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HOMOTOPY INVARIANTS OF NONSIMPLY CONNECTED MANIFOLDS.

III. HIGHER SIGNATURES
UDC513.8
A. S. MISCENKO

Abstract. The homotopy invariance of the higher signatures of nonsimply con-
nected manifolds is proved in this paper. The method of proof is based on the study
of absolute invariants of nonsimply connected manifolds similar to algebraic K-theory
and on the construction of an analog to intersection theory for Poincaré complexes.

Introduction

The present paper is devoted to a further study of the homotopy invariants of non-
simply connected manifolds which correspond to the obstruction to modifying one mani-
fold until it is homotopically equivalent to another. We will call the following collec-
tion of objects a surgery situation: two manifolds M and X, dimM =dim X = n, a vec-
tor bundle & over the manifold X, a map f: M > X of degree 1 and an isomorphism ¢:
v(M) > f*(f), where (M) is the normal bundle of the m;ﬂnifold M. As is well known, a
surgery situation defines for us a cobordism class in the group Qn(X, &). The obstruc-
tion to modifying the manifold M until it is homotopically equivalent to the manifold X
is an element of the Wall group Ln(ﬂl(X)) denoted by O(M, f, ¢).

In the first part we have shown that, roughly speaking, this obstruction is the

difference
oM, f, ) = o(M) - o(X)

between two elements o(M) and o (X), each of which now depends only on the mani-
folds M and X respectively. In addition the element ¢{X) is a homotopy invariant
and is also an invariant of the cobordism of the Eilenberg-Mac Lane space
Qn(K(nl(X), 1)). More precisely, we have constructed groups Lg(n) (which essentially
determine the obstruction to modification up to homotopy equivalence, module torsion)
and natural homomorphisms ¢: L (7) - Lg(n) such that Y(OM, f, ¢)) = (M) = o(X).
The problem of computing the element o(M) € Lg(n) in terms of suitable invari-
ants remained open. Inasmuch as the element o(M) is an invariant of the cobordism
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1326 A. S. MISCENKO

Qn(K(ﬂI(M), 1), it is natural to express this invariant in terms of the characteristic num-
bers of the manifold M. Novikov [4] and Kasparov [10] have made the conjecture that
the invariant 0(M) is completely defined by the so-called “‘higher’’ signatures of the

manifolds

o (M) = <L(M)/*(x), [M]>,

where L(M) is the total Hirzebruch class for the manifold M, x is an arbitrary element
in the rational cohomology of the Eilenberg-Mac Lane space K(z (M), 1) and f: M -
K(ﬂl(M), 1) is the natural map which induces an isomorphism of fundamental groups.
This is equivalent to the assertion of the homotopy invariance of the “*higher’’ signature.
The present paper is devoted to the proof of this conjecture. Thus our result can

be formulated in the following way.

Theorem. In order that the obstruction O(M, f, @) has finite order in the group
L (7 (X)) it is necessary and sufficient that the ‘higher” signatures of the manifolds
M and X coincide.

If the rank of the Wall group Ln(n) is known, the above theorem enables us to
carry out a classification of the smooth structures on a nonsimply connected manifold
to within a finite number of smooth structures.

The method of proof is based on the construction of an analog to intersection
theory for Poincaré complexes. Let M be a high dimensional manifold, = (M) = 7, the
universal covering of which is highly connected. Let f: X > M and g: Y » M be two
singular Poincaré complexes. There exists a regular process for constructing the
intersection b: XY » M, and, moreover, if X and Y are smooth manifolds, one ob-
tains as a result a Poincaré€ complex X Y which is homotopically equivalent to the
usual intersection of X and Y. This regular process is based on constructing a series
of modifications to the normal bundle of the complex X (which is a smooth manifold
with boundary) and has obstruction lying in the Wall group L . (an)(ﬂl(X N Y). In
the case when this group is trivial the process of constructing the intersection X Y
can be carried out to the end. An example of such a situation would be nl(X nNyY)=1,
dimXY=2k+1.

The second essential point in the proof of the homotopy invariance of the “‘higher”’
signatures is the construction of the so-called integral absolute invariant o (M) of the
manifold M lying in a group denoted by Qn(Z[ﬂ]) and the proof that the kernel of the
map L_(x) » Q (Z[n]) consists of those elements of finite order.

The plan of the paper is the following. In §1 the essential definitions and theo-
rems are given. §82—4 are devoted to the algebraic part of the paper, relating to
the construction of the invariant o (M). In $§5 and 6 the intersection theory for
Poincaré complexes is constructed. Finally the basic conjecture is proved in $7.

We will give the minimum number of references and do not claim originality for

the results in §§2 and 5.
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S1. Summary of essential ideas and results

Let 7 be a finitely generated group with a finite number of defining relations.
Let us denote by A = Z[#] the group ring of the group =, i.e. the ring of finite inte-

gral functions on the group with the following multiplication law:

(frgx= 2 el

yr=x

The group 7 is naturally embedded in the group of units of the ring A by the follow-

ing formula:

1, if x=g,
gx) = { .
0, if x=g.
The ring A possesses an anticommutative automorphism *: A > A uniquely generated
by the map on 7 given by #(x) = x~ ! '
Let C be an arbitrary right A-module. Let C* denote the module of A-homomor-

phisms
C' = Homa (C, ).
The structure of a right A-module is given on C* by
(ph) (x) = A"p(x), A=A, xe=C.

There exists a natural homomorphism C - (C*)* which is an isomorphism if C isa
finitely generated projective module. Therefore we will not distinguish between the
finitely generated projective modules C and (C*)*.

If f: C, »C, is a homomorphism of A-modules, then we will denote by [*:

C% - C% the homomorphism given by

F@)(x) = o(f ().

If C, and C, are free modules with bases ¢, and c,, then any homomorphism f:
C, » C, is given uniquely by the coefficient matrix A in the expansion of f(cl) in

terms of the basis ¢,. The dual homomorphism /* is then given in terms of the dual

2°
bases CT and c* by the dual matrix A* = (a ) az]. = a;!‘i where A = (az.].).

The dual to a basis (el’ cae, en) of the module C is the basis (el’ s, er’l)
of the module C* for which eil (e].) = 51.]. .

Let (C, d) be a complex of free A-modules
Co—Ci— ... —C,.

Then there exists a spectral sequence Ef'q converging to the homology of the dual
complex (C*, d*), the term Ef'? of which is isomorphic to

EP" = Ext’ (H,(C),
In particular, if the complex (C, d) is acyclic up to dimension k, then the dual com-

plex (C*, d%) is also acyclic up to dimension k. This standard fact can be found
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in several textbooks (see for example [9]).

We will now formulate a number of facts from the topology of smooth manifolds.
Let /: M > N be an immersion of the manifold M in the manifold N, dimM < dim N.
The immersion [ is in general position if for any points x, €M, /(xi) = p, the subspaces
df, (TM) are linearly independent in TN, where TX is the tangent bundle of the mani-
fold X. Then every immersion [ is arbitrarily near to another immersion which is in
general position. If the immersion f is in general position, then the dimension of the

set of its multiple points is easily estimated in terms of dimM and dim N.

Theorem (Hirsch). The set of regular homotopy classes of immersions [: M > N is
in one-one correspondence with the set of homotopy classes of embeddings df: TM -
f*TN. Here dimM <dimN - 2.

Let us be given manifolds M and X, amap /: M > X, degf =1, a vector bundle &.
over X and an isomorphism ¢: v (M) - /*(£), where v (M) is the normal bundle. The
triple (M, /, ¢) determines a cobordism class in the group Qn(X, &) n=dimM =
dim X.

Theorem (Wall). With each group n there can be associated groups Ln(") and
homomorphisms 0: Q (X, &) > L (7 (X)) such that 6(a) = 0 if and only if the element
a has a representative (M, [, ¢) € a for which the map f is a homotopy equivalence.

§92. The Wall groups and relations between them

In [3]-[6] Novikov and Wall defined the groups Ln(") which contain the obstruc-
tion to modifying one manifold to make it homotopically equivalent to another in a
suitable surgery situation.

Let us recall the definition of the groups Ln(ﬂ).

1. The case n = 2k. Consider a free right A-module C and two functions
Alx, y) €A and plx) € A/ty - (- l)ky*: y € A} satisfying the following conditions:

1) The function A is linear in each variable, i.e.
}"(xl "%_ x2i y) = }\‘(xly y) %— }\’(xQ’ y)y }\;(X, !/1 + !/2) = }\'(xi !/1) + )\’(xi yZ)'

2) Mx, ya) = Mx, y)a, a € A,

3) Az, y) = (= DEAy, x)*.

4) Mz, x) = px) + (= D*ple)*

) plx +y) = u(x) + ply) + Alx, y).

6) plxa) = a*plx)a.

7) The map A(*, y): € » C* is an isomorphism.

The triple (C, A, ) is called a quadratic form. If C= A @ A with basis e, f

and the map A(*, y) is represented by the matrix

0 1
Mx, y) = (\(——1)’° 0>,
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and further p(e) = p(f) = 0, then (C, A, p) is said to be trivial. Two quadratic forms
(€, Apopy) and (Cy, A, {t,) are considered to be isomorphic if there exists an iso-
morphism ¢ C, » C,, such that A lx, ) = A, (gplx), #(y)) and g, () = p,(plx)). The

operation of direct sum is introduced on the set of quadratic forms

(Cla }“h Ml) 7&' (C2) )\’2, P‘*z) = (Cl %f CQ) }\’1 ‘C_l(7 }"2, p’l L‘ H‘?)'

The Grothendieck group generated by the semigroup of isomorphism classes of quad-
ratic forms and factored by the subgroup generated by the trivial quadratic forms is de-
noted by L (A).

Now let C be a free right A-module with basis ¢ and let (C, A, u) be a quadratic
form satisfying the following additional condition:

8) The isomorphism A(#*, y): C » C* is a simple isomorphism.

Then {(C, ¢, A, p) is said to be a simple quadratic form. Two simple quadratic
forms are said to be isomorphic if there exists an isomorphism between the quadratic
forms which is a simple isomorphism. The corresponding Grothendieck group genera-
ted by the simple quadratic forms is denoted by L*(A).

