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Preface
This is the second edition of a text that is intended for a one-semester course in algebraic
number theory for senior undergraduate and beginning graduate students. The Table of
Contents on pages vii–viii is essentially self-descriptive of each chapter’s contents, requir-
ing no need for repetition here. What differs from the first edition deserves elucidation.
Comments from numerous instructors and students over more than a decade since the first
edition appeared have given way to a new style, methodology, and presentation.

The focus has changed from the first edition approach of introducing algebraic numbers
and number fields in the first two chapters and leaving ideals until Chapter 3, to the second
edition strategy of looking at integral domains, ideals and unique factorization in Chapter
1 and field extensions including Galois theory in Chapter 2. This changes the first edition
method of having the entirety of Galois theory relegated to an appendix and bringing it,
in this edition, to the main text in a more complete, comprehensive, and involved fashion.
Chapter 3 in this edition is devoted to the study of class groups, and as a new feature, not
touched in the first edition, we include the study of binary quadratic forms and comparison
of the ideal and form class groups, which leads into the general ideal class group discussion
and paves the way for the geometry of numbers and Dirichlet’s Unit Theorem. In the first
edition, this was done in Chapter 2 along with applications to the number field sieve. In this
edition, the applications are put into a separate Chapter 4 including the number field sieve in
§4.5, introduced via §4.4 on factoring, including Pollard’s cubic factoring algorithm, which is
more comprehensive than that of the first edition. In turn, §4.1–§4.3 are applications leading
to the latter that involve solutions of Diophantine equations including Bachet, Fermat, and
prime power representation. This includes Kummer’s proof of Fermat’s Last Theorem (FLT)
for regular primes, Case I, which was put into Chapter 3 in the first edition. This edition
maintains the inclusion of Bernoulli numbers, the Riemann zeta function, and connections
via von Staudt–Clausen to the infinitude of irregular primes. Applications also appear at
the end of Chapter 5 with an overview of primality testing and, as an application of the
Kronecker–Weber Theorem, Lenstra’s primality test employing the Artin symbol. A special
case of this test is presented as the Lucas–Lehmer test for Mersenne primes.

Chapter 5 replaces Chapter 4 of the first edition in its discussion of ideal decomposition in
number fields but spreads out the number of sections to more evenly present the material.
One feature of the second edition that distinguishes it from the first is that there is much
less emphasis on using exercises with the framework of proofs in the main text. Exercises
are referenced in the proofs only when they represent material that is routine and more
appropriate for a student to do. Throughout the text, this is one of the major changes. In
particular, in the proof of the Kronecker–Weber Theorem, as well as in the proofs of the
reciprocity laws in Chapter 6, what were exercises in the first edition are now explained in
full in the main text. Moreover, exercises in this edition are designed to test and challenge
the reader, as well as illustrate concepts both within the main text as well as extend those
ideas. For instance, in the exercises for §2.1, Galois theory is expanded from the number
field case to finite fields and general fields of characteristic zero which is then invoked in
§5.4 to discuss residue class fields and connections with the Frobenius automorphism. Thus,
the reader is led at a measured pace through the material to a clear understanding of the
pinnacles of algebraic number theory. What is not included from the first edition is any
separate discussion of elliptic curves. This is done to make the text more self-contained
as a one-semester course for which the addition of the latter is better placed in a related
course such as given in [54]. Also, the numbering system has changed from the first edition
consecutive numbering of all objects to the standard method in this edition.

ix

       



x Algebraic Number Theory

◆ Features of This Text

• The book is ideal for the student since it is exercise-rich with over 310 problems. The
more challenging exercises are marked with the symbol ✰. Also, complete and detailed
solutions to all of the odd-numbered exercises are given in the back of the text. Throughout
the text, the reader is encouraged to solve exercises related to the topics at hand. Complete
and detailed solutions of the even-numbered exercises are included in a Solutions Manual,
which is available from the publisher for the qualified instructor.

• The text is accessible to anyone, from the senior undergraduate to the research scientist.
The main prerequisites are the basics of a first course in abstract algebra, the fundamentals
of an introductory course in elementary number theory, and some knowledge of basic matrix
theory. In any case, the appendices, as described below, contain a review of all of the
requisite background material. Essentially, the mature student, with a knowledge of algebra,
can work through the book without any serious impediment or need to consult another text.

• There are more than forty mini-biographies of those who helped develop algebraic number
theory from its inception. These are given, unlike the footnote approach of the first edition,
in boxed highlighted text throughout, to give a human face to the mathematics being
presented, and set so they do not interfere with the flow of the discourse. Thus, the reader
has immediate information at will, or may treat them as digressions, and access them later
without significantly interfering with the main mathematical text at hand. Our appreciation
of mathematics is deepened by a knowledge of the lives of these individuals. I have avoided
the current convention of gathering notes at the end of each chapter, since the immediacy
of information is more important.

• There are applications via factoring, primality testing, and solving Diophantine equations
as described above. In §4.5, we also discuss the applications to cryptography.

• The appendices are given, for the convenience of the reader, to make the text self-
contained. Appendix A is a meant as a convenient fingertip reference for abstract algebra
with an overview of all the concepts used in the main text. Appendix B is an overview
of sequences and series, including all that is required to develop the concepts. Appendix
C consists of the Greek alphabet with English transliteration. Students and research math-
ematicians alike have need of the latter in symbolic presentations of mathematical ideas.
Thus, it is valuable to have a table of the symbols, and their English equivalents readily
at hand. Appendix D has a table of numerous Latin phrases and their English equivalents,
again important since many Latin phrases are used in mathematics, and historically much
mathematics was written in Latin such as Bachet’s Latin translation of Diophantus’ Greek
book Arithmetica.

• The list of symbols is designed so that the reader may determine, at a glance, on which
page the first defining occurrence of a desired notation exists.

• The index has over two thousand entries, and has been devised in such a way to ensure
that there is maximum ease in getting information from the text. There is maximum cross-
referencing to ensure that the reader will find ease-of-use in extracting information to be
paramount.

• The bibliography has over seventy entries for the reader to explore concepts not covered in
the text or to expand knowledge of those covered. This includes a page reference for each
and every citing of a given item, so that no guesswork is involved as to where the reference
is used.
• The Web page cited in the penultimate line will contain a file for comments, and any
typos/errors that are found. Furthermore, comments via the e-mail address on the bottom
line are also welcome.
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Suggested Course Outlines
A glance at the Table of Contents will reveal that there is a wealth of material beyond
a basic course in algebraic number theory. This section is intended for the instructor, by
giving several routes from a course in the basics of algebraic number theory to a more
advanced course with numerous applications, as well as other aspects such as Kummer’s
proof of FLT for regular primes, and advanced reciprocity laws.

Chapters 1 through 3 are essential as a foundation, whereas Chapter 4 is optional, and the
instructor may skip it or add any section as an application of the material in the previous
chapters. §4.4–§4.5 go together as advanced material on factoring, with §4.4 preparatory
material using Pollard’s algorithm to set the stage for the description of the number field
sieve in §4.5.
In §5.1–§5.4, the groundwork is laid for ramification theory. However, in §5.5, the theory of
Kummer extensions and applications to Kummer’s proof of FLT for regular primes in the
second case may be eliminated from a basic course in algebraic number theory. §5.6 on the
proof of the Kronecker–Weber theorem, is a significant application of what has gone before,
but is again not necessary for a basic course. §5.7 is an applications section on primality
testing.

In a bare-bones course, one does not need to proceed into Chapter 6. However, the chap-
ter illustrates some of the pinnacles of algebraic number theory with proofs of the cubic,
biquadratic, and Eisenstein reciprocity laws, as well as development of the Stickelberger re-
lation. In a more advanced course, these topics should be included. The following diagram
is a schematic flow-chart to illustrate the possible routes for the course, from the most basic
course to one filled with applications.
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Course Outlines

Background Core Optional Advanced

✞✝ ☎✆Appendix A −−−−→
Sec. 1.1–1.7

�

Sec. 2.1–2.4

�

Sec. 3.1–3.5

�

✞✝ ☎✆Appendix B −−−−→ −−−−→ −−−−→ −−−−→
✄✂ �✁Sec. 4.1–4.3 −−−−→ Sec. 4.4–4.5

� ←� ←�

Sec. 5.1–5.4
−−−−→

✄✂ �✁Sec. 5.5–5.6 −−−−→ Sec. 5.7

�
� �

−−−−→ −−−−→
✄✂ �✁Sec. 6.1–6.4

       



Chapter 1

Integral Domains, Ideals, and
Unique Factorization

Take care of your body with steadfast fidelity. The soul must see through these eyes
alone, and if they are dim, the whole world is clouded.

Johann Wolfgang von Goethe (1749–1832), German poet, novelist, and
dramatist

In this chapter, we introduce integral domains, and develop the concepts of divisibility,
irreducibility, and primes which we apply to Dedekind domains. This preamble allows us to
develop Noetherian, principal ideal, and unique factorization domains later in the chapter
thereby setting the foundation for the introduction of algebraic number rings and number
fields. The reader should be familiar with some basic abstract algebra, such as groups, rings,
and fields and their properties, which are reviewed in Appendix A, starting on page 319,
for convenience and finger-tip reference.

1.1 Integral Domains

In order to define concepts in the sequel, we will need the following.

Definition 1.1 — Units

An element α in a commutative ring R with identity 1R is called a unit in R when there is
a β ∈ R such that αβ = 1R. The multiplicative group of units in R is denoted by UR—see
Exercise 1.7 on page 6.

Example 1.1 In Z[
√
2] = R, 1 +

√
2 is a unit, since

(1 +
√
2)(−1 +

√
2) = 1R = 1.

For the following, recall that a zero divisor in a commutative ring R is a nonzero element
α ∈ R such that αβ = 0 where β �= 0.

Definition 1.2 — Integral Domains

An integral domain is a commutative ring D with identity 1D, having no zero divisors. In
particular, if every nonzero element is a unit, then D is a field.

1

       



2 1. Integral Domains, Ideals, and Unique Factorization

Application 1.1 — The Cancellation Law

One of the most important properties of an integral domain D is that the cancellation law
holds, namely if α,β ∈ D with α nonzero and αβ = αγ, then β = γ.

Example 1.2 The ordinary or rational integers

Z = {. . . ,−2,−1, 0, 1, 2, . . .}

provide us with our first example of an integral domain.

Example 1.3 For any nonsquare integer n,

Z[
√
n] = {a+ b

√
D : a, b ∈ Z}

is an example of an integral domain. For example, if n = −1, we have the Gaussian
integers. Indeed, n = −1 yields

√
−1 = i which is an example of a special kind of unit, the

generalization of which we now define.

Definition 1.3 — Primitive Roots of Unity

For m ∈ N = {1, 2, 3, . . .} the natural numbers ζm denotes a primitive mth root of unity,
which is a root of xm − 1, but not a root of xd − 1 for any natural number d < m.

Example 1.4 With reference to Example 1.3, where n = −1,
√
−1 = i = ζ4 is a primitive

fourth root of unity, since it is a root of x4 − 1, but not root of xj − 1 for j = 1, 2, 3. Also,

ζ3 = (−1 +
√
−3)/2

is a primitive cube root of unity, since it is a root of x3 − 1, but clearly not a root of x2 − 1
or x− 1.

Example 1.5 Suppose that p is a prime and ζp is a primitive p-th root of unity. If we set

x =
p−1�

j=0

ζj
p

then

xζp =
p−1�

j=0

ζj+1
p

=
p−1�

j=0

ζj
p
= x. (1.1)

Thus, if x �= 0, dividing through (1.1) by x gives ζp = 1, a contradiction. Thus,

1 + ζp + ζ2
p
+ · · ·+ ζp−1

p
= 0.

This fact will prove useful when discussing notions surrounding roots of unity later in
the text—see Exercise 2.25 on page 69, for instance. Also, we generalize this example in
Exercise 6.28 on page 310.

       



1.1. Integral Domains 3

Example 1.3 is a motivator for the more general concept, which later turns out to be the
so-called “ring of integers of a quadratic field”—see Theorem 1.28 on page 45.

Application 1.2 — Quadratic Domains and Norms

If n is a nonsquare integer, then Z[
√
n] is an integral domain as given in Example 1.3, where

we note that Z[
√
n] is a subset of the field Q(

√
n). We call domains in Q(

√
n) quadratic

domains. There is a slightly larger subset of Q(
√
n) that is also an integral domain when

n ≡ 1(mod 4)—see Exercise 1.1 on page 6

Z
�
1 +

√
n

2

�
⊆ Q(

√
n).

Now we may combine Example 1.3 with this application to describe some special quadratic
domains as follows. Define

Z[ωn] = {a+ bωn : a, b ∈ Z},
where

ωn =

�
(1 +

√
n)/2 if n ≡ 1(mod 4),√

n if n �≡ 1(mod 4).

Then Z[ωn] is a quadratic domain.

Another concept we will see in greater generality later, but applied here to quadratic do-
mains, is the quadratic norm N : Q(

√
n) �→ Q via

N(a+ b
√
n) = (a+ b

√
n)(a− b

√
n) = a2 − nb2 ∈ Q.

In particular, by Exercise 1.3

α ∈ UZ[ωn] if and only if N(α) = ±1.

We will be using the concept of a norm throughout our discussion to establish properties
of, in this case, quadratic domains, or in general, rings of integers, that we have yet to
define—see Definition 1.30 on page 36.

The notion of divisibility of elements in an integral domain is a fundamental starting point
for understanding how algebraic number theory generalizes the notions of “divisibility,”
“primality,” and related concepts from the integers Z to other integral domains such as
Z[ωn].

Definition 1.4 — Divisors and Trivial Factorizations

If α,β ∈ D an integral domain, then α is said to be a divisor of β, if there exists an element
γ ∈ D such that β = αγ, denoted by α

�� β. If α does not divide β, then we denote this by
α � β. If β = αγ, where either α ∈ UD or γ ∈ UD, then this is called a trivial factorization
of β.

Example 1.6 Consider the notion of units given in Definition 1.1 on page 1 and the
illustration given in Example 1.1. Then we have that both (1 +

√
2)

�� 1 and (−1 +
√
2)

�� 1.
Indeed, this may be said to characterize units in D, namely

α is a unit in an integral domain D if and only if α
�� 1.

This may be used as an alternative to that of Definition 1.1. The following notion allows
for the introduction of a different approach.

       



4 1. Integral Domains, Ideals, and Unique Factorization

Definition 1.5 — Associates

If D is an integral domain and α,β ∈ D with α
�� β and β

�� α, then α and β are said to be
associates, and we denote this by α ∼ β. If α and β are not associates, we denote this by
α �∼ β.

Example 1.7 From Definition 1.5 and Example 1.6, we see that α is a unit in an integral
domain D if and only if α ∼ 1. Furthermore, if α ∼ β for any α,β ∈ D, then there is a unit
u ∈ D such that α = uβ. To see this, since α

�� β, then there is a γ ∈ D such that β = γα.
Conversely since β

�� α, there is a δ ∈ D such that α = δβ. Hence, α = δβ = δγα, so by the
cancellation law exhibited in Application 1.1 on page 2, 1 = δγ, so δ = γ−1 = u is a unit
and α = uβ.

Example 1.8 In Z[
√
10], 2 +

√
10 ∼ 16 + 5

√
10 since

16 + 5
√
10 = (2 +

√
10)(3 +

√
10),

so (2 +
√
10)

�� (16 + 5
√
10), and

2 +
√
10 = (16 + 5

√
10)(−3 +

√
10)

so (16 + 5
√
10)

�� (2 +
√
10).

Example 1.9 Since
6 = (4 +

√
10)(4−

√
10),

then (4±
√
10)

�� 6 in Z[
√
10].

Notice that 6 = 2 · 3 so it appears that 6 does not have a “uniqueness of factorization”
in Z[

√
10] in some sense that we now must make clear and rigorous. Now we develop the

notions to describe this phenomenon which is distinct from Z where 6 does have unique
factorization via the Fundamental Theorem of Arithmetic. In fact, in Z, a prime, is defined
to be an integer p such that the only divisors are ±1 and ±p. Thus, primes satisfy that

if p
�� ab, then either p

�� a or p
�� b (1.2)

—see [53, Lemma 1.2, p. 32]. Also, primes in Z satisfy that

if p = ab, then a = ±1 or b = ±1. (1.3)

The following generalizes property (1.3) to arbitrary integral domains. Then we will discuss
property (1.2) and show how (1.2)–(1.3) generalize to similar notions in general integral
domains.

Definition 1.6 — Irreducibles

If D is an integral domain and a nonzero, nonunit element β ∈ D satisfies the property that
whenever β = αγ, then either α ∈ UD or γ ∈ UD, then β is said to be irreducible. In other
words, the irreducible elements of D are the nonzero, nonunit elements having only trivial
factorizations. If a nonzero, nonunit element of D is not irreducible, it is called a reducible
element.

       



1.1. Integral Domains 5

Example 1.10 Any prime p ∈ Z is irreducible, since its only factorizations are p =
(±1)(±p). Conversely, if n ∈ Z is irreducible, then the only factorizations are trivial so n
is prime in Z. In other words, in Z, p is prime if and only if it is irreducible. This fails to
be the case in arbitrary integral domains and this provides the fodder for algebraic number
theory.

Example 1.11 Consider

D = Z[
√
10] and β = 4 +

√
10.

If β is not irreducible, then β = αγ, where neither α nor γ is a unit in Z[
√
10]. Since

N(β) = N(α)N(γ)

by Exercise 1.2 on the next page, then without loss of generality

N(α) = N(a+ b
√
10) = 3,

where α = a+ b
√
10. Thus, a2 − 10b2 = 3 so the Legendre symbol equality holds:

−1 =

�
3

5

�
=

�
a2 − 10b2

5

�
=

�
a2

5

�
=

�a
5

�2
= 1,

a contradiction, so 4 +
√
10 is irreducible. Similarly, its conjugate 4−

√
10 is irreducible.

Via Example 1.9, we have 4±
√
10 divides 6 but by Exercise 1.4, 4±

√
10 divides neither 2

nor 3. This motivates the next concept, generalizing (1.2).

Definition 1.7 — Primes

If β is a nonzero, nonunit in an integral domain D, then β is called a prime if whenever
β
�� αγ, then either β

�� α or β
�� γ.

Example 1.12 From Example 1.11 we see that 4 ±
√
10 are not primes in Z[

√
10]. Now

we show that 2, 3 are not primes in Z[
√
10] (although they are primes in Z). From Example

1.9, 2 and 3 both divide (4 +
√
10)(4 −

√
10). However, by Exercise 1.4 on the following

page, neither of them divides 4 ±
√
10, so neither is prime. Yet by Exercise 1.4 both are

irreducible. This illustrates the departure, in general integral domains, from the case in Z,
where all irreducibles are prime as shown in Example 1.10. Yet, the following shows us that
primes are always irreducible.

Theorem 1.1 — Primes Are Irreducible

If D is an integral domain and β ∈ D is prime, then β is irreducible.

Proof. Let β ∈ D be prime and suppose that β = αγ. Then a fortiori, β
�� αγ so β

�� α
or β

�� γ. Without loss of generality, assume that β
�� α. Then there is a δ ∈ D such that

α = βδ. It follows that β = αγ = βδγ, so by Application 1.1 on page 2, 1 = δγ, which
makes γ a unit in D. Hence, β is irreducible. ✷

Remark 1.1 We have seen that the converse of Theorem 1.1 does not hold. Now our
task is to determine those integral domains for which it does hold. This will involve making
precise the notion of “unique factorization” of elements in general integral domains. We
begin this delineation in §1.2.

       



6 1. Integral Domains, Ideals, and Unique Factorization

Exercises

1.1. Let n be a nonsquare integer. Prove that if n ≡ 1(mod 4), then the subring

Z[ωn] ⊆ Q(
√
n)

given in Application 1.2 on page 3, is an integral domain. Conclude that Z[
√
n], for

any nonsquare n, is an integral domain by similar reasoning.

1.2. Prove that norms in quadratic domains are multiplicative, i.e. N(αγ) = N(α)N(γ).

1.3. Prove that an element α in Z[ωn] is a unit if and only if N(α) = ±1.

1.4. Prove that in a quadratic domain D, if α
�� β in Z[ωD], then N(α)

�� N(β) in Z.
Conclude that 4 ±

√
10 are not associates of either 2 or 3 in Z[

√
10]. Also, conclude

that 2 and 3 are irreducible in Z[
√
10].

1.5. Let D = Z[ωn] be a quadratic domain and let α ∈ D satisfy the property that
|N(α)| = p, a prime in Z. Prove that α is irreducible in D. Provide either a proof or
a counterexample to the converse: If α ∈ D is an irreducible element, then |N(α)| is
a prime in Z.

1.6. Prove that 2 is irreducible but not prime in Z[
√
−5].

1.7. Prove that the units of an integral domain form a multiplicative abelian group.

1.8. Prove that the relation ∼ given in Definition 1.5 on page 4, is an equivalence relation,
namely that it is reflexive: a ∼ a, symmetric: a ∼ b implies b ∼ a, and transitive: if
a ∼ b and b ∼ c, then a ∼ c for all a, b, c ∈ D.

1.9. Prove that in an integral domain D an element α is irreducible if and only if every
divisor of α is either an associate of α or a unit.

1.10. If D is a quadratic domain show that if α,β ∈ D with α ∼ β, then |N(α)| = |N(β)|.

1.11. Is the converse of Exercise 1.10 true? If so prove it, and if not, provide a counterex-
ample.

1.12. Find an α ∈ Z[
√
15] such that α = α1α2 = β1β2 where αj , βj are irreducible for

j = 1, 2 but neither of α1, α2 is an associate of βj for j = 1, 2.

1.13. Apply the question in Exercise 1.12 to Z[
√
30].

1.14. Show that 1 + i = 1 +
√
−1 is prime in the Gaussian integers Z[i].

1.15. Find all units in the Gaussian integers Z[i].

1.16. Prove that ±(1 +
√
2)n ∈ UZ[

√
2] for all n ∈ Z. Prove that there are no other units in

Z[
√
2]. In other words, show that

UZ[
√
2] = {±(1 +

√
2)n : n ∈ Z}.

1.17. If D is an integral domain and α,β ∈ D, not both zero, then γ ∈ D is called a greatest
common divisor (gcd) of α and β if the following two conditions are satisfied.

(a) γ
�� α, and γ

�� β.
(b) If σ

�� α, and σ
�� β for some σ ∈ D, then σ

�� γ.

Prove that any two gcds must be associates. Also, provide an example of a ring in
which elements exist that have no greatest common divisor.

       



1.2. Factorization Domains 7

1.2 Factorization Domains

Not everything that can be counted counts, and not everything that counts can be
counted. (Attributed)

Albert Einstein (1879–1955), German-born theoretical physicist

In this section we explore and solidify the notions of unique factorization in certain integral
domains and the intimate connection with the core features of algebraic number theory
which this engenders.

Definition 1.8 — Factorization Domains

If D is an integral domain in which every nonzero, nonunit can be represented as a finite
product of irreducible elements ofD, thenD is called a factorization domain. A factorization
domain in which any nonzero, nonunit can be expressed as a product of irreducibles that
is unique up to units and the order of the factors is called a unique factorization domain
(UFD).

Remark 1.2 Definition 1.8 says that D is a unique factorization domain when the follow-
ing occurs. Suppose that α ∈ D is arbitrarily chosen with

α = uγa1
1 γa2

2 · · · γan

n

where u ∈ D is a unit, n, aj ∈ N and γj is irreducible for j = 1, 2, . . . , n. Then D is a unique
factorization domain if any other representation:

α = vκb1
1 κb2

2 · · ·κbm
m

where v ∈ D is a unit, m, bj ∈ N, and κj is irreducible for j = 1, 2, . . . ,m, implies thatm = n
and after possibly rearranging the γj , we have γj = κj , and aj = bj for j = 1, 2, . . . , n.

Now we look at a criterion for a factorization domain to be a unique factorization domain in
terms of the concepts we studied in §1.1. This will be the defining feature of such domains
in terms of these concepts.

Theorem 1.2 — Unique Factorization—Irreducibles Are Prime

If D is a factorization domain, then D is a unique factorization domain if and only if every
irreducible element of D is prime.

Proof. Assume that all such factorizations are unique. If α ∈ D is irreducible, we must
show that α is prime. If α

�� γβ, there exists a σ ∈ D such that γβ = ασ. Each of β, γ,σ
has unique factorization, so write

β = u
r�

j=1

βj , γ = v
s�

j=1

γj , σ = w
t�

j=1

σj ,

where u, v, w ∈ UD, and each βj , γj , σj is irreducible. Thus,

αw
t�

j=1

σj = ασ = γβ = vu
s�

j=1

γj

r�

j=1

βj .

       



8 1. Integral Domains, Ideals, and Unique Factorization

Since α is irreducible, then by unique factorization, α is an associate of one of the βj or γj .
In other words, α

�� β, or α
�� γ, so α is prime.

Conversely, assume that every irreducible in D is prime. Suppose that

uα1 · · ·αr = vβ1 · · ·βs for r ≥ s ≥ 1, and u, v ∈ UOF
, (1.4)

with αj , βj irreducible. We must show that r = s, and that each αj is an associate of some
βk. We use induction on r. If r = 1, then s = 1, so we are done. Assume that unique
factorization holds for all factorizations of length at most r − 1 ≥ 1. Since βs

�� uα1 · · ·αr,
then βs

�� αi for some i ∈ {1, 2, . . . , r}, since βs is not a unit. Thus, βs is an associate of αi.
Renumber the αj so that αi = αr. Thus, by Application 1.1 on page 2, we may cancel the
αr = βsw (where w is a unit) from each side of Equation (1.4) to get

uα1 · · ·αr−1 = w−1vβ1 · · ·βs−1.

By the induction hypothesis, r − 1 = s− 1, and the αj are associates of the βj . The result
now follows by induction. ✷

Remark 1.3 Theorem 1.2 provides the key to understanding unique factorization in in-
tegral domains, namely the failure of unique factorization is the failure of (some) set of
irreducibles to be prime.

In Exercise 1.17 on page 6 we defined greatest common divisors in integral domains, but
there, only sought to find domains without gcds. Now we will look at an example of an inte-
gral domain where such divisors always exist. This provides a motivator for a more general
class of domains where there is a “norm” similar to that we found in quadratic domains
introduced in Application 1.2 on page 3. These domains are important in our understanding
of the basics. First we need to establish a division algorithm. 1.1We specialize to Gaussian
integers as a motivator for what follows. Recall from the definition in Application 1.2 on
page 3 that the norm N is defined for any quadratic domain.

Theorem 1.3 — Division Algorithm for Gaussian Integers

Let α,β ∈ Z[i] with β �= 0. Then there exists σ,δ ∈ Z[i] such that

α = βσ + δ,

where 0 ≤ N(δ) < N(β).

Proof. Let α/β = c+ di ∈ C. Set

f = �c+ 1/2� = Ne(c), and g = �d+ 1/2� = Ne(d),

where Ne(x) is the nearest integer function. Here �y� is the floor function or greatest integer
function—see [53, §2.5]. Hence, there are k,� ∈ R such that

|k| ≤ 1/2, and |�| ≤ 1/2 (1.5)

1.1The term algorithm is derived from the Persian mathematician Mohammed ibn Musa al-Khowarizmi
Mohammed, son of Moses of Kharezm, now Khiva (circa 790–850 A.D.). His book Algorithmi de Numero
Indorum, the Latin translation of the no longer extant original Arabic text, was highly influential in bringing
the Hindu-Arabic number system to Europe. Shortly after the appearance of these Latin translations,
readers began contracting his name to algorism, and ultimately algorithm, which we use today to mean any
methodology following a set of rules to achieve a goal.

       



1.2. Factorization Domains 9

with
c+ di = (f + k) + (g + �)i. (1.6)

Set
σ = f + gi and δ = α− βσ. (1.7)

Then it remains to show
0 ≤ N(δ) < N(β).

We know that N(δ) ≥ 0, since the norm is just a sum of two squares. Now we show that
N(δ) < N(β).

By Exercise 1.2 on page 6 (the multiplicativity of the norm), we have

N(δ) = N(α− βσ) = N((α/β − σ)β)

= N(α/β − σ)N(β) = N(c+ di− σ)N(β).

However, from (1.6)–(1.7), we get

c+ di− σ = c+ di− (f + gi) = (c− f) + (d− g)i = k + �i.

Therefore, by (1.5),
N(δ) = N(k + �i)N(β) =

(k2 + �2)N(β) ≤ ((1/2)2 + (1/2)2)N(β) ≤ N(β)/2 < N(β),

as required. ✷

Remark 1.4 The σ in Theorem 1.3 is called a quotient and the δ is called a remainder
of the division. This follows the notions for the division algorithm in Z.

Remark 1.5 Although Theorem 1.3 gives us a criterion for the existence of an algorithm
for division in Z[i], there is no uniqueness attached to it. In other words, we may have
many such representations as the following illustration demonstrates.

Example 1.13 Let α = 10 + i and β = 2 + 5i, then we may find σ,δ ∈ Z[i] using the
techniques established in the proof of Theorem 1.3. We have

c+ di =
α

β
=

10 + i

2 + 5i
=

(10 + i)(2− 5i)

(2 + 5i)(2− 5i)
=

25

29
− 48

29
i,

so

f =

�
c+

1

2

�
=

�
25

29
+

1

2

�
= 1 and g =

�
d+

1

2

�
=

�
−48

29
+

1

2

�
= −2.

Therefore, σ = 1− 2i and δ = α−βσ = 10+ i− (2+5i)(1− 2i) = −2. Moreover, we verify

N(δ) = N(−2) = 4 < N(β) = N(2 + 5i) = 29

with
α = 10 + i = (2 + 5i)(1− 2i)− 2 = βσ + δ. (1.8)

However, these choices are not unique since we need not follow the techniques of Theorem
1.3. For instance, if we choose σ = 1− i and δ = 3− 2i, then

α = 10 + i = (2 + 5i)(1− i) + 3− 2i = βσ + δ, (1.9)

where N(δ) = 13 < 29 = N(2 + 5i) = N(β). Thus, by (1.8)–(1.9), we see that, when
employing the division algorithm for Gaussian integers, the quotient and remainder are not
unique.

       



10 1. Integral Domains, Ideals, and Unique Factorization

Now we look at an integral domain where the existence of gcds is guaranteed, namely the
Gaussian integers.

Theorem 1.4 — Gaussian GCDs Always Exist

If α,β ∈ Z[i] = D, where at least one of α or β is not zero, then there exists a gcd γ ∈ Z[i]
of α and β.

Proof. Given fixed α,β ∈ Z[i], not both zero, set

S = {N(σα+ ρβ) > 0 : σ,ρ ∈ Z[i]},

with S �= ∅ since

N(α) = N(1 · α+ 0 · β), and N(β) = N(0 · α+ 1 · β) (1.10)

at least one of which is not zero and nonnegative, then at least one of them is in S. Thus, we
may employ the well-ordering principle—see page 340—to get the existence of an element
γ0 = σ0α+ ρ0β, for which its norm is the least value in S, namely

N(γ0) ≤ N(σα+ ρβ) for all σ,ρ ∈ Z[i].

Claim 1.1 γ0 is a greatest common divisor of α and β.

Let τ ∈ Z[i] with τ
�� α and τ

�� β. Then there exists δ1, δ2 ∈ Z[i] such that α = τδ1 and
β = τδ2. Hence,

γ0 = σ0α+ ρ0β = σ0τδ1 + ρ0τδ2 = τ(σ0δ1 + ρ0δ2), (1.11)

so τ
�� γ0. It remains to show that γ0 divides both α and β.

Let
κ = λ1α+ λ2β (1.12)

be such that N(κ) ∈ S. Thus, by Theorem 1.3 on page 8, there exist µ,ν ∈ Z[i] such that

κ = γ0µ+ ν, (1.13)

with
0 ≤ N(ν) < N(γ0). (1.14)

Also, by (1.12)–(1.13),

ν = κ− γ0µ = λ1α+ λ2β − (σ0α+ ρ0β)µ = (λ1 − σ0µ)α+ (λ2 − ρ0µ)β,

so if ν �= 0, then N(ν) ∈ S. However, by (1.14), this contradicts the minimality of N(γ0) in
S, so ν = 0. We have shown that γ0 divides every element whose norm is in S. In particular,
by (1.10)–(1.11), it divides α and β, which secures claim 1.1. Hence, we have the result. ✷

Now we may look at the promised extension of the idea of a norm from Gaussian integers
to a distinguished class of integral domains, which have more general functions describing
them.

Definition 1.9 — Euclidean Domains and Functions

If D is an integral domain, then a mapping φ : D �→ Z is called a Euclidean function if it
satisfies the two conditions:

       



1.2. Factorization Domains 11

(a) If α ∈ D, φ(αβ) ≥ φ(α) for all nonzero β ∈ D.

(b) If α,β ∈ D with β �= 0, there exist γ,δ ∈ D such that α = γβ + δ and φ(δ) < φ(β).

When D possesses a Euclidean function then D is called a Euclidean domain.

Example 1.14 In Z, φ(z) = |z|, the usual absolute value, is a Euclidean function. Hence,
Z is a Euclidean domain.

Remark 1.6 In Definition 1.9 part (b), we cannot guarantee the uniqueness of the ele-
ments γ,δ . However, there are some distinguished domains for which they are unique.

Example 1.15 If F is a field and D = F [x] is the polynomial ring in the indeterminate x,
then

φ(f(x)) = deg(f(x)),

the degree of f(x) ∈ D is a Euclidean function on D. Note that if f(x) = 0, the zero
polynomial, then

deg(f(x)) = −1

by convention. In this case, the values in part (b) of Definition 1.9 are unique—see [61].

We now examine integral domains having Euclidean functions for which the converse of
Theorem 1.1 on page 5 holds, since this is a door leading into domains with unique factor-
izations via Theorem 1.3 on page 8. First we need the following notion.

Definition 1.10 — Field of Quotients

If D is an integral domain, then the field F consisting of all elements of the form αβ−1 for
α,β ∈ D with β �= 0 is called the field of quotients or simply the quotient field of D.

Remark 1.7 There is, in actuality, an isomorphic copy of D in F , but in practice it is
standard to assume that D is identified with this copy. In the case of a quadratic domain it
is clear from Application 1.2 on page 3 that the quotient field of Z[ωn] is F = Q(

√
n)—see

Theorem 1.28 on page 45.

Example 1.16 If F is any field, then the quotient field of the polynomial domain F [x] is
the field F (x) of rational functions in x. Moreover, the quotient field of Z is Q.

Definition 1.11 — Norm-Euclidean Quadratic Domains

A quadratic domain D with quotient field F is said to be norm-Euclidean if

for any ρ ∈ F there exists a σ ∈ D such that |N(ρ− σ)| < 1. (1.15)

Now we demonstrate that the condition in Definition 1.11 is tantamount to the norm being
a Euclidean function.

Theorem 1.5 Let D be a quadratic domain. Then D is a Euclidean domain with respect
to the norm function if and only if condition (1.15) holds.
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Proof. Suppose that (1.15) holds. If α,β ∈ D with β �= 0, then by Exercise 1.2 on page 6

|N(αβ)| = |N(α)||N(β)| ≥ |N(α)|

which is part (a) of Definition 1.9. It remains to show part (b) holds. If α,β ∈ D, then by
(1.15) there exists a σ ∈ D such that

|N(α/β − σ)| < 1. (1.16)

Hence, if we let
δ = α− σβ,

then

|N(δ)| = |N(α− σβ)| = |N((α/β)β − σβ)| = |N(α/β − σ)| · |N(β)| < |N(β)|

by (1.16) which establishes (b).

Conversely, if N is a Euclidean function on D, then for any ρ = α/β ∈ Q(
√
n), with

α,β ∈ D, we have by part (b) of Definition 1.9 that there exist γ,δ ∈ D such that

α = γβ + δ with N(δ) < N(β).

Therefore

N

�
α

β
− γ

�
= N

�
α− γβ

β

�
= N

�
δ

β

�
< 1.

This establishes (1.16) and so the entire result. ✷

The following turns out to be one of two possible domains Z[
√
n] which is norm-Euclidean

for n a negative squarefree integer and we look at the positive case as well. (Note that the
other n < 0 for which we get Euclidean domains are those of the form Z[(1 +

√
n)/2]—see

Theorem 1.28.)

Example 1.17 We show that

φ(a+ bi) = a2 + b2 = N(a+ bi)

is a Euclidean function on the Gaussian integers a+ bi ∈ Z[i] = D using Theorem 1.5.

To see that D is norm-Euclidean, select ρ = q + ri ∈ Q(i). We must find σ = a + bi ∈ D
with

|(q − a)2 + (r − b)2| < 1.

This is accomplished by choosing:

a = Ne(q) and b = Ne(r) where Ne(x) = �x+ 1/2� for any x ∈ R.

It can be shown that the only other squarefree n < 0 for which Z[
√
n] is norm-Euclidean

is for n = −2. Indeed the a, b chosen above for n = −1 will work for n = −2 as well. If
we allow for ωn as defined in Application 1.2 on page 3, then Z[(1 +

√
n)/2] for squarefree

n < 0 is norm Euclidean if and only if

n ∈{− 3,−7,−11}

—see [54, Theorem 1.15, p. 34].

The case for positive D is also settled due to the efforts of several mathematicians culmi-
nating in the complete solution in the middle of the last century. The positive squarefree
integers n for which Z[ωn] is norm-Euclidean are given as follows—see [54, Remark 1.19,
Theorem 1.21, p. 50]:

n ∈ {2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73}.
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Remark 1.8 It can be shown that Theorem 1.4 on page 10 generalizes to any Euclidean
domain. In other words, there always exist gcds for elements in Euclidean domains. This
comes from the verifiable fact that in a Euclidean domain D with respect to a Euclidean
function φ, we may select any α = α0, β = β0 ∈ D with α0β0 �= 0 and β0 � |α0 and recursively
define αj = βjδ + γj with φ(γj) < φ(βj), where αj = βj−1 and βj = γj−1. The smallest
n ∈ N such that γn = 0 yields γn−1 as the gcd of α and β—see [54, Theorem 1.14, p. 33].

Example 1.17 is an example of a more general phenomenon, namely that the converse of
Theorem 1.1 on page 5 always holds for Euclidean domains.

Theorem 1.6 — Euclidean Domains Are UFDs

If D is a Euclidean domain then α ∈ D is irreducible if and only if α is prime.

Proof. First, we establish that D is a factorization domain. By part (a) of Exercise 1.18,

φ(α) = φ(1D) if and only if α ∈ UD.

In this case α is vacuously a product of irreducible elements. Hence, we may use induction
on φ(α). By Exercise 1.21, φ(1D) ≤ φ(α). Assume that α �∈ UD, and that any β ∈ D with
φ(β) < φ(α) has a factorization into irreducible elements. If α is irreducible, we are done.
Assume otherwise. Then α = βγ for β,γ ∈ D and β,γ �∈ UD. Thus, by property (a) of
Euclidean domains given in Definition 1.9, φ(β) ≤ φ(α), and φ(γ) ≤ φ(α). By part (b) of
Exercise 1.18,

φ(γ) �= φ(α), and φ(β) �= φ(α).

Hence, φ(β) < φ(α) and φ(γ) < φ(α) so, by the induction hypothesis, both β and γ have
factorizations into irreducibles. Thus, so does α. We have shown that D is a factorization
domain.

In view of Theorems 1.1 on page 5 and 1.2 on page 7, we need only show that irreducibles
are primes. Suppose that α|βγ for some β,γ ∈ D. If α � β, then given the irreducibility of
α, the only common divisors of α and β in D are units. In particular, 1D is a gcd of α and
β. By Exercise 1.19, there exist σ,δ ∈ D such that 1D = σα+ δβ. Therefore,

γ = σαγ + δβγ.

Since α|βγ, then α|γ, so α is prime. ✷

Thus, via Example 1.17 we have the solution for squarefree D.

Corollary 1.1 If n ∈ Z is squarefree, then Z[ωn] is a norm-Euclidean domain if and only
if

n ∈{− 1,−2,−3,−7,−11, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73}.

The following is immediate from Theorem 1.6 and is implicit in the header thereof. However,
the converse of the following result fails to hold—see Exercise 1.25.

Corollary 1.2 If D is a Euclidean domain, then D is a UFD.

