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ON SPHERICAL FIBER BUNDLES AND THEIR PL REDUCTIONS

1B MADSEN and R. JAMES MILGRAMT

Twenty years ago, Borel, Bott, Hirzebruch, Milnor, and Thom,
among others, studied the structure of the classifying spaces for the
orthogonal and unitary groups. From their work, it became clear that

the classifying spaces BPL’ BTOP’ and BG (BG is the classifying
space for fiber homotopy sphere bundles [14], [20]) contained the answers

to many of the problems they raised.
The last ten years have seen a concerted effort to understand
these spaces, and the path has been highlighted by several beautiful

| results: Sullivan's work on G/PL and related spaces leading to the
| Hauptvermutung for 4-connected manifolds ([18], [21]), Novikov's work

on the invariance of the rational Pontrjagin classes ([15]), the work of

- Kirby-Siebenmann and Lashof-Rothenberg on G/TOP and the triangulation

theorem ([7], [9]), and the work of Quillen-Sullivan on the Adams con-
jecture ([16], [22]).

Recently, in joint work with Brumfiel, we have determined the
mod 2 cohomology of BPL and BTOP ([3]). This of course gave the
algebraic determination of the unoriented PL-bordism ring and, except
in dimension 4, the topological bordism ring.

Here we almost complete the analysis of the structure of H*(BPL)
at the prime 2. In particular, at the prime 2, we determine the obstruc-
tions to reducing the structure 'group’ of a fiber homotopy sphere bundle
to TOP or PL. As an application, using the Browder-Novikov theorem,
these obstructions determine explicit conditions on a simple-connected
Poincare-duality space, which imply tha¥ it has the (2-1ocal) homotopy type
of a topological or PL-manifold. Also, the result gives the (2-local)
structure of the oriented PL-bordism ring QPL*( , Z (z)) and, except

t This work partially supported by NSF Grant GP 29696 Al.
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in dimension 4, QTOP

localized at the prime 2 [24].
The method is to look at the fibrations

i€ Z(z))’ where Z(z) denotes the integers

m

G/PL=Bp; *B; =B pyy

The (2-local) structure of B is known from [14] and [10]. We next

prove

G

Theorem A. At the prime 2, B(G/PL) is a product
a0
E X 1'[ K(Z

H+1)XKEZ, 4-1),

(2)

while BG /TOP is simply a product of Eilenberg-MacLane spaces.

Theorem A has tt\'éo immediate corollaries.

e
Corollary B. At'the prime 2, the obstructions to the existence
1) a
secondary characteristic class in dimension 5, and (2) in odd dimensions,

of a PL-bundle structure on a fiber homotopy sphere bundle are:

n = 5, ordinary Z(z)' or Zz-cha:acteristic classes.

=]

3,1 X II K(Z( y

Corollary C. B )=E

4i+2) X K(Z s 41).
(BgpL, 2

Corollary C implies that the fundamental classes in H"‘(BG /PL)
may be taken as primitives.

The next step is to determine the map 7* (actually, this is also
the last step, since A implies that standard spectral sequence techniques
can now be used to obtain H* (BPL,

posite

)). m factors through the com-
(2)

Using the-ideas of [14], H"‘(BCT /0) is easily computed and the map
p* is unambiguously defined. Thus the evaluation of 7* reduces to the
evaluation of 7*, but, on examining the suspension diagram
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=7
ZG/ 00— »¥G/PL

Be/o —*Bgpr, -

we obtain that 7* is determined by (Q7)*. At this stage, we use the
proof of the Adams conjecture to obtain a map

£ A

B.,—~*G/O--+B

SO 0’

50 oL = rp3 -1 atthe prime 2, Moreover, £* and (27 £)* can be
completely determined. Putting this result together with a slight exten-
sion of the results of [3], we determine =*.

To describe the main results, consider the Hopf algebra

JC:P(pl, ..)®E(b1, A b[1 .) (over Z(z))

s
Mbi) - Z:r=1(br ® pi-r Pi » % b )s

Introduce a derwa.tmn 6
In each dimension 4i + 1, there is a nrimitive

4 s |

with "D(pi) - z1'=Up]:' 9 Pi_p
dimension p; = 4i, dimension bi =4i + 1.
by setting Gpi = Bbi'
in X of the form b.l + (decomposables).
2 C —3 - -
bia by =bp, b -pb, - ,-p))b, = b, -p,9, - p,q,.
have inductively

@ gq;=b; - Zqp; .
Let s be the primitive in J of dimension 4i. 84
Newton formula

The first few are
Indeed, we

is given by the
_ ) ik
8 = P81 " PS5 T .. (1))

and G(Si) = Biqi.

