On boundary-link cobordism

By WASHINGTON MIO

Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina, 110, Rio de Janeiro - R.J. - 22.460, Brazil

(Received 13 May 1986)

0. Introduction

An n-dimensional m-component link is an oriented smooth submanifold Σ^n of S^{n+2} , where $\Sigma^n = \Sigma_1^n \cup \ldots \cup \Sigma_m^n$ is the ordered disjoint union of m submanifolds of S^{n+2} , each homeomorphic to S^n . Σ is a boundary link if there is an oriented smooth submanifold V^{n+1} of S^{n+2} , $V^{n+1} = V_1^{n+1} \cup \ldots \cup V_m^{n+1}$ the disjoint union of the submanifolds V_i^{n+1} , such that $\partial V_i = \Sigma_i$ $(i = 1, \ldots, m)$. A pair (Σ, V) , where Σ is a boundary link and V as above, with each V_i connected $(i = 1, \ldots, m)$, is called an n-dimensional special Seifert pair. In this paper, we define a notion of cobordism of special Seifert pairs and give an algebraic description of the set (group) of cobordism classes.

Let (Σ, V) and $(\overline{\Sigma}, \overline{V})$ be special Seifert pairs.

Definition 0.1. (Σ, V) and $(\overline{\Sigma}, \overline{V})$ are w-cobordant if there are oriented disjoint submanifolds W_i^{n+2} of $S^{n+2} \times I$ (i = 1, ..., m) such that

- (i) W_i intersects $S^{n+2} \times \{0\}$ and $S^{n+2} \times \{1\}$ transversely at V_i and \overline{V}_i , respectively.
- (ii) $\partial W_i = V_i \cup M_i \cup \overline{V}_i$, where $M_i \cap V_i = \Sigma_i$, $M_i \cap \overline{V}_i = \overline{\Sigma}_i$ and M_i is homeomorphic to $S^n \times I$.

It is known that, for n even, any two special Seifert pairs are w-cobordant. For a proof, see [5] for m = 1 and [3] or [1] for the general case.

Let B(n, m) be the set of w-cobordism classes of (2n-1)-dimensional special Seifert pairs with m components. When m = 1, B(n, m) coincides with the knot cobordism group which, for $n \ge 2$, has been described algebraically by J. Levine in [7] as a cobordism of matrices via Seifert forms; this algebraic description was reformulated by Kervaire [6] in terms of isometric structures and its structure completely determined by Stoltzfus in [10] (see also [8]).

Here, we extend the methods of [7] and [6] to obtain a similar description of B(n,m), for $n \ge 3$, m > 1. Ambient connected sum of Seifert pairs provides B(n,m) with an abelian group structure, which is shown to be isomorphic to a certain cobordism group $C(\epsilon_n, m)$ of isometric structures to be defined below. This formulation allows us to consider some obstructions to splitting a special Seifert pair up to cobordism, where a pair (Σ, V) is called split if there are disjoint balls B_i^{2n+1} in S^{2n+1} such that $V_i \subset \text{int}(B_i)$ (i = 1, ..., m). We show that, for n even, n > 3, there are infinitely many linearly independent non-splittable elements in B(n, m).

We remark that Cappell and Shaneson have considered a stronger notion of equivalence of boundary links in [1]: Σ and $\overline{\Sigma}$ are equivalent if there are w-cobordant special Seifert pairs (Σ, V) and $(\overline{\Sigma}, \overline{V})$. The group of equivalence classes is computed in terms of their Γ groups [2] and they obtain some strong results on the existence of non-splittable cobordism classes of links.

1. Geometric preliminaries

Let (Σ, V) be a (2n-1)-dimensional special Seifert pair, $n \ge 3$.

Definition 1·1. (Σ, V) is a simple pair if each V_i is an (n-1)-connected manifold (i = 1, ..., m).

Proposition 1.2. Any special Seifert pair (Σ, V) is w-cobordant to a simple pair.

Proof. The arguments of [5] show that by performing a finite sequence of surgeries on the V_i 's we can make the components Σ_i of the link bound disjoint (n-1)-connected submanifolds \overline{V}_i^{2n} of D^{2n+2} $(i=1,\ldots,m)$. More precisely, there are disjoint connected (2n+1)-submanifolds W_i of D^{2n+2} and embeddings $k_i \colon V_i \times I \to W_i$ $(i=1,\ldots,m)$ such that

- (a) $W_i \cap S^{2n+1} = V_i$ and $k_i(x,t) = \frac{1}{2}(t+1)x$.
- (b) $\partial W_i = V_i \cup k_i (\partial V_i \times I) \cup \overline{V_i} \text{ and } \overline{V_i} \cap k_i (\partial V_i \times I) = k_i (\partial V_i \times \{0\}).$
- (c) \overline{V}_i is (n-1)-connected $(i=1,\ldots,m)$.
- (d) W_i is obtained from $k_i(V_i \times I)$ by attaching handles of index $\leq n$ to $k_i(V_i \times \{0\})$.

