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1. Introduction

The well-know Hirzebruch formula says that for 4k-dimensional orientable com-
pact closed manifold X the following equation holds

signX = 22k〈L(X), [X]〉, (1)

where signX = sign(H 2k(X,C),∪) is the signature of nondegenerate quadratic
form in the cohomology groups H 2k(X,C), defined by ∪-product,

L(X) =
∏
j

tj /2

th(tj /2)

is the Hirzebruch characteristic class defined by formal generators tj by

σk(t1, . . . , tn) = ck(cT X).

There are different ways to generalize the Hirzebruch formula mainly for non-
simply connected manifolds. Namely, let X be a closed orientable nonconnected
manifold and let π = π1(X), fX:X → Bπ be the canonical mapping defined up
to homotopy which induces the isomorphism of fundamental groups (fX)∗:π1(X)

→ π . Consider a finite-dimensional representation ρ:π → U(N). Then one can
consider the cohomology groups H 2k(X, ρ) with the local system of coefficients
induced by the representation ρ. Then the ∪-product induces a nondegenerate
quadratic form in this group. The signature of this form we shall denote by

� Partly supported by Russian Foundation of Basic Research (Grant No. 99-01-01201) and INTAS
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signρ X = sign(H 2k(X, ρ),∪).
It is easy to check that

signρ X = 22k〈L(X)ch f ∗Xξ
ρ, [X]〉, (2)

where ξρ is the vector bundle over Bπ , induced by the representation ρ.
In spite of both left-hand side and right-hand side parts of formula (2) coinciding

with that of (1), this generalization might be useful for further generalizations.
Namely, one can at least construct the right-hand side of formula (2) for more
general representations of fundamental group π .

1.1. INFINITE-DIMENSIONAL REPRESENTATIONS

Let C∗[π ] be a C∗-group algebra of the group π . Any unitary representation of the
group π can be uniquely extended to a representation ρ̄ of the algebra C∗[π ]. Put
A = Im ρ̄, ρ̄:C∗[π ] → A.

By ξρ we denote the vector bundle over Bπ with the fiber A, whose transition
functions are induced by the action of the group π on the algebra A by the repre-
sentation ρ. The vector bundle ξρ forms the element of the K-group ξρ ∈ KA(Bπ).
Now we can write the right-hand part of formula (2):

? = 22k〈L(X)chA f ∗Xξ
ρ, [X]〉 ∈ KA(pt)⊗Q. (3)

The left-hand part of the formula can be calculated as a symmetric signature (see
[1]) of the manifold X by replacing of rings, induced by the representation ρ, so
we obtain the so-called generalized Hirzebruch formula (see [2])

signρ(X) = 22k〈L(X)chA f ∗Xξ
ρ, [X]〉 ∈ KA(pt)⊗Q.

1.2. FINITE-DIMENSIONAL ASYMPTOTIC REPRESENTATIONS

There is a class of vector nonflat bundles which can be defined by so-called al-
most representations. They are so-called almost flat bundles (see [3]). Namely, the
mapping σ : π → U(n) is called ε-almost representation with respect to a finite
subset F , if the following relations hold:

σ (g−1) = σ (g)−1 for all g ∈ π

and

‖σ‖F = sup{‖σ (gh)− σ (g)σ (h)‖ : g, h, gh ∈ F } ≤ ε.

It is more convenient to include the almost representation into a sequence, which
is called the asymptotic representation. Namely, let σ = {σk} be a sequence of
εk-almost representations. The sequence σ is called the asymptotic representation
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of the group π (with respect to a finite subset F and to a sequence {nk}), if the
following relations hold:

lim
k→∞ εk = 0 and lim

k→∞ sup{‖σk(g)− σk+1(g)‖ : g ∈ F ⊂ π} = 0.

Then, using the asymptotic representation, the vector bundle ξσ over the mani-
fold X and the signature signσ (X) can be constructed in a canonical way (see [8]).
So we receive again a variant of the Hirzebruch formula

signσ (X) = 22k〈L(X)ch ξσ , [X]〉 ∈ Q.

1.3. SMOOTH VERSION OF THE HIRZEBRUCH FORMULA

The left-hand side of the Hirzebruch formula (2) is described in terms of the combi-
natorial structure of the manifold X. There is a smooth version of this expression as
well. Namely, consider the de Rham complex of differential forms on the manifold
X with values in the flat vector bundle ξρ :

0−→�0(X, ξρ)
d−→�1(X, ξρ)

d−→ · · · d−→�4k(X, ξρ)−→ 0. (4)

It is well known that the cohomology groups of the de Rham complex (4) are
isomorphic to the cohomology groups H ∗(X, ξρ).

Then the ∪-product is induced by external product of differential forms, so the
Hermitian form which defines the Poincaré duality can be determine by

〈ω1, ω2〉 =
∫
X

ω1 ∧ ω2. (5)

On the other hand, using a Riemannian metric on the manifold X, (ω1, ω2), the
Poincaré duality (5) can be determined as a bounded operator ∗: (ω1, ω2) =

∫
X
ω1∧

∗ω2, where ∗: �k(X) → �n−k(X). Put α = ik(k+1)∗. Then αdα − d∗; α2 = 1.
Let

�+(X) = Ker (α − 1); �− = Ker (α + 1).

It is evident that

(d + d∗)(�+(X)) ⊂ �−(X).

Consider the elliptic operator

D = (d + d∗):�+(X)→ �−(X).

Then we have D = sign(X). Using the Atiyah–Singer index formula for the elliptic
operator, we have

index(D ⊗ ξ) = 22k〈L(X)ch ξ, [X]〉, (6)

for arbitrary vector bundle ξ over the manifold X.
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1.4. COMBINATORIAL VERSION OF THE HIRZEBRUCH FORMULA

Similar to smooth version (6), one can put the question about construction the right-
hand side of formula (6) using combinatorial terms. If the bundle ξ is induced by
a representation of the fundamental group π , then the combinatorial version of
the Hirzebruch formula is reduced to formulas (1)–(3). All of them require certain
restriction on the bundle ξ : the vector bundle ξ should be flat in the case of classical
representation and should be almost flat in the case of asymptotic representation.

The aim of the paper is to construct proper combinatorial objects which can
imitate the Poincaré duality in the general case when the vector bundle ξ is arbitrary
bundle over the manifold X. The idea of such construction was formulated in the
paper by Gromov [7] and goes back to the construction of the Poincaré complexes
and the so-called symmetric signature, which were considered in [1] and [2] (see
also [6], p. 18).

Here we construct a new algebraic category, which is called almost algebraic
Poincaré complexes. This category has all the necessary properties for constructing
invariants of the signature type for combinatorial manifold with a local coefficient
system induced by fibers of a vector bundle ξ over the manifold.

We show that any compact closed combinatorial manifold has a sufficient fine
simplicial subdivision, which, in a natural way, induces an almost algebraic Poin-
caré complex. The signature of the latter can be used as the left-hand side part of
the Hirzebruch formula (6). In particular, this formula in some sense gives a new
construction for rational Pontryagin classes using only local combinatorial data on
the combinatorial manifold X.

In the case when the vector bundle ξ is induced by a classical representation,
the correspondent almost algebraic Poincaré complex coincides with the alge-
braic Poincaré complex from [1], and its signature coincides with the signature
of cohomologies with the correspondent local coefficient system.

In the case of asymptotic representation, the almost algebraic Poincaré complex
can be constructed from the universal algebraic Poincaré complex over the group
algebra of the fundamental group π of the manifold X using the procedure of the
change of rings. The signature of the almost algebraic Poincaré complex in this
case equals the image of symmetric signature of the manifold X under the change
of rings. Of course, we obtain the same Hirzebruch formula as in [3, 4].

Part of the results of this paper appear as a result of fruitful discussions with M.
Gromov during the visit of the author to IHES (France) in autumn 1997 and 1998
and is based on the idea by Gromov [7] how to generalize the construction of the
author [1] on the case of nonflat bundles. In essence, this work was done jointly
and only because of the exceptional correctness of M. Gromov, his name is absent
from the list of authors of the present work. In any case, the author considers it to
be his duty to express his thanks to M. Gromov.
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2. Economic Description of Algebraic Poincaré Complexes

Consider a ring % with unit and with unital involution ∗,

∗2 = 1, 1∗ = 1, (λ1λ2)
∗ = λ∗2λ

∗
1.

Let C be a left %-module. Denote by C∗ the adjoint module

C∗ = Hom%(C,%),

(λφ)(x)
def= φ(x)λ∗, φ ∈ C∗, x ∈ C, λ ∈ %.