2. The case n=2k +1. Let h=(H, A, p) be a trivial quadratic form and let ¢:
H » H be an automorphism which leaves b invariant. Two operations can be introduced
on the set of all automorphisms (b, ¢):

a) the direct sum
(hy, 1) B (hay @2) = (By (s By, 0D @),
b) composition
(h’) (Pl) *(ha (PZ) = (hv (Pl(P'Z)'

We will discuss the group G generated by the automorphisms (b, ¢) which satisfies

the conditions
(1) (hy, @1) -+ (o, @5) = (hy, @1) (R, @),
) (hr (Pl) |- (hr (PZ) = (h’y (pl(p‘z)

and is universal with respect to properties (1) and (2). Let G, be the subgroup of the

group G which is generated by automorphisms (b, ¢) of the following type:

g o[ 1)

2 ‘O 0 )
"lo et

3) cp:((l) (1))

Then the factor group G/G,, is denoted by L_(A).
In addition, let the form b be simple and let the automorphisms ¢ and @ be

simple. The corresponding group G/G is denoted L*(A).



1330 A. S. MISCENKO

We define groups L (A) and L$(A) analogous to the Wall groups L (A) and EZ(A) by
omitting the quadratic form p everywhere in the definition, i.e. leaving only the non-

degenerate even bilinear form A. There are natural maps
@ Lo ()= L (N), ¢ La ()= Li(A).
Theorem 2.1. The homomorphism

®2) ZI[%J Ly (V) ® Llﬂ —1L, (MR Zl%]

is a monomerphism for even n.

Proof. Let n = 4k and (C, A, p) = 0. This means that in a certain basis (e, f))

the matrix of the homomorphism A has the form

Let us show that p(f,) = 0. In fact, let
¥ = Sag, X]=u(i)e My —vive AL

Then from A(f,, f,) = 0 we obtain

Og = Qg1 = 0.
Separate the group # into three nonintersecting sets

nem U, L, mes{gE g =1, (n) =

—

Then a_=0 when g € 7,. Put v=2,en, a_g. It is not difficult to ascertain that
x =y -v¥* ie. [x] =0.
Now let n = 4k + 2 and (C, A, Il.) = 0. Then in some basis (ci, /1) the matrix of

the homomorphism A has the form

o)

and #(/i) = de”oug . g- Consider the form (C ® C, A ® A, p @ ) with basis (el.,

e’, ., f!). Choose a new basis
4 2 z , ,
a e e, a =e, b=Ff b =f—F
Then in the basis (al., al, b, bi') the form A ® A is trivial and
B(ai) = p(b:) =0.

It remains to show that if the form (A, [J.) on a two-dimensional free module with basis

(a, b) has the form
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b=y o) @

then it is trivial. In fact let

p(b) = 2 beg

gE=n,

and let n be the number of those elements g € 7, for which bg £0. Let bg £ 0.
Consider the new basis (a, b + ga). Then

w(b -+ ga) = p(b) -+ p(ga) + (b, ga) = p(b) + gh(b, a) = n(b) — &,
i.e. the number of elements g € 7, for which bg' # 0 is one less. Theorem 2.1 is

proved.

§3. Algebraic Poincaré complexes

Let A be the group ring of the group 7, let *: A 5 A be the anticommutative
automorphism, *2 = id, generated by the map y* =y~ !, y € 7. Consider a chain

complex of free right A-modules (C, 4):
et o,
of length n. If x € C, we will write |x| = i. Let homomorphisms
DF:c—C, k=0,1,..,

be given such that Dk(C;‘;_i) C C,4, and such that the following conditions are ful-
filled:

a)
D*(d'g) + (—1)*dD* (¢) + (—1)"T*(D*" (¢) — D* 7 (¢)) =0,
where
Dk ((P) — (____ l)|(pi(ﬂ+k—‘|(m)‘|‘k (Dk)a ((P)
for ¢ € Clg|-

b) The homomorphism (DO)*: H(C*) » H(C) is an isomorphism.

Definition 3.1. The system (C, d, D*) is called an algebraic Poincaré complex
with formal dimension n.

Let us consider now a chain complex pair (C, °C, d) of free A-modules, i.e. two
chain complexes (C,'d) of length » + 1 and (9C, %) of length 7, and an embedding
¢: 9C 5 C of the complex °C as a direct summand of the complex C. It is not
assumed that the boundary homomorphism decomposes in the direct sum. Let homomor-
phisms D*: C*5 C, k=0,1, ..., be given such that Dk(C:ﬂ__i) C C, 4y and let the
following conditions be satisfied:

a') The homomorphisms
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°D*(¢) = D' (9) +(—1)"dD* (¢) -+ (1) T*(DF () — D ()
map the module C* into the submodule °C, where
D" () == (— 1)/P1H1 HeloD+6 phye )

b') The homomorphism (DO)*: H(C*) > H(C/°C) is an isomorphism.
Definition 3.2. The system (C, °C, d, D®) is said to be an algebraic Poincaré

pair with formal dimension n + 1.

Lemma 3.3. Let (C, °C, 4, D*) be an algebraic Poincaré pair with formal dimen-

sion n + 1. Then the homomorphisms °D* satisfy condition a) for [ormal dimension n.
Proof. First of all let us compute the homomorphism
"k GR— k R x
DF () = (=) 0Dy ().

Applying the operation * to a'), we obtain

(OD%)" () =d (D¥)" () + (— 1)V (DR @ (g) 4 (— 1) RO ()
(Dk—) (w)) ) ( )le(n+1+k—lu!)+kd0kw) 1 ( )Wl(flJrk“Wl)-FkEkdk (lp)4
- (= 1y D (BE () — DR ().

Consequently
"DH(9) = D" () + (=D aDF () - (1) O () = DR Gl

Substitute a ') and (3.1) in a):

(D" (1) aD* - (=D = DT ()
(=MD () ADE - (DR DR (w)
(=IO 4 () D (- TR DY
— D — (=) YD — (=)D - D) (y)
(=) gDR e (— 1) TTEDE T g (1R DR
(1) DR e (- yPTUERRR gty R g
(=D (=) D ()

Lemma 3.3 is proved.

Lemma 3.4. Let (C, °C, d, D®) be an algebraic Poincaré pair and let : C -
C/°C be the natural projection. Then ODkl/l *=0

Proof. According to Definition 3.2 we have l//OD’C =0. It is required to prove that
L(°DRY* - 0. Inasmuch as the homomorphisms (°D*)* and Opk differ only in sign on
the direct summands, it is sufficient to establish that (/roDk' 0. For this we trans-

form formula (3.1) by expressing D* in terms of D® from a'). We have
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Dt (q) = D! () - (— 17T (DFd (¢) + (— 1) dD** (@) — °D* 7 (¢).
This implies that

"D (9) = D' (@) + (— 1" (D" - (1) dD* T — oD d (9)
+ (__I)I(Pl d(Dk -+ (——l)"+k(Dk+ld* o (— 1)l<m dDF ODk+1))(cp)
(=T DT — DT (YT (D (1) D — DY) ()
= (=TT At — oD d () + (=)' TR A(D* D" ) ()
+ op* (®) = ((——1)"+k+1°Dk+ e (— 1)I<p\-l—n+k+1 d°ptt 4+ oDk)((P)-
Consequently
\p"l—)k((p) _ ((_1)n+k+1¢oDk+ld* 4 (__1)I(Pl+n+k+l quoDkJrl + WODk)((P) —0.

Lemma 3.4 is proved.

Lemma 3.4 shows that the homomorphism ®pk induces a natural homomorphism
opF:0C" - °C,
satisfying condition a).

Lemma 8.5. The homomorphisms °Dk: °c* 5 0¢ satisfy condition b). Thus the

system (0 C, Od, ODk) is an algebraic Poincaré complex with formal dimension n.
Proof. It is not difficult to verify that we have the following commutative diagram:
——)Ht(OC)—-—>Hl(C) >H1(C/OC)—>

(°D).. I 0o, D),

ﬁani (OC) — Hﬂw{*—l*i (C/OC)—>H’I+I—71. (C)*)

Inasmuch as (/1*(DO)* is an isomorphism, by a’) it follows that (DO)*gb: is also an
isomorphism, whence by the Five Lemma it follows that (ODO)* is an isomorphism.
Definition 3.6. Let a = (C, °C, d, D*) be an algebraic Poincaré pair with formal
dimension n + 1. Then the algebraic Poincaré complex B =(°C, °d, °D®) with formal
dimension n is called the boundary of the algebraic Poincaré pair o and is denoted
by B =0da.
Now we are in a position to define the ‘‘cobordism’’ groups Qn(A). The sum of

two Poincaré complexes a, = (Cl’ 4, D’f) will be the algebraic Poincaré complex

B=ua, Ja, =(CiDCy, d; T d,, Dic 4 Dg)
Definition 3.7. The Grothendieck group generated by the semigroup of algebraic

Poincaré complexes with operation the sum |} and factored by the relations a =0 if

a = df will be called the n-dimensional algebraic Poincaré cobordism group Q_(A).

Lemma 3.8. Ler a = (C, d, DX be an algebraic Poincaré complex. Then B =
(C, d, - D*) = - a in the group Qn(!\).
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Proof. We will present an algebraic Poincard pair y = (F, °F, 8, H*) such that
dy=aUB. Pu F,=C,&C,_ & C, and °F, = C,® C,. Let the embedding ¢:

OF:‘ > F . be given by the matrix
T 0y
@:(0 9)
0 1

4 (—1) 0\
b =0 di 0 )
0 (—D 4y

Further, put 6 = (51.), where

It is easy to verify that 81._151. = 0. Further, let us define the homomorphisms H* =

(Hf), Hf: F*ii_; F,4, by the matrices
0 0 )
H:C — (_1)ﬂ+k+lD?_1 (__1)("*"l)(k—t)+ﬂ+k (D/r::lle—f—i«}d)* 0
0 (—)" Dt 0

One ascertains by direct substitution that condition a ') is fulfilled; namely,
*HY = H{8in (1) kil

_ i)k — (3.2)

()RR () R ),

where

‘Df 0 0
wﬁ;(o 0 0
0 0 —Df

The verification of condition b') is trivial.
Definition 3.9, We will say that two algebraic Poincaré complexes a and B are

cobordant if one can find an algebraic Poincaré pair y such that dy = a |J (- B).