As in [7], we apply the engulfing theorem of Hirsch and Zeeman, whose hypothesis we now proceed to verify, to embed a (2n+2)-ball D_0 in the interior of D^{2n+2} with $D_0 \cap W_i = \overline{V}_i$ $(i=1,\ldots,m)$. In the notation of [4] we let $X = \overline{V}_1 \cup \ldots \cup \overline{V}_m$ and $V = D^{2n+2}$ with cuts along the W_i 's. As we have attached only handles of index $\leq n$ to $V_1 \cup \ldots \cup V_m$, successive applications of Van Kampen's theorem, Hurewicz theorem and Mayer-Vietoris sequence show that $D^{2n+2} - W$ is n-connected. On the other hand, X is n-collapsible since the \overline{V}_i 's are (n-1)-connected. This and the n-connectivity of $D^{2n+2} - W$ imply the Dehn cone condition and complete the verification of the hypothesis of the engulfing theorem. By the h-cobordism theorem, there is a diffeomorphism $h: D^{2n+2} - \operatorname{int}(D_0) \to S^{2n+1} \times I$. Then, h(W) provides a w-cobordism between (Σ, V) and $(h(\partial \overline{V}), h(\overline{V}))$ which is a simple pair.

We now define an operation in B(n,m) which induces an abelian group structure. Let $x,y\in B(n,m)$ be w-cobordism classes; by Proposition 1·1 we can find simple pairs (Σ,V) and $(\overline{\Sigma},\overline{V})$ representing x and y, respectively. We choose a collection α of disjoint simple smooth curves α_i $(i=1,\ldots,m)$ in $S^{2n+1}-{\rm int}\,(V\cup\overline{V})$ connecting Σ_i to $\overline{\Sigma}_i$ so that α_i intersects the links transversely only at its endpoints.

Definition 1.3. A family α of curves as above is called an allowable collection for the simple pairs (Σ, V) and $(\overline{\Sigma}, \overline{V})$.

Let $(\Sigma,V) \not\equiv_{\alpha} (\overline{\Sigma},\overline{V})$ be the simple pair obtained by taking the sum of (Σ,V) and $(\overline{\Sigma},\overline{V})$ along the allowable collection $\alpha=\{\alpha_i,\,i=1,\ldots,m\}$. We set $x+y=[(\Sigma,V)\not\equiv_{\alpha} (\overline{\Sigma},\overline{V})]$, where the brackets denote w-cobordism class; this operation is well-defined because for a simple pair $(\Sigma,V),\pi_1(S^{2n+1}-V)=0$, since each V_i is simply connected.

Taking the pair formed by the trivial m-link in S^{2n+1} and m disjoint bounding discs as the zero element in B(n,m) $(n \ge 3)$, and arguing as in (ii) of Theorem 3.3 below, we see that for $x \in B(n,m)$ and (Σ,V) a simple pair representing $x, (-\Sigma,-V)$ represents its inverse, where $(-\Sigma,-V)$ is the simple pair obtained from (Σ,V) by reversing the orientations of the components of Σ , V and S^{2n+1} . This completes the description of the abelian group structure of B(n,m).

 $R\epsilon \ \langle x_i, : \ D\epsilon$

(i

(ii

〈 ,
satis
(i
(ii

Lobe is (a

 $(N_1,$

(b that

D

stru Co ison

und stru [(M

clas T forn

P and

P Her fror

whe

2. Isometric structures

Let m be a positive integer and $\epsilon = \pm 1$.

Definition 2·1. An (ϵ, m) -symmetric isometric structure over $\mathbb Z$ is a (2m+1)-tuple $(M_1, \ldots, M_m, \langle \ , \ \rangle_1, \ldots, \langle \ , \ \rangle_m, t)$, where M_i is a finitely generated free $\mathbb Z$ -module, $\langle \ , \ \rangle_i$ is an ϵ -symmetric bilinear form on M_i $(i=1,\ldots,m)$ and $t: M \to M$ is an endomorphism of $M = \bigoplus_{i=1}^m M_i$, satisfying:

(i) \langle , \rangle_i is unimodular (i = 1, ..., m).

(ii) $\langle t(x), y \rangle = \langle x, (1-t)y \rangle, \forall x, y \in M, \text{ where } \langle , \rangle = \bigoplus_{i=1}^{m} \langle , \rangle_{i}$

Remark. (ii) implies $\langle t(x_i), x_j \rangle = -\epsilon \langle t(x_j), x_i \rangle$, if $x_i \in M_i$, $x_j \in M_j$ and $i \neq j$, since $\langle x_i, x_j \rangle = 0$.