Let v(i) be the largest power of 2 dividing i. Then
we have -

Lemma E. H_(¥, 8) has non-zero primitive classes {qi} in

dimension 4i + 1, and the 2-order of {qi] is 8 v(i).
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The next result, together with universal facts about modules over
the Dyer-Lashof algebra ([10]), completely determines the Z(z)-cohomo-
logy structure of H*(BG).

Lemma F.
so that, on taking Za-coeificients, the composite
H, (&, Za) — H*(BG) - H*(B_, ZB) takes {pi} to the mod 8 reduction
of the i

derivation &',

There is a (2-local) injection j : H, (I, 6)-’H*(BG, Z

Pontrjagin class.
so H*(BG, Z
the natural inclusion.

Moreover, there is a Hopf algebra X with
(p) SH*®X®K, 681 +e®0), and j is

In Milgram ([23]), a universal surgery class K,, €H4*(G/TOP, Z(z):

was constructed. The class K“ is not primitive,

.
K,,~18K, HEZK, ®K, +K, 81
£

It is easy, however, to donstruct a primitive class

k, =K

i i F 4. (decomposable elements),

where the decomposable elements are a polynomial in K 45 j < n. Here

i i t («:8.%8. 3
is our main resu T G G/O B

G/Top)
Theorem G.

4x+1 P 3 :
k, .41 €H (BG /TOP’ Z(z)) with the following properties:

There is a primitive graded class

(@) (@n)*(k,, , -k,) =0 in B*(G/0; Z

a(l) 1

(2))!

@) m0y,,) =2 i@), i=1.

(Here a(i) is the number of ones in the dyadic expansion of i.)

The following corollary shows that the surgery formula for fan-
gential normal maps reduces considerably.
Corollary H. e(n}-1

is a class of order 4.

_ . 4n, .
(@mM*(K, ) =2 Y, Where Y, €H n(G,Z(z))

2i+1_1
Carollary J. (BG; Z 2)
so that a homotopy sphere bundle £ on a finite complex X admits a

There are primitive classes Ei i €H
t]
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(2)

reduction to a topological sphere bundle (2-1locally) if and only if
(1) 4(8) areall 0, and

@) "‘1) Litap(® = 0.

Remark K Recent work of D. Ravenel constructs explicit
i above only by
Moreover, his A would be exactly our 6. i if they
were known to be primitive! Mahowald has shown that, if X isa
Poincare-duality space with vanishing Stiefel-Whitney classes, and if £
is the Spivak normal spherical fibration, then 9 (&) is the secondary
Wu class associated to the Adams operation <I= H (X; 2 )-'H*(X Z )
Here Bi, . is the secondary operation based on the relatmn

i+1

T x(sq®

0=j=i

characteristic classes l which differ from the 91

decomposables.

i j
“2Yx8a¥) = 0.

It is interesting to compare these results with the 'transversality'
results of Levitt-Quinn and Brumfiel-Morgan ([17], [4]). Recall that they
have used and developed Levitt's ideas on measuring the obstructions to
transversality for maps of Poincare-duality spaces in order to construct
a fibering

a

Bgrop ~Bgg ™ ¥

where I ~ B(G /TOP)’ At the prime 2, Brumfiel and Morgan calculate
G@* with Zz' and Za-coefﬁcients, while showing that B@*(K 44 +1) =0. It
was natural to conjecture that @ and j are in some sense the same map,
but from G we find

Corollary L. There is no (2-local) homotopy equivalence

u:SC-'BG/TOP

L

for which p @ j.

Corollary L follows because there is no homotopy equivalence
) - ¥ i s <
K BG/TOP *BG/I'OP’ 50 j k*(K4i+1) has 2-order dividing 8 for all i
However, in a certain sense, the (mod 8) reductions of the obstructions
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are all that matter, as we see from

Corollary M. Suppose f:X =B

SG stop °0the
4n-skeleton of X. Then f lifts to Borop (2-locally) on X

)=0 where L= za(n)-l

lifts to B,
4n+2 E
y, with y of order 8.

and only if f*(L4n+l

Finally, it is routine but very messy to calculate H*(B
*
and H (BSPL’
nigues and the complete knowledge of the universal Serre sequences (on
the chain level) for the loop path fibering

stop’ Z(z)
Z ( 2)), using for example Serre spectral sequence tech-

QK(m, n) = E = K(m, n).

