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Izv. Akad. Nauk SSSR Math. USSR Izvestija

Ser.Mat. Tom 35 (1971), No. 6 Vol. 5 (1971), No. 6

HOMOTOPY INVARIANTS OF NONSIMPLY CONNECTED MANIFOLDS.

III. HIGHER SIGNATURES

UDC513.8

A. S. MISCENKO

Abstract. The homotopy invariance of the higher signatures of nonsimply con-
nected manifolds is proved in this paper. The method of proof is based on the study
of absolute invariants of nonsimply connected manifolds similar to algebraic K-theoty
and on the construction of an analog to intersection theory for Poincare complexes.

Introduction

The present paper is devoted to a further study of the homotopy invariants of non-

simply connected manifolds which correspond to the obstruction to modifying one mani-

fold until it is homotopically equivalent to another. We will cal l the following collec-

tion of objects a surgery s i tuat ion: two manifolds Λ1 and X, dim Μ = dimX = n, a vec-

tor bundle ζ over the manifold X, a map /: Μ -> X of tlegree 1 and an isomorphism φ:

v{M) -» /*(£)> where ν (Μ) is the normal bundle of the manifold M. As is well known, a

surgery situation defines for us a cobordism c las s in the group Ω (Χ, ζ). The obstruc-

tion to modifying the manifold Μ until it is homotopically equivalent to the manifold X

is an element of the Wall group L {π^(Χ)) denoted by #(M, f, φ).

In the first part we have shown that, roughly speaking, this obstruction is the

difference

0(M,/, 0 ) = σ{Μ)-σ(Χ)

between two elements σ(Μ) and σ(Χ), each of which now depends only on the mani-

folds Μ and X respectively. In addition the element σ(Χ) i s a homotopy invariant

and is also an invariant of the cobordism of the Eilenberg-Mac Lane space

Ω (Κ(π.{Χ), 1)). More precisely, we have constructed groups L^{n) (which essent ia l ly

determine the obstruction to modification up to homotopy equivalence, module torsion)

and natural homomorphisms ψ: L (77) -> L^(n) such that φ(θ(Μ, f, φ)) - σ (Μ) - σ (Χ).

The problem of computing the element σ(Μ) £ L^{n) in terms of suitable invari-

ants remained open. Inasmuch as the element σ(Μ) is an invariant of the cobordism
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1326 A. S. MISCENKO

ilJ.KiujiM), Γ)), it is natural to express this invariant in terms of the character is t ic num-

bers of the manifold M. Novikov [4] and Kasparov [10] have made the conjecture that

the invariant σ(Μ) is completely defined by the so-called " h i g h e r " signatures of the

manifolds

σχ(Μ) = <L(M)f*{x), [M]>,

where L{tA) is the total Hirzebruch c l a s s for the manifold Μ, χ is an arbitrary element

in the rational cohomology of the Eilenberg-Mac Lane space K(JT.(M), 1) and / : Μ ->

MtfjOW), l ) is the natural map which induces an isomorphism of fundamental groups.

This is equivalent to the assert ion of the homotopy invariance of the "higher" signature.

The present paper is devoted to the proof of this conjecture. Thus our result can

be formulated in the following way.

Theorem. In order that the obstruction Θ(Μ, f, φ) has finite order in the group

L B ( T 7 J ( X ) ) it is necessary and sufficient that the "higher" signatures of the manifolds

Μ and X coincide.

If the rank of the Wall group L {π) is known, the above theorem enables us to

carry out a classif ication of the smooth structures on a nonsimply connected manifold

to within a finite number of smooth structures.

The method of proof is based on the construction of an analog to intersection

theory for Poincare complexes. Let Al be a high dimensional manifold, n^M) = π, the

universal covering of which is highly connected. Let / : X -> Μ and g: Υ -» Μ be two

singular Poincare complexes. There exis ts a regular process for constructing the

intersection h: X f] Υ -» Μ, and, moreover, if X and Υ are smooth manifolds, one ob-

tains as a result a Poincare complex X f]Y which is homotopically equivalent to the

usual intersection of X and Y\ This regular process is based on constructing a series

of modifications to the normal bundle of the complex X (which is a smooth manifold

with boundary) and has obstruction lying in the Wall group Liim ιχηγ)^πι^ Π ^ · ^ η

the case when this group is tr ivial the process of constructing the intersection X f] Υ

can be carried out to the end. An example of such a situation would be π.{Χ f] Y) - 1,

dimXfl Υ = 2fc + l .

The second essent ia l point in the proof of the homotopy invariance of the "higher"

signatures is the construction of the so-called integral absolute invariant σ(Μ) of the

manifold Μ lying in a group denoted by Ωη(Ζ[π-]) and the proof that the kernel of the

map L (π) -» Ω (Ζ [π-]) cons i s t s of those elements of finite order.
ri η

T h e p l a n o f t h e p a p e r i s t h e f o l l o w i n g . I n § 1 t h e e s s e n t i a l d e f i n i t i o n s a n d t h e o -

r e m s a r e g i v e n . § § 2 — 4 a r e d e v o t e d t o t h e a l g e b r a i c p a r t o f t h e p a p e r , r e l a t i n g t o

the construction of the invariant σ(Μ). In § § 5 and 6 the intersection theory for

Poincare' complexes is constructed. Finally the basic conjecture is proved in § 7 .

We will give the minimum number of references and do not claim originality for

the results in § § 2 and 5.
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§ 1. Summary of essential ideas and resul t s

Let 77 be a finitely generated group with a finite number of defining re la t ions .

Let us denote by Λ = Ζ [π] the group ring of the group n, i .e. the ring of finite inte-

gral functions on the group with the following multiplication law:

The group π is naturally embedded in the group of units of the ring Λ by the follow-

ing formula:

(x)= l' i f X = 8 '
0, if x=f=g.,

The ring Λ p o s s e s s e s an anticommutative automorphism *: Λ -» Λ uniquely generated

by the map on π given by * (%) = x~ .

Let C be an arbitrary right Λ-module. Let C* denote the module of Λ-homomor-

phisms

C -- Horn Λ (C, Λ).

The structure of a right Λ-module is given on C* by

(τρλ)(χ) -= λ*φ(χ), λί=?Λ, χ ΕΞ C.

There exists a natural homomorphism C -> (C *) * which is an isomorphism if C is a

finitely generated projective module. Therefore we will not dist inguish between the

finitely generated projective modules C and (C * ) * .

If f: Cl -» C2 is a homomorphism of Λ-modules, then we will denote by / * :

C* -» C* the homomorphism given by

Γ(Ψ)(Χ)=>

If Cj and C2 are free modules with bases c ( and c 2 , then any homomorphism / :

Cj -> C 2 is given uniquely by the coefficient matrix A in the expansion of f(c.) in

terms of the basis c2. The dual homomorphism / * is then given in terms of the dual

bases c* and c* by the dual matrix A* = («.'.), a!. = a*, where A = {a..).

The dual to a bas is {e ^, · • · , ej) of the module C is the bas i s (e ' . . . , e')

of the module C* for which e ! (e ) = δ ...
t ι u

L e t (C, d) be a c o m p l e x of f ree Λ - m o d u l e s

Cn <—Cl<~ . . . <— C,i.

T h e n t h e r e e x i s t s a s p e c t r a l s e q u e n c e Ep>q c o n v e r g i n g t o t h e h o m o l o g y of t h e d u a l

c o m p l e x ( C * , d*), t h e te rm EP

2'
q of w h i c h i s i s o m o r p h i c t o

In particular, if the complex (C, d) is acyclic up to dimension k, then the dual com-

plex (C , d ) is a lso acyclic up to dimension &. This standard fact can be found
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in several textbooks (see for example [9]).

We will now formulate a number of facts from the topology of smooth manifolds.

Let / : Μ -> Ν be an immersion of the manifold Μ in the manifold N, dim Μ <dim/V.

The immersion / is in general posit ion if for any points x. € M, f(x) = p, the subspaces

dfx (TM) ate linearly independent in TN, where TX is the tangent bundle of the mani-

fold X. Then every immersion / is arbitrarily near to another immersion which is in

general posit ion. If the immersion / is in general position, then the dimension of the

set of i ts multiple points is eas i ly estimated in terms of dim Μ and dimN.

Theorem (Hirsch). The set of regular homotopy classes of immersions f: Μ -> Ν is

in one-one correspondence with the set of homotopy classes of embeddings df: TM -»

f*TN. Here dim Μ < d i m N - 2.

Let us be given manifolds Μ and X, a map / : Μ -> X, d e g / = 1, a vector bundle ζ •

over X and an isomorphism φ: v(M) -»/*(£) , where i/(M) is the normal bundle. The

triple (Μ, /, φ) determines a cobordism c l a s s in the group Ω (Χ, ζ), η = dim Μ =

dim Χ.

Theorem (Wall). With each group π there can he associated groups L (π) and

homomorphisms θ: Ω (Χ, ζ) -> L (π· (Λ!)) such that θ(α) = 0 if and only if the element

a has a representative (M, f, φ) €• a for which the map f is a homotopy equivalence.

§ 2 . The Wall groups and relations between them

In [3]—[6] Novikov and Wall defined the groups L (77) which contain the obstruc-

tion to modifying one manifold to make it homotopically equivalent to another in a

suitable surgery si tuation.

Let us recall the definition of the groups L {π).

1. The case η = 2k. Consider a free right Λ-module C and two functions

λ(χ, y ) C A and μ{χ) € A/\y - ( - l)ky*: y € Λ | satisfying the following conditions:

1) The function λ is linear in each variable, i .e .

λ(*ι +xi, y) = λ(*,, y) + λ(χ2, y), λ(χ, y1 + y2) = λ(χ, y,) + λ(χ, y2).

2) λ(χ, yd) = λ(χ, y)a, a € Λ.

3) λ(χ, y) = (- DfeA(y, *)* .

4) λ(χ, χ) = μ{χ) + {- ΐ)Μμ(χ)*.

5) μ{χ + y) = μ(χ) + μ(γ) + Μ*, y)·

6) μ(χα) = α*μ(χ)α.

7) The map λ ( * , y): C -> C* is an isomorphism.