Definition 2.2. An (ϵ,m) -symmetric isometric structure $\sigma=(M_1,\ldots,M_m,$ $\langle \ ,\ \rangle_1,\ldots,\langle \ ,\ \rangle_m,t)$ is metabolic, if there are submodules N_i of M_i $(i=1,\ldots,m)$ satisfying:

 $\text{(i)} \ \ N_i = N_i^\perp, \text{ where } N_i^\perp = \{x_i \in M_i \, | \, \langle x_i, n_i \rangle_i = 0, \, \forall \ n_i \in N_i \}.$

(ii) $N = \bigoplus_{i=1}^{m} N_i$ is invariant under t.

 $\begin{array}{l} (N_1,\ldots,N_m) \text{ is called a } \textit{metabolizer} \text{ for } \sigma. \\ \text{Let } \sigma = (M_1,\ldots,M_m,\langle \ ,\ \rangle_1,\ldots,\langle \ ,\ \rangle_m,t) \text{ and } \tau = (N_1,\ldots,N_m,(\ ,\)_1,\ldots,(\ ,\)_m,s) \\ \end{array}$

be isometric structures.

(a) Addition is defined by

$$\sigma + \tau = (M_1 \oplus N_1, \dots, M_m \oplus N_m, \langle , \rangle_1 \oplus (,)_1, \dots, \langle , \rangle_m \oplus (,)_m, t \oplus s).$$

(b) σ is isomorphic to τ , if there are isomorphisms $f_i \colon M_i \to N_i \ (i=1,\ldots,m)$ such that $\langle x_i, y_i \rangle_i = (f_i(x_i), f_i(y_i))_i, \ \forall \ x_i, y_i \in M_i \ \text{and} \ f \circ t = s \circ f, \ \text{where} \ f = \bigoplus_{i=1}^m f_i.$

Definition 2·3. The isometric structures σ and τ are cobordant if there are metabolic structures η_1 and η_2 such that $\sigma + \eta_1$ is isomorphic to $\tau + \eta_2$.

Cobordism determines an equivalence relation in the set of (ϵ,m) -symmetric isometric structures. The set of equivalence classes, $C(\epsilon,m)$, forms an abelian group under the previously defined addition with zero element represented by metabolic structures and the inverse of $[(M_1,\ldots,M_m,\langle\ ,\ \rangle_1,\ldots,\langle\ ,\ \rangle_m,t)]$ given by $[(M_1,\ldots,M_m,-\langle\ ,\ \rangle_1,\ldots,-\langle\ ,\ \rangle_m,t)]$, where the brackets denote equivalence class.†

To an isometric structure σ there is associated a Seifert form which is the bilinear form $\theta: M \times M \to \mathbb{Z}, M = \bigoplus_{i=1}^m M_i$, defined by $\theta(x,y) = \langle t(x), y \rangle$.

PROPOSITION 2·4. If $N_i \subset M_i$ (i = 1, ..., m) are submodules with rank $M_i = 2$ rank N_i and $\theta(x, y) = 0, \forall x, y \in N = \bigoplus_{i=1}^{m} N_i$ then σ is metabolic.

Proof. $\langle t(x), y \rangle = \langle x, (1-t)y \rangle$ can be rewritten as $\theta(x,y) + \epsilon \cdot \theta(y,x) = \langle x,y \rangle$. Hence, if $x,y \in N_i$, $\langle x,y \rangle_i = \langle x,y \rangle = 0$ and therefore $N_i \subset N_i^{\perp}$. On the other hand, from the exact sequence

$$0 \! \to \! N_i^{\perp} \! \to \! M_i \stackrel{\operatorname{Ad}}{\to} \operatorname{Hom}_{\mathbb{Z}} \left(N_i, \mathbb{Z} \right) \! \to \! 0,$$

where $\operatorname{Ad}(m_i) \in \operatorname{Hom}_{\mathbb{Z}}(N_i, \mathbb{Z})$ is given by $\operatorname{Ad}(m_i)(n_i) = \langle n_i, m_i \rangle, n_i \in N_i$, it follows

† $C(\epsilon, 1)$ coincides with the group $C^{\epsilon}(Z)$ of [6] and [10].

