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0. Introduction

" An n-dimensional m-component link is an oriented smooth submanifold " of §7+2,
ghere X" = X7 U ... U 7 is the ordered disjoint union of m submanifolds of §7*2, each
meomorphic to S”. ¥ is a boundary link if there is an oriented smooth submanifold
ntl of §Pt2 YRl = prtlyy y P2+ the disjoint union of the submanifolds VZ+1,
uch that 0V, = Z, (i = 1,...,m). A pair (£, V), where X is a boundary link and V as
ove, with each V, connected (¢ = 1, ...,m), is called an n-dimensional special Seifert
ir. In this paper, we define a notion of cobordism of special Seifert pairs and give
algebraic description of the set (group) of cobordism classes.

Let (Z, V) and (2, V) be special Seifert pairs.

Definition 0-1. (X, V) and (Z, V) are w-cobordant if there are oriented disjoint
bmanifolds W22 of §#*2x I (i = 1,...,m) such that
(i) W, intersects S™*%x {0} and S"*2x {1} transversely at V; and V;, respectively.
(ii) OW, = V,U MU V,, where M;n V; =%, M;n V; = £, and M, is homeomorphic
8" x 1.
It is known that, for n even, any two special Seifert pairs are w-cobordant. For
proof, see [5] for m = 1 and [3] or [1] for the general case.
Let B(n, m) be the set of w-cobordism classes of (2rn—1)-dimensional special Seifert
irs with m components. When m = 1, B(n, m) coincides with the knot cobordism
oup which, for n > 2, has been described algebraically by J. Levine in [7] as a
bordism of matrices via Seifert forms; this algebraic description was reformulated
Kervaire [6] in terms of isometric structures and its structure completely
termined by Stoltzfus in [10] (see also [8]).
Here, we extend the methods of [7] and [6] to obtain a similar description of
i, m), for n = 3, m > 1. Ambient connected sum of Seifert pairs provides B(n,m)
th an abelian group structure, which is shown to be isomorphic to a certain
sobordism group C(e,,, m) of isometric structures to be defined below. This formulation
ows us to consider some obstructions to splitting a special Seifert pair up to
bordism, where a pair (Z, V) is called split if there are disjoint balls B2**1 in §27+!
ch that V, ¢ int(B;) ({ =1,...,m). We show that, for n even, n > 3, there are
nitely many linearly independent non-splittable elements in B(n, m).
We remark that Cappell and Shaneson have considered a stronger notion of
ivalence of boundary links in [1]: = and Z are equivalent if there are w-cobordant
ial Seifert pairs (Z, V) and (2, V). The group of equivalence classes is computed
terms of their I' groups [2] and they obtain some strong results on the existence
‘non-splittable cobordism classes of links.
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1. Geometric preliminaries

Let (Z, V) be a (2n— 1)-dimensional special Seifert pair, n > 3.

Definition 1-1. (£, V) is a simple pair if each V; is an (n— 1)-connected manifold
(t=1,...,m).

ProrosiTioN 1-2. Any special Seifert pair (3, V) is w-cobordant to a simple pair.

Proof. The arguments of [5] show that by performing a finite sequence of surgeries
on the V;’s we can make the components Z; of the link bound disjoint (n — 1)-connected
submanifolds V3" of D2"*2 (i = 1, ..., m). More precisely, there are disjoint connected
(2n+1)-submanifolds W, of D?"*? and embeddings k;: V;xI-W, (i =1,....m)
such that

(@) W;n 8"+ =V, and ky(x,t) = §(t+ 1) .

(b) OW, = V,Uk;(0V;x ) U V; and V; N k;(0V; x I) = ky(OV; x {O}).

(c) V, is (n—1)-connected (1 =1, ..., m).

(d) W, is obtained from k;(V; x I) by attaching handles of index < n to k;(V; x{0}).

As in [7], we apply the engulfing theorem of Hirsch and Zeeman, whose hypothesis
we now proceed to verify, to embed a (2rn+2)-ball D, in the interior of D***? with
D,NW,=T, (i=1,...,m). In the notation of [4] we let X=T,U...UV,, and
V = D"*2 with cuts along the W;’s. As we have attached only handles of index <
to V, U ... U V,,, successive applications of Van Kampen’s theorem, Hurewicz theorem
and Mayer-Vietoris sequence show that D***2— W is n-connected. On the other hand,
X is n-collapsible since the V;’s are (n— 1)-connected. This and the n-connectivity of
D22 W imply the Dehn cone condition and complete the verification of the
hypothesis of the engulfing theorem. By the h-cobordism theorem, there is a diffeo-
morphism %: D2"*2—int (Dy)—>8*"*1x I. Then, h(W) provides a w-cobordism
between (X, V) and ((8V), h(V)) which is a simple pair.