The triple (C, λ, μ) i s called a quadratic form. If C = Λ θ Λ with bas i s e, /

and the map λ( *, y) is represented by the matrix

λ ( * . y) -= i
l ( - l f 0
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and further μ(β) = μ(/) = 0, then (C, λ, μ) is said to be trivial. Two quadratic forms

(C. , λ,, μ.) and (C_, λ , μ.) are considered to be isomorphic if there exis ts an iso-

morphism φ: C -> C such that λ ^ χ , y) = λ2(<£(χ), ^>(y)) and μ ^ χ ) = μ2(ςά(χ)). The

operation of direct sum is introduced on the set of quadratic forms

(Clt Xj, μι) -|- (C 2 , λ2, μ 2 ) = (Cx cr C 2 , λ! φ λ2, μ! CD μ 2 ) .

The Grothendieck group generated by the semigroup of isomorphism c l a s s e s of quad-

ratic forms and factored by the subgroup generated by the trivial quadratic forms is de-

noted by L (Λ).

Now let C be a free right Λ-module with bas i s c and let (C, λ, μ) be a quadratic

form satisfying the following additional condition:

8) The isomorphism λ ( * , y): C -» C* is a simple isomorphism.

Then (C, c, λ, μ) i s said to be a simple quadratic form. Two simple quadratic

forms are said to be isomorphic if there exis ts an isomorphism between the quadratic

forms which is a simple isomorphism. The corresponding Grothendieck group genera-

ted by the simple quadratic forms is denoted by LS(A).

2. The case η = 2k + 1. Let h = (Η, λ, μ) be a trivial quadratic form and let φ:

Η -» Η be an automorphism which leaves h invariant. Two operations can be introduced

on the set of all automorphisms (h, φ):

a) the direct sum

(hi, φ,) (D (h2, φ 2 ) = (hi φ h2, φ, 0 φ 2 ) ,

b) composition

(h, φι)*(/ ι , φ 2) -= (ft, φ,φ 2 ) .

We will d i scuss the group G generated by the automorphisms (h, φ) which sat i s f ies

the conditions

(1) (hi, φ,) -1- (ft2, φ 2) - (fti, φι) - (h2, φ·,),

(2) (ft, Φ ι Η - ( Λ , <p2) = (ft, <Pi<P2)

and is universal with respect to properties (1) and (2). Let GQ be the subgroup of the

group G which is generated by automorphisms (h, φ) of the following type:

1) φ ^ ί ' 1

\0

2) φ - , ( Φ * °

3) < H ' ° 1

U ο
Then the factor group G/GQ i s denoted by L (Λ).

In addition, let the form h be simple and let the automorphisms φ and Φ be

simple. The corresponding group G/G is denoted LS(A).
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We define groups L^(Λ) and L^{A) analogous to the Wall groups L (Λ) and LS{A) by

omitting the quadratic form μ everywhere in the definition, i .e . leaving only the non-

degenerate even bilinear form λ. There are natural maps

φ : L, (Λ) ->Ln (Λ), φ*: Ls

n (Λ) -> Vn (Λ).

Theorem 2.1. The homomorphism.

φ •;<•) ΖI -M : U (A) (x) Ζ11] -> U (Λ) (χ) Ζ

is a monomorphism for even n.

Proof. Let η - 4k and (C, λ, a) = 0. This means that in a certain bas is (e ., f.)

the matrix of the homomorphism λ has the form

1 0

Let us show that μ(/.) = 0. In fact, let

^ e - Λ / { ν - ν*: ν e Λ}.

Then from λ(/\, /.) = 0 we obtain

ag f- a g -i = 0.

Separate the group π into three nonintersecting se ts

π •-= π 0 [J n + IJ Jt_, π 0 = { g 6 . i : / - l } , ( π + ) " χ = η_.

Then a = 0 when s €. πη. Put ν = Σ ρ Ρ 7 Τ χ α P. It is not difficult to ascertain that
g

x = ν — v *, i .e . [x] = 0.

Now let η = 4£ + 2 and (C, λ, μ) = 0. Then in some bas i s ( c , /.) the matrix of

the homomorphism λ has the form

— 1 0

and μ(/.) = S g e 7 T μ · g. Consider the form (C θ C, λ θ λ, μ © μ) with bas is (e ; ,

e .', /., Λ ). Choose a new bas i s
ι 'ι 'ι

Then in the bas i s (a., a!, b., b') the form λ ® λ is trivial and, a , b, b

It remains to show that if the form (λ, μ) on a two-dimensional free module with bas i s

{a, b) has the form
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J ο
then it is trivial. In fact let

gen»

and let η be the number of those elements g € wQ for which b ^ 0. Let fcg ^ 0.

Consider the new basis {a, b + go). Then

μφ+ga) = μ (ft) + μ (go) + λ(&, gfl) = μ (6) +gX(b, α) = μ(&) — g,

i.e. the number of elements g € 7r0 for which b ^ 0 is one less. Theorem 2.1 is
proved.

§3. Algebraic Poincare complexes

Let Λ be the group ring of the group n, let *: Λ -» Λ be the anticommutative

automorphism, * = id, generated by the map y * = y~ , y € π· Consider a chain

complex of free right Λ-modules (C, d):

C o — d ^ - . . . ·*- Ln

of length n. If χ € C. we will write |x| = i. Let homomorphisms

lf:C'->C, ft = 0, 1, . . . ,

be given such that Dfe(C* ) C C;.+fe and such that the following conditions are ful-

filled:

a)

where

for <̂
b) The homomorphism (D )!).: H{C*) -> W(C) is an isomorphism.
Definition 3.1. The system (C, d, D ) is called an algebraic Poincare complex

with formal dimension n.
Let us consider now a chain complex pair (C, C, d) of free Λ-modules, i .e . two

chain complexes (C, V) of length η + 1 and ( C, d) of length n, and an embedding

ζό: C -> C of the complex C as a direct summand of the complex C. It is not

assumed that the boundary homomorphism decomposes in the direct sum. Let homomor-

phisms Dk: C* -> C, k = 0, 1, . . . , be given such that D f e ( C * + 1 _ ; ) C C ; + f e , and let the

following conditions be satisf ied:

a ' ) The homomorphisms
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0Dk(y) = D*d'(q>) +(-l)^dD* (φ) + (-1

map the module C* into the submodule °C, where

b ') The homomorphism (D°)+: //(C*) - H(C/°C) is an isomorphism.

Definition 3.2. The system (C, C, d, Dk) is said to be an algebraic Poincare

pair with formal dimension η + 1. .

Lemma 3.3. Let (C, C, d, D ) be an algebraic Poincare pair with formal dimen-

sion n + l. Then the homomorphisms Dk satisfy condition a) for formal dimension n.

Proof. First of al l let us compute the homomorphism

"Dk(ψ) -= (-1)'*1(•'fft~W)f* (°Dky (ψ).

Applying the operation * to a ') , we obtain

)· d* (ψ) + (_ΐ)

)· (ψ)) •-= ( - 1 ) ι ψ Ι ( > + 1 + * ' Ϊ Ι ) + *

Consequently

°Β*(ψ)=5*(Γ(φ)+(-1) ι* ι

ίί0*(ψ)+(-1)"+*Η(Ο*-1(ψ) —D*-1^·))· (3.1)

Substitute a ') and (3-1) in a):

_ D*" 1^ — (—I)1*'dD*"1 —(—1)·ι+*(£>*"* — δ*"*))(ψ)

= {(_1)ΐ*Ι-^ον + (—Ι)""1"^*/)*-"1^ + (— 1)';+*D*~V

4-(_I)'*'dD*d* j - i - l ^ + ^ ^ ' d D * " 1 + ( - 1 ) " - ; * + ι * ^ * - χ

+ (—1)"+*/)*-^· -h(—1)'+1+*+ι*ι<ί5*-1}(ψ) = 0.

Lemma 3.3 is proved.

Lemma 3.4. Let (C, °C, d, Dk) be an algebraic Poincare pair and let ψ: C -*

C/°C be the natural projection. Then °Dkijj* = 0.

Proof. According to Definition 3.2 we have φ°Dk = 0. It i s required to prove that

= 0. Inasmuch as the homomorphisms (°Dk)* and °Dk differ only in sign on

the direct summands, it is sufficient to establish that if/°Dk = 0. For this we trans-

form formula (3.1) by expressing Dk in terms of Dk from ' a ' ) · We have
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D*(q>) = D*(<p) + (_l)B+fc(D*+1<f(<p) + (-l)|(p|dDfe+1(cp)-°Dft

This implies that

= ίΛΤ (φ) + (-l)'l+*(D*+1<f + (-1) |Φ1+1 <*DA+1 -0D*+ 1)if (ψ)

(_!)»+*+» (D*--1 — D*"1 — (— Ι)"**"1 (DV + (— 1)M dDk — °Dk))(φ)

Consequently

f + k + 1 k + 1 W+n+k+1 k+1 * = 0 .

Lemma 3.4 is proved.

Lemma 3.4 shows that the homomorphism D induces a natural homomorphism

°Dk : °C* -> °C,

satisfying condition a).

Lemma 3.5. The homomorphisms D . C* -» C satisfy condition b). Thus the

system (° C, °<3?, °D fe) is en algebraic Poincare complex with formal dimension n.

Proof. It is not difficult to verify that we have the following commutative diagram:

~> Ht (»C) — > Hi (C) —>

Inasmuch as φ^ϋ ) + is an isomorphism, by a ' ) it follows that (D )ψ^ψ 1S a lso an

isomorphism, whence by the Five Lemma it follows that ( D ) + is an isomorphism.

Definition 3.6. Let α = (C, C, d, D ) be an algebraic Poincare pair with formal

dimension η + 1. Then the algebraic Poincare complex β = (°C, d, °Dk) with formal

dimension η is called the boundary of the algebraic Poincare pair a. and is denoted

by β = θα.

Now we are in a position to define the "cobord i sm" groups Ω (Λ). The sum of

two Poincare complexes α = (C , d , D ) will be the algebraic Poincare complex

β = α ι U α2 = (C; Θ C2) dy 9 dt, D\ 1) D*_).

Definition 3.7. The Grothendieck group generated by the semigroup of algebraic
Poincare complexes with operation the sum {J.and factored by the relations α = 0 if

a = θβ will be called the η-dimensional algebraic Poincare cobordism group Ω (Λ).