Lemma 3.10. If the algebraic Poincaré complex o represents zero in the group
Q_(A), then one can find an algebraic Poincaré pair B such that o = Jp.
Proof. That the element a represents zero in Qn(/\) means that there exist

algebraic Poincaré complexes ail, aé and ,Bj = By]. such that

@D (0 Uos—o —a) - 2B
] J

t

in the free group generated by algebraic Poincaré complexes. Then

a+Doh el DU =Yd Jak - D a) - D a8y
i i s i s s 7
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Hence it follows that one can find an algebraic Poincaré complex
f=UaUllaUU@Uae),
; i s
B= ljJ B, B=0ay,
such that

al)Ji=0[Jp.

Adding the algebraic Poincaré complex (- 6) to the left and right sides, we obtain

aUb—B, 6-0, B-—ar
Lemma 3.10 is now implied by

Lemma 3.11. Let a,, @, and «, be algebraic Poincaré complexes. If a  is

cobordant to a, and a, 1S cobordant to Qg then a, is cobordant to oy

Let us conclude the proof of Lemma 3.10. Inasmuch as 6 = d¢, by Lemma 3.8 we
can find an algebraic Poincaré pair & such that 9§ = a |J(- a). Then a JOU(-a)=
ALY E), i.e. B is cobordant to a; but B is cobordant to zero, and consequently, by
Lemma 3.11, a is cobordant to zero, which was to be proved.

Proof of Lemma 3.11. Let a = (C, d, D%, i=1,2,3,and B,=(B, B, 5 H*

be algebraic Poincaré pairs such that

(1B, 18, 1H*) = (,.C B .C, d B o, D* 15,D%),
(B, 30, sH*) = (€ & ,C, d B d, —,D* 1 ,DY),

and let ¢,:  C® ,C> B and ¢,: ,C O 3C > B be the corresponding embeddings.
Put

B =B 1 :B/¢(:C), B = ¢(:C L 50),
where ¢: |C & ,C & ;C > B ® ,B is the diagonal embedding. Then the homomor-
phisms 15 6328 and lHk ® sz induce homomorphisms d and H* on the complex B.
The verification of conditions a ‘) and b') is trivial.

Examples of algebraic Poincaré complexes. 1. Let n =2k and let C, =0 when
i4k Then d=0, D* =0 when k#0, and the homomorphism p: Cz - Ck is an iso-
morphism and satisfies (-~ 1)%(D°)* = D°, i.e. defines a nondegenerate bilinear form
(either symmetric or skew-symmetric) on the free A-module C,- Let us suppose that
the algebraic Poincaré complex under consideration is cobordant to zero. Let us exam-
ine the conditions which must be satisfied by the form D°. In our case as the simplest

example of an algebraic Poincar€ pair we can take (F, OF, d, H*):
OFk:Fk:Ck, OFk+1:0, Fl-:O when l'iék, k+ 1.

Consider the diagram
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Condition a') becomes

W - (—1) dfiR, = D°,
Hid® -+ (Hi 1o — (HR)") =0, (3.3)
Hi = (—1)*(H})".
Condition b’) means that the homomorphism d* is an epimorphism and that the homo-

morphism H2+1 maps Kerd* isomorphically onto F,4,- In other words,
Hz+1 P d: OF]:—> Fk+1 B FI:—{-I

is an isomorphism. Let us choose a basis in the module OFZ such that the matrix of

the homomorphism HZH @ d* is the identity matrix. Then

Hepr=(1,0), d" =(0,1),

and from (3.3) we obtain

0 1"

Do — ( ) HL = (— 1) (HY

(—1F  Hi

2. Now let n =2k + 1, and let Cz. =0 when i £k, k+ 1. Then the algebraic

Poincaré complex under consideration can be written as the following diagram:

*
»*
K+ ——— 0,(

d
where the following conditions are fulfilled:
Did* + (—=1)dDRy; =0, Did' + (—1)* (D}, — (DY) = 0,
Did® + (-—1)* (Dhy"
and the sequence
0« Cp-CriyiT Copy— Cheo0, (3.4)

where
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R al
¢~ (d, DY), w:((_‘)D"J“‘)’

d*
is exact.

Let us define a scalar product on the module C,,, & C},, by assigning it the

matrix

0 Y
A= ((——nk Dlz )

ie.if x, y€C,,, and x’, y' € Ct,, then <x, y>=0, <x, x'>=x"'(x) and

X', y'>=y! (D}a(x *)). The scalar product thus defined is trivial on Im. In fact,
let x, y € C’]:. We have

pr, Wy = (=1 D1 (%), (=1 DRya (1)) -+ <d" (x), (—1)* Do (9)
(=1 Dy (x), 4" (9)) <A (@), d°(9)> = (d"0)((—1)" D11 (%))
- ((d* ) (DRaa (€))) -+ (d'x) (Did"y) = x (—1)* dD2 1 1y) + (9(dDhyax))’
+ x(dDkd"y) = x ((—1)* dDgy1y) + x (Di12)" d'y) -+ x (dDk d"y)
== % ((—1)* dDisay + (Diya)" d'y + dDr d'y)'
= x(— Dpd" 4 (Dhy ) d* -+ dDjd*) y = x ((—1)* d(Dp)* d* + dDid")y = 0.

Choose an embedding
X *
= [y )G G Cin
g

such that ¢ o x = id and so that the scalar product induced on the module C, & C}

has matrix

S0 1
B:((«l)’z E)‘

The first condition may be satisfied since the sequence (3.4) is exact; and that means
that dy, + DZX2 =id. The second condition means that <y(x), Y(y)> = y(x). This in

turn means that

Y(x) = <K (), () + Ko (x), (=1 Dhiy (1) + <xa (1), " ()
= d" (1) (0 () + X2 () (Db 12 () + (— 1% 2 () (D" (9)) = v (dys (1)
+ Y((Dia) 72(x)) + (—1)Fy (d (Dh)* 12 (1)),



1338 A. S. MISCENKO
X =dX (x)+ (DZ+1)* Xo(x) + (_‘l)k d (Dlla)* Xp(x) == x — szg(X)
(i) % (6) DB % () = % + (— 1 (D) 2y )+ (—1)*d (DY) Xy (v).

Thus we have constructed an automorphism ¢ of the free module Cor ® CEyy

given by the matrix
0 = ('701 X)7
which transforms the trivial bilinear form A into the form B which is of the same type.

$4. Modifications of algebraic Poincaré complexes

Our aim below is to construct the homomorphism
0: Lo (AN)— Q2 (N)

and to explain its properties. For this we study ways of reducing an algebraic Poincaré
complex to the simplest possible form.

Definition 4.1. Let a = (C, d, Dk) and o' = ('C, 'd, IDk) be two algebraic
Poincaré complexes and let f: C » 'C be a chain homomorphism such that 'D* =
ka/ *, Then [ is said to be a bomo.topy equivalence if it induces an isomorphism in
homology. The algebraic Poincaré complexes a and a' are then said to be homotop-

ically equivalent.
Lemma 4.2, Homotopically equivalent algebraic Poincaré complexes are cobordant.

Proof. Let a =(C, °C, 4, D*) be an algebraic Poincar€ pair and let the algebraic
Poincaré complex da = (°C, %4, °D*) be homotopically equivalent to 8 = (B, 8, HF),
i.e. there exists a homomorphism f: °%c 5B satisfying the conditions in Definition
3.12. Let C=C @ °C. Consider the new pair 4 = C @ B, °A = B. Define the
differential d by

d(x) =98(x), xeB,
0(x) =gd(x), rx&'C,
where the homomorphism g: YC ® °C > *C @ B is defined by g=(id, /). Further, put
Fk:gODk”g*.
We verify that (4, °A, 9, F*) satisfies conditions a’) and b") of Definition 3.1. The

epe . [ . . .
verification of b') is trivial. To verify a’) we need to prove

k \
Ff b (=) OF! (=1 T Y (H' o)

0 0.

when dim¢ = |¢|, or
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LRt ) * n —1 % Th—1 s Hk
gF*g’d" 4 (—1)YogFtg" 1 (—1)"1T* (gF* gt — gF* ‘g>=( . g) (4.1)

Since dg = gd, we obtain from (4.1)
g <°Dk 0) g = (Hk 0) ’
0 0 0 0

as was required. Thus (4, 04, 9, F*) is a Poincaré pair. By Lemma 3.8 each alge-
braic Poincaré complex is cobordant to itself, and that means that a (J(- a) is the
boundary of an algebraic Poincaré pair. Consequently if B8 is homotopically equiva-
lent to a then B|J(- a) is the boundary of an algebraic Poincaré pair. Lemma 4.2
is proved.

Let us now define a canonical transformation of an algebraic Poincaré pair
(C, °C, d, D*) corresponding to gluing a handle for manifolds. Let A be a free

A—module let B: A¥> C*_| be a homomorphism, and let i < [n/Z] - 1, where
z+lB 0. We construct a new algebraic Poincar€ pair (C C d Dk) by putting

C; =C; when j#i—#l,n—i—l,n—i,} (4.2)
Ci=C;/DA when j=it+1, n—i—1, n—i,

0C; =OC;when j==i -1, n—i—1 (4.3)

0C; =C; D Awhen j—i 1, n——t—l} '

The boundary homomorphism d is given by

diiy = (diga, (—1)"F °D}Bg),

where g: A » A* is some fixed isomorphism,

_ d; _
= () e =)
En-—i: (dl:i 0) 3 d—,t—i-l—l = dn—H-l\ »
B l 0
c_i—,' =d; for the remaining suffixes ;.

Further, put

D, — [Dit —DipaB) |
i+1 ( 01 q—l 1

' Dy ;= Dr- )
)G o ey |
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All the remaining homomorphisms -D_f are defined with the help of D* by adding zero
homomorphisms for the new summands.

Let us verify that the collection (C, °C, d, D*) thus obtained is an algebraic
Poincar€ pair.

1. d% = 0. It is sufficient to verify that dd., =0 and d,_d = 0. In the

—1 n—itl
first case we have

did; 41 = (didis, (— 1Y "'d)D}Bg) = (0, °D}_,d;—141Bg) = 0.
In the second case
Ez—zt_i;-iﬂ = (d"jidn—iﬂ) == (.
A\ B ﬂ——i--{—l'

2. The verification of b') presents no difficulty.
3. It is sufficient to verify a’) only in those cases when the matrix Df has not

been constructed trivially from Df.

a) k = 0.
a. 1) We require to prove
(— 1"'d.,1D}yy + Dids_ iy = 0 mod©C. (4.5)
We have

(—1)" @4 1Dia = (—1)" " (di1Disa, (—1)" DB — di1DiyaP),
Ddy—i11 = (Didi—114, 0).

Consequently the expression (4.2) becomes
oD} = (°D}, (—1)""'Didy_;1,8) = (°D}, 0). (4.6)
a. 2) We require to prove the following
(—1)"""di2Dlys + Disaday = 0 modeC. (4.7
We have

(=" Dy = (—1) ( di+2OD?+2 8) )

D}y ydn—y = (D?‘“d“_‘ 0 ) .
0 g

This implies that

one. OD:‘)_}. 0
DH—r—( 01 q_l).

a. 3) Let us verify that
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(— 1 *dumiDat + Driadie = 0 mod °C. (4.9)
We have
(_] )i+131_i[_),‘:_i — (__l)H—l ( dl‘—iD‘rfi——i 0 N
AB* (Do_i~~ (—1 )(L-H)(ﬂ—i) (D‘Q+1)m) (_ 1 )(i+1)(,;_.;)q_ll
Dy — (D,‘i_i_ld;‘ﬂ o) .
Consequently 0 0

i s 0
Dn—i—~1 - o (i+1)(r—32) 0 . (i+1)(n4-1—i) )
B* (D —(—1) (Diy)") (1) T

a.4) Let us verify the following
(=1 diip1Dhiir + D} ydi i, =0 mod°C. (4.11)
We have:

(—1Y o1 D2 = (—1) (d"#i‘”(l))"'”ﬂ) '

Dr(:——ia:%-l:( (=) Don_ldiﬂ i N e gk )
(—DTBNCDY —(—1)"" (Dita) dipr)

This means

D), — ("’Dﬁ_ij . (4.12)
. 0
b) & £ 0. Since

Diys —(— 1) =Dy Ly = (’D?+1 — (=)D 0) ,
\ 0 0
a’) is automatically fulfilled for £ =1. For & > 1 this condition is trivial.

Definition 4.3. The construction of the algebraic Poincaré pair (C, C, d, D*) de-
scribed above will be called “‘gluing’’ on a bandle by the map [B: A* » cr_
Definition 4.4. Let (C, d, D*) be an algebraic Poincaré complex and let B:

A* > C* . be a homomorphism such that d:_iﬂﬁ = 0. The construction of the new

algebraic Poincaré complex (C, d, D¥) according to (4.3), (4.4), (4.6), (4.8), (4.10) and

(4.12) and the analogous expressions for Bk, k> 1, will be called modifying the alge-
braic Poincaré complex by the map f.

Lemma 4.5. The algebraic Poincaré complex obtained as a result of modifying the
algebraic Poincaré complex a is cobordant to a.

Proof. Let y be an algebraic Poincar€ pair such that dy = a {J(- a). Put

1=(C,°C,d,D"), °C=B DB, a=(B,dH"
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Let B: A* 5 B* be the map used to carry out the modification. We have to construct a
map B': A* » C* such that B =¢B', where ¢: B > C is the embedding and 4*f’
Lemma 3.8 implies that we can take for y a complex for which there exists a map
¥ > C* with ¢y =id. Put B’ = ¢)B. Glue a handle to the pair y by the map B'.
We find that the new algebraic Poincaré pair y' has boundary a |J (- B). Lemma 4.5

is proved.

Theorem 4.6. Every algebraic Poincaré complex a is cobordant to an algebraic
Poincaré complex B ={(C, 4, D*) for which Ci =0 when i £k k-1 or k+1 if
dima = 2k, and when i k or k+1 if dima = 2k + 1.

For the proof of this theorem we need

Lemma 4.7, Let a = (C, d, D*) be an algebraic Poincaré complex such that
H (C) 0 when i <s< [dima/2). Then one can [ind an algebraic Poincaré complex
A = (C d Dk') cobordant to it, such that C =0 when i <s and i >dim a - s.

Proof. According to Lemma 4.2 it is sufficient to construct a complex @ which is
homotopically equivalent to the complex a. Let A be an acyclic complex of free
A-modules, and let ¢: A > C be an embedding onto a direct summand, i.e. the monomor-
phism ¢ commutes with the boundary homomorphism & of the complex C. Let C= C/A,
let 7 C > C be the natural projection and let Dk = 7D*z%. The collection (C, d, D¥)
satisfies conditions a) and b) in the definition 3.1 of an algebraic Poincaré complex.
Consequently 7 is a homotopy equivalence between two algebraic Poincaré complexes.

If Hi(C) =0 when 7 < s, then one can find a direct summand A CC_,, such that

the complex

X’P <= L. \"_Cs(«A

O
is acyclic. By property b) of Definition 3.1 one can fmd a direct summand B C C*___,

such that the complex

* *
Cn< ... —Cps<-B

is acyclic, n = dim C. Consequently the complex
YiB «—Cps< ... — C,

is also acyclic and the module B* is a direct summand in C____,. The factor com-
plex C = C/X ® Y is then an algebraic Poincaré complex and satisfies the conditions
of Lemma 4.7.

Let us now prove Theorem 4.6. We will suppose that €. =0 when i <s,i>n-s
and s <[n/2] -~ 1. We carry out 2 modification of the complex C with respect to the
map fB: A* > C*__,,, where A=C___,, and B is the identity map. It is not difficule
to verify that as a result of this modification we obtain a new algebraic Poincaré
complex (E, :1_, Bk) for which HSH(E) = 0. For the rest we apply Lemma 4.7 and use

induction on s. Theorem 4.6 is proved.
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Corollary 4.8. The groups Q (A) and Q_, (A) are isomorphic when n > 4.
We will now construct the homomorphisms
¥ Dy (A) = Qu ().

If n = 2k, then to each even bilinear form (H, A) we associate the algebraic Poincaré
complex (c, 4, Dk):
C.=H, C =0, ik d=0, D°=A D =0, s>1.
Lemma 4.9. If (H, \) is the trivial form, then yr(H, A) = 0.
Proof. Let
H—Am A x:( o 1).
(=N 0

Put C, = H, 0C, =H, Cyy =4, "C,e+1 =0,C, = OCJ, = 0 for all remaining 7 and 7,
and let

dpyr = (é) , Dk

The collection (C, °C, d, D*) thus obtained is an algebraic Poincaré pair with formal
g P

I

((i) Dby —(1,0, D=0, k>l

dimension 2k + 1 and with boundary ¢/(H, A). Lemma 4.9 is proved.
Let n=2k +1, and let ¢ be an automorphism which leaves invariant the trivial

form

b= ((—01)" (l))

on the module H = A ® A*. Express the automorphism ¢ in the form

¢ = (q)l (Ps) .
P2 Py
0
Put Cp =4, Cpy =A%, d%, =), D), =(DD*=~ ¢, and D* =0, k> 1. Then
(C, d, D*) is an algebraic Poincaré complex. We put y(¢) = (C, 4, D*).

Lemma 4.10. If ¢ represents the trivial element in the group zn(l\), then

() = 0.

~
Proof. By definition the trivial element of the group Ln(A) is represented by

automorphisms of the form
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and their combinations.

Let (C, d, D*) be an algebraic Poincaré complex such that C, =0 for ¢ ;é k, k +
1,and D* =0 for k> 1. We construct a new complex (C, d, D®) by putting C =C,,
Ck+1 CEip d,
complexes are cobordant For this it is sufficient to prove rhat it is possible to carry

b+l = DO D dk+1 and Dk _ 0. We will show that these two Pomcaré

out a modification by a map f3: A » C¥ 4+ Ilf this is so, then, putting A = CZH and

B =1, we obtain a new complex Hy=C,®C, 0 Hyy=Cpyy ® CE,y,

1 0

/

(3k+1 == (dk'l'l D;:’ ) .

Factoring by the acyclic subcomplex (&
(C, 4, D).

Let us now glue on a handle by the map 8: A - kaﬂ Let (C, OC, d, D*) be an
algebraic Poincaré pair, dim C = 2k + 2, such that D® = 0, k> I, and B: A* > C¥, .
Put

k+1(Ck+1) k+1) we obtain the complex

Co=Ce®A, %Cr="Cr® A, Chir = Cor b A* (5 A,
p— — (1}
OCkle - OCk 1 ‘/\B A*’ dk+1 = dk—i_l Ol)kB 0) ’
B 0 1y
Dl(ay:-|—1 0 — DI(;—HB
Dipy = 0 0 (=1

—BDrnn 1 BDRpB

Then
- °Dy, 0
0Bl — D 0 0) , oDz_H _ /(a)+1 1
0 1 O 0 0

Thus the modification in dimension % is well defined.

Consequently, if A is an automorphism, then
P (A4) = (/54). (4.13)
Let us show that
$(4) = y(,A). (4.14)
Let
S ]

Then
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LA = X+ogY = '
Y *

Interpreting the homomorphism ¢ as a chain homotopy between two homomorphisms X
and X + ¢Y, one can construct an algebraic Poincaré pair, just as in Lemma 3.8, the
boundary of which will be ¥{(A4) ~ ¢(I,A). Namely, we put

Ek —_ Ck @ Ck’ (—:k+l == Ck+1 ‘(P Ck @ Ck-f-l, 6k+2 = Ck+1’
oCr = Ci ‘B C, OEk+1 = Crt1 (P Ca, OE’”Z =0,
(—1)°
doss —1 k+1 0
6k+1 = ( kit ( )k ’ 6k+2 = dk+,l y
.0 {(—1) dpyq, ( 1)k+1
H}; = ( Ok \) R HI(;J,-O = (Dngl’ 0)7
(—1)"Dy, )
@ 0 0 o
Hyy, =| D} 0 0], Hi=|{(1*"D; )
L0 (=D, 0 0

Hypy = (0, (—1)¥"'Dj 4, 0).

Then
\ D} desr O
OHy == (Dk - (_I)Ie+ldk+1 ¢ 0 0 7 , OHpiy ‘:( o —S(P o 0
0 0 — 2 ' 0 ——DIgH

as required.