We now define an operation in B(n, m) which induces an abelian group structure.
Let x, y € B(n, m) be w-cobordism classes; by Proposition 1-1 we can find simple pairs

(2, V) and (T, V) representing x and y, respectively. We choose a collection a of
disjoint simple smooth curves o; (1 = 1,...,m) in 8***1 —int (VU V) connecting Z, to
T, so that a; intersects the links transversely only at its endpoints.

Definition 1-3. A family a of curves as above is called an allowable collection for the
simple pairs (Z, V) and (Z, V).

Let (Z, V) #,(Z, V) be the simple pair obtained by taking the sum of (Z, V)
and (£,7) along the allowable collection a ={a;, i=1,...,m}. We set a+y=
[(Z, V) #,(Z, V)], where the brackets denote w-cobordism class; this operation is
well-defined because for a simple pair (2, V), m,(S?"*1 — V) = 0, since each V; is simply
connected.

Taking the pair formed by the trivial m-link in §2"** and m disjoint bounding discs
as the zero element in B(n, m) (n > 3), and arguing as in (ii) of Theorem 3-3 below,
we see that for ze B(n,m) and (Z, V) a simple pair representing z, (=%, —V)
represents its inverse, where (—X, — V) is the simple pair obtained from (Z, V) by
reversing the orientations of the components of £, ¥ and $2"*1. This completes the
description of the abelian group structure of B(n, m).
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2. Isometric structures

Let m be a positive integer and ¢ = +1.

d manifold Definition 2-1. An (e, m)-symmetric isometric structure over Z is a (2m+ 1)-tuple

(M, My, Dy Dmot), where M, is a finitely generated free Z-module,
{, >; is an e-symmetric bilinear form on M; (i =1,...,m) and t: M—M is an
endomorphism of M = @, M,, satisfying:

of surgeries i) { , >;is unimodular ( = 1,...,m).

}-connected (i) {Hx),y)> = {x,(1=t)y),Vx,ye M, where { , > = @2, <, D

t connected

=1,...,m) z;p = —eClw;)

wple pair.

Remark. (ii) implies {f(x;)
(a2 = 0.

Definition 2-2. An (e, m)-symmetric isometric structure o = (M,,..., M,
L 00l Dmot) is metabolic, if there are submodules N; of M; (¢=1,...,m)
_ satisfying:
ki(Vi x{03). (i) N, = Ni, where Ni = {x;e M;|<{z;,n); =0,V n,e N;}.

s hypothesis (i) N = @M, N, is invariant under ¢{.

DA% with (N,,...,N,) is called a metabolizer for o.

UV, and Let 0= (My, ..., M, { s D1y Dpot) and 7= (N}, ...
findex <n be isometric structures.

icz theorem (a) Addition is defined by

other hand,
o+T7=M,®N,, ... M), N, 0@ () - < P @, Y, tD ).

nectivity of
tion of the (b) o is isomorphic to 7, if there are isomorphisms f;: M;—>N; (i =1,...,m) such
that {z;, ;> = (fi(@), fi(®:)s V 21, y;€ My and fot = sof, where f = @, fi-

3 is a diffeo-
s-cobordism .

Definition 2-3. The isometric structures o and 7 are cobordant if there are metabolic
tructures 97, and 7, such that o+, is isomorphic to 7+17,.

ay, if x;€ M;, x;€ M; and 1 # j, since

p structure.
simple pairs
lection a of
iecting Z; to

Cobordism determines an equivalence relation in the set of (e,m)-symmetric
ometric structures. The set of equivalence classes, C{e, m), forms an abelian group
der the previously defined addition with zero element represented by metabolic
ructures and the inverse of [(M,,...,M,,{ . >y, ....{, Dpot)] given by
ction for the ( M, —< Dy =< Dmot)], where the brackets denote equivalence
To an isometrie structure o there is associated a Seifert form which is the bilinear

m of (X,V)
orm 6: Mx M—~Z, M = @, M,, defined by 6(x,y) = {x),y>.