Lemma 3.8. Let a. - (C, d, Dk) be an algebraic Poincare complex. Then β =

(C, d, - Dk) = - α in the group Ω (Λ).
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Proof. We will present an algebraic Poincare' pair γ = (F, ° F , δ, Hk) such that

θγ=α[]β. Put F. = C. θ C._ j θ C. and ° F . = C. φ C.. Let the embedding φ:

Ρi -* Fi be given by the matrix

Further, put δ = (δ.), where

It is easy to verify that 8i_x$i = 0. Further, let us define the homomorphisms Hk =

(«*), ί φ F'* + 1 _ f -* F. + j f c , by the matrices

/ 0 0

\ 0 ( — l ) " + i + 1 Z ) ? 0/

One ascerta ins by direct substi tution that condition a ' ) is fulfilled; namely,

where

ID\ 0 0 \

" / / ? = 0 0 0 .

\ 0 0 - D , * /

The verification of condition b ' ) is trivial.

Definition 3.9. We wz'// say i/ba/ iura algebraic Poincare complexes α αη«? β are

cobordant if one can find an algebraic Poincare pair γ such that dy = a. [j (— β).

Lemma 3.10. If the algebraic Poincare complex α represents zero in the group

Ω (Λ), then one can find an algebraic Poincari pair β such that α = 9β.

Proof. That the element α represents zero in Ωη(Λ) means that there exist

algebraic Poincare' complexes αι

{, a'2 and β. = dy. such that

α = Σ±( α ιυ<4-αί-4) + Σβ/
i i

in the free group generated by algebraic Poincare complexes. Then
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Hence it follows that one can find an algebraic Poincare complex

θ= LJai U LlaJu U(aiU"s

2),
ί i s

P = U β/, β==<5γ,
/

such that

α υ 9 = θ υ β ·

Adding the algebraic Poincare complex (— Θ) to the left and right s ides , we obtain

α υ θ = β, %=δζ, β = <5γ.

Lemma 3.10 is now implied by

Lemma 3.11. Let ο. , α and α be algebraic Poincare complexes. If a is

cobordant to a and a2 is cobordant to a , then a.^ is cobordant to CL

Let us conclude the proof of Lemma 3.10. Inasmuch as θ = θζ, by Lemma 3.8 we

can find an algebraic Poincare pair ξ such that δζ = α U ( - α ) . Then α (J (? U ( - a ) =

3(ζν}ζ), i-e. β i s cobordant to a ; but β is cobordant to zero, and consequently, by

Lemma 3.11, α is cobordant to zero, which was to be proved.

Proof of Lemma 3.11. Let α . = (.C, d. .Dk), i = 1, 2, 3, and β. = {.Β, °.Β. S, .Hk)

be algebraic Poincare pairs such that

C&, ί'δ, lHk) = (XC Β 2C, 4 3 4, JDk a2D*),

(IB, \b, \Hk) = (2C φ 3C, 4 φ sd, _ 2D
ft ·β 3D

k),

and let ^>,: ,C φ JZ -» . 5 and </>2: 2 C φ , C -> Β be the corresponding embeddings.

Put

where φ: 1C φ 2C φ C -» j S φ 2 B is the diagonal embedding. Then the homomor-

phisms jO φ 2 o and ^H φ ^/ί induce homomorphisms d and W on the complex B.

The verification of conditions a ' ) and b ' ) is trivial.

Examples of algebraic Poincare complexes. 1. Let η = 2k and let C. = 0 when

i Φ k. Then î  = 0, Dk = 0 when & ̂  0, and the homomorphism D°: C* -> C, is an iso-

morphism and satisf ies ( - l)k(D0)* = D°, i .e. defines a nondegenerate bilinear form

(either symmetric or skew-symmetric) on the free Λ-module C.. Let us suppose that

the algebraic Poincare complex under consideration is cobordant to zero. Let us exam-

ine the conditions which must be satisfied by the form D . In our c a s e as the simplest

example of an algebraic Poincare pair we can take (F, °F, d, Hk):

°Fk = Fk= Ο*, 0Fk+1 = 0, Ft = 0 when i^k.k + l.

Consider the diagram
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(3.3)

Condition b ) means that the homomorphism d* i s an epimorphism and that the homo-

morphism Η + J maps Kerd* isomorphically onto ί7^ + 1 · In other words,

is an isomorphism. Let us choose a bas i s in the module F* such that the matrix of

the homomorphism # £ + 1 Θ d* is the identity matrix. Then

Hl+1=(l,0), c f = ( O , 1),

and from (3.3) we obtain

ο
.(-1)*

1

2. Now let η = 2k + 1, and let C. = 0 when i ^ k, k + 1. Then the algebraic

Poincare complex under consideration can be written as the following diagram:

d

where the following conditions are fulfilled:

Did: + (-l)kdD°k+l == 0, Did* + (-1)*Φ*-ι-ι - W ) " Q,

and the sequence

where

(3-4)
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is exact.

Let us define a scalar product on the module C fe + 1 φ C * + 1 by assigning it the

matrix

i .e. if x, y € C + 1 and j t ' . y 1 € C* + 1 then <x, y> = 0, <x, χ' > = χ ' (χ) and

<x ' , y ' > = y ' ( 0 K x ' )). The scalar product thus defined is trivial on Im ψ. In fact,

let x, y € C*. We have

+ < ( - 1 ) * / ) ) ; + 1 ( J C ) , d*(i/)) + ( d ' W , d'(y)y ^(d'xHi

+ ((d*y)(Dl+1(xW + (dtx)(DU*y)=x((-l)kdD°k+1y)

+ χ (dDld'y) = χ ( ( - 1 )fe dD^+1 {/) + χ ((D*+1)' d'i/) +

= χ ((—if dD°k+1y + (Dl+1)* d*y + dD\ d'y)'

=.-jc(-D2d' +(D*+ 1)'d· -YdD\d')y = x((-\f d(D\)*d* + dD\d')y = 0.

Choose an embedding

ν

such that ά̂ ο χ = id and so that the scalar product induced on the module C, φ C*

has matrix

The first condition may be satisfied since the sequence (3.4) is exact; and that means

that ά-χι + Dkx2 = id. The second condition means that <χ(χ), </f(y)> = y(x). This in

turn means that

4- ί/(Φ*+ΐ)' γ Ax)) +(-\)ky(d(D\yt2(x)),
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or

Thus we have constructed an automorphism φ of the free module C, , Φ C*

given by the matrix

θ = ty. χ),

which transforms the trivial bil inear form A into the form Β which is of the same type.

§ 4 . Modifications of algebraic Poincare' complexes

Our aim below is to construct the homomorphism

σ:ΙΛ(Λ)->-ΩΛ(Λ)

and to explain its properties. For this we study ways of reducing an algebraic Poincare

complex to the simplest possible form.

Definition 4.1. Let a = (C, d, Dk) and a' =('C, 'd, Dk) be two algebraic

Poincare complexes and let f:C^> C be a chain homomorphism such that Ό =

fD /* . Then f is said to be a homotopy equivalence if it induces an isomorphism in

homology. The algebraic Poincare complexes α and a. are. then said to be homotop-

ically equivalent.

Lemma 4.2. Homotopically equivalent algebraic Poincare complexes are cobordant·

Proof. Let α = (C, °C, d, Dk) be an algebraic Poincare' pair and let the algebraic

Poincare' complex da = (° C, °d, °Dk) be homotopically equivalent to β = (β, δ, Hk),

i.e. there exis ts a homomorphism / : C -» β satisfying the conditions in Definition

3.12. Let C = C Θ °C. Consider the new pair A = X C φ Β, °Α = Β. Define the

differential <9 by

d(x) — 6 (JC),

d(x)=gd(x), x ^ C ,

where the homomorphism g: C Φ °C -> C φ Β is defined by g = (id, / ) . Further, put

We verify that (A, ° A, d, Fk) sat is f ies conditions a ' ) and b ' ) of Definition 3.1. The

verification of b ) is trivial. To verify a ' ) we need to prove

ο ο
when dim φ = \φ\, or
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Hk 0N

0 0 ;
(4.1)

Since dg = gd, we obtain from (4.1)

«
f

H" 0

o o

as was required. Thus {A, A, d, Fk) is a Poincare pair. By Lemma- 3.8 each alge-

braic Poincare complex is cobordant to itself, and that means that α (J ( - a ) is the

boundary of an algebraic Poincare" pair. Consequently if β i s homotopically equiva-

lent to α then β [j ( - a ) is the boundary of an algebraic Poincare' pair. Lemma 4.2

is proved.

Let us now define a canonical transformation of an algebraic Poincare pair

(C, °C, d, Dk) corresponding to gluing a handle for manifolds. Let A be a free

Λ-module, let β: A*-> C* be a homomorphism, and let i < [n/2] - 1, where

Ί*_+,β = 0. We construct a new algebraic Poincare pair (C, C, d, D ) by putting

Cj = C/ when / =jf= ι -f 1, η — i — 1, « — i,

= Cj φ i4 when / = i 4- 1, rt — t — 1, η — ι,

0 Q = 0Cywhen j=j=i 4- 1, n — i—l,
0C, = ° C / © / l when / = i 4- 1, « _ / — 1 .

(4.2)

(4.3)

The boundary homomorphism d is given by

where ^: /I -» A* is some fixed isomorphism,

/« +2 =
0 '

4 . - ; 0

β* 1

dn-i-i = ( 4 - / - 1 , 0),

4-«·+ι\

ο Γ

= dy for the remaining suffixes ;.

Further, put



1340 A. S. MISCENKO

All the remaining homomorphisms D ate defined with the help of Dk by adding zero
homomorphisms for the new summands.

Let us verify that the collection (C, C, d, D ) thus obtained is an algebraic
Poincare pair.

1. d2 = 0. It is sufficient to verify that d.d... = 0 and d d .. = 0. In the
1 ι z+1 n — i n — i+1

f i r s t c a s e w e h a v e

didi+1 = {didl+u (-lf-'d}Dtpq) = ( 0 , «DUdl-i+rPq) - 0 .

I n t h e s e c o n d c a s e

U .