If f :C1 → C2 is a morphism of left modules, then the adjoint homomorphism
f ∗:C∗2 → C∗1 is defined by the formula

f ∗(φ2)(x1)
def= φ2(f (x1)), φ2 ∈ C∗2 , x1 ∈ C1.

Let qC :C → C∗∗ be defined by the formula

qC(x)(φ)
def= (φ(x))∗, x ∈ C, φ ∈ C∗.

The adjoint homomorphism q∗C :C∗∗∗ → C∗, evidently is inverse to the homomor-
phism qC∗ , q∗CqC∗ = 1C∗ , that is the diagram

C∗∗∗
q∗C−→ C∗�qC∗ ↗ 1C∗

C∗

is commutative. In the case when the module C is free or at least projective, then
the homomorphism qC is an isomorphism that allows us to identify the modules C
and C∗∗.

Let us give an economic description of algebraic Poincaré complexes as a graded
free module equipped with a boundary operator and an operator of Poincaré duality.
Consider a chain complex of free %-modules C, d:

C =
n⊕

k=0

Ck, d =
n⊕

k=1

dk, dk:Ck → Ck−1

and a homomorphism of Poincaré duality

D:C∗ → C, degD = n,

defining the diagram

C0
d1←− C1

d2←− · · · dn←− Cn�D0

�D1

�Dn

C∗n
d∗n←− C∗n−1

d∗n−1←− · · · d∗1←− C∗0
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such that the following conditions for the boundary operator and for the Poincaré
duality operator hold:

dk−1dk = 0,

dkDk + (−1)k+1Dk−1d
∗
n−k+1 = 0, (7)

Dk = (−1)k(n−k)D∗
n−k.

More of that, assume that the homomorphism of Poincaré duality induces an iso-
morphism in homologies. Under this condition, the triple (C, d,D) is called an
algebraic Poincaré complex. This definition was used by author in [1] and allows
the construction of algebraic Poincaré complexes σ (X) for arbitrary triangulation
of a combinatorial manifold X, setting σ (X) = (C, d,D), where C = C∗(X;%) is
the graded chain complex of the manifold X with a local system of coefficients in-
duced by the natural inclusion of the fundamental group π = π1(X) into its group
ring % = C[π ]. d is the boundary homomorphism and

D =
⊕

Dk, Dk = 1

2

(⋂
[X] + (−1)k(n−k)

(⋂
[X]

)∗)
,

where
⋂[X] is the intersection with the fundamental cycle of the manifold X.

Put

Fk = ik(k−1)Dk. (8)

The diagram

C0
d1←− C1

d2←− · · · dn←− Cn�F0

�F1

�Fn
C∗n

d∗n←− C∗n−1

d∗n−1←− · · · d∗1←− C∗0

(9)

satisfies more natural conditions for commutativity of the diagram and adjointness
for operators

dkFk + Fk−1d
∗
n−k+1 = 0,

Fk = (−1)
n(n−1)

2 F ∗n−k. (10)

The operator F still induces an isomorphism in homologies. Really, the com-
mutativity condition (7) gives

0 = dkDk + (−1)k+1Dk−1d
∗
n−k+1

= dki
k(k−1)Fk + (−1)k+1i(k−1)(k−2)Fk−1d

∗
n−k+1

= ik(k−1)(dkFk + Fk−1d
∗
n−k+1).

From the adjointness condition (7) we have

ik(k−1)Fk = (−1)k(n−k)i(n−k)(n−k−1)F ∗n−k,
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that is

Fk = (−1)n(n−1)/2F ∗n−k.

Thus put

F =
n⊕

k=0

Fk,

F :C∗ → C, degF = n.

Hence, shortly an algebraic Poincaré complex can be described as a graded free
%-module C, a bounded operator d of degree −1 and an Poincaré duality operator
F :C∗ → C of degree n, such that

d2 = 0, dF + Fd∗ = 0,

F ∗ = (−1)n(n−1)/2F, H(F):H(C∗, d∗)→ H(C, d).

So we have

n = 4k, F ∗ = F,

n = 4k + 1, F ∗ = F,

n = 4k + 2, F ∗ = −F,
n = 4k + 3, F ∗ = −F.

Now consider the so-called cone of the operator F , that is the acyclic complex with
respect to the sum of differentials d and F and summary grade of the bycomplex
(9):

C1 C2

0 ←− C0
H1←− ⊕ H2←− ⊕ H3←− · · ·

C∗n C∗n−1

Ck Ck+1

· · · Hk←− ⊕ H2l+1←− ⊕ Hk+2←− · · ·
C∗n−k+1 C∗n−k

Cn−1 Cn

· · · Hn−1←− ⊕ Hn←− ⊕ Hn+1←− C∗0 ←− 0
C∗2 C∗1

(11)

or

0←−A0
H1←−A1

H2←− · · · Hk←−Ak

Hk+1←−A2k+1
Hk+2←− · · · Hn←−An

H4n+1←− An+1←− 0,

(12)

where

Ak = Ck ⊕ C∗n−k+1, (13)
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Hk =
(
dk Fk−1

0 d∗n−k+2

)
.

In other words, the complex (13) is a bygraded %-module

A =
n+1⊕
k=0

Ak = C + C∗,

and the boundary operator H is defined by the matrix

H =
(
d F

0 d∗

)
.

Consider a special case for n = 4l. In this case the operator F has even degree
and, hence, the operator H has odd degree. Then the diagram (11) looks as follows:

C1 C2

0 ←− C0
H1←− ⊕ H2←− ⊕ H3←− · · ·

Cn Cn−1

C2l C2l+1

· · · H2l←− ⊕ H2l+1←− ⊕ H2l+2←− · · ·
C2l+1 C2l

Cn−1 Cn

· · · Hn−1←− ⊕ Hn←− ⊕ Hn+1←− C0 ←− 0,
C2 C1

(14)

that is

0←−A0
H1←−A1

H2←− · · · H2l←−A2l
H2l+1←−A2l+1

H2l+2←− · · · H4l←−A4l
H4l+1←−A4l+1←− 0.

(15)

Consider the decomposition of A into the sum of even and odd components:

A = Aev ⊕ Aodd, Aev = Cev ⊕ C∗odd, Aodd = Codd ⊕ C∗ev.

Then both d and F also decompose into homogeneous components

dev:Aev → Aodd, dodd:Aodd → Aev,

Fev:Aev → Aev, Fodd:Aodd → Aodd.

Evidently

A∗odd = Aev, A∗ev = Aodd,

and the operator H has the following matrix form:

Hev =
(

0 dev

d∗ev Fodd

)
:Aev =

Cev

⊕
C∗odd

→
C∗ev⊕
Codd

= Aodd = A∗ev ,
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Hodd =
(
Fev d∗odd

dodd 0

)
:Aodd =

C∗ev⊕
Codd

→
Cev

⊕
C∗odd

= Aev = A∗odd .

Thus we receive the following exact sequence

· · · Hev←−Aev
Hodd←− A∗ev

Hev←−Aev
Hodd←− A∗ev

Hev←− · · · , (16)

which can be split.
Let

Aev = B0 ⊕ B1, A∗ev = B∗0 ⊕ B∗1 (17)

be the decomposition of the free module Aev into the direct sum of two projective
summand such that B0 = kerHev .

This decomposition, generally speaking, is not unique but

B∗1 = Ann(B0), B1 = Hev /B0, B∗0 = H ∗
ev /B

∗
1 .

Then the matrix Hev has the following form:

Hev =
(

0 αev

0 βev

)
.

Since the operator Hev is selfadjoint, H ∗
ev = Hev , we have

Hev =
(

0 0
0 βev

)
, β∗ = β.

Whereas the sequence (16) is exact, we have

B∗1 = Im Hev = Im βev = Ker Hodd .

Hence, the matrix of the operator Hodd has the following form:

Hodd =
(
αodd 0

0 0

)
, α∗ = α.

Thus, we receive two selfadjoint isomorphisms

βev:B1 → B∗1 , αodd:B∗0 → B0,

which are defined functorially, that is independently from the choice of decompo-
sition of the module Aev , into direct sum (17). Consider the direct sum of βev and
αodd :

S = βev ⊕ αodd: (B1 ⊕ B∗0 ) = M → M∗ = (B1 ⊕ B∗0 )
∗.