The proofs of most of the results above follow from [3] after we
have proved A. We doiﬁﬁs in the next two sections. The third section
calculates the compositf map (&?‘r- L£)* : H¥*(G/PL) ® Q -*H"‘(BSO) ®Q,
and justifies the coetficient 2211 in Theorem G. Finally, in Section 4,
we complete the determination of (Q7)*. To this end, one splits the
homology of G/O in two parts, H,(G/O) ~H,(BSO) ® Y. The subalgebra
Y of H,(G/O) is abstractly isomorphic to H_(Ccok J). The primitive
class k4i € Hqi(G/PL) evaluates zero on Y, and this, together with the
results of Section 3, gives Theorem G.

Warning. The classes 'r*(k ) € H*(G/0; Z( )) do not vanish in
H*(Cok J; Z( )), e g. 'r*(k ) restncts to a class of order 2 in

We would like to thank our collaborator Gregory Brumfiel for
several illuminating conversations, comments, and examples, which
unerringly pointed the way when the work seemed mired in incredibly
messy case-by-case calculations.

§1. The Mahowald orientation

Consider the space n“s“+1. Its cohomology structure has been
completely determined in [1], [12]. In particular, we have
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Lemmal.l. (a) H*(Qns“+1, Z,)=EQ
exterior algebra on stated generators.
(®) H(’’, Z,) =P, Q

in each dimension of the form 21 - 1.

T )1...), an

...), one generator

e Q)

Consider the non-trivial map
y
1
S = B 0
Since B, is an infinite loop space, corresponding to 7 are maps
ol(n) gitl -*B(l) (where 9 B() — BO). In particular, corresponding
to o’(q) : S = B(z)o, on looping twice we obtain the diagram

Q%% (n)
QS——PB

N

S

(1.2)

_ and we have

Theorem 1.3 (M. Mahowald). Let y be the universal bundle
v &
over By, and y = onz(n)‘ (y). Then at the prime 2, M(y) = K(Zz, 0),

' the Eilenberg-MacLane spectrum.

Proof. LetH(B Z,) be written as P(‘ e,
where e is dual to w1 Let e be the generator in H (S 2). Then
n,.(e) = e1 Hence from (1. 2), %0° (n)*(e )="e.. Now by Kochman's
result ([8], Theorem 41), Q (_ )_(_ ), Q (_ y= ...Ql...Ql('él)zE i1

——— 2 -1

1

1

Thus, since Q% of any map commutes with the action of Ql, the homo-

logy map is determined.

A

We now pass to Thom spaces. Recall that G(2)* =
P{E., E5 E.; 9545 £ 4 e )5 a.ndletq_ihetheprimitivei.n @(2) dual
17 %37 %y 2l g gt
2 1
to Ezi ;- Then sa' =q, [sa’, Sa'l=q, ..., ;=[5 , g ).
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Lemma 1. 4. (qu, E:i+1_ Uy =1
i i
Proof. By induction: notice that q,U=gq, ;(w’ U)+Sq*(w} 'U+TU),
where TCI(wz, w,, ...i, aian). But ﬁ(i)l(m ey @ ..)Cl(wz, ...,wn).
2 =1
Hence, mod I, qu =Sq wi U= wi U, and 1. 4 follows.

Next, notice that, if we define a map ¢ : @(2) = H*(M(y)) by
a = aU, then using the multiplication in Bo to give M(y) ~ M(y)=M(y),
the diagram

A

(1.5 G(2) —— G(2) ® G(2)

¢ PR

H*(M(y)) — B*(M(y)) ~ M(y)

S
x
r

H*(M(7)) ——-;;*(MG) ~ M())

commutes. This implies that the dual map

H,(M(») = a(2)*
is a map of algebras. Lemma 1. 4 now shows that ¢,,,(Q1. . .Ql(el)U*) =
i

+ d, where d € I(¢ £ ). From this, it follows that ¢,

Ei+1 ? 1" % i
2 -1 2 -1

and hence ¢ are isomorphisms, and this gives 1. 3.
Generalizing (1. 2) slightly, we have the diagram

(l.e) ' =028 =’s'=0's®~... -a%"!