set x+y=
operation is ProposiTioN 2:4. If N, © M, (i = 1,...,m) are submodules with rank M; = 2 rank N;

1 V; is simply d O(x,y) =0,V x,yeN @r, N, then o is metabolic.

anding discs Proof. (i(x),y> = <z.(1—1)y> can be rewritten as 0(z,y)+e.0(y,2) = (z.p).

n 33 below,
3 (—Z’ - V)
m (Z, V) by
ympletes the

nee, if x,yeNi, {x,y); = {x,y> = 0 and therefore N; = N~ On the other hand,

m the exact sequence
Ad
0-> N}~ M, -~ Homy (N,;, Z)—~0,

ere Ad(m;) € Homy (N;, Z) is given by Ad (m;) (n,)

= {n;, m;y, n;e N;, it follows

+ Cfe, 1) coincides with the group C*(Z) of [6] and [10].
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that rank N, = rank N7, since 2. rank N; = rank M. As we can assume that N; = M,
is a pure submodule, i.e. M;/N; is torsion free, we conclude that N; = Ni. It remains
to show that N is t-invariant; if z,yeN, O(x,y) = {tx),yy =0 and hence
tx)e Nt = (® N)*t= @N/=@N,=N.

ProposiTION 2-5. Let o= (M, ..., M, <, Yoy Dmpt) and T = (Nys oo N,
() Jyooos (s o 8) be isOmetric structures. If 7 and o +T1 are metabolic, so s 0.

Proof. The argument is a simple generalization of that given in proposition 1-6 of
[10]. Let H= (Hy,...., Hy) and F = (F,,....F,) be metabolizers for 7 and o+7,
respectively. We first show that we can assume H,cF (i=1,...m).

Let % be the set of m-tuples (L, ..., L) of submodules L; of M;® N;, with
HcL,LicLi(i=1.m) and @, L; t @ s-invariant, ordered by component-
wise inclusion. Let L = (L, ..., L,) be a maximal element of £ ; then

L+ (Fn LY = (L +(F, 0 L), Ly (FpnLy))es

and satisfies L < L+ (F 0 LY), so that Ly = L+ F;n Ly (i =1,...,m) by maximality.
It follows that (F,+L)*=FinLi=FnLfcL; and in particular,
Lt < (F+L)n L= Li+Fn Ly = L; ie. Lisa metabolizer for o+ 7 containing H.

Let G, be the projection of L; on the component M; of M, ® N;. We will verify the
hypothesis of Proposition 2-4 for (G,, ..., Gp) to conclude that it is a metabolizer for
o. By the exact sequences

0—)H,L‘>L,L‘>GZ"'>O (/L.=1""’m)

it follows that rank M, =2.rank@;, since rank (M;® N,;)=2.rank L; and
rank N; = 2.rank H;. To conclude the proof, it suffices to show that &; = G, for this
implies that 6(z,y) = {Hz),y> =0, V 2,ye@ = @P, G, since G is t-invariant. Let
g,€G; be the projection of (g;,n;)€ Ly;; as Hy = Ly = L}, n;e Hf = H; and therefore
(g:,0)€ L; = L, a fortiori, g;€ G-

COROLLARY 2-6. An isometric structure o represents the zero element of C(e, m) if and
only f it is metabolic.

3. The main theorem
Let (Z, V) be a special Seifert pair, where 2 is a (2n— 1)-dimensional m-component
boundary link in §2"*!. Let M; be the torsion-free part of H,(V;) and <, )y
M, x M;—>Z the intersection pairing of V;, which is a (—1)"-symmetric unimodular
bilinear form and M = @™, M;. As in [9], there is a pairing 6: M x M—Z, defined
by O(a,B) = L(a, "), where L denotes linking number and g% is obtained by
translating f in the positive normal direction, satisfying

O, B)+(—1)" 0(f,0) = {a, 7, 3-1)

where { , > = @, , Yy Since  , ) is unimodular, 6 defines a unique endomor-
phism ¢: M > M such that {ia), B> = O(a, B), for any a, e M. Accordingly, (3-1) can
be rewritten as (¢(a), 8> = {a, (1—t) ). In other words, to the special Seifert pair
(Z, V) we have assigned the isometric structure

oZ, V=M, ... M, <, s e <o Do b)-
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' This allows us to define a map

¢m
by ¢P(x) = [o(Z, V)], where (Z, V) is a simple pair representing the w-cobordism class
zand €, = (-—1) .