Clearly, the module M = (B1⊕B∗0 ) is free. Hence, the selfadjoint isomorphism
S:M → M∗ defines an element [M,S] from Hermitian K-theory for the ring %:

sign(C, d,D) = [M,S] ∈ Kh
0 (%). (18)
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3. Algebraic Poincaré Complexes over C∗-Algebras

In the case when the algebra % is a C∗-algebra, formula (18) for calculating the
symmetric signature of an algebraic Poincaré complex, can be significally sim-
plified. Let M be a free (finite generated) %-module and let S:M∗ → M be a
selfadjoint isomorphism. Let (e1, . . . , eN ) be a free basis in the module M.

By using a scalar product in the spaces Ck, we can identify the space C∗k with
the space Ck,

φk : C∗k → Ck. (19)

Then the formally adjoint operator d∗k can be identified with the adjoint operator
with respect to this scalar product.

Then, by definition (13), the space Ak = Ck⊕Cn−k+1 is isomorphic to An−k+1 =
Cn−k+1⊕Ck by the isomorphism Tk:Ak → An−k+1, which is defined by the matrix

Tk =
(

0 1
1 0

)
.

Then the operator Hk in the complex (12) satisfies the condition

H ∗
k = TkHn−k+2Tk−1.

Put

A =
n+1⊕
k=0

Ak = Aev ⊕Aodd ,

where

Aev

2l⊕
k=0

A2k, Aodd =
2l⊕
k=0

A2k+1.

Put

H =
n+1⊕
k=0

Hk:A→ A, T =
n+1⊕
k=0

Tk:A→ A.

Then

H(Aev ) ⊂ Aodd, H(Aodd ) ⊂ Aev ,

T (Aev ) ⊂ Aodd, T (Aodd ) ⊂ Aev .

It is clear that

H ∗(Aev ) ⊂ Aodd , H ∗(Aodd ) ⊂ Aev .

Since the complex (12) is acyclic, the operator H + H ∗ is isomorphism. The
operator G = TH +HT keeps the space Aev invariant. Put

Gev = G
∣∣
Aev

:Aev → Aev . (20)
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It is clear that the operator Gev is self-adjoint and inverse. More of that, since
Aev =⊕n

k=0 Ck =, we can check that Gev = d + d∗ + F .
We can also check that

[C, d + d∗ + F ] = sign(C, d,D) ∈ Kh
0 (%). (21)

Similar formula in different situation was considered in [5].
For example, for complex numbers (that is, when % = C) for a proper choice

of basis in the space C =⊕n
k=0 Ck the operator d has the following matrix form:

d =

 0 0 d̃

0 0 0
0 0 0


 ,

the operator d̃ being invertible.
Then the operator F has the following matrix form:

F =

 F11 F21 F31

F12 F22 0
F13 0 0




and d̃F13 + F31d̃
∗ = 0. Hence

d + d∗ + F =

 F11 F21 d̃ + F31

F12 F22 0
d̃∗ + F13 0 0


 .

Therefore

sign(d + d∗ + F) = sign(F22) = sign(H(F)).

4. Almost Acyclic Complexes

Now and below, all linear spaces are assumed to be finite-dimensional over the
complex numbers field supplied with a Hermitian structure. Then any linear oper-
ator

F :1→2 (22)

is automatically bounded, that is ‖F‖ <∞.
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We shall consider grade linear spaces C = ⊕n
i=0 Ci , usually the gradation

will be considered modulo 2, which can be determined by an involutive opera-
tor η:C → C, η|Ci

= (−1)i . Let us define the so-called (α,A)-almost chain
complex.

DEFINITION 1. The pair (C, d):

(C, d): C0
d1←−C1

d2←− · · · dn←−Cn, (23)

is called (α,A)-almost chain complex if it satisfies the following conditions:

‖d‖ � A, ‖d2‖ � α.

The operator d is called the differential of the almost chain complex (C, d). The
pair (α,A) measures the difference of the almost chain complex from the chain
complexes. Further, without loss of generality, we assume that A > 1 (‘large’
variable) and 0 < α < 1 (‘small’ variable).

Starting from a given pair (α,A), we shall construct new pairs as functions from
the first one: (α′, A′) = F(α,A), where the pair of functions F = (Fs(α,A), Fl(A))

is chosen from a class of so-called admissible functions F . By definition, the
function F = (Fs(α,A), Fl(A)) is called admissible, that is F = (Fs, Fl) ∈ F ,
if Fl(A) is a polynomial with positive coefficients of the variable A and its pos-
itive rational powers Ar and the function Fs(α,A) is a polynomial with positive
coefficients of variables A and α and their positive rational powers Ar1 , αr2 with
the addition property Fs(α,A) = 0, when α = 0. Similarly, one can define the
admissible functions of the group of ‘small’ variables αi and the group of ‘large’
variables Aj .

Now we define the almost chain homomorphism of almost chain complexes.

DEFINITION 2. The homomorphism

f : C(1) → C(2) (24)

from (α1, A1)-almost chain complex (C(1), d(1)) to (α2, A2)-almost chain com-
plex (C(2), d(2)) is called (α3, A3)-almost chain homomorphism if f is the graded
operator such that

‖f ‖ � A3, ‖f d(1) − d(2)f ‖ � α3.

On the homogeneous summands this means that the following diagram is almost
commute

C
(1)
0

d
(1)
1←− C

(1)
1

d
(1)
2←− · · · d

(1)
n←− C(1)

n�f0

�f1

�fn .
C

(2)
0

d
(2)
1←− C

(2)
1

d
(2)
2←− · · · d

(2)
n←− C(2)

n

Usually, we shall assume that (α3, A3) = F(α1, α2;A1A2) for an admissible func-
tion F .
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Consider the cone of the mapping (2), that is the new complex

Cone(f ) = C(1) ⊕ C(2) (25)

with differential

D: Cone(f )→ Cone(f ) (26)

defined as the matrix

D =
(
d(1) f

0 −d(2)

)
.

It is clear that the pair (Cone(f ),D) is (α4, A4)-almost chain complex if the
Hermitian structure is defined as the direct sum of Hermitian structures. The vari-
ables (α4, A4) can be expressed by the formulas

A4 = A1 + A2 + A3, α4 = α1 + α2 + α3.

This means that there is an admissible function F ∈ F such that (α4, A4) =
F(α1, α2, α3;A1, A2, A3).

DEFINITION 3. We shall say that (α,A)-almost chain complex (C, d) is
F -almost acyclic if there is an admissible function F(α, δ,A) ∈ F such that the
following condition holds: if ‖dx‖ � δ‖x‖, then there is an element y such that

‖y‖ � Fl(A)‖x‖, (27)

‖x − dy‖ � Fs(α, δ;A)‖x‖. (28)

Since ‖dx‖ � A‖x‖ the second inequality of (16), we can replace for stronger one:

‖x − dy‖ � Fs(α,min{δ,A};A)‖x‖.
Hence, we can choose as an admissible function F ∈ F such that all monomials
with nontrivial powers of δ have the same power δr , 0 < r � r0 < 1 for any
sufficiently small number r0.

Definition 3 can be loosened by considering only x with the condition ‖x‖ = 1.
Indeed, if ‖x‖ = 0, that is x = 0, the condition of Definition 3 holds automatically.
Let x be any element with condition ‖dx‖ � δ‖x‖. Put z = x/‖x‖. We have
‖dz‖ � δ = δ‖z‖. Therefore, there is an element u such that

‖u‖ � A‖z‖ = A,

‖du− z‖ � Fs(α, δ;A)‖z‖ = Fs(α, δ;A),
or ∥∥∥∥du− x

‖x‖
∥∥∥∥ � Fs(α, δ;A).
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Hence, putting y = ‖x‖u, we have

‖y‖ = ‖x‖ · ‖u‖ � A‖x‖,
‖dy − x‖ = ‖d(‖x‖u) − x‖ � Fs(α, δ;A)‖x‖.

Finally, we can loosen the conditions of Definition 3 in the following way:

DEFINITION 4. We shall say that (α,A)-almost chain complex (C, d) is
F -almost acyclic if there is an admissible function F(α, δ;A) ∈ F and positive
real number k such that the following condition holds: if ‖dx‖ � δ‖x‖, then there
is an element y such that

‖y‖ � Fl(A)‖x‖, (29)

‖x − dy‖ � Fs(α, δ;A)‖x‖k . (30)

Following Definition 3 (or 4), we can ask what does an F -almost exact sequence
of almost homomorphisms mean. For example, the sequence

0 → C1
i−→C

j−→C2 → 0

of almost homomorphisms is called F -almost exact if, as the chain complex, it is
F -almost acyclic (α,A)-almost chain complex.