\ P 4 _ / + 1 . /

2 . T h e v e r i f i c a t i o n o f b ' ) p r e s e n t s n o d i f f i c u l t y .

3 . I t i s s u f f i c i e n t t o v e r i f y a ' ) o n l y i n t h o s e c a s e s w h e n t h e m a t r i x D . h a s n o t

b e e n c o n s t r u c t e d t r i v i a l l y f r o m D . .

a ) k = 0 .

a . 1 ) W e r e q u i r e t o p r o v e

( - 1 f-%.{ 1ΰί+ι + D?dL<+i = 0 mod «c. (4.5)

We have

D » ^ _ i + 1 = ( D ? < C i + i , 0 ) .

C o n s e q u e n t l y t h e e x p r e s s i o n ( 4 . 2 ) b e c o m e s

χβ) = (°A°, 0).

a. 2) We require to prove the following

( - 1 r ' - ^ A V a + D ? + 1 3 U Ξ 0 m o d « C .

W e h a v e

T h i s i m p l i e s t h a t

I 0 9 - 1

a . 3 ) L e t u s v e r i f y t h a t
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( - 1 / + 1 4 w D ; U + B 2 _ i - i # + a = 0 mod °C. (4.9)

We have

Consequently

°Dn-t-i =

a.4) Let us verify the following

( — ΐ / ί ί - ί + ι Ο ^ , ^ ! + D°^id*+X ~ 0 mod °C. ( 4 · η )

We have:

(-1 )<ι '-°β· « Γ - (-1 Γ * (Di'+i)· 4 )
This means

b) k φ 0. Since

) ( D o _ _ . r ο
0 0

a') is automatically fulfilled for k - 1. For fe > 1 this condition is trivial.
Definition 4.3. The construction of the algebraic Poincare pair (C, °C, d, Dk) de-

scribed above will be called "gluing" on a handle by the map β: A* ~> C*_..

Definition 4.4. Let (C, d, D ) be an algebraic Poincare complex and let β:

A* -> C* . be a homomorphism such that d* ...β = 0. The construction of the new

algebraic Poincare complex (C, d, Dk) according to (4.3), (4.4), (4.6), (4.8), (4.10) and

(4.12) and the analogous expressions for Dk, k > 1, will be called modifying the alge-

braic Poincare complex by the map β.

Lemma 4.5. The algebraic Poincare complex obtained as a result of modifying the

algebraic Poincare complex a is cobordant to a.

Proof. Let γ be an algebraic Poincare pair such that θγ = ο. (J (— a.). Put

(CoCdDk) °C B a=(B,d,Hk).
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Let β: Α* -> β * be the map used to carry out the modification. We have to construct a

map β': A* -> C* such that β = φβ ', where φ: Β -> C is the embedding and ά*β' = 0.

Lemma 3.8 implies that we can take for y a complex for which there exis ts a map φ:

Β* -* C* with 0i/( = id. Put β ' = ^/8. Glue a handle to the pair γ by the map β' .

We find that the new algebraic Poincare pair γ' has boundary a \J ( - β ) . Lemma 4.5

is proved.

Theorem 4.6. Every algebraic Poincare complex α z's cobordant to an algebraic

Poincare complex β = (C, i/, Dk) for which C. = 0 w/ben i φ k, k - I or k + 1 z'/

dim α = 2&, ana? when ι ^ k or k + 1 z/ dim α = 2k + 1.

For the proof of this theorem we need

Lemma 4.7. Let a = (C, ^, D*) be an algebraic Poincare complex such that

Η .(C) = 0 when i < s < [dim a / 2 ] . Then one can find an algebraic Poincare complex

a = (C, d, D ) cobordant to it, such that C. = 0 when i < s anrf ζ > dim a — s.

Proof. According to Lemma 4.2 it i s sufficient to construct a complex α which is

homotopically equivalent to the complex a . Let A be an acyclic complex of free

Λ-modules, and let φ: A -> C be an embedding onto a direct summand, i .e. the monomor-

phism φ commutes with the boundary homomorphism d of the complex C. Let C = C/A,

let π: C -> C be the natural projection and let Dk = nD π*. The collection (C, rf, Dk)

satisf ies conditions a) and b) in the definition 3.1 of an algebraic Poincare complex.

Consequently π is a homotopy equivalence between two algebraic Poincare complexes.

If Η . (Ο = 0 when ζ < s, then one can find a direct summand A C C + . such that

the complex

is acycl ic . By property b) of Definition 3.1 one can find a direct summand Β C C*_ _^

such that the complex

Cn <— . . . -s— C n _ s < Β

is acyclic, w = dim C. Consequently the complex

is a lso acyclic and the module B* i s a direct summand in Cfz_s_1· The factor com-

plex C = C/X φ V is then an algebraic Poincare" complex and sat is f ies the conditions

of Lemma 4.7.

Let us now prove Theorem 4.6. We will suppose that C. = 0 when i < s, i>n - s

and s < [n/2] - 1. We carry out a modification of the complex C with respect to the

map β: A* -» C*_ + , where A = C ^ _ s + 1 and β is the identity map. It is not difficult

to verify that as a result of this modification we obtain a new algebraic Poincare'

complex (C, d, Dk) for which Ηs + l(C) - 0. For the rest we apply Lemma 4.7 and use

induction on s . Theorem 4.6 is proved.



HOMOTOPY INVARIANTS OF MANIFOLDS. Ill 1343

Corollary 4.8. The groups Ω (Λ) and Ω + 4(Λ) are isomorpbic when η > 4.

We will now construct the homomorphisms

ψ:ΜΛ)->Ωη(Λ).

If η - 2k, then to each even bilinear form (Η, λ) we associate the algebraic Poincare

complex (C, d, Dk):

d = 0, D° = X, D s = 0 , s > 1.

Lemma 4.9. // (Η, λ) is the trivial form, then ψ(Η, λ) = 0.

Proof. Let

( — 1 ) * 0

Put C fe = H, °Ck = H, Ck + l = A, °Ck+l = 0, C. = ° C . = 0 for all remaining ί and ;,

and let

The collection (C, C, d, D ) thus obtained is an algebraic Poincare pair with formal
dimension 2& + 1 and with boundary φ{Η, λ). Lemma 4.9 is proved.

Let η - 2k + 1, and let φ be an automorphism which leaves invariant the trivial

form

0 l\

'—i)* o

on the module Η = Α φ A*. Express the automorphism φ in the form

'Φι q

\Φ2 Φ4

Put Ck = Λ, C f e + J = Λ*, ^ * + 1 = φ ν D°k+1 = (D°)*= 0 j and D f e = 0, yfe > 1. Then

(C, i/, Dk) is an algebraic Poincar^ complex. We put φ{φ) - {C, d, Dk).

Lemma 4.10. // φ represents the trivial element in the group L (A), then

ψ(φ) = 0.

Proof. By definition the trivial element of the group L (Λ) is represented by

automorphisms of the form

! Φ\ / /'Φ ° \ r /' 0 V
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and their combinations.

Let (C, d, D ) be an algebraic Poincare complex such that C. = 0 for ι' £ k, k +

1, and Dk = 0 for k > 1. We construct a new complex (C, d, Dk) by putting C, = C,,
Cfe+1 = C t + l' dk+l = Dfe' % = ^k + l a n c * D k = °' W e w i l ^ s h o w t n a t these two Poincare*
complexes are cobordant. For this it is sufficient to prove that it is poss ib le to carry

out a modification by a map β: A -> C* + J . If this is so, then, putting A = C* and

/3 = 1, we obtain a new complex Hk = C, φ C + , //, + = C, + , φ C* + . ,

o r ·

0

Factoring by the acyclic subcomplex ( 3 f e + 1 ( C , + 1 ) , C, + 1 ) , we obtain the complex

(c , 1, ~bk).

Let us now glue on a handle by the map /3: A -> C? + 1 . Let (C, C, a?, D ) be an

algebraic Poincare pair, dim C = 2k + 2, such that D = 0 , £ > 1, and β : A* -> C* .

Put

Ck = Cft φ i4, °C* = °Cft φ /4, Ck+i = Ck-rx Θ ^* Θ Λ',

4 + 1 °D2p 0
β* 0 1

0

0 (—

1 $*D°t

Then

Thus the modification in dimension k is well defined.

Consequently, if A is an automorphism, then

ψ(Λ) = ψ(/3/1). (4.13)

Let us show that

ψ(Λ) = ψ(νΐ). (4.14)

Let

Then
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Υ *,

Interpreting the homomorphism φ as a chain homotopy between two homomorphisms X

and X + φΥ, one can construct an algebraic Poincare pair, just a s in Lemma 3.8, the

boundary of which will be ψ(Α) - ψ(ΙχΑ). Namely, we put

<̂fe = ^k κν ^k> l^k+i '= l-'k+i Ή ^k χχ) t-Ή-ι» i-'k+i = L'fe+i,

aCk = Ck 'B Ck, °Ck+l = θ Ck+1, °Cfe+2 = 0,

* + 1 =

(dk+i {-\f

\ 0 (—1) \

φ 0 0\

^ 0 0

0 ( - l ) * u D 2 n 0/

Then

η η

ο
0

0

0

as required.

Applying (4.13) and (4.14) successively, we complete the proof of Lemma 4.10.

Lemma 4.11. The homomorphism

is a monomorphism.

Proof. Every bilinear form λ =

ZgeTra

gg· The condition λ^. = - λ£

- α _ Γ Put
e·

μ =

λ* is an even form. In fact, let λ = (λ. .), λ..

means that a = 0 when g € nQ, and α =

μ»ν =; λα w h e n »

μ Η = S aeg> ί > /.
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It is clear that λ = μ - μ*. Thus if λ € ^4k+2(A) and φ2(\) = 0, then one can find

matrices Hl and Η , Η* = - Η. such that

4 ' ί V(;4
Ο — 1 Hj

Since the forms Η^ and Η2 are even, for a suitable choice of the matrix X one can

obtain

ik ° °\ / ο ιWo ο iW = (
\o - ι o/ v •

as was required to be proved.

Theorem 4.12. The homomorphism

(ψ ο φ) κ Ζ [1 j : L, (Λ) ̂  Ζ [ j j -> Ω;ι (Λ) (χ) Ζ [jj
i's β monomorphism.

Proof. When η = 4k + 2 the assert ion of the theorem follows from Theorem 2.1

and Lemma 4.11.

In [8] Shaneson constructed a homomorphism

which whom combined with another homomorphism (also constructed by him)

becomes the identity.

Let β: Ωπ(Λ) -> Ω η + Ι(Λ[ζ, ζ " 1 ] ) be the natural homomorphism generated by the

tensor product of an algebraic Poincare complex α by a fixed chain complex for the

circle. It is not difficult to see that the following diagram is commutative:

•ψ ι φ !, — Ι ψ ο Φ

It w a s p r o v e d i n [ 7 ] t h a t t h e h o m o m o r p h i s m y ® Z [ % ] i s a n i s o m o r p h i s m . C o n s e q u e n t -

quently β ® Z[% ] is a monomorphism, and therefore the fact that (ψ ο φ) ® Ζ[%] is

a monomorphism for η + 1 follows from the fact that it is a meromorphism for dimen-

sion n. Theorem 4.12 is proved.

§ 5 . Geometrical Poincare complexes

Let us consider a finite CW-complex Χ, π = π^Χ). Recal l that Λ denotes the

group ring of the group π, Α = Ζ[π]. Let X be the universal covering space of X.

We may suppose that the group π acts on X freely and simplicially (cell-like) for
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some simplicial subdivision of X which covers a certain simplicial subdivision of X. Then

the chain groups C (X) are naturally provided with: a) the structure of a right Λ-module, and

b) a basis which makes the Λ-modules C (X) into free Λ-modules. As a basis c for the

Λ-module C (X) one simplex (cell) should be chosen in each inverse image of the simplexes

(cells) of X. The basis c is defined uniquely up to a choice of the ordering and orientation

of the cells and multiplication by elements of the group n. The complex Cj,X) = Σ^ C (̂X) is a

differential complex of Λ-modules.

Let Β be a right Λ-module. Put

In order to introduce the concept of homology with coefficients in the Λ-module β it is

necessary to introduce the structure of a left Λ-module in B. Put Xib) = b\*, λ Ε Λ,

b £ Β. The module Β then acquires the structure of a left Λ-module and is then de-

noted by Bl. Put

Now let us define f], the intersection between the homology and the cohomology of a

complex. Let Δ: X -» Χ χ X be the diagonal map. The map Δ is not simplicial but

has a simplicial approximation. Let Δρ be a simplicial approximation to Δ. If T:

Χ χ Χ - » Χ χ Χ is a permutation of coordinates then AQ and Γ Δ 0 are homotopic, i .e .

there exists a simplicial map

such that Δ ^ Χ χ 0 = Δ ο and Δ ^ Χ χ 1 = TAQ. Further, if S: 1 -» / is given by S(t) =

1 - t, then Aj and TA^S coincide on X x O L J X x l and are homotopic, i .e. there

exis t s a simplicial map

such that Δ 2 | Χ χ / χ 0 = Aj and Δ 2 | Χ χ / χ 1 = Τ Δ ^ . In general one can construct a

sequence of simplicial maps

satisfying the following:

ΔΛ | Χ χ Ι"'1 χ 0 = Δ η _ Χ ΐ An | Χ χ Ζ " " 1 χ 1 =

An\XxdI"-lxt = const, i e / ,

where 5 ^ : Χ χ I"'1 -. X - Z " " 1 is given by

Sn-l(x,tu...,tn-l) = (x, l—ti 1—/n

It is easy to verify that Δ^ and ΓΔ S coincide on Χ χ dl".

Thus Δ ο induces a map of chain complexes
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(Δο).: C, (Χ) - C, (Χ χΧ) XC, (X) (x)z C. (X).

The homomorphism ( Δ ^ is a homomorphism of Λ-modules if we introduce in

C#(X) ®z C^(X) the Λ-module structure induced by the diagonal embedding ( A Q ) ^ :

π -* n χ π.

Each map Δ^ induces a homomorphism of the complexes of homogeneous degree

(+ n), and the complexes are chain homotopic:

Let us fix on an element ξ £ C^(X). Then ( Δ ^ ^ ) defines a homomorphism

0 ( .
as follows. Let

(Δο). (Ε) = 2 α ' ®fei- *
then

φ -+ 2 &ί ® Φ (β0 e C , ( X ) (χ) Λ ̂  •

Clearly, if we introduce the structure of a right Λ-module on the group HomA(C^,(X), A)

by the formula

(φλ)(α) = λ·φ(α),

then (^{(Δ^^ξ)) is a Λ-module homomorphism. Thus, putting β(ζ) = α((Δ [ ) ) ; ) .(^)), we

have defined

β: C, (X) -> HomA (C* (X), C.(Χ) ®Λ Λ).

Here C*(X) = H o m ^ C ^ U ) , Λ).

Lemma 5.1. Let Tl be the group of integers endowed with the structure of a left

{and simultaneously right) h-module generated by the augmentation π -» 1. Then the

homomorphism β decomposes into β = βχ ° β2, where β2: C^iX) ® Λ Ζ ' is an epi-

morphism and

β χ : C,(Χ) ® Λ Ζ ' - H o m A (C(X), C.(Χ) (Χ>Λ Λ).

Proof. It is sufficient to verify that α((Δ ( )) ; ( ;(^)) = a({\)^{ξg)), g 6 π. Let

φ 6 C*(X) and (AQ)(O = X e . « i . . Then ( Δ ο ) + ( ^ ) = S e . g ® fo.g. We have

(αί )̂ = Σ 6i

Lemma 5.1 is proved.

Note that the analogous assert ion is true for the homomorphisms
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Lemma 5.2. The homomorphisms

where dim ζ = η, are dual.

Proof. Let us fix a c

ments {Δ0)^(ξ) and {ΤΔ0)^(ξ) will have, respectively, the forms

Proof. Let us fix a certain free bas is ( e a ) in the Λ-module C^(X). Then the ele-

).(&)= Σ (
ί',α,β

i m ^ ( μ ί β (χ) λ ^ ) ^ (χ) β α .

ί,α,β

Let φ be the bas i s in the group Ck(X) which is dual to ea, i .e.

φγ(«α) = δαγ f o r d i m <?a = A,

φγ(βα) = 0 for the remaining ea-

Then

where

ASY = 2 μ;βλ<·γ. β β γ = (— ι p i ~ k ) y\ λ ί β μ · γ .

Clearly the matrices A = \\Aβγ || and ( - l) f e ("- f e )f l = (_ l)k{"-k)\\Bβγ \\ are dual, i .e .

Β = ( - l)»("-*> (A')*· Lemma 5.2 is proved.

Theorem 5.3. Let ξ € C (Χ) ® Λ Z ' 2>e a cyc/e β«ί/ let ζ € C^iX) fce an element

covering ζ. Then the homomorphisms

are uniquely defined by the element ζ and satisfy the following conditions:

// i = 1 we put fi f = DQ z'n b).

Proof. Let ξ € C (Χ) ® Λ Ζ ' , and let ξ be an element in the module C (X)
" η

which goes into the element ξ under the map induced by the augmentation e: Λ -> Ζ.

Since d (ξ) = 0, we have ed {ξ ) = 0. From (5.1) we obtain
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dn+i (Δ,-), (ί) - (Δ,). (4 | ) = ( - 1 Ρ'-1 {(Δ,_χ), (|) - (ΓΔ,.-.Λ_,)φ (1)},

4(Δ 0 ) , ( ! )=(Δ 0 ) , (4ξ) .

By Lemma 5.1, s ince td (ξ) = 0,

α((Δ/).(4ΐ)) = 0, t > 0 .

By the definition of Π ξ and D ., if φ € C*(X), then

D{ (φ) = 2 &'„ (φ (<))*, Π ξ (Φ) = Σ Κ (φ (aa))',

where (Α^^ξ) = Σ α « ' α ® ^ !

α . Then, using Lemma 5.2 on the right side of formula

(5.2), we have

2 (-if^

which proves property b) of the theorem. Property a) is proved similarly. Theorem 5.3

is proved.

Definition 5.4. A finite complex Χ, πλΧ) = π, is said to be an oriented Poincare

complex if there exists a cycle ζ € C {X) (B^ 1} such that

induces an isomorphism of homology groups

If, in addition, the torsion of the homomorphisms Π ξ is zero, then X is said to he a

simple oriented Poincare complex.

This presupposes the following choice of b a s e s in the modules CΛ.Χ) and C*(X):

in the module CAX) we choose as bas i s one cell complex X in each orbit of the

group 77, and in the module C*(X) we choose the dual b a s i s . It is not difficult to

verify that the arbitrariness in the choice of bas is for (^(X) does not alter the torsion

of Π ξ in the group Κ^Λ).

Let (X, Y) be a CW-complex pair, let ;: V C X be the embedding, and let πΛΧ) =

π, (Y) = 77. Then there is an analogous theorem. Let ζ € C (Χ) ® Λ Ζ ' be a cycle

relative to the module C^ ^Y) ® Λ Ζ' and let ξ € C^(X) be an element covering ξ,

i .e. f ( ? ) = f.

Theorem 5.5. An element ζ uniquely determines the homomorphisms
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satisfying conditions a) and b) of Theorem 5.3 relative to the submodule C^iY), i.e.

a) ((dk η ξ) + (- Ό* + Ι (η Odk)(<f>) e cn_k{Y),

The proof of Theorem 5.5 is analogous to the proof of Theorem 5.3, and we will

omit it.

Definition 5.6. A pair (X, Y) is said to be an oriented Ρoincare pair if there

exists a cycle ζ €. C {Χ, Υ) θ ^ Ζ ' such that the homomorphism Π ζ induces an iso-

morphism in homology

(nil:Hk(X;A)^H^k(X,Y;A).

Lemma 5.7. // (X, Y) is a Poincare pair with a fundamental cycle ξ of dimension

n, then the complex Υ is an oriented Poincare complex with fundamental cycle άζ of

dimension \n — 1).

Proof. Property a) of Theorem 5.3 can be made more precise in the following way:

if ξ 6 C^(X)®A V is a chain, then

. (5.3)

Let us prove that the homomorphisms

induce maps of the exact cohomology sequence of the pair (X, Y) into an exact homol-
ogy sequence. Here

i.: C . ( Y ) - C.(Χ), ρ: C.(X)-+C.(X, Ϋ)

ate the natural maps of the chain groups. Note that the diagram

C'Qi, K)">

is commutative. Let χ Ε C*{Y)t dx = 0 and y = i*{x). Then

an i)p')d[X] = η im = η Mm ± d(n

Finally, let χ Ε C*(X). Then
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Π (dt)i*(x) = (ΓΗ)(β*) ± d(D l)(x) = ± d(m(*))·
This proves that each square in the diagram is commutative. On the other hand,

part b) of Theorem 5.5 implies that (Π ξ)ρ* and (Π ξ)*ρ* are chain homotopic, i .e .

coincide at the homology level. Consequently we have obtained a map between exact

sequences in which every two out of three maps are isomorphisms. Applying the Five

Lemma, we obtain the assert ion of Lemma 5.7.

Definition 5.8. If for an oriented Poincare pair (X, Y) the isomorphisms Π ξ and

Π άζ are simple, then the pair (X, Y) is said to be a simple oriented Poincare pair.

We note the well-known fact that every smooth (PL)-manifold (with boundary) is a

simple Poincare complex (simple Poincare pair) .

Lemma 5.9 ([1], Theorem 2.2). Every finite Poincare complex X with formal dimen-

sion η is homotopically equivalent to a finite η-dimensional complex.

Lemma 5.10. Every finite Poincare complex X of formal dimension n>3 is

homotopically equivalent to a closed domain W with smooth boundary in Euclidean

space RN+n, Ν >n + 1. Furthermore, n^dW) £ nr(W).

Let us study the cohomology of a manifold W using Lemma 5.10. Let W be the

universal covering space of W. Then

Lemma 5.11. Multiplication by an element ζ is defined for every ζ £ Hn{W, Z)

and is a cohomology homomorphism

Proof. Let us consider the chain homomorphism

(\).:C.(W)-*C.<W)®zCt(W).

Let (Δ0)*{Χ) = Σ α α α ® ba and let ξ: C^(W) -> Ζ be a cocycle. Put

Then ζ i s a Λ-homomorphism from the module C^iW) into the module B. In fact,

ζ (*g) = 2 I (flag) η (&αβ) = Σ Ι («α) η Φα) g = ζ (*) g-
a a

It is not difficult to verify chat

υΐ·.σ(Χ;Β)->σ(Χ;Β)

is a chain homomorphism and in homology it does not depend on the cocyle ς repre-

senting it.

Lemma 5.12. Let W be a manifold with boundary which is also a domain in

RN+n and a Poincare complex of formal dimension n. There exists a cocycle η €

HN(W, dW; Z) such that
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U η : Hl (W; A) -> HN+l (W, dW; A)

is an isomorphism.

Proof. Let ξ £ Η {W; Ζ) be a fundamental cycle of the Poincare complex W and

let ζ£ ΗΝ+ (W, dWj',Z) be a fundamental cycle of the manifold with boundary W. Put

v = {nC)-Hb- Then

Consequently (U 77) induces an isomorphism in homology. Lemma 5.12 is proved.

The converse assert ion is also true.

Lemma 5.13. Let W be a manifold with boundary which is also a domain in R " .

// there exists a cocycle η € HN(W, dW; Z) such that

\Jt\: H*{W; A)-*H'(W, dW; A)

is an isomorphism, then the complex W is an oriented Poincare complex of formal

dimension n.

The proof is analogous to the proof of Lemma 5.12.

Lemma 5.14. Let W be a domain in RN n with smooth boundary dW, Ν > π. The

following conditions are equivalent-

a) The Serre fibration associated with the embedding dW C W is a spherical fibra-

tion with fiber S and with the fundamental group acting trivially on the homology

of the fiber.

b) The manifold W is an oriented Poincare complex with fundamental cocycle

η € HN{W, dW; Z).

Proof, (a) = ^ (b). Let us consider the spectral sequence of the pair of fibrations

( D v , S " " 1 ) - * ^ , dW)-+W

for cohomology with coefficients in the module Λ. Then

E^q(W, dW; A)-^Hq(W; A), EP

2-"(W, dW; Λ) = 0 when ρφΝ.

Consequently

Hq(W, dW; A)^E^q(W, dW)xE^q(W, dW) = H\W- A);

moreover, this isomorphism is realized by multiplication by an element ζ€

HN(DN, S ^ - 1 ; Z). Put η= ζ 1) 1, where 1 € H°(W; Z>, and apply Lemma 5.13.

(b) =#» (a). Since the cohomology H'(W; A) is isomorphic to the compact cohomol-

ogy, the assert ion reduces to a computation of the cohomology of the fiber using the

spectral sequence for the fibration. The latter assertion is implied by the fact that the

restriction HN(W, dW; Z) -* HN(DN, S N ~ 1 ; Z) is an epimorphism.
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Let us now apply the resul ts of § 4 to a geometric Poincare complex.

Theorem 5.15. Let X be an oriented geometric Poincare complex. Then there is

an element a(X) € Ω (Λ), uniquely associated with X, generated by the homomorphisms

Π ξ: Ck (X) - Cn-k (X), Dt: Ck (X) -> C,t_ft+i (X).

Proof. It is only required to verify that the element a{X) does not depend on the

choice of the cocycle ζ, the homotopies Δ;. and the simplicial decomposition of the

complex X. In the first and second c a s e s it is easy to construct a simplicial decompo-

sition of Χ χ / related to the cocycle η on the complex Χ χ / and the homotopies

Δ. on the complexes Χ χ Ι χ I1 such that we obtain an algebraic Poincare pair with

boundary a(X) (J ( - a(X ' ) ) . In the third case there ex i s t s a simplicial map / : X -» X '

from one simplicial structure to the other, and we apply Lemma 4.2.

Theorem 5.16. Let φ: L (A) -> Ω (Λ) be the natural map constructed in §4. Let

M" be a smooth manifold, n^(Mn) - π, Λ = Ζ[π], let ξ be a fiber bundle over the mani-

fold Mn and let (X, /, φ) € Ω π (Μ", ξ) be a triple, where j : X - M" is a map of the

manifold X of degree 1. Let φ: v{X) -> / * ( £ ) be an isomorphism and let Θ{Χ, f, φ) £

L n(A) be the obstruction to modifying (X, /, φ) to a homotopy equivalence. Then

φ(θ(Χ,/,φ)) = α(Λί)-α(Χ).

The proof is trivial (see, for example, [11]).

§6. Intersection theory for Poincare complexes

In this section we discuss the question of defining the intersection of Poincare

complexes lying in a manifold. We must require the intersection to satisfy a number of

conditions. Namely, let X, and X2 be Poincare complexes, Μ a smooth manifold, let

/ . : X. -> Μ be continuous maps and let if^· πχ{Χ^) -> πχ(ΙΛ) be isomorphisms. We want

to define a canonical construction of a Poincare complex (Y, g) - (Xj, fχ) f| (X 2, f 2 ) ,

dim Υ = dimX, + d i m X , - dimM, such that the condition (Χχ, f χ) = d{W, f) implies

(Y,g) = d((W,f)f](X2,f2)).

We will restrict ourselves to the case when (X2, f2) i s a smooth manifold.

Let X be a domain in RN+n with smooth boundary which is also a Poincare' com-

plex of dimension n. Let V be a smooth manifold of dimension k and Μ a smooth

manifold of dimension m. Let / : X -» Μ and g: Υ -» Μ be continuous (smooth) maps

inducing isomorphisms of the fundamental groups. Put

W0 = MxXx Y, Wt^X χ Υ,

Wt = YxX, g l = ( (/x id)A)xid,

g2 = T(((gx id)A)x id),

where Τ: ΜχΥχΧ^ΜχΧχΥ is a permutation of the coordinates.
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Lemma 6.1. The manifolds W Q, W , W2 with boundary are oriented Poincare com-

plexes. Moreover, if η. € HN{W., dW.; Z) are fundamental cocycles, then

where Ζ is ί/be trivial module over the group n^(W)

Lemmas 6.1 and 5.14 imply

Corollary 6.2. The diagrams

1 I
w, - w0

induce commutative diagrams of Serre fibrations with homotopically equivalent fibers

which are homotopy spheres S .

Lemma 6.3. Let CL . 6 nN{W., dW.) be the elements corresponding to the fundamen-

tal cycle of the fiber of the spherical fibrations cW. C W.. The elements a. can be

realized as embedded discs

^i\{DN, S ' V " 1 ) - > ( U / i ) dWi).

The embedding g. can be changed by regular homotopies to embeddings in general

position, where

Φο ~ §1 ° Ψ·ι ί = 1, 2.

Proof. First of all, by changing the embedding g. we can ensure that g-φ. = φ~.

After this we move the embedding g. into general posit ion leaving g. fixed on Im<^>..

Lemma 6.3 te l l s us that W, = W. f) W is a manifold with boundary, and, moreover,

the embedding h :. W' C W. induces an epimorphism

(A,).: nN(W3, dW9)-*nN{Wlt dWt), i = 1, 2.

Lemma 6.4. Let n ^ ^ o ^ = 0· Then the embeddings gi can be chosen such that

• W, is connected and the composition

d j ) , < g i ) , Ρ

i s a m o n o m o r p h i s m .

P r o o f . L e t u s s h o w t h a t W , c a n b e s u p p o s e d c o n n e c t e d . L e t t h e p o i n t s * . a n d

x1 lie in different connected components of Wy Join xQ to χχ by paths γχ and y 2

lying in Wj and W2 respect ively. Then the closed path X j y J 1 defines an element

α ε π. (Wg). Since

(8ι). θ ( A ) . : « 1 ( ^ 1 ) θ J i i T O - * ^ ( W O )

is an epimorphism, the paths y^ and y 2 can be altered so that α = 0. This means

that there exis t s an embedding of the disc D2 C WQ with dD2 = γ [Jy,· Deform the

embedding gl so as to remain fixed on the boundary of a neighborhood of y, and in
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such a way that γχ is taken across the disc D2 to y r Then the manifold W has

undergone a modification with respect to the embedded zero-dimensional sphere (χ , χ )

Suppose now that

(A,), e c u : π 1 ( ^ 3 ) - π ι ( ^ 1 ) Θ M U ^ )

is a monomorphism. Let us show that, for example, φ = pig^ih^ is a monomor-

phism. In fact,

and ( g . ^ a φ β ) = (/^(a), a, /3). Thus if ( i ^ U ) = ( a , /3), then φ(χ) = / ^ ( α ) . On the

other hand, s ince g j ^ = g2h2, it follows that ( A ^ U ) = (α ', β') implies

I / » . «, β) = ( £ > ' ) , β', «'),

i.e. ( i ^ U ) = (A a) and /^(a) = g^/6).

In this way the fact that (h^ φ (Β2)^ is a monomorphism implies that (/bj)^ and (/&A are

also monomorphisms. If χ £ 0 then ( A ^ M = (a, β) ^ 0. If a = 0, then β £ 0, i.e. g^/8) ^ 0,

which means that /+(a) ^ 0. Thus ^(x) ^ 0. If a ^ 0, then, since /^ is a monomorphism,

fjia)=t/f0c)^0.

Consequently it is sufficient to show that (^j)^ Φ (^2^* ' s a monomorphism. Let

α € π^Ψ ) and ih^^ia) = (b^^ia) = 0. Let us real ize the element α as an embedded

curve y, : S -+ W and extend the mapping y, to embeddings of d i scs γ.: D -» H7..

Since n-2(H/

0) = 0, it follows that y = y t U y 2 : S2 -> WQ extends to an embedding of the

disc yQ: D 3 ^ Wp. Let ζ, be the normal bundle to y^(S ) in the manifold W^ and let

if. be the normal bundle to γ.(02) in the manifolds W.. It is clear that the bundles ξ{

ate trivial. Put ξ. \Sl = ξ. + ν.. Then £, + νχ + ι>2 + 2 is the normal bundle to the

embedding of S1 in WQ. Consequently the bundle ζ^ + νχ + ν2 + 2 is trivial, whence

it follows immediately that the bundles <f, and v. are trivial. Let us show that a

neighborhood U of the d isc γο(Ω^) can be expressed as a direct product γο(ϋ^)

RlxR2xRi such that y^D2) x f i j X ^ x O is a neighborhood of y^D2) in Wp y2(D2)

0 x R 2 x R j is a neighborhood of y2(D ) in W2 and

χ

χ

is a neighborhood of yAS1) in W . In fact, let η be the normal (trivial) bundle of the

disc yAD^). The bundle 771 ySSl) decomposes as the sum of trivial bundles ξ^ +

ν. + v2 and η\γΑθ2) decomposes into the sum ξ2 +ν^\ finally, η\γ^β ) decom-

poses into the sum ζ. + v2- Extend, in a trivial way, the sub-bundles νχ and v2 fronj,

the d i scs γΛΡ2) and y^D2) respectively to the whole of the sphere y(S2). Then

ξ has a natural (trivial) extension over the sphere y{S ). Furthermore, we can

extend the sub-bundles νχ and v2 to a sub-bundle over y o ( D " ) , the complement of

ν, φ ν2 being an extension of ξ over y Q ( D 3 ) . It i s now not difficult to carry out a

regular isotopy of W{, deforming the disc y^D2) across yo(£>3) to y 2 ( D 2 ) leaving

fixed the boundary y ^ S 1 ) . As a result of this isotopy the intersection W} = W{ f| W2
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undergoes a Morse modification by which the one-dimensional cycle α € πΑΨ^) be-

comes an element homotopic to zero. Lemma 6.4 is proved.

Let dimX = p, dim Υ = q and dim Μ = η, let p + q - η be odd, and let Ν > p + q -

η > 0. Let π.(Μ) = 0 when 2 < i < ]/2{p + q - n) + 2.

Theorem 6.5. The manifold W = Wj f] W' can be chosen in such a way that the

homomorphisms of "multiplication"

[Jr\3:Hi(W3; Q)->HlV+l(W3, dW3; Q)

by the cocycle η. = h*(rj^) = h*^2) €• Η (W , <9W , Z) is an isomorphism.

Proof. First of all consider a single elementary deformation of the embedding g^:

W^W0. Let us consider a half disc ( D ^ + 2 , Dk + 1) whose boundary (Dk+l, Sk) is

divided by the equator into two parts

(Dk+1, Sk) = (Dk+\ D\) U ( D * _ H , Dk),

(Dk

+

+l, Di) Π (Dk+1, Dk) = (D\ S*"1).

Let an embedding

φ : φ ί + \ D f e + 1 )d(r 0 , dW0)

be given such that

φ (D*++\ D\) C (Wu dWJ, φ(D^ 1, Dk_)C (1Τ2( <3 2̂).

Then there exists an isotopy of the embedding g corresponding to a deformation of

the pair {Dk

+

+1, D*) across the disc {Dk

+

+1, Dk + l) into the pair {Dk_n, Dk_). As a

result of the deformation the manifold W undergoes a Morse modification correspond-

ing to the embedding of the pair

<p:(D\ Sk~l)CZ(W,, dW3).

Lemma 6.6. The embedding gj can be chosen in such a way that ν• (W,, cW ) = 0

when 2 < ζ < Ν - 1.

Proof. Apply induction. Let 77.(W,, cW ) = 0 when 2 < i < k. Then

W.(W3, <?W3; Λ) = 0 when 1 < i < ^. Consequently W!'(W3> dW^; Λ) = 0 when 1 < i < k,

and hence Η χ(Ψ y Λ) = 0 when N+p+q-n-k<i<N + p + q-n = r.

Lemma 6.7. Lei W be a manifold with boundary, dim W = N, and Η .{W, dW) = 0

when i < n. Then W is homotopically equivalent to a complex of dimension Ν - n.

Using Lemma 6.7, we see that W^ is homotopically equivalent to a complex Υ of

dimension d = N + p+q — n-k + 1. Moreover, we may suppose that Υ is a subcom-

plex of the manifold W . Let us consider an element α € π, .AW., dW,) realized as3 fc+l 3 3
an immersion of a sphere in general position
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Sk)->(W3, dW3).

Then the subcomplex Ζ of multiple points of the immersion a is of dimension < d' =

2{k + 1) - Ν - p - q + η. Then d + d' = k + 3 < r, where r = dim W Consequently we

may suppose that a (Z) f| Υ = 0 . Since V is homotopically equivalent to W,, then

^ V is diffeomorphic to dWi χ [0, 1) [2]. Thus we may ensure that a (Z) lies

arbitrarily near the boundary of the manifold W . Throwing away small neighborhoods

of the boundaries of WQ, W^ and Ψ2, we obtain a realization of the element α as an

embedded disc

α :(Dk+1, S*)~+(Wa, dW3).

In order to apply an elementary deformation it is necessary to extend α to an em-

bedding of a pair

a : ( D f t + 3 , S * + 2 ) C ( W 7 0 , dW'o), •

which is possible since

π, + 2 (Wt, dWt) = π*+ϊ(Wc, dW0) = 0.

Lemma 6.6 is proved.

Proof of Lemma 6.7. Let C(W) be the chain complex of free Λ-modules for the

manifold W, and let C(W, dW) be the relative chain complex. The condition

Η .(W, dW) = 0 means that the complex C(\V, dW) is acyclic up to dimension η - 1.

Consequently the boundary homomorphism

dn:Cn(W, dW)-*C^l(W, dW)

maps C {W, dW) onto a direct summand F in C AW, dW); moreover, F is stably

free. By Poincare duality the same thing holds for the coboundary homomorphism

d^n+1 : C^_. t (W) -» C ; v - B + i (W)·

In other words, C* _ (W) may be expressed as a direct sum F* θ F * of stably free

modules d*_ +.(F*) = 0, and d*l_n + l\F* is a monomorphism onto a direct summand

in C* i _ n + 1 (W). Thus the chain complex C(W) can be expressed as two complexes

άΝ-ιι+ι dN-n
Co (W) * - . . . < C J V - , , - ! (IF) < F x — 0 ,

0 _ F2«- C^., l + 1 (U7)«- . . . <- C.v (W) -«- 0,

where the first complex is homotopically equivalent to C(W) and the second is

acycl ic. Let F^ be a free module such that F^ θ F 2 i s free. Then the complex

0 F 3 © f,

t © f 3 ® F a <- 0, dA'^B_i - (djv-B-i, 0, 0),
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is homotopically equivalent to C(W).

Let e v • • • , el be a b a s i s for the module F ? φ F 2, let fv • • • , fk be a b a s i s

for C., (W) = F , φ F , and let h,,···, A be a bas is for F , , It is not difficult to

verify that the restriction of dN_n'. F χ Φ F 2 -» C N _ n _ 1 ( W ) coincides with c/N_ n- Con-

sider the complex X given by WN_n__l V V[ = 1 S ^ " " " \ where [ W ] J V _ n _ 1 is the

(N - η - l)-dimensional skeleton of the manifold W. We glue d i scs D ~" onto the

complex X by maps

1 < i .< k + s, putting

Φ; = Ψί V ^

where ι/f. glues the zth cell of W onto the skeleton [W]«j_ _ , and χ. is induced by

the composition of the projection and the embedding

Fi®Ft-+Ft-+F9®Fa, Φ, = * V id when k+ l<Ci<k+s.

We obtain a complex Υ - X (J , D . ". If F: X -> IV is a composition of contractions

of spheres to points and embeddings, then F extends to a map F : Υ -» W which is a

homotopy equivalence.

Lemma 6.8. T&e embedding g^ can be chosen in such a way that

(ht),:Hs(Wit dW3; A)-+HS(W,, dW{; Λ)

is a monomorphism when s < Ν +ViKp + q - η - 1).

Proof. Lemma 6.7 implies that W is homotopically equivalent to a subcomplex

Υ of dimension d = p + q - n. Thus every element of π{ (W,, cW,), where i < Ν +

Vi{p + q - η - l ) , can be realized as an embedded d i s c . The proof of Lemma 6.8 is

carried out by induction in which the groups Η + Ah.) are success ive ly diminished.

Let us note that it is sufficient to show that the direct sum (b^)^ θ U O * is a mono-

morphism, since hx=h2 in the representation of the manifolds as W. = Vil. = Χ χ Υ.

Thus let tfj+i^i) be the first nontrivial group. Then an element α in it may be

realized a s an embedding

α:(£>1+1, Di + l , Ds)-+{Wly Wt, W3).

Since ^.(M) = 0 when i < % (p + q - η - 1) + 2, the map g 2 : W2 -> W induces an
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epimorphism of the homotopy group

(ft), :π ί + 1(Η? 8, dW2)-»*s+1(W0, dW0).

By changing, if necessary, the map a | D * + 1 we may ensure that

a : ( D s + 1 , S s)-*0F o, <^ο)

is homotopic to zero. This means that there exis ts an extension of α to a map of the

disc

α : ( D s 4 s , Dsil)->(W, dW),

and we arrive at an elementary deformation. Lemma 6.8 is proved.

Let us turn now to the proof of Theorem 6.5. Lemma 6.8 implies that

(Λ,·)* :Hs(Wi, dWi; Z)->HS(W3, dW3; Z)

is an isomorphism when s < Ν +lA.{p + q - η - 1). This means that

\Joi9 :HS(W3; Z)-+H*+°(WS, dW3; Z)

is an epimorphism when s < Vi (p + q - η - l ) . In fact, if χ 6 HN+s(Wy dW^; Z) then

x = U ] ) * ( z I ) , and 2 1 = z U > ? 1 . Consequently χ = ihJHz) U Ο'^Ηη^ = (Aj)*(z) (J 77.

Lemma 6.9. 77>e embedding g can be chosen in such a way that

(hi).:Hs(W3; A)-*H,(Wt; A)

is a monomorphism when s < Vi {p + q — n — 1).

The proof is analogous to the proof of Lemma 6.8, and applies elementary deforma-

tions, the construction of which makes use of the following:

Lemma 6.10. Let ζ be the trivial fiber bundle over the disc Dk 2, let ζχ be a

sub-bundle over D^ , let ζΊ be a sub-bundle over the disc D_ and let

h ^ r i h , i 1 | s * = i 3 0 v 1 ,

ξ21 Sk = ξ3 φ v2, I \ Sk = l3 θ v t 0 v2> dim I,, dim vlt dim v2 > 2k + 3.

Then there exist trivial sub-bundles η^, η2, η^ over D such that

Th θ η2 Θ η 3 = Ι, (ηι θ η3) I Dk

+

+1.- g l t

Proof. Let ν. be the complement of ξ2 over D^ l and v2 the complement of ξ 1

over D + + 1 . Extend v. over D^ as a sub-bundle of ζ. in such a way that we ob-

tain as a result a trivial bundle η.. This is possible since dimfj > 2(& + 1) + 1. We

construct τ\Ί similarly. Then their complement 77, will a l so be a trivial bundle over

5 f e + 1 = dDk*2 = D^ + I U D ^ + 1 . Further we extend all three bundles r/j, 7y2 , η^ over the

whole disc Dk + 2.
Note that elementary deformations of dimension s < Vi (p + q — n — 1) do not change

the homology of the manifold (W , dW j) up to dimensions N + H(p + 9 - « - l ) inclu-

sive. Thus Lemma. 6.9 implies that



HOMOTOPY INVARIANTS OF MANIFOLDS. HI

(ht)':H'(Wr, Z)->HS(W,; Z)

is an epimorphism when s <lA(p + q — « - 1), and by Lemma 6.8

{h-f-.H'iWi, dWc, Z)->HS(W,, dW3; Z)

is a monomorphism. So, if χ € HS(W3; Ζ), χ ^ 0, then χ = ( A J ) * U 1 ) and Xj ^ 0. There-

fore Xj [J r ĵ ^ 0 and consequently χ |J 7/ = ( / J 1 ) * ( X 1 |J ηλ) ^ 0.

Thus we have proved Theorem 6.5 for all i < lA {p + q - η - 1). For the remaining

dimensions Theorem 6.5 is implied by the fact that the Poincare duality homomorphism

is self-dual.

Remark 6.11. Theorem 6.5 is false in a more general formulation. The obstruction

to the existence of the embedding g^ for which W would be a Poincare complex of

formal dimension p + q - η reduces to the obstruction to the existence of an embedding

g such that

νΰ Α),

(hil-.H t (W3,dWs;A)~>H χ (Wt.dWr.A)

—(p+<?—n- 1) — (p-K'—«—1)

are monomorphisms, and this obstruction lies in the Wall group L _ (77), π = π.{Μ).

In our case (p + q — η odd) this obstruction is zero.

§ 7 . Homotopy invariance of the higher s ignatures

Definition 7.1. Let χ € Η*(Κ{π, 1); 2), let Μ be an orientable smooth closed

manifold, π,(Μ) = π, let / „ : Μ -» Κ{π, 1) be the natural map inducing an isomorphism of

fundamental groups and let L{M) be the complete Hirzebruch class of the manifold M.

Put

\M\).

The numbers σχ(Μ) are called the ''higher" signatures of the manifold M.

The aim of the present sect ion is to prove the following theorem.

Theorem 7.2. Let Μ and Μ be smooth orientable closed manifolds, let h:

Μ -» Μ be a homotopy equivalence and let 77,(Μ) = π and /,,, = /„ ° h. Then for any

x€ Η*{Κ{π, 1); Q) we have

Proof. The higher s ignatures σχ(Μ) are cobordism invariants (M, fM) £

{K(TT, 1) ® Q.

Lemma 7.3. Let the signature homomorphism

l) ® <2->Ω(Λ) (g) Q,

be a monomorphism, where A is the group ring of the group π. Then Theorem 7.2 25

true.
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Proof. Let b: Μ -> Μ be a homotopy equivalence, and let fM , = /„ oh. Then

Consequently [M, fM] = [M ', /M ,] in the group ilSQ{K(n, l)) Φ «^ 1^(1) ® ρ, i .e .

σχ(Μ) = σ χ(Μ').

Lemma 7.3 shows that it is sufficient to prove that the signature homomorphism

is a monomorphism.

Lemma 7.4. // there exists an element 0 ,ί (M, f) € ilso{K{n, l )) such that

σ(Μ, /) = 0, then one can find another element 0 ^ (M ', / ' ) € Q,S0(K{n, 1)) such

σ(Μ ', / ' ) = 0 and f'([M ']) ^ 0 in the group Η^(Κ{π, l ) ; Q).

Proof. Choose a bas i s of elements {Na, fa) in the fl^Q-module Qso(K{n, 1))®

2 such that (/α)^([/να]) forms a bas is in Η^(Κ(π, 1); 2) . Then [M, f] decomposes as

a sum

α

λ α € Ω$Ο' ^ e o r c ' e r t n e suffixes α in the order of increasing dimension of the mani-

folds /Va. We choose the largest suffix aQ for which σ ( λ α ) ^ 0 € ^ ( 1 ) . Then

sat isf ies the condition σ(Μ , / ' ) = 0. In fact,

= σ(Λί, / ) - 2 ο (Κ) α (Να, fa) = a(M,f),
α>α0

since by definition of a Q the second term is zero (σ(λ α ) = 0 when a > a Q ) . Further,

we put μα = [CP2]ka(X.a) if d imA a = 4k, and μ α = 0 if dimA a ^ 0 (4). Put

[M\ f]= Σμα[Να, U

Then

a(M", Π= 2 σ(μα)σ(/να, fa).

Since σ{μα) = σ ( λ α ) , we have σ(Μ", f") = 0. Let d i m A ^ = 4kQ. Put i/

[CP2]k-k0a(\Q) and

(M"',n= 2 ν«ΐ̂ α· w·
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Obviously σ{Μ", /'") = 0. On the other hand,

f ; " . ( [ M ' " i ) = 2 v " ( M . ( M i ) = M .

dim va=0

Lemma 7.4 is proved.

Lemma 7.5. For any integer η one can find a manifold (Z, fz) such that the map

/ „ : Ζ -> Κ(π, 1) z's α homotopy equivalence up to dimension n.

Proof. We take as the manifold Ζ a parallelizable manifold of dimension > 2n. By

surgery we transform this into another manifold Z ' for which η ( Ζ 1 ) = 0 when 2 <

i < n.

Let us turn now to the proof of Theorem 7.2. From Lemmas 7.4 and 7.5 we obtain

a map / : Μ -» Ζ, ^.(Z) = 0 for 2 < ζ < 3 dim Μ, and /^(M) / 0 in the group H^{Z, Q),

σ(Μ, f) = 0. Consider a fiber bundle <f over the sphere S such that λ = L(A) ^ 0 and

/( f ) = 0, and consider a map of degree 1 from the manifold Ρ , f: p -» S with an

isomorphism φ: v(P^) -»/*( f ) . The triple ( P 4 , /, <̂>) induces another triple

α = (Μ χ Ρ 4, f X id, φ Χ id).

The obstruction to surgery θ{θ-) € L + 4(πΓ), OT = dimM, is of finite order. In fact,

ψ : Lm+i (π) -> Ω^+4 (Λ) (g) Q

has a finite kernel (Theorem 4.12). Also

ψ(θ(α)) = σ(Λί χΡ*) — σ(Μ χ S4) = σ(Λί)οτ(Ρ*) — σ(Λί)σ(54) = 0.

Thus by taking the sum of a finite number of manifolds Ρ we may suppose that

0(a) = 0. Consequently there exis t s a Poincare' pair (W, 3W), 7Tj(3W) = nr, and a map

/„,: W -, K( f f ) 1) such that ( f = M x P 4 .

Choose a singular manifold g: V -> Ζ of dimension complementary to Μ such that

/Tj(y) = τ? and such that the intersection number of Υ and Μ is not zero. This is poss ible

because /^([M]) ^ 0 in the group H^.(Z; Q). Then the conditions of Theorem 6.5 are

satisf ied. Thus the intersection ((/, dU) = (W, dW) f| Υ i s a Poincar^ pair with re-

spect to the augmentation n(U) -> 1, and dU = Ρ . We have obtained a contradicton,

since σ ( Ρ ) = λ ^ 0. This contradiction proves Theorem 7.2.

Received 7/MAY/71
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