom(h.(X),Z) — 0.

Unfortunately the signature homology functor does not satisfy the conditions of the
theorem above. However it is quite easy to overcome this problem by considering the peri-
odic homology theory associated to Sig, (—). This new functor, which we denote by Sig, (—),
is obtained by formally inverting the class of [CP?] or more precisely by considering the ring
homomorphism Sig, (pt) — Z[t, '] induced by [CP?] — ¢ and then by setting

Sig, (X) = Sig,(X) ®sig. (o) Z[1, 1 ].

Now, the homology theory Sig, (—) satisfies the condition of theorem 4.12 and so it
follows that every homomorphism from Sig,(X) to Z lifts to an (in general not unique)
element in Sig*(X).

Moreover, if

y: N — G/Top

is a surgery problem over N and if M is a closed oriented manifold, then the surgery ob-
struction of the problem

MxNENLG/Top
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satisfies
SI(M X N7y07[2) = SI(Nay) ’ Slg(M)

In particular this formula implies that the homomorphism s; factorizes through
Sig,,(G/Top) and so we get a map

sy = Sigy,(G/Top) —— Z

—
—
—
—
_
-
_
—
—

—~

Siga(G/Top).
According to Kainen’s theorem the homomorphism
st - Sigy,(G/Top) — Z
can be lifted to an element of
K, € Sig"(G/Top) = Sig’(G/ Top) = [G/Top,Q” Sig]

where Q” Sig is the Q*-space of the spectrum of Sig,(—). On the other hand, since Sig, (—)
corresponds to the (—1)-connected cover of Sig, (—), it follows that there is an equivalence

Q” Sig ~ Q” Sig.
Notice that an explicit construction of Q” Sig as a semi-simplicial set can be obtained using
the so called Quinn’s construction (see [Qu2]). The space Q* Sig has the form X x Z and
since G/ Top is connected we get a homotopy class

G/Top K.

A similar construction for the Kervaire invariant provides a family of homotopy
classes

Kyy—2: G/Top — K(Z/2,4n —2), forn=1.
It is perhaps useful to notice that this construction requires the existence of an isomorphism
N/7(X) > H(X;R]),
which follows, for instance, from a more general result of Pazhitnov and Rudyak (see [PR]).

Taking representatives for the homotopy classes K and K4,_, we can define a contin-
uous map

6:G/Top— = x [[K(Z/2,4n—2).

n=1

The main result of this last part can now be stated.
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Theorem 4.13. The map ¢ is an homotopy equivalence.
Proof.  Since we know that the homotopy groups of G/Top are given by the formula

z for n =0 (mod4),
n,(G/Top) ~< Z/2 for n=2 (mod4),
0 else,

it is clear that in order to prove the theorem it is enough to show that ¢ induces isomor-
phisms on homotopy groups in every dimension. In particular we know that the generators
Iy € T, (G/ Top) are specified by the condition

s(SY 14,) = 1, sg(SY 2 1, 0) = 1

so that K and Ky, evaluate to 1 on the homotopy generators in every dimension and the
theorem follows. []

As a corollary one gets in particular the following two results due to Sullivan and
Kirby-Siebenmann.

Corollary 4.14.  There are the following homotopy equivalences:
(1) at two

G/Topy) ~ ];[1 K(Z),4n) x K(Z/2,4n — 2);
(2) at odd primes _

G/Top[1/2] ~ BO[1/2].
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