Exercises

1.18. Establish the following facts concerning Euclidean functions φ on an integral domain
D, introduced in Definition 1.9 on page 10.
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(a) If α ∼ β then φ(α) = φ(β).

(b) If α
�� β and φ(α) = φ(β) then α ∼ β.

(c) α ∈ UD if and only if φ(α) = φ(1D).

(d) φ(α) > φ(0) for all nonzero α ∈ D.

1.19. With reference to Exercise 1.17 on page 6, prove that any common divisor γ of α and
β, where α,β are elements of a Euclidean Domain D, may be written in the form

γ = σα+ δβ

for some σ,δ ∈ D.

1.20. Prove that condition (a) in Definition 1.9 on page 10 is equivalent to the condition

(c) If α
�� β for α,β ∈ D, with β �= 0, then φ(α) ≤ φ(β).

1.21. Prove that a Euclidean domain D with Euclidean function φ satisfies φ(1D) ≤ φ(α)
for all nonzero α ∈ D.

1.22. If α ∈ D, a UFD, and |N(α)| is prime, show that α is prime in D.

1.23. Either provide a counterexample to, or prove the converse of the statement in Exercise
1.22.

1.24. Prove that the condition in Definition 1.11 on page 11 is tantamount to the condition:

Given α,β ∈ D with β �= 0, there exist σ,δ ∈ D with α = βσ+δ and |N(δ)| < |N(β)|.

1.25. An integral domain D is said to be an almost Euclidean domain provided that: there
exists a function φ : D �→ N ∪ {0} called an almost Euclidean function, such that

(a) φ(0) = 0 and φ(α) > 0 for α �= 0 in D.

(b) If β is a nonzero element of D then φ(αβ) ≥ φ(α) for all α ∈ D.

(c) For any α,β ∈ D with β �= 0, one of the following holds.

(i) There exists a γ ∈ D such that α = βγ.

(ii) There exist x, y ∈ D such that 0 < φ(αx+ βy) < φ(β).

Prove that an almost Euclidean domain is a UFD.

(This topic was introduced by Campoli [9]. With reference to our discussion
herein, he produced integral domains, such as his example

Z[(−1−
√
−19)/2]

that are UFDs which are not Euclidean domains. Campoli called his example
“almost Euclidean.” This resulted in the production of counterexamples to the
converse of Corollary 1.2 on the previous page. Later Greene [25] showed that
the conditions given above for an almost Euclidean domain are equivalent to being
a “Principal Ideal Domain” (PID) which we will study in §1.5 and revisit this
topic—see Exercises 1.47–1.48 on page 34. It turns out that Euclidean domains
are PIDs which in turn are UFDs. However, neither converse holds. Examples
of UFDs that are not PIDs are the hardest to produce and hence the above delin-
eation. More recently, such as in [31], almost Euclidean spaces have been used
for applications in complexity theory and error-correcting codes.
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1.3 Ideals

Intelligence without ambition is a bird without wings.
Salvador Dali (1904–1989), Spanish painter

In this section we set the stage for the introduction of two types of domains based upon the
theory of ideals which will elevate the factorization debate from elements to ideals. This
allows us to witness the influence of Dedekind and others on the development of algebraic
number theory. Some of the following is adapted from [54].

Definition 1.12 — Ideals

An R-ideal is a nonempty subset I of a commutative ring R with identity having the
following properties.

(a) If α,β ∈ I, then α+ β ∈ I.

(b) If α ∈ I and r ∈ R, then rα ∈ I.

Remark 1.9 It is inductively clear that Definition 1.12 implies that if α1, α2, . . . , αn ∈ I
for any n ∈ N, then r1α1 + r2α2 + · · · + rnαn ∈ I for any r1, r2, . . . , rn ∈ R. Moreover, if
1 ∈ I, then I = R. Also, if we are given a set of elements {α1, α2, . . . , αn} in an integral
domain R, then the set of all linear combinations of the αj for j = 1, 2, . . . , n






n�

j=1

rjαj : rj ∈ R for j = 1, 2, . . . , n






is an ideal of R denoted by (α1, α2, . . . , αn). In particular, when n = 1, we have the
following.

Definition 1.13 — Principal and Proper Ideals

If D is an integral domain and I is a D-ideal, then I is called a principal D-ideal if there
exists an element α ∈ I such that I = (α), where α is called a generator of I. If I �= D,
then I is called a proper ideal.

Example 1.18 Let n ∈ Z and set nZ = {nk : k ∈ Z}, which is an ideal in Z and
nZ = (n) = (−n) is indeed a principal ideal. Moreover, it is a proper ideal for all n �= ±1.

Example 1.19 In D = Z[i], (2) and (3) are proper principal ideals. Moreover, the latter is
an example of a special type of ideal that we now define—see Example 1.20 on the following
page.

Definition 1.14 — Prime Ideals

If D is an integral domain, then a proper D-ideal P is called a prime D-ideal if it satisfies
the property that whenever αβ ∈ P, for α,β ∈ D, then either α ∈ P or β ∈ P.

In order to discuss any more features of ideal theory, we need to understand how multipli-
cation of ideals comes into play.

       



16 1. Integral Domains, Ideals, and Unique Factorization

Definition 1.15 — Products of ideals

If D is an integral domain and I, J are D-ideals, then the product of I and J , denoted by
IJ , is the ideal in D given by

IJ = {r ∈ D : r =
n�

j=1

αjβj where n ∈ N, and αj ∈ I,βj ∈ J for 1 ≤ j ≤ n}.

Theorem 1.7 — Criterion for Prime Ideals

If D is an integral domain and I is a proper D-ideal, then I is a prime D-ideal if and only
if the following property is satisfied:

for any two D-ideals J,K, with JK ⊆ I, either J ⊆ I or K ⊆ I. (1.17)

Proof. Suppose that (1.17) holds. Then if α,β ∈ D such that αβ ∈ I, then certainly
(αβ) = (α)(β) ⊆ I, taking J = (α) and K = (β) in (1.17), which therefore implies that
(α) ⊆ I or (β) ⊆ I. Hence, α ∈ I or β ∈ I. We have shown that (1.17) implies I is prime.

Conversely, suppose that I is a prime D-ideal. If (1.17) fails to hold, then there exist D-
ideals J,K such that JK ⊆ I but K �⊆ I and J �⊆ I. Let α ∈ J with α �∈ I and β ∈ K with
β �∈ I, then αβ ∈ I with neither of them being in I, which contradicts Definition 1.14 on
the previous page. Hence, (1.17) holds and the result is secured. ✷

Now we prove a result that links the notion of prime element and prime ideal in the principal
ideal case.

Theorem 1.8 — Principal Prime Ideals and Prime Elements

If D is an integral domain and α ∈ D is a nonzero, nonunit element, then (α) is a prime
D-ideal if and only if α is a prime in D.

Proof. Suppose first that (α) is a prime D-ideal. Then for any β,γ ∈ D such that α
�� βγ,

βγ ∈ (βγ) ⊆ (α). Since (α) is a prime D-ideal, then β ∈ (α) or γ ∈ (α) by Definition 1.14.
In other words, α

�� β or α
�� γ, namely α is a prime in D.

Conversely, suppose that α is prime in D. If β,γ ∈ D such that βγ ∈ (α), then there exists
an r ∈ D with βγ = αr. Since α is prime, then α

�� β or α
�� γ. If α

�� β, there is an s ∈ D
such that β = αs, so β ∈ (α). If α

�� γ, there is a t ∈ D such that γ = αt, so γ ∈ (α). We
have shown that (α) is a prime D-ideal by Definition 1.14, which completes the proof. ✷

Example 1.20 In Example 1.19 on the preceding page, (2) and (3) were considered as
principal ideals in the Gaussian integers. By Exercises 1.26–1.27 on page 19, 3 is a prime in
Z[i], but 2 is not. Therefore, by Theorem 1.8, (3) is a prime ideal in the Gaussian integers
but (2) is not.

Now that we may look at products of ideals, we may we look at the notion of division in
ideals in order to link this with elements and primes.

Definition 1.16 — Division of Ideals

If D is an integral domain, then a nonzero D-ideal I is said to divide a D-ideal J if there
is another D-ideal H such that J = HI.

The following shows that division of ideals implies containment.
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Lemma 1.1 — To Divide is to Contain

If D is an integral domain and I, J are D-ideals, with I
�� J , then J ⊆ I.

Proof. Since I
�� J , then by Definition 1.16, there is aD-idealH such that J = IH. However,

by Definition 1.12 on page 15, J = IH ⊆ IR ⊆ I, as required. ✷

Corollary 1.3 Suppose that D is an integral domain and I is a D-ideal satisfying the
property:

whenever I
�� JK for D-ideals J,K, we have I

�� J or I
�� K. (1.18)

Then I is a prime D-ideal.

Proof. Suppose that I
�� JK, then by Lemma 1.1, JK ⊆ I, and (1.18) implies that either

J ⊆ I or K ⊆ I. Thus, by Theorem 1.7, I is a prime D-ideal. ✷

The question now arises as to the validity of the converse of Lemma 1.1 in certain domains.
In order to discuss this topic, we must prepare the stage with some essential topics. First
of all there are types of ideals which are core to the theory.

Definition 1.17 — Maximal Ideals

In an integral domain D, an ideal M is called maximal if it satisfies the property that
whenever M ⊆ I ⊆ D, for any D-ideal I, then either I = D or I = M .

The next concept is necessary to prove our first result about maximal ideals. First note
that if I, J are R-ideals, then I + J is necessarily an R-ideal since for any r ∈ R, α ∈ I,
β ∈ J , r(α+ β) ∈ I + J by Definition 1.12 on page 15. We formalize this in the following.

Definition 1.18 — Sums of Ideals Are Ideals

If I, J are ideals in D, a commutative ring with identity, then I+J = {α+β : α ∈ I,β ∈ I},
is an ideal in D.

We use the above to prove our first result that we need to link maximality with primality.

Theorem 1.9 — Quotients of Prime Ideals Are Integral Domains

If D is an integral domain, then a D-ideal P is prime if and only if D/P is an integral
domain.

Proof. Suppose that P is a prime D-ideal. Then D/P is a commutative ring with multi-
plicative identity 1R + P and additive identity 0R + P. We must verify that D/P has no
zero divisors. If α,β ∈ D with (α+ P)(β + P) = 0R + P = P, then αβ + P = P, so αβ ∈ P.
Since P is prime, then either α ∈ P or β ∈ P. In other words, either α + P = 0R + P or
β + P = 0R + P. We have shown that D/P has no zero divisors.

Conversely, if D/P is an integral domain, then αβ ∈ P implies that

(α+ P)(β + P) = αβ + P = 0R + P.

Thus, having no zero divisors in D/P, either α+ P = 0R + P or β + P = 0R + P. In other
words, either α ∈ P or β ∈ P, so P is a prime D-ideal. ✷

Now we link prime ideals with maximal ones.

       



18 1. Integral Domains, Ideals, and Unique Factorization

Theorem 1.10 — Maximal ideals Are Prime

If D is an integral domain, then every nonzero maximal D-ideal is prime.

Proof. Suppose M �= (0) is a maximal D-ideal, and M
�� IJ for some D-ideals I, J , with M

dividing neither factor. By Lemma 1.1 on the preceding page, there exist α ∈ I and β ∈ J
such that

M
�� IJ

�� (α)(β)
with M dividing neither (α) nor (β), namely α �∈ M and β �∈ M . Therefore, by Defini-
tion 1.18 on the previous page, M + (α) and M + (β) are D-ideals, both of which properly
contain M , so M �= D. Hence, by the maximality of M , we have,

M + (α) = D = M + (β).

Therefore,

M ⊂ D = D2 = (M + (α))(M + (β)) ⊆ M2 + (α)M + (β)M + (α)(β)M ⊆ M,

a contradiction. We have shown that either M
�� (α) or M

�� (β). Therefore, by Corollary 1.3
on the preceding page, M is prime. ✷

The next result tells us when an ideal is maximal with respect to quotients in integral
domains.

Theorem 1.11 — Fields and Maximal ideals

If D is an integral domain, then M is a maximal D-ideal if and only if D/M is a field.

Proof. First we need the following fact.

Claim 1.2 D is a field if and only if the only ideals in D are (0) and D.

If D is a field and I �= (0) is a D-ideal, then there exists a nonzero element α ∈ I. However,
since D is a field, then there exists an inverse α−1 ∈ D of α. By Definition 1.12 on page 15,
αα−1 = 1D ∈ I, so I = D.

Conversely, suppose that the only D-ideals are (0) and D. If α ∈ D is nonzero, let

(α) = αD = I.

By hypothesis, I = D. Thus, there exists a β ∈ D such that βα = 1D, so α is a unit.
However, α was chosen as an arbitrary nonzero element in D, so D is a field. This is Claim
1.2.

Suppose that D/M is a field for a given D-ideal M . If M ⊆ I ⊆ D for a D-ideal I, then
I/M is an ideal of D/M , so by Claim 1.2, I/M = (0) or I/M = D/M . In other words,
either I = D or I = M , namely M is maximal.

Conversely, if M is maximal, then by Theorem 1.10, either M = (0) or M is prime. If
M = (0), then D/(0) ∼= D is a field by Claim 1.2, given that (0) is maximal, implying that
D has no proper ideals. If M is prime, then by Theorem 1.9 on the preceding page, D/M
is an integral domain. Thus, it remains to show that all nonzero elements of D/M have
multiplicative inverses, namely that if α+M �= M , then α+M has a multiplicative inverse
in D/M . Given α + M �= M , then α �∈ M . Thus, M is properly contained in the ideal
(α) +M . Hence, (α) +M = D. In other words,

1D = m+ rα for some m ∈ M and r ∈ D.

Therefore, 1D − rα = m ∈ M , so 1D +M = rα+M = (r +M)(α+M), namely r +M is
a multiplicative inverse of α+M in D/M , so D/M is a field. ✷

       



1.3. Ideals 19

Example 1.21 If D = Z/nZ, where n ∈ N, then by Theorem 1.11, Z/nZ is a field if and
only if nZ is maximal. Later we will see that Z, being a special case of the ring of integers
of a number field, always satisfies the property that all prime ideals are maximal—see
Definition 1.23 on page 25 and Theorem 1.26 on page 42. Hence, in conjunction with
Theorem 1.10, we have

Z/nZ is a field if and only if nZ is prime.

Example 1.22 Let F be a field, r ∈ F is a fixed nonzero element, and

I = {f(x) ∈ F [x] : f(r) = 0}.

We now demonstrate that I is a maximal ideal in F [x]. First, we show that I is indeed an
ideal in F [x]. If g(x) ∈ F [x], then for any f(x) ∈ I, g(r)f(r) = 0, so g(x)f(x) ∈ I, and
clearly f(r) + h(r) = 0 whenever f(x), h(x) ∈ I, which shows that I is an F [x]-ideal. If we
define φ to be the map

φ : F [x] �→ F [x]/I,

given by
φ(f(x)) = f(x) + I,

then an easy check shows that I = ker(φ)—see (A.3) on page 325 in Appendix A, from
which it follows that I is maximal, as

F ∼= F [x]/I.

In §1.4, we will use ideal theory developed herein to introduce and explore two distinguished
types of domains that set the stage for Dedekind’s masterpiece contribution presented in
§1.5. This makes way for the foundational building bricks of algebraic number theory in §1.6,
where algebraic numbers and numbers fields as generalizations of Z and Q are introduced.
This provides the springboard to the balance of the text that explores this magnificent
edifice of mathematics.

The last section of this chapter, §1.7, is a motivator for Chapter 2 by looking in detail at
the least nontrivial extension of Q, namely the quadratic field case, which builds upon the
quadratic domains introduced and discussed in §1.2.

Exercises

1.26. Prove that any prime p ∈ Z with p ≡ 3(mod 4) is a prime in Z[i].
(By Corollary 1.1 of Theorem 1.6 on page 13 it only needs to be shown that p is
irreducible.)

1.27. Prove that if α ∈ Z[i] and NF (α) = p, where p is prime in Z, then α is a prime in Z[i]
but p is not a prime in Z[i] and p ≡ 1(mod 4) or p = 2.

1.28. Prove that in an integral domain D with α,β ∈ D nonzero, as ideals (α) = (β) if and
only if αβ−1 ∈ UD.

1.29. For some indexing set I, let R be a ring and let {Rj : j ∈ I} be any set of subrings of
R. Prove that ∩j∈IRj is a subring of R. Also, show that if

R1 ⊆ R2 ⊆ · · · ⊆ Rj ⊆ · · · ,

then ∪j∈IRj is a subring of R.
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1.4 Noetherian and Principal Ideal Domains

Whether you think you can, or you can’t—you are right.
Henry Ford (1863–1947), American car manufacturer

In this section, we use our knowledge of ideals to proceed to build the foundations of
algebraic number theory by investigating two kinds of domains that will lead us into the
building bricks of algebraic number fields. The following is crucial in the sequel. Some of
the following is adapted from [54].

Definition 1.19 — Ascending Chain Condition (ACC)

An integral domain R is said to satisfy the ascending chain condition (ACC) if every chain
of R-ideals I1 ⊆ I2 ⊆ · · · In ⊆ · · · terminates, meaning that there is an n0 ∈ N such that
In = In0 for all n ≥ n0.

Remark 1.10 An equivalent way of stating the ACC is to say that R does not possess
an infinite strictly ascending chain of ideals.

The above is a segue to the following important notion that will carry us forward toward
our goals—see Biography 1.1 on page 23.

Definition 1.20 — Noetherian Domains

An integral domain R possessing the ACC is called a Noetherian Domain.

For the following, the reader is reminded of the general notion of finite generation given in
Definition A.7 on page 324 in Appendix A. Also, see Remark 1.9 on page 15.

Lemma 1.2 — Finite Generation and Noetherian Domains

If R is an integral domain, then R is a Noetherian Domain if and only if every R-ideal is
finitely generated.

Proof. Suppose that every R-ideal is finitely generated. Let

I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · ·

be an ascending chain of ideals. It follows from Exercise 1.29 on the previous page that
I = ∪∞

i=1Ij is an R-ideal, and since any R-ideal is finitely generated, then there exist αj ∈ R
for j = 1, 2, . . . , d ∈ N such that

I = (α1, α2, . . . , αd).

Therefore, for each j = 1, 2, . . . , d, there is a kj with αj ∈ Ikj
. Let n = max{k1, k2, . . . , kd}.

Then since In ⊆ I and Ikj
⊆ In, given that kj ≤ n for each such j, we have (α1, α2, . . . , αd) ⊆

In, which implies that I ⊆ In. Hence, In = ∪∞
i=1Ij and so In = Ij for each j ≥ n. Since the

chain terminates, R satisfies the ACC, so is a Noetherian domain.

Conversely, suppose that R is a Noetherian domain. If I is an R-ideal that is not finitely
generated, then I �= (0), so there exists α1 ∈ I with α1 �= 0, and (α1) ⊂ I. Since I �= (α1),
given that the former is not finitely generated, then there exists α2 ∈ I and α2 �∈ (α1) so
we have

(α1) ⊂ (α1, α2) ⊂ I.

Continuing inductively in this fashion, we get the strictly ascending chain of ideals,

(α1) ⊂ (α1, α2) ⊂ · · · ⊂ (α1, α2, . . . , αn) ⊂ · · · ⊂ I,

contradicting that R is a Noetherian domain. Hence, every R-ideal is finitely generated. ✷
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Corollary 1.4 Let R be a Noetherian domain. Then every nonempty subset of R-ideals
contains a maximal element.

Proof. Let T be the set of ideals with the property that for every ideal I of T, there exists
an ideal J of T with I ⊂ J . If T �= ∅, then by its definition we may construct an infinite
strictly ascending chain of ideals in T, contradicting Lemma 1.2. This is the result. ✷

Immediate from Corollary 1.4 is the following result.

Corollary 1.5 In a Noetherian domain R, every proper R-ideal is contained in a maximal
R-ideal.

We need the following concept that is intimately linked to the notion of a UFD, especially
when we are dealing with Dedekind domains—see Definition 1.8 on page 7.

Definition 1.21 — Principal Ideal Domain (PID)

An integral domain R in which all ideals are principal is called a principal ideal domain, or
PID.

Theorem 1.12 — PIDs and Noetherian Domains

If R is a PID, then R is a Noetherian domain.

Proof. If we have a nested sequence of R-ideals

(α1) ⊆ (α2) ⊆ · · · (αj) ⊆ · · · ,

then it follows from Exercise 1.29 that ∪∞
j=1(αj) is an R-ideal. Thus, since R is a PID, there

exists an α ∈ R such that ∪∞
j=1(αj) = (α), so there exists an n ∈ N such that α ∈ (αn).

Therefore,
(αj) = (αn) = (α)

for all j ≥ n. Thus, the ACC condition of Definition 1.19 is satisfied and R is a Noetherian
domain. ✷

The following strengthens Corollary 1.2 on page 13 and puts Exercise 1.25 on page 14 into
clearer focus.

Corollary 1.6 A Euclidean domain is a PID, and so is Noetherian.

Proof. If D is a Euclidean domain, then D has a Euclidean function φ by Definition 1.9 on
page 10. Let I be a nonzero D-ideal and set

S = {φ(α) : α ∈ I,α �= 0}.

Given that I �= (0), S �= ∅. Using the Well-Ordering Principle—see page 340—S has a least
element φ(β) where β ∈ I, β �= 0. Let γ ∈ I be arbitrary. Then by part (b) of Definition
1.9, there exist r, q ∈ D with

γ = qβ + r with φ(r) < φ(β).

By Definition 1.12 on page 15, r = γ − qβ ∈ I, so by the minimality of φ(β), we must have
that r = 0. Therefore, γ = qβ, which implies, since γ was arbitrarily chosen, that I = (β).
We have shown that every ideal of D is principal (given that the zero ideal is principal as
well), so D is a PID. By Theorem 1.12, D is therefore Noetherian. ✷
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Remark 1.11 Note that via Exercise 1.25, Corollary 1.6 is more general than Corollary
1.2 since there are UFDs that are not PIDs and the following shows that Corollary 1.2
follows from Corollary 1.6. Also, see the related Exercise 1.47 on page 34

Theorem 1.13 — PIDs and UFDs

If R is a PID then R is a UFD.

Proof. Let S be the set of all α ∈ R such that α is not a product of irreducible elements.
If S �= ∅, then by Corollary 1.4 on the preceding page, via Theorem 1.12, S has a maximal
element m. Thus, (m) is a proper ideal (since a unit is vacuously a product of irreducible
elements by Definition 1.6 on page 4). Therefore, (m) is contained in a maximal R-ideal
(M) for some M ∈ R, by Corollary 1.5 on the preceding page, again via Theorem 1.12.
Thus, M

�� m and (M) �= (m) by Theorem 1.10 on page 18. Since M is a product of
irreducible elements, there exists an α

�� m such that α is irreducible. Therefore, m = αβ
for some β ∈ R. If β is a unit, then m is irreducible since associates of irreducibles are
also irreducible, a contradiction. Hence, β is not a unit. If (β) �∈ S, then β is a product of
irreducibles, and so is m, a contradiction. Thus, (β) ∈ S. However, β

�� m, so (m) ⊆ (β) by
Lemma 1.1 on page 17. Also, (m) �= (β) since α is not a unit, given that it is irreducible.
Hence, (m) is properly contained in (β) ⊆ S, a contradiction to the maximality of (m) in
S, so S = ∅. This establishes that all nonzero elements of R are expressible as a product of
irreducible elements.

We may complete the proof by showing that all irreducible elements are prime and invoke
Theorem 1.2 on page 7. Suppose that r ∈ R is an irreducible element and r

�� αβ, α,β ∈ R,
with r not dividing α. Then by the irreducibility of r, we must have that r and α are
relatively prime, namely R = (r) + (α), so there exist s1, s2 ∈ R such that 1R = rs1 + αs2.
Therefore,

(β) = (rs1β + αs2β) ⊆ (r),

since r
�� αβ implies that (r) ⊇ (αβ), so both rs1β ∈ (r) and αs2β ∈ (r). In other words,

r
�� β, so r is prime as required. ✷

Exercises

1.30. In a commutative ring R with identity, an R-module M is defined to be Noetherian
if every ascending chain of submodules of M terminates in the same sense as in
Definition 1.19 on page 20. Prove that if N is a submodule of a Noetherian R-module
M , then both N and M/N are Noetherian R-modules.

1.31. With reference to Exercise 1.30, either provide a counterexample to the converse or✰
prove that: if N is a submodule of an R-module M such that both N and M/N are
Noetherian R-modules, then M is a Noetherian R-module.

1.32. If R is a Noetherian ring, prove that any finitely generated R-module is Noetherian.✰

1.33. Let Dj be integral domains for j = 1, 2 with D1 ⊆ D2. If D1 is Noetherian and D2 is
finitely generated as a D1-module, prove that D2 is a Noetherian domain.

1.34. Prove that Z[
√
n] is a Noetherian domain for any nonsquare integer n.

1.35. A commutative ring R with identity is said to satisfy the descending chain condition,
denoted by DCC, on ideals if every sequence I1 ⊇ I2 ⊇ · · · ⊇ Ij ⊇ · · · of R-ideals
terminates. In other words, there exists an n ∈ N such that Ij = In for all j ≥ n.
Prove that R satisfies the DCC if and only if every nonempty collection of ideals
contains a minimal element. (Rings of the above type are called Artinian rings.)

       



1.4. Noetherian and Principal Ideal Domains 23

Biography 1.1 Emmy Amalie Noether (1882–1935) was born in Erlangen,
Bavaria, Germany on March 23, 1882. She studied there in her early years
and, in 1900, received certification to teach English and French in Bavarian
girls’ schools. However, she chose a more difficult route, for a woman of that
time, namely to study mathematics at university. Women were required to get
permission to attend a given course by the professor teaching it. She did this
at the University of Erlangen from 1900 to 1902, and passed her matricula-
tion examination in Nürnberg in 1903, after which she attended courses at the
University of Göttingen from 1903 to 1904. By 1907, she was granted a doctor-
ate from the University of Erlangen. By 1909, her published works gained her
enough notoriety to warrant an invitation to become a member of the Deutsche
Mathematiker-Vereinigung, and in 1915, she was invited back to Göttingen by
Hilbert and Klein. However, it took until 1919 for the university to, grudgingly,
obtain her Habilitation,1.1 and permit her to be on the faculty. In that year
she proved a result in theoretical physics, now known as Noether’s Theorem,
praised by Albert Einstein as a penetrating result, which laid the foundations
for many aspects of his general theory of relativity. After this, she worked in
ideal theory, developing ring theory, which turned out to be of core value in
modern algebra.

Her work Idealtheorie in Ringbereichen, published in 1921, helped cement this
value. In 1924, B.L. van der Waerden published his work Moderne Algebra,
the second volume of which largely consists of Noether’s results. Her most
successful collaboration was in 1927 with Helmut Hasse and Richard Brauer
on noncommutative algebra. She was recognized for her mathematical achieve-
ments through invitations to address the International Mathematical Congress,
the last at Zurich in 1932. Despite this, she was dismissed from her position at
the University of Göttingen in 1933 due to the Nazi rise to power, given that
she was Jewish. She fled Germany in that year and joined the faculty at Bryn
Mawr College in the U.S.A. She died at Bryn Mawr on April 14, 1935. She was
buried in the Cloisters of the Thomas Great Hall on the Bryn Mawr campus.

1.1Habilitation is the highest academic qualification achievable in certain European and Asian countries.
Typically Habilitation is earned after obtaining a research doctorate (Ph.D.), which is sufficient qualification
for a senior faculty position at a university in North America. However, a Habilitation requires a professorial
thesis, reviewed by and defended before an academic committee similar to that for a North American
Ph.D., but the level of scholarship expected is usually much higher. In practice, for instance in Germany,
a Habilitation is required to supervise doctoral students, a post that is known as Privatdozent and there
are similarly termed appointments in other countries. After serving as Privatdozent, the next step is often
appointment as a professor in the faculty in which the candidate sits.
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Biography 1.2 Emil Artin (1898–1962) was born on March 3, Vienna, Austria
in 1898. He served in the Austrian army in World War I, after which he entered
the University of Leipzig. In 1921 he obtained his doctorate, the thesis of
which was on quadratic extensions of rational function fields over finite fields.
In 1923, he had his Habilitation, allowing him to become Privatdozent at the
University of Hamburg—see Footnote 1.1 on the previous page. In 1925, he
was promoted to extraordinary professor at Hamburg. In that same year,
he introduced the theory of braids, which is studied today by algebraists and
topologists. In 1928, he worked on rings with minimum condition, the topic
of Exercise 1.35 on page 22, which are now called Artinian rings. In 1937,
Hitler enacted the New Official’s Law, which enabled a mechanism for removing
not only Jewish teachers from university positions but also those related by
marriage. Since Artin’s wife was Jewish, although he was not, he was dismissed.
In 1937, he emigrated to the U.S.A. and taught at several universities there,
including eight years at Bloomingdale at Indiana University during 1938–1946,
as well as Princeton from 1946 to 1958. During this time, in 1955, he produced
what was, arguably, the catalyst for the later classification of finite simple
groups, by proving that the only (then-known) coincidences in orders of finite
simple groups were those given by Dickson in his Linear Groups. In 1958,
he returned to Germany where he was appointed again to the University of
Hamburg. Artin’s name is attached not only to the aforementioned rings,
but also to the reciprocity law that he discovered as a generalization of Gauss’s
quadratic reciprocity law. One of the tools that he developed to do this is what
we now call Artin L-functions. He also has the distinction of solving one of
Hilbert’s famous list of twenty-three problems posed in 1900—see Biography 3.4
on page 94.

He was an outstanding and respected teacher. In fact, many of his Ph.D.
students such as Serge Lang, John Tate, and Max Zorn went on to major
accomplishments. He also had an interest in astronomy, biology, chemistry,
and music. He was indeed an accomplished musician in his own right, playing
the flute, harpsichord, and clavichord. He died in Hamburg on December 20,
1962.
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1.5 Dedekind Domains

Mathematics is the only instructional material that can be presented in an entirely
undogmatic way.

Max Wilhelm Dehn (1878–1952), German mathematician who
introduced one of the first structured elucidations on topology

§1.4 put us in a position to define a contribution by Dedekind —see Biography 1.3 on
page 29. First we need the following notion.

Definition 1.22 — Integral Over a Domain and Integral Closure

If D ⊆ S where D and S are integral domains, then α ∈ S is said to be integral over D if
there exists a d ∈ N, and a polynomial

f(x) = xd + βd−1x
d−1 + · · ·+ β1x+ β0 with βj ∈ D for j = 0, 1, . . . , d− 1

such that f(α) = 0.

D is said to be integrally closed in S if each element of S that is integral over D is actually
in D.

Example 1.23 The integral domain Z is integrally closed inQ, but not in C since
√
−1 ∈ C

is integral over Z.

The following will prove to be a useful tool in §1.6, and is of interest in its own right. The
reader should solve Exercise 1.40 on page 33 in anticipation of the proof.

Theorem 1.14 — Towers of Integral Domains

If R ⊆ S ⊆ T is a tower of integral domains with S integral over R and t ∈ T integral over
S, then t is integral over R.

Proof. Given that t ∈ T is integral over S, there exist s1, s2, . . . , sn ∈ S such that

tn + sn−1t
n−1 + · · ·+ s1t+ s0 = 0.

Hence, we have shown that t is integral over R[s0, s1, . . . , sn]. Since sj ∈ S is integral over
R for j = 0, 1, . . . , n − 1, then by part (c) of Exercise 1.40, R[s0, s1, . . . , sn] is a finitely
generated R-module. Since t is integral over R[s0, s1, . . . , sn], then the same exercise part
(d) shows that

R[s0, s1, . . . , sn][t] = R[s0, s1, . . . , sn, t]

is a finitely generated R-module. Hence, by part (e) of the exercise, t is integral over R. ✷

Now we bring in Dedekind’s ideas.

Definition 1.23 — Dedekind Domains

A Dedekind Domain is an integral domain D satisfying the following properties.

(A) Every ideal of D is finitely generated.

(B) Every nonzero prime D-ideal is maximal.

(C) D is integrally closed in its quotient field F .
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Remark 1.12 Condition (C) says that if α/β ∈ F is the root of some monic polynomial
over D, then α/β ∈ D, namely β

�� α in D. Also, note that by Lemma 1.2 on page 20,
Condition (A) may be replaced by the condition that R is a Noetherian domain.

Now we aim at the main goal of this section, which is a unique factorization theorem for
ideals. To this end, we first settle conditions for which the converse of Lemma 1.1 on page 17
holds. We require a more general notion of ideal in order to proceed.

Definition 1.24 — Fractional Ideals

Suppose that D is an integral domain with quotient field F . Then a nonempty subset I of
F is called a fractional D-ideal if it satisfies the following three properties.

1. For any α,β ∈ I, α+ β ∈ I.

2. For any α ∈ I and r ∈ D, rα ∈ I.

3. There exists a nonzero γ ∈ D such that γI ⊆ D.

When I ⊆ D, we call I an integral D-ideal (which is the content of Definition 1.12 on
page 15) to distinguish it from the more general fractional ideal.

Remark 1.13 It is immediate from Definition 1.24 that if I is a fractional D-ideal, then
there exists a nonzero γ ∈ D such that γI = J where J is an integral D-ideal.

Example 1.24 Let D = Z, and F = Q. Then the fractional D-ideals are the sets

Iq = {qZ : q ∈ Q+}.

Since qZ = (−q)Z, we may restrict attention to the positive rationals Q+ without loss of
generality. Also,

Iq1Iq2 = q1q2Z = Iq1q2 .

We have the isomorphism
S = {Iq : q ∈ Q+} ∼= Q+,

as multiplicative groups. The unit element of S is Z and the inverse element of Iq ∈ S is
(Iq)−1 = q−1Z. (See Exercise 1.43 on page 33.)

Example 1.24 motivates the following.

Theorem 1.15 — Inverse Fractional Ideals

If D is an integral domain with quotient field F , and I is a fractional D-ideal, then the set

I−1 = {α ∈ F : αI ⊆ D}

is a nonzero fractional D-ideal.

Proof. If α,β ∈ I−1, then αI ⊆ D and βI ⊆ D, so

(α+ β)I ⊆ αI + βI ⊆ D,

which implies α + β ∈ I−1. If α ∈ I−1 and r ∈ D, αI ⊆ D, then rαI ⊆ D, from which
it follows that rα ∈ I−1. Lastly, let γ be a nonzero element of I. Then for any α ∈ I−1,
αI ⊆ D, so in particular, γα ∈ D. Hence, γI−1 ⊆ D. This satisfies all three conditions in
Definition 1.24. ✷
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Definition 1.25 — Invertible Fractional Ideals

In an integral domain D a fractional D-ideal I is called invertible if

I−1I = D,

where I−1, given in Theorem 1.15, is called the inverse of I.

Now we may return to Dedekind domains and the pertinence of the above to them.

Theorem 1.16 — Invertibility in Dedekind Domains

If D is a Dedekind domain, then every nonzero integral D-ideal is invertible.

Proof. Since D is a Dedekind Domain, then every D-ideal I is finitely generated, so for
I �= (0), there are αj ∈ D for 1 ≤ j ≤ d such that I = (α1, α2, . . . , αd). If d = 1, then
I−1 = (α−1

1 ) and II−1 = D. Now the result may be extrapolated by induction, and the
result is established. ✷

Corollary 1.7 — To Divide is the Same as to Contain

If D is a Dedekind domain, and I, J are D-ideals, then

I
�� J if and only if J ⊆ I.

Proof. In view of Lemma 1.1, we need only prove one direction. Suppose that

J ⊆ I. (1.19)

Now let H = I−1J , in which case J = IH where H is a D-ideal since by (1.19),

I−1J ⊆ I−1I = D,

where the equality follows from Theorem 1.16. Thus, I
�� J , and we have secured the result.✷

As a consequence of Corollary 1.7, we see that a prime D-ideal P in a Dedekind domain D
satisfies the same property as prime elements in Z—see Example 1.9 on page 4.

Corollary 1.8 Suppose that D is a Dedekind domain. Then P is a prime D-ideal if it
satisfies the property that for any D-ideals I, J ,

P
�� IJ if and only if P

�� I or P
�� J.

Proof. By Corollary 1.7, P
�� IJ if and only if IJ ⊆ P and the latter holds, by (1.17) on

page 16, if and only if I ⊆ P or J ⊆ P, so applying Corollary 1.7 to the latter we get the
result. ✷

We have the following result that mimics the same law for nonzero elements of Z.

Corollary 1.9 — Cancellation Law for Ideals in Dedekind Domains

Let D be a Dedekind domain. If I, J, L are D-ideals with I �= (0), and IJ ⊆ IL, then
J ⊆ L.

Proof. If IJ = IL, then by Theorem 1.16,

J = DJ = I−1IJ ⊆ I−1IL = DL = L,

as required. ✷

Now we are ready for the promised unique factorization result.
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Theorem 1.17 — Unique Factorization of Ideals

Every proper nonzero ideal in a Dedekind domain D is uniquely representable as a product
of prime ideals. In other words, any D-ideal has a unique expression (up to order of the
factors) of the form

I = P
a1
1 P

a2
2 . . .Pan ,

where the Pj are the distinct prime D-ideals containing I, and aj ∈ N for j = 1, 2, . . . , n.

Proof. First we must show existence. In other words, we must show that every ideal is
indeed representable as a product of primes. Let S be the set of all nonzero proper ideals
that are not so representable.

It follows from Remark 1.12 on page 26 and Corollary 1.4 on page 21 that if S �= ∅, then
S has a maximal member M . By assumption, M cannot be prime and hence not maximal
in D, so contained in some maximal prime D-ideal P. Also, P is maximal by part (B) of
Definition 1.23. Hence,

D ⊆ P
−1 ⊆ M−1,

which implies
M ⊆ MP

−1 ⊆ MM−1 = D,

where the equality follows from Theorem 1.16 on the previous page. We have shown that
MP

−1 is an integral D-ideal. If P−1M = M , then

PP
−1M = PM ⊆ P,

where the latter inclusion comes from the fact that P is an ideal. Hence, M = P by
the maximality of P, a contradiction to M ∈ S. Thus, P

−1M �= M , so M ⊂ P
−1M ,

namely P
−1M is an integral ideal not in S. This means there are prime ideals Pj for

j = 1, 2, . . . d ∈ N such that
P
−1M = P1P2 · · ·Pd,

which implies
M = DM = PP

−1M = PP1P2 · · ·Pd,

contradicting that M ∈ S. We have shown S = ∅, thereby establishing existence. It remains
to show uniqueness of representation.
Let Pj and Qk be (not necessarily distinct) prime D-ideals such that

P1 · · ·Pr = Q1 · · ·Qs. (1.20)

Hence,
P1 ⊇ Q1 · · ·Qs,

so Qj ⊆ P1 for some j = 1, 2, . . . , s. Without loss of generality, we may assume that j = 1,
by rearranging the Qj if necessary. However, by condition (B) of Definition 1.23, P1 = Q1.
Multiplying both sides of (1.20) by P

−1
1 , we get

P2 · · ·Pr = Q2 · · ·Qs.

Continuing in this fashion, we see that by induction, r = s and Pj = Qj for 1 ≤ j ≤ s = r.✷
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Biography 1.3 Julius Wilhelm Richard Dedekind (1831–1916) was born in
Brunswick, Germany on October 6, 1831. There he attended school from the
time he was seven. In 1848, he entered the Collegium Carolinum, an educational
bridge between high school and university. He entered Göttingen at the age
of 19, where he became Gauss’ last student, and achieved his doctorate in
1852, the topic being Eulerian integrals. Although he taught in Göttingen
and in Zürich, he moved to Brunswick in 1862 to teach at the Technische
Hochschule, a technical high school. In that year he also was elected to the
Göttingen Academy, one of many honours bestowed on him in his lifetime. He
maintained this position until he retired in 1894. Dedekind’s creation of ideals
was published in 1879 under the title Uber die Theorie der ganzen algebraischen
Zahlen. Hilbert extended Dedekind’s ideal theory, which was later advanced
further by Emmy Noether. Ultimately this led to the general notion of unique
factorization of ideals into prime powers in what we now call Dedekind domains.
Another of his major contributions was a definition of irrational numbers in
terms of what we now call Dedekind cuts.He published this work in Stetigkeit
und Irrationale Zahlen in 1872. He never married, and lived with his sister
Julie until she died in 1914. He died in Brunswick on February 12, 1916.