Let 7, =22 (n)' ().
maps

Then we have the Thom spaces M@r) and the

1.7 MG}-’MGB)-’MG4)"...,

and, by [2], each MGi) is a wedge of Eilenberg-MacLane spaces.
over, the map

More-

MG) ~ MG, = MG,
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induced by Whitney bundle sum is the result of the H-map loop sum:
Q SH_1 X 8 S1+1 - SZISI_H, which has more and more structure as

i+ =,

Definition 1. 8. A differentiable manifold M" has a Mahowald
orientation if the classifying map for its normal bundle

V:Mn“'Bu

factors through Qrzr(n) for some r. We say it has a primitive Mahowald

orientation if it factors through szz(n).

Theorem 1. 9. Let M have a Mahowald orientation. Then if
w is any positive- d1men51onal characteristic class of v(M ), we have

w? = 0. In particular, v? (M ) = 1, where V is the total Wu class of M.
Moreover, M" ﬁz -manifold. (Since x? = 0 for all

X eH*(QrSr+1 Z ), and e’{ is an integral class, so V (M) is always

the restriction of an integral class.)

Theorem 1. 10.
by a manifold and map (M",
Moreover, up to Mahowald-oriented bordism, (Mn,

Let x € Hn(X; Zz)' Then x admits a realization
f) with a primitive Mahowald orientation.

f) is unique.

Proof. Let 9 (X) be the bordism of X with respect to
primitively Mahowald-oriented manifolds. Then M, (X)= 7, (X~ M(y)) =
H,(X; Zz) ([5]), and the result follows.

Remark 1.11. A good way of regarding the Mahowald orientation
is as an explicit inverse of the Thom class map M(y) II'K(Zz, 0). But the
miracle is that it actually is a Thom space, and hence satisfies trans-
versality.

§2. The proof of Theorem A

-
-

The strategy is to calculate in the Eilenberg-Moore spectral
sequence passing from TorH,,(G/PL, Z2)(ZZ, Zz) to H*(BG/PL, Zz)‘
Of course, our attack must be made using manifolds. This suggests the

use of the Eilenberg-Moore spectral sequence passing from
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(2- 1) Torﬂ*(G/PL, Zz)(ﬂ*(pt’ ZZ)’ n*(ptu ZZ))

to Q,,,(BG /PL; ZZ). There is a Hurewicz map of spectral sequences,
which at the E2-level is the change of rings map

(2. z)h:TorQ*(G/PL, zz)m*(pt’ Zz)’ Q, (pt, Zz))“TorH*(G/PL, zz)(zz, Zz)

induced by the Hurewicz map h: Q_(G/PL, Zz) = H_(G/PL, Zz) and the
augmentation h : ,(pt) = H, (pt). On the other hand, the Mahowald
orientation induces a ring map H_(G/PL, Z 2) - Q. (G/PL, Z 2), which in
turn induces a map of Eilenberg-Moore spectral sequences, which at E2
1s

T TorH*(G/PL, Zz)(zz;zz)"Torﬂ*(G/PL, zz)(ﬂ*(pt, Zz), «, (ot, Zz))’

Se

and her= 1. Moreover, this is true at all levels, and, in fact, the
differentials in the bordi$m spectral sequence are completely determined
by the differentials in the homology sequence from T.

Generally speaking, any differential going to filtration 1 in these
Eilenberg-Moore spectral sequences is determined by a matric Massey
product being defined and non-zero in H,(G/PL, Zz) or £,(G/PL, Zz)‘
Indeed, if we have x € <A1’ - An) and x not contained in any smaller
product, then dn_]_(|A1 l... |An|) = {x] represents a non-zero differ-
ential,

Next, we observe that the Eilenberg-Moore spectral sequences are
sequences of differential Hopf algebras, by results of A. Clark, and it is
easy to see that, if any differentials are non-zero, the first such is

d i for some i, and there must be an element y = lxl | [x il with
27 -1 2

d i (y) # 0. Moreover, except in certain cases coming from the
27-1

peculiarities of the space E2 C G/PL, these x; are all equal to a single

element x € H (G/PL, Z_) (the remaining cases give terms
x|y |xly]... |x]y].

Lemma 2. 3. Suppose X € H,(G/PL, Z 2), represented by a
Mahowald-oriented manifold M’, and map f: M' = G/PL with resulting
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surgery problem a homotopy equivalence. Then if (X, X; iouy X 38

i
2
) = 0, where k is the Kervaire

Xk
(i+1)2°-2

defined, we have ((x, ...
class.

(The proof is in three steps: (1) (x, ..., X) can be constructed
in ,(G/PL, Mahowald orientation). Moreover, (2) each piece of the
Massey product can be assumed to have corresponding surgery problem
a homology equivalence. Then the surgery problem over (5 o 55 x) is
a homology equivalence, hence has Kervaire invariant 0. But (3),

, P
) x)]) = @,

K(x, ..., x) ={f*k) V, [(x, ...

=k ) [ .
(i+1)2°-2
since V2 =1 in a Mahowald-orientable manifold.)

There are only three types of homology classes which fail to
admit Mahowald-orientable representatives satisfying the hypotheses of
2.3 those dual to K, k4i+2’ and Sq1 (k4i+2)' For these, we require
a more delicate argument. Recall that, if (x si+2 Kag +2) =1, then also
(Qz(xtli +2), kg +6> =1 ([10]), where Q, is the Araki-Kudo operation
([1]). Also, the classes y dual to K,, satisfy Q (y) =Q,() =Q, (y) =0,
while those dual to k,, and Sq’(k,,) satisty Q (¥)=Q,() = 0.

We then have

Lemma 2.4. Let y be one of the three types of classes above,

and suppose

Uy, vovs ¥, k4j+2}=1.

2i

Then k evaluates 1 on a strictly shorter Massey product.

Then Xgi+6

Proof. Using the higher Mahowald orientations MG'i), we have
that the theory H,(G/PL, MG'i)) admits (homology) Uj-products for
j=i- 1. Thus we can apply the result of [13] and
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Qﬂ(x) 0 0 Qo(x
@5 Q& ..., x(Q,®,Q®,Q )| Q®Q® o Q@) P.
@ we,w \q

But in all these cases, Q %) =Q (x) = 0, hence this Massey product is
easily seen to contain 0. Thus Q (x

Massey products of length 2J - 1.

., X) C (indet), which runs over

Remark 2, 6.
Q,() =Q,) =o.

Actually, the hypothesis of 2, 4 can be weakened to

Now the proof of A is fairly routine. It is easily checked that the
first time a differential Lan occur, it must hit a (k 4 +1) Suppose then

that d | (lxl lxh_'e 45+2) Then Q ((‘k4]+2)) i 41 Gy

QZ(Q2 (k4j+2),.) = i-slfs (z").. great.er tha.n 0.

2 =1
Finally, we will obtain d (zT) = (‘ku_l_z) for some 1, but this is im-

possible due to the fact tha.t k4z+2 is primitive in H*(G/PL, Z ) ([19].
This contra.dlctmn shows that (k 4 +2) is a surviving cycle for ea.ch j.
Hence EZ=E , and A follows.

for s, s ...
1? T2

§3. The Adams map JJ:BSO-G/O

Consider the diagram (localized at 2)

G
£ J
G/O

(3.1)

A
- -

G/PL

where & y° -

Lemma 3.2. With coefficients Z(z) of Zz’ £* is surjective.
Indeed, &£* : H*(G/O)/Torsm H*(BSO)/Torsion is an isomorphism.
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We outline two proofs.

Proof (1) Using the Bockstein spectral sequence, we find that

{p*(e *e ) }* are integral cohomology generators. Now p,(e, * ez)*=

(p*(e xe )*) mod 2, and, more generally,

[(p*(el * el)Zi)*]z - [p*(ez = ez)Zi]* '

p*({n 1) in homotopy Hence, in
Next, consider Sq (wz) = w3 —

In dimension 2, we know that £,(n) =

cohomology, £*((p.(e, * el})*) =ity
*

‘B*(p*(ez : el) ) a-nd

Sq°(8q" w,) = 0,0, + @, ;

(e, * 8, )" + Sql[(e1 * el)z], while
Thus using the relation

but (e, » e)*USq'(e, x e )*=
qu(Sqlwz) = (e3 * ez)* + (e.1 * el)*.