(n,m)—>Cle,, m)

PRrOPOSITION 3-2. ¢ is a well-defined homomorphism.
Our main result can now be stated as
THEOREM 3-3. @7 ts an isomorphism, for n = 3.

Proof of 3-2. If (X, V) and (T, V) are simple pairs and « an allowable collection of
curves (see Definition 1-3), it follows from the Mayer-Vietoris sequence that
c(Z, V) #,E,7) =&, V)+aE, V), ie. o is additive. Hence it suffices to show
that if (£, V) is a w-null-cobordant simple pair, (£, V) is metabolic. A w-null-
cobordism of (X, V) gives a (2n+ 1)-submanifold W = W, U ... U W,, of D?"*2 (each W
connected) intersecting 0D?"12 = §2"*1 trangversely at V, sueh that OW, = V; U D,,
where D, is a 2n-disc properly embedded in D?***2 with V,N D, =X, (i = 1, ..., m).
Let j,: H,(V)-H,(W) be the map induced by inclusion and H = kerj,. If « and
p are n-cycles in V representing elements of H, we can find (»+ 1)-chains y and 7 in
W such that d(y) = a and d(y) = . Then L(a, %) =y 5", where - denotes inter-
section number and % is the translatlon of  along the normal field to W in D2"+2
~which extends the normal field to V in 82"*1 Since y and %% are disjoint,
(o, ) = L(a, p*) = 0. Letting j,: H (V,)>H,(W;) (=1, ...,m) be the homomor-
_phisms induced by V; c W;, we have H = kerj, = @M%, kerj;. As in lemma 2 of
{71, rank H,(V;) = 2 .rank (kerj;); therefore, setting N; =kerj; (i=1,. ) the
above discussion shows that @(x,f)=0 for any a,feN= @z=1 and
/Zrank N, = irank H, (V,). By Proposition 2-4, o(Z, V) is metabolic.

roof of Theorem 3-3

i) ¢™ is onto. Let (M,,....M,,,{, >1,....,{ , Dm 1) be an (g,, m)-symmetric
ometric structure and 60: M x M —Z the bllmear form on M = @2, M, given by
,y) = {b(x), y). Tt suffices to construct a simple pair (Z, V) such that @ corresponds
ﬁto lts Seifert form and (M;,{ , ;) to the intersection pairing of V, (¢ = 1, ..., m).
 Let 6, be the restriction of 6 to M;; from (3-1) it follows that

Oz, y)+(—1)"0,(y, x) = {x,y),

n theorem 11.3 of [5] it is shown that there is a pair (Z,, V;), where T, is a (2n— 1)-knot
nd ¥, an (n— 1)-connected Seifert surface for %,, such that (M, {, > ) corresponds to
he intersection pairing of V; and 6, to its Seifert form. Let (Z, V) be the split simple
air whose ith component is (Z;, V;). Then the Seifert form of (£, V) is 6 = @7, 0,.
'o conclude the proof, we adjust the linkage of the handles of V; and 7; (i # j), so
to get a pair (£, V) having 6 as its Seifert form. This can be accomplished by
ceeding as in the proof of the theorem 11.3 of [5], since O(x,y)—6(x,y) =0 if
€ M; for some 1 and 6(x;, x;)—0(x;, x;) = (— )" (B(a;, x;) — O, ), if @€ M,
M; (i + j).

i) ¢Z‘ 1s injective. We argue as in lemma 5 of [7]. Let (%, V) be a simple pair with
{IZ, V]) = 0; by Corollary 26, o(Z, V) is metabolic and therefore H,(V;) has a basis

(Vz,yeM,).
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ai,...,aii,ﬁi,...,ﬁii, i=1,...,m, such that 6(at,a]) =0 for 1 <i,j<m, 1 <s< T
1 <t <y Since {at,af); = 0 ab, af)+(—1)".0(af, al) = 0, &’ can be represented by
disjoint embedded spheres S; ; in V; (1 <4< m, 1 <s<r); in D*®*2 the spheres
S; s bound disjoint embedded discs D, ,, for the intersection numbers
D; - D; , = 6(at,af) = 0sothat we can apply Whitney’s procedure to remove possible
intersections. Let v; be a normal field to V; in §2"%1; as f(al, al) = 0, v, can be extended
to D; ,in D***2 to yield a field v; , and choosing trivializations for the orthogonal
complement tov; ,along D; ;, we obtain n-handles h; (1 <i<m,1<s<r;) Then
by performing r; surgeries on V; along &; (1 < s < r;) we obtain disjoint submanifolds
A; of D*"*% bounded by Z; (i = 1,...,m), which are actually 2n-discs since each A,
is contractible and n = 3. The trace of the surgeries provides the required w-
null-cobordism of (%, V).

4. Split cobordism

In this section we consider some obstructions to splitting a special Seifert pair up
to cobordism. Recall that a pair (, V) is called split if there are mutually disjoint
balls B2**! < §2**1 guch that V; cint(B;) (1 = 1,...,m).

Let 8;: C(e,, m)—C(e,, 1) (i = 1,2) be the homomorphisms defined by

Syo) =[(M, <, >.1)]

and SZ( ) M1a< >17 ]+ +[ Mm:< >m? m

were (M,,...,M,,{ , >1,....{ , D, t) is an isometric structure representing o,
M=@r, M, <, >=@" <, > andt, =potoj, j: M;~>M being the inclusion
and p;: M- M, the projection of M on to the ith factor (i =1,...,m). For n >3,
the homomorphisms S; can be viewed geometrically as homomorphisms
8;: B(n, m)— B(n, 1) under the isomorphisms obtained in Theorem 3-3, i.e.

= (g7 Spdn (i=1,2). (1)
A simple argument shows that

ProposiTion 4:2. If (Z,V) is a split cobordant special Seifert pair,
S[Z, V]) = S,(1Z, V).

The above proposition allows us to establish the existence of non-splittable Seifert
pairs by means of knot cobordism invariants. For simplicity, we consider the case
of 2-component Seifert pairs, the generalization to an arbitrary number of
components being straightforward.

In [7], J. Levine defines a signature invariant for knot cobordism as follows: let

(M, , >,t) be an (e, 1)- bymmetric isometric structure and 6,6": M x M->Z the
bilinear forms given by 6 = {8(x),y), O'(x,y) = Oy, x) (0 is the Seifert form);
the signature is a con’clnuous functlon [y: 8y—Z, where S, is the unit circle S* with
the zeros of det (£.6+6) removed, given by I'y(£) = signature of By,

£0+6'
_ 1y
B, = +£€
i —0), _1,

£+t
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which vanishes for metabolic structures and is additive, i.e. Ty .o =Ty +1} on
Sg, N Sy,

Let 0, = (M, M,,{ , >, {, s t), k a positive integer, be the (1,2)-symmetric
isometric structure with M, = Z @ Z, M, = Z @ Z, such that its Seifert form is given
___ in the canonical basis by the matrix

0
k
0

1
0
0
0

If 6, and 6, are the Seifert forms of S,(7,) and S,(5,) respectively, their matrices in
the canonical basis are

1 1.0 0 1100
g -0 0 k0O .0 000
! 0 -k 0 1t} * Y0 0 0 1

0O 0 0 1t 00 0 1

One can check that Iy (1) = 2 and [y (i) = 0. According to Proposition 4-2, (¢7,)™" (1)
is a non-splittable w-cobordism class, » even, » > 3. Actually, it is possible to get
a stronger result; if sB(n,2) is the subgroup of B(n,2) formed by the splittable
cobordism classes and B*(n, 2) = B(n, 2)/sB(n, 2), arguing as in §26 of [7] we can show
hat

THEOREM 4-3. The family {(¢3)™* (), k > O} is linearly independent in B*(n,2), n
spen, n > 3. '

(1) Each component of (¢2)7* (,) in Theorem 4-3 represents the trivial element
B(n, 1).

(2) Arguing as above, we can obtain from each knot cobordism invariant an
obstruction to split cobordism as follows.

_ Let @ be an abelian group and p: C(e,, 1)@ a homomorphism (i.e. a (2n—1)-
imensional knot cobordism invariant); define y,: B(n,m)~>Gby x, = p. ¢}, . (s;—8,).
hen from (4-2), if (X, V) is split cobordant, ({2, V]) = 0. This can be applied, for
xample, to the Alexander invariant (characteristic polynomial) and the other
ivariants obtained in [7, 8, 10].

(3) (Added in proof). The author has just learned that J. Duval has studied
oundary links from a Seifert surface viewpoint and obtained an alternative
escription of the F,,-link cobordism groups of Cappell and Shaneson, as announced

[11].
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