Now we look at PIDs and UFDs in the case of Dedekind domains.

Theorem 1.18 — UFDs are PIDs for Dedekind domains

If R is a Dedekind domain, then R is a UFD if and only if R is a PID.

Proof. In view of Theorem 1.13 on page 22, we need only prove that R is a PID when it is
a UFD. Therefore, if there exists an R-ideal that is not principal, then by Theorem 1.17,
there exists a prime R-ideal P that is not principal. Let S consist of the set of all R-ideals I
such that PI is principal. By Exercise 1.38 on page 33, S �= ∅. By Remark 1.12 on page 26
and Corollary 1.4 on page 21, S has a maximal element M . Let

PM = (α).

If α = βγ where β ∈ P is irreducible, then (β) = PJ where J is an R-ideal such that J
�� M ,

so J ⊇ M . By the maximality of M , we have J = M , so γ is a unit and α is irreducible.
Since P is not principal, there is a nonzero δ ∈ P − (α), and since M = (α) would imply
that P = R, there is a nonzero σ ∈ M − (α). Thus, δσ ∈ PM ⊆ (α), so α

�� δσ. However, α
divides neither δ nor σ, so α is not prime. This contradicts Theorem 1.2 on page 7. ✷

The developments in this section allow us to now define gcd and lcm concepts for ideals
that mimic those for rational integers.

Definition 1.26 — A gcd and lcm for Ideals

If D is a Dedekind domain, and I, J are D-ideals, then

gcd(I, J) = I + J , and lcm(I, J) = I ∩ J.

If gcd(I, J) = D, then I and J are said to be relatively prime.
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Remark 1.14 The notion of relative primality given in Definition 1.26 is the direct ana-
logue for rational integers since D = (1D) is a principal ideal. This is of course what we
mean in Z, since such a pair of integers can have no common divisors. Let us look at this
directly.
If I, J are relatively prime, then

gcd(I, J) = I + J = D.

If a D-ideal H divides both I and J , then by Corollary 1.7 on page 27, I ⊆ H, J ⊆ H, so

I + J = D ⊆ H,

which means that H = D. Hence, the only D-ideal that can divide both I and J is D = (1).

The next result is the generalization of the result for rational integers proved in a course in
elementary number theory.

Lemma 1.3 — Product of the Ideal-Theoretic gcd and lcm

If D is a Dedekind domain and I, J are D-ideals, then

gcd(I, J) · lcm(I, J) = (I + J)(I ∩ J) = IJ.

Proof. By the definition of an ideal, any elements of I + J times any element of I ∩ J must
be in I and J , so in IJ . Thus,

(I ∩ J)(I + J) ⊆ IJ.

Conversely, any element of IJ is in both I and J , so in I ∩ J , and trivially in I + J . Thus,

IJ ⊆ (I ∩ J)(I + J),

from which the desired equality follows. ✷

The following exploits our unique factorization result to provide an analogue of the same
result for rational integers.

Theorem 1.19 — Prime Factorizations of gcd and lcm of Ideals

Suppose that D is a Dedekind domain and I, J are D-ideals with prime factorizations given,
via Theorem 1.17, by

I =
r�

j=1

P
aj

j
, and J =

r�

j=1

P
bj

j
,

where Pj are prime D-ideals with integers aj , bj ≥ 0. Then

gcd(I, J) =
r�

j=1

P
mj

j
, and lcm(I, J) =

r�

j=1

P
Mj

j
,

where mj = min(aj , bj) and Mj = max(aj , bj), for each j = 1, . . . , r.

Proof. Since gcd(I, J) = I + J , then

gcd(I, J) =
r�

j=1

P
aj

j
+

r�

j=1

P
bj

j
=

r�

j=1

P
mj

j
(

r�

j=1

P
aj−mj

j
+

r�

j=1

P
bj−mj

j
).
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However, for each j, one of aj −mj or bj −mj is zero, so the right-hand sum is D since the
two summands are relatively prime. In other words,

gcd(I, J) =
r�

j=1

P
mj

j
,

as required. Now, by Lemma 1.3, (I ∩ J)(I + J) = IJ , so

IJ =
r�

j=1

P
aj+bj

j
=

r�

j=1

P
mj

j
(I ∩ J) = (I + J)(I ∩ J),

so

lcm(I, J) = I ∩ J =
r�

j=1

P
aj+bj−mj

j
=

r�

j=1

P
Mj

j
,

and we have the complete result. ✷

Remark 1.15 Theorem 1.19 tells us that, when D is a Dedekind domain, lcm(I, J) is
actually the largest ideal contained in both I and J , and gcd(I, J) is the smallest ideal
containing both I and J .

The following allows us to compare unique factorization of elements with that of ideals and
show where Dedekind’s contribution comes into play.

Definition 1.27 — Irreducible Ideals, gcds and lcms

If D is an integral domain, then a D-ideal I is called irreducible if it satisfies the property
that whenever a D-ideal J

�� I, then J = I or J = D.

Theorem 1.20 — Irreducible = Prime in Dedekind Domains

If D is a Dedekind domain, and I is a D ideal, then I is irreducible if and only if I is a
prime D-ideal.

Proof. Let I be irreducible and let J,K be D-ideals such that I
�� JK. Since gcd(I, J)

�� I,
then gcd(I, J) = I or gcd(I, J) = D. If gcd(I, J) = I, then I + J = I, which means that

I = J = gcd(I, J).

Now suppose that I � J . Then gcd(I, J) = D, so there exist α ∈ I and β ∈ J such that
α + β = 1D. Therefore, given an arbitrary γ ∈ K, γ = γα + γβ. Since I

�� JK, then by
Corollary 1.7 on page 27, JK ⊆ I, so βγ ∈ I since βγ ∈ JK. However, αγ ∈ I so γ ∈ I.
This shows that K ⊆ I, so by Corollary 1.7, we have that I

�� K. Hence, by Theorem 1.7
on page 16, I is prime.

Conversely, suppose that I is prime. If I = HJ for some nontrivial D-ideals H and J , then
either I|H or I|J . If I|H, there is a D-ideal L such that H = IL. Therefore,

I = HJ = ILJ.

By Corollary 1.9 on page 27, (1) = D = LJ . Hence, J = (1) = D, so I is irreducible. ✷

The following is immediate from Theorem 1.20, and is the analogue of the definition of a
rational prime.
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Corollary 1.10 If D is a Dedekind domain, then I is a prime D-ideal if and only if it
satisfies the property that whenever J

�� I for a proper D-ideal J then I = J .

Remark 1.16 It follows from Theorem 1.1 on page 5 and Theorem 1.2 on page 7 that the
failure of unique factorization in an integral domain D is the failure of irreducible elements
to be prime in D. However, since Theorem 1.20 tells us that irreducible ideals are the same
as prime ideals in a Dedekind domain, then we have unique factorization restored at the
ideal level via Theorem 1.17 on page 28. Thus, the magnitude of of Dedekind’s contribution
is brought to light by this fact.

We conclude this section with a result that is the generalization of the result for Z. The
reader should be familiar with the basics of ring actions such as that covered in Appendix
A, pages 326–328.

Theorem 1.21 — Chinese Remainder Theorem for Ideals

Let R be a commutative ring with identity and let I1, . . . , Ir be pairwise relatively prime
ideals in R. Then the natural map

ψ : R/ ∩r

j=1 Ij �→ R/I1 × · · · ×R/Ir

is an isomorphism.

The above statement is equivalent to saying that if β1, β2, . . . , βr ∈ R, there exists a β ∈ R
such that β − βj ∈ Ij for each j = 1, 2, . . . , r, where β is uniquely determined modulo
∩r

j=1Ij . The latter means that

any γ satisfying γ − βj ∈ Ij for each such j implies β − γ ∈ ∩r

j=1Ij . (1.21)

Proof. Since ψ(s) = 0 if and only if s ∈ ∩r

j=1Ij , then ker(ψ) = (0), since the Ij are pairwise
relatively prime. It remains to show that ψ is a surjection. Let β1, β2, . . . , βr ∈ R. We must
show that there is a β ∈ R such that ψ(β) = (β1, . . . , βr). This is tantamount to saying:
there is a β ∈ R such that β − βk ∈ Ik for each k. Since Ii + Ij = R for all i �= j, then by
induction Ik +∩j �=kIj = R. Thus, for each such k, there exists an αk ∈ Ik and rk ∈ ∩j �=kIj
such that

βk = αk + rk with βk − rk ∈ Ik and rk ∈ Ij for all j �= k.

Set β =
�

r

j=1 rj . Then

β − βk =
�

j �=k

rj + (rk − βk) ∈ Ik,

as required. ✷

Remark 1.17 In Theorem 1.21, we may use the notation

γ ≡ βj (mod Ij),

to denote γ − βj ∈ Ij . Then (1.21) becomes:

any γ satisfying γ ≡ βj (mod Ij) for 1 ≤ j ≤ r implies β ≡ γ (mod ∩r

j=1 Ij).
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Exercises

1.36. Let R be a Dedekind domain. If I, J are R-ideals, prove that there exists an α ∈ I
such that gcd((α), IJ) = I.

1.37. Let R be a Dedekind domain, and let I, J,H be R-ideals. Prove that

I(J +H) = IJ + IH.

1.38. Let R be a Dedekind domain and I, J nonzero R-ideals. Prove that there is an R-ideal
H, relatively prime to J , such that HI is principal.

1.39. Let R be an integral domain with quotient field F . Prove that every invertible frac-
tional R-ideal is a finitely generated R-ideal—see Appendix A pages 323–326.

1.40. Establish each of the following.

(a) If R ⊆ S ⊆ T is a tower of integral domains and t ∈ T is integral over R, then t
is integral over S.

(b) Let R,S be integral domains such that R ⊆ S. If s ∈ S, then s is integral over
R if and only if R[s] is a finitely generated R-module.

(c) Let R,S be integral domains such that R ⊆ S. If s1, s2, . . . , sn ∈ S are integral
over R, then R[s1, s2, . . . , sn] is a finitely generated R-module.

(d) If s ∈ S and there is an integral domain U such that R[s] ⊆ U ⊆ S with U
a finitely generated R-module, then s is integral over R and R[s] is a finitely
generated R-module.

(e) If R ⊆ S ⊆ T is a tower of integral domains with S integral over R, and t ∈ T is
integral over S, then t is integral over R.

(f) If R ⊆ S ⊆ T is a tower of integral domains with T integral over S and S integral
over R, then T is integral over R. (Transitivity of integrality.)

1.41. Let R be an integral domain with quotient field F . Prove that every nonzero finitely-
generated submodule I of F is a fractional R-ideal.

1.42. Prove that in an integral domain R, the following are equivalent.

(a) Every nonzero fractional R-ideal is invertible.

(b) The set of all fractional R-ideals G forms a multiplicative group.

1.43. Prove that in an integral domain R, the following are equivalent.

(i) R is a Dedekind domain.

(ii) Every proper R-ideal is a unique product of a finite number of prime ideals (up
to order of the factors), and each is invertible.

(iii) Every nonzero R-ideal is invertible.

(iv) Every fractional R-ideal is invertible.

(v) The set of all fractional R-ideals forms a multiplicative abelian group.

(Hint: Use Exercises 1.39–1.42.)
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1.44. Suppose that R is a Dedekind domain with quotient field F and I is an R-ideal. Also,
we define:

ordP(I) = a

where a ≥ 0 is the largest power of the prime ideal P dividing I. In other words,
P
a
�� I but P

a+1 does not divide I. The value ordP(I) is called the order of I with
respect to P. Prove the following.

(a) For R-ideals I, J ,
ordP(IJ) = ordP(I) + ordP(J).

(b) For R-ideals I, J ,

ordP(I + J) = min(ordP(I), ordP(J)).

(c) For any R-ideal I, there exists an α ∈ F such that ordP((α)) = ordP(I) for any
prime R-ideal P

�� I.

(We will have occasion to invoke this new concept when we have developed the tools to
study reciprocity laws—see Proposition 6.8 on page 296 and the discussion following
it.)

1.45. Prove that every R-ideal in a Dedekind domain R can be generated by at most two
elements.

(Hint: Use Exercise 1.44.)

1.46. Prove that D is a Dedekind domain if and only if D is integrally closed, every nonzero
prime ideal is maximal, and D is Noetherian.

1.47. With reference to Exercise 1.25 on page 14, prove that an almost Euclidean domain
is a PID, and hence Noetherian.

(Note that this is stronger than Exercise 1.25 since there are UFDs that are not
PIDs—see Remark 1.11 on page 22.)

1.48. Prove the converse of Exercise 1.47, namely that a PID is almost Euclidean.

(Hint: Define a function φ on the PID such that φ(α) = 2n where n ∈ N is the number
of irreducibles into which α uniquely factors.)

(Exercises 1.47–1.48 verify the assertion made in Exercise 1.25 wherein we noted that
Greene [25] proved: D is almost Euclidean domain if and only if D is a PID.)

1.49. Determine whether or not

I =
� n

2m
: n,m ∈ Z,m ≥ 0, n > 0

�

is a fractional Z-ideal.

1.50. Let F = Q(
√
10) and OF = Z[

√
10]. Find the inverse of the OF -ideal

I = (6, 2 +
√
10)

—see Definition 1.25 on page 27.
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1.6 Algebraic Numbers and Number Fields

Only a fool learns from his own mistakes. The wise man learns from the mistakes of
others.

Otto von Bismark (1815–1898), German statesman

§1.1–§1.5 built the foundation for us to introduce the fundamentals of algebraic number
theory. This involves the generalization of the integral domain Z and its quotient field Q.
To see how this is done, we consider the elements of Z as roots of linear monic polynomials,
namely if a ∈ Z, then a is a root of f(x) = x− a. Then we generalize as follows, with some
of what follows adapted from [54].

Definition 1.28 — Algebraic Integers

If α ∈ C is a root of a monic, integral polynomial of degree d, namely a root of a polynomial
of the form

f(x) =
d�

j=0

ajx
j = a0 + a1x+ · · ·+ ad−1x

d−1 + xd ∈ Z[x],

which is irreducible over Q, then α is called an algebraic integer of degree d.

Example 1.25 a + b
√
−1 = a + bi, where a, b ∈ Z, with b �= 0 is an algebraic integer of

degree 2 since it is a root of x2 − 2ax + a2 + b2 but not a root of a linear, integral, monic
polynomial since b �= 0.

In Definition 1.3 on page 2 we introduced primitive roots of unity which are a distinguished
type of algebraic integer. Another special type of algebraic integer is given by the following.

Example 1.26 Numbers of the form z0 + z1ζn + z2ζ2n + · · · + zn−1ζn−1
n

, for zj ∈ Z are
called cyclotomic integers of order n.

Now we develop the generalization of the rational number field as a quotient field of a special
ring for which this sets the stage.

Definition 1.29 — Algebraic Numbers and Number Fields

An algebraic number, α, of degree d ∈ N is a root of a monic polynomial in Q[x] of degree
d and not the root of any polynomial in Q[x] of degree less than d. In other words, an
algebraic number is the root of an irreducible polynomial of degree d over Q. Denote the
subfield of C consisting of all algebraic numbers by N , and the set of all algebraic integers
in N by A. An algebraic number field, or simply number field, is of the form

F = Q(α1, α2, . . . , αn) ⊆ C with n ∈ N where αj ∈ N for j = 1, 2, . . . , n.

An algebraic number of degree d ∈ N over a number field F is the root of an irreducible
polynomial of degree d over F .

Remark 1.18 If F is a simple extension, namely of the form Q(α), for an algebraic number
α, then we may consider this as a vector space over Q, in which case we may say that Q(α)
has dimension d over Q having basis {1, α, . . . , αd−1}. (See Theorem A.4 on page 325. Also,
see Exercise 1.51 on page 43 to see that all number fields are indeed simple.)
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By Definition 1.29, Q is the smallest algebraic number field since it is of dimension 1 over
itself, and the simple field extension Q(α) is the smallest subfield of C containing both Q
and α.

We now demonstrate that A, as one would expect, has the proper structure in N , which
will lead us to a canonical subring of algebraic number fields. If necessary, the reader may
review the basics on modules beginning on page 323 in Appendix A.

Theorem 1.22 — The Ring of All Algebraic Integers

A is a subring of N .

Proof. It suffices to prove that if α,β ∈ A, then both α + β ∈ A and αβ ∈ A. To this end
we need the following.

Claim 1.3 If α ∈ A, then Z[α] = {f(α) : f(x) ∈ Z[x]} is a finitely generated Z-module.

Since α ∈ A, then there exist aj ∈ Z for j = 0, 1, . . . , d− 1 for some d ≥ 1 such that

αd − ad−1α
d−1 − · · · − a1α− a0 = 0.

Therefore,

αd = ad−1α
d−1 + ad−2α

d−2 + · · ·+ a1α+ a0 ∈ Zαd−1 + · · ·+ Zα+ Z,

and

αd+1 = ad−1α
d + ad−2α

d−1 + · · ·+ a1α
2 + a0α ∈ Zαd + Zαd−1 + · · ·+ Zα2 + Zα

⊆ Zαd−1 + Zαd−2 + · · ·+ Zα+ Z.

Continuing in this fashion we conclude, inductively, that

αc ∈ Zαd−1 + Zαd−2 + · · ·+ Zα+ Z,

for any c ≥ d. However, clearly,

αc ∈ Zαd−1 + Zαd−2 + · · ·+ Zα+ Z,

for c = 1, 2, · · · , d− 1, so

αc ∈ Zαd−1 + Zαd−2 + · · ·+ Zα+ Z,

for any c ≥ 0. Hence, Z[α] is a finitely generated Z-module. This completes Claim 1.3.

By Claim 1.3, both Z[α] and Z[β] are finitely generated. Suppose that a1, a2, . . . , ak are
generators of Z[α] and b1, b2, . . . , b� are generators of Z[β]. Then Z[α,β ] is the additive
group generated by the aibj for 1 ≤ i ≤ k and 1 ≤ j ≤ �. Thus, Z[α,β ] is finitely generated.
Since α+ β, αβ ∈ Z[α,β ] ⊆ A we have secured the theorem. ✷

Given an algebraic number field F , F ∩A is a ring in F , by Exercise 1.29 on page 19. This
leads to the following.

Definition 1.30 — Rings of Integers

If F is an algebraic number field, then F ∩A is called the ring of (algebraic) integers of F ,
denoted by OF .
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With Definition 1.30 in hand, we may now establish a simple consequence of Theorem 1.22.

Corollary 1.11 The ring of integers of Q is Z, namely OQ = Q ∩ A = Z.

Proof. If α ∈ A ∩ Q, then α = a/b where a, b ∈ Z and gcd(a, b) = 1, with b �= 0. Since
α ∈ A, there exists an

f(x) = a0 +
d�

j=1

ajx
j ∈ Z[x]

with ad = 1, such that f(α) = 0. If d = 1, then we are done, since a0 + α ∈ Z and a0 ∈ Z.
If d > 1, then

a0 +
d�

j=1

ajα
j ∈ Z

so
d�

j=1

ajα
j =

d�

j=1

ajajbd−j

bd
∈ Z.

Therefore, bd divides
�

d

j=1 aja
jbd−j . Since d > 1, b divides

�
d−1
j=1 aja

jbd−j , so b
�� ad. But

gcd(a, b) = 1, so b = 1 and α ∈ Z. ✷

Corollary 1.12 If F is an algebraic number field, then Q ∩OF = Z.

Proof. Since OF ⊆ A, then by Corollary 1.11, Q∩OF ⊆ Q∩A = Z. But clearly Z ⊆ Q∩OF ,
so we have equality. ✷

Remark 1.19 In order to state the next result, we require a few comments on the notion
of finite generation. By Definition 1.29 and Claim 1.3 in the proof of Theorem 1.22, we
know that for any number field F , OF is finitely generated as a Z-module. Thus, any OF -
ideal I will have a representation as I = (α1, α2, . . . , αd) with αj ∈ OF for j = 1, 2, . . . , d,
and we say that I is finitely generated. In the instance where d = 1, we are in the case of
Definition 1.13 on page 15, namely a principal ideal. Also, see Remark 1.9 on page 15.

Corollary 1.13 If F is a number field, then OF is a Noetherian domain.

Proof. This follows from Remark 1.19 above and Lemma 1.2 on page 20. ✷

In Definition 1.22 on page 25, we defined integrality over a domain. Now we extend this
notion to algebraic numbers and number fields.

Definition 1.31 — Elements Algebraic Over a Domain

If R ⊆ S where R and S are integral domains, then if R is a field and α is integral over R,
then α is said to be algebraic over R. Also, if every nonconstant polynomial f(x) ∈ R[x]
has a root in R, then R is said to be algebraically closed. Moreover, any extension field that
is algebraic over R and is algebraically closed is called an algebraic closure of R, and it may
be shown that an algebraic closure is unique up to isomorphism.

Remark 1.20 In view of Definition 1.29 on page 35, and Definition 1.31 above, we may
now restate the notion of an algebraic number as a complex number that is algebraic over
Q. Moreover, in view of Definition 1.28 on page 35 and Definition 1.31, we see that an
algebraic integer is a complex number that is integral over Z.
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Given an element α that is algebraic over a number field F , Definition 1.31 tells us that
there is a monic polynomial mα,F (x) ∈ F [x] with mα,F (α) = 0. We may assume that mα,F

has minimal degree. Hence, mα,F must be irreducible, since otherwise, α would be the root
of a polynomial of lower degree. Thus chosen, mα,F (x) is called the minimal polynomial of
α over F . It turns out this polynomial is also unique.

Theorem 1.23 — Minimal Polynomials Are Unique

A number α ∈ C is an algebraic number of degree d ∈ N over a number field F if and only
if α is the root of an unique irreducible monic polynomial

mα,F (x) ∈ F [x].

Any h(x) ∈ F [x] such that h(α) = 0 must be divisible by mα,F (x) in F [x].

Proof. If α is an algebraic number of degree d over F , then by Definition 1.29, we may let
f(x) ∈ F [x] be a monic polynomial of minimal degree with f(α) = 0, and let h(x) ∈ F [x]
be any other monic polynomial of minimal degree with h(α) = 0. Then by the Euclidean
algorithm for polynomials (see Theorem A.13 on page 333) there exist q(x), r(x) ∈ F [x]
such that

h(x) = q(x)f(x) + r(x), where 0 ≤ deg(r) < deg(f) or r(x) = 0, the zero polynomial.

However f(α) = 0 so h(α) = 0 = f(α), and r(α) = 0, contradicting the minimality of f
unless r(x) = 0 for all x. Hence, f(x)

�� h(x). The same argument can be used to show that
h(x)

�� f(x). Hence, h(x) = cf(x) for some c ∈ F . However, f and h are monic, so c = 1
and h = f . This proves that f(x) = mα,F (x) is the unique monic polynomial of α over F .
The converse of the first statement follows a fortiori.

To prove the second statement, assume that h(x) ∈ F [x] such that h(α) = 0 and use the
Euclidean algorithm for polynomials as above to conclude that mα,F (x)

�� h(x) by letting
mα,F (x) = f(x) in the above argument. ✷

Corollary 1.14 An irreducible polynomial over an algebraic number field has no repeated
roots in C. In particular, all the roots of mα,F (x) are distinct.

Proof. If F is a number field and f(x) ∈ F [x] is irreducible with a repeated root α, then

f(x) = c(x− α)2g(x),

for some c ∈ F and g(x) ∈ C[x]. By Theorem 1.23, mα,F (x)
�� f(x) so f(x) = amα,F (x) for

some a ∈ F , since f is irreducible. However, f �(x) = 2c(x− α)g(x) + c(x− α)2g�(x), where
f � is the derivative of f . Hence, f �(α) = 0, so by Theorem 1.23, again mα,F (x)

�� f �(x),
contradicting the minimality of mα,F (x) since deg(f �) < deg(f). ✷

Corollary 1.15 If α ∈ A, then mα,Q(x) ∈ Z[x].

Proof. This follows from Definition 1.28 on page 35 and Theorem 1.23. ✷

Now our goal is to demonstrate that algebraic integers are sufficient to characterize algebraic
number fields. First we need the following crucial result.

Lemma 1.4 — Algebraic Numbers as Quotients of Integers

Every algebraic number is of the form α/� where α is an algebraic integer and � ∈ Z is
nonzero.
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Proof. By Definition 1.29, if γ is an algebraic number, there exist aj ∈ Q for j =
0, 1, 2, . . . , d− 1 such that γ is a root of

f(x) = a0 + a1x+ a2x
2 + · · ·+ ad−1x

d−1 + xd.

Since
a0 + a1γ + a2γ

2 + · · ·+ ad−1γ
d−1 + γd = 0

we may form the least common multiple, �, of the denominators of the aj for j = 0, 1, . . . , d.
Then multiplying through by �,

(�γ)d + (�ad−1)(�γ)
d−1 + · · ·+ (�d−1a1)(�γ) + �da0 = 0.

Thus �γ is the root of a monic integral polynomial, so �γ is an algebraic integer, say, α.
Hence, γ = α/�, with α ∈ A and � ∈ Z. ✷

Corollary 1.16 — Quotient Fields of Number Rings

If F is a number field, then the quotient field of OF is F .

Proof. Let K = {αβ−1 : α,β ∈ OF , β �= 0} be the quotient field of OF . Suppose that
γ = αβ−1 ∈ K. Since OF ⊆ F , then γ ∈ F , so K ⊆ F . Now if γ ∈ F , then by Lemma 1.4,
γ = α/� where α ∈ A and � ∈ Z. However, since α = γ� ∈ F ∩ A = OF by Definition 1.30
on page 36, then α ∈ OF ⊆ F , so K ⊆ F . Hence, K = F . ✷

Theorem 1.24 — The Primitive Element Theorem for Number Fields

If F is an algebraic number field, then there is an algebraic integer α such that F = Q(α).

Additionally, if β is algebraic over F with minimal polynomial mβ,F (x), then

|F (β) : F | = deg(mβ,F ).

Proof. By Exercise 1.51 on page 43, F = Q(γ) for some algebraic number γ, and by Lemma
1.4, Q(γ) = Q(α/�) = Q(α) or some α ∈ A.
The second statement will follow if we can show that every element δ ∈ F (β) is uniquely
represented in the form

δ =
d−1�

j=0

ajβ
j ∈ F [β],

where deg(mβ,f (x)) = d. Since δ = f(β)/g(β) with f(x), g(x) ∈ F [x] and g(β) �= 0,
then by Theorem 1.23 on the facing page, mβ,F (x) does not divides g(x). Therefore,
gcd(g(x),mβ,F (x)) = 1, so by Theorem A.13, there exist s(x), t(x) ∈ F [x] such that
s(x)g(x)+t(x)mβ,F (x) = 1. Sincemβ,F (β) = 0 then s(β) = 1/g(β). Thus, δ = f(β)/g(β) =
f(β)s(β). Let h(x) = f(x)s(x) ∈ F [x]. By Theorem A.13 again, there exist q(x), r(x) ∈
F [x] such that h(x) = q(x)mβ,F (x) + r(x) such that deg(r) < deg(mβ,F (x)) or r(x) = 0.
However,

δ = f(β)s(β) = h(β) = q(β)mβ,F (β) + r(β) = r(β).

It remains to show that r(x) is unique. Suppose that v(x) ∈ F [x] such that deg(v) ≤ d− 1
and δ = v(β). Thus, r(β)− v(β) = 0 so β is a root of r(x)− v(x) ∈ F [x] contradicting the
minimality of mβ,F (x), whence r(x) − v(x) = 0, the zero polynomial, namely r(x) = v(x)
as required to secure the second statement. ✷
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Example 1.27 Let E = Q(
√
2, i), where i = ζ4 =

√
−1 is a primitive fourth root of unity.

Then by Exercise 1.53 on page 43,

Q(i,
√
2) = Q

�
1 + i√

2

�
, and ζ8 =

1 + i√
2
.

Example 1.28 If F = Q(i) and α = ζ8 is a primitive eight root of unity, then

mα,F (x) = x2 − i

is the minimal polynomial of α over F . Moreover, the minimal polynomial of α over Q is
given by

mα,Q(x) =
x8 − 1

x4 − 1
= x4 + 1,

which is an example of the following type of distinguished polynomial.

Definition 1.32 — Cyclotomic Polynomials

If n ∈ N, then the nth cyclotomic polynomial is given by

Φn(x) =
�

gcd(n,j)=1

1≤j≤n

(x− ζj
n
),

where ζn is given by Definition 1.3 on page 2. The degree ofΦ n(x) is φ(n), where φ(n) is
the Euler totient—see Definition A.22 on page 342.

Remark 1.21 The reader may think of the term cyclotomic as “circle dividing,” since
the nth roots of unity divide the unit circle into n equal arcs. The cyclotomic polynomial
also played a role in Gauss’s theory of constructible regular polygons—see [20, §365–§366,
pp. 458–460].

Note that since the roots of the nth cyclotomic polynomial are precisely the primitive nth

roots of unity, then the degree ofΦ n(x) is necessarily φ(n). We now demonstrate the
irreducibility of the cyclotomic polynomial.

Theorem 1.25 — Irreducibility of the Cyclotomic Polynomial

For n ∈ N, Φn(x) = mζn,Q(x), soΦ n(x) is irreducible in Z[x].

Proof. We may let
Φn(x) = mζn,Q(x)g(x) for some g(x) ∈ Z[x]

by Theorem 1.23 on page 38.

Claim 1.4 mζn,Q(ζ
p

n
) = 0 for any prime p � n.

If mζn,Q(ζ
p

n
) �= 0, then g(ζp

n
) = 0, so ζn is a root of g(xp). By Theorem 1.23 again,

g(xp) = mζn,Q(x)h(x) for some h(x) ∈ Z[x]. Let

f(x) =
�

j

ajx
j ∈ Z[x]
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have image

f(x) =
�

j

ajx
j

under the natural map
Z[x] �→ (Z/pZ)[x].

Thus,
g(xp) = mζn,Q(x)h(x).

However, g(xp) = gp(x) since char(Z/pZ) = p. Therefore, 0 = g(ζp
n
) = (g(ζn))p = g(ζn).

SinceΦ n(x)
�� (xn − 1), then

xn − 1 = Φn(x)k(x) = mζn,Q(x)g(x)k(x),

for some k(x) ∈ Z[x]. Therefore, in Z/pZ[x],

xn − 1 = xn − 1 = mζn,Q(x)g(x)k(x).

Since g and mζn,Q have a common root ζn, then xn − 1 has a repeated root. However,
this is impossible by irreducibility criteria for polynomials over finite fields, since p � n, (see
Corollary A.8 on page 332 where we see:

xn − 1 is irreducible if and only if gcd(xn − 1, xp
i

− x) = 1 for 1 ≤ i ≤ �n/2�).

We have established Claim 1.4, namely that ζp
n
is a root of mζn,Q(x) for any prime p � n.

Repeated application of the above argument shows that yp is a root of mζn,Q(x) whenever y
is a root. Hence, ζj

n
is a root of mζn,Q(x) for all j relatively prime to n such that 1 ≤ j < n.

Thus, deg(mζn,Q) ≥ φ(n). However, mζn,Q(x)
�� Φn(x) so

mζn,Q(x) = Φn(x),

as required. ✷

Corollary 1.17 For n ∈ N, |Q(ζn) : Q| = φ(n).

Proof. By Theorems 1.24–1.25, in view of Definition 1.32, the result follows. ✷

At this juncture, we look at general properties of units in rings of integers, in keeping with
one of the themes of this section.

Proposition 1.1 Let α ∈ A. Then the following are equivalent.

(a) α is a unit.

(b) α
�� 1 in A.

(c) If F = Q(α), then mα,F (0) = ±1.

Proof. The equivalence of (a) and (b) comes from Definition 1.1 on page 1. Now assume
that α is a unit. Then, by Exercise 1.52 on page 43,

mα,F (0) = (−1)d
d�

j=1

αj = ±1

if and only if α ∈ UF , so (a) and (c) are equivalent. ✷

One of our main goals is the following result that leads us toward a unique factorization
theory for ideals in rings of algebraic integers. In order to state it we need the following
result which is motivated by Example 1.18 on page 15.
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Lemma 1.5 — OF-Ideals Intersecting Z
If F is a number field and I is a nonzero OF -ideal, then I ∩ Z contains a nonzero element
of Z.

Proof. Let α ∈ I where α �= 0 and consider mα,Q(x) = a0+a1x+ · · ·+ad−1xd−1+xd, where
aj ∈ Z for all j = 0, 1, . . . , d− 1 by Corollary 1.15 on page 38. If d = 1, then a0 = −α �= 0,
and if d > 1, then a0 �= 0 since mα,Q(x) is irreducible in Q[x] by Corollary 1.15. Hence,

a0 = −a1α− · · · − ad−1α
d−1 − αd ∈ I

as required. ✷

Theorem 1.26 — Rings of Integers are Dedekind Domains

If F is an algebraic number field, then OF is a Dedekind domain.

Proof. By Corollary 1.13 on page 37 (in view of the comment on condition (A) in Re-
mark 1.12 on page 26), condition (A) of Definition 1.23 on page 25 is satisfied.

Now we show condition (B) holds. Assume that there is a prime OF -ideal P �= (0) that is
not maximal. Therefore, the set S, of all proper OF -ideals that strictly contain P, must
be nonempty. By Corollary 1.4 on page 21, there is a maximal ideal M ∈ S such that
P ⊂ M ⊂ OF . By Theorem 1.10 on page 18, M is a prime OF -ideal. By Lemma 1.5, there
exists a nonzero a ∈ P ∩ Z. By Exercise 1.29 on page 19, P ∩ Z is a Z-ideal.
Suppose that ab ∈ P∩Z, where a, b ∈ Z. Since P is a prime OF -ideal, then a ∈ P or b ∈ P so
a ∈ P∩Z or b ∈ P∩Z, which means that P∩Z is a prime Z-ideal. If p ∈ P∩Z is a rational
prime, then (p) ⊆ P ∩ Z and (p) is a maximal Z-ideal by Theorem 1.11 on page 18 since
Z/(p) is a field by Example 1.21 on page 19. Hence, since P ∩ Z �= Z, we have (p) = P ∩ Z.
However, (p) = P ∩ Z ⊆ M ∩ Z ⊂ Z, where 1 �∈ M , so (p) = P ∩ Z = M ∩ Z. Since M ∈ S,
then P �= M , so there exists an α ∈ M such that α �∈ P. Consider

mα,Q(x) = xd + ad−1x
d−1 + · · ·+ a1x+ a0 ∈ Z[x] for some d ∈ N.

Then mα,Q(α) = 0 ∈ P. Now define � ∈ N to be the least value for which there exist integers
bj such that

X = α� + b�−1α
�−1 + · · ·+ b1α+ b0 ∈ P, (1.22)

for j = 0, 1, · · · , �− 1. Since α ∈ M , then by properties of ideals,

Y = α(α�−1 + b�−1α
�−2 + · · ·+ b1) ∈ M. (1.23)

Since P ⊂ M , then by (1.22)–(1.23), X − Y = b0 ∈ M , so b0 ∈ M ∩ Z = P ∩ Z. If � = 1,
then α ∈ P, a contradiction, so � > 1. Thus, by (1.22),

α� + b�−1α
�−1 + · · ·+ b1α+ b0 − b0 = α(α�−1 + b�−1α

�−2 + · · ·+ b1) ∈ P.

However, since P is prime and α �∈ P, then α�−1 + b�−1α�−2 + · · · + b1 ∈ P, contradicting
the minimality of � > 1. We have shown S = ∅, which establishes that condition (B) of
Definition 1.23 holds.
For condition (C), we note that since F is the quotient field of OF by Corollary 1.16 on
page 39, then any α ∈ F is integral over OF . Since OF is integral over Z, then by part (e)
of Exercise 1.40 on page 33, α is integral over Z. In other words, α is an algebraic integer
in F , namely α ∈ OF . Hence, OF is integrally closed and we have part (C) that establishes
the entire result. ✷
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Exercises

1.51. Prove that if an algebraic number field F is of the form

F = Q(α1, α2, . . . , αn)

for n ∈ N where αj for j = 1, 2, . . . , n are algebraic numbers, then there is an alge-
braic number γ such that F = Q(γ). (Hence, all algebraic number fields are simple
extensions of Q.)

(Hint: It suffices to prove this for n = 2 with α1 = α and α2 = β. Let

mα,Q(x) =
dα�

j=1

(x− αj),

where the αj are the conjugates of α over Q, and let

mβ,Q(x) =
dβ�

j=1

(x− βj),

where the βj are the conjugates of β1 = β over Q. Select q ∈ Q with

q �= (α− αk)/(βj − β)

for any k = 1, 2, . . . , dα and any j = 1, 2, . . . , dβ Also, let

γ = α+ qβ

and
f(x) = mα,Q(γ − qx).

Prove that β is the only common root of f(x) and mβ,Q(x). Show that this implies
Q(α,β ) ⊆ Q(γ). The reverse inclusion is clear.)

1.52. Let F be an algebraic number field. Prove that if α ∈ UF , then αj ∈ UF for all
j = 1, 2, . . . , d, where mα,F (x) = xd + ad−1xd−1 + · · · + a1x + a0, for some d ∈ N is
the minimal polynomial of α over F , and αj are the roots of mα,F (x). Conclude that

if F is an algebraic number field, then α ∈ UF if and only if
�

d

j=1 αj = ±1.

1.53. Referring to Example 1.27 on page 40, prove that

Q(i,
√
2) = Q

�
1 + i√

2

�
,

and that if ζ8 is a primitive eighth root of unity, then it is an odd power of (1+ i)/
√
2.

1.54. Prove that
xn − 1 =

�

d

��
n

Φd(x),

whereΦ d(x) is the cyclotomic polynomial given in Definition 1.32 on page 40.
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1.7 Quadratic Fields

It’s not that I’m so smart; it’s just that I stay with the problem longer.
Albert Einstein (1879–1955), German-born theoretical physicist

In this section we use the tools developed in this chapter and apply them to quadratic fields.
This is a precursor to the general number field development later in the text and gives an
overview of the least nontrivial case of a number field extension of Q.

First we establish the rings of integers for quadratic fields. This extends our discussion begun
in Application 1.2 on page 3. Then, we show that a given quadratic field is determined by
a unique squarefree integer. We note that if f(x) = x2 + ax+ b ∈ Q[x], is irreducible, and
α ∈ C is a root of f(x), then the smallest subfield of C containing both Q and α is given
by adjoining α to Q, denoted by Q(α), so

Q(α) = {x+ yα : x, y ∈ Q}.

This is what we call a quadratic field, which we loosely discussed in Application 1.2 on
page 3.

Quadratic polynomials with the same squarefree part of the discriminant give rise to the
same quadratic field. To see this suppose that:

f(x) = x2 + bx+ c and g(x) = x2 + b1x+ c1 ∈ Q[x] are irreducible,

∆ = b2 − 4c = m2D,

and
∆1 = b21 − 4c1 = m2

1D,

where m,m1 ∈ Z and D is squarefree.

Then
Q(

√
∆) = Q(

√
m2D) = Q(m

√
D) = Q(

√
D)

= Q(m1

√
D) = Q

��
m2

1D

�
= Q(

�
∆1).

Thus, we need the following to clarify the situation on uniqueness of quadratic fields.

Theorem 1.27 — Quadratic Fields Uniquely Determined

If F is a quadratic field, there exists a unique squarefree integer D such that F = Q(
√
D).

Proof. Suppose that F = Q(α), where α is a root of the irreducible polynomial x2 + bx+ c.
By the well-known quadratic formula α ∈ {α1, α2}, where

α1 =
−b+

√
b2 − 4c

2
, and α2 =

−b−
√
b2 − 4c

2
.

Since α1 = −α2 − b with b ∈ Q, then Q(α1) = Q(α2) = Q(α). However,

Q(α1) = Q
�
−b+

√
b2 − 4c

2

�
= Q(

�
b2 − 4c).

Let a = b2 − 4c = e/f ∈ Q. Then a �= d2 for any d ∈ Q since x2 + bx + c is irreducible
in Q[x]. Without loss of generality we may assume that gcd(e, f) = 1 and f is positive.
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Let ef = n2D, where D is the squarefree part of ef . Hence, D �= 1, and arguing as in
the preamble to this theorem, Q(

√
D) = Q(

√
a), observing that Q(

�
e/f) = Q(

√
ef). This

shows existence. It remains to prove uniqueness.