) S 2.1
Sq w4—w2w3+Sq 59 w,,
we have =E3"‘[r.',“((e1 * el)z)]* =w, + @, where « is a decomposable in
ker (Sq").
Similarly, using Sq (Sq w )— w,0, + w, + . _. , we obtain

a*
.B*[p*((e * € ) )] = w2i+1 + a".
generate H*(BSO). 3.2

.,B*[p,,‘((e1 * el) )]* =w, + a',
On the other hand, as a ring over @(2), the w i
now follows easily. £
(2) The splitting theorem of Sullivan, G/O = BSO X Cok J, is
proved by using the difference of the two canonical Bo-orientations on
G/O to construct amap y:G/O = BSOQ’ and (y- £)* is seen to be an

isomorphism.
Lemma 3.3. £* isa (raiiona.lima.p of Hopf algebras.
Proof. A is a map of H-spaces as is ¥’ - 1 = - £, Thus the

deviation of £* from an H-map is contained in the torsion homology of
G/0, and 3. 3 follows.

Theorem 3.4. For the primitive class




k,. e H*(G/PL, Z

4i (2))

(k 4= K4i modulo decomposables), we have

(o 2)*(k,) = 2201 g

i

in H*(By~, 2 )/T obBion’ where s; is the primitive in
4i
H
(Bgoy (2)) Torsion

Proof. In homotopy, the generator % in 7 4i(BSO) maps to the free
generator Bi in 1r4i(G/O), and this generator maps to qu
is the generator in 7,.(G/PL). From [6], q; is the order of the sub-
group b(P ) C 1"4 1 of homotopy spheres which bound parallelizable
mze:iufolds Tlus numbeli‘q has been calculated and has the form

a;(0odd) where a, =¢l or 2. On the other hand, (s, ¢ hy »=z(2i)!a
Thus, smce 20 = 221"8(1) we obtain the result.

The final step in our calculation is to identify the part of A*(k,.)
contained in the torsion part of H*(G/O). (Here we are using a basis41
for G/O dual to the basis for H «(G/0), coming from projection of the
basis for H,(G) used in [10], [14].) This we do in the next section,

4i where K 45

84, The image of k4i and the proof of G

Consider the map SO =+ SG. In mod 2 homology, this induces an

injecti =
jection I?I*(SO, ZZ) = E(el, e, .. ) = H,(8G) = E(el. e, ..)®P,
where P is a polynomial algebra. In the Bockstein spectral sequence of
2 - =]

SO, we have E°=E = E(p}, Poyoeeey p4i—1)’ where p is the primitive.
However, since H,(SG, Q) =0, we know that the p 4i-1 re in the images
of higher differentials in E*(SG). Indeed, there is a polynomial algebra
P(A4,-AB, s 5% A4i’ ...)C P so H(SO)® P(A4. . 'A4i' ..) is a closed
sub-differential module in E*(SG). In particular, these A4. in
H,(G/O) generate the torsion-free part of the homology. i

' Definiti 01; 4.1. Anelement y in H (X, Z i) is called proper if
2'y =0 but 2" (y) 2 0. 2 —
Lemma 4. 2. Let (P denote the Pontrjagin squaring operator

H (G .
1_( , Z21 H (G Z ) Then A4i is the mod 2 restriction of

Rt =

G’( )(B ), and these (P( )(B ), together with elements C'P( )(a) generate
(SG, Z ) under * a.nd , where a@

the set of proper Z elements in H,

is a proper Z2 class.

Similarly, we have

Lemma 4. 3. [(P*(B )] together with iterated Pontrjagin
squares (P @ ( a) for aa prcper Z -class, generate the set of
proper Z i—elements

2
Now, from the results of [3],
are primitive on proper Z i-classes with respect to both composition

T we see that the generators k 4

2
and loop sum for i> 2. Hence the only time that (k4i’ y) is non-zero

on a proper Z i-cla.ssiswhen y is G’i...[d’;(sz)] or @ .G’z(a). On
2

the other hand, the fact that k 4 is a suspension shows that it evaluates
0 on classes of the second type. Hence it can be non-zero only on
6’1. e [G’; (sz)]. But these classes project into the torsion-free part of

H,(G/O, Z i). This, together with 3. 4 and the remarks given in the
2

introduction, completes the proof of Theorem G.
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