 $k_i(V_i \times \{0\})$. hypothesis D^{2n+2} with $... \cup \overline{V}_m$ and findex $\leq n$ icz theorem other hand, nectivity of tion of the is a diffeo-

d manifold

ple pair.

of surgeries

)-connected

t connected

= 1, ..., m

p structure. simple pairs lection α of lecting Σ_i to

v-cobordism

ction for the

m of (Σ, V) set x+y=operation is V_i is simply

unding discs n 3·3 below, , $(-\Sigma, -V)$ om (Σ, V) by ompletes the that rank $N_i=\operatorname{rank} N_i^\perp$, since 2 rank $N_i=\operatorname{rank} M_i$. As we can assume that $N_i\subset M_i$ is a pure submodule, i.e. M_i/N_i is torsion free, we conclude that $N_i=N_i^\perp$. It remains to show that N is t-invariant; if $x,y\in N$, $\theta(x,y)=\langle t(x),y\rangle=0$ and hence $t(x)\in N^\perp=(\bigoplus N_i)^\perp=\bigoplus N_i^\perp=\bigoplus N_i=N$.

PROPOSITION 2.5. Let $\sigma = (M_1, ..., M_m, \langle \ , \ \rangle_1, ..., \langle \ , \ \rangle_m, t)$ and $\tau = (N_1, ..., N_m, \langle \ , \ \rangle_1, ..., \langle \ , \ \rangle_m, s)$ be isometric structures. If τ and $\sigma + \tau$ are metabolic, so is σ .

Proof. The argument is a simple generalization of that given in proposition 1.6 of [10]. Let $H=(H_1,\ldots,H_m)$ and $F=(F_1,\ldots,F_m)$ be metabolizers for τ and $\sigma+\tau$, respectively. We first show that we can assume $H_i\subset F_i$ $(i=1,\ldots,m)$.

Let $\mathscr L$ be the set of m-tuples (L_1,\ldots,L_m) of submodules L_i of $M_i\oplus N_i$, with $H_i\subseteq L_i,\ L_i\subseteq L_i^\perp$ $(i=1,\ldots,m)$ and $\bigoplus_{i=1}^m L_i\ t\oplus s$ -invariant, ordered by componentwise inclusion. Let $L=(L_1,\ldots,L_m)$ be a maximal element of $\mathscr L$; then

$$L+(F\cap L^\perp)=(L_1+(F_1\cap L_1^\perp),\ldots,L_m+(F_m\cap L_m^\perp))\in \mathscr{L}$$

and satisfies $L\leqslant L+(F\cap L^\perp)$, so that $L_i=L_i+F_i\cap L_i^\perp$ $(i=1,\ldots,m)$ by maximality. It follows that $(F_i+L_i)^\perp=F_i^\perp\cap L_i^\perp=F_i\cap L_i^\perp\subset L_i$ and in particular, $L_i^\perp\subset (F_i+L_i)\cap L_i^\perp=L_i+F_i\cap L_i^\perp=L_i$, i.e. L is a metabolizer for $\sigma+\tau$ containing H. Let G_i be the projection of L_i on the component M_i of $M_i\oplus N_i$. We will verify the hypothesis of Proposition 2·4 for (G_1,\ldots,G_m) to conclude that it is a metabolizer for σ . By the exact sequences

$$0 \rightarrow H_i \rightarrow L_i \rightarrow G_i \rightarrow 0 \quad (i = 1, ..., m)$$

it follows that rank $M_i=2$ rank G_i , since rank $(M_i \oplus N_i)=2$ rank L_i and rank $N_i=2$ rank H_i . To conclude the proof, it suffices to show that $G_i \subset G_i^{\perp}$, for this implies that $\theta(x,y)=\langle t(x),y\rangle=0, \ \forall \ x,y\in G=\bigoplus_{i=1}^m G_i$, since G is t-invariant. Let $g_i\in G_i$ be the projection of $(g_i,n_i)\in L_i$; as $H_i\subset L_i=L_i^{\perp},\ n_i\in H_i^{\perp}=H_i$ and therefore $(g_i,0)\in L_i=L_i^{\perp},\ a$ fortiori, $g_i\in G_i^{\perp}$.

COROLLARY 2.6. An isometric structure σ represents the zero element of $C(\epsilon, m)$ if and only if it is metabolic.

3. The main theorem

Let (Σ,V) be a special Seifert pair, where Σ is a (2n-1)-dimensional m-component boundary link in S^{2n+1} . Let M_i be the torsion-free part of $H_n(V_i)$ and $\langle \ , \ \rangle_i$: $M_i \times M_i \to \mathbb{Z}$ the intersection pairing of V_i , which is a $(-1)^n$ -symmetric unimodular bilinear form and $M = \bigoplus_{i=1}^m M_i$. As in [9], there is a pairing $\theta \colon M \times M \to Z$, defined by $\theta(\alpha,\beta) = L(\alpha,\beta^+)$, where L denotes linking number and β^+ is obtained by translating β in the positive normal direction, satisfying

$$\theta(\alpha, \beta) + (-1)^n \theta(\beta, \alpha) = \langle \alpha, \beta \rangle,$$
 (3·1)

where $\langle \ , \ \rangle = \bigoplus_{i=1}^m \langle \ , \ \rangle_i$. Since $\langle \ , \ \rangle$ is unimodular, θ defines a unique endomorphism $t \colon M \to M$ such that $\langle t(\alpha), \beta \rangle = \theta(\alpha, \beta)$, for any $\alpha, \beta \in M$. Accordingly, (3·1) can be rewritten as $\langle t(\alpha), \beta \rangle = \langle \alpha, (1-t)\beta \rangle$. In other words, to the special Seifert pair (Σ, V) we have assigned the isometric structure

$$\sigma(\Sigma, V) = (M_1, ..., M_m, \langle , \rangle_1, ..., \langle , \rangle_m, t).$$

This

by ϕ

PF Ot

Тŧ

Prcurv $\sigma((\Sigma)$ that

that cobc conr

where $\mathbf{L}_{\boldsymbol{\beta}}$ are

W s sect which $\theta(\alpha,$

phis [7], aborranl

Prod (i ison

 $\theta(x,$ to i

In t and the pai

To as pro x, y

 $x_j \in (\phi_n^m)$

 $\begin{array}{l} \text{$:$ that $N_i \subset M_i$} \\ N_i^\perp. \ \text{It remains} \\ 0 \ \ \text{and} \ \ \text{hence} \end{array}$

= $(N_1, ..., N_m,$ so is σ .

position 1.6 of r τ and $\sigma + \tau$,

 $M_i \oplus N_i$, with by component-

by maximality.
1 particular,
1 containing H.
1 will verify the
1 netabolizer for

 $\begin{array}{ll} \text{. rank } L_i & \text{and} \\ {}_i \subset G_i^1, \text{ for this} \\ \text{invariant. Let} \\ \text{and therefore} \end{array}$

f C(e, m) if and

| m-component | i| and \langle , \rangle_i |: | ric unimodular | $M \rightarrow Z$, defined | s obtained by

 $(3 \cdot 1)$

ique endomoringly, (3·1) can ial Seifert pair This allows us to define a map

$$\phi_n^m: B(n,m) \to C(\epsilon_n,m)$$

by $\phi_n^m(x) = [\sigma(\Sigma, V)]$, where (Σ, V) is a simple pair representing the w-cobordism class x and $\epsilon_n = (-1)^n$.

Proposition 3.2. ϕ_n^m is a well-defined homomorphism.

Our main result can now be stated as

THEOREM 3.3. ϕ_n^m is an isomorphism, for $n \ge 3$.

Proof of 3·2. If (Σ, V) and $(\overline{\Sigma}, \overline{V})$ are simple pairs and α an allowable collection of curves (see Definition 1·3), it follows from the Mayer–Vietoris sequence that $\sigma((\Sigma, V) \#_{\alpha}(\overline{\Sigma}, \overline{V})) = \sigma(\Sigma, V) + \sigma(\overline{\Sigma}, \overline{V})$, i.e. σ is additive. Hence it suffices to show that if (Σ, V) is a w-null-cobordant simple pair, $\sigma(\Sigma, V)$ is metabolic. A w-null-cobordism of (Σ, V) gives a (2n+1)-submanifold $W = W_1 \cup ... \cup W_m$ of D^{2n+2} (each W_i connected) intersecting $\partial D^{2n+2} = S^{2n+1}$ transversely at V, such that $\partial W_i = V_i \cup D_i$, where D_i is a 2n-disc properly embedded in D^{2n+2} with $V_i \cap D_i = \Sigma_i$ (i = 1, ..., m).

Let $j_*: H_n(V) \to H_n(W)$ be the map induced by inclusion and $H = \ker j_*$. If α and β are n-cycles in V representing elements of H, we can find (n+1)-chains γ and η in W such that $\partial(\gamma) = \alpha$ and $\partial(\eta) = \beta$. Then $L(\alpha, \beta^+) = \gamma \cdot \eta^+$, where \cdot denotes intersection number and η^+ is the translation of η along the normal field to W in D^{2n+2} which extends the normal field to V in S^{2n+1} . Since γ and η^+ are disjoint, $\theta(\alpha, \beta) = L(\alpha, \beta^+) = 0$. Letting $j_i \colon H_n(V_i) \to H_n(W_i)$ (i = 1, ..., m) be the homomorphisms induced by $V_i \subset W_i$, we have $H = \ker j_* = \bigoplus_{i=1}^m \ker j_i$. As in lemma 2 of [7], rank $H_n(V_i) = 2$ rank $(\ker j_i)$; therefore, setting $N_i = \ker j_i$ (i = 1, ..., m), the above discussion shows that $\theta(\alpha, \beta) = 0$ for any $\alpha, \beta \in N = \bigoplus_{i=1}^m N_i$ and rank $N_i = \frac{1}{2} \operatorname{rank} H_n(V_i)$. By Proposition $2 \cdot 4$, $\sigma(\Sigma, V)$ is metabolic.

Proof of Theorem 3.3

(i) ϕ_n^m is onto. Let $(M_1,\ldots,M_m,\langle\ ,\ \rangle_1,\ldots,\langle\ ,\ \rangle_m,t)$ be an (ϵ_n,m) -symmetric isometric structure and $\theta\colon M\times M\to \mathbb{Z}$ the bilinear form on $M=\bigoplus_{i=1}^m M_i$ given by $\theta(x,y)=\langle t(x),y\rangle$. It suffices to construct a simple pair (Σ,V) such that θ corresponds to its Seifert form and $(M_i,\langle\ ,\ \rangle_i)$ to the intersection pairing of V_i $(i=1,\ldots,m)$.

Let θ_i be the restriction of θ to M_i ; from (3·1) it follows that

$$\theta_i(x,y) + (-1)^n \theta_i(y,x) = \langle x,y \rangle_i \quad (\forall x,y \in M_i).$$

In theorem II.3 of [5] it is shown that there is a pair $(\overline{\Sigma}_i, \overline{V}_i)$, where $\overline{\Sigma}_i$ is a (2n-1)-knot and \overline{V}_i an (n-1)-connected Seifert surface for $\overline{\Sigma}_i$, such that $(M_i, \langle \;, \rangle_i)$ corresponds to the intersection pairing of \overline{V}_i and θ_i to its Seifert form. Let $(\overline{\Sigma}, \overline{V})$ be the split simple pair whose ith component is $(\overline{\Sigma}_i, \overline{V}_i)$. Then the Seifert form of $(\overline{\Sigma}, \overline{V})$ is $\overline{\theta} = \bigoplus_{i=1}^m \theta_i$. To conclude the proof, we adjust the linkage of the handles of \overline{V}_i and \overline{V}_j $(i \neq j)$, so as to get a pair (Σ, V) having θ as its Seifert form. This can be accomplished by proceeding as in the proof of the theorem II.3 of [5], since $\theta(x, y) - \overline{\theta}(x, y) = 0$ if $x, y \in M_i$ for some i and $\theta(x_i, x_j) - \overline{\theta}(x_i, x_j) = (-1)^{n+1} (\theta(x_j, x_i) - \overline{\theta}(x_j, x_i))$, if $x_i \in M_i$, $x_j \in M_j$ $(i \neq j)$.

(ii) ϕ_n^m is injective. We argue as in lemma 5 of [7]. Let (Σ, V) be a simple pair with $\phi_n^m([\Sigma, V]) = 0$; by Corollary $2 \cdot 6$, $\sigma(\Sigma, V)$ is metabolic and therefore $H_n(V_i)$ has a basis

 $\begin{array}{l} \alpha_1^i, \ldots, \alpha_{r_i}^i, \beta_1^i, \ldots, \beta_{r_i}^i, \ i=1,\ldots, m, \ \text{such that} \ \theta(\alpha_s^i, \alpha_t^j)=0 \ \text{for} \ 1\leqslant i,j\leqslant m, \ 1\leqslant s\leqslant r_i, \\ 1\leqslant t\leqslant r_j. \ \text{Since} \ \langle \alpha_s^i, \alpha_t^i\rangle_i=\theta(\alpha_s^i, \alpha_t^i)+(-1)^n \cdot \theta(\alpha_t^i, \alpha_s^i)=0, \ \alpha_s^i \ \text{can be represented by} \\ \text{disjoint embedded spheres} \ S_{i,\ s} \ \text{in} \ V_i \ (1\leqslant i\leqslant m, \ 1\leqslant s\leqslant r_i); \ \text{in} \ D^{2n+2} \ \text{the spheres} \\ S_{i,\ s} \ \text{bound disjoint embedded discs} \ D_{i,\ s}, \ \text{for the intersection numbers} \\ D_{i,\ s}\cdot D_{j,\ t}=\theta(\alpha_s^i, \alpha_t^j)=0 \ \text{so that we can apply Whitney's procedure to remove possible intersections. Let} \ \nu_i \ \text{be a normal field to} \ V_i \ \text{in} \ S^{2n+1}; \ \text{as} \ \theta(\alpha_s^i, \alpha_s^i)=0, \nu_i \ \text{can be extended} \\ \text{to} \ D_{i,\ s} \ \text{in} \ D^{2n+2} \ \text{to yield a field} \ \nu_{i,\ s}, \ \text{and choosing trivializations for the orthogonal complement to} \ \nu_{i,\ s} \ \text{along} \ D_{i,\ s}, \ \text{we obtain n-handles} \ h_{i,\ s} \ (1\leqslant i\leqslant m, \ 1\leqslant s\leqslant r_i). \ \text{Then} \\ \text{by performing} \ r_i \ \text{surgeries on} \ V_i \ \text{along} \ h_{i,\ s} \ (1\leqslant s\leqslant r_i) \ \text{we obtain disjoint submanifolds} \\ \Delta_i \ \text{of} \ D^{2n+2} \ \text{bounded} \ \text{by} \ \Sigma_i \ (i=1,\ldots,m), \ \text{which are actually} \ 2n\text{-discs since each} \ \Delta_i \\ \text{is contractible and} \ n\geqslant 3. \ \text{The trace of the surgeries provides the required} \ w \\ \text{null-cobordism of} \ (\Sigma,\ V). \end{array}$

4. Split cobordism

In this section we consider some obstructions to splitting a special Seifert pair up to cobordism. Recall that a pair (Σ, V) is called split if there are mutually disjoint balls $B_i^{2n+1} \subset S^{2n+1}$ such that $V_i \subset \text{int}(B_i)$ (i = 1, ..., m).

Let $\overline{S}_i: C(\epsilon_n, m) \to C(\epsilon_n, 1)$ (i = 1, 2) be the homomorphisms defined by

$$\overline{S}_1(\sigma) = [(M, \langle , \rangle, t)]$$

and

$$\overline{S}_2(\sigma) = [(M_1, \langle \ , \ \rangle_1, t_1)] + \ldots + [(M_m, \langle \ , \ \rangle_m, t_m)],$$

were $(M_1,\ldots,M_m,\langle\;\;,\;\;\rangle_1,\ldots,\langle\;\;,\;\;\rangle_m,t)$ is an isometric structure representing $\sigma,M=\bigoplus_{i=1}^m M_i,\langle\;\;,\;\;\rangle=\bigoplus_{i=1}^m \langle\;\;,\;\;\rangle_i$ and $t_i=p_i\circ t\circ j_i,\,j_i\colon M_i\to M$ being the inclusion and $p_i\colon M\to M_i$ the projection of M on to the ith factor $(i=1,\ldots,m)$. For $n\geqslant 3$, the homomorphisms \overline{S}_i can be viewed geometrically as homomorphisms $S_i\colon B(n,m)\to B(n,1)$ under the isomorphisms obtained in Theorem 3·3, i.e.

$$S_i = (\phi_n^1)^{-1} \cdot \overline{S}_i \cdot \phi_n^m \quad (i = 1, 2). \tag{4.1}$$

A simple argument shows that

Proposition 4.2. If (Σ, V) is a split cobordant special Seifert pair, $S_1([\Sigma, V]) = S_2([\Sigma, V])$.

The above proposition allows us to establish the existence of non-splittable Seifert pairs by means of knot cobordism invariants. For simplicity, we consider the case of 2-component Seifert pairs, the generalization to an arbitrary number of components being straightforward.

In [7], J. Levine defines a signature invariant for knot cobordism as follows: let $(M, \langle , \rangle, t)$ be an $(\epsilon, 1)$ -symmetric isometric structure and $\theta, \theta' \colon M \times M \to \mathbb{Z}$ the bilinear forms given by $\theta(x, y) = \langle t(x), y \rangle$, $\theta'(x, y) = \theta(y, x)$ (θ is the Seifert form); the signature is a continuous function $\Gamma_{\theta} \colon S_{\theta} \to \mathbb{Z}$, where S_{θ} is the unit circle S^1 with the zeros of $\det(\xi, \theta + \theta')$ removed, given by $\Gamma_{\theta}(\xi) = \text{signature of } B_{\xi}$,

$$B_{\xi} = \begin{cases} \frac{\xi\theta + \theta'}{1 + \xi}, & \xi \neq -1 \\ i(\theta' - \theta), & \xi = -1, \end{cases}$$

which $S_{\theta_1} \cap \mathcal{K}$ Let isome in the

If $heta_1$ a the ca

One ca is a no a stro coborc that

THE even, n Remar

of B(n) (2)

Let dimens
Then f
examp
invaris

(3) (
bounds
descrip
in [11].

[1] S. F [2] S. F ec [3] M. (

49 [4] M.] $i, 1 \leq s \leq r_i$, presented by the spheres in numbers have possible be extended a orthogonal $s \leq r_i$). Then ubmanifolds ince each Δ_i required w-

eifert pair up ally disjoint

oresenting σ , the inclusion). For $n \ge 3$, nomorphisms

i.e.

(4.1)

Seifert pair,

ttable Seifert sider the case number of

is follows: let $[\times M \to \mathbb{Z}]$ the Seifert form); eircle S^1 with

which vanishes for metabolic structures and is additive, i.e. $\Gamma_{\theta_1+\theta_2}=\Gamma_{\theta_1}+\Gamma_{\theta_2}$ on $S_{\theta_1}\cap S_{\theta_2}$.

Let $\eta_k = (M_1, M_2, \langle \ , \ \rangle_1, \langle \ , \ \rangle_2, t)$, k a positive integer, be the (1,2)-symmetric isometric structure with $M_1 = \mathbb{Z} \oplus \mathbb{Z}$, $M_2 = \mathbb{Z} \oplus \mathbb{Z}$, such that its Seifert form is given in the canonical basis by the matrix

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & k & 0 \\ \hline 0 & -k & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

If θ_1 and θ_2 are the Seifert forms of $\overline{S}_1(\eta_k)$ and $\overline{S}_2(\eta_k)$ respectively, their matrices in the canonical basis are

$$\theta_1 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & k & 0 \\ 0 & -k & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \theta_2 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

One can check that $\Gamma_{\theta_1}(i) = 2$ and $\Gamma_{\theta_2}(i) = 0$. According to Proposition 4·2, $(\phi_n^2)^{-1}(\eta_k)$ is a non-splittable w-cobordism class, n even, n > 3. Actually, it is possible to get a stronger result; if sB(n,2) is the subgroup of B(n,2) formed by the splittable cobordism classes and $B^*(n,2) = B(n,2)/sB(n,2)$, arguing as in §26 of [7] we can show that

THEOREM 4.3. The family $\{(\phi_n^2)^{-1}(\eta_k), k > 0\}$ is linearly independent in $B^*(n, 2), n$ even, n > 3.

Remarks.

- (1) Each component of $(\phi_n^2)^{-1}(\eta_k)$ in Theorem 4.3 represents the trivial element of B(n, 1).
- (2) Arguing as above, we can obtain from each knot cobordism invariant an obstruction to split cobordism as follows.

Let G be an abelian group and $\rho: C(\epsilon_n, 1) \to G$ a homomorphism (i.e. a (2n-1)-dimensional knot cobordism invariant); define $\chi_{\rho}: B(n, m) \to G$ by $\chi_{\rho} = \rho \cdot \phi_n^1 \cdot (s_1 - s_2)$. Then from $(4 \cdot 2)$, if (Σ, V) is split cobordant, $\chi_{\rho}([\Sigma, V]) = 0$. This can be applied, for example, to the Alexander invariant (characteristic polynomial) and the other invariants obtained in [7, 8, 10].

(3) (Added in proof). The author has just learned that J. Duval has studied boundary links from a Seifert surface viewpoint and obtained an alternative description of the F_m -link cobordism groups of Cappell and Shaneson, as announced in [11].

REFERENCES

- [1] S. E. CAPPELL and J. L. SHANESON. Link cobordism, Comment. Math. Helv. 55 (1980), 20-49.
- [2] S. E. Cappell and J. L. Shaneson. The codimension two placement problem and homology equivalent manifolds. *Ann. of Math.* 99 (1974), 277–348.
- [3] M. GUTIERREZ. Boundary links and an unlinking theorem. Trans. Amer. Math. Soc. 171 (1972), 491–499.
- [4] M. Hirsch. Embeddings and compressions of polyhedra and smooth manifolds. *Topology* 4 (1966), 361–369.

Washington Mio

- [5] M. A. Kervaire. Les noeuds de dimensions supérieures. Bull. Soc. Math. France 93 (1965), 225-271.
- [6] M. A. Kervaire. Knot cobordism in codimension two. In Manifolds, Amsterdam 1970, Springer Lecture Notes in Math. vol. 197 (1971), 83-105.
- [7] J. Levine. Knot cobordism groups in codimension two. Comment. Math. Helv. 44 (1968), 229-244.
- [8] J. LEVINE. Invariants of knot cobordism. Inventiones Math. 8 (1969), 98-110.
- [9] J. Levine. Polynomial invariants of knots of codimension two. Ann. of Math. 84 (1966), 537-554.
- [10] N. W. Stoltzfus. Unraveling the integral knot concordance group. Memoirs Amer. Math. Soc. 192 (1977).
- [11] J. Duval. Forme de Blanchfield et cobordisme d'entrelacs bords. C.R. Acad. Sci. Paris, Sér. I 299 (1984), 935–938.

re to kr ev as pc

on of po is th of

to S_K of the col (lo Ale it;

 P_0

for var S_K are