If D1 is a squarefree integer such that Q(
√
D) = Q(

√
D1), then

√
D = u + v

√
D1 with

u, v ∈ Q. By squaring, rearranging, and assuming that uv �= 0, we get

�
D1 =

D − u2 −Dv2

2uv
∈ Q,

which contradicts thatD1 is squarefree. Thus, uv = 0. If v = 0, then
√
D ∈ Q, contradicting

the squarefreeness of D. Therefore, u = 0 and D = v2D1, but again, D is squarefree, so
v2 = 1, which yields that D = D1. ✷

Now we are in a position to determine the ring of integers of an arbitrary quadratic field,
which we motivated in Application 1.2 on page 3.

Theorem 1.28 — Rings of Integers in Quadratic Fields

Let F be a quadratic field and letD be the unique squarefree integer such that F = Q(
√
D).

Then

OF =

�
Z
�
1+

√
D

2

�
if D ≡ 1(mod 4),

Z[
√
D] if D �≡ 1(mod 4).

Proof. Let

σ =

�
2 if D ≡ 1(mod 4),
1 if D �≡ 1(mod 4).

Then since (1 +
√
D)/σ is a root of x2 − 2x/σ + (1−D)/σ2 we have

Z+ Z
�
σ − 1 +

√
D

σ

�
⊆ OF .

It remains to prove the reverse inclusion.

Let α ∈ OF ⊆ F . Then α = a + b
√
D where a, b ∈ Q. We may assume that b �= 0, since

otherwise we are done, given that

Z ⊆ Z+ Z
�
σ − 1 +

√
D

σ

�
.

Since OF is a ring, then α� = (a − b
√
D), α + α� = 2a, and αα� = a2 − Db2 are all in

OF . However, the latter two elements are also in Q, and by Corollary 1.12 on page 37,
OF ∩Q = Z, so

2a, a2 −Db2 ∈ Z. (1.24)

Case 1.1 a �∈ Z.

We must have a = (2c+ 1)/2 for some c ∈ Z. Therefore, by (1.24), 4(a2 −Db2) ∈ Z, which
implies 4Db2 ∈ Z. However, since D is squarefree, then 2b ∈ Z. (To see this, observe that
if 2b = g/f where g, f ∈ Z with gcd(f, g) = 1, and f > 1 is odd, then 4Dg2 = f2h for some
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h ∈ Z. Thus, since gcd(4g, f) = 1, f2
�� D contracting its squarefreeness.) If b ∈ Z then, by

(1.24), a ∈ Z, contradicting that a = (2c+ 1)/2. Therefore, b = (2k + 1)/2 for some k ∈ Z.
Thus,

a2 −Db2 =
(2c+ 1)2

4
− D(2k + 1)2

4
= c2 + c− (k2 + k)D +

1−D

4
,

which implies (D − 1)/4 = c2 + c− (k2 + k)D − a2 +Db2 ∈ Z, hence, D ≡ 1(mod 4) and:

α =
2c+ 1

2
+

(2k + 1)
√
D

2
= (c− k) +

(2k + 1)(1 +
√
D)

2

∈ Z+ Z
�
1 +

√
D

2

�
= Z+ Z

�
σ − 1 +

√
D

σ

�
.

Case 1.2 a ∈ Z.

In this instance, by (1.24), Db2 ∈ Z, and arguing as above, since D is squarefree, b ∈ Z.
Hence,

α = a+ b
√
D ∈ Z+ Z

√
D = Z+ Z

�
σ − 1 +

√
D

σ

�
,

which completes the reverse inclusion that secures the theorem. ✷

Definition 1.33 — Quadratic Field Discriminants

If D is the unique squarefree integer such that F = Q(
√
D) is a quadratic field, then the

discriminant of F is given by

∆F =

�
D if D ≡ 1(mod 4),
4D if D �≡ 1(mod 4).

Remark 1.22 Definition 1.33 follows from the fact that the minimal polynomial of F is
x2 − x + (1 − D)/4 if D ≡ 1(mod 4), and is x2 − D if D �≡ 1(mod 4). In §2.3, we will
study general number field discriminants and prove the fact, implicit in Definition 1.33,
namely∆ F ≡ 0, 1(mod 4), holds for any number field F . This is known as Stickelberger’s
Theorem—see Biography 1.4 on page 54 and Theorem 2.10 on page 77.

Example 1.29 Suppose we have an irreducible quadratic polynomial

f(x) = ax2 + bx+ c ∈ Q[x].

Then ∆= b2−4ac is the discriminant not only of f(x), but also the quadratic field Q(
√
∆).

By the quadratic formula, the roots of f(x) are given, since a �= 0, by

α =
−b+

√
∆

2a
, and α� =

−b−
√
∆

2a
,

where α� is called the algebraic conjugate of α. By Exercise 1.1 on page 6, Q(α) = Q(
√
∆),

which we know is a simplest nontrivial number field, a quadratic field over Q.

The reader will note that some easily verified properties of conjugates are given as follows.

(a) (αβ)� = α�β�.

(b) (α± β)� = α� ± β�.

(c) (α/β)� = α�/β�, where α/β = δ ∈ Q(
√
∆).
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Remark 1.23 If D < 0 in Theorem 1.28 on page 45, F is called a complex (or imaginary)
quadratic field, and if D > 0, F is called a real quadratic field. Also, the group of units in
a quadratic field forms an abelian group. For real quadratic fields we will learn about this
group later, since it is more complicated than the complex case which we now tackle. The
reader will recall the notion of groups and notation for a cyclic group, �g�, generated by an
element g—see Definition A.3 on page 320.

Theorem 1.29 — Units in Complex Quadratic Fields

If F = Q(
√
D) is a complex quadratic field, then

UF = UOF
=






�ζ6� =
�

1+
√
−3

2

�
if D = −3,

�ζ4� = �
√
−1� if D = −1,

�ζ2� = �−1� otherwise.

Proof. By Theorem 1.28 we may write u = a + b
√
D ∈ UOF

, with σa, σb ∈ Z where σ is
defined as in the proof of Theorem 1.28. Hence, if D �≡ 1(mod 4), then a2 − b2D = 1, for
some a, b ∈ Z. If D < −1, then a2− b2D > 1 for b �= 0. Thus, b = 0 for D �≡ 1(mod 4) with
D < −1. In other words,

UOF
= �−1� = �ζ2� if D ≡ 2, 3 (mod 4) and D < −1.

Now we assume that D ≡ 1(mod 4), so a2−Db2 = 4 for a, b ∈ Z. If D < −4, then for b �= 0,
a2 − Db2 > 4, a contradiction. Hence, for D ≡ 1(mod 4) and D < −4, UOF

= �ζ2�. It
remains to consider the casesD = −1,−3. IfD = −1, then by Theorem 1.28, OF = Z+Z[i],
and a+bi is a unit inOF if and only if a2+b2 = 1. The solutions are (a, b) ∈ {(0±1), (±1, 0)}.
In other words,

UQ[i] = {±1,±i}.

If D = −3, then a2 + 3b2 = 4, so either a = b = 1, or b = 0 and a = 2. Hence, the units are
±1, (1±

√
−3)/2, and (−1±

√
−3)/2. However, 1 = ζ66 and we have: −1 = ζ36 ,

(1 +
√
−3)/2 = ζ6,

(1−
√
−3)/2 = ζ56 ,

(−1 +
√
−3)/2 = ζ26 ,

and
(−1−

√
−3)/2 = ζ46 .

Hence,
UOQ(

√
−3)

= �ζ6�,

as required. ✷

Now we look at multiplication of ideals in quadratic fields. If the reader is in need of a
reminder about the basics involved in modules and their transition to ideals in the rings of
integers in quadratic fields, then see Exercises 1.55–1.58. In any case, see Exercise 1.62 on
page 54.
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Multiplication Formulas for Ideals in Quadratic Fields
.

Suppose that
F = Q(

√
D)

is a quadratic number field, and OF is its ring of integers–see Theorem 1.28 on
page 45. Let∆ F be the field discriminant given in Definition 1.33 on page 46,
and for j = 1, 2 with aj ∈ N, bj ∈ Z, let

Ij = (aj , (bj +
�
∆F )/2),

be OF -ideals. Then

I1I2 = (g)

�
a3,

b3 +
√
∆F

2

�
,

where
a3 =

a1a2
g2

,

g = gcd

�
a1, a2,

b1 + b2
2

�
,

and

b3 ≡ 1

g

�
δa2b1 + µa1b2 +

ν

2
(b1b2 +∆F )

�
(mod 2a3),

where δ, µ, and ν are determined by

δa2 + µa1 +
ν

2
(b1 + b2) = g.

Note the above formulas are intended for our context, namely the ring of integers of a
quadratic field OF , called the maximal order. In an order contained in OF that is not
maximal, the above does not work unless we restrict to invertible ideals. For the details
on, and background for, orders in general, see either [49, §1.5] or [50, §3.5]. Also, see
Definition 1.25 on page 27 and Exercise 1.43 on page 33.

Example 1.30 Consider∆ F = 40, with

I1 = (3, 1 +
√
10) and I2 = (3,−1 +

√
10),

so in the notation of the above description of formulas for multiplication, we have

a1 = a2 = 3, b1 = 2 = −b2, g = 3, δ = 0 = ν, µ = 1, b3 = 1 , and a3 = 1,

so
I1I2 = (3, 1 +

√
10)(3,−1 +

√
10) = (3). (1.25)

Hence, the product of I1 and I2 is the principal ideal (3) in Z[
√
10] = OF , and by Theo-

rem 1.8 on page 16, (3) is not a prime ideal in OF since (3) divides I1I2 but does not divide
either factor. To see this, note that if

(3)
�� (3,±1 +

√
10),

then by Lemma 1.1 on page 17,

(3,±1 +
√
10) ⊆ (3),
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which is impossible since it is easy to show that ±1+
√
10 �∈ (3). Moreover, by Exercise 1.61

on page 54, I1 and I2 are prime OF -deals.

Example 1.30 motivates a study of prime decomposition of ideals in quadratic fields. For
instance, (1.25) is the decomposition of the ideal (3) in Z[

√
10] = OF into the product of the

two prime ideals I1 and I2. In what follows, we have a complete description. The notation
(D/p) in the following denotes the Legendre symbol—see Definition A.23 on page 342. Also,
the symbol N(P) will denote the norm of a quadratic ideal as defined in Exercise 1.58 on
page 54.

Theorem 1.30 — Prime Decomposition in Quadratic Fields

If OF is the ring of integers of a quadratic field F = Q(
√
D), and p ∈ Z is prime, then the

following holds.

(p) = pOF =






P1P2 if p > 2,(D/p) = 1, or p = 2, D ≡ 1 (mod 8),
where Pj , are distinct prime OF -ideals for j = 1, 2
and N(Pj) = p,

P if p > 2, (D/p) = −1, or p = 2, D ≡ 5 (mod 8),
where P is a prime OF -ideal with N(P) = p2,

P
2 if p > 2, p

�� D, or p = 2, D ≡ 2, 3 (mod 4),
where P is a prime OF -ideal with N(P) = p.

Proof. For the sake of simplicity of elucidation in the following Cases 1.3–1.5, we present
only the instance where OF = Z[

√
D] since the proof for OF = Z[(1 +

√
D)/2] is similar.

Case 1.3 (D/p) = 1 for p > 2.

The Legendre symbol equality tells us that there exists a b ∈ Z such that

b2 ≡ D (mod p).

Also, since p � D, then p � b. Let

P1 = (p, b+
√
D) and P2 = (p,−b+

√
D).

If P1 = P2, then
2b = b+

√
D − (−b+

√
D) ∈ P1,

so p
�� 2b by the minimality of p as demonstrated in Exercises 1.56–1.58, namely

2b ∈ P1 ∩ Z = (p).

Thus, P1 and P2 are distinct OF -ideals. By the multiplication formulas given on page 48,
we have, in the notation of those formulas, a3 = 1 and g = p, so

P1P2 = (p).

Case 1.4 (D/p) = −1 for p > 2.

Let αβ ∈ (p), where

α = a1 + b1
√
D,β = a2 + b2

√
D ∈ Z[

√
D].
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Suppose that β �∈ (p). We have

αβ = a1a2 + b1b2D + (a2b1 + a1b2)
√
D = p(x+ y

√
D),

for some x, y ∈ Z. Therefore,
a1a2 + b1b2D = px, (1.26)

and
a2b1 + a1b2 = py. (1.27)

If b1 = 0, then by (1.26), p
�� a1a2. If p

�� a1, then α = a1 ∈ (p), so by Definition 1.14 on
page 15, (p) is an OF -prime ideal. If p

�� a2, then p � b2 since β �∈ (p), so by (1.27) p
�� a1 and

we again have that α ∈ (p). Hence, we may assume that b1 �= 0. Similarly, we may assume
that a1 �= 0.

Multiplying (1.27) by a1 and subtracting b1 times (1.26), we get

b2(a
2
1 − b21D) = p(a1y − b1x).

If p
�� (a21 − b21D), then there exists a z ∈ Z such that a21 − b21D = pz. Therefore,

−1 =

�
D

p

�
=

�
b21D

p

�
=

�
a21 − pz

p

�
=

�
a21
p

�
= 1,

a contradiction. Hence, p
�� b2. By (1.27), this means that p

�� a2b1. If p
�� a2, then

p
�� (a2 + b2

√
D), so β ∈ (p),

a contradiction to our initial assumption. Thus, p
�� b1, so

p
�� (a1 + b1

√
D), which means that α ∈ (p).

Case 1.5 p > 2 and p
�� D.

Let P = (p,
√
D). Then by the multiplication formulas on page 48, with a3 = 1 and g = p

in the notation there, P2 = (p). This completes Case 1.5.

It remains to consider the three cases for p = 2.

Case 1.6 p = 2 and D ≡ 1(mod 8).

Let
P =

�
2, (1 +

√
D)/2

�
and P2 =

�
2, (−1 +

√
D)/2

�
.

Then by the multiplication formulas as used above with a3 = 1 and g = 2, we have

P1P2 = (2).

If P1 = P2, then
(1 +

√
D)/2 + (−1 +

√
D)/2 =

√
D ∈ P1

which is not possible. Thus, P1 and P2 are distinct. This is Case 1.6.

Case 1.7 p = 2 and D ≡ 5(mod 8).
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Let αβ ∈ (2), where

α = (a1 + b1
√
D)/2, β = (a2 + b2

√
D)/2 ∈ Z[(1 +

√
D)/2],

with aj and bj of the same parity for j = 1, 2. Suppose that β �∈ (2). We have

αβ =
a1a2 + b1b2D + (a2b1 + a1b2)

√
D

4
= 2

�
x+ y

√
D

2

�
= x+ y

√
D,

where x, y ∈ Z are of the same parity. Thus,

a1a2 + b1b2D = 4x, (1.28)

and
a2b1 + a1b2 = 4y. (1.29)

Multiplying (1.29) by a1 and subtracting b1 times (1.28), we get

b2(a
2
1 − b21D) = 4(ya1 − xb1).

If a21 − b21D is even, then either a1 and b1 are both odd or both even. In the former case,

1 ≡ a21 ≡ b21D ≡ 5 (mod 8),

a contradiction, so they are both even. Hence,

α = 2

�
a1/2 + (b1/2)

√
D

2

�
∈ (2),

so (2) is a prime OF -ideal by Definition 1.14. If b2 is even, then by (1.29), 2
�� a2b1. If 2

�� a2,
then

β = 2

�
a2/2 + (b2/2)

√
D

2

�
∈ (2),

contradicting our initial assumption. Hence, b1 is even and so a1 is even since they must be
of the same parity. As above, this implies that α ∈ (2). Thus, (2) is prime. This completes
Case 1.7.

Case 1.8 p = 2 and D ≡ 2(mod 4).

Let P = (2,
√
D), which is an OF -ideal by Exercise 1.61 on page 54. Moreover, P2 = (2),

by the multiplication formulas on page 48 with a3 = 1 and g = 2.

Case 1.9 p = 2 and D ≡ 3(mod 4).

Let P = (2, 1 +
√
D), which is an OF -ideal by Exercise 1.61. Moreover, as in Case 1.8,

P
2 = (2).

This completes all cases. ✷
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Remark 1.24 Although we have not developed the full decomposition theory for ideals
in general number fields, we will be able to talk about decomposition of ideals in quadratic
fields. The following terminology will be suited to the more general case—see §5.1—so we
introduce it here. Suppose that F = Q(

√
D) is a quadratic number field,∆ F is given as in

Definition 1.33 on page 46, and (∆F /p) denotes the Kronecker symbol—see Definition A.25
on page 343. If p ∈ Z is a prime, then

(p) is said to split in F if and only if

�
∆F

p

�
= 1,

(p) is said to ramify in F if and only if

�
∆F

p

�
= 0,

and

(p) is said to be inert in F if and only if

�
∆F

p

�
= −1.

Note, as well, that from the proof of Theorem 1.30, when (p) = P1P2, namely when (p) splits,
then P2 is the conjugate of P1. This means that if P1 = (p, b+

√
D) then P2 = (p,−b+

√
D).

Example 1.31 In Example 1.30 on page 48, with∆ F = 40, we saw that

(3) = I1I2 = (3, 1 +
√
10)(3,−1 +

√
10),

where �
∆F

3

�
=

�
40

3

�
= 1,

so (3) splits in Q(
√
10) into the two prime Z[

√
10]-ideals I1 and I2.

In Examples 1.19 on page 15 and 1.20 on page 16, we saw that (2) is not a prime ideal in
Z[i] and that (3) is a prime Z[i]-ideal. Since (2) = (1 + i)2, where

P = (2, 1 + i) = (1 + i) = (2, 1− i) = (1− i)

is a prime Z[i]-ideal, then (2) is ramified in F = Q(i), where
�
∆F

2

�
=

�
−4

2

�
= 0.

Also, (3) is a prime ideal and we see that
�
∆F

3

�
=

�
−4

3

�
= −1,

so (3) is inert in F .

The following illustration shows that the converse of Lemma 1.1 on page 17 does not hold
in general and that the multiplication formulas, on page 48, do not necessarily hold if we
do not have the ring of integers of a quadratic field in which to work.

Example 1.32 If R = Z[
√
5], then I = (2, 1 +

√
5) is an R-ideal by Exercise 1.57, and

clearly (2) = (2, 2
√
5) ⊆ I. If I

�� (2), then there exists an R-ideal J such that (2) = IJ .

Thus, J has a representation J = (a, b + c
√
D) with a, c ∈ N, b ∈ Z, 0 ≤ b < a, such that

c
�� a, c

�� b, and ac
�� (b2 − c2D). Moreover, J

�� (2), so by Lemma 1.1, (2) ⊆ J , so there exist
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x, y ∈ Z such that 2 = ax+ (b+ c
√
D)y. Therefore, y = 0 and a

�� 2. If a = 1, then I = (2),

which means that 1 +
√
5 ∈ (2), a contradiction, so a = 2. If b = 1, then c = 1, so

I2 = (2). (1.30)

However, by considering the multiplication of basis elements for I we see that

I2 = (4, 2(1 +
√
5), 6 + 2

√
5) = (4, 2(1 +

√
5)),

where the last equality follows since 6 + 2
√
5 is a linear combination of the other basis

elements so is redundant. Thus,

I2 = (4, 2(1 +
√
5)) = (2)(2, 1 +

√
5) = (2)I,

and combining this with (1.30), we get (2) = (2)I, which implies 2(1 +
√
5) ∈ (2), again

a contradiction. We have shown both that although (2) ⊂ I, I does not divide (2), and
that the multiplication formulas for ideals in R fail to hold. Note, that R is not the ring
of integers of a quadratic field by Theorem 1.28 on page 45. Indeed, by Corollary 1.7 on
page 27, R is not a Dedekind domain. For instance, (2) is a prime R-ideal but, by the above,
is not maximal, contradicting part (B) of Definition 1.23 on page 25. (R is what is known
as an order in OF = Z[(1 +

√
5)/2] for F = Q(

√
5) and I is an example of an ideal in R

which is not invertible in R—see [49, Chapter 1, pp. 23–30]. As we saw in Theorem 1.16
on page 27, all integral ideals in a Dedekind domain are invertible. Thus, the multiplication
formulas work in OF , but not in arbitrary orders where invertibility is not guaranteed.)

Exercises

1.55. Suppose that G is an additive abelian group, and that R is a commutative ring with
identity 1R which satisfy each of the following axioms:

(a) For each r ∈ R and g, h ∈ G, r(g + h) = (rg) + (rh).

(b) For each r, s ∈ R and g ∈ G, (r + s)g = (rg) + (sg).

(c) For each r, s ∈ R and g ∈ G, r(sg) = (rs)g.

(d) For each g ∈ G, 1R · g = g.

Then G is a (two-sided) module over R, or for our purposes, simply an R-module.
Prove that (in general) being a Z-module is equivalent to being an additive abelian
group.

1.56. Let R = Z[ωD], D ∈ Z not a perfect square, and ωD = (σ − 1 +
√
D)/σ, with σ = 1

if D �≡ 1(mod 4) and σ = 2 otherwise—see Application 1.2 on page 3. Then every
Z-submodule of R has a representation in the form

I = [a, b+ cωD]

where a, c ∈ N and b ∈ Z with 0 ≤ b < a. Moreover, a is the smallest natural number
in I and c is the smallest natural number such that b+ cωD ∈ I for any b ∈ Z. (Note
that when c = 1, I is called primitive.)

1.57. With reference to Exercise 1.56, prove that I = (a, b+ cωD) is an R-ideal if and only
if c

�� a, c
�� b, and

(σb+ c(σ − 1))2 ≡ c2D (mod σ2ac). (1.31)

(Note that we use the square brackets for Z-modules and the round brackets for
ideals.)
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1.58. With reference to Exercise 1.56, prove that the Z-module [a, b + cωD] for a, c ∈ N,
b ∈ Z, is an R-ideal (a, b+ cωD) if and only if c

�� a, c
�� b, and (1.31) is satisfied. (Here

a is the smallest natural number in I, called the norm of I, denoted by N(I).)

1.59. Let [α,β ] = αZ + βZ and [γ,δ ] = γZ + δZ be two Z-modules, with α, β, γ,δ ∈ R,
where R is given in Exercise 1.56. Prove that [α,β ] = [γ,δ ] if and only if

�
α

β

�
= X

�
γ

δ

�
,

where X ∈ GL(2,Z), which is the general linear group of 2× 2-matrices with entries
from Z, namely, those 2×2-matrices A such that det(A) = ±1, also called unimodular
matrices. (Note that, in general, GL(n,Z) is the general linear group of n×n matrices
with entries from Z.)

1.60. With reference to Exercise 1.56, prove that if α ∈ R, and I = (a,α ) is an R-ideal,
then I = (a, na± α) for any n ∈ Z.

1.61. Let F be a quadratic number field and let P = (p, (b+
√
∆F )/2) be an OF -ideal where

p ∈ N is prime. Prove that P is a prime OF -ideal.

1.62. Verify the multiplication formulas on page 48.

Biography 1.4 Ludwig Stickelberger (1850–1936) was born on May 18, 1850
in the canton of Schaffenhausen, Switzerland as the son of a pastor. In 1867 he
graduated from a gymnasium,a from which he went to study at the University
of Heidelberg. Later he went to the University of Berlin to study under Karl
Weierstrass (1815–1897), achieving his doctorate in 1874. His thesis topic was
on transformations of quadratic forms to a diagonal form. Also, in 1874, he
received his Habilitation from Polytechnicum in Zurich (now ETH Zurich)—see
Footnote 1.1 on page 23. In 1879, he was appointed extraordinary professor in
the Albert Ludwigs University of Freiburg, and was promoted to full professor
in 1919. In 1924 he returned to Basel. Although he had married in 1895, both
his wife and son died in 1918. He died on April 11, 1936, and was buried beside
his wife and son in Freiburg.

His publication output was at best modest, but his contributions may be
characterized as important contributions to linear algebra, and algebraic num-
ber theory, including the theorem that bears his name—see Remark 1.22 on
page 46. He coauthored four published papers with Frobenius, three of them
on elliptic functions. Stickelberger is best known for two papers. The first,
Verallgemeinerung der Kreisteilung, generalizes results of Jacobi, Cauchy, and
Kummer on Gauss and Jacobi sums. He used these results to find annihilators
of class groups of abelian extensions of Q. The other, Über eine neue Eigen-
schaft der Diskriminante, shows that the Legendre symbol (∆F

p
) = (−1)n−g,

where the number field F has degree n over Q, and g is the number of prime
ideals in OF above p. The latter result implies the quadratic reciprocity law.
The results in both papers have been generalized over the years.

aThe Gymnasium in the German education system, is a form of secondary school with
a pronounced emphasis on academic achievement. This is comparable to the British former
grammar school system or with prep schools in the United States.

       



Chapter 2

Field Extensions

Good old Watson! You are the one fixed point in a changing age.
spoken by Sherlock Holmes in His Last Bow (1917), title story.

Sir Arthur Conan Doyle (1859–1930)
Scottish-born writer of detective fiction

In this chapter we explore in greater detail the notion of an algebraic number field intro-
duced in Definition 1.29 on page 35, via generalizations thereof, which we develop in §2.1.
In particular, this is a foundation for Galois theory, and a generalization of prime decom-
position motivated by our coverage of the quadratic case in §1.7, which we generalize to
arbitrary number fields in §5.1.

2.1 Automorphisms, Fixed Points, and Galois Groups

Given a number field F , it is possible to define an embedding as a ring monomorphism θ of
F into C—see Definition A.10 on page 327, and the surrounding discussion, for background.
Also, the reader should solve Exercises 2.1–2.6 on pages 62–63 as a precursor, motivator,
and adjunct material to the following.

Definition 2.1 — Fixed Points and Isomorphisms

Let K ⊆ K1 be two fields and let θ be an embedding of K into K1. Then α ∈ K is called
a fixed point under θ if θ(α) = α.

Remark 2.1 The name “fixed-point” is appropriate since, in the case where K = K1, θ
is an automorphism, so θ(α) = α = θ1(α), where θ1 is the identity automorphism of K,
namely, θ1(β) = β for all β ∈ K. The set of all fixed points has a special designation. The
reader should be familiar with the material surrounding Remark A.4 on page 327 for the
following.

Lemma 2.1 — Fixed Fields

If K is any field, then

F = {β ∈ K : θ(β) = β for all θ ∈ Aut(K)}

is a field, called the fixed field of Aut(K).

55
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Proof. We have for any automorphisms θ,τ of K, and any β,γ ∈ F ,

θ(β ± γ) = θ(β)± θ(γ) = τ(β)± τ(γ) = τ(β ± γ).

Also,
θ(βγ) = θ(β)θ(γ) = τ(β)τ(γ) = τ(βγ).

Since θ(β) = τ(β), then

θ(β)−1 = τ(β)−1 = τ(β−1) = θ(β−1).

Hence, sums, products, and inverses of fixed points are fixed points, so F is a subfield of
K. ✷

Lemma 2.2 Distinct embeddings of a field K into a field K1 are independent. In other
words, if θj are distinct embeddings of K into K1, and βj ∈ K for j = 1, 2, . . . , n, such that

n�

j=1

θj(α)βj = 0 for all α ∈ K

then β1 = β2 = · · · = βn = 0.

Proof. We use induction on n. If n = 1, the result is clear, since θ1 cannot be the zero map.
Assume that the result holds for all natural numbers k < n. If

n�

j=1

θj(α)βj = 0

for all α ∈ K, and βj �= 0 for some j, then βj �= 0 for all j = 1, 2, . . . , n, by the induction
hypothesis. We may multiply through by β−1

n
to get

θn(α) +
n−1�

j=1

θj(α)βjβ
−1
n

= 0. (2.1)

Since the θj are distinct, there exists some γ ∈ K such that θ1(γ) �= θn(γ). Now multiply
(2.1) through by θn(γ)−1 to get

θn(α)θn(γ)
−1 +

n−1�

j=1

θj(α)θn(γ)
−1βjβ

−1
n

= 0. (2.2)

Since (2.2) holds for all α ∈ K, we may replace α by γα therein to get

θn(α) +
n−1�

j=1

θj(αγ)θn(γ)
−1β−1

n
βj = 0,

so

θn(α) +
n−1�

j=1

θj(α)θj(γ)θn(γ)
−1β−1

n
βj = 0. (2.3)

Now subtracting (2.3) from (2.1), we get

n−1�

j=1

θj(α)βjβ
−1
n

(θj(γ)θn(γ)
−1 − 1) = 0.

However, θ1(γ)θn(γ)−1 − 1 �= 0, since θ1(γ) �= θn(γ). This provides a dependency relation
that contradicts the induction hypothesis, so βj = 0 for all j, and the result is complete. ✷
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Theorem 2.1 — Degrees Over Fixed Fields

If θ1, . . . , θn are distinct isomorphisms of a field K into a field K1, and if F is the fixed field
of {θ1, . . . , θn}, then |K1 : F | ≥ n.

Proof. If |K1 : F | = m < n, then let K1 = F (α1, . . . , αm) and consider the system of
homogeneous equations for i = 1, . . . ,m:

n�

j=1

θj(αi)xj = 0.

Since m < n, then by Theorem A.23 on page 338, there must exist solutions xj ∈ K, not
all zero, to these equations for j = 1, . . . , n. Also, for any γ ∈ K1, there exist βj ∈ F such
that

m�

j=1

βjαj = γ.

Now, for each i = 1, . . . ,m, we have

θ1(βi)
n�

j=1

θj(αi)xj = 0.

Then, since βi ∈ F , we have θ1(βi) = θj(βi). Thus,

n�

j=1

θj(βiαi)xj = 0.

Hence,

0 =
m�

i=1

n�

j=1

θj(βiαi)xj =
n�

j=1

m�

i=1

θj(βiαi)xj =
n�

j=1

θj(
m�

i=1

βiαi)xj =
n�

j=1

θj(γ)xj .

We have exhibited a nontrivial dependency relationship between the θj , contradicting
Lemma 2.2. ✷

Corollary 2.1 If θ1, . . . , θn are distinct automorphisms of a field K, and F is the fixed
field of Aut(K), then |K : F | ≥ n.

In Exercise 2.6 on page 63 we introduce the notion of an F -isomorphism of a number field
K. We now generalize this notion.

Definition 2.2 — Fixing Automorphisms

Let K/F be an extension of fields. If θ is an automorphism of K such that θ(α) = α for all
α ∈ F , then θ is said to fix F , or to leave F fixed, and is called an F -automorphism of K.

Lemma 2.3 — Groups and Fixing Automorphisms

Let K/F be an extension of fields. The set of all F -automorphisms of K forms a group,
denoted by AutF (K).
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Proof. Two F -automorphisms θ1, θ2 of a field K may be composed by defining

θ1θ2(β) = θ1(θ2(β))

for each β ∈ K. Then this product is also an automorphism of K. Also, if θ(α) = β for
a given F -automorphism θ of K, we define θ−1(β) = α as the mapping that takes β to
α, called the inverse of θ, which is also an F -automorphism of K. Thus, for any two F -
automorphisms θ1 and θ2 ofK, θ1θ

−1
2 (β) = β for any β ∈ F , so θ1θ

−1
2 is an F -automorphism

of K. Thus, the set of all F -automorphisms of K forms a multiplicative abelian group. ✷

Although it is possible for AutF (K) to be infinite, the situation considered in this text for
number fields will always deal with a finite group. Also, in general it is possible for the
fixed field of AutF (K) to be bigger than F , as illustrated by the following.

Example 2.1 Let K = Q( 3
√
2) ⊆ R and F = Q. Then AutF (K) = {θ1}, the identity

group consisting of only θ1 which is the identity automorphism that fixes K pointwise. The
reason is that the only possible images of 3

√
2 are ζ3

3
√
2 �∈ K and ζ23

3
√
2 �∈ K, where ζ3 is

a primitive cube root of unity, so both are images in C − R, since x3 − 2 = 0 has roots

x = 3
√
2, the only real root, as well as x = ζ3

3
√
2, ζ3

3
√
2
2
, the only complex roots.

The case where F is the fixed field of AutF (K) is of particular importance. Thus, we now
seek to minimize the bound on the degree given in Theorem 2.1. The following, due to
Artin, essentially generalizes Exercise 2.6 on page 63—see Biography 1.2 on page 24.

Theorem 2.2 — Unique Automorphism Groups

Let K/F be an extension of fields and let G be a finite group of automorphisms of K having
F as its fixed field. Then

|K : F | = |G| = |AutF (K)|,

and G = AutF (K).

Proof. Let G = {θ1, . . . , θn} with identity automorphism θ1. If |K : F | > n, then there
exist αj ∈ K for j = 1, . . . , n + 1 such that the αj are linearly independent over F . By
Theorem A.23 on page 338, there exists a nontrivial solution for k = 1, . . . , n + 1 to the
system of equations

n+1�

j=1

θk(αj)xj = 0, where xj ∈ K for j = 1, . . . , n+ 1. (2.4)

If there is a solution with all xj ∈ F , then θ1(α1) = α1 = −
�

n+1
j=2 θk(αj)xj , contradicting

the assumed linear independence. Thus, at least one of the values xj of any given solution
cannot be in F . Now select a solution set

{xj}n+1
j=1 = {βj}n+1

j=1

in which there is a maximum possible number of nonzero elements, namely let m ≤ n be
the largest natural number such that

βm+1 = · · · = βn+1 = 0

and βr �= 0 for any r ≤ m. If m = 1, then since β1θ1(α1) = 0 and θ1(α1) = α1 �= 0,
then β1 = 0, a contradiction to the definition of m. Thus, m > 1. Also, without loss of
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generality, we may select βm = 1, since we may multiply through by β−1
m

to get another
solution. Hence, for k = 1, . . . , n we have

m�

j=1

θk(αj)βj = θk(αm) +
m−1�

j=1

θk(αj)βj = 0. (2.5)

Without loss of generality, we may assume that β1 �∈ F . Therefore, there exists θ� such that

θ�(β1) �= β1 for some � = 1, . . . , n.

Applying θ� to (2.5), we get

θ�θi(αm) +
m−1�

j=1

θ�θi(αj)θ�(βj) = 0,

for i = 1, . . . , n+ 1. Since θ�θi = θk for some i = 1, . . . , n, this equation becomes

θk(αm) +
m−1�

j=1

θk(αj)θ�(βj) = 0. (2.6)

Subtracting (2.6) from (2.5), we achieve

m−1�

j=1

θk(αj)(βj − θ�(βj)) = 0.

Since θ�(β1) �= β1, this is a solution to (2.4) having less than m nonzero elements, con-
tradicting the minimality of m. We have shown that |K : F | ≤ n, and by Theorem 2.1,
|K : F | ≥ n, so we have equality. Also, if there exists a θ ∈ AutF (K) such that θ �∈ G,
then there are n+1 distinct automorphisms of K which fix F . Therefore, by Corollary 2.1,
|K : F | ≥ n+ 1, a contradiction. Thus, AutF (K) = G. ✷

The following encapsulates what is contained in Theorem 2.2—see Biography 2.1 on page 64.

Definition 2.3 —— Galois Groups

The uniquely determined group in Theorem 2.2 is called the Galois group of the field
extension K/F that is called a Galois extension, and AutF (K) is denoted by Gal(K/F ).

The above development is essentially due to Artin. However, we have a parallel development
for the number field case for comparison, and will give a broader overview, in Exercises 2.1–
2.6 on pages 62–63.

The following links the above with the number field case and shows that the group in Defi-
nition 2.3 is the one satisfying the following equivalent conditions. The following also holds
in the case where the fields are finite or are any finite extensions of fields of characteristic
zero—see Exercises 2.12–2.16 on page 64. The result is a preamble to the fundamental
theorem for Galois theory.

Theorem 2.3 — The Galois Group of a Number Field

Let K/F be an extension of number fields. Then the following are equivalent.

(a) The fixed field of G = AutF (K) = Gal(K/F ) is F and |G| = |K : F |.
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(b) For any α ∈ K, mα,F (x) has all its roots in K.

(c) K = F (α1, α2, . . . , αd) where αj are roots of some f(x) ∈ F [x].

Proof. If (a) holds, then let

h(x) =
�

σ∈G

(x− σ(α)) ∈ K[x].

However, the elements of G permute the factors of h(x), so h(x) remains invariant under
the action of G. However, since σ = 1G ∈ G, α− 1G(α) = 0 is a factor of h(α), namely α is
a root of h(x). Thus, by Theorem 1.23 on page 38, mα,F (x)

�� h(x), so all roots of mα,F (x)
are in K. Hence, (a) implies (b).
Assume (b) holds. By Exercise 1.51 on page 43, there is an element γ ∈ K such that
K = F (γ). Since we are assuming that mγ,F (x) has all its roots in K, then K is generated
by the roots of mγ,F (x) since K = F (σ(γ)) for any σ ∈ G. We have shown that (b) implies
(c).
To complete the logical circle, we show that (c) implies (a). (For the proof of this part,
the reader should be quite familiar with Exercise 2.6 on page 63. In particular, be aware
of the distinction between the notion of an F -automorphism and an F -isomorphism. The
former implies the latter, but, as Example 2.1 on page 58 shows, in general the latter does
not necessarily imply the former.) If σ is an F -isomorphism of K, then σ(αj) = αk where
j, k ∈ {1, 2, . . . , d}, from which it is clear that σ(K) = K, so σ is an F -automorphism of K,
namely σ ∈ AutF (K). By Exercise 2.6, the number of F -automorphisms of K is exactly
|K : F | = d. Suppose that G = AutF (K) fixes δ ∈ K. Then every element of G is an
F (δ)-automorphism of K. By Exercise 2.6 again, the number of F (δ)-automorphisms of K
is exactly |K : F (δ)|. Hence, d ≤ |K : F (δ)| which forces d = |K : F (δ)|, namely δ ∈ F .
This shows that F is the fixed field of G, and

|G| = |AutF (K)| = |K : F | = |Gal(K/F )|,

which completes the task. ✷

We conclude this section with the following highlight of Galois theory. See Exercise 2.2 for
the definition of a normal extension.

Theorem 2.4 — Fundamental Theorem of Galois Theory

Let K/F be a Galois extension of number fields with Galois group G = Gal(K/F ). If H is
a subgroup of G, then denote the fixed field of H by k(H), and if L is an intermediate field
in K/F , let g(L) = AutL(K). Then

(a) The mappings g : L �→ g(L) from intermediate fields to subgroups of G, and k : H �→
k(H) from subgroups of G to (intermediate) fixed fields are inverses of one another.
Also,

k(H1) ⊆ k(H2) if and only if g(k(H1)) = H1 ⊇ H2 = g(k(H2)),

namely, they are inclusion reversing. Furthermore,

|k(H2) : k(H1)| = |H1 : H2|.

(b) K is Galois over any intermediate field L. Also, L is Galois over F if and only if
g(L) = AutL(K) is normal in G. If the latter occurs, then

Gal(L/F ) ∼=
Gal(K/F )

Gal(K/L)
.
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Proof. Let L be an intermediate field between K and F , and let α ∈ K. Then mα,L(x)
��

mα,F (x), all of whose roots are in K by part (b) of Theorem 2.3. Therefore, all roots of
mα,L(x) are in K, so by part (b) of Theorem 2.3 again, K/L is Galois. By part (a) of
Theorem 2.3, L is the fixed field of g(L) = AutL(K). In other words, k(g(L)) = L. On
the other hand, if H is a subgroup of Gal(K/F ), then H = Gal(K/k(H)). In other words,
H = g(k(H)). We have shown that k and g are bijections and inverses of one another.
Lastly, the inclusion reversal is now clear, so we have (a).

Let L be an intermediate field between K and F , and let α ∈ L. Then mα,F (β) = 0
where β ∈ K if and only if β = θ(α) for some θ ∈ Gal(K/F ). By part (b) of Theorem 2.3
one more time, L/F is Galois if and only if θ ∈ Gal(K/F ), namely if θ(L) ⊆ L. Now, if
θ(L) ⊆ L, σ ∈ g(L) and α ∈ L, then

θ−1σθ(α) = θ−1θ(α) = α,

so θ−1σθ ∈ g(L). We have shown that if L/K is Galois, then g(L) is normal in G. Con-
versely, assume that g(L) is normal in G. If α ∈ K, θ ∈ G and σ ∈ g(L), then

σθ(α) = θθ−1σθ(α) = θ(α),

since θ−1σθ ∈ g(L). Thus, θ(α) is fixed by g(L) so θ(α) ∈ L. We have shown that if g(L)
is normal in G, then θ(L) ⊆ L. Hence, L/F is Galois.