Definition 3 is justified by the following theorem:

THEOREM 1. Let (C, d) be an F(α, δ;A)-almost acyclic complex with

Fs

(
α,
√
α;A) + (Fl(A)

(
AFs(α,

√
α;A)+√α

))1/2
< 1. (31)

Then the operator d + d∗ is invertible. More of that, the norm of the inverse
(d + d∗)−1 is estimated with number B such that

Fs

(
α,

√
α + A

1

B
+ 1

B
;A
)
+ (32)

+
(
Fl(A)

(
AFs

(
α,

√
α + A

1

B
+ 1

B
;A
)
+
√
α + A

1

B

))1/2

< 1.

Proof. Consider an element x such that

‖(d + d∗)x‖ � δ‖x‖. (33)

We have

‖(d2 + dd∗)x‖ � Aδ‖x‖.
Hence

‖dd∗x‖ � ‖d2x‖ + ‖(d2 + dd∗)x‖ � α‖x‖ + Aδ‖x‖
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and so

‖(dd∗x, x)‖ � (αAδ)‖x‖2

or

‖d∗x‖ �
√
α + Aδ ‖x‖.

From (33), we obtain

‖dx‖ � (
√
α + Aδ + δ)‖x‖.

From the conditions of acyclicity, for some element y we have that

‖x − dy‖ � Fs(α,
√
α + Aδ + δ;A)‖x‖, (34)

‖y‖ � Fl(A)‖x‖. (35)

Hence,

‖d∗x − d∗dy‖ � AFs(α,
√
α + Aδ + δ;A)‖x‖,

or

‖d∗dy‖ � Fl(A)
(
AFs(α,

√
α + Aδ + δ;A)+√α + Aδ

)‖x‖
and so

‖dy‖ �
(
Fl(A)

(
AFs(α,

√
α + Aδ + δ;A)+√α + Aδ

))1/2‖x‖.
From (34), we have

‖x‖ �
((
Fl(A)

(
AFs(α,

√
α + Aδ + δ;A)+√α + Aδ

))1/2+
+ Fs(α,

√
α + Aδ;A))‖x‖.

Thus, we have((
Fl(A)

(
AFs(α,

√
α + Aδ + δ;A)+√α + Aδ

) )1/2+
+Fs(α,

√
α + Aδ;A)) � 1. ✷

The inverse statement also holds:

THEOREM 2. Let (C, d) be a (α,A)-almost chain complex and assume that the
operator d + d∗ is invertible and ‖(d + d∗)−1‖ � Fl(A) for some admissible
function F ∈ F . Then there is an admissible function F ′ ∈ F , which does depend
only on the choice of F and does not depend on the complex (C, d) and (C, d) is
F ′(α, δ;A)-almost acyclic complex.
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Proof. Let x be an element such that ‖dx‖ � δ‖x‖. Since d + d∗ is invertible
operator, for some element y we have

x = (d + d∗)y, ‖y‖ � Fl(A)‖x‖.
Therefore

‖dd∗y‖ � ‖dx‖ + ‖d2y‖ � (αFl(A)+ δ)‖x‖.
Hence

‖d∗y‖ �
√
(αFl(A)+ δ)Fl(A)‖x‖.

Thus, we have

‖x − dy‖ � Fl(A)
√
α +√δFl(A)‖x‖,

‖y‖ � Fl(A)‖x‖. ✷
THEOREM 3. For any admissible function F ∈ F , there is an admissible func-
tion F ′ ∈ F such that for any F -almost exact sequence

0 → C1
i−→C

j−→C2 → 0 (36)

of (α,A)-almost complexes and (α,A)-homomorphisms such that

‖i‖ � A, ‖j‖ � A,

‖id1 − di‖ � α,

‖jd − d2j‖ � α,

the following properties hold:

(1) If (C1, d1) and (C2, d2) are F(α, δ;A)-almost acyclic chain complexes, then
(C, d) is F ′(α, δ;A)-almost acyclic chain complex.

(2) If (C2, d2) and (C, d) are F(α, δ;A)-almost acyclic chain complexes, then
(C1, d1) is F ′(α, δ;A)-almost acyclic chain complex.

(3) If (C1, d1) and (C, d) are F(α, δ;A)-almost acyclic chain complexes, then
(C2, d2) is F ′(α, δ;A)-almost acyclic chain complex.

Proof. Let x ∈ C, ‖dx‖ � δ‖x‖. Then ‖jdx‖ � Aδ‖x‖. Hence

‖d2jx‖ � ‖jdx‖ + ‖(d2j − jd)x‖ � (Aδ + α)‖x‖.
Since (C2, d2) is an almost acyclic complex, there is an element y ∈ C2 such that

‖y‖ � A‖jx‖ � A2‖x‖,
‖d2y − jx‖ � Fs(α,Aδ + α;A)‖x‖ = F (1)

s (α, δ;A)‖x‖.
Since sequence (2) is F -almost exact, there is an element z ∈ C such that

‖z‖ � A‖y‖ � A3‖x‖,
‖jz − y‖ � Fs(α, 0;A)‖y‖ � Fs(α, 0;A)A2‖x‖.
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Then

‖j (dz − x)‖ = ‖jdz − jx‖
� ‖d2jz − jx‖ + ‖(d2j − jd)z‖
� α‖z‖ + ‖d2jz− d2y‖ + ‖d2y − jx‖
� α‖z‖ + A‖jz − y‖ + F 1

s (α, δ;A)‖x‖
� αA3‖x‖ + A3Fs(α, 0;A)‖x‖ + F 1

s (α, δ;A)‖x‖
� F (2)

s (α, δ,A)‖x‖.
From F -exactness of sequence (2), again there is an element u ∈ C1 such that

‖u‖ � A‖dz − x‖ � A(‖dz‖ + ‖x‖) � A(A3 + 1)‖x‖;
‖iu+ dz − x‖ � Fs

(
α, F (2)

s (α, δ;A) ‖x‖
‖dz − x‖;A

)
‖dz − x‖

� Fs

(
α, F (2)

s (α, δ;A) ‖x‖
‖dz − x‖;A

)‖dz − x‖
‖x‖ ‖x‖

= F (3)
s

(
α, δ,

‖dz − x‖
‖x‖ ;A

)
‖x‖

� F (3)
s (α, δ,A3 + 1;A)‖x‖ = F (4)

s (α, δ;A)‖x‖.
Then

‖diu‖ � ‖diu − d(dz − x)‖ + ‖d2z‖ + ‖dx‖
� AF(4)

s (α, δ;A)‖x‖ + αA3‖x‖ + δ‖x‖;
‖id1u‖ � ‖diu‖ + ‖(id1 − di)u‖

� F (5)
s (α, δ;A)‖x‖ = F (5)

s (α, δ;A) ‖x‖‖d1u‖‖d1u‖.
Again from almost exactness, we have that

‖d1u‖ � Fs

(
α, F (5)

s (α, δ;A) ‖x‖‖d1u‖;A
)
‖d1u‖

= Fs

(
α, F (5)

s (α, δ;A) ‖x‖‖d1u‖;A
)‖d1u‖
‖x‖ ‖x‖

= F 6
s

(
α, δ; ‖d1u‖

‖x‖ , A

)
‖x‖

� F 6
s (α, δ;A2(A3 + 1), A)‖x‖

� F 7
s (α, δ;A)‖x‖.

From the acyclicity of (C1, d1), we have that there is an element v ∈ C1 such that

‖v‖ � A‖u‖;
‖d1v − u‖ � Fs

(
α, F (7)

s t (α, δ;A)‖x‖‖u‖ ;A
)
‖u‖
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or

‖id1v − iu‖ � AFs

(
α, F (7)

s (α, δ;A)‖x‖‖u‖ ;A
)
‖u‖.

Hence,

‖div − iu‖ � ‖div − id1v‖ + ‖id1v − iu‖
�
(
Aα + AFs

(
α, F (7)

s (α, δ;A)‖x‖‖u‖ ;A
))
‖u‖.

Thus

‖d(z − iv)− x‖ � ‖div − iu‖ + ‖iu− dz + x‖
�
(
Aα + AFs

(
α, F (7)

s (α, δ;A)‖x‖‖u‖ ;A
))
‖u‖+

+ F (4)
s (α, δ;A)‖x‖

�
(
Aα + AFs

(
α, F (7)

s (α, δ;A)‖x‖‖u‖ ;A
))‖u‖
‖x‖‖x‖+

+ F (4)
s (α, δ;A)‖x‖

� F (8)
s

(
α, δ; ‖u‖‖x‖ , A

)
‖x‖

� F (9)
s (α, δ;A)‖x‖.