Applying (4.13) and (4.14) successively, we complete the proof of Lemma 4.10.
Lemma 4.11. The homomorphism
P szk F2 () = Quega (A)

is a monomorphism.

Proof. Every bilinear form A = — A* is an even form. In fact, let A = (’\ij)’ )\1.1. =
Ege,”agg. The condition A, = — A¥, means that a, = 0 when g € 7, and a, =
-a _,- Pu

&g

W= (W), Wi = Aij when i <[,

i = 2 @gg, Wi =O0when (> j.
geny
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It is clear that A = p — u*. Thus if A € L4k+2(A) and ¢2()\) = 0, then one can find

matrices H1 and H2, H’l*.‘ :—Hl. such that
‘A 0 0 ‘
xfo o 1)x={ " 1)-
0 —1 H, \ =1 H,

Since the forms Hl and H2 are even, for a suitable choice of the matrix X one can

obtain

g 0 0

. 0 1

X ( 0o o 1]X :( )
0 —1 0,

as was required to be proved.

Theorem 4,12, The homomorphism
» )
(po@) R Z {5] LD Z| -;—] —~ Q)R Z B]

is a monomorphism.

Proof. When n = 4k + 2 the assertion of the theorem follows from Theorem 2.1
and Lemma 4.11.

In [8] Shaneson constructed a homomorphism
B:Lla(N—Lin(\z, 271,
which whom combined with another homomorphism (also constructed by him)
w:Lyy(Nz, 2 1) — Ly (\)
becomes the identity.
Let B: Qn(/\) > Qn+1(/\[z, z~11) be the natural homomorphism generated by the

tensor product of an algebraic Poincaré complex a by a fixed chain complex for the

circle. It is not difficult to see that the following diagram is commutative:

La() B Ly (A2, 27)
TP(P B WJ(D
Q_(A) B Qi (M2, 27)

It was proved in [7] that the homomorphism y ® Z1'5] is an isomorphism. Consequent-
quently B8 ® Z[%4] is a monomorphism, and therefore the fact that (f o &) ® Z[}4] is
a monomorphism for n + 1 follows from the fact that it is a meromorphism for dimen-

sion n. Theorem 4.12 is proved.

$5. Geometrical Poincaré complexes

Let us consider a finite CW-complex X T= (X) Recall that A denotes the
group ring of the group 7, A = Z[7]. Let X be the universal covering space of X.
We may suppose that the group 7 acts on X freely and simplicially (cell-like) for
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some simplicial subdivision of X which covers a certain simplicial subdivision of X. Then
the chain groups C, (}) are naturally provided with: a) the structure of a right A-module, and
b) a basis wh1ch makes the A-modules C (X) into free A-modules. As a basis c_ for the
A-module C (X) one simplex (cell) should be chosen in each inverse image of t:he simplexes
(cells) of X The basis ¢ is defined uniquely up to a choice of the ordermgvand onentatlon
of the cells and mulnphcatzon by elements of the group 7. The complex C,(X) =2 C (X) isa
differential complex of A-modules.
Let B be a right A-module. Put
H* (X; B) = H (Hom, (C, (X), B).

In order to introduce the concept of homology with coefficients in the A-module B it is
necessary to introduce the structure of a left A-module in B. Put A(b) = bA*, A€ A,
b € B. The module B then acquires the structure of a left A-module and is then de-
noted by B’. Put

H,(X; B) = H(C,(X)®4B).

Now let us define (], the intersection between the homology and the cohomology of a
complex. Let A: X » X x X be the diagonal map. The map A is not simplicial but
has a simplicial approximation. Let A, be a simplicial approximation to A. If T:
X x X » X x X is a permutation of coordinates then Ay and TA  are homotopic, i.e.

there exists a simplicial map
A X XT—-XxX

such that A [X x 0=Aj and A |X x1=TA,. Further, if S: I 1 is given by S(t) =
1 ~ ¢, then AI and TAlS coincide on X x 0 |J X x 1 and are homotopic, i.e. there

exists a simplicial map

Ay : X XTI XT—XxX

such that A,{X x I'x0=A, and A)|X xIx1=TAS. In general one can construct a

sequence of simplicial maps

Ap: Xx1"->XxX

satisfying the following:

A XXITIX0 = Ay, AR XXX = TAg1Sa,
' Ap|X x0I" ' xt =const, tel,

where S : X x m=1,x5071 s given by

Sn_l(x, ty, ..., tn—l) == (X, l—tl, ey l—tn_l).
It is easy to verify that An and TAnSn coincide on X x dI”.

Thus A, induces a map of chain complexes
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(A),: C.(X)— C.(X xX)=~C, (X) ®zC, (X).

Themhomomorp}lism (AO)* is a homomorphism of A-modules if we introduce in
C{X) ®, C_(X) the A-module structure induced by the diagonal embedding (A,
T X T

Each map An induces a homomorphism of the complexes of homogeneous degree

(+ n), and the complexes are chain homotopic:

(An),: C, (B> C,(X)®zC,X),
~(An), d + drsn(An), = (—1F "7 (Ausy), — (TAn1Sn1),).

(5.1)

Let us fix on an element & € C,(X). Then (Ao)*(f) defines a homomorphism

@((A,). (£): Homy (C, (X); )~ C,(X)
as follows. Let
(Bo) (B) = S ® by, @ = Hom, (C,(X), A);
then

p— 3 b @ o) C, (X)Ra

~
Clearly, if we introduce the structure of a right A-module on the group Hom,(C,(X), A)

by the formula

(¢M) (@) = Mg (a),
then a((AO)*(f)) is a A-module homomorphism. Thus, putting B(f) = a((AO)*(f)), we
have defined

B:C,(X)— Hom, (C*(X), C,(X) R4 A).

Here C*(X) = Hom,(C,(X), A).

Lemma 5.1. Let 2! be the group of integers endowed with the structure of a left
(and simultaneously right) A-module generated by the augmentation m > 1. Then the
bomomorphism 3 decomposes into B =B, © B, where f,: C(X) ®, 7' is an epi-
morphism and

By: C,(X) ®4 Z'— Homy (C*(X), C,(X) @2 A).

Proof. It is sufficient to verify that a((A;)(£)) = al(A)),(Eg)), g € . Let

¢ € c*(X) and (AO)(f) =2a, ®b,. Then (A (€g)=2a,g ® b.g. We have

(Do), () (@) = D) b ® 9 (ar),
(o), (Eg)(9) = D) big ® 9(aig) = D) big ® (9(a:) g)

= > bigRg'e(a) = D) b ® ¢(a).

Lemma 5.1 is proved.
Note that the analogous assertion is true for the homomorphisms a((A ), (£)).
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Lemma 5.2. The homomorphisms
[@((A), (&)]e and (=DM P a((TA,), ),
where dim € = n, are dual.

Proof. Let us fix a certain free basis (e) in the A-module C,(X). Then the ele-

ments (AO)*({") and (TAO)*(S) will have, respectively, the forms

(A). (B) = 2} (hia @ pip)ea D €5,

0.3

(TAg), () = 2 (1)

ia,p

dime g dime
TP (s @ hia) s ® .
Let dny be the basis in the group Ck(X) which is dual to e, i.e.

Py (ea) =0gy for dim g, — k,

¢+ (es) =0 for the remaining e .

Then
a (), (£))(9+) = %%Aaw
a((TAy), (E)) (@) = % esBs,
where

Agy = Z wighiy,  Bpy = (—1)F7® 2 highdiy.

t

Clearly the matrices A = “A)@,y | and (- 1 =R)g _ (- l)k("_k)HB,By | are dual, i.e.
B =(=1)""=k) (A% Lemma 5.2 is proved.

Theorem 5.3. Let £ € Cn(}) ®pZ! be a cycle and let g € C*(}) be an element

covering £ Then the homomorphisms
NE=a((B), ), Di=a(f),®)
are uniquely defined by the element & and satisfy the following conditions:
) deo(NE—(=D"" (N Hdin
B) desiD; 4+ (— 1) 'Didy_p = (— 1Y Dy — (— 1D
if i=1 weput NE=D, in b).
Proof. Let £ € Cn(’)\(l) ®4 77, and let g be an element in the module Cn(’)\(J)

which goes into the element & under the map induced by the augmentation e A > Z.
Since dn(f) =0, we have ed_n(f) = 0. From (5.1) we obtain
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5 (A0), (B) — (B0), (dE) = (— 1) {(As 1), (B) — (TA -1 Si-a), (B,
dr (B,), (8) = (A,), (d.E).
By Lemma 5.1, since edn@’) =0
a (M), (dE) =0, i>0.
By the definition of 1€ and D, if ¢ € C*(X), then

(5.2)

2 (@b, NE@W) = 2 ba(9(ad),

a

where (Ai)*(f) = Eaafl ® b’;. Then, using Lemma 5.2 on the right side of formula
(5.2), we have

(=1 "N (Dimy (9) — (— )EDHEEHBRE ()

@ (dnsi (M), (8)) (9) = 2#wdm>+2~m

i
dimag-+1

dby (at)
=D, (dg) + (—1)* "dD; (9),

which proves property b) of the theorem. Property a) is proved similarly. Theorem 5.3
is proved.

Definition 5.4. A finite complex X, 7 (X) =m, is said to be an oriented Poincaré
complex if there exists a cycle £ € C (X) @A 2! such that

NE:C' (X))
induces an isomorphism of hbomology groups
(&), H' (X; A)— Hoi (X; A).

If, in addition, the torsion of the hamomorphisms 0 & is zero, then X is said to be a
simple oriented Poincaré complex.

This presupposes the following choice of bases in the modules C (r)\(l) and C*(’)\(I):
in the module C (X) we choose as basis one cell complex X in each orbit of the
group 7, and in the module C*(X) we choose the dual basis. It is not difficult to
verify that the arbitrariness in the choice of basis for C_ (X) does not alter the torsion
of N & in the group K, (A).

Let (X, Y) be a CW—complex pair, let it Y C X be the embeddmg, and let nl(X) =
7, (Y) = m. Then there is an analogous theorem. Ler {"€ C (X) ®a 2 be a cycle
relatlve to the module C_ (Y) ®, 2! and let f €C (X) be an element covering &,

ie. (&)= ¢.

Theorem 5.5. An element & uniquely determines the homomorphisms
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N&: C*(X)— Cas (X),
D;: Ck(X)_)Cn—kH(X)» ~
satisfying conditions a) and b) of Theorem 5.3 relative to the submodule C*(Y), i.e.
a) (@4, NE) + (- DA Ed) (P €C (V)
b) (4, ,,D; + (- DEMD, d, + (- D™D, | 4 (- D(ID@T=RIkEIpE ) (g) €
Cn—k+i— I(Y)'
The proof of Theorem 5.5 is analogous to the proof of Theorem 5.3, and we will
omit it.
Definition 5.6. A pair (X, Y) is said to be an oriented Poincaré pair if there
exists a cycle £ € C (X, Y) ® 4 Z! such that the homomorphism 0 & induces an iso-
morphism in homology

(N &), :H*(X; A)—Har (X, Y5 A).

Lemma 5.7. If (X, Y) is a Poincaré pair with a fundamental cycle & of dimension
n, then the complex Y is an oriented Poincaré complex with fundamental cycle d¢ of

dimension (n - 1).

Proof. Property a) of Theorem 5.3 can be made more precise in the following way:
if £€ C*(X) ®4 7! is a chain, then

deo (N &)+ (—1F™ (N &) de = N (d2). (5.3)
Let us prove that the homomorphisms
pe NE:C'(X)—C,(X, V),
(Ngep":C(X,¥)—C,(X),
N (d): C'(Y)—C,(Y)
induce maps of the exact cohomology sequence of the pair (X, Y) into an exact homol-

ogy sequence. Here
i,:C,(V)—C,(X), p:C.X)—C,(X,Y)
are the natural maps of the chain groups. Note that the diagram
¢ (X, V)5 ¢ (X)

(neer) Jptne)
C.(X) = C.(X,7)

is commutative. Let x € C*(Y), dx =0 and y = i *(x). Then

(N E)pMdlx]l = M Edy) = N dE)(y) = d( E(¥))
= I, [1(d§)(x) = d( E(y)).
Finally, let x € C*(}) Then
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[ (dg) ¢ (x) = (M E)(dx) = d( §) (x) = + d(N E(x))-

This proves that each square in the diagram is commutative. On the other hand,
part b) of Theorem 5.5 implies that (1 £)p* and (N £)*p* are chain homotopic, i.e.
coincide at the homology level. Consequently we have obtained a map between exact
sequences in which every two out of three maps are isomorphisms. Applying the Five
Lemma, we obtain the assertion of Lemma 5.7.

Definition 5.8. If for an oriented Poincaré pair (X, Y) the isomorphisms N & and
N d¢ are simple, then the pair (X, Y) is said to be a simple oriented Poincaré pair.

We note the well-known fact that every smooth (PL)-manifold (with boundary) is a

simple Poincar€ complex (simple Poincaré pair).

Lemma 5.9 ([1], Theorem 2.2). Every finite Poincaré complex X with formal dimen-

sion n is homotopically equivalent to a finite n-dimensional complex.

Lemma 5.10. Every finite Poincaré complex X of formal dimension n >3 is
bomotopically equivalent to a closed domain W with smooth boundary in Euclidean
space RN +”, N>mn+ 1. Furthermore, 171(8W) ~ "1(W)-

Let us study the cohomology of'a manifold W using Lemma 5.10. Let W be the

universal covering space of W. Then
Hi{(W; A)y=H,_(W; A)=HY+ (W, oW, A).
Lemma 5.11. Multiplication by an element & is defined for every £ € H™W, 7)
and is a cobomology homomorphism
U &: H'(W; B)— H™(W; B).
Proof. Let us consider the chain homomorphism
(). C,(W)—C, (W) ®zC,(W).
Let (Ap)(x) =2 a, ®b, and let &: C*(W) - Z be a cocycle. Put
L0 = (U B ) = 2 E(@a)n(bo)-
Then ¢ is a A-homomorphism from the module C,(W) into the module B. In fact,
L(xg) = 25 (@a@)n(ba) = 25 (@) (ba)g =L (%) g
It is not difficult to veri?y that :
U§:C(X; B)—C"(X; B)
is a chain homomorphism and in homology it does not depend on the cocyle & repre-
senting it.

Lemma 5.12. Let W be a manifold with boundary which is also a domain in
RN gnd a Poincaré complex of formal dimension n. There exists a cocycle n €
HN(W, 9W; Z) such that
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Un: H(W; A — HY T W, aw; A)

is an isomorphism.

Proof. Let £ € Hn(W; Z) be a fundamental cycle of the Poincaré complex W and
lee {€Hy, (W, dW;;Z) be a fundamental cycle of the manifold with boundary W. Put
n=W0¢~1&). Then

(1J M) = (N5 (N n)(x)
= (N (NNEMNE)= (NN ).

Consequently (U 7) induces an isomorphism in homology. Lemma 5.12 is proved.

The converse assertion is also true.

Lemma 5.13. Let W be a manifold with boundary which is also a domain in RN ™",
If there exists a cocycle 11 € HN(W, aw; 7) such that

Un:H (W; A)— H (W, 0W; A)

is an isomorphism, then the complex W is an oriented Poincaré complex of formal

dimension n.
The proof is analogous to the proof of Lemma 5.12.

Lemma 5.14. Let W be a domain in RN*" with smooth boundary oW, N > n. The
following conditions are equivalent:

a) The Serre fibration associated with the embedding oW CW is a spherical fibra-
tion with fiber sN*1
of the fiber.

b) The manifold W is an oriented Poincaré complex with fundamental cocycle

n € HN(W, ow; Z).

and with the fundamental group acting trivially on the homology

Proof. (a) => (b). Let us consider the spectral sequence of the pair of fibrations
(DY, S"TH— (W, oW)—>W
for cohomology with coefficients in the module A. Then
E) 9W, oW; A) = H'(W; A), EP (W, 0W; A) =0 when p== N,
Consequently
HY(W, oW; A)= on\é’q(u’/, W)=~ E;V’Q(W', ow) = H'(W; A),
moreover, this isomorphism is realized by multiplication by an element { €
HN(DN, sN-1. 7). Pu 7=¢,U1, where 1 € HY(W; Z), and apply Lemma 5.13.
(b) => (a). Since the cohomology H(W; A) is isomorphic to the compact cohomol-
ogy, the assertion reduces to a computation of the cohomology of the fiber using the

spectral sequence for the fibration. The latter assertion is implied by the fact that the
restriction HN(W, ow; 7) » HN(DN, SN‘I; Z) is an epimorphism.
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Let us now apply the results of $4 to a geometric Poincaré complex.

Theorem 5.15. Let X be an oriented geometric Poincaré complex. Then there is

an element a(X) € Q (A), uniquely associated with X, generated by the homomorphisms
NE:C*X)=Cor (), Di:C*(X)— Compsa (R).

Proof. It is only required to verify that the element a(X) does not depend on the
choice of the cocycle ¢, the homotopies A, and the simplicial decomposition of the
complex X. In the first and second cases it is easy to construct a simplicial decompo-
iition of X x I related to the cocycle 7 on the complex X x I and the homotopies
Ai on the complexes X x I x I' such that we obtain an algebraic Poincaré pair with
boundary a(X)|J(- a(X')). In the third case there exists a simplicial map f: X » X'

from one simplicial structure to the other, and we apply Lemma 4.2.

Theorem 5.16. Let ¢: Ln(A) > Qn(A) be the natural map constructed in 4. Let
M™ be a smooth manifold, n](M") =n, A=Zn), let & be a fiber bundle over the mani-
fold M™ and let (X, {, ¢) € Qn(M", &) be a triple, where f: X > M™ is a map of the
manifold X of degree 1. Let ¢: v(X) > X&) be an isomorphism and let KX, [, ¢) €
L (A) be the obstruction to modifying (X, [, @) to a homotopy equivalence. Then

¢ (0(X, [, 9)) = a(M) — a(X).
The proof is trivial (see, for example, [11]).

§6. Intersection theory for Poincaré complexes

In this section we discuss the question of defining the intersection of Poincaré
complexes lying in a manifold. We must require the intersection to satisfy a number of
conditions. Namely, let X1 and X2 be Poincare"complexes, M a smooth manifold, let
f;+ X, > M be continuous maps and let (/)4 m (X)) - m,(M) be isomorphisms. We want
to define a canonical construction of a Poincaré complex (Y, g) = (X,, /)N (X,, /,),
dimY = dim X, +dim X, - dim M, such that the condition (Xl‘ fl) =dW, {) implies
(v, g) = oW, 1IN (X,, 1.

We will restrict ourselves to the case when (Xz, /2) is a smooth manifold.

Let X be a domain in RN*" with smooth boundary which is also a Poincaré com-
plex of dimension n. Let Y be a smooth manifold of dimension k£ and M a smooth
manifold of dimension m. Let f: X > M and g: Y » M be continuous (smooth) maps

inducing isomorphisms of the fundamental groups. Put

W"O:MXXX)/v W/1::)(><Y’
Wo=Y x X, g =(fxida)xid,
g. = T(((g x id)A) x id),

where T: Mx Y x X > M x X x Y is a permutation of the coordinates.
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Lemma 6.1. The manifolds W, W , W, with boundary are oriented Poincaré com-

plexes. Moreover, if 7. € HN(WI., aw ; 7) are fundamental cocycles, then
=g, i=1,2,
where 1 is the trivial module over the group nl(Wi).
Lemmas 6.1 and 5.14 imply

Corollary 6.2, The diagrams

OWi ~>0W0
J |
W, - W,

induce commutative diagrams of Serre fibrations with homotopically equivalent fibers

which are homotapy spheres sN=-1,

Lemma 6.3. Let a, € "N(Wi' aWi) be the elements corresponding to the fundamen-
tal cycle of the fiber of the spherical fibrations oW, CW. The elements o can be

realized as embedded discs
¢, (D", S*7Y) = (W, oW)).

The embedding g, can be changed by regular homotopies to embeddings in general

position, where
(pozg,oq)i, lzly 2.

Proof. First of all, by changing the embedding g; we can ensure that g, = .
After this we move the embedding g, into general position leaving g, fixed on Im¢,.
Lemma 6.3 tells us that W3 = Wl N W2 is a manifold with boundary, and, moreover,

the embedding 5;: W, C W, induces an epimorphism
(), sy (Wy, OW,)—ny (W, oW,), i=1, 2.

Lemma 6.4. Let nz(Wo) =0. Then the embeddings g . can be chosen such that

-W3 is connected and the composition

(hi)* (gi)* e
1 (W3) — 1 (Wi) — 50 (W) — 71, (M)

is a monomorphism.

Proof. Let us show that W, can be supposed connected. Let the points x, and
x, lie in different connected components of W,. Join x, to x, by paths y, and Y,
lying in W, and W, respectively. Then the closed path yly;1 defines an element
a €, (W,). Since

(81, B (&), : 1, (W) D 7, (W) — 71, (W)

is an epimorphism, the paths y, and y, can be altered so that a = 0. This means
that there exists an embedding of the disc D? C W, with aD? = v, Uy,. Deform the

embedding g, so as to remain fixed on the boundary of a neighborhood of ¥, and in
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such a way that Y, 1is taken across the disc D? to ¥,- Then the manifold W has
undergone a modification with respect to the embedded zero-dimensional sphere (xo, x )

Suppose now that
(), €+ (1), 0 (W) = iy (W) D 71, (W)

is a monomorphism. Let us show that, for example, 1/ = p(gl)*(bl)>|< is a monomor-

phism. In fact,

1 (W) =, (X) @ 7, (),
4 (W) = 1 (M) () 71, (X) P o (Y),

and (g)(a & B) = (/(a), @, B). Thus if (b ),(x) = (a, B), then ¥(x) = f,(a). On the
other hand, since g b, = g,h,, it follows that (bz)*(x) =(a’, B") implies

(f*.(‘x)r «, B) :(g*(a’)v B/: “,)’
ie. (b,),(x)=(B, @) and f.(a)= g (B)

In this way the fact that (b)), & (b,), is a monomorphism implies that (b,), and (b)), are
also monomorphisms. If x £0 then (b)) (x) =(a, B)£0. If @ =0, then B£0, i.e. 2B #£0,
which means that /(@) £ 0. Thus ¢(x) £0. If a £0, then, since f. is a monomorphism,
1,@) = () £0.

Consequently it is sufficient to show that (bl)* 53] (bz)* is a monomorphism. Let
a € "l(Wa) and (b ),(a) = (b)), (a) = 0. Let us realize the element o as an embedded
curve y,: sty W3 and extend the mapping Yy to embeddings of discs y: D? 5 w..
Since ﬂz(WO) =0, it follows that y =y, Uy,: 525 W, extends to an embedding of the
disc y D3 W,. Let {"3 be the normal bundle to y3(51) in the manifold W, and let
(fi be the normal bundle to Y (D?) in the manifolds Wl. . It is clear that the bundles fl.
are trivial. Put vfl. |Sl = rf3 + v Then '53 + VvV + v, +2 is the normal bundle to the
embedding of st in Wo. Consequently the bundle rf} +V AV, 2 is trivial, whence
it follows immediately that the bundles &, and v, are trivial. Let us show that a
neighborhood U of the disc yO(D3) can be expressed as a direct product yO(D3) X
R, x R, x Ry such that yl(Dz) x Ry x R, x 0 is a neighborhood of jvl(DZ) in Wy, yz(Dz) X
0 x R, x Ry is a neighborhood of yz(Dz) in W, and

13(S") X 0X Ry X 0=y (D?) X R} RaX0 " 2(D?) XOX R X Ry
is a neighborhood of Y3 (s in W In fact, let 5 be the normal (trivial) bundle of the
disc y, (D?). The bundle 7| VB(S ) decomposes as the sum of trivial bundles f +
v, +v, and 7][}/2 D?) decomposes into the sum fz +vy; finally, n]ylfD ) decom-
poses into the sum rf +v,. Extend, ina trivial way, the sub-bundles v, and v, from,
the discs yz(D ) and yl(Dz) respectively to the whole of the sphere y(52). Then
f has a natural (trivial) extension over the sphere y(§?). Furthermore, we can
extend the sub-bundles v, and v, to a sub-bundle over yO(D ), the complement of
v, ® v, being an extension of f over yO(D ). It is now not difficult to carry out a
regular isotopy of W, deforming the disc y,(D 2) across y,(D?) to y,(D?) leaving
fixed the boundary yO(Sl) As a result of this isotopy the intersection W, =W MW,
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undergoes a Morse modification by which the one-dimensional cycle a € 771(W3) be-
comes an element homotopic to zero. Lemma 6.4 is proved.

Let dimX =p,dimY = g and dimM =n, let p + g —n be odd, and let N>p + g -
n>0. Let ﬂi(M)zO when 2<i<¥%(p+q-n) + 2.

Theorem 6.5. The manifold W, =W NW, can be chosen in such a way that the

homomorphisms of “‘multiplication’’
Ung: HE Wy Q—H"H (W, aWs; Q)
by the cocycle M5 = b (771) = b"z‘(rlz) € HN(W3, 6W3, 1) is an isomorphism.
Proof. First of all consider a single elementary deformation of the embedding g,
W, > W,. Let us consider a half disc (D%*2, DF*1) whose boundary (D**1, sk) is
divided by the equator into two parts

(DF, S%) = (D", DYy | (D", DYy,

(O', DY (D, DY) = (D, $*7Y.

Let an embedding
¢ (DEF, DY (W, oW)
be given such that

¢ (D, Dhycw,, aw)), p(D*T, DYy (W, OW,).

+

Then there exists an isotopy of the embedding g, corresponding to a deformation of
the pair (D*'1, Dﬁ) across the disc (DX*1, DE*1) inco the pair (D* *1, D*). Asa
result of the deformation the manifold W3 undergoes a Morse modification correspond-

ing to the embedding of the pair
¢:(DF, S"H (W, oWy).

Lemma 6.6. The embedding g, can be chosen in such a way that a, (W, 6W3) =0
when 2 <i <N~ 1.

Proof. Apply induction. Let ni(W3, &WB) =0 when 2 <i <k Then
H (W, dW;; A) = 0 when 1 <i <k Consequently Hi(Ws. oW,; A) = 0 when 1 <7<k,
and hence Hl(Wg;A):O when N4+ p+g-n-k<i<Nip+rg-n=r

Lemma 6.7. Let W be @ manifold with boundary, dimW = N, and H (W, 9W) = 0

when i <n. Then W is bomotopically equivalent to a complex of dimension N - n.

Using Lemma 6.7, we see that W, is homotopically equivalent to a complex Y of
dimension d =N + p + g~n - k + 1. Moreover, we may supposc that Y is a subcom-

plex of the manifold W,. Let us consider an element o € 7 (W3, 0W3) realized as

k+1
an immersion cf a sphere in general position
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(D', SHy-s (W, OW,).
Then the subcomplex Z of multiple points of the immersion 2 is of dimension <d' =
2k +1)-N—-p-g+n Then d+d' =k +3<r, where r = dim W,. Consequently we
may suppose that a(Z) (VY = ¢J. Since Y is homotopically equivalent to W,, then
W3\Y is diffeomorphic to dW, x [0, 1) [2]. Thus we may ensure that a(Z) lies
arbitrarily near the boundary of the manifold Wa. Throwing away small neighborhoods

of the boundaries of WO‘ W1 and W2, we obtain a realization of the element @ as an

embedded disc
a (DM, %) (W, oaWy).
In order to apply an elementary deformation it is necessary to extend o to an em-
bedding of a pair
a: (D, ST W, W)
which is possible since
Ttz (Wi, OW:) = Mo (W, OW,) = 0.

Lemma 6.6 is proved.

Proof of Lemma 6.7. Let C(W) be the chain complex of free A-modules for the
manifold W, and let C(W, dW) be the relative chain complex. The condition
Hl.(a/’, OW) = 0 means that the complex C(W, dW) is acyclic up to dimension n - 1,

Consequently the boundary homomorphism
dy: Co(W, OW)— Coy (W, OW)
maps C (W, dW) onto a direct summand F in C, _ (W, dW); moreover, F is stably
free. By Poincaré duality the same thing holds for the coboundary homomorphism
d;\fﬂn—f—l : C;V— (W) - Cr\/—rH—l (W,)
In other words, C;‘\‘I_n(W) may be expressed as a direct sum F} & F3 of stably free
modules d";l__nﬂ(F?l“) =0, and d;_nﬂlF’; is a monomorphism onto a direct summand
in C"[\‘]_nﬂ(W). Thus the chain complex C(W) can be expressed as two complexes

AN—11 dn—n
CoW)<-... «——Cyn_y_y (W) —— F, 0,

0 <= Fg &‘CN—-IH,—I (W) S g C;V (W/) < 0,

where the first complex is homotopically equivalent to C(W) and the second is

acyclic. Let F; be a free module such that F,®F, is free. Then the complex

dN—pn—1

CO(W)f— e <—CN—)L—2 (W) <

adN—n

<—*’—F-1 @ Fs @ Fz <« 0, a/\"—n~1 = (dN—n'—ly 0» 0),

CrNons(W)D Fy O Fyem
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dy—n 0 0
Ivn=| 0O 10
0 0 1

is homotopically equivalent to C(W).

Let e, **+, e, be abasis for the module F3 ® F,,let f, -, [, bea basis
for Cy_ (W=F @& F, andlet b, -+, h_bea basis for Fj. It is not difficult to
verify that the restriction of dy_ : F,® F, » Cy_ (W) coincides with dy__. Con-
sider the complex X givenby [Wl,__, V Vf,zl Si.v_"'l, where [W], | isthe
(N — n - 1)-dimensional skeleton of the manifold W. We glue discs DN=" onto the

complex X by maps
9, ST L X

1 <i<k+ s, putting
@, =Y, \/ %, when i <&,

where 1. glues the ith cell of W onto the skeleton [W]N—n—l and ¥, is induced by

the composition of the projection and the embedding

FF®OF,—~F,—>F,®F, % =%\ id when b+ | <i<k+s.

We obtain a complex Y = X U¢> Di.\H". If F: X > W is a composition of contractions
; .
of spheres to points and embeddings, then F extends toa map F': Y > W which is a

homotopy equivalence.
Lemma 6.8. The embedding g, can be chosen in such a way that
(hi), : H (W3, OW,; N)— H (W;, oWy A)
is a monomorphism when s <N +%(p + g—n - 1).

Proof. Lemma 6.7 implies that W, is homotopically equivalent to a subcomplex
Y of dimension d = p + ¢ - n. Thus every element of ﬂl.(W3, 8W3), where 1 <N +
Y2(p + g — n - 1), can be realized as an embedded disc. The proof of Lemma 6.8 is
carried out by induction in which the groups HS+1(hZ.) are successively diminished.
Let us note that it is sufficient to show that the direct sum (b,), ® (b,), is a mono-
morphism, since b, = b, in the representation of the manifolds as W =W,=XxY.

Thus let Hs+1(b1) be the first nontrivial group. Then an element a in it may be

realized as an embedding
24 :(Di+1’ Di+1; DS)_>(W1) W2: WE))'

Since "i(M) =0 when i <% + g-n-1)+2, the map g," W, » W induces an
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epimorphism of the homotopy group
(&), 71y, Wy OWy) =, (Wy, OW,).
By changing, if necessary, the map a|Di+1 we may ensure that
o (D', 8% (W,, oW,)
is homotopic to zeto. This means that there exists an extension of a to a map of the
disc
« (D™ DY (W, aW),

and we arrive at an elementary deformation. Lemma 6.8 is proved.

Let us turn now to the proof of Theorem 6.5. Lemma 6.8 implies that
()" : H*(W;, OW;; 2)—H (W, oW, Z)
is an isomorphism when s <N + %4 (p + g — n ~ 1). This means that
Uny: B (Wy; Z)— H T (W,, oW, Z)
is an epimorphism when s <} (p + g - n ~ 1). In fact, if x € HY'(W,, 9W,; Z) then
x=(b)¥z)), and 2, = zJy,. Consequently x = (b () J(h )*(n,)) = (b )*(=) Un.
Lemma 6.9. The embedding g, can be chosen in such a way that
(hy), Hs(Wy; A)— H(Wy; A)
is a monomorphism when s <YV(p + q-n = 1).

The proof is analogous to the proof of Lemma 6.8, and applies elementary deforma-

tions, the construction of which makes use of the following:

Lemma 6.10. Let & be the trivial fiber bundle over the disc D**2, Jes fl be a
sub-bundle over D’iﬂ, let f,! be a sub-bundle over the disc D’iﬂ and let

G =81 N &y &S =E D vy,

k . . . ,

& | S* — EsB vy, EIS =5Bvi@®v,, dim §;, dim v, dim v, > 2k --3.

Then there exist trivial sub-bundles N1, My N3 over D**2 such that
k
LOLON=E§ M ﬂ3)|D++l =y,
‘ k k k
(n2 @ 1\3)\D}:-+1 = ‘E::y‘b 711\ S" == Vi, n2\ S" == Va, Tis I S = Es'

Proof. Let ;1 be the complement of &, over Dk and 172 the complement of &
over Dﬁﬂ. Extend ;1 over D}iﬂ as a sub-bundle of fl in such a way that we ob-
tain as a result a trivial bundle 7,. This is possible since dim ‘51 >2k+ 1)+ 1. We
construct 77, similarly. Then their complement 7, will also be a trivial bundle over
SETL . gpk*2 _ Dliﬂ U D/iﬂ. Further we extend all three bundles 7,, 1,, 7, over the
whole disc D**2.

Note that elementary deformations of dimension s <% (p + ¢~ n— 1) do not change
the homology of the manifold (WS’ 3W3) up to dimensions N + % (p + ¢ ~n ~ 1) inclu-

sive., Thus Lemma 6.9 implies that
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(W) :H*(Wy; Z)—H (W,; Z)
is an epimorphism when s <% (p + g —n — 1), and by Lemma 6.8
(h) :H (W, oW;; Z)— H (W, oWy, Z)

is a monomorphism. So, if x € HS(Wa; 1), x £0, then x = (bl)*(xl) and x, £ 0. There-
fore x |J7, £ 0 and consequently xJ7p = (b)*(x Un,) £0.

Thus we have proved Theorem 6.5 for all i <% (p + g = n = 1). For the remaining
dimensions Theorem 6.5 is implied by the fact that the Poincaré duality homomorphism
is self-dual.

Remark 6.11, Theorem 6.5 is false in a more general formulation. The obstruction
to the existence of the embedding g, for which W, would be a Poincaré complex of

formal dimension p + g — n reduces to the obstruction to the existence of an embedding

g such that
(hs),- H, Wy N)—H, (Wi N,
g (pta—n—1) 5 (pho—n—1)
(hi),:H | (W, oWy, N)—H | W;, aW;; A)
N (ptg—n—1) N4 —lpFg—i—1)

are monomorphisms, and this obstruction lies in the Wall group Lp +q__n(77), 7= (M).

1
In our case (p + g — n odd) this obstruction is zero.

§7. Homotopy invariance of the higher signatures

Definition 7.1, Let x € H*(K(m, 1); Q), let M be an orientable smooth closed
manifold, nl(M) =m let [y: M > K(m, 1) be the natural map inducing an isomorphism of

fundamental groups and let L(M) be the complete Hirzebruch class of the manifold M.
Put

0, (M) = {fa (x) L (M), [M].
The numbers O‘x(M) are called the ‘‘higher’” signatures of the manifold M.
The aim of the present section is to prove the following theorem.

Theorem 7.2. Let M and M' be smooth orientable closed manifolds, let b:
M' > M be a homotopy equivalence and let TTI(M) =n and fy. = [y oh. Then for any
x € H¥*(K(zr, 1); Q) we bave

g, (M) = o, (M").

Proof. The higher signatures ax(M) are cobordism invariants (M, f,) €
QSO(K(ﬂ, 1) ® Q.

Lemma 7.3. Let the signature homomorphism
0: Q0 (K, )4, L. (1) D Q-2 D Q,

be a monomorphism, where A is the group ring of the group n. Then Theorem 7.2 is

true.
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Proof. Let 5: M’ 5 M be a homotopy equivalence, and let fmr =1y oh Then

o (M, [p) =o (M, f,.))-
Consequently [M, f,]=[M’, fy +] in the group Q¢ (K(7, 1)) @ Qg0 L)®Q,ie.
o, () = o_(M".
Lemma 7.3 shows that it is sufficient to prove that the signature homomorphism
01 Qso (K(m, 1) ®q,, L(NRQ>L2(A) D Q
is a monomorphism.
Lemma 7.4. If there exists an element 04 (M, [) € Q¢ (K(m, 1)) such that

oM, [) =0, then one can find another element 0 £ (M', [') € QoK 1)) such that
oM’, 1) =0 and ['(IM']) £ 0 in the group H (K(m, 1); Q).

Proof. Choose a basis of elements (N, /) in the Q¢,-module Q¢ (K(7, 1))®
Q such that (7,),(IN_]1) forms a basis in H (K(7, 1); Q). Then [M, f] decomposes as

a sum

[M9 f]: 2)"(1 [N(I, f(l]v

A, € Qg Ve order the suffixes a in the order of increasing dimension of the mani-
folds N_ . We choose the largest suffix o, for which U(Aao) #0 € L_(1). Then

[M,, f,] = 2 }\40_[3\"(1, fa]
asso,

satisfies the condition o(M’, /') = 0. In fact,

oM, )= 3 d(ha)o (N, fa)

a0,

=0o(M, f)— > 6k (Ng, fo) =0 (M,]),

a>a,

since by definition of a the second term is zero (6(A) =0 when a > O”O)' Further,
we put g, = [CP1%o(A,) if dimA, = 4k, and p, =0 if dimA, £0 (4). Put

[‘)Vl”y f”] = Z Ha [N(lr f(l]-

Then

a1, )= 3 0(a)0(Va, fa).

A,

Since alp,) = a(A,), we have o(M", /") = 0. Let dimA, = 4ky. Put v, =
[CPz]k_koa()\o) and

(A’T”’ fw) = 2 Va[Na, fu]-

a<{a,
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Obviously o(M”, f*) = 0. On the other hand,

My =3 valfo), ((Na)) = 0.

dim v=0

Lemma 7.4 is proved.

Lemma 7.5. For any integer n one can find a manifold (Z, [,) such that the map

fz: 2~ K(m, 1) is a homotopy equivalence up to dimension n.

Proof. We take as the manifold Z a parallelizable manifold of dimension > 2n. By
surgery we transform this into another manifold Z " for which ni(Z ") =0 when 2<
i<n

Let us turn now to the proof of Theorem 7.2. From Lemmas 7.4 and 7.5 we obtain
amap [:M~Z, 7{Z)=0 for 2 <i<3dimM, and /(M) £0 in the group H,(Z, Q)
oM, {) = 0. Consider a fiber bundle & over the sphere S% such that A= L(A) £0 and
J(&) = 0, and consider a map of degree 1 from the manifold P*, [: p# 5> $* with an
isomorphism ¢: v(P%) » [*(£). The triple (P4, /, ¢) induces another triple

«=(Mx P [xid, ¢ xid).

The obstruction to surgery &(a) € Lm+4(77), m = dim M, is of finite order. In fact,

P Lm+4 (H) — Qm+4 (A) & Q
has a finite kernel (Theorem 4.12). Also

V(0(@)) = o (M X PY)— (M x 8% = o(M)o (P*) — o (M)c(S) = 0.

Thus by taking the sum of a finite number of manifolds P4 we may suppose that
6(a) = 0. Consequently there exists a Poincaré pair (W, aW), 7 (dW) = 7, and a map
fw: W= K(z, 1) such that W =M x P*.

Choose a singular manifold g: Y - Z of dimension complementary to M such that
nl(Y) =7 and such that the intersection number of Y and M is not zero. This is possible
because [ (IM]) £ O in the group H,(Z; Q). Then the conditions of Theorem 6.5 are
satisfied. Thus the intersection (U, dU) = (W, 9W) NY is a Poincaré pair with re-
spect to the augmentation #{(U) » 1, and gU = P4, We have obtained a contradicton,

since o(P%) = A £0. This contradiction proves Theorem 7.2.
Received 7/MAY/71
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