Finally, we establish the isomorphism given in (b). Let H = Gal(L/F ). Since θ(L) ⊆ L
for all θ ∈ Gal(K/F ),

θ|L ∈ AutF (L) = Gal(L/F ).

Thus, the restriction mapping θ �→ θ|L is a homomorphism of G to H with ker(θ|L) = g(L).
Since

|H| = |K : F |
|K : L| =

|G|
|g(L)| ,

then the restriction homomorphism is surjective, so

H ∼=
G

g(L)
,

which completes the proof of the fundamental theorem. ✷

The following diagram illustrates what Theorem 2.4 asserts.

Diagram 2.1
The mapping g: The mapping k:
Fields Groups Fields Groups

K −−−−→ 1 k(1) ←−−−− 1

�
|

�
|

�
|

�
|

L −−−−→ g(L) k(H) ←−−−− H

�
|

�
|

�
|

�
|

M −−−−→ g(M) k(J) ←−−−− J

�
|

�
|

�
|

�
|

F −−−−→ G k(G) ←−−−− G
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Theorem 2.4 asserts that there is a one-to-one correspondence between the subgroups H of
Gal(K/F ) and the intermediate fields L, corresponding elements H and L being such that
L = k(H) and H = g(L). This elegant relationship will be used in force in §5.4.

Exercises

2.1. Let α be an algebraic number. Prove that if F = Q(α) is an algebraic number field of
degree d over Q, there exist exactly d embeddings θj of F into C for j = 1, 2, . . . , d.
Conclude that θj(α) = αj , for j = 1, 2, . . . , d are precisely the roots of the minimal
polynomial mα,Q(x) of α over Q.

(Hint: See Theorem 1.23 on page 38, Theorem 1.24 on page 39, and Application A.1
on page 325.)

(The elements θj(α) are called the conjugates of α, which is a generalization of the
concept for quadratic extensions introduced in Example 1.29 on page 46. Moreover,
the fields Q(αj) are called the conjugate fields of F . Also, αj for j = 1, 2, . . . , d
are called the complete set of F -conjugates of α and Q(αj) for such j are called the
conjugate fields of F . Thus, the F -conjugates of α do not depend on the choice of α
such that F = Q(α). Note that if Q(αj) ⊆ R for all F -conjugates of F , then F is
called a totally real field and if Q(αj) ⊆ C− R, then F is called totally complex.)

Exercises 2.2–2.6 all refer to Exercise 2.1 and are intended to develop the notion of embed-
dings of number fields to complement the topic in this section.

2.2. We define the field polynomial of α over F to be

fα,F (x) =
d�

j=1

(x− θj(α)).

Establish each of the following.

(a) Let β ∈ Q(α) be an algebraic number of degree s over Q. Then d/s = t ∈ N and

fα,F (x) = (mβ,Q(x))
t.

Conclude that θj(β) for j = 1, 2, . . . , s are the roots of mβ,Q(x), each repeated t
times in the factorization of f(x) ∈ Q[x].

(b) If F = Q(α) is a number field of degree d over Q and there are exactly s distinct
conjugate fields Q(αj) = F , then d/s = t ∈ N and each distinct field occurs t
times.

(Hint: To establish t ∈ N, see (A.2) on page 325. For the balance, employ Theo-
rem 1.23 on page 38 and Definition A.15 on page 331.)

(When s = 1 in part (b) above, the field F is said to be normal over Q. When we
are dealing with a field of characteristic zero or a finite field, then being a Galois
extension is tantamount to being a normal extension—see Definition 2.3 on page 59.
In the more general case, with which we will not be concerned herein, we refer the
reader to [29], where one may also find a proof of the last assertion.)

2.3. Prove that for an algebraic number field F with α ∈ OF , all of the F -conjugates of α
are algebraic integers.

2.4. Prove that if α is in a number field F , then all F -conjugates of α are equal if and only
if α ∈ Q.
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2.5. Prove that if α is in a number field F , then all the F -conjugates of α are distinct if
and only if F = Q(α).

(Via Exercise 2.5 and in view of the comments made in Exercise 2.2, we see that when
all F -conjugates αj of α are distinct, then Q(α) = Q(αj) for all such j, namely F is
Galois over Q. Another way of putting this is that every polynomial f(x) ∈ F [x] which
has a root in F splits completely into linear factors, meaning that F is a splitting field
for f—see Definition A.17 on page 334.)

2.6. Let E/F be an extension of number fields and let θ be an embedding of E into C that
fixes F pointwise, namely θ(f) = f for all f ∈ F . Then θ is called an F -isomorphism
of E. If θ is an F -isomorphism of E = F (α), then θ(α) is called a conjugate of α over
F . Prove that every embedding of F in C extends to exactly |E : F | embeddings of
E in C. Conclude that there are |E : F | F -isomorphisms of E.

(Hint: Use induction and employ (A.2) on page 325 together with Theorem 1.24 on
page 39.)

(This exercise deals with one of the classic questions in the theory of field extensions,
applied to our number field case. If θ is an isomorphism of a field F and E is a field
extension of F , when can θ be extended to an isomorphism of E? Putting it another
way, when can we find an isomorphism φ of E such that φ|F = θ?—see the discussion
surrounding the defining notation (A.5) on page 327 for a reminder of restriction
maps and Theorem A.15 on page 334 for extensions of isomorphisms.)

2.7. Let α be an algebraic integer and suppose that |Q(α) : Q| = 2. Prove that

Q(α) = Q(
√
d) for some squarefree d ∈ Z.

2.8. Find the minimal polynomial of

α =

�
−2− 3

√
−5

over Q and determine Gal(K/Q) where K = Q(α). Conclude that

|K : Q| = 4.

2.9. Let n1 �= n2 be squarefree integers. Prove that

K = Q(
√
n1 +

√
n2) = Q(

√
n1,

√
n2),

and determine Gal(K/Q).

2.10. For nj ∈ Z be squarefree, distinct, and nj �= 1 for j = 1, 2. Prove that

|Q(
√
n1 +

√
n2) : Q| = 4.

2.11. With reference to Exercise 2.1, suppose that F is a number field with embeddings θj
such that θj(F ) ⊆ R for j = 1, 2, . . . , r1. These are called the real embeddings of F .
The remaining embeddings θj(F ) ⊆ C− R for j = 1, 2, . . . , r2, are called the complex
embeddings of F . Show that |F : Q| = r1 + 2r2. In this case {r1, r2} is called the
signature of F .

2.12. Prove that the signature, defined in Exercise 2.11, of Q( 3
√
2) is {r1, r2} = {1, 1}. Show

that Q( 3
√
2) is not Galois over Q.
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2.13. If F is a field of characteristic p, and n ∈ N, prove that the map given by σ : F �→ F
defined by α �→ αp

n

is an Fp automorphism of F .

2.14. Let D1 ⊆ D2 be integral domains, α ∈ D2, and let f(x) ∈ D1[x] with deg(f) ≥ 1.
Establish each of the following.

(a) (x− α)2
�� f(x) if and only if f(α) = 0 = f �(α).

(b) If D1 is a field and gcd(f(x), f �(x)) = 1, then f has no multiple roots in D2.

(c) If D1 is a field, f(x) is irreducible in D1[x], and D2 contains a root c of f(x),
then f(x) has no multiple roots in D2 if and only if f �(c) �= 0.

(d) If deg(f) = n ∈ N, then f(x) has at most n roots in D2.

2.15. Let F be a finite field with pn elements. Then F is a splitting field, unique up to
isomorphism, of xp

n − x over Fp.

(Hint: Use Exercises 2.13–2.14.)

2.16. Prove that Theorem 2.3 on page 59 holds for fields of characteristic zero and for finite
fields. Also, show that if K/F is a finite extension of finite fields, then K/F is a Galois
extension with Gal(K/F ) being cyclic.

(Hint: Use Corollary A.10 on page 334 and the discussion surrounding it, as well as
Theorem A.16 on page 334 for the first statement. For the second statement, use the
first statement in conjunction with Exercises 2.13–2.15, )

Biography 2.1 Évariste Galois (1811–1832) was born on October 25, 1811
outside Paris in the village of Bourg-la-Reine, where his father was mayor. In
1830, he submitted a paper to the Académie des Sciences. Fourier, who was
secretary of the Académie, took the paper home, died shortly thereafter, and
the paper was lost. This was not the first misfortune, since in the previous
year he had submitted a paper to the Académie through Cauchy, who also
lost that paper. Galois again tried to submit a paper to the Académie, this
time through Poisson, who rejected the paper as incomprehensible. This paper
contained the foundations of what we now call Galois theory. Due to his in-
volvement in the revolution of 1830, Galois was imprisoned. After his release,
he became involved in a pistol duel, allegedly a politically motivated suicide,
and was shot through the intestines. Although he was taken to a hospital,
he died the next morning on May 31, 1832, from peritonitis. He was not yet
twenty-one. For a detailed explanation of his life and “pointless death” see [62],
dedicated to an accounting based on reliable historical documents, rather than
the mythologized and inaccurate descriptions often found in the literature.

After his death, Galois’ papers made their way ultimately into the hands of
Liouville. In September of 1843, Liouville announced to the Académie that he
found Galois’ work to be correct, concise, and deep. Liouville published Galois’
papers in his journal in 1846. Galois’ work, relating the solving of equations by
radicals to the group of the equation, is of fundamental importance, and may
be said to have led to an arithmetical approach to algebra.
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2.2 Norms and Traces

But all things must come to dust eventually. No human being, no system, no age is
impervious to this law; everything beneath the stars will perish; the hardest rock will
be worn away. Nothing endures but words.

—spoken by Tiro, a Roman scribe, in Lustrum,
by Robert Harris—see [26, Page 11]a

aAlthough [26] is essentially a work of fiction, Marcus Tullius Tiro actually existed and was a
secretary to the Roman orator and statesman Cicero. Indeed, Tiro wrote the book The Life of Cicero,
which disappeared after the fall of Rome along with most of his literary output. Tiro ostensibly lived
to be over one hundred years old and his (shorthand) method of recording has elements that survive
to this day including the symbol &, for instance. His method, known as Notae Tironianae or more
commonly the Tironian system of shorthand, was taught in Roman schools and enjoyed widespread
use over several centuries.

We introduce some concepts in this section that will be crucial in the development of the
theory of integral bases and discriminants in §2.3. In §2.1, in particular Exercises 2.1–2.6
on pages 62–63, we discussed embeddings of an algebraic number field in C. We now use
this notion to define two fundamental concepts.

Definition 2.4 — Norms and Traces

Let F be an algebraic number field of degree d over Q, and let θj for j = 1, 2, . . . d be the
embeddings of F in C. For each element α ∈ F , set

TF (α) =
d�

j=1

θj(α),

called the trace of α from F , and set

NF (α) =
d�

j=1

θj(α),

called the norm of α from F .

The definition of norm and trace was first given by Dedekind in 1871—see Biography 1.3
on page 29. By Exercise 2.17 on page 68, TF is additive, and NF is multiplicative. We will
substantially generalize Definition 2.4 later—see Definition 5.2 on page 184.

Example 2.2 Let F = Q(
√
13), α = 1 +

√
13, and β = (3 +

√
13)/2. The embeddings of

F in C are
θ1 :

√
13 �→

√
13, and θ2 :

√
13 �→ −

√
13,

fixing Q pointwise, namely the Q-isomorphisms of F . Here,

NF (α) = θ1(α)θ2(α) = (1 +
√
13)(1−

√
13) = −12,

NF (β) = θ1(β)θ2(β) =

�
3 +

√
13

2

��
3−

√
13

2

�
= −1,

TF (α) = θ1(α) + θ2(α) = (1 +
√
13) + (1−

√
13) = 2,
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and

TF (β) = θ1(β) + θ2(β) =
3 +

√
13

2
+

3−
√
13

2
= 3.

Also,

NF (αβ) = NF

�
(1 +

√
13)

�
3 +

√
13

2

��
= NF (8 + 2

√
13) =

82 − 4 · 13 = 12 = (−12)(−1) = NF (α)NF (β),

and

TF (α+ β) = TF

�
(1 +

√
13) +

�
3 +

√
13

2

��
= TF

�
5 + 3

√
13

2

�
=

5 = 2 + 3 = TF (α) + TF (β).

Example 2.2 illustrates some general properties of norms and traces.

Theorem 2.5 — Properties of Norms and Traces in Subfields

Let F be an algebraic number field of degree n over Q, and α ∈ F with |Q(α) : Q| = d. If
α = α1, α2, . . . , αd are all of the conjugates of α over Q, namely the roots of mα,F (x), then

TF (α) =
n

d

d�

j=1

αj =
n

d
TQ(α)(α),

and

NF (α) =




d�

j=1

αj




n/d

= (NQ(α)(α))
n/d.

Furthermore,
mα,Q(x) = xd − TQ(α)(α)x

d−1 + · · · ±NQ(α)(α).

Proof. Let the embeddings of Q(α) in C be given by

φj(α) �→ αj (1 ≤ j ≤ d),

where φj(q) = q for all q ∈ Q. Thus, by Definition 2.4 on the previous page,

TQ(α)(α) =
d�

j=1

αj , and NQ(α)(α) =
d�

j=1

αj .

By Exercise 2.6 on page 63, each of the φi, for i = 1, 2, . . . , d, extends to exactly n/d
embeddings of F in C, which we will denote by

θ(j)
i

, for j = 1, 2, . . . , n/d.

Therefore,

TF (α) =
d�

i=1

n/d�

j=1

θ(j)
i

(α) =
d�

i=1

n

d
αi =

n

d

d�

i=1

αi,
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and

NF (α) =
d�

i=1

n/d�

j=1

θ(j)
i

(α) =
d�

i=1

αn/d

i
=

�
d�

i=1

αi

�n/d

.

Finally, in the expansion of

mα,Q(x) =
d�

i=1

(x− αi),

we see that the constant term must be

±
d�

i=1

αi = ±NQ(α)(α),

whereas the coefficient of xd−1 must be

−
d�

i=1

αi = −TQ(α)(α).

This completes the proof. ✷

Corollary 2.2 If α ∈ F , an algebraic number field, then

TF (α) ∈ Q, and NF (α) ∈ Q.

Proof. By Theorem 2.5, we need only show that NQ(α)(α), TQ(α)(α) ∈ Q. However, this is
immediate since, by the theorem,

mα,Q(x) = xd − TQ(α)(α)x
d−1 + · · · ±NQ(α)(α) ∈ Q[x],

which secures the result. ✷

Corollary 2.3 Let α ∈ N , and let mα,Q(x) be the minimal polynomial of α over Q. Then
α ∈ A if and only if mα,Q(x) ∈ Z[x]. Furthermore, if α ∈ A, then

TF (α) ∈ Z, and NF (α) ∈ Z.

Proof. Suppose that mα,Q(x) ∈ Q[x] where α ∈ A, and α is a root of a monic polynomial
f(x) ∈ Z[x] of least possible degree. Then mα,Q(x)

�� f(x) in Q[x] by Theorem 1.23 on
page 38. However, since mα,Q(x) is monic, then by Gauss’s Lemma A.1 on page 332, we
must have mα,Q(x) ∈ Z[x], so f(x) = mα,Q(x). Conversely, if mα,Q(x) ∈ Z[x], then α ∈ A
by definition.
To prove the final statement we note that by Theorem 2.5,

mα,Q(x) = xd − TQ(α)(α)x
d−1 + · · · ±NQ(α)(α),

and by the above mα,Q(α) ∈ Z when α ∈ A, so the result follows. ✷

The notions of trace and norm are also linked to the discriminant of a polynomial introduced
in Exercise 2.29 on page 69. The reader will be familiar with the details of the following
from Example 1.29 on page 46.
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Example 2.3 Consider the irreducible quadratic polynomial

f(x) = ax2 + bx+ c ∈ Q[x],

where a �= 0. As mentioned in Example 1.29, the roots of f(x) are given by

α =
−b+

√
∆

2a
, and α� =

−b−
√
∆

2a
,

where ∆= b2 − 4ac is the discriminant of the quadratic field Q(α) = Q(
√
∆)—see Theo-

rem 1.27 on page 44 and the discussion surrounding it. Therefore,

TF (α) = TQ(α)(α) = α+ α� =
−b+

√
∆

2a
+

−b−
√
∆

2a
= −b/a,

and

NF (α) = NQ(α)(α) = αα� =

�
−b+

√
∆

2a

��
−b−

√
∆

2a

�
=

b2 −∆

4a2
= c/a.

Hence, the minimal polynomial of α over Q is mα,Q(x) = x2 − TF (α)x+NF (α).

Exercises

2.17. With reference to Definition 2.4 on page 65, prove that

TF (α+ β) = TF (α) + TF (β), and NF (αβ) = NF (α)NF (β),

for all α,β ∈ F . Also, prove that for any q ∈ Q,

TF (qα) = qTF (α), and NF (qα) = qdNF (α).

(Thus, in particular, if α = 1, then TF (q) = q, and NF (q) = qd.)

2.18. Let n ∈ Z be cubefree (namely p3 � n for any prime p). Also, let α = 3
√
n, F = Q(α),

and mα,Q(x) = x3 − n. Find disc(mα,Q) by employing Exercise 2.31. Furthermore,
set

β = (α2 ± α+ 1)/3, with n ≡ ±1 (mod 9),

where the ± signs correspond as given. Find TF (β), NF (β), and mβ,Q(x). Conclude
that β is an algebraic integer in F .

(Fields of the form Q( 3√
n) for cube-free n are called pure cubic fields.)

2.19. Let F = Q(
√
7), and α = (1 +

√
7)/2. Find NF (α), TF (α), and mα,Q(x).

2.20. Prove that there are no elements having norm 3 from Q(
√
−1).

2.21. Let F = Q(
√
p) where p ≡ ±3(mod 8) is prime. Show that there is no α ∈ F such

that NF (α) = 2.

2.22. Find the minimal polynomial of
�
−2− 3

√
−5 over Q.

2.23. Find the minimal polynomial of
√
2 +

√
3 over Q.

In Exercises 2.24–2.26, we assume that F = Q(ζp) for a prime p.

2.24. Prove that TF (ζp) = −1, and NF (1− ζp) = p.
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2.25. Prove that TF (1− ζj
p
) = p, where j ∈ {1, 2, . . . , p− 1}.

(Hint: Use Example 1.5 on page 2.)

2.26. Let α be an algebraic integer in F . Prove that TF (α(1− ζp)) ∈ pZ.

2.27. Let g = (1 +
√
5)/2 be the golden ratio. Prove that ζ3 ∈ Q(g+ ζ3).

2.28. Prove that g ∈ Q(g+ ζ3).

2.28. Let f(x) = x4 − 2 and let α = 4
√
2 be a real root of f(x). Prove that F = Q(α, i) is

the splitting field for f over Q. See Definition A.17 on page 334.

The remaining exercises allow us a segue into §2.3, where we generalize the notion of a
field discriminant given for quadratic fields in Definition 1.33 on page 46.

2.29. If f(x) ∈ F [x] where F ⊂ C is a field, deg(f) = d > 1, and

f(x) = a
d�

j=1

(x− aj), aj ∈ F,

then the discriminant of f is defined by

disc(f) = a2d−1
�

1≤i<j≤d

(αi − αj)
2,

where αj for j = 1, 2, . . . , d are the roots of f in C.
Prove that for an odd prime p and a primitive p-th root of unity

disc(mζp,Q) =
�

1≤i<j≤p−1

(ζi
p
− ζj

p
)2 = (−1)(p−1)/2pp−2.

(Hint: First prove that: mζp,Q(x) =
�

p−1
j=0 x

j .)

2.30. Find the discriminant of the quadratic polynomial f given in Example 2.3 on the
facing page by applying Exercise 2.29. Also, show that if m� is the formal derivative,
then

disc(m�
α,Q(x)) = −NF (m

�
α,Q(α)).

2.31. Exercise 2.30 motivates the following more general result. Suppose that α ∈ A and
F = Q(α) is an algebraic number field of degree d over Q, and α = α1, α2, . . . , αd are
the conjugates of α over Q. Prove that

disc(mα,Q) = (−1)d(d−1)/2
d�

j=1

m�
α,Q(αj) = (−1)d(d−1)/2NF (m

�
α,Q(αj)),

where m�
α,Q is the formal derivative of mα,Q.
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2.3 Integral Bases and Discriminants

The mathematician is fascinated with the marvelous beauty of the forms he constructs,
and in their beauty he finds everlasting truth.

James Byrnie Shaw (1866–1948), mathematician/philosopher—see [63]

Given a number field F , we know from Theorem 1.24 on page 39 that there is an algebraic
integer α such that F = Q(α). Moreover, every β ∈ F may be uniquely represented in the
form

β = q0 + q1α+ · · ·+ qd−1α
d−1 ∈ Q[α],

where d = |F : Q|. In other words, {1, α , α2, . . . , αd−1} is a Q-basis for F . Moreover, since
OF is Noetherian by Corollary 1.13 on page 37, then in particular, OF is finitely generated
as a Z-module so now we seek a Z-basis for it.

Definition 2.5 — Integral Bases

If OF is the ring of integers of a number field F , a basis for OF over Z, or simply a Z-basis
for OF , is called an integral basis for OF .

Remark 2.2 By Exercise 2.32 on page 81, an integral basis for OF in the sense of Defi-
nition 2.5 is a basis in the sense of Definition A.7 on page 324.

Example 2.4 If F = Q(
√
2), then OF = Z[

√
2], by Theorem 1.28 on page 45. Thus,

B = {1,
√
2} is an integral basis for F .

Example 2.5 If F = Q(
√
13), then by Theorem 1.28

OF = Z[(1 +
√
13)/2] �= Z[

√
13].

Here α = (1 +
√
13)/2 is a root of mα,Q(x) = x2 − x − 3, whereas β =

√
13 is a root of

x2 − 13. Thus, although {1, β} is a basis for F consisting of algebraic integers, it is not an
integral basis for F . An integral basis for F is {1, α}.

The rings of integers in Examples 2.4–2.5 both have integral bases. Our immediate task is
first to verify that any ring of integers OF of an algebraic number field F has an integral
basis. In order to do this, we first need the following notion. The reader should have famil-
iarity with the basics of matrices and fundamental linear algebra as outlined in Appendix
A.

Definition 2.6 — Discriminant of a Basis

Let F = Q(α) be an algebraic number field with |F : Q| = d. If

B = {α1, α2, . . . , αd}

is a Q-basis for F , and θj (1 ≤ j ≤ d) are all of the embeddings of F in C, then the
discriminant of the basis is given by

disc(B) = det(θj(αi))
2,

where det denotes the determinant of the matrix with entry θj(αi) in the ith row and jth

column.
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In particular, if
B = {1, α, . . . , αd−1},

then the determinant of the matrix (θj(αi−1)) is called the Vandermonde determinant and
has value

det(θj(α
i−1)) =

�

1≤i<j≤d

(αj − αi), (2.7)

by Exercise 2.33, where αk = θk(α) is the kth conjugate of α for k = 1, 2, . . . , d.

Example 2.6 In Example 2.4, B = {1,
√
2} is an integral basis for F , and

θ1 :
√
2 �→

√
2, and θ2 :

√
2 �→ −

√
2,

are the embeddings of F in C. Thus,

disc(B) = det(θj(α
i−1))2 = det

�
θ1(1) θ2(1)
θ1(

√
2) θ2(

√
2)

�2

=

det

�
1 1√
2 −

√
2

�2

= (−2
√
2)2 = 8.

Notice that in Example 2.6, disc(B) = disc(mα,Q), where mα,Q(x) = x2 − 2—see Exer-
cise 2.35 on page 82. This is an illustration of a more general phenomenon given as follows.

Theorem 2.6 — Discriminants of Bases and Minimal Polynomials

Let α ∈ A and suppose that B = {1, α , α2, . . . , αd−1} is a basis for Q(α) over Q. Then

disc(B) = disc(mα,Q),

where mα,Q(x) is the minimal polynomial of α over Q.

Proof. Let α1, α2, . . . , αd be the conjugates of α over Q. By (2.7),

disc(B) =
�

1≤i<j≤d

(αj − αi)
2,

and by Exercise 2.29 on page 69, this is equal to disc(mα,Q). ✷

Now we demonstrate that the discriminants of two bases for a number field form a quotient
that is a square of a nonzero rational number.

Theorem 2.7 — Discriminants of Two Bases

Let B1 = {α1, α2, . . . , αd} and B2 = {β1, β2, . . . , βd} be two Q-bases for an algebraic number
field F . Then

disc(B2) = D2disc(B1),

where D = det(qk,i) ∈ Q, D �= 0, and the qk,i ∈ Q are determined by

βk =
d�

i=1

qk,iαi, (qk,i ∈ Q).

Moreover, D ∈ Z provided that B1 is an integral basis and B2 ∈ OF .
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Proof. Let θj , (1 ≤ j ≤ d) be the embeddings of F in C. The representations βk =�
d

i=1 qk,iαi, imply that

θj(βk) =
d�

i=1

qk,iθj(αi),

for each k = 1, 2, . . . , d. Hence, we get a matrix equation:




θ1(β1) θ2(β1) · · · θd(β1)
θ1(β2) θ2(β2) · · · θd(β2)

...
...

...
...

θ1(βd) θ2(βd) · · · θd(βd)




=





q1,1 q1,2 · · · q1,d
q2,1 q2,2 · · · q2,d
...

...
...

...
qd,1 qd,2 · · · qd,d









θ1(α1) θ2(α1) · · · θd(α1)
θ1(α2) θ2(α2) · · · θd(α2)

...
...

...
...

θ1(αd) θ2(αd) · · · θd(αd)




.

By taking determinants, and squaring, we get the equation:

disc(B2) = D2disc(B1),

with D = det(M), where

M =





q1,1 q1,2 · · · q1,d
q2,1 q2,2 · · · q2,d
...

...
...

...
qd,1 qd,2 · · · qd,d




,

as required. ✷

Example 2.7 Let F = Q(
√
13), α = (1 +

√
13)/2, and β =

√
13. In Example 2.5 on

page 70, we saw that B1 = {1, α} and B2 = {1, β} are bases for F , the former being
integral, and the latter not integral, but merely a basis over Q. Since

θ1 :
√
13 �→

√
13, and θ2 :

√
13 �→ −

√
13

are the embeddings of F in C, then

disc(B2) = det(θj(β
i))2 = det

�
θ1(1) θ2(1)

θ1(
√
13) θ2(

√
13)

�2

= det

�
1 1√
13 −

√
13

�2

= (−2
√
13)2 = 52,

and

disc(B1) = det(θj(α
i))2 = det

�
θ1(1) θ2(1)

θ1(
1+

√
13

2 ) θ2(
1+

√
13

2 )

�2

= det

�
1 1

1+
√
13

2
1−

√
13

2

�2

= (−
√
13)2 = 13.

Thus,
disc(B2) = 22disc(B1).
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Here

D = 2 = det

�
1 0
−1 2

�
,

since
β1 = 1 = q1,1 · α1 + q1,2α2 = 1 · 1 + 0 · α,

and

β2 = β =
√
13 = q2,1α1 + q2,2α2 = −1 · 1 + 2 · 1 +

√
13

2
.

We are now in a position to relate the notion of discriminant introduced in Definition 2.6
on page 70 with the notions introduced in §2.2. See Exercise 2.1 on page 62 for a reminder
of terminology and notions surrounding what follows.

Theorem 2.8 — Discriminants as Traces

If B = {α1, α2, . . . , αd} is a Q-basis for an algebraic number field F = Q(α), then

∆ = disc(B) = det(TF (αiαj)) ∈ Q,

and∆ �= 0. Furthermore, if F is a totally real field, then∆ > 0.

Proof. Since ∆ = disc(B) = det(θj(αi))2, then from the properties of determinants (see
Theorem A.19 on page 336), we get:

det(θj(αi))
2 = det

�
d�

k=1

θk(αiαj)

�
= det(TF (αiαj)),

so ∆ = det(TF (αiαj)). Therefore, by Corollary 2.2 on page 67,∆ ∈ Q. It remains to show
that ∆ is nonzero and also positive when F is totally real.

Let B1 = B. By Theorem 1.24 on page 39,

B2 = {1, α , α2, . . . , αd−1}

is a basis for F over Q. Thus, by Theorem 2.7, disc(B2) = D2disc(B1), where D is given in
that theorem. However, by Exercise 2.33 on page 81,

disc(B2) =
�

1≤i<j≤d

(αj − αi)
2, (2.8)

and the αi are distinct so disc(B2) �= 0. Hence, disc(B1) �= 0.

Since B2 is a basis for F over Q, then by Theorem 2.7,

disc(B1) = d2disc(B2).

However, by (2.8), disc(B2) is a square. Since disc(B1) �= 0, so given that F is totally real,
all of the αj are real, so disc(B1) > 0. ✷

Corollary 2.4 If B is a basis for F over Q with B ⊆ OF , then disc(B) ∈ Z.

Proof. This is immediate from Corollary 2.3 on page 67. ✷
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Example 2.8 Consider Example 2.7 again. F = Q(
√
13) is a totally real field with integral

basis
B1 = {1, (1 +

√
13)/2} = {1, α} = {α1, α2},

and a non-integral Q-basis

B2 = {1,
√
13} = {1, β} = {β1, β2}.

Also, since the matrix

(TF (αiαj)) =

�
TF (1) TF (α)
TF (α) TF (α2)

�
=

�
2 1
1 7

�
,

then

disc(B1) = det(TF (αiαj)) = det

�
2 1
1 7

�
= 13.

Also, since we have the matrix

(TF (βiβj)) =

�
TF (1) TF (β)
TF (β) TF (β2)

�
=

�
2 0
0 26

�
,

then
disc(B2) = 52 = det(TF (βiβj)).

Corollary 2.5 Let B1 = {α1, α2, . . . , αd} be a Q-basis for an algebraic number field F . If
B2 = {β1, β2, . . . , βd} ⊆ F and

βk =
d�

i=1

qk,iαi for qk,i ∈ F , and k = 1, 2, . . . , d,

then B2 is also a basis for F if and only if det(qk,i) �= 0.

Proof. Suppose that det(qk,i) �= 0. It suffices to show that the βk are linearly independent
by Theorem A.4 on page 325. If

d�

k=1

γkβk = 0 (γk ∈ F ),

then

0 =
d�

k=1

γk

d�

i=1

qk,iαi =
d�

i=1

αi

d�

k=1

γkqk,i.

Since the αi are linearly independent, then

d�

k=1

γkqk,i = 0.

Since det(qk,i) �= 0, then γk = 0 for all k = 1, 2, . . . , d.

Conversely, if B2 is a basis for F , then by Theorem 2.7 on page 71,

disc(B2) = D2disc(B1).
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Hence, by Theorem 2.8 the result follows. ✷

In Example 2.5 on page 70, we saw that a Q-basis for an algebraic number field F , consisting
of algebraic integers, need not be an integral basis for F . The problem is that a basis
consisting of algebraic integers may span F without spanning OF as a Z-module. We now
verify that every algebraic number field does indeed have an integral basis, and that the
ring of integers is a free abelian group of rank equal to the degree of the number field over
Q.

Theorem 2.9 — Existence of Integral Bases

Every algebraic number field F of degree d over Q has an integral basis, and OF is a free
abelian group of rank d.

Proof. By Lemma 1.4 on page 38, there is a basis for F consisting of elements from OF .
This establishes existence of such bases. It remains to show that there exists such a basis
that is a Z-basis for OF .

By Corollary 2.4, the discriminants of such bases are in Z, and by Theorem 2.8, they are
nonzero. Hence, we may choose a basis

B1 = {β1, β2, . . . , βd} ⊆ OF

for F over Q such that |disc(B1)| is a minimum. Assume that B1 is not a Z-basis for OF .
Therefore, there exists a γ ∈ OF such that

γ =
d�

j=1

qjβj (qj ∈ Q),

and at least one qj �∈ Z. Without loss of generality, assume that q1 �∈ Z. Thus,

q1 = �q1�+ r, (0 < r < 1)

where �q1� is the floor of q1—see Page 8. Set

δ = γ − �q1�β1 =
d�

j=1

qjβj − �q1�β1 = rβ1 +
d�

j=2

qjβj .

The determinant of the matrix:

A =





r q2 · · · qd
0 1 · · · 0
...

...
...

...
0 0 · · · 1





is
det(A) = r �= 0.

By Corollary 2.5,
B2 = {δ,β 2, . . . , βd}

is a basis for F over Q. Since
disc(B2) = r2disc(B1),

then
|disc(B2)| < |disc(B1)|,
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contradicting the minimality of the discriminant of B1. Hence, B1 is an integral basis for
F . Therefore, as a Z-module

OF = Zβ1 ⊕ · · · ⊕ Zβd,

so OF is a free abelian group of rank d (see Equation (A.4) on page 325, and the discussion
preceding it). ✷

Corollary 2.6 If B ⊆ OF is a Q-basis for F and disc(B) is squarefree, then B is an integral
basis for F .

Proof. Let B = {β1, . . . , βd}. By Theorem 2.9, there exists an integral basis B1 =
{α1, . . . , αd} for F . By Theorem 2.7 on page 71,

disc(B) = D2disc(B1),

where D = det(qk,i), and qk,i is given by

βk =
d�

i=1

qk,iαi (qk,i ∈ Q).

Since disc(B) is squarefree, then D = ±1. Therefore, (qk,i) ∈ GLn(Z). Thus, by Exer-
cise 2.34 on page 81, B is a Z-basis for OF . Thus, B is an integral basis for F . ✷

Example 2.9 Example 2.5 on page 70 provides an example of a squarefree discriminant
of an integral basis. However, in Example 2.4, B = {1,

√
2} is an integral basis for Q(

√
2),

but disc(B) = 8, so the converse of Corollary 2.6 fails to hold.

Although Example 2.9 shows that the converse of Corollary 2.6 fails to hold, if we have two
integral bases for an algebraic number field, then they must have the same discriminant.

Corollary 2.7 Let B1 and B2 be two integral bases for an algebraic number field F . Then

disc(B1) = disc(B2).

Proof. By Theorem 2.7,
disc(B2) = D2disc(B1) (2.9)

where D ∈ Z is given in that theorem. Thus,

disc(B1)
�� disc(B2) ∈ Z,

by Corollary 2.4 on page 73. By reversing the roles of B1 and B2, we get

disc(B2)
�� disc(B1) ∈ Z.

Therefore,
disc(B1) = ±disc(B2).

However, by Equation (2.9), the minus sign is not possible. ✷

Corollary 2.7 essentially tells us that the discriminant of an integral basis for an algebraic
number field is an invariant of the field, and it has a name. The following generalizes the
notion for the quadratic case given in Definition 1.33 on page 46.
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Definition 2.7 — Discriminant of a Field

Let B be an integral basis for an algebraic number field F . Then the discriminant of F is
disc(B), denoted by∆ F .

Application 2.1 — Quadratic Fields

The ring of integers of a quadratic number field F is given by OF = Z[ω∆F
] where

ω∆F
=

�
(1 +

√
∆F )/2 if ∆F ≡ 1(mod 4),√

∆F if∆ F �≡ 1(mod 4)

is called the principal surd. —see Application 1.2 on page 3 and Theorem 1.28 on page 45.
Also,

DF =

�
∆F if∆ F ≡ 1(mod 4),
DF /4 if ∆F �≡ 1(mod 4)

is called the radicand of F .

Example 2.10 Let F = Q(
√
19). By Theorem 1.28, B = {1,

√
19} is an integral basis for

F . Thus,

∆F = disc(B) = det

�
1 1√
19 −

√
19

�2

= (−2
√
19)2 = 76 = 4 · 19 = 4DF .

Example 2.11 Let F = Q(
√
13). Then

B = {1, (1 +
√
13)/2}

is an integral basis for F by Theorem 1.28. Thus,

∆F = disc(B) = det

�
1 1

1+
√
13

2
1−

√
13

2

�2

= 13 = DF .

Now we provide a generalization of the quadratic version promised in Remark 1.22 on
page 46—see Biography 1.4 on page 54.

Theorem 2.10 — Stickelberger’s Theorem

If F is an algebraic number field, then

∆F ≡ 0, 1 (mod 4).

Proof. Let B = {α1, . . . , αn} be an integral basis for F , where |F : Q| = n. For each

i = 1, 2, . . . , n, let αi, α
(2)
i

, . . . , α(n)
i

(not to be confused with the powers of αi) be all of the
conjugates of αi over Q. By part (d) of Theorem A.19 on page 336 as

�
∆F = det(α(j)

i
)
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is essentially the sum of n! terms, each one corresponding to an element of the symmetric

group Sn, we may set σ(α(j)
i

) ∈ Sn as the bijection assigning each α(j)
i

to an element of Sn.
Therefore, we may refine this sum further in terms of the alternating group An as follows.

�
∆F = det(α(j)

i
) =

�

σ(α(j)
i

)∈An

α(j)
i

−
�

σ(α(j)
i

)�∈An

α(j)
i

= e− o,

so e, o ∈ A. By Exercise 2.1 on page 62, we have that, for each embedding θj of F in C,
θj(e+ o) = e+ o, and θj(eo) = eo so, by Exercise 2.4, e+ o, eo ∈ Q. Thus, by Corollary 1.11
on page 37, e+ o, eo ∈ Z. Therefore,

∆F = (e− o)2 ≡ (e+ o)2 − 4eo ≡ (e+ o)2 (mod 4),

then∆ F ≡ 0, 1(mod 4), as required. ✷

The above proof was published in 1929 by I. Schur (1875–1941), a student of G. Frobe-
nius—see Biographies 2.3 on page 80 and 2.4 on page 81 .

The next result tells us the effect on the discriminant of a field by the signature given in
Exercise 2.11 on page 63. The following also generalizes the last statement of Theorem 2.8
on page 73. This is a result of Kronecker—see Biography 2.2.

Theorem 2.11 — Signatures and Discriminants

If F is an algebraic number field with signature {r1, r2}, then the sign of∆ F is (−1)r2 . In
other words,∆ F > 0 if and only if half the number of complex embeddings is even.

Proof. Let B = {α1, . . . , αn} be an integral basis for F , where

|F : Q| = n.

Since det(α(j)
i

) ∈ C, we may write it as

det(αj

i
) = a+ b

√
−1 (a, b ∈ R).

Then det
�
α(j)
i

�
= a−b

√
−1 ,where the x denotes the complex conjugate of x. Since complex

conjugation will leave the real rows of the determinant unchanged, and will interchange
the 2r2 “non-real” rows in pairs corresponding to the conjugate embeddings, the value of

det
�
α(j)
i

�
is also (−1)r2(a+ b

√
−1). Therefore,

(−1)r2(a+ b
√
−1) = a− b

√
−1.

If r2 is even, then comparison of coefficients yields that b = 0, and∆ F = a2 > 0. If r2 is
odd, then a = 0, so

∆F = (b
√
−1)2 = −b2 < 0,

as required. ✷

Example 2.12 If F = Q( 3
√
2), there are two complex embeddings, and one real embedding,

namely r1 = 1 = r2, as seen in Exercise 2.12. Also, from Exercise 2.18 on page 68, it follows
that

∆F = −27 · 22 = −108 = (−1)r2108.
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Biography 2.2 Leopold Kronecker (1823–1891) was born on December 7,
1823 in Liegnitz, Prussia (now Legnica, Poland). In 1841, he entered the Uni-
versity of Berlin and achieved a doctorate under Dirichlet’s supervision in 1845.
Then he left for Silesia where he became wealthy in banking and real estate. He
returned to Berlin in 1855 and remained there for the rest of his life. However,
he did not become a professor there until 1883 when his lifelong friend Kummer
retired. Kronecker was known as a finitist, believing that mathematics would
be well-served by consideration of only finite numbers and a finite number of
steps. This naturally brought him into conflict with the likes of Cantor. In
fact, Kronecker was known for his vigorous personal attacks on anyone with
whom he had mathematical disagreements. His contributions were mainly to
algebraic number theory, the theory of algebraic equations, and elliptic func-
tions. Along with Kummer and Dedekind, Kronecker is generally considered to
be the third father of modern algebraic number theory. He died on December
29, 1891 from bronchial illness.