Also, we have that

‖z − iv‖ � A3‖x‖ + A3(A3 + 1)‖x‖ = Fl(A)‖x‖. ✷
THEOREM 4. Let C = ⊕

ij Cij be a bigraded complex with two almost differ-
entials d1, d2 of degrees correspondingly (1, 0) and (0, 1), d1d2 + d2d1 = 0. Let
d = d1 + d2. If (C, d1 is an Fs(α, δ;A)-almost acyclic chain complex, then (C, d)

is also an F ′s (α, δ;A)-almost acyclic chain complex for the proper admissible
function F ′.

Proof. The restriction of the differential d1 to a homogeneous summand Ck =⊕
j=k Cij also gives an Fs(α, δ;A)-almost acyclic complex. Hence, we can apply

Theorem 3. ✷
COROLLARY 1. In particular, if (C, d) is an Fs(α, δ;A)-almost acyclic chain
complex, then the new complex (C ⊗ C1, d ⊗ 1) is also an Fs(α, δ;A)-almost
acyclic chain complex.

Let Cone(f ) denote the F(α,A)-almost chain complex defined by formulas
(15) and (16).
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COROLLARY 2. Let (C, d) be an (α,A)-almost chain complex and 1:C → C

be an identical homomorphism. Then the cone Cone(1) is an Fs(α, δ;A)-almost
acyclic chain complex.

THEOREM 5. If Cone(f ) and Cone(g) are F(α,A)-almost acyclic chain com-
plexes, then Cone(gf ) again is an F ′(α,A)-almost acyclic chain complex for the
proper admissible function F ′ ∈ F , which does not depend on the choice of
complexes Ck and homomorphisms f and g.

Proof. Let the differentials of the complexes Cone(f ), Cone(g) and Cone(gf )
be D1, D2 and D, correspondingly. We have

D1 =
(
d2 f

0 −d1

)
, D2 =

(
d3 g

0 −d2

)
, D =

(
d3 gf

0 −d1

)
.

Consider a vector z =
(
x3
x1

)
such that ‖Dz‖ � δ‖z‖. This means that

‖d3x3 + gf x1‖ � δ‖z‖, ‖d1x1‖ � δ‖z‖.
Then

‖d2f x1‖ � ‖f d1x1‖ + ‖(f d1 − d2f )x1‖ � (δA+ α)‖z‖.
Put z2 =

(
x3
f x1

)
. Hence

‖D2(z2)‖ =
∥∥∥∥
(
d3x3 + gf x1

−d2f x1

)∥∥∥∥ � 2(δ(1+ A)+ α)
‖z‖
‖z2‖‖z2‖.

Since the Cone(g) is almost acyclic complex, there is a vector u =
(
u3
u2

)
such that

‖u‖ � A‖z2‖,
‖z2 −D2u‖ � Fs

(
α, 2(δ(1+ A)+ α)

‖z‖
‖z2‖;A

)
‖z2‖ � F (1)

s (α, δ;A)‖z‖
or

‖x3 − d3u3 − gu2‖ � F (1)
s (α, δ;A)‖z‖,

‖f x1 + d2u2‖ � F (1)
s (α, δ;A)‖z‖.

Consider the vector z1 =
(
u2
x1

)
. We have

D1z1 =
(
d2u2 + f x1

−d1x1

)
.

Hence,

‖D1z1‖ � F (1)
s (α, δ;A)‖z‖ + δ‖z‖ = F (2)

s (α, δ;A) ‖z‖‖z1‖‖z1‖.
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Again, from the almost acyclicity of the Cone(f ), there is a vector v =
(
v2
v1

)
such

that

‖v‖ � A‖z1‖,
‖z1 −D1v‖ � Fs

(
α, F (2)

s (α, δ;A) ‖z‖‖z1‖;A
)
‖z1‖ = F (3)

s (α, δ;A)‖z‖,

that is

‖u2 − d2v2 − f v1‖ � F (3)
s (α, δ;A)‖z‖,

‖x1 + d1v1‖ � F (3)
s (α, δ;A)‖z‖.

Let

w =
(
u3 + gv2

v1

)
.

Then

z −Dw =
(
x3 − d3u3 − d3gv2 − gf v1

x1 + d1v1

)
.

We have

‖x3 − d3u3 − d3gv2 − gf v1‖
� ‖x3 − d3u3 − gu2‖ + ‖gu2 − d3gv2 − gf v1‖
� ‖x3 − d3u3 − gu2‖ + A‖u2 − d2v2 − f v1‖ + ‖d3gv2 − gd2v2‖
� F (1)

s (α, δ;A)‖z‖ + F (3)
s (α, δ;A)‖z‖ + α‖z‖

� F (4)
s (α, δ;A)‖z‖;

and

‖x1 + d1v1‖ � F (3)
s (α, δ;A)‖z‖.

Together, we have

‖z −Dw‖ � F (4)
s (α, δ;A)‖z‖ + F (3)

s (α, δ;A)‖z‖ = F (5)
s (α, δ;A)‖z‖. ✷

5. Almost Algebraic Poincaré Coplexes

The definition of almost algebraic Poincaré complexes is given in a way similar to
the definition of algebraic Poincaré complexes from Section 2. Namely, let (C, d)
be a (α,A)-almost chain complex

C =
n⊕

i=0

Ci, d =
⊕

di, d2 = 0
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or

C0
d1←−C1

d2←− · · · dn←−Cn.

It is convenient to use the grading operator

η:C → C, η∗ = η, η2 = 1, η
∣∣
Ck
= (−1)k.

Then we have dη + ηd = 0 or, in general, for the homogeneous homomorphism ξ

of degree k we have ξη = (−1)kηξ .

DEFINITION 5. The F(α, δ;A)-almost algebraic Poincaré complex of formal
dimension n is the pair M = ((C, d),D), where (C, d) is the (α,A)-almost chain
complex, that is d is the homogeneous homomorphism of the dimension −1 such
that ‖d2‖ � α and D:C∗ → C is the homogeneous homomorphism of the
dimension n

C0
d1←− C1

d2←− · · · dn←− Cn�D �D �D
C∗n

d∗n←− C∗n−1

d∗
n−1←− · · · d∗1←− C∗0

such that

‖D‖ � A, ‖Dd∗ + dDη‖ � α, D∗ = Dηn+1. (37)

The second condition of (3) means that if d# = ηd∗, then the homomorphism
D: (C∗, d#)→ (C, d) is an (α,A)-almost chain homomorphism.

More of that, we require that the cone Cone(D) should be the F(α, δ;A)-almost
acyclic chain complex.

It is evident that the new complex (−M) = ((C, d),−D) also is an F(α, δ;A)-
almost algebraic Poincaré complex (with ‘opposite orientation’). This operation is
called changing the orientation of the almost algebraic Poincaré complex.

There are two operations in the class of almost algebraic Poincaré complexes –
the direct sum and tensor product. The construction of the direct sum is evident.
For construction of the tensor product, we should consider two F(α, δ;A)-almost
algebraic Poincaré complexes M1 = ((C1, d1),D1) and M2 = ((C2, d2),D2),
general by of different formal dimensions n1 and n2. Then consider the almost
chain complex

C = C1 ⊗ C2, d = d1 ⊗ 1+ η1 ⊗ d2, η = η1 ⊗ η2 (38)

and the homomorphism

D:C∗ → C, D = (D1 ⊗D2)ζ((−1)n1η1 ⊗ 1, 1⊗ η2), (39)

where

ζ(η1, η2) = 1
2(1+ η1 + η2 − η1η2).



26 A. S. MISHCHENKO

THEOREM 6. There is an admissible function F ′ ∈ F such that the pair M =
((C, d),D), defined by formulas (3) and (21) is an F ′(α, δ;A)-almost algebraic
Poincaré complex.

Proof. First of all we shall check that (C, d) satisfies the properties of the (α,A)-
almost chain complex. We have

d2 = (d1 ⊗ 1+ η1 ⊗ d2)(d1 ⊗ 1+ η1 ⊗ d2)

= d2
1 ⊗ 1+ η2

1 ⊗ d2
2 + d1η1 ⊗ d2 + η1d1 ⊗ d2

= d2
1 ⊗ 1+ 1⊗ d2

2 .

Therefore ‖d2‖ � 2α.
Now we shall check that D satisfies condition (3). Previously, we checked that

ζ((−1)n1η1 ⊗ 1, 1⊗ η2)(d
∗
1 ⊗ 1) = (d∗1 ⊗ η2)ζ((−1)n1η1 ⊗ 1, 1⊗ η2).

Really, we have
1
2 (1⊗ 1+ (−1)n1η1 ⊗ 1+ 1⊗ η2 + (−1)n1η1 ⊗ η2)(d

∗
1 ⊗ 1)

= (d∗1 ⊗ 1) 1
2(1⊗ 1− (−1)n1η1 ⊗ 1+ 1⊗ η2 − (−1)n1η1 ⊗ η2)

= (d∗1 ⊗ η2)
1
2(1⊗ 1+ (−1)n1η1 ⊗ 1+ 1⊗ η2 + (−1)n1η1 ⊗ η2).

Similarly, we have

ζ((−1)n1η1 ⊗ 1, 1⊗ η2)(1⊗ d∗2 ) = ((−1)n1η1 ⊗ d∗2 )ζ((−1)n1η1 ⊗ 1, 1⊗ η2)

and

ζ((−1)n1η1 ⊗ 1, 1⊗ η2)(d1 ⊗ 1) = (d1 ⊗ η2)ζ((−1)n1η1 ⊗ 1, 1⊗ η2),

ζ((−1)n1η1 ⊗ 1, 1⊗ η2)(1⊗ d2) = ((−1)n1η1 ⊗ d2)ζ((−1)n1η1 ⊗ 1, 1⊗ η2).

Now we have

Dd∗ + dDη

= (D1 ⊗D2)ζ(d
∗
1 ⊗ 1+ η1 ⊗ d∗2 )+

+ (d1 ⊗ 1+ η1 ⊗ d2)(D1 ⊗D2)ζη

= (D1 ⊗D2)(d
∗
1 ⊗ η2 + (−1)n1η2

1 ⊗ d∗2 )ζ+
+ (d1 ⊗ 1+ η1 ⊗ d2)(D1 ⊗D2)ηζ

= ((D1 ⊗D2)(d
∗
1 ⊗ η2 + (−1)n1 ⊗ d∗2 )+

+ (d1 ⊗ 1+ η1 ⊗ d2)(D1 ⊗D2)η)ζ

= ((D1d
∗
1 ⊗D2η2 + (−1)n1D1 ⊗D2d

∗
2 )+

+ (d1D1η1 ⊗D2η2 + η1D1η1 ⊗ d2D2η2))ζ

= ((D1d
∗
1 ⊗D2η2 + (−1)n1D1 ⊗D2d

∗
2 )+

+ (d1D1η1 ⊗D2η2 + (−1)n1D1 ⊗ d2D2η2))ζ

= ((D1d
∗
1 + d1D1η1)⊗D2η2)ζ+

+ (−1)n1(D1 ⊗ (D2d
∗
2 + d2D2η2))ζ.
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Hence

‖Dd∗ + dDη‖
� ‖D1d

∗
1 + d1D1η1‖ · ‖D2‖ · ‖ζ‖ + ‖D2d

∗
2 + d2D2η2‖ · ‖D1‖ · ‖ζ‖

� 2αA = Fs(α;A).
Finally, we should prove that the Cone(D) is an F ′(α, δ;A)-almost acyclic

chain complex. The homomorphism D is the F(α;A)-almost chain complex
D: (C∗, d#)→ (C, d), where d# = −d∗η.

We shall split the homomorphism D into a composition of two homomor-
phisms:

C∗ = C∗1 ⊗ C∗2
B1−→C∗1 ⊗ C2

B2−→C1 ⊗ C2 = C,

where

B2 = D1 ⊗ 1, B1 = (1⊗D2)ζ, D = B1 ◦ B2. (40)

Define the almost differential

d̃:C∗1 ⊗ C2 → C∗1 ⊗ C2

as

d̃ = η1d
∗
1 ⊗ 1+ (−1)n1η1 ⊗ d2.

Then

‖d̃2‖ = ‖(η1d
∗
1 ⊗ 1+ (−1)n1η1 ⊗ d2)

2)‖ = ‖η1d
∗
1η1d

∗
1 ⊗ 1+ 1⊗ d2

2‖ � 2α,

‖dB2 − B2d̃‖
= ‖(d1 ⊗ 1+ η1 ⊗ d2)(D1 ⊗ 1)− (D1 ⊗ 1)(η1d

∗
1 ⊗ 1+ (−1)n1η1 ⊗ d2)‖

= ‖(d1D1 ⊗ 1+ η1D1 ⊗ d2)− (D1η1d
∗
1 ⊗ 1+ (−1)n1D1η1 ⊗ d2)‖

� ‖d1D1 ⊗ 1−D1η1d
∗
1 ⊗ 1‖ + ‖η1D1 ⊗ d2 − (−1)n1D1η1 ⊗ d2‖

= ‖d1D1 −D1η1d
∗
1‖ � α.

Also, we have

‖B1d
# − d̃B1‖

= ‖(1⊗D2)ζη(d
∗
1 ⊗ 1+ η1d

∗
2 )−

− (η1d
∗
1 ⊗ 1+ (−1)n1η1 ⊗ d2)(1⊗D2)ζ‖

= ‖(1⊗D2)η(d
∗
1 ⊗ η2 + (−1)n1 ⊗ d∗2 )ζ−

− (η1d
∗
1 ⊗D2 + (−1)n1η1 ⊗ d2D2)ζ‖

= ‖(η1d
∗
1 ⊗D2 + (−1)n1η1 ⊗D2η2d

∗
2 )ζ−

− (η1d
∗
1 ⊗D2 + (−1)n1η1 ⊗ d2D2)ζ‖

= ‖(−1)n1η1 ⊗D2η2d
∗
2 − (−1)n1η1 ⊗ d2D2‖

= ‖D2η2d
∗
2 − d2D2‖ � α.
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Thus we can apply Theorem 5. For this, we should prove that both homomor-
phisms (40) induced almost acyclic chain complexes Cone(B1) and Cone(B2).
Consider the first complex Cone(B1):

C∗1 ⊗ C∗2
B1−→C∗1 ⊗ C2.

The differential of the Cone(B1) is defined by the matrix

G1 =
(
d̃ B1

0 ηd∗

)

=
(
η1d

∗
1 ⊗ 1+ (−1)n1η1 ⊗ d2 (1⊗D2)ζ

0 η(d∗1 ⊗ 1+ η1 ⊗ d∗2 )

)

=
(
η1d

∗
1 ⊗ 1 0
0 η1d

∗
1 ⊗ η2

)
+
(
(−1)n1η1 ⊗ d2 (1⊗D2)ζ

0 1⊗ η2d
∗
2

)

=
(
η1d

∗
1 ⊗ 1 0
0 η1d

∗
1 ⊗ η2

)
+

+
(

1 0
0 ζ

)(
(−1)n1η1 ⊗ d2 (1⊗D2)

0 (−1)n1η1 ⊗ η2d
∗
2

)(
1 0
0 ζ

)
= L+K.

Here

K =
(

1 0
0 ζ

)(
(−1)n1η1 ⊗ d2 (1⊗D2)

0 (−1)n1η1 ⊗ η2d
∗
2

)(
1 0
0 ζ

)

=
(

1 0
0 ζ

)
K1

(
1 0
0 ζ

)
,

K1 =
(
(−1)n1η1 ⊗ d2 (1⊗D2)

0 (−1)n1η1 ⊗ η2d
∗
2

)

= %

(
1⊗ d2 (1⊗D2)

0 1⊗ η2d
∗
2

)
%,

% =
(
ζ((−1)n1η1, η2) 0

0 ζ((−1)n1η1, (−1)n2η2)

)
.

Therefore, K defines the differential of an Fs(α, δ;A)-almost acyclic chain com-
plex since the Cone(D2) is an Fs(α, δ;A)-almost acyclic chain complex. Thus, by
Theorem 4, the cone Cone(B1) is an F ′s (α, δ;A)-almost acyclic chain complex.

Consider the second complex Cone(B2): C∗1 ⊗ C2
B2−→C1 ⊗ C2 = C. The

differential of the Cone(B2) is defined by the matrix
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G2 =
(
d B2

0 −d̃
)

=
(
d1 ⊗ 1+ η1 ⊗ d2 D1 ⊗ 1

0 −η1d
∗
1 ⊗ 1− (−1)n1η1 ⊗ d2

)

=
(
d1 ⊗ 1 D1 ⊗ 1

0 −η1d
∗
1 ⊗ 1

)
+
(
η1 ⊗ d2 0

0 −(−1)n1η1 ⊗ d2

)
= K + L,

where

K =
(
d1 ⊗ 1 D1 ⊗ 1

0 −η1d
∗
1 ⊗ 1

)
,

L =
(
η1 ⊗ d2 0

0 −(−1)n1η1 ⊗ d2

)
,

KL+ LK = 0.

Hence, by Theorem 4, the cone Cone(B2) is an F ′s (α, δ;A)-almost acyclic chain
complex. ✷
DEFINITION 6. Let

M1 = ((C1, d1),D1) and M2 = ((C2, d2),D2)

be two F(α, δ;A)-almost algebraic Poincaré complexes, generally of different for-
mal dimensions n1 and n2. Then the pair M = ((C, d),D), defined by formulas (3)
and (21) is called the tensor product and we note M = M1 ⊗M2.

In similar way, we define an almost algebraic Poincaré with boundary.

DEFINITION 7. An F(α, δ;A)-almost algebraic Poincaré complex with bound-
ary of the formal dimension n+ 1 is a triple ((C, d), (C0, d0),D), where the pairs
(C, d) and (C0, d0) are (α,A)-almost chain graded complexes, the inclusion on
the direct summand i:C0 → C is an (α,A)-almost chain homomorphism that is
‖id0 − di‖ � α. Let j :C → C/C0 be the natural projection and let k:C/C0 → C

be the bounded operator which is left inverse to the projection j on the orthogonal
supplement (i(C0))

⊥. Finally, let l:C → C0 be the orthogonal projection. Put
d̄ = jdk which is (α,A)-almost differential on C/C0. Let D:C∗ → C be the
homogeneous homomorphism of the formal dimension n+ 1 such that

‖j (Dd∗ + dDη)‖ � α D∗ = Dηn+2. (41)

Assume that the homomorphisms

jD:C∗ → C/C0, Dj ∗: (C/C0)
∗ → C (42)

induce F(α, δ;A)-almost acyclic chain complexes on the cones Cone(jD) and
Cone(Dj ∗).
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Definition 7 gives the following diagram:

0 → C0
i−→ C

j−→ C/C0 → 0

Dj∗↗
�D ↗ jD

0 → (C/C0)
∗ j∗−→ C∗ i∗−→ C∗0 → 0.

(43)

Remark. The second condition in (3) is implied from the first one for sufficiently
small α, but we prefer to avoid additional difficulties in our considerations.

LEMMA 1. Let M = ((C, d), (C0, d0),D) be an F(α, δ;A)-almost algebraic
Poincare complex with boundary of the formal dimension n+ 1. Put

D0 = l(Dd∗ + dDη)l∗, D0:C∗0 → C0.

Then the pair ((C0, d0),D0) is an F ′(α, δ;A)-almost algebraic Poincaré complex
(without boundary) of the formal dimension n for some admissible function F ′ ∈ F
which does not depend on the choice of M.

Proof. It easy to check that il + kj = 1. From (3) we have ‖(Dd∗ + dDη)j ∗‖
� α. Hence

‖Dd∗ + dDη − iD0i
∗‖

� ‖(il + kj)(Dd∗ + dDη − iD0i
∗)(l∗i∗ + j ∗k∗)‖

� ‖il(Dd∗ + dDη)l∗i∗ − iliD0i
∗l∗i∗‖ + 2α

= ‖il(Dd∗ + dDη)l∗i∗ − ilil(Dd∗ + dDη)l∗i∗l∗i∗‖ + 2α = 2α.

In the diagram (43) we can substitute the right space C/C0 for the homotopy
equivalent one Cone(i) = C ⊕ C0:

C ⊕ C0

γ ↗
�

0 → C0
i−→ C

j−→ C/C0 → 0

Dj∗↗
�D ↗ jD

0 → (C/C0)
∗ j∗−→ C∗ i∗−→ C∗0 → 0.

(44)

Then the diagram

C
γ−→ Cone(i) = C ⊕ C0�Dj∗ �β

(C/C0)
∗ j∗−→ C∗

(45)

with

γ =
(

1
0

)
, β =

(
D

−D0i
∗

)
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is almost commutative, hence it can be completed to the exact sequence

0 → (C, d)
γ−→ (C ⊕ C0, dc)

γ ′−→ (C0, d0) → 0�Dj∗ �β �D0

0 → ((C/C0)
∗,−d̃∗η) j∗−→ (C∗,−d∗η) i∗−→ (C∗0 ,−d∗0η) → 0,

where

γ ′ = (0,−1), dc =
(
d 0
0 d0

)
.

Hence, to prove that the Cone(D0) is almost acyclic, it is sufficient to check that
the middle homomorphism β induces an almost acyclic cone.

Consider the following almost commutative diagram with exact rows:

0 → (C0 ⊕ C0, d̃0)
(i⊕1)−→ (C ⊕ C0, dc)

(j,0)−→ (C/C0, d̃) → 0�0

�β �jD
0 → 0

0−→ (C∗,−d∗η) 1−→ (C∗,−d∗η) → 0,

(46)

where

d̃0 =
(
d0 −1
0 d0

)
.

The first and third terms in diagram (46) form almost acyclic cones. Hence, the
middle terms also are almost acyclic. ✷

Denote ∂M = (C0, d0). We shall say that almost algebraic Poincaré complex
∂M is bordant to zero. In the common case, consider two almost algebraic Poincaré
complexes M1 and M2 of formal dimension n. We shall say that these two almost
algebraic Poincaré complexes are bordant if there is an almost algebraic Poincaré
complex with boundary W of formal dimension n+1 such that ∂W = M1⊕(−M2).

LEMMA 2. Let M1, M2 be two almost algebraic Poincaré complexes with bound-
ary of formal dimension – n + 1. Let f : ∂M1 → ∂M2 be an almost isomorphism
such that f −1 also is almost isomorphism. Then the so-called ‘connected sum’
M = (M1 ⊕ M2)/{x ∼ f (x)} also is an almost algebraic Poincaré complex
(without boundary) of formal dimension n+ 1.

This new almost algebraic Poincaré complex M is denoted by M = M1 ∪f M2.
More generally, there is an analog of the connected sum for almost algebraic

Poincaré complexes with boundary.

LEMMA 3. Let M1, M2 be two almost algebraic Poincaré complexes with bound-
ary of formal dimension n+ 1. Assume that the following splitting holds:

∂M1 = M11 ∪M12, ∂M2 = M21 ∪M22,
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and there is an almost isomorphism f :M12 → M22. Then the ‘connected sum’
M = (M1 ⊕ M2)/{x ∼ f (x)} is an almost algebraic Poincaré complex with
boundary of formal dimension n + 1. More of that, the boundary ∂M also is the
connected sum

∂M = M11 ∪f0 M21, where f0 = f |∂M12=∂M11 .

The bordism relation clearly is an equivalence relation for a proper choice of ad-
missible functions. More of that, the bordism relation is compatible with operations
of the direct sum and tensor product. Namely, we have the following lemma:

LEMMA 4. Let M1 and M2 be two almost algebraic Poincaré complexes. If
∂M2 = 0, then M1 ⊗M2 is an almost algebraic Poincaré complex with boundary
∂M1 ⊗M2.

In the common case, M1 ⊗M2 is an almost algebraic Poincaré complex with
boundary

∂(M1 ⊗M2) = (∂M1 ⊗M2) ∪f (M1 ⊗ ∂M2),

where

f : ∂M1 ⊗ ∂M2 → ∂M1 ⊗ ∂M2

is identity.

For the construction of an invariant similar to the signature, we shall introduce
a class of elementary almost algebraic Poincaré complexes.

DEFINITION 8. The almost algebraic Poincaré complex

M = ((C, d),D), C =
n⊕

k=0

Ck,

of formal dimension n is called an elementary almost algebraic Poincaré complex
if Ck = 0, except one or two middle dimensions. In the case n = 2k the ele-
mentary algebraic Poincaré complex coincides with an algebraic Poincaré complex
considered in [1]. In the case of n = 4k for sufficient small α, the homomorphism
D:C∗2k → C2k is an invertible selfadjoint operator. Hence, put sign(M) = sign(D).
In the case n = 4k + 2, the homomorphism D:C∗2k+1 → C2k+1 is an invertible
skew-adjoint operator. Therefore put sign(M) = sign(iD).

LEMMA 5. Any almost algebraic Poincaré complex M is bordant to an elemen-
tary almost algebraic Poincaré complex Me for a proper choice of the admissible
function F ∈ F which does not depend on the choice of, M for a given formal
dimension n.

This lemma allows us to define the signature for an arbitrary almost algebraic
Poincaré complex for a proper relation between α and A.



THEORY OF ALMOST ALGEBRAIC POINCARÉ COMPLEXES 33

DEFINITION 9. Let M be an almost algebraic Poincaré complex of formal di-
mension n and let Me be an elementary almost algebraic Poincaré complex which
is bordant to M. If n = 2k, then put signM = signMe. In the case n "= 2k we put
signM = 0.

The following statement justifies the definition:

LEMMA 6. Definition (9) is correct in that it does not depend on the choice of
elementary almost algebraic Poincaré complex Me which is bordant to M.

Thus we obtain the signature function defined on the classes of bordant almost
algebraic Poincaré complexes, which satisfies the following natural conditions:

LEMMA 7. The following relations hold:

sign(M1 ⊕M2) = sign(M1)+ sign(M2),

sign(M1 ⊗M2) = sign(M1) · sign(M2).

6. Construction of an Algebraic Poincaré Complex Associated with a
Combinatorial Manifold Equipped with a Vector Bundle

Let X be a compact oriented combinatorial manifold of dimension n and let V̄
be a vector bundle over – X. The vector bundle V̄ is determined by a continuous
projector-valued function P(x), x ∈ X. This means that there is a trivial vector
bundle N̄ , N̄ = X × CN and a continuous projector-valued mapping

P :X × CN → X × CN. (47)

Let us fix a simplicial structure on the manifold X. Denote this by

nei(X) = max
σ⊂X

#{τ : σ ∩ τ "= ∅},

and

s(X) = min
σ⊂X

(diam(σ )).

LEMMA 8. There is a number L > nei(X) such that for any ε > 0 there is a
simplicial subdivision X∂ on the manifold X such that s(Xδ) � ε, nei(Xδ) � L.

For arbitrary simplex σ = (a0, a1, . . . , ak), denote by x(σ ) its central point σ ,

x(σ ) =
k∑

j=0

1

n+ 1
aj .
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Assume that the simplicial structure is sufficiently fine such that, for any simplex σ

and for any of its face τ , we have the inequality

‖P(x(σ ))− P(x(τ))‖ � ε.

Denote by (C(X, N̄), d̄) the chain complex with coefficients in the trivial vector
bundle N̄ :

C(X, N̄) = C(X)⊗ CN, d̄ = d ⊗ CN.

Then the projector-valued function (47) induces the projector P̄ in the space
C(X, N̄):

P̄ (σ ⊗ v) = σ ⊗ P(x(σ ))v, v ∈ CN.

Let us define the almost chain complex (C(X, V̄ , P̄ ), dV̄ ,P̄ ) by:

C(X, V̄ , P̄ ) = Im P̄ , dV̄ ,P̄ = P̄ d̄P̄ .

Let D:C∗(X)→ C(X) be the Poincaré duality homomorphism on the manifold X.
By extending it to the chain complex with coefficients in the trivial vector bundle

D̄ = D ⊗ CN :C∗(X, N̄)→ C(X, N̄),

we obtain the algebraic Poincaré complex ((C(X, N̄), d̄), D̄). Then the almost
algebraic Poincaré complex is defined as:

DV̄ ,P̄ :C∗(X, V̄ , P̄ )→ C(X, V̄ , P̄ ),

DV̄ ,P̄ = P̄ D̄P̄ .

Still, the pair ((C(X, V̄ , P̄ ), dV̄ ,P̄ ),DV̄ ,P̄ ) determines the almost homomorp-
hism of almost chain complexes.

In order to have that the pair ((C(X, V̄ , P̄ ), dV̄ ,P̄ ),DV̄ ,P̄ ) determines the almost
algebraic Poincaré complex, one should check that the cone defined by the homo-
morphism DV̄ ,P̄ makes up an almost acyclic complex. The following statement
answers this question.

THEOREM 7. Consider an oriented combinatorial manifold X and a vector bun-
dle V̄ defined by a projector-valued function, P . Then there are such numbers L

and ε > 0 that, if the simplicial structure on the manifold X satisfies the conditions
nei(X) � L, diam(X) � ε, then the pair

M(X, V̄ , P̄ ) = ((C(X, V̄ , P̄ ), dV̄ ,P̄ ),DV̄ ,P̄ )

is the F(ε,L)-almost algebraic Poincaré complex for the proper admissible func-
tion F ∈ F which does not depend on the choice of simplicial subdivision on the
manifold M.
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If Xδ is a fine subdivision with the condition nei(Xδ) � L, then the almost alge-
braic Poincaré complex M(Xδ, V̄ , P̄ ) is bordant to the almost algebraic Poincaré
complex M(X, V̄ , P̄ ).

If P ′ is another projector-valued function, which defines the same vector bundle
V̄ , then there is a number ε1 < ε such that for a simplicial subdivision Xδ with
conditions nei(Xδ) < L, diam(Xδ) � ε1, the almost algebraic Poincaré complex
M(Xδ, V̄ , P̄ ′) is bordant to the almost algebraic Poincaré complex M(X, V̄ , P̄ ).

Finally, the following formula similar to the Hirzebruch formula holds:

sign(M(X, V̄ , P̄ )) = 22k
〈
L(X)ch(V̄ ), [M]〉. (48)

Proof. In reality, we need to prove the statement of the Theorem for the more
general case of manifolds with boundary.

Firstly, notice that the manifold X can be decomposed into a finite family of
handles. Each handle is homeomorphic to an n-dimensional cube I n = I × I ×
· · · × I . Therefore, it is sufficient to prove that the theorem is true for unit interval
I and to apply Lemma 4. Thus, the complex M(In, V̄ , P̄ ) is the almost algebraic
Poincaré complex with boundary. Hence, due to Lemma 2, the sphere Sn with the
vector bundle V̄ induces an almost algebraic Poincaré complex. Further, we apply
Lemma 3 for gluing the manifold with boundary by the handles.

Thus, the function signM(X, V̄ , P̄ ) in reality is a function on the bordism group

sign:�∗
(⋃

BU(n)
)
→ Z. (49)

To prove the analog of the Hirzebruch formula, it is sufficient to check some
algebraic properties of the function (49): namely, additivity with respect to a non-
connected sum of manifolds, additivity with respect to a direct sum of vector
bundles and multiplicativity with respect to a Cartesian product of manifolds and
tensor product of vector bundles.

All these properties follow from Lemma 7.
Thus, we should check formula (48) only in the case when X = T 2 is the two-

dimensional torus and V̄ is the Hopf bundle over the two-dimensional torus. In this
case, there is a simple description of the Hopf bundle.

LEMMA 9. There is an asymptotic representation ρ of the fundamental group
π1(T

2) = Z × Z such that the correspondent vector bundle V̄ρ over the torus T 2

has a nontrivial first characteristic Chern class.

Therefore, it is sufficient to check formula (48) for the vector bundle V̄ρ induced
by the asymptotic representation ρ. This case is the direct consequence of the
general Hirzebruch formula for asymptotic representations (see [2, 8–10]), and
the fact that the signature sign(M(X, V̄ρ, P̄ )), defined above, coincides with the
image of the symmetric signature of the nonconnected manifold for the asymptotic
representation ρ.
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Really, let ρ = {ρk} be an asymptotic representation of the fundamental group
π = π1(X, x0) of the manifold X with fixed point x0 ∈ X. Let us fix a simplicial
subdivision on the manifold X and a polygonal curve γx for each vertex a ∈ X

which connects the initial vertex x0 with the vertex x. Consider the chart atlas
U = {Ua}, compounded with the star of vertices Ua = star(a). Then, on the
intersection of two charts Ua0a1 = Ua0 ∩ Ua1 , let us consider an ‘almost transition
function’

ϕa0a1 = ρk(ga0a1), ga0a1 = γa0 · (a0, a1) · γ −1
a1
∈ π.

This means that the bundle V̄ρk is defined by the transition functions ψk
a0a1

(x),
x ∈ Ua0a1, such that

‖ϕa0a1 − ψk
a0a1

(x)‖ = εk → 0.

There is a construction that is equivalent to (48) for the almost algebraic Poin-
caré complex. Namely put

C(X, V̄ρk ) =
⊕
σ

V̄ρk (x(σ )),

where x(σ ) is the central point of the simplex σ . Let a(σ ) be a vertex of the
simplex σ . Then the bounded operator d is defined by the formula

d: V̄ρk (σ )→
⊕
σj

V̄ρk (σj),

d =
⊕
j

(−1)jϕa(σ )a(σj),

where σj is the j th face of the simplex σ .
Similarly, one can construct the Poincaré duality operator D.
One can also check that this new definition gives the almost algebraic Poincaré

complex

(C(X, V̄ρk ), d,D), (50)

which is bordant to (48).
On the other hand, the complex (50) is the tensor product of the universal alge-

braic Poincaré complex of the manifold X, supplied with a simplicial structure and
a asymptotic representation ρk. ✷
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