We conclude this section with an observation, which also serves as a caution, concerning
integral bases.

Remark 2.3 In view of Theorem 1.24 on page 39, the reader may be tempted into thinking
thatOF = Z[α] where α ∈ A for any number field F . In other words, one might be lured into
the belief that there is always an integral basis of the form {1, α , α2, . . . , αd−1}. However,
this is false, as the following illustration demonstrates. For criteria when this does happen
see Exercise 5.48 on page 253.

Example 2.13 The following was first presented in [44]. However, our proof is different and
more detailed for the edification of the reader. LetK = Q(

√
−7,

√
−14), F = Q(

√
−14), and

OF = Z[
√
−14]. We seek to establish that there is no β ∈ OK such that OK = Z[β]. First,

we show that there is no α ∈ OK such that OK = Z[α,
√
−14]. By way of contradiction,

suppose there is such an α. Then, in particular,

∆ =
1 +

√
−7

2
= γ1α+ γ2, where ∆ ∈ OK , γ1, γ2 ∈ OF

and √
−14/

√
−7 =

√
2 = β1α+ β2 where

√
2 ∈ OK , and β1, β2 ∈ OF .

Let θ be the embedding of K in C given by θ :
√
−7 �→ −

√
−7 and θ :

√
−14 �→

√
−14. In

other words, by Theorem 2.3 on page 59, �θ� = Gal(K/F ), fixing F pointwise. Therefore,

θ(∆) =
1−

√
−7

2
= γ1θ(α) + γ2,

∆− θ(∆) =
√
−7 = γ1(α− θ(α)), (2.10)

θ(
√
2) = −

√
2 = β1θ(α) + β2,

and √
2− θ(

√
2) = 2

√
2 = β1α+ β2 − β1θ(α)− β2 = β1(α− θ(α)). (2.11)

Squaring (2.10)–(2.11) and taking norms from F :

72 = NF (γ1)
2NF (α− θ(α))2 and 26 = NF (β1)

2NF (α− θ(α))2.
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It follows from Corollary 2.3 on page 67 that NF (α − θ(α)) = ±1 since NF (α − θ(α)) ∈ Z
and divides both 72 and 26. Thus, NF (γ1) = ±7. However, γ1 = a + b

√
−14 for some

a, b ∈ Z so a2 + 14b2 = ±7 which is impossible. We have shown that there is no α ∈ OK

such that OK = Z[α,
√
−14]. Now if there is a β ∈ OK such that OK = Z[β], then by

setting α = β −
√
−14 ∈ OK , we get OK = Z[α,

√
−14], which we have just shown to be

impossible.

Biography 2.3 Ferdinand Georg Frobenius (1849–1917) was born on October
26, 1849 in Berlin-Charlottenburg, Prussia (now Germany), the son of a Protes-
tant parson. He began his university studies at Göttingen for one semester,
then returned to Berlin. At the University of Berlin, he was instructed by
the likes of Kronecker, Kummer, and Weierstrass, the latter being his doctoral
supervisor under whom he completed his dissertation in 1870. After some po-
sitions at secondary school level, he was appointed to the University of Berlin
as an extraordinary professor of mathematics in 1874. Note that Frobenius
somehow bypassed the usual requirement for a Habilitation—see Footnote 1.1
on page 23. The consensus is that this breach of usual strictness was due to
Weierstrass’ influence. In 1875, after only a year at Berlin, Frobenius took a
position as ordinary professor at the Eidgenössische Polytechnikum in Zürich.
Frobenius worked in Zürich for seventeen years where he married and raised
a family. When Kronecker died in 1891, Weierstrass exerted further influence
to have Frobenius fill the vacant chair at Berlin. For a quarter century, from
1892, Frobenius was the leading influence in Berlin where he died on August
3, 1917. Among his students were Edmund Landau, Robert Remak, and Issai
Schur—see Biography 2.4. It is also noteworthy that Siegel was Frobenius’
student from 1915 until his death.

Frobenius contributed to a vast array of mathematical areas, among them
being analytic functions in series, linear differential equations, linear forms with
integer coefficients, elliptic and Jacobi functions, biquadratic forms, and group
theory, to name a very few. In group theory, he extended Sylow’s theorems from
permutation groups to abstract groups, and provided a proof of the structure
theorem for finitely generated abelian groups. But arguably his most influential
contribution may have been in the area of group characters which he ultimately
linked to representations and essentially gave birth to representation theory of
groups. Indeed, in 1911 Burnside wrote up Frobenius’ character theory in his
book Theory of Groups of Finite Order. Later, in other areas, such as quantum
mechanics and theoretical physics, Frobenius’s group theoretic representations
found new applications.

Remark 2.4 Recall that Theorem 1.24 on page 39 is the primitive element theorem for
algebraic number fields. In other words, any algebraic number field F is generated over Q
by a primitive element α ∈ N . Therefore, Example 2.13 shows that there cannot exist a
Primitive Element Theorem for rings of integers of algebraic number fields. Bases of the
form {1, α , α2, . . . , αd−1} for α ∈ A are called power integral bases, and OF = Z[α] is called
monogenic. Hence, not all rings of integers of algebraic number fields have a power integral
basis, namely they are not all monogenic.
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Biography 2.4 Issai Schur (1875–1941) was born on January 10, 1875 in
Mogilyov, in the province of the same name in what was then the Russian
Empire, and is now Belarus. His university education began in Berlin 1894,
where Frobenius was one of his teachers early on and ultimately his doctoral
advisor—see Biography 2.3. By 1901 he had obtained his doctorate on a topic
involving representations of the general linear group over C. His thesis intro-
duced functions that we now call S-functions in honour of Schur’s contribution.
He began his professional life as a lecturer at Berlin University in 1903, and was
ultimately promoted to full professor in Berlin in 1919. He held this position
until ousted by the Nazis in 1935. While at Berlin, he directed students in many
disparate directions including combinatorics, matrix theory, and soluble groups.
Among his doctoral students were both Richard and Alfred Brauer (brothers),
Robert Frucht, Bernard Neumann, Richard Rado, and Helmut Wieland. After
Schur was dismissed from his chair in 1935, he was also pressured to resign
from the Prussian Academy in 1938. The academy had honoured him in 1922
with his election to the august body. In 1939, he left for Palestine, broken by
the stress and humiliation he suffered under persecution by the Nazis. Two
years later, he died in Tel Aviv, Palestine (now Israel).

Among Schur’s achievements was his discovery of what we now call the Schur
multiplier. This proved to be well in advance of its time. Indeed, as evidence
of this fact, some forty years later Eilenberg and MacLane defined cohomology
groups, the second of which having coefficients in C−{0} is actually the Schur
multiplier. However, Eilenberg and MacLane were unaware of this fact. Schur
was interested in representation theory of groups, which began with his doctoral
thesis and culminated many years later in his complete description of rational
representations of the general linear group. He also worked on projective rep-
resentations of groups and group characters. In this area he is known for what
we now call Schur’s Lemma that says: If R and S are two finite-dimensional
irreducible representations of a group G and φ is linear map from R to S that
commutes with the action of the group, then either φ is invertible, or φ = 0.

His interests included Galois groups of certain classes of polynomials such as
Hermite polynomials. He also worked in divergent series, function theory, in-
tegral equations, and number theory.

Exercises

2.32. Prove that a Z-basis for OF in the sense of Definition 2.5 on page 70 is a basis in the
sense of Definition A.7 on page 324.

2.33. Let R be a commutative ring with identity and let α1, . . . , αd ∈ R. Prove that

det(αi−1
j

) =
�

1≤i<j≤d

(αj − αi).

2.34. Let G be a free abelian group of rank n with basis {g1, . . . , gn}, and suppose that
A = (ai,j) ∈ Mn×n(Z). Prove that the elements

hi =
n�

j=1

ai,jgj (i = 1, 2, . . . , n),

form a basis for G if and only if A ∈ GLn(Z). (See Definition A.18 on page 337.)
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2.35. Using Exercise 2.31 on page 69, find disc(mα,Q) when α =
√
2.

2.36. Let F = Q( 4
√
5) = Q(α). Find TF (α), NF (α), and disc(mα,Q), where mα,Q(x) =

x4 − 5. Also, show that disc(mα,Q) = NF (m�
α,Q(α))

2.37. Let F = Q( 4
√
5, ζ4), and α = 4

√
5. Find TF (α) and NF (α).

2.38. Let B = {1, α , α2, . . . , αd−1} be a basis for Q(α) over Q. Prove that

disc(B) = disc(mα,Q)

where mα,Q(x) is the minimal polynomial of α over Q.

2.39. Let F be an algebraic number field with OF = Z[α]. Prove that∆ F = disc(mα,Q)
where mα,Q is the minimal polynomial of α over Q.

2.40. Let R be a Dedekind domain, and let I be an R-ideal with

I =
r�

j=1

P
aj

j
,

for distinct prime R-ideals Pj . Prove that

|R/I| =
r�

j=1

|R/Pj |aj .

(Hint: Use Theorem 1.21 on page 32 and exercises in that section.)

2.41. If R is a commutative ring, and M is an R-module with N an R-submodule of M ,
then N is called a pure submodule of M if N ∩ rM = rN for all r ∈ R. Prove that if
N is a direct summand of M , then N is a pure submodule.

2.42. With reference to Exercise 2.41, prove that if OF ⊆ OK for algebraic number fields
F ⊆ K, then OF is a pure Z-submodule of OK . Conclude that any integral basis for
F can be extended to an integral basis for K.

2.43. Let F be a number field with basis {β1, β2, . . . , βn} over Q, and let α ∈ OF be of
degree d over Q. Suppose that

αβi =
n�

j=1

ai,jβj for i = 1, 2, . . . , n.

Prove that |NF (α)| = | det(ai,j)|.

2.44. Let F be an algebraic number field with α ∈ OF , α �= 0. Prove that✰

|OF /�α�| = |NF (α)|,

where the vertical bars on the left denote the cardinality of the quotient group, con-
sidered as free abelian groups, and the vertical bars on the right denote the absolute
value of the norm. In particular, this says that if the right-hand side is 1, then as free
abelian groups, OF = �α�.
(Hint: Show that the quotient of free abelian groups OF/�α� is finite by demonstrating
that OF and its subgroup �α� have the same rank. Then use Exercise 2.43.)

(This exercise is a segue into §2.4, where we extend the notion of norm from elements
to ideals and generalize the notion developed for the quadratic case in §1.7.)
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2.4 Norms of Ideals

The mathematician may be compared to a designer of garments, who is utterly obliv-
ious of the creatures whom his garments may fit. To be sure, his art originated in the
necessity for clothing such creatures, but this was long ago; to this day a shape will
occasionally appear which will fit into the garment as if the garment had been made
for it. Then there is no end of surprise and delight!

from page 142 of The Two Realities in [63]
Tobias Dantzig (1884–1956) Baltic, German, American mathematician

Exercise 2.40 as well as Exercise 2.44 provide a lead-in to the following important notion
which will allow us to refine some developments from earlier in the text and will lead us
naturally to ideal classes and the class group.

Definition 2.8 — Norms of Ideals

Let F be a number field and let I be an (integral) OF -ideal. Then we define the norm of I
to be

N(I) = |OF /I|.

If I is a fractional ideal of OF then, by Remark 1.13 on page 26, there is a nonzero integral
OF -ideal I and an element α ∈ OF such that

I =
1

α
I.

Then the norm of I is given by

N(I) =
N(I)

N((α))
,

where N(I) and N((α)) are the norms of the integral ideals I and (α).

Notice that, via Exercise 2.40, we know that |OF /I| is finite. In fact, if

I =
r�

j=1

P
aj

j
,

via Theorem 1.17 on page 28, then Exercise 2.40 tells us that

N(I) =
r�

j=1

|OF /Pj |aj .

Since we have the prime power
|OF /Pj | = p

fj

j

by Exercise 2.49 on page 86, then

N(I) =
r�

j=1

p
fjaj

j
.

Also, by Exercise 2.47, for any nonzero fractional OF -ideals I, J,

N(IJ) = N(I)N(J).

       



84 2. Field Extensions

Example 2.14 Let F = Q(
√
10), with the OF -ideals P = (2,

√
10), Q = (3, 1 +

√
10), and

Q
� = (3, 1−

√
10). (Recall that OF = Z[

√
10] by Theorem 1.28 on page 45.) We will show

that P, Q, and Q
� are prime OF -ideals, and compute their norms. Notice that by simply

multiplying out the basis elements,

QQ
� = (9, 3(1−

√
10), 3(1 +

√
10)).

However, 3 = 9− (3(1−
√
10) + 3(1 +

√
10)) ∈ QQ

�, so (3) ⊆ QQ
�, and clearly the elements

9, 3(1−
√
10), 3(1 +

√
10) are in the ideal (3), so

(3) = QQ
�,

by Theorem 1.30 on page 49. Similarly, P2 = (4, 2
√
10, 10). However, 2 = 10−2 ·4 ∈ P

2, so
(2) ⊆ P

2, and certainly the elements 4, 2
√
10, 10 are in the ideal (2), so again by Theorem

1.30,
(2) = P

2.

Hence,
(6) = P

2
QQ

�, (2.12)

so
N(P2

QQ
�) = N((6)) = 22 · 32 = 36 = NF (6). (2.13)

Notice that this coincides with the fact given in Exercise 2.44 on page 82 since

|OF /(6)| = |OF /�6�| = NF (6),

where the first quotient is that of a ring modulo an ideal, and the second quotient is as a
free abelian group modulo a cyclic subgroup. We may also calculate |OF /P| by counting
its elements. Although there are other means of doing this, we explore this avenue for its
instructive and illustrative value. First, we observe that P is maximal, for if

u+ v
√
10 �∈ P = {2a+ b

√
10 : a, b ∈ Z},

then u ∈ Z is odd and v ∈ Z is arbitrary. Hence, we have the ideal equality,

(P, u+ v
√
10) = Z[

√
10],

given that u− 1 + v
√
10 ∈ P, so

1 = u− 1 + v
√
10− (u+ v

√
10) ∈ (P, u+ v

√
10).

By Theorem 1.10 on page 18, P is a prime OF -ideal. Thus, every element of Z[
√
10] is either

in P or is of the form 1 + α, where α ∈ P, so |Z[
√
10]/P| = 2 = N(P). A similar argument

shows that every element of Z[
√
10] is either in Q or is of one of the forms 3a+ b− 1+ b

√
10

or 3a+ b− 2 + b
√
10. Therefore,

|Z[
√
10]/Q| = 3 = N(Q) = N(Q�) = |Z[

√
10]/Q�|.

Therefore, by Exercise 2.45 on page 86, Q is a prime OF -ideal. Hence,

N(PQ) = 6 = N(PQ�),

from which we could have deduced (2.13).

Observe, as we did in Examples 1.9 and 1.11 on pages 4–5, that

6 = (4 +
√
10)(4−

√
10) = 2 · 3

gives two distinct representations of the element 6 as a product of the irreducible elements
4 +

√
10, 4−

√
10, 2, and 3. However, there is unique factorization of the ideals as given in

(2.12).
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The following employs Example 2.14 to illustrate Exercise 2.47 on the following page.

Example 2.15 Let I = PQ where P and Q are given in Example 2.14. Via Exercise 2.51,

I = PQ = (6, 2−
√
10),

with
P
�
Q
� = PQ

� = (6, 2 +
√
10).

Let I and J be fractional OF -ideals given by

I =
1

2
I and J =

1

3
I �.

Then

N(IJ) = N(I)N(J) =

�
N(I)

NF (2)

��
N(I �)

NF (3)

�
=

�
6

4

��
6

9

�
= 1,

so
IJ = Z[

√
10] = OF .

The following essentially generalizes Exercise 2.44 on page 82, illustrated in Example 2.14.

Theorem 2.12 — Norms of Ideals and Discriminants

Suppose that F is a number field, and that I is a nonzero integral OF -ideal. Let B =
{α1, . . . , αn} be a Z-basis for I. Then

N(I)2 =
disc(B)

∆F

.

Proof. Let B1 = {β1, . . . , βn} be a Z-basis of OF . Then for each i = 1, . . . , n

αi =
n�

j=1

zi,jβj , (zi,j ∈ Z).

By the same reasoning as in the solution, provided on page 378, of Exercise 2.43,

N(I) = |OF /I| = | det(zi,j)|.

By Theorem 2.7 on page 71,

disc(B) = (det(zi,j))
2disc(B1) = N(I)2∆F ,

as required. ✷

An immediate consequence, which is essentially Exercise 2.44, is the following.

Corollary 2.8 If I is an integral OF -ideal with α ∈ I, then N(I) = |NF (α)| if and only if
I = (α).

Example 2.16 If F = Q(
√
∆F ) and α = (a+ b

√
∆F )/2 ∈ OF , then

N((α)) = |NF (α)| =
a2 − b2∆F

4
.
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Example 2.17 By Exercise 2.49, N(P) = pf for f ∈ N, where P is an integral prime OF -
ideal, then norms of prime ideals are not necessarily primes in Z—see Exercise 2.50. The
exact nature of this power f will be settled when we discuss general ideal decomposition in
number fields later in Chapter 5.

Exercises

2.45. Let F be a number field and I a nonzero OF -ideal. Prove that if N(I) is prime in Z,
then I is prime in OF .

2.46. Let F be a number field and I, J nonzero integral OF -ideals. Prove that

N(IJ) = N(I)N(J).

Conclude that if an integral ideal I1 divides an integral ideal I2, then N(I1)
�� N(I2).

2.47. Let F be a number field and I, J nonzero fractional OF -ideals. Prove that

N(IJ) = N(I)N(J).

(Note that, unlike the conclusion in Exercise 2.46, we cannot conclude that N(J)
divides N(IJ) in Z. Example 2.15 on the previous page provides a counterexample to
the contrary.)

2.48. Let F be a number field and I a nonzero OF -ideal. Prove that I
�� (N(I)), namely

that (N(I)) ⊆ I.

2.49. Let F be a number field and let P be a nonzero prime OF -ideal. Prove that N(P) =
pm, where P ∩ Z = (p), for some m ∈ N, where m ≤ |F : Q|.

2.50. Suppose that α ∈ OF is a nonzero nonunit element for a number field F . Prove that if
|NF (α)| = p where p is a prime in Z then α is a prime in OF . Show that the converse
fails to hold.

(Hint: Use Theorems 1.8 on page 16 and 1.30 on page 49 as well as Exercises 2.44
on page 82 and 2.45 above in conjunction with Definition 2.8 on page 83.)

(Note that this substantially generalizes Exercises 1.5 on page 6 and 1.22 on page 14
and, in particular, shows that the assumption of UFD in Exercise 1.22 is not necessary.
We had to wait until we had the machinery made possible by our developments to this
point before we could provide this result since it is quite difficult with only elementary
techniques.)

2.51. Find all ideals in Z[
√
10] having norm 6.

2.52. Prove that for a Dedekind domain D, and an integral D-ideal I there are only finitely
many integral D-ideals that divide I.

2.53. Let F be a number field and n ∈ N arbitrary but fixed. Prove that there exist only
finitely many integral OF -ideals I with N(I) = n.

2.54. Let F be a number field and let I be an integral OF -ideal. Suppose that n ∈ N is the
smallest positive integer in I. Prove that n

�� N(I).

       



Chapter 3

Class Groups

Of all the ruins that of a noble mind is the most deplorable.
spoken by Sherlock Holmes in His Last Bow (1917) from The Dying Detective.

Sir Arthur Conan Doyle (1859–1930)
Scottish-born writer of detective fiction

In this chapter, we begin with the interplay between ideal and form class groups. This
allows for a relatively simple proof of the finiteness of the class number in §3.2 for the
quadratic case. This relatively easy approach is a segue into the general case involving the
geometry of numbers in §3.3. Some of what follows is adapted from [54].

3.1 Binary Quadratic Forms

Lagrange was the first to introduce the theory of quadratic forms—see Biography 3.3 on
page 93. The theory was later expanded by Legendre, and greatly magnified even later by
Gauss—see Biographies 3.1 on page 89 and 3.5 on page 95. An integral binary quadratic
form is given by

f(x, y) = ax2 + bxy + cy2 with a, b, c ∈ Z. (3.1)

For simplicity, we may suppress the variables, and denote f by (a, b, c). The value a is
called the leading coefficient, the value b is called the middle coefficient, and c is called the
last coefficient. If gcd(a, b, c) = 1, then we say that f(x, y) is a primitive form.

The aforementioned three great mathematicians looked at the representation problem:
Given a binary quadratic form (3.1), which n ∈ Z are represented by f(x, y)? In other
words, for which n do there exist integers x, y such that f(x, y) = n? If gcd(x, y) = 1, then
we say that n is properly represented by f(x, y). For instance, when studying criteria for
the representation of a natural number n as sums of two squares, such as in [53, Section 6.1,
pp. 243–251], a simple answer can be given. When looking at norm-forms x2 + ny2 = m,
where m,n ∈ Z, such as in [53, Section 7.1, pp. 265–273], the problem can be given a
relatively simple answer for certain m,n. In general, there is no simple complete answer.
Moreover, an even more general and difficult problem arises, namely when can an integer
be represented by a binary quadratic form from a given set of such forms? The theory of
binary quadratic forms deals with this question via the following notion. In the balance of
our discussion, we use the term form to mean binary quadratic form.

87
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Definition 3.1 — Equivalent Binary Quadratic Forms

Two forms f(x, y) and g(x, y) are said to be equivalent if there exist integers p, q, r, s, such
that

f(x, y) = g(px+ qy, rx+ sy) and ps− qr = ±1. (3.2)

For simplicity, we may denote equivalence of f and g by f ∼ g. If ps− qr = 1, then f and
g are said to be properly equivalent, and if ps − qr = −1, they are said to be improperly
equivalent. Two forms f and g are said to be in the same equivalence class or simply in the
same class, if f is properly equivalent to g.

Remark 3.1 From Definition 3.1, equivalent forms represent the same integers, and the
same is true for proper representation – see Exercise 3.1 on page 94. Moreover, since

det

�
p q
r s

�
= ps− qr = ±1,

this means that �
p q
r s

�
∈ GL(2,Z),

— see Exercise 1.59 on page 54. Note, as well, that proper equivalence means that ps−qr = 1
so �

p q
r s

�
∈ SL(2,Z),

the subgroup of GL(2,Z) with elements having determinant 1. Properly equivalent forms
are said to be related by a unimodular transformation, namely X = px+qy and Y = rx+sy
with ps− qr = 1. Note as well, by Exercise 3.3 on page 94, proper equivalence of forms is
an equivalence relation.

The notion of proper and improper equivalence is due to Gauss. Lagrange initiated the
idea of equivalence, although he did not use the term. He merely said that one could be
“transformed into another of the same kind,” but did not make the distinction between
the two kinds. Similarly Legendre did not recognize proper equivalence. However, there
is a very nice relationship between proper representation and proper equivalence, since as
Exercise 3.2 shows, the form f(x, y) properly represents n ∈ Z if and only if f(x, y) is
properly equivalent to the form nx2 + bxy + cy2 for some b, c ∈ Z.

Example 3.1 For f(x, y) = x2 + 7y2, n = 29 = 1 + 7 · 22 = f(1, 2), f(x, y) is properly
equivalent to g(x, y) = 29x2 + 86xy + 64y2 since f(x, y) = g(3x − y,−2x + y), where
p = 3, q = −1, r = −2, s = 1. With reference to Remark 3.1, X = 3x − y, Y = −2x + y
represents a unimodular transformation.

The following notion is central to the discussion and links equivalent forms in another way.

Definition 3.2 — Discriminants of Forms

The discriminant of the form f(x, y) = ax2 + bxy + cy2 is given by

D = b2 − 4ac.

If D > 0, then f is called an indefinite form. If D < 0 and a < 0, then f is called a negative
definite form, and if D < 0 and a > 0, then f is called a positive definite form.
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Remark 3.2 By Exercise 3.7 on page 94, if forms f and g have discriminants D and D1,
respectively, and f(x, y) = g(px + qy, rx + sy), then D = (ps − qr)2D1. Thus, equivalent
forms have the same discriminant. However, forms with the same discriminant are not
necessarily equivalent — see Exercise 3.8. Furthermore, if f(x, y) = ax2 + bxy + cy2, then
by completing the square, we get

4af(x, y) = (2ax+ by)2 −Dy2,

so when D > 0, the form f(x, y) represents both positive and negative integers. This is the
justification for calling such forms “indefinite.” If D < 0 and a < 0, then f(x, y) represents
only negative integers, thus the reason they are called “negative definite,” and if a > 0,
then they represent only positive integers, whence the term “positive definite.” Since we
may change a negative definite form into a positive definite one by changing the signs of
all the coefficients, it is sufficient to consider only positive definite forms when D < 0. We
will, therefore, not consider negative definite forms in any discussion hereafter.

Biography 3.1 Adrien-Marie Legendre (1752–1833) was born on September
18, 1752, in Paris, France. He was educated at the Collège Mazarin in Paris.
During the half decade 1775–1780, he taught along with Laplace (1749–1827)
at École Militaire. He also took a position at the Académie des Sciences, be-
coming first adjoint in 1783, then associé in 1785, and his work finally resulted
in his election to the Royal Society of London in 1787. In 1793, the Académie
was closed due to the Revolution, but Legendre was able to publish his phe-
nomenally successful book Eléments de Géométrie in 1794, which remained
the leading introductory text in the subject for over a century. In 1795, the
Académie was reopened as the Institut National des Sciences et des Arts and
met in the Louvre until 1806. In 1808, Legendre published his second edi-
tion of Théorie des Nombres, which included Gauss’s proof of the Quadratic
Reciprocity Law. Legendre also published his three-volume work Exercises
du Calcul Intégral during 1811–1819. Then his three-volume work Traité des
Fonctions Elliptiques was published during the period 1825–1832. Therein he
introduced the name “Eulerian Integrals” for beta and gamma functions. This
work also provided the fundamental analytic tools for mathematical physics,
and today some of these tools bear his name, such as Legendre Functions. In
1824, Legendre had refused to vote for the government’s candidate for the In-
stitute National, and for taking this position his pension was terminated. He
died in poverty on January 10, 1833, in Paris.

Congruence properties of the discriminant of a form may provide us with information on
representation. For instance, Exercise 3.9 tells us that congruence properties modulo 4
determine when an integer may be represented by forms with discriminantD ≡ 0, 1(mod 4).
Furthermore, this means that we can take the equation D = b2 − 4ac and let a = 1 and
b = 0 or 1 according to whether D ≡ 0 or 1(mod 4), so then c = −D/4 or −(D − 1)/4,
respectively. Thus, we get a distinguished form of discriminant D given as follows.

Definition 3.3 — Principal Forms

IfD ≡ 0, 1(mod 4), then (1, 0,−D/4) or (1, 1,−(D−1)/4), respectively, are called principal
forms of discriminant D.
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Remark 3.3 Via Exercise 3.10 on page 94, we see that if D = −4m, we get the form
f(x, y) = x2+my2. As we shall see, these forms are particularly important in the historical
development of the representation problem. Indeed, entire books, such as [15] are devoted
to discussing this issue. There is a general notion that allows us to look at canonical forms
for more illumination of the topic. This is given in the following, which is due to Lagrange.

Definition 3.4 — Reduced Forms

A primitive form f(x, y) = ax2 + bxy + cy2, of discriminant D, is said to be reduced if the
following hold.

(a) When D < 0 and a > 0,

|b| ≤ a ≤ c, and if either |b| = a or a = c, then b ≥ 0. (3.3)

(b) When D > 0,
0 < b <

√
D and

√
D − b < 2|a| <

√
D + b. (3.4)

Note that since f is positive definite in part (a) of Definition 3.4, then by Definition 3.2 on
page 88, both a and c are positive.

With the notion of reduction in hand, we have the following result, which provides us with
a unique canonical representative for equivalence classes of positive definite forms.

Theorem 3.1 — Positive Definite and Reduced Forms

Every positive definite form is properly equivalent to a unique reduced form.

Proof. Let f(x, y) = ax2+bxy+cy2 be a primitive positive definite form. Let n be the least
positive integer represented by f . By Exercise 3.2, there exist B,C ∈ Z such that f ∼ g
properly, where g(X,Y ) = nX2 + BXY + CY 2. For any integer z, the transformation
X = x− zy, Y = y yields

g(X,Y ) = nx2 + (B − 2nz)xy + (nz2 −Bz + C)y2.

If we set z = Ne
�

B

2n

�
, the nearest integer to B/(2n), then

−1

2
<

B

2n
− z ≤ 1

2
,−n ≤ B − 2nz ≤ n, and |B − 2nz| ≤ n.

Thus, if we set b1 = B − 2nz and c1 = nz2 −Bz + C, then

g(X,Y ) = nx2 + b1xy + c1y
2,

where |b1| ≤ n. Thus, f is properly equivalent to g, g is positive definite, and g(0, 1) = c1.
Therefore, g represents c1, which implies c1 ∈ N, and c1 ≥ n by the minimality of n. We
have shown that f is properly equivalent to a reduced form. The balance of the result will
follow from the next result.

Claim 3.1 Any two properly equivalent reduced forms must be identical.

Suppose that the form f(x, y) = ax2 + bxy + cy2 is reduced and properly equivalent to the
reduced form g(x, y) = Ax2 +Bxy + Cy2 via the transformation

g(x, y) = f(px+ qy, rx+ sy)
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with ps− qr = 1. We may assume without loss of generality that a ≥ A. Also, a straight-
forward calculation shows that

A = ap2 + bpr + cr2,

B = 2apq + b(ps+ qr) + 2crs, (3.5)

C = aq2 + bqs+ cs2.

Furthermore, we have
|b| ≤ a ≤ c. (3.6)

Using (3.6) we get,

A = ap2 + bpr + cr2 ≥ ap2 − |bpr|+ cr2 ≥ ap2 − |bpr|+ ar2 = a(p2 + r2)− |bpr|. (3.7)

However, since
p2 + r2 ≥ 2|pr|, (3.8)

then (3.7) is greater than or equal to 2a|pr| − |bpr| ≥ a|pr|, where the latter inequality
follows from (3.6) again. We have shown that

A ≥ a|pr|. (3.9)

However, by assumption a ≥ A, so |pr| ≤ 1. If |pr| = 0, then

A = ap2 + bpr + cr2 ≥ ap2 + ar2 = a(p2 + r2) ≥ a,

so A = a. On the other hand, if |pr| = 1, then by (3.9), A ≥ a, so again we get A = a.

It remains to show that B = b since, once shown, it follows from Exercise 3.7 on page 94
that C = c, since B2 − 4AC = b2 − 4ac.

Suppose that c > C. Then c > a since C ≥ A = a. If |pr| = 1, then by (3.6)–(3.8), using the
fact that cr2 > ar2, we deduce A > a, a contradiction. Hence, |pr| = 0. If p = 0, then using
(3.7)–(3.8), we conclude that A > a, so r = 0. Since ps − qr = 1, then ps = 1. Moreover,
since |B| ≤ A = a given that g is reduced, then from (3.6), we get −a ≤ |B| − |b| ≤ a.
However, by (3.5), B = 2apq + b. It follows that q = 0 and B = b.

Lastly, suppose that c < C. By solving for a, b, c in terms of A,B,C we may reverse the
roles of the variables and argue as above to the same conclusion that B = b. This completes
the proof. ✷

Remark 3.4 The above says that there is a unique representative for each equivalence
class of positive definite binary quadratic forms. Furthermore, by Exercise 3.11 on page 95,
when D < 0, the number hD of classes of primitive positive definite forms of discriminant
D is finite, and hD is equal to the number of reduced primitive forms of discriminant D.
(Note that we prove hD < ∞ in general for field discriminants in Theorem 3.7 on page 106.)

The case for indefinite forms is not so straightforward. The uniqueness issue, in particular,
is complicated since we may have many reduced forms equivalent to one another, and the
determination as to which reduced forms are equivalent is more difficult. Yet, we resolve
this issue in Theorem 3.5 on page 101.

We conclude this section with a result due to Landau. This result precisely delineates the
negative discriminants D = −4n for which hD = 1 and the proof is essentially that of
Landau [35].
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Biography 3.2 Edmund Landau (1877–1938) was born in Berlin, Germany
on February 14, 1877. He studied mathematics at the University of Berlin,
where his doctoral thesis, awarded in 1899, was supervised by Frobenius—see
Biography 2.3 on page 80. Landau taught at the University of Berlin for the
decade 1899–1909. In 1909, when he was appointed as ordinary professor at
the University of Göttingen, he had amassed nearly seventy publications. His
appointment at Göttingen was as a successor to Minkowski. Hilbert and Klein
were also colleagues there—see Biography 3.4 on page 94. He became full
professor there until the Nazis forced him out in 1933. On November 19, 1933,
he was given permission to work at Groningen, Netherlands, where he remained
until he retired on February 7, 1934. He returned to Berlin where he died of a
heart attack on February 19, 1938.

Landau’s major contributions were in analytic number theory and the dis-
tribution of primes. For instance, his proof of the prime number theorem,
published in 1903, was much more elementary than those given by Poussin
and Hadamard—see [53, §1.9, pp. 65–72] for a detailed overview. He estab-
lished more than 250 publications in number theory and wrote several books
on number theory, which were influential.

Theorem 3.2 — When h−4n = 1 for n > 0

If n ∈ N, then h−4n = 1 if and only if n ∈ {1, 2, 3, 4, 7}.

Proof. Suppose that h−4n = 1. f(x, y) = x2+ny2 is clearly reduced since a = 1, b = 0, and
c = n ≥ 1 in Definition 3.4 on page 90. The result is clear for n = 1, so we assume that
n > 1.

Case 3.1 n is not a prime power.

There exists a prime p
�� n such that pd||n, for d ∈ N, where || denotes proper division,

also commonly called exactly divides, namely pd
�� n, but pd+1 � n — see [53, Definition

1.3, p. 16] for the general notion. Let a = min(pd, n/pd) and c = max(pd, n/pd). Thus,
gcd(a, c) = 1, where 1 < a < c, since n is not a prime power. Thus, g(x, y) = ax2 + cy2 is a
reduced form of discriminant −4ac = −4n, so h−4n > 1, given that f(x, y) is also a reduced
form of discriminant D, unequal to g(x, y). This completes Case 3.1.

Case 3.2 n = 2� where � ∈ N.

We need to show that h−4n > 1 for � ≥ 3. If � = 3, then D = −32 and the form
g(x, y) = 3x2 + 2xy + 3y2 is a reduced form of discriminant 22 − 4 · 3 · 3 = −32 not equal
to f(x, y), so we may assume that � ≥ 4. Set

g(x, y) = 4x2 + 4xy + (2�−2 + 1)y2,

which is primitive since gcd(4, 4, 2�−2 + 1) = 1, and reduced since 4 < 2�−2 + 1. Moreover,
the discriminant is

D = 42 − 4 · 4 · (2�−2 + 1) = −16 · 2�−2 = −2�+2 = −4n,

but g �= f . This completes Case 3.2.

Case 3.3 n = pk where p > 2 is prime and k ∈ N.
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Suppose that n + 1 is not a prime power. Then, as in Case 3.1, we may write n + 1 = ac,
where 1 < a < c and gcd(a, c) = 1. Thus,

g(x, y) = ax2 + 2xy + cy2

is a reduced form of discriminant 22 − 4ac = 4− 4(n+ 1) = −4n, and f �= g, so h−4n > 1.

Lastly, suppose that n+1 = 2t where t ∈ N, observing that n+1 = pk +1 is even. If t ≥ 6,
then

g(x, y) = 8x2 + 6xy + (2t−3 + 1)y2

is reduced since 8 < 2t−3 + 1, and gcd(8, 6, 2t−3 + 1) = 1. Also, g has discriminant

D = 62 − 4 · 8(2t−3 + 1) = 4− 4 · 2t = 4− 4(n+ 1) = −4n,

and f �= g, so h−4n > 1. For t ≤ 5 we have that t ∈ {1, 2, 3, 4, 5} have the corresponding
values

n ∈ {1, 3, 7, 15, 31}.

It remains to exclude n = 15, 31.

If n = 15, then n is not a prime power so this violates the hypothesis of Case 3.3. If n = 31,
then the form

g(x, y) = 5x2 + 4xy + 7y2

is reduced since b = 4 < a = 5 < c = 7, and is primitive since gcd(a, b, c) = 1. Lastly, the
discriminant is

D = 42 − 4 · 5 · 7 = −4 · 31.

This completes Case 3.3, and we are done for this direction of the proof.

For
n ∈ {1, 2, 3, 4, 7}

we get that h−4n = 1 from Exercise 3.13. ✷

Biography 3.3 Joseph-Louis Lagrange (1736–1813) was born on January 25,
1736 in Turin, Sardinia-Piedmont (now Italy). Although Lagrange’s primary
interests as a young student were in classical studies, his reading of an essay by
Edmund Halley (1656–1743) on calculus converted him to mathematics. While
still in his teens, Lagrange became a professor at the Royal Artillery School in
Turin in 1755. Lagrange sent Euler some of his work, including methods in the
calculus of variations, then called isoperimetrical problems. This helped Euler
to solve a problem upon which he had been working for years. Ultimately,
Lagrange succeeded Euler as director of mathematics at the Berlin Academy of
Science in 1766. Most of his time at Berlin was spent on celestial mechanics and
the polishing of his masterpiece Mécanique Analytique or Analytical Mechanics,
which was published in Paris in 1788. In this work, he spoke of the science
of mechanics as the geometry of four dimensions, three dimensional physical
space and one time coordinate. This was exploited by Einstein in 1915, when
he developed his general theory of relativity. Lagrange left Berlin in 1787 to
become a member of the Paris Academy of Science where he remained for the
rest of his professional life. When he was fifty-six, he married a young woman,
almost forty years younger than he, the daughter of the astronomer Lemonnier.
She became his devoted companion until his death in the early morning of April
10, 1813 in Paris.
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Exercises

3.1. Prove that equivalent forms represent the same integers, and the same is true for
proper representation.

3.2. Prove that the form f(x, y) properly represents n if and only if f(x, y) is properly
equivalent to the form nx2 +Bxy + Cy2 for some B,C ∈ Z.

3.3. Prove that proper equivalence of forms is an equivalence relation, namely that the
properties of reflexivity, symmetry, and transitivity are satisfied—see Exercise 1.8 on
page 6.

Biography 3.4 David Hilbert (1862–1943) was born in Königsberg, Prussia,
which is now Kaliningrad, Russia. He studied at the University of Königsberg
where he received his doctorate under the supervision of Lindemann. He was
employed at Königsberg from 1886 to 1895. In 1895, he was appointed to fill
the chair of mathematics at the University of Göttingen, where he remained for
the rest of his life. Hilbert was very eminent in the mathematical world after
1900 and it may be argued that his work was a major influence throughout
the twentieth century. In 1900, at the Paris meeting of the Second Interna-
tional Congress of Mathematicians, he delivered his now-famous lecture The
Problems of Mathematics, which outlined twenty-three problems that continue
to challenge mathematicians today. Among these were Goldbach’s conjecture
and the Riemann hypothesis. Some of the Hilbert problems have been resolved
and some have not, such as the two listed. Hilbert made contributions to many
branches of mathematics including algebraic number theory, the calculus of
variations, functional analysis, integral equations, invariant theory, and math-
ematical physics. Hilbert retired in 1930 at which time the city of Königsberg
made him an honorary citizen. He died on February 14, 1943 in Göttingen.

3.4. Prove that improper equivalence is not an equivalence relation.

3.5. Prove that any form equivalent to a primitive form must itself be primitive.

3.6. Prove that if f represents n ∈ Z, then there exists a g ∈ N such that n = g2n1 and f
properly represents n1.

3.7. Suppose that f ∼ g where f is a form of discriminantD and g is a form of discriminant
D1, then D = (ps− qr)2D1 = D1 where f(x, y) = g(px+ qy, rx+ sy).

3.8. Provide an example of forms with the same discriminant that are not equivalent.

3.9. Let D ≡ 0, 1(mod 4) and let n be an integer relatively prime to D. Prove that if n
is properly represented by a primitive form of discriminant D, then D is a quadratic
residue modulo |n|, and if n is even, then D ≡ 1(mod 8). Conversely, if n is odd and
D is a quadratic residue modulo |n|, or n is even and D is a quadratic residue modulo
4|n|, then n ∈ Z is properly represented by a primitive form of discriminant D.

3.10. Let n ∈ Z and p > 2 be a prime not dividing n. Prove that p is represented by
a primitive form of discriminant −4n if and only if the Legendre symbol equality
(−n/p) = 1 holds.

(Hint: Use Exercise 3.9.)
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3.11. For a fixed integer D < 0, let hD be the number of classes of primitive positive definite
forms of discriminant D. Prove that hD is finite and is equal to the number of reduced
forms of discriminant D.

3.12. Let n ∈ N and p > 2 be prime with p � n. Prove that the Legendre symbol (−n/p) = 1
if and only if p is represented by one of the h−4n reduced forms of discriminant −4n.

(Hint: See Exercises 3.10–3.11 and Theorem 3.1 on page 90.)

3.13. Prove that if n ∈ {1, 2, 3, 4, 7}, then h−4n = 1.

Biography 3.5 Carl Friederich Gauss (1777–1855) is considered to be among
the greatest mathematicians who ever lived. His genius was evident at the
age of three, when he corrected an error in his father’s bookkeeping. Also,
at the age of eight, he astonished his teacher, Büttner, by rapidly adding the
integers from 1 to 100 via the observation that the fifty pairs (j+1, 100−j) for
j = 0, 1, . . . , 49 each sum to 101 for a total of 5050. By the age of fifteen, Gauss
entered Brunswick Collegium Carolinum funded by the Duke of Brunswick
to whom Gauss dedicated his masterpiece Disquisitiones Arithmeticae [20],
published in 1801. In 1795, Gauss entered Göttingen University, and by the age
of twenty achieved his doctorate, which contained the Fundamental Theorem
of Algebra—see Theorem A.18 on page 334. His intimate friend as a student
was Farkas (or Wolfgang) Bolyai (1775–1856). Both had tried to prove Euclid’s
parallel postulate, which is equivalent to the assumption that two converging
lines must intersect. Although Bolyai gave up in frustration, Gauss had some
ideas which, had he developed, would probably have led to his being credited
with the discovery of non-Euclidean geometry, but the honour went to others.
Gauss did publish his classic treatise Disquisitiones circa superficies curvas
in 1827, which may be said to have initiated differential geometry. Gauss
is credited with having invented two physical objects. One is the heliotrope,
which worked by reflecting the sun’s rays using a small telescope and an array
of mirrors. The other, in collaboration with Wilhelm Weber (1804–1891), was
the invention of the first operational telegraph.

He is also credited with computing, from some severely limited data, the orbit
of Ceres Ferdinandea, discovered on January 1, 1801 by Piazzi, an Italian as-
tronomer. Ceres was rediscovered by Zach, an astronomer and friend of Gauss,
in June 1801, upon its reappearance from behind the sun, where Piazzi had
lost his observation, leading to his small amount of data. Ceres was in virtu-
ally the exact position where Gauss had predicted! Although Gauss did not
disclose it at the time, he used his method of least squares approximation to
do the calculation. Indeed, some contend that this calculation is what made
Gauss famous—see the MAA award-winning article [67] by Teets and White-
head. However, in total, Gauss’ accomplishments are too vast to discuss here
in detail.

Gauss was married twice. He married his first wife, Johanna Ostoff on October
9, 1805. She died in 1809 after giving birth to their second son. His second
wife was Johanna’s best friend Minna, whom he married in 1810. She bore
him three children. Gauss remained a professor at Göttingen until the early
morning of February 23, 1855 when he died in his sleep.
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3.2 Forms and Ideals

Happiness is not an ideal of reason but of imagination.
from section two of

Fundamental Principles of the Metaphysics of Ethics (1785)
Immanuel Kant (1724–1804)

German philosopher

We study how to “multiply” forms, which is called “composition of forms” and relate it
to ideal multiplication, which allows us to prove the finiteness of class numbers, for the
quadratic case, in a relatively easy fashion. Also, we intimately link the class group of
forms with that of ideals. The quadratic case is made transparent via binary quadratic
forms, whereas the general case requires Minkowski’s geometry of numbers in §3.3. Therein
we prove the general case of finiteness of the ideal class number, motivated by the quadratic
case—see Biography 3.6 on page 107.
First we need to develop some new notions. The first result allows us to select a canon-
ical form in each equivalence class. For ease of elucidation, we restrict our attention to
discriminants that are field discriminants–see Definition 1.33 on page 46.

Lemma 3.1 — Canonical Forms

Let F = Q(
√
∆F ) be a quadratic field of discriminant∆ F and let m ∈ Z. Then every

proper equivalence class of forms of discriminant∆ F contains a primitive form with positive
leading coefficient that is relatively prime to m.

Proof. Let f = (a, b, c) ∈ C∆F
and set

Pa,m,c =
�

p

p

where the product ranges over all distinct primes p such that p
�� a, p

�� c and p
�� m. Also

set
Pa,m =

�

q

q

where the product ranges over all distinct primes q such that q
�� a, q

�� m, but q � c, set

Pc,m =
�

r

r

where the product ranges over all distinct primes r such that r
�� c, r

�� m, but r � a, and set

Sm =
�

s

s

where the product ranges over all distinct primes s such that s
�� m but s � Pa,m,cPa,mPc,m.

Then f represents
aP 2

a,m
+ bPa,mPc,mSm + c(Pc,mSm)2 = N. (3.10)

Claim 3.2 gcd(N,m) = 1.
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Assume that a prime t
�� N and t

�� m. Assume first that t
�� a. Then

t
�� Pa,m,cPa,m

by the definition of the latter. If t
�� Pa,m, then by (3.10),

t
�� cPc,mSm.

However, t � Pc,mSm, so t
�� c. This contradicts the fact that t

�� Pa,m. Hence, t � Pa,m, so
t
�� Pa,m,c. It follows from (3.10) that

t
�� bPa,mPc,mSm.

However, we have already shown that t � Pa,m and since t
�� a, then t � Pc,m. Also, t

�� Pa,m,c,
so t � Sm, which implies that t

�� b. We have shown that t
�� gcd(a, b, c), contradicting that

f is primitive. Hence, our initial assumption was false, namely, we have shown that t � a.
Therefore,

t
�� Pc,mSm

by the definition of the latter. However, by (3.10), this implies that t
�� aPa,m, a contradiction

to what we have already shown. This secures the claim.

By Exercise 3.2 on page 94, Claim 3.2 tells us that f is properly equivalent to the form

g(x, y) = Nx2 +Bxy + Cy2

for some B,C ∈ Z. If N > 0, then we have our result.

If N < 0, then by setting x0 = Bm�+ 1 and y0 = −2N�m for some � ∈ Z,

g(x0, y0) = Nx2
0 +Bx0y0 + Cy20

= N(Bm�+ 1)2 +B(Bm�+ 1)(−2N�m) + C(2N�m)2

= NB2m2�2 + 2NBm�+N − 2NB2m2�2 − 2NB�m+ 4CN2�2m2

= N(1−m2�2(B2 − 4NC)) = N(1−m2�2∆F ) = Q,

where Q > 0 if N < 0.

Since f represents
Q = N(1−m2�2∆F )

and Q is relatively prime to m, given that N and 1 −m2�2∆F are relatively prime to m,
then Exercise 3.2 gives us the complete result.

✷

Now we make the connection with ideals.

Theorem 3.3 — Ideals and Composition of Forms

Suppose that OF is the ring of integers of a quadratic field of discriminant∆ F and

f(x, y) = ax2 + bxy + cy2

is a primitive form, with a > 0, of discriminant∆ F = b2 − 4ac. Then

I = (a, (−b+
�

∆F )/2)

is an OF -ideal.
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Proof. Since ∆F = b2 − 4ac, then b2 ≡ ∆F (mod 4a), so by Exercise 1.58 on page 54, I is
an OF -ideal. ✷

Note that in Theorem 3.3, we must exclude the case a < 0 since the norm of an ideal
must be positive. This excludes the negative definite case, but in view of Remark 3.2 on
page 89, there is no loss of generality. Moreover, in the indefinite case, with a < 0, we
may circumvent this via the techniques given in the proof of Theorem 3.5 on page 101. In
particular, see (3.14) on page 103.

Now we examine a means of associating forms in a unique way that allows us to “compose”
them.

Definition 3.5 — United Forms

Two primitive forms f = (a1, b1, c1) and g = (a2, b2, c2) of discriminant D are called united
if gcd(a1, a2, (b1 + b2)/2) = 1.

Note that in Definition 3.5, since b21 − 4a1c1 = b22 − 4a2c2, then b1 and b2 have the same
parity so (b1 + b2)/2 ∈ Z.

Theorem 3.4 — United Forms and Uniqueness

If f = (a1, b1, c1) and g = (a2, b2, c2) are united forms of discriminant D, where D is a field
discriminant, then there exists a unique integer b3 modulo 2a1a2 such that

b3 ≡ bj (mod 2aj), j = 1, 2

and
b23 ≡ D (mod 4a1a2).

Proof. This is an immediate consequence of the multiplication formulas for quadratic ideals
on page 48. ✷

Now we are in a position to show how to multiply or compose forms.

Definition 3.6 — Dirichlet Composition3.1

Suppose that f = (a1, b1, c1) and g = (a2, b2, c2) are primitive, united forms of discriminant
∆F where∆ F is a field discriminant, a3 = a1a2, b3 is the value given in Theorem 3.4, and

c3 =
b23 −∆F

4a3
.

Then the Dirichlet composition of f and g is the form

f ◦ g = G = (a3, b3, c3).

3.1As a point of interest, there is a recent paper—see [4]—that shows how composition of binary quadratic
forms leads to parametrizations of cubic, quartic, and quintic number fields. These, in turn, are shown to
lead to formulas for counting the number of quartic and quintic number fields of bounded discriminant, as
well as yet-to-be-determined connections with exceptional Lie groups and higher rank division algebras, for
instance.
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Remark 3.5 Note that
(a3, (b3 +

�
∆F )/2)

is an-OF -ideal where F = Q(
√
∆F ) by the multiplication formulas given on page 48. This

shows the intimate connection between multiplication of quadratic ideals and composition
of forms. Indeed, we need not restrict to field discriminants for this to work. We could
expand the discussion to non-maximal orders in quadratic fields but then the delineation
becomes more complicated, since we must rely on special conditions for invertibility of ideals
and other considerations, all of which are satisfied in the so-called maximal order OF . See
[49] for the more general approach.

The form G, in Definition 3.6, is a form of discriminant

b23 − 4a3c3 = b23 − 4a3(b
2
3 −∆F )/(4a3) = b23 − b23 +∆F = ∆F .

Also it is primitive since if a prime p
�� gcd(a3, b3, c3), then p

�� a1 or p
�� a2. Without loss of

generality suppose it divides a1. Then since p
�� b3, we must have that p

�� b1 since b3 ≡ b1
(mod 2a1) by Theorem 3.4. However, since p

�� c3 and b23 − 4a3c3 = D, then p2
�� ∆F .

However,∆ F is a field discriminant so p = 2 and∆ F ≡ 0(mod 4) is the only possibility. By
Definition 1.33 on page 46,∆ F /4 ≡ 2, 3(mod 4). If∆ F /4 ≡ 2(mod 4), then by Theorem
3.4, b3/2 is even since �

b3
2

�2

≡ ∆F

4
(mod a1a2),

given that 2
�� a1. However, we have

�
b3
2

�2

− a3c3 =
∆F

4
, (3.11)

so since 2
�� a3 and 2

�� c3, then ∆F /4 ≡ 0(mod 4), a contradiction. Thus,

∆F /4 ≡ 3 (mod 4),

so by (3.11), b3/2 is odd. However, (3.11) implies∆ F /4 ≡ 1(mod 4), a contradiction. We
have shown that, indeed, G is a primitive form of discriminant∆ F .

Remark 3.6 The opposite of
f = (a, b, c)

is
f−1 = (a,−b, c),

which is the inverse of f under Dirichlet composition. To see this we note that under the
proper equivalence that sends (x, y) to (−y, x), f−1 ∼ (c, b, a), for which gcd(a, c, b) = 1.
This allows us to choose a united form in the class of f−1 by Definition 3.5, so we may
perform Dirichlet composition to get

f ◦ f−1 = G =

�
ac, b,

b2 −∆F

4ac

�
= (ac, b, 1).

Moreover, by Exercise 3.19 on page 107,

G ∼ (1, 0,∆F /4) when∆ F ≡ 0 (mod 4)

and
G ∼ (1, 1, (1−∆F )/4) when∆ F ≡ 1 (mod 4).

Thus, G is in the principal class by Corollary 3.1 on page 103.
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We now need to introduce the ideal class group as a vehicle for defining the form class group
since Theorem 3.3 on page 97 gives us the connection.

Definition 3.7 — Equivalence of Ideals

Let OF be the ring of integers of a number field F . Then two OF -ideals I, J are said to
be in the same equivalence class if there exist nonzero α,β ∈ OF such that (α)I = (β)J
denoted by I ∼ J .

Remark 3.7 By Theorem 1.26 on page 42 and Exercise 1.42 on page 33, we know that
the set of all fractional OF -ideals forms a multiplicative abelian group. If we denote this
group by I∆F

and let P∆F
denote the group of principal fractional ideals, then the quotient

group
I∆F

P∆F

= COF

is called the class group of OF , and

hOF = |COF |,

is the ordinary or wide class number, which we will show to be finite. (First, we show
finiteness in the (easier) quadratic case below—see Corollary 3.4 on page 106—then develop
the geometry of numbers for the general case—see Theorem 3.11 on page 116.) Also, the
class of an OF -ideal I is denoted by I. Thus a product of classes IJ = C is the class
belonging to any ideal C = IJ formed by multiplying representatives I ∈ I and J ∈ J.
The identity element 1 is the principal class, namely all principal ideals (α) ∼ (1), meaning
(α) ∈ 1. The existence of inverse classes I−1 for any class I is guaranteed by Exercise 1.43
and Theorem 1.26, namely II−1 = 1. The commutative and multiplicative laws are clear,
namely

IJ = JI, and I(JK) = (IJ)K, for OF -ideals I,J,K.

Also the (integral) prime ideals are the generators of the class group. To see this let I be a
fractional OF -ideal and let α ∈ OF be a nonzero element such that αI ⊆ OF . Then αI is
an integral OF -ideal and

(αOF )
−1(αI) = I =

r�

j=1

P
aj

j
,

where the aj ∈ Z are not necessarily positive and the Pj are distinct prime OF -ideals as
determined by Theorem 1.17 on page 28.

Note as well, that the conjugate ideal I � for I, first mentioned in Remark 1.24 on page 52,
satisfies

I−1 = I�

—see Exercise 3.20 on page 107. In what follows, we will need to refine this concept a bit in
order to be able to include indefinite binary quadratic forms. We let P+

∆F
denote the group

of principal ideals (α) where NF (α) > 0—see Definition 2.4 on page 65. Then we let

I∆F

P+
∆F

= C+
OF

known as the narrow ideal class group, or sometimes called the strict ideal class group.
Also,

h+
OF

= |C+
OF

|,
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is the narrow ideal class number. Clearly, when F is a complex quadratic field, then COF =
C+

OF
, since norms are necessarily positive in this case. In the real case we will learn more

as we progress.

Note that in what follows, we use the symbol ∼ to denote both equivalence in the ordinary
ideal class group COF as well as equivalence of forms, but this will not lead to confusion
when taken in context.

We use the symbol ≈ to denote strict equivalence in C+
OF

. In other words, I ≈ J in C+
OF

when there exist α,β ∈ OF such that

(α)I = (β)J

where NF (αβ) > 0. The next result shows that this is tantamount to form equivalence.

Theorem 3.5 — Form and Ideal Class Groups

If C∆F
denotes the set of classes of primitive forms of discriminant∆ F , where F is a

quadratic field, then C∆F
is a group with multiplication given by Dirichlet composition and

C+
OF

∼= C∆F
.

Proof. Let f = (a1, b1, c1) and g = (a2, b2, c2), then by Exercises 3.2 and 3.9 on page 94,
g ∼ (a�2, b

�
2, c

�
2) where gcd(a1, a�2) = 1. Thus, Dirichlet composition is defined so we may

assume the f and g to be united, without loss of generality. Let F = (a3, b3, c3) be given
as in Definition 3.6 on page 98. Then we know that via the ideal correspondence given in
Theorem 3.3 on page 97,

(a1, (b1 −
�
∆F )/2)(a2, (b2 −

�
∆F )/2) = (a3, (b3 −

�
∆F )/2), (3.12)

via the multiplication formulas on page 48. Thus, by Theorem 3.3 and (3.12), the Dirichlet
composition of f(x, y) and g(x, y) corresponds to the product of the corresponding ideal
classes, which shows that Dirichlet composition induces a well defined binary operation on
C∆F

.

Note that in what follows, if we have strict equivalence of ideals given by

I = (a, (−b+
�

∆F )/2) ≈ J = (a�, (−b� +
�

∆F )/2), (3.13)

then we may replace I by (aa�)I and J by (a2)J , so we may assume without loss of generality
that a = a�. Via Theorem 3.3, we may define a mapping from C+

OF
to C∆F

as follows

τ : (a, (−b+
�

∆F )/2) �→ f = (a, b, c),

where c = (b2 −∆F )/(4a). Moreover, by the above,

τ(IJ) = τ(I)τ(J)

since we have shown that ideal multiplication corresponds to form multiplication. To see
that τ is well defined, assume that a� > 0 and b� ∈ Z in (3.13). Thus, since there are
δ,γ ∈ OF such that (δ)I = (γ)J where NF (δγ) > 0 then

NF (δ/γ)N(I) = N(J) = a,

so NF (δ/γ) = 1. By Exercise 3.21 on page 107, there is a σ ∈ OF such that δ/γ = σ/σ �. If

mσ,Q(x) = ux2 + vx+ w
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is the minimal polynomial of σ over Q, then it is for σ� as well, so τ(σ) = τ(σ�) = (u, v, w).
Hence,

τ((δ/γ)I) = τ((σ/σ �))τ(I) = τ(I).

Hence, it suffices to prove that τ(I) = τ(J) when I ∼ J . By Exercise 1.59 on page 54, there
exists

X =

�
p q
r s

�
∈ GL(2,Z),

such that �
(−b+

√
∆F )/2

a

�
= X

�
(−b� +

√
∆F )/2

a

�
.

Therefore,

p

�
−b� +

√
∆F

2

�
+ qa =

−b+
√
∆F

2

and

r

�
−b� +

√
∆F

2a

�
+ sa = a,

from which it follows that r = 0, s = p = 1, and b = b� − 2qa. Hence,

ax2 + bxy + cy2 = f(x, y) = g(x− qy, y) = a(x− qy)2 + b�(x− qy)y + c�y2,

so f and g are properly equivalent, namely they are in the same class in C∆F
, so τ is well

defined. Now we establish the isomorphism.

First we show that τ is injective. Let

τ(a, (−b+
�
∆F )/2) = f = (a, b, c) ∼ τ(a�, (−b� +

�
∆F )/2) = g = (a�, b�, c�)

in C∆F
. Since

(aa�)(a, (−b+
�
∆F )/2) ≈ (a2)(a�, (−b� +

�
∆F )/2)

as OF -ideals, then we may assume that a = a� without loss of generality since, if they are
not equal, we may change the preimage to make it so as above. Now since

f

�
−b+

√
∆F

2a
, 1

�
= 0 = f

�
−b� +

√
∆F

2a
, 1

�
,

then

either
−b+

√
∆F

2a
=

−b� +
√
∆F

2a
or

−b+
√
∆F

2a
=

−b� −
√
∆F

2a
,

given that these are the only two roots of f(x, 1) = ax2 + bx + c = 0. However, the latter
is impossible by comparing coefficients so the former holds, from which we get that b = b�

so c = c�. Thus, τ is injective.

Lastly, we show that τ is surjective. Let

f(x, y) = ax2 + bxy + cy2

be a primitive form of discriminant∆ F and let

α = (−b+
�

∆F )/(2a).

Then f(α, 1) = 0, and aα ∈ OF . Define an OF -ideal as follows. Set
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I =

�
(a, aα) if a > 0,
(
√
∆F )(a, aα) if a < 0 and∆ F > 0.

(3.14)

Therefore, τ(I) = (a, b, c) in the first instance is clear. In the second instance, we note that
I ≈ (a, (−b+

√
∆F )/2) so

τ(I) = τ((a, (−b+
�

∆F )/2)) = (a, b, c).

Hence, τ is surjective and the isomorphism is established. ✷

Corollary 3.1 The identity element of C∆F
is the class containing the principal form

(1, 0,−∆F /4) or (1, 1, (1−∆F )/4) for∆ F ≡ 0, 1(mod 4), respectively.

Proof. Since

τ(1,
�

∆F /2) = (1, 0,−∆F /4) or τ(1, (−1 +
�

∆F )/2) = (1, 1, (1−∆F )/4)

depending on congruence modulo 4 of∆ F , and the preimages are the identity elements in
the principal class of C+

OF
, then the images are clearly the identity elements in the principal

class of C∆F
. ✷

Remark 3.8 When F is a complex quadratic field, as noted in Remark 3.7 on page 100,

COF = C+
OF

,

so by Theorem 3.5 on page 101,
C∆F

∼= COF .

However, in the real case, this is not always true. For instance, by Exercise 3.14 on page 106,
in the case where∆ F = 12, C∆F

�= {1} and COF has order 1. Yet by Theorem 3.5,

C+
OF

∼= C∆F
.

Indeed, the case where the field F is real and has a unit of norm −1 or F is complex, then
by Exercise 3.17 on page 107, COF = C+

OF
always holds. When F is real and has no such

unit, for instance as in the∆ F = 12 case, then by Exercise 3.16,

|C+
OF

: COF | = 2.

Note as well, by Theorem 3.5,
h+
OF

= h∆F
,

the number of classes of forms of discriminant∆ F . Also by the above discussion, we have
demonstrated the following.

Theorem 3.6 — Class Numbers of Forms and Ideals

If∆ F is the discriminant of a quadratic field F , then the class number of the form class
group h∆F

, as well as that of both the wide ideal class group hOF and the narrow ideal
class h+

OF
, is related by the following.
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h∆F
= h+

OF
=





hOF if∆ F < 0,
hOF if∆ F > 0 and there exists a u ∈ UF

with NF (u) = −1,
2hOF if∆ F > 0 and there is no u ∈ UF

with NF (u) = −1.





We conclude this section with a verification that h∆F
is finite. To do this we first need the

following result.

Lemma 3.2 — A Form of Reduction

If∆ F is the discriminant of a quadratic field F , then in each class of C∆F
there is a form

f = (a, b, c) such that
|b| ≤ |a| ≤ |c|.

Proof. Let the form f = (a1, b1, c1) be in an arbitrary class of C∆F
. We may select an

integer a such that |a| is the least value from the set of nonzero integers represented by
forms in the class of f . Then there exist p, r ∈ Z such that

a = a1p
2 + b1pr + c1r

2. (3.15)

If g = gcd(p, r), then a/g2 is represented by f , contradicting the minimality of |a| unless
g = 1. Therefore, by the Euclidean algorithm, there exist integers q, s such that ps−qr = 1.
Also,

f(px+ qy, rx+ sy) = a1(px+ qy)2 + b1(px+ qy)(rx+ sy) + c1(rx+ sy)2 =

(a1p
2 + b1pr + c1r

2)x2 + (2pqa1 + (ps+ qr)b1 + 2rsc1)xy + (a1q
2 + b1qs+ c1s

2)y2 =

ax2 +Bxy + Cy2,

where the coefficient for x2 comes from (3.15),

B = (2pqa1 + (ps+ qr)b1 + 2rsc1),

and
C = a1q

2 + b1qs+ c1s
2.

Set g(x, y) = ax2 + Bxy + Cy2 and we have f ∼ g in C∆F
. We may select an integer m

such that
|2am+B| ≤ |a|. (3.16)

Thus,
g(x+my, y) = a(x+my)2 +B(x+my)y + Cy2 =

ax2 + (2am+B)xy + (am2 +Bm+ C)y2 =

ax2 + bxy + cy2,

with
b = 2am+B,

and
c = am2 +Bm+ C.

Set
h(x, y) = ax2 + bxy + cy2.

Then, since∆ F = b2 − 4ac, given that f ∼ g ∼ h, then c = 0 implies that∆ F = b2, a
contradiction to the fact that∆ F is a field discriminant. Hence, since h(0, 1) = c, then
|c| ≥ |a| by the minimality of |a|. Thus, from (3.16), we have the result. ✷
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Corollary 3.2 Any form of discriminant∆ F is equivalent to a reduced form of the same
discriminant.

Proof. By Theorem 3.1 on page 90, we need only prove the result for∆ F > 0.

Claim 3.3 We may assume that (a, b, c) satisfies |a| ≤ |c| with
�
∆F − 2|a| < b <

�
∆F .

By Lemma 3.2, we may select a form (a, b, c) such that |b| ≤ |a| ≤ |c|. If
√
∆F − 2|a| > b,

then by setting

m =

�√
∆F

2c
+

b|c|
2c

+ ε

�
,

where

ε =

�
1 if c < 0,
0 if c > 0

we get �
∆F − 2|c| < −b+ 2cm <

�
∆F .

We now show that
(a, b, c) ∼ (c,−b+ 2cm, a− bm+ cm2). (3.17)

Via the map τ in Theorem 3.5,

τ :

�
a,

−b+
√
∆F

2

�
�→ (a, b, c),

and

τ :

�
c,
b− 2cm+

√
∆F

2

�
�→ (c,−b+ 2cm, a− bm+ cm2),

as OF -ideals. However, by Exercise 1.60 on page 54

�
c,
b− 2cm+

√
∆F

2

�
=

�
c,
b+

√
∆F

2

�
,

so �
c,
b− 2cm+

√
∆F

2

�
∼ b−

√
∆F

2c
·
�
c,
b+

√
∆F

2

�

=

�
a,

b−
√
∆F

2

�
=

�
a,

−b+
√
∆F

2

�
.

Since τ is a bijection, we have established (3.17).

If |a− bm+ cm2| < |c|, then we repeat the (finite) process, this time on

(c,−b+ 2cm, a− bm+ cm2),

which must terminate in
(A,B,C) ∼ (a, b, c)

with
|A| ≤ |C| and

�
∆F − 2|A| < B <

�
∆F .

This is Claim 3.3.
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Therefore,

0 <
�
∆F − b < 2|a| ≤ 2|c| = |∆F − b2|

2|a| <
���
�
∆F + b

��� .

Hence, b > 0, so b2 < ∆F and |2a|2 ≤ 4|ac| = ∆F − b2 < ∆F , so 2|a| <
√
∆F <

√
∆F + b,

from which it follows that (a, b, c) is reduced. ✷

Theorem 3.7 — h∆F < ∞
If F is a quadratic field with discriminant∆ F , then h∆F

is finite.

Proof. Note that by Exercise 3.11 on page 95, we need only consider the case where∆ F > 0.
By Lemma 3.2 on page 104, for any class of C∆F

, there is a form f = (a, b, c) in the class
with

|ac| ≥ b2 = ∆F + 4ac > 4ac,

so ac < 0. Moreover, 4a2 ≤ 4|ac| = −4ac = ∆F − b2 ≤ ∆F . Therefore,

|a| ≤
�
∆F /2, (3.18)

so by Lemma 3.2,
|b| ≤

�
∆F /2. (3.19)

Hence, by the bounds in (3.18)–(3.19), there can only be finitely many choices for the values
a and b for a given discriminant∆ F . Since c = (b2 − ∆F )/(4a), we have established the
result. ✷

Corollary 3.3 — Positive Definite Forms and Reduction

When∆ F < 0, then the number of inequivalent positive definite forms with discriminant
∆F is the same as the number of reduced forms.

Proof. See Exercise 3.11. ✷

Corollary 3.4 — hOF < ∞
If∆ F is the discriminant of a quadratic field F , then hOF is finite.

Proof. This follows from Theorem 3.6 on page 103 and Theorem 3.7. ✷

Exercises

3.14. Prove that when∆ F = 12 where F = Q(
√
3), then the form f = (−1, 0, 3) is not

properly equivalent to the form g = (1, 0,−3). This shows that C∆F
�= {1}. Show,

however, that COF = {1}.
(Hint: See Corollary 1.1 on page 13 and Theorem 1.18 on page 29.)

In Exercises 3.15-3.17, assume that ∆F is the discriminant of a quadratic field F .

3.15. Let F be a real quadratic field and set

α =

�
(1, 0,−∆F /4) if∆ F ≡ 0(mod 4),
(1, 1, (1−∆F )/4) if∆ F ≡ 1(mod 4).

Prove that α ∼ −α in C∆F
if and only if OF has a unit u such that NF (u) = −1.
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3.16. Let F be a real quadratic field. Assume that OF does not have a unit of norm −1.
Prove that |C+

OF
: COF | = 2.

(Hint: Use Exercise 3.15.)

3.17. Prove that C+
OF

= COF if F is either a complex quadratic field or F is a real quadratic
field such that OF has a unit u with NF (u) = −1.

(Hint: Use Exercise 3.15.)

3.18. Let F be a number field and let hOF
be the (wide) class number of F . Prove that if

I is an integral OF -ideal, then IhOF ∼ 1.

(Hint: By Theorem 3.7, |hOF
| < ∞.)

3.19. Prove the assertion made in Remark 3.6 on page 99 that (ac, b, 1) ∼ (1, 0,∆F /4) when
∆F ≡ 0(mod 4) and (ac, b, 1) ∼ (1, 1, (1−∆F )/4) when∆ ≡ 1(mod 4).

(Hint: When ∆F ≡ 0(mod 4), in Definition 3.1 on page 88, select p = b/2, q = 1,
r = −1, and s = 0, and when ∆F ≡ 1(mod 4) select p = −(1 + b)/2, q = −1, r = 1
and s = 0.)

3.20. Prove that I� = I−1 in COF .

(Hint: Use The Multiplication formulas on page 48.)

3.21. Let u be a unit in OF such that NF (u) = 1. Prove that there exists an α ∈ OF such
that α = uα�, where α� is the algebraic conjugate of α.

(This exercise represents the quadratic analogue of Hilbert’s Theorem 90—see Biog-
raphy 3.4 on page 94.)

In §3.3, we will be looking at the work of Minkowski in the geometry of numbers, which
opens the door to establishing Dirichlet’s celebrated unit theorem.

Biography 3.6 Hermann Minkowski (1864–1909) was born on June 22, 1864
in Alexotas of what was then the Russian empire, but is now Kaunas, Lithuania.
He studied at the Universities of Berlin, then Königsberg where he received his
doctorate in 1885. Yet, even before this, in 1883, both he and Henry Smith
were jointly awarded the Grand Prize by the Academy of Sciences (Paris) for
the solution of the problem of representations of an integer as a sum of five
squares. Eisenstein knew of a formula for such representations in 1847, but
never provided a proof.

Minkowski taught at Bonn, Königsberg, and Zürich, but in 1902, Hilbert cre-
ated a chair for him at Göttingen where Minkowski stayed for the rest of his
life. He pioneered the area we now call the geometry of numbers. This led to
work on convex bodies and to packing problems. Furthermore, his geometric
insights paved the way for modern functional analysis. At age 44, he died
from a ruptured appendix on January 12, 1909 in Göttingen. Posthumously, in
1910, his most original work, begun in 1890, was first published as Geometrie
der Zahlen.

Minkowski’s main interests were in pure mathematics, especially continued
fractions and quadratic forms. However, he is also known for having laid some
groundwork for Einstein’s relativity theory by thinking of space and time as
linked together in a four-dimensional space-time continuum, from which he
determined how to treat electrodynamics from a four-dimensional perspective.
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3.3 Geometry of Numbers and the Ideal Class Group

The human heart likes a little disorder in its geometry.
from chapter 26 of Captain Corelli’s Mandolin (1994)

Louis de Bernières (1954–)
British novelist and short-story writer

In this section, we introduce Minkowski’s geometry of numbers in order to prove Dirichlet’s
celebrated unit theorem, which we use to establish the finiteness of the ideal class number.
In §3.2 we used the notion of forms to deduce this finiteness in the quadratic case—see
Biographies 3.6 on the previous page and 3.9 on page 121. The reader must be familiar
with vector spaces and related notions in Appendix A.

Definition 3.8 — Lattices and Parallelotopes

Let �1, �2, . . . , �m ∈ Rn, m,n ∈ N,m ≤ n be R-linearly independent vectors. If

L = {� ∈ Rn : � =
m�

j=1

zj�j for some zj ∈ Z} = Z[�1, . . . , �m],

then L is called a lattice of dimension m in Rn. When m = n, L is called a full lattice. In
other words, a full lattice L is a free abelian group of rank n having a Z-basis that is also
an R-basis for Rn. Furthermore, the set

P =






n�

j=1

rj�j : rj ∈ R, 0 ≤ rj < 1 for j = 1, 2, . . . , n






is called the fundamental parallelotope, or fundamental parallelepiped, or fundamental do-
main of L. An invariant—see Remark 3.9 below—of P is

V (P) = | det(�j)|,

called the volume of P, and also called the discriminant of L, denoted by D(L).

Remark 3.9 In Definition 3.8, the term invariant, when applied to P means that, irre-
spective of which basis we choose for L, the volume of P remains the same. It is an easy
exercise for the reader to verify that the determinant remains the same under change of
basis using Exercise 2.34 on page 81. For the reader with a knowledge of measure theory,
or Lebesgue measure in Rn, the volume of a so-called measurable set S ⊆ Rn is called the
measure of S. This measure can be shown to be the absolute value of the determinant of the
matrix with rows �j for j = 1, 2, . . . , n for any basis {�j} of S. Thus, the Lebesgue measure
of S is called the volume of S.

Example 3.2 Zn is a full lattice in Rn for any n ∈ N. In other words, a free abelian group
of rank n in Rn is a full lattice. Hence, OF is a full lattice in Rn, where |F : Q| = n. Also,
note that any lattice of dimension m ∈ N is full in Rm.
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We will now show that lattices as subsets of Rn are characterized by the following prop-
erty. First, we remind the reader that if s = (s1, s2, . . . , sn) ∈ Rn, then |s| ≤ r means that
�

n

j=1 s
2
j
≤ r2, since |s| =

��
n

j=1 s
2
j

�1/2
, so |sj | ≤ r for each such j.

Definition 3.9 — Discrete Sets

Suppose that S ⊆ Rn, n ∈ N, r ∈ R+, the positive reals, and

Sr = {s ∈ Rn : |s| ≤ r}

is the sphere or ball in Rn, with radius r, centered at the origin. Then S is called discrete
if

|S ∩ Sr| < ∞,

for all r ∈ R+.

Theorem 3.8 — Lattices Are Discrete

Let L ⊆ Rn, L �= ∅. Then L is a lattice if and only if L is a discrete, additive subgroup of
Rn.

Proof. Let L be a lattice of dimension n, namely a full lattice in Rn. If

L = �1Z⊕ · · · ⊕ �nZ,

{�1, . . . , �n} is an R-basis for Rn. Thus, any α ∈ Rn can be written in the form

α =
n�

j=1

rj�j (rj ∈ R).

If α ∈ L ∩ Sr for any r ∈ R+, then each rj ∈ Z and |rj | ≤ r for each j = 1, 2, . . . , n. Hence,
there exist only finitely many points in L ∩ Sr. In other words, L is discrete.

Conversely, assume that L is a discrete, additive subgroup of Rn. We use induction on n.
For n = 1, let {�} be a basis for R, namely R1 = R�. Since Sr ∩ L is finite for all r ∈ R+,
there exists a smallest positive value r1 such that r1� ∈ L. Therefore, Zr1� ⊆ L. Since any

s ∈ R may be written as s =
�

s

r1

�
r1 + s1r1, for some real number s1 with 0 ≤ s1 < 1,

then any s� ∈ L may be written in the form s� = nr1� + s1r1�, with n =
�

s

r1

�
∈ Z, and

0 ≤ s1 < 1. Therefore, by the minimality of r1, we must have that s1 = 0, so L = Z[r1�].
This establishes the induction step. Assume the induction hypothesis, namely that any
discrete subgroup of Rk for k < n is a lattice, so we may assume that L ⊆ Rn is discrete
and L �⊆ Rk for any k < n. Hence, we may choose a basis {�1, . . . , �n} of Rn with �j ∈ L
for each j = 1, 2, . . . , n. Set

V = R[�1, . . . , �n−1].

By the induction hypothesis,
LV = L ∩ V

is a lattice of dimension n−1. Let {β1, . . . , βn−1} be a basis for LV . Therefore, any element
γ ∈ L may be written as

γ =
n−1�

j=1

rjβj + rn�n (rj ∈ R).
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By the discreteness of L, there exist only finitely many such γ with all rj bounded. Thus,
we may choose one with rn > 0, and minimal with respect to |rj | < 1 for all j �= n. Let βn

denote this choice. Thus,
Rn = R[β1, . . . , βn].

Then for any δ ∈ L,

δ =
n�

j=1

tjβj (tj ∈ R).

Let

σ = δ −
n�

j=1

�tj�βj =
n�

j=1

sjβj .

Therefore, 0 ≤ sj < 1 for all j = 1, . . . , n. By the minimality of rn, we must have sn = 0.
Hence, σ ∈ LV , so δ ∈ LV ⊕ Zβn. This gives us in total that

L ⊆ LV ⊕ Zβn ⊆ L.

Therefore, L = LV ⊕ Zβn is a lattice. ✷

We also need other fundamental notions from geometry.

Remark 3.10 In what follows, we use the fact that the volume of every bounded convex
set exists, called Blanschke’s theorem.

Definition 3.10 — Bounded, Convex, and Symmetric Sets

A set S in Rn is said to be convex if, whenever s, t ∈ S, the point

λs+ (1− λ)t ∈ S

for all λ ∈ R such that 0 ≤ λ ≤ 1. In other words, S is convex if it satisfies the property
that, for all s, t ∈ S, the line segment joining s and t is also in S. The volume of a convex
set S is given by the multiple integral

V (S) =

�

S

· · ·
�

dx1dx2 · · · dxn

carried out over the set S.

A set S in Rn is said to be bounded if there exists a sufficiently large r ∈ R such that |s| ≤ r
for all s ∈ S. Another way of looking at this geometrically is that S is bounded if it can fit
into a sphere with center at the origin of Rn and radius r.

A set S in Rn is symmetric, sometimes called centrally symmetric, provided that, for each
s ∈ S, we have −s ∈ S.

Remark 3.11 By Remark 3.10, the integral in Definition 3.10 always exists for convex
sets.

Example 3.3 Clearly, ellipses and squares are convex in R2, but a crescent shape, for
instance, is not. Also, an n-dimensional cube

S = {s = (s1, . . . , sn) ∈ Rn : −1 ≤ sj ≤ 1 for j = 1, 2, . . . , n}

is a bounded, symmetric convex set, as is an n-dimensional unit sphere

{s ∈ Rn : |s| ≤ 1}.
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Before proceeding to the main result, we need a technical lemma.

Lemma 3.3 — Translates and Volume

Let S ⊆ Rn be a bounded set and let L be an n-dimensional lattice. If the translates of S
by L, given by

Sz = {s+ z : s ∈ S},

for a given z ∈ L, are pairwise disjoint, namely

Sz ∩ Sy = ∅,

for each y, z ∈ L with y �= z, then
V (S) ≤ V (P)

where P is a fundamental parallelotope of L.

Proof. Since P is a fundamental parallelotope of L, we have the following description of S
as a disjoint union:

S = ∪z∈L(S ∩P−z),

where P−z = {x− z : x ∈ P}, so it follows that

V (S) =
�

z∈L

V (S ∩P−z).

Since the translate of the set S ∩P−z by the vector z is Sz ∩P, then

V (S ∩P−z) = V (Sz ∩P). (3.20)

Therefore,

V (S) =
�

z∈L

V (Sz ∩P).

If the translates Sz are pairwise disjoint, then so are Sz ∩ P. Since Sz ∩ P ⊆ P, then
Equation (3.20) tells us that �

z∈L

V (Sz ∩P) ≤ V (P),

so the result is proved. ✷

Now we are in a position to state the central result of this section.

Theorem 3.9 — Minkowski’s Convex Body Theorem

Suppose that L is a lattice of dimension n, and let V (P) be the volume of a fundamental
parallelotope P of L. If S is a symmetric, convex set in Rn with volume V (S) such that

V (S) > 2nV (P),

there exists an x ∈ S ∩ L such that x �= 0.

Proof. It suffices to prove the result for a bounded set S. To see this, we observe that when
S is unbounded, we may restrict attention to the intersection of S with an n-dimensional
sphere, centered at the origin, having a sufficiently large radius. Let

T = 1
2S = {s/2 : s ∈ S}.
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Then

V (T ) =
V (S)

2n
> V (P).

If the translates Tz = 1
2S + z were pairwise disjoint, then by Lemma 3.3 on the preceding

page, V (P) ≥ V (T ), a contradiction. Therefore, there must exist two distinct elements
s, t ∈ L such that

( 12S − s) ∩ ( 12S − t) �= ∅.

Let x, y ∈ S such that 1
2x− s = 1

2y − t. Then t− s = 1
2y −

1
2x. Since S is symmetric, then

−x ∈ S, and since S is convex, then 1
2y +

1
2 (−x) ∈ S. Hence, t− s ∈ S ∩ L, and t− s �= 0,

as required. ✷

Remark 3.12 Some background to the language used above is in order. The term convex
body refers to a nonempty, convex bounded and closed subset S of Rn. The topological
term “closed” means that every accumulation point of a sequence of elements in S must
also be in S. This is tantamount to saying that S is closed in the topological space Rn,
with its natural topology. However, we do not need to concern ourselves here with this,
since it is possible to state and prove the result without such topological considerations. It
can also be shown that if S is “compact,” namely every “cover” (a union of sets containing
S) contains a finite cover, then it suffices to assume that V (S) ≥ 2nV (P).

In order to prove the next result, we need a geometric interpretation of algebraic numbers
in a canonical way. This is based upon the signature of a field given in Exercise 2.11 on
page 63.

Definition 3.11 — Canonical Embedding of Number Fields

Let {r1, r2} be the signature of a number field F . Suppose that θj(F ) ⊆ R for j = 1, . . . , r1
are the real embeddings of F in C, and θj(F ) �⊆ R for j = r1 +1, . . . , r1 + r2 are half of the
complex embeddings of F in C, chosen such that exactly one θj is taken from each complex
conjugate pair θj , θj of such embeddings. Then for each α ∈ F , define

ΘF : F �→ Rr1 × Cr2

by
ΘF (α) = (θ1(α), . . . , θr1(α), θr1+1(α), . . . , θr1+r2(α)).

Remark 3.13 With reference to Definition 3.11,Θ F is a Q-algebra monomorphism by
Exercise 3.29 on page 121. Moreover, we may say more aboutΘ F as follows.

Rr1 × Cr2 may be identified with Rn, where n = r1 + 2r2 = |F : Q|, since each complex
component θj(α) for j = r1 + 1, . . . , r1 + r2 may be replaced by a pair of components
�(θj(α)),�(θj(α)) where �(x) and �(x) are the real and complex coefficients of

x = �(x) + �(x)
√
−1 ∈ C.

Hence,Θ F may also be considered as an injection into the real vector space Rn. We will
have significantly more to say about this later.

We now provide an application of Minkowski’s Convex Body Theorem to the relationship
between discriminants and norms of algebraic integers, which will prove to be highly valuable
later in the text as well.
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Theorem 3.10 — Applications to Norms and Discriminants

Let {r1, r2} be the signature of a number field F , with |F : Q| = n = r1 + 2r2, and let M
be a free abelian group (Z-module) of finite index in OF , namely |OF : M | = m ∈ N. Then
there exists a nonzero α ∈ M such that

|NF (α)| ≤
�
4

π

�r2

n!n−n
�

|∆F |m.

Proof. Let B ∈ R+, and define a set:

SB(r1, r2) =




(α1, . . . , αr1 , β1, . . . , βr2) ∈ Rr1 × Cr2 :
r1�

j=1

|αj |+ 2
r2�

j=1

|βj | ≤ B




 .

Clearly SB is bounded and symmetric. We now verify that it is convex. Let a, b ∈ R with
a ≥ 0, b ≤ 1 and a+ b = 1. Suppose that

(α1, . . . , αr1 , β1, . . . , βr2), (γ1, . . . , γr1 , δ1, . . . , δr2) ∈ SB(r1, r2).

We now show that

(aα1 + bγ1, . . . , a αr1 + bγr1 , a β1 + bδ1, . . . , a βr2 + bδr2) ∈ SB(r1, r2).

We have

r1�

j=1

|aαj + bγj |+ 2
r2�

j=1

|aβj + bδj | ≤
r1�

j=1

a|αj |+
r1�

j=1

b|γj |+ 2
r2�

j=1

a|βj |+ 2
r2�

j=1

b|δj | ≤

a




r1�

j=1

|αj |+ 2
r2�

j=1

|βj |



+ b




r1�

j=1

|γj |+ 2
r2�

j=1

|δj |



 ≤ aB + bB = (a+ b)B = B,

so SB(r1, r2) is convex.

Claim 3.4

V (SB(r1, r2)) = 2r1
�π
2

�r2 Bn

n!
.

We use a double induction on r1and r2. For r1 = 1 and r2 = 0, we are looking at the length
of the line segment [−B,B] in R, so in this case,

V (SB(1, 0)) = 2B = 2r1
�π
2

�r2 Bn

n!
.

If r1 = 0 and r2 = 1, we are (essentially) looking at the disc of radius B/2 in R2 (since
R2 ∼= C). Thus, in this case,

V (SB(0, 1)) = πB2/4 = 2r1
�π
2

�r2 Bn

n!
.

This completes the induction step. The induction hypothesis that we assume is

V (SB(m, k)) = 2m
�π
2

�k Bn

n!
, for any m ≤ r1, and any k ≤ r2.
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First, we calculate V (SB(r1 +1, r2)). In this case, SB(r1 +1, r2) is defined by the relations

|α|+
r1�

j=1

|αj |+ 2
r2�

j=1

|βj | ≤ B with α ∈ R, (3.21)

and |α| < B since B �= 0. Therefore, using the induction hypothesis,

V (SB(r1 + 1, r2)) =

�
B

−B

V (SB−|α|(r1, r2))dα =
2r1

(r1 + 2r2)!

�π
2

�r2
�

B

−B

(B − |α|)r1+2r2dα =

2r1+1

(r1 + 2r2)!

�π
2

�r2
�

B

0
(B − α)r1+2r2dα =

2r1+1

(r1 + 2r2)!

�π
2

�r2
�

B

0
xr1+2r2dx,

after a simple change of variables and this equals,

2r1+1

(r1 + 2r2)!

�π
2

�r2 Br1+2r2+1

r1 + 2r2 + 1
= 2r1+1

�π
2

�r2 Bn

n!
.

To complete the claim, we now calculate VB(S(r1, r2 + 1)). In this case, S(r1, r2 + 1) is
given by

r1�

j=1

|αj |+ 2
r2�

j=1

|βj |+ 2|β| ≤ B,

where β = x + y
√
−1 ∈ C. Thus, in a similar fashion to the above, using the induction

hypothesis, we have

VB(S(r1, r2 + 1)) =
2r1

(r1 + 2r2)!

�π
2

�r2
� �

x2+y2≤B2/4
(B − 2

�
x2 + y2)r1+2r2dxdy,

and after a change of variables we get that the latter equals

2r1

(r1 + 2r2)!

�π
2

�r2
�

B/2

0

� 2π

0
(B − 2ω)r1+2r2ωdudω =

2r1
�π
2

�r2 2π

(r1 + 2r2)!

�
B/2

0
(B − 2ω)r1+2r2ωdω.

Letting 2ω = z and using integration by parts, we deduce
�

B/2

0
(B − 2ω)r1+2r2ωdω =

Br1+2r2+2

4(r1 + 2r2 + 1)(r1 + 2r2 + 2)
.

Hence,

VB(S(r1, r2 + 1)) = 2r1
�π
2

�r2+1 Br1+2r2+2

(r1 + 2r2 + 2)!
,

and Claim 3.4 is proved.

Let � be arbitrarily chosen in R+, and define B > 0 by

Bn(�) = Bn =

�
4

π

�r2

n!m
�
|∆F |+ �. (3.22)

Then by Claim 3.4,

V (SB) = 2r1
�π
2

�r2 Bn

n!
= 2r1+r2m

�
|∆F |+

�2r1(π/2)r2

n!
> (2−r2m

�
|∆F |)2n. (3.23)

We have one more result to establish that will allow us to invoke Minkowski’s Convex Body
Theorem via (3.23).
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Claim 3.5 V (ΘF (M)) = 2−r2m
�
|∆F |

SinceΘ F injectsOF into Rn in a natural way—see Remark 3.13 on page 112—thenΘ F (OF )
is a full lattice in Rn. If {α1, . . . , αn} is an integral basis for F , then the ΘF (αi) are R-
linearly independent vectors in Rn. Let θj for j = 1, 2, . . . , n be the embeddings of F in C,
and let �i denote the vector,

(θ1(αi), . . . , θr1(αi),�(θr1+1(αi)),�(θr1+1(αi)), . . . ,�(θr1+r2(αi)),�(θr1+r2(αi)).

Then with the �i as row vectors,

V (ΘF (OF )) = det(�i) = (2
√
−1)−r2 det(θj(αi)) = 2−r2 | det(θj(αi))| = 2−r2

�
|∆F |,

since for any y ∈ C,

�(y) = (y + y)/2, and �(y) = (y − y)/(2
√
−1).

Now Claim 3.5 follows by induction on m.

By Claim 3.5, there exists a nonzero α = α(�) in M such thatΘ F (α) ∈ SB . Thus, since

|NF (α)| =
r1�

j=1

|θj(α)|
r1+r2�

j=r1+1

|θj(α)|2,

then by the Arithmetic-Geometric Mean Inequality given on page 339,

|NF (α)| ≤



 1

n

r1�

j=1

|θj(α)|+
2

n

r1+r2�

j=r1+1

|θj(α)|




n

≤ Bn

nn
,

where the last inequality is from Equation (3.21). Therefore, by (3.22),

|NF (α)| ≤
�
4

π

�r2 n!

nn
m
�
|∆F |+

�

nn
. (3.24)

Note that if � is in the interval (0, 1), there are only finitely many possibilities for α = α(�).
Hence, there exists an α0 ∈ M such that Equation (3.24) holds for all positive �. Thus,

|NF (α0)| ≤
�
4

π

�r2 n!

nn
m
�
|∆F |,

as required. ✷

Theorem 3.10 will be applied below to the problem of proving the finiteness of the cardinality
of the class group. Thus, we restate it as follows, in terms of ideals, which we may invoke
directly for convenience.

Corollary 3.5 Let F be a number field with |F : Q| = n = r1 + 2r2, where {r1, r2} is the
signature of F . Then for any integral OF -deal I, there exists a nonzero α ∈ I such that

|NF (α)| ≤
�
4

π

�r2 n!

nn

�
|∆F |N(I). (3.25)

For what ensues, the reader is reminded of Definition 3.7 and Remark 3.7 on page 100.
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Theorem 3.11 — Finiteness of the Ideal Class Group

If F is a number field, then hOF
= |COF | < ∞.

Proof. Via Remark 1.13 on page 26 and Definition 3.7, every ideal class H of fractional OF -
ideals H contains an integral OF -ideal I. Also, there exists an integral ideal J ∈ I−1 ∈ COF

so IJ ∼ 1. By Corollary 3.5, there exists a nonzero α ∈ J such that

|NF (α)| ≤
�
4

π

�r2 n!

nn

�
|∆F |N(J).

Since J
�� (α), we may set H = αJ−1, so H ∼ I and via Corollary 2.8 on page 85,

N(H) =
|NF (α)|
N(J)

≤
�
4

π

�r2 n!

nn

�
|∆F |.

By Exercise 2.53 on page 86, there are only finitely many integral ideals with a given norm,
so there are only finitely many choices for J . Given that I = J = H, then there are only
finitely many choices for the classes H, namely |COF | < ∞. ✷

Immediately from the proof of Theorem 3.11, we have the following important fact.

Corollary 3.6 If F is a number field where∆ F is the discriminant of F and |F : Q| = n
with signature {r1, r2}, then every ideal class in COF contains a nonzero integral ideal I
such that

N(I) ≤
�
4

π

�r2 n!

nn

�
|∆F |. (3.26)

The right-hand side of (3.26) is a distinguished quantity.

Definition 3.12 — The Minkowski Bound

If F is a number field, the quantity

MF =

�
4

π

�r2 n!

nn

�
|∆F |

is called the Minkowski bound, where ∆F is the discriminant of F and |F : Q| = n with
signature {r1, r2}.

Remark 3.14 Corollary 3.6 tells us that every ideal class in COF has a nonzero integral
ideal with norm less than MF . We can say more. Since N(I) ≥ 1 for any integral ideal,
then by Corollary 3.6,

|∆F | ≥
�π
4

�2r2 n2n

(n!)2
(3.27)

which is Minkowski’s lower discriminant bound. Moreover, if n > 1, namely for F �= Q,
|∆F | > 1. We can say more as follows.

Corollary 3.7 For any number field F with |F : Q| = n,

|∆F | >
�
11

12

�2 �πe2

4

�n

(2πn)−1.
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Proof. By Stirling’s Formula—see Equation (A.7) on page 339—

nn

n!
=

e−α/(12n)+n

√
2πn

,

for some α ∈ R is located in the interval (0, 1). Using (3.27), and the fact that

eα/(12n) < e1/12 <
∞�

j=0

�
1

12j

�
= 12/11,

we get

|∆F | >
�π
4

�2r2
�
nn

n!

�2

=
�π
4

�2r2
�
en−α/(12n)

√
2πn

�2

>

�π
4

�2r2
�
11en

12

�2

(2πn)−1 ≥
�
11

12

�2 �e2π

4

�n

(2πn)−1,

where the last inequality follows from the fact that

�π
4

�2r2
≥

�π
4

�n

,

since π/4 < 1. ✷

Corollary 3.8 For a number field F with discriminant∆ F ,

lim
n→∞

min
|F :Q|=n

{|∆F |} = ∞. (3.28)

Proof. Since (πe2)/4 > 5, then ((πe2)/4)n > n, so by Corollary 3.7 we have the result. ✷

This fact places us in a position to present the following classical result due to Hermite,
who published the result in Crelle’s Journal in 1857.

Biography 3.7 Charles Hermite (1822–1901) was born on December 24, 1822
in Dieuze, Lorraine, France. He was educated at École Polytechnique, where
he later taught. He is perhaps best known for his proof, published in Comptes
Rendus de l’Académie des Sciences in 1873, that e is a transcendental num-
ber. Using similar ideas to those of Hermite, C.L.F. Lindemann (1852–1939)
produced a proof appearing in a paper entitled “Über die Zahl π,” published
in Mathematische Annalen in 1882, that π is also transcendental. (Linde-
mann is also known for having published two invalid “proofs” of FLT in 1901
and 1907.) A number of other mathematical entities bear Hermite’s name:
Hermitian matrices, Hermite polynomials, Hermite differential equations, and
Hermite’s formula of interpolation. On the human side, Hermite was a friend
and supporter of Georg Cantor, when the latter was suffering his many nervous
breakdowns. Also, Poincaré was Hermite’s best known student. Hermite died
on January 14, 1901 in Paris, France.

Theorem 3.12 — Hermite’s Theorem on Discriminants

There are only finitely many number fields having a given discriminant d ∈ Z.
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Proof. By Equation (3.28), for a given d ∈ Z, there exists a d0 ∈ N such that if n ≥ d0,
then �

11

12

�2 �πe2

4

�n

(2πn)−1 > |d|.

Therefore, if |F : Q| ≥ d0, then |∆F | > |d|. Hence, it suffices to prove that for an arbitrarily
chosen but fixed n, d ∈ N, there exist only finitely many number fields F such that |∆F | ≤ |d|
and |F : Q| = n. By Remark 3.14 on page 116, the result is true for |d| = 1. Assume that
d > 1. Then the case r1 = 1 and r2 = 0 is impossible. If r1 = 0 and r2 = 1, then n = 2,
so F = Q(

√
D) for some squarefree D < 0. By Definition 1.33 on page 46,∆ F = 4D or

∆F = D, so there is at most one quadratic field with∆ F = −d. We may now assume that
r = r1 + r2 > 1. The balance of the proof is devoted to proving the existence of a primitive
element for F that comes from a finite set. In other words, we now establish the existence
of an δ ∈ F such that F = Q(δ) with δ in a fixed finite set depending only on d. To this
end, we define the following sets, broken down into two cases.

Case 3.4 r1 �= 0

Define the set S1 in Rn by

{(α1, . . . , αr1 , βr1+1, γr1+1, . . . , βr, γr) : |α1| <
√
d+ 1, |αi| < 1

for i = 2, 3, . . . . . . , r1, and β2
j
+ γ2

j
< 1 for j = r1 + 1, . . . , r}.

We now show that S1 is convex. Let a, b ∈ R with a ≥ 0, b ≤ 1, and a + b = 1. Suppose
that

(α1, . . . , αr1 , βr1+1, γr1+1, . . . , βr, γr), (δ1, . . . , δr1 , ρr1+1, σr1+1, . . . , ρr, σr) ∈ S1.

For j = 2, 3, . . . , r1, we have

|aαj + bδj | ≤ a|αj |+ b|δj | < a+ b = 1,

|aα1 + bδ1| ≤ a|α1|+ b|δ1| < a
√
d+ 1 + b

√
d+ 1 = (a+ b)

√
d+ 1 =

√
d+ 1,

and for j = r1 + 1, . . . , r,

a(β2
j
+ γ2

j
) + b(ρ2

j
+ σ2

j
) < a+ b = 1.

Hence, S1 is convex.

Case 3.5 r1 = 0

Define the set S2 in Rn by

{(β1, γ1, . . . , βr, γr) : |β1| < 1, |γ1| <
√
d+ 1, β2

j
+ γ2

j
< 1 for j = 2, 3, . . . , r}.

By a similar argument to that given in Case 3.4, S2 is convex.

By integrating over products of intervals and discs, we get

V (S1) = 2r1πr2
√
d+ 1, and V (S2) = 2πr2−1

√
d+ 1.

Thus,
V (S1)

2r1
�

|∆F |
=

2r1πr2
√
d+ 1

2r1
�

|∆F |
> πr2 ≥ 1,
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and
V (S2)�
|∆F |

=
2πr2−1

√
d+ 1�

|∆F |
> 2πr2−1 > 1,

(since r2 �= 0 in Case 3.5, given that r1 = 0). To see that this is sufficient to invoke
Minkowski’s Convex Body Theorem, we note that, for j = 1, 2, we need

V (Sj) > 2nV (Θ(OF )).

However, from Claim 3.5 on page 115, V (Θ(OF )) = 2−r2
�
|∆F |, so

V (S1) = 2r1πr2
√
d+ 1 > 2r1+r2

�
|∆F | = 2nV (Θ(OF )),

and
V (S2) = 2πr2−1

√
d+ 1 > 2r2

�
|∆F | = 2nV (Θ(OF )).

Hence, we have the existence of a nonzero δj ∈ Θ(OF ) ∩ Sj , for j = 1, 2. Let δ be one of
them. Since

mδ,Q(x) =
k�

j=0

zjx
j ∈ Z[x]

with |zj | ≤ Cd, for j = 1, 2, . . . , k ∈ N, where Cd is a constant depending only on d, there
can only be finitely many such δ. It remains to show that F = Q(δ). In Case 3.4, δ1 is the
only conjugate of δ lying outside the unit sphere, since |NF (δ)| < 1, otherwise, and that
is impossible. Similarly, in Case 3.5, β1 + γ1

√
−1, and β1 − γ1

√
−1, with γ1 �= 0, are the

only conjugates of δ outside the unit sphere. We have shown that in Cases 3.4–3.5, there
exist conjugates of δ distinct from the other conjugates. In other words, δ has n distinct
conjugates. Hence, F = Q(δ). ✷

Biography 3.8 Laszlo Rédei (1900–1980) was born on November 15, 1900
near Budapest, Hungary. After graduating, he became a secondary-school
teacher until he was appointed professor at the University of Szeged in 1940.
He remained there until he moved to Budapest in 1967. He did classical work on
4-invariants of class groups of quadratic fields, as well as explicit construction of
Hilbert 2-class fields of quadratic fields, and Euclidean algorithms in quadratic
fields. Later, his interests moved mainly into group theory, but he also dabbled
in combinatorics and graph theory. He died on November 21, 1980.

Exercises

3.22. Show that Minkowski’s Convex Body Theorem cannot be strengthened in the sense
that the factor 2n cannot be replaced by a smaller one.

3.23. Let M be a lattice of dimension n containing the lattice L of dimension n, with
|M : L| = d ∈ N as Z-modules. Suppose that {α1, . . . , αn} is a basis for M and
{β1, . . . , βn} is a basis for L such that for i = 1, . . . , n,

βi =
n�

j=1

zi,jαj (zi,j ∈ Z).

Prove that |M : L| = | det(zi,j)|.
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3.24. Let G be a free abelian group of rank n, and let H be a subgroup of G. Prove that
G/H is finite if and only if the rank of H is n. Conclude that a subgroup H of a
lattice L that has finite index in L must also be a lattice.

3.25. For j = 1, 2, . . . , n ∈ N, let

Fj(x1, . . . , xn) = r1,jx1 + r2,jx2 + · · ·+ rn,jxn, with ri,j ∈ R for i = 1, 2, . . . , n,

called a linear form, and let L be a lattice of dimension n with discriminant D(L).
Prove that if cj ∈ R+ for j = 1, 2, . . . , n satisfies the condition

c1c2 · · · cn ≥ | det(ri,j)|D(L),

where det(ri,j) �= 0, then there exists a nonzero point (x1, x2, . . . , xn) of L such that

|F1(x1, x2, . . . , xn)| ≤ c1

and
|Fj(x1, x2, . . . , xn)| ≤ cj for j = 2, 3, . . . , n.

(Hint: Use Minkowski’s convex body theorem.)

(The result in this exercise is known as Minkowski’s Linearformensatz or Theorem
on linear forms.)

3.26. Suppose that r ∈ R. Prove that for any m ∈ N, there exists a p/q ∈ Q with gcd(p, q) =
1 such that 0 < q ≤ m and ����r −

p

q

���� <
1

qm
.

(Hint: Use Exercise 3.25.)

(The result in this exercise has implications for the theory of continued fractions and
solutions of Pell’s equation in elementary number theory—see [53, Theorem 5.8, p.
218].)

3.27. Let k, n,mj ∈ N for j = 1, 2, . . . , k ≤ n and F1(P ), . . . , Fk(P ) ∈ Z be functions defined
for points P in the lattice Zn. Suppose that for each j = 1, 2, . . . , k,

Fj(x) ≡ Fj(y) (mod mj)

implies that
Fj(x− y) ≡ 0 (mod mj).

Also, suppose that S is a symmetric, convex set in Rn such that

V (S) > 2n
k�

j=1

mj .

Prove that there exists a nonzero point P ∈ S ∩ Zn and

Fj(P ) ≡ 0 (mod mj),

for j = 1, . . . , k.

(Hint: Use Exercise 3.25.)

(This result was proved by L. Rédei in 1950.)
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3.28. Let p be a prime not dividing m ∈ Z. Prove that there exist integers xj for j = 1, 2
such that |xj | ≤

√
p, and

x2 ≡ mx1 (mod p).

(Hint: Use Exercise 3.27.)

(This result is Thue’s Theorem. See [53, Theorem 1.23, p. 44] for an elementary-
number-theoretic proof, and see [53, Biography 1.12, p. 45] for data on Axel Thue.)

3.29. Prove that Θ given in Definition 3.11 is a Q-algebra monomorphism.

3.30. Let k, n, t,mj ∈ N for j = 1, 2, . . . , k < n such that
�

k

j=1 mj < tk. Prove that for
each system of linear forms Fj(x1, . . . , xn), there exist yj ∈ Z, not all zero, such that
|yj | ≤ tk/n and

Fj(x1, . . . , xn) ≡ 0 (mod mj),

for j = 1, . . . , k.

Biography 3.9 Johan Peter Gustav Lejeune Dirichlet (1805–1859) was born
on February 13, 1805 in Düren, that is now in Germany but was then in
the French Empire. He taught at the University of Breslau (now Wroclaw
in Poland) in 1827. Then he taught at the University of Berlin from 1828 to
1855. He was appointed to the Berlin Academy in 1831. In 1855, Dirichlet
succeeded Gauss at Göttingen. However, in the summer of 1858, he suffered a
heart attack while at a conference in Switzerland. He returned to Göttingen
where his illness was compounded by his wife’s death from a stroke. He died
there on May 5.

Dirichlet made contributions to the proof of Fermat’s last theorem in 1825.
In 1837, his result on primes in arithmetic progression was published—see
[54, Theorem 7.7, p. 258] for a self-contained proof. In 1838, his work on
the formula for the class number of quadratic forms appeared. In 1839, he
began an investigation of equilibrium of systems and potential theory. This
led him to what we now call Dirichlet’s problem on harmonic functions with
given boundary conditions. In 1863, his work, Vorlesungen über Zahlentheorie,
contained his celebrated work on ideals and units in algebraic number theory,
which is a central topic of this section.

3.31. Suppose that F is a number field and I is an integral OF -ideal. Prove that there
exists a number field K = F (α) with α ∈ A such that αOK = IOK .

(Hint: Use Exercise 3.18 on page 107 and Theorem 1.17 on page 28.)

3.32. With reference to Exercise 3.31, prove that OF (α) ∩ F = I.

3.33. With reference to Exercises 3.31–3.32, prove that the following holds. Let γ ∈ A and
OK the ring of integers of any number field K. If

OK(γ) = OKI,

then γ = uα for some unit u ∈ A. (Exercises 3.31–3.33 show that there is always an
extension ring of integers of OF in which any given ideal I becomes principal as an
“extended ideal” OK (γ). See Corollary 5.21, and Remark 5.8 on page 240 for related
notions.)

3.34. Let F be a real quadratic field with NF (ε∆F
) = 1. Suppose that I is an OF -ideal

with I2 = (α) for some α ∈ OF where NF (α) < 0. Prove that I �∼ 1.
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3.4 Units in Number Rings

That low man seeks a little thing to do,
Sees it and does it;
This high man, with a great thing to pursue,
Dies ere he knows it.
That low man goes on adding one to one,
His hundred’s soon hit:
This high man, aiming at a million,
Misses an unit.

from l.113 of A Grammarian’s Funeral (1855)
Robert Browning (1812–1869)

English poet
husband of Elizabeth Barrett Browning

In §3.5, we will establish the celebrated Dirichlet unit theorem. We set the stage in this
section by establishing results on the finite component of the unit group, namely the group
of roots of unity. Of fundamental importance is the ring of integers of a cyclotomic field.
This will become even more transparent later when we establish the Kronecker-Weber The-
orem. First however, we need the following crucial result on a compositum of fields due to
Hilbert—see Biography 3.4 on page 94. The reader should therefore be familiar with the
discussion surrounding Application A.1 on page 325.

Theorem 3.13 — Compositum of Rings of Integers

Suppose that Fj are number fields with number ringsOFj
and discriminants∆ Fj

for j = 1, 2
with gcd(∆F1 ,∆F2) = 1, and

K = F1F2

is the compositum of F1 and F2. Then

OK = OF1OF2

(where OF1OF2 consists of all sums
�

n

j=1 αjβj for n ∈ N, αj ∈ OF1 , and βj ∈ OF2 .)

Proof. Since OF1OF2 is the smallest subring of K containing both OF1 and OF2 , then
OF1OF2 ⊆ OK . Thus, it remains to show that OK ⊆ OF1OF2 . If

Bj = {β(j)
1 , . . . , β(j)

nj
},

is an integral basis for Fj , then the set consisting of all n1n2 products β(1)
i

β(2)
j

is a basis
for K over Q by Exercise 3.36 on page 129. Therefore, β ∈ OK may be represented in the
form

β =
n1�

i=1

n2�

j=1

qi,jβ
(1)
i

β(2)
j

,

with qi,j ∈ Q. It suffices to show that qi,j ∈ Z for each such i, j. By Exercise 2.6 on page 63,
we may let θk for k = 1, 2, . . . , n1 be the embeddings of K in C that fix F2 pointwise. Thus,
for each such k,

θk(β) =
n1�

i=1

n2�

j=1

qi,jθk(β
(1)
i

)β(2)
j

.
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Set

xi =
n2�

j=1

qi,jβ
(2)
j

,

for i = 1, 2, . . . , n1. Therefore, we have the n2 equations

θk(β) =
n1�

i=1

xiθj(β
(1)
i

),

for k = 1, 2, . . . , n2. We use Cramer’s rule, Theorem A.21 on page 337 to solve for the xi

as follows.
xi = zi/ det(θj(β

(1)
i

)).

Set
yi = det(θj(β

(1)
i

)).

Then yi, zi ∈ A, and y2
i
= ∆F1 . Thus,

xi∆F1 = ziyi ∈ A.

Therefore,

xi∆F1 =
n2�

j=1

qi,j∆F1β
(2)
j

∈ A ∩ F2 = OF2 .

However, B2 is an integral basis for F2, so qi,j∆F1 ∈ Z for each i, j. In other words,
qi,j = mi,j/ni,j , where mi,j , ni,j ∈ Z with ni,j

�� ∆F1 . A similar argument shows that
ni,j

�� ∆F2 . Hence, ni,j

�� gcd(∆F1 ,∆F2) = 1, so qi,j ∈ Z for all such i, j and we have the
result. ✷

Theorem 3.14 — The Ring of Integers of a Cyclotomic Field

If F = Q(ζn) where n ∈ N, then OF = Z[ζn].

Proof. We may assume that n ≥ 3, since the result trivially holds for n = 1, 2.

Claim 3.6 ∆F

�� nφ(n).

By Theorem 1.25 on page 40, xn − 1 = Φn(x)g(x) for some g(x) ∈ Z[x], so we may
differentiate both sides to get

nxn−1 = Φ�
n
(x)g(x) + Φn(x)g(x)

�. (3.29)

For x = ζn, (3.29) yields
nζn−1

n
= Φ�(ζn)g(ζn),

so by taking norms of both sides,

±nφ(n) = NF (nζ
n−1
n

) = NF (Φ
�
n
(ζn))NF (g(ζn)).

By Definition 2.7 on page 77, Exercise 2.31 on page 69 and Theorems 2.6–2.7 on page 71,

∆F

�� NF (Φ
�
n
(ζn)),

so we have claim 3.6.

Now we establish the theorem for a prime power. Suppose that n = pa for a prime p.
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Claim 3.7 If β ∈ OF , then

β =

φ(pa)�

j=1

zj
∆F

αj ,

where αj = (1− ζpa)j , and zj ∈ Z with∆ F

�� z2
j
.

If β =
�

φ(pa)
j=1 qjαj with qj ∈ Q, then for any i ∈ N with 1 ≤ i ≤ φ(pa), form

θj(β) =
d�

j=1

qjθj(αi),

where θj is an embedding of F in C for 1 ≤ j ≤ φ(pa). By Cramer’s rule,

qj = zj/ det(θj(αi)),

where zj ∈ A is determined in Theorem A.21, and det2(θj(αi)) =∆ F . Therefore, z2
j
=

q2
j
∆F ∈ A ∩Q = Z, by Corollary 1.11 on page 37. Hence,∆ F

�� z2
j
, which yields Claim 3.7.

Claim 3.8 If n = pa, then Z[ζpa ] = OF .

Since ζpa = 1−(1−ζpa), then Z[1−ζpa ] = Z[ζpa ], so it suffices to show that OF = Z[1−ζpa ].
By Claim 3.6, |∆F | is a power of p. If β ∈ OF but β �∈ Z[1 − ζpa ], then by Claim 3.7, we
may assume that

β =

φ(pa)�

j=d

zj
p
αj−1, for some d with 1 ≤ d ≤ φ(pa),

where p � zd. By Exercise 3.35 on page 129, NF (1− ζpa) = p. Thus,

�
j
(1− ζjpa)

(1− ζpa)φ(pa)
=

NF (1− ζpa)

(1− ζpa)φ(pa)
=

p

(1− ζpa)φ(pa)
∈ OF ,

since for each natural number j relatively prime to p, we have

1− ζjpa

1− ζpa

∈ OF .

Therefore,
p

(1− ζpa)d
∈ OF ,

which implies that

βp

(1− ζpa)d
=

�φ(pa)
j=d

zjαj−1

(1− ζpa)d
=

zd
1− ζpa

+

φ(pa)�

j=d+1

zjαj−d−1 ∈ OF .

In turn, this implies that

zd
1− ζpa

=
βp

(1− ζpa)d
−

φ(pa)�

j=d+1

zjαj−d−1 ∈ OF .
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Thus, by Exercise 2.17 on page 68, and Exercise 3.35,

NF (1− ζpa) = p
�� NF (zd) = zφ(p

a)
d

,

so p
�� zd, a contradiction, which establishes Claim 3.8.

Let

n =
b�

j=1

p
aj

j
,

be the canonical prime factorization of n. Then for Fj = Q(ζ
p
aj

j

), we have gcd(∆F�
,∆Fk

) =

1, for any � �= k with 1 ≤ �, k ≤ b, by Claim 3.6. We need one more result to finish the
proof.

Claim 3.9 If Fk = Q(ζpak ) and F� = Qζpae ) for k �= �, then OFk
OF�

= OFkF�
.

By Theorem 3.13 on page 122,

Z[ζ
p
a�

�
p
ak

k

] = Z[ζ
p
a�

�

, ζ
p
ak

k

] = Z[ζ
p
a�

�

]Z[ζ
p
ak

k

] = OF�
OFk

= OF�Fk
.

Hence, by induction using Claim 3.9,

OF = Z[ζn],

as required. ✷

The following is a stronger result than Claim 3.6 on page 123 in the case of a prime power.

Corollary 3.9 — Discriminants of Prime-Power Cyclotomic Fields

If F = Q(ζpa) �= Q where p is prime, then∆ F = (−1)φ(p
a)/2pp

a−1(a(p−1)−1).

Proof. By Exercise 1.54 on page 43, we have

xp
a

− 1 = (xp
a−1

− 1)Φpa(x).

Therefore, by taking derivatives,

paxp
a−1 = pa−1xp

a−1−1Φpa(x) + (xp
a−1

− 1)Φ�
pa(x).

Thus,

paζp
a−1

pa = (ζp
a−1

pa − 1)Φ�
pa(ζpa). (3.30)

We observe that since ζp
a−1

pa is a primitive pa-th root of unity, we may invoke Exercise 3.35

on page 129 to get, NF (ζ
p
a−1

pa − 1) = (−1)φ(p
a)pp

a−1
. Hence, by taking norms of both sides

of Equation (3.30), we get

paφ(p
a) = (−1)φ(p

a)pp
a−1

NF (Φ
�
pa(ζpa)). (3.31)

However, by Exercise 2.39 on page 82, and Exercise 2.31 on page 69,

NF (Φ
�
pa(ζpa)) = (−1)φ(p

a)(φ(pa)−1)/2∆F = (−1)φ(p
a)/2∆F .

Thus, via Equation (3.31), we get

∆F = (−1)φ(p
a)/2paφ(p

a)−p
a−1

= (−1)φ(p
a)/2pp

a−1(a(p−1)−1),
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which is the result. ✷

We will provide the complete generalization of Corollary 3.9 to the determination of the
discriminant of Q(ζn) for any n ∈ N when we have the tools to do so in Theorem 5.14 on
page 216.

Before establishing the main result on roots of unity for this section, we need the following
result due to Kronecker—see Biography 2.2 on page 79. We we will substantially generalize
the following later when we have developed the tools to do so—see Corollary 5.4 on page 200.

Theorem 3.15 — Division of Field Discriminants in Towers

If Q ⊆ F ⊆ K is an extension of number fields then∆ F

�� ∆K .

Proof. By Exercise 2.42 on page 82, any integral basis for K contains an integral basis for F .
Let {α1, . . . , αd, αd+1, . . . , αn} be an integral basis for K where the first d elements provide
an integral basis for F . From Exercise 2.6 on page 63, we know that |F : Q| = d|n = |K : Q|.
Also, from that exercise we may arrange the embeddings θj , (1 ≤ j ≤ n) of K in C in the

following manner. Let θj(αi) = α(j)
i

, and set θj(α1) = α(j)
1 for j = 1, 2, . . . , d. Also,

ensure that, for each i = 1, 2 . . . , n, we have arranged that θj(αi) = θk(αi), whenever j ≡ k
(mod d). This yields the following.

∆K = det(θj(αi))
2 =

det





α(1)
1 · · ·α(d)

1 α(1)
1 · · ·α(d)

1 · · · α(1)
1 · · ·α(d)

1
...

...
...

...

α(1)
d

· · ·α(d)
d

α(1)
d

· · ·α(d)
d

· · · α(1)
d

· · ·α(d)
d

α(1)
d+1 · · ·α

(d)
d+1 α(d+1)

d+1 · · · · · · · · · · · · · · ·α(n)
d+1

...
...

...
...

α(1)
n · · ·α(d)

n α(d+1)
n · · · · · · · · · · · · · · ·α(n)

n





2

,

and by subtracting the jth column from the (kd + j)th column for j = 1, 2, . . . , d, and
k = 1, 2, . . . , n/d− 1, this equals,

det





α(1)
1 · · ·α(d)

1 0 · · · 0 · · · 0
...

...
...

...

α(1)
d

· · ·α(d)
d

0 · · · 0 · · · 0

α(1)
d+1 · · ·α

(d)
d+1 α(d+1)

d+1 − α(1)
d+1 · · · · · · · · · · · · · · ·α(n)

d+1 − α(d)
d+1

...
...

...
...

α(1)
n · · ·α(d)

n α(d+1)
n − α(1)

n · · · · · · · · · · · · · · ·α(n)
n − α(d)

n





2

= γ∆F ,

where γ ∈ OK . However, γ = ∆K/∆F ∈ Q, so by Corollary 1.11 on page 37, γ ∈ Z, as
required. ✷

In Definition 1.3 on page 2, we first met the notion of a primitive root of unity. Now we look
at the group generated by them. Henceforth, for a number field F , we denote the subgroup
of UOF

consisting of roots of unity by RF .

Theorem 3.16 — The Group of Roots of Unity

If F is a number field, then every finite subgroup G of the multiplicative group of nonzero
elements of F consists of roots of unity, and is cyclic. In particular, RF is a finite cyclic
group. Moreover, |RF | is an even divisor of 2∆F .
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Proof. Suppose that |G| = n. It follows from Theorem A.3 on page 321, that there exists
an element α ∈ G such that α has order n and βn = 1 for each β ∈ G. By Theorem A.18
on page 334, xn − 1 has at most n roots in C, so G has order at most n. Since α has order
n and α,α 2, . . . , αn = 1 are all distinct then G = �α�, the cyclic group of order n generated
by α. In particular, RF is a finite cyclic group.

Given that {−1, 1} ⊆ RF , then 2
�� n = |RF |. If n = pa1

1 pa2
2 · · · pak

k
is the canonical prime

factorization of n in Z and since Q(ζ
p
aj

j

) ⊆ F , then by Corollary 3.9 on page 125, and

Theorem 3.15,

p
p
aj−1

j
(aj(pj−1)−1)

j

�� ∆F .

Therefore,
k�

j=1

p
p
aj−1

j
(aj(pj−1)−1)

j

�� ∆F .

If pj > 2, then

p
aj−1
j

(aj(pj − 1)− 1) ≥ aj ,

and if pj = 2, then

p
aj−1
j

(aj(pj − 1)− 1) ≥ aj − 1,

from which the result follows. ✷

Now we establish a result that will allow the determination of the group of roots of unity in
terms of their absolute value. Recall that the absolute value of γ = a+ b

√
−1 ∈ C is given

by |γ| =
√
a2 + b2 =

√
γγ, where γ = a− b

√
−1 is the complex conjugate of γ. Sometimes

|γ| is called the modulus of γ.

Theorem 3.17 — Bounds on Absolute Values

Suppose that F is a number field with embeddings θj for j = 1, 2, . . . , d = |F : Q| in C, and
r ∈ R with r > 0. Then there exist only finitely many α ∈ OF such that |θj(α)| ≤ r for all
j = 1, 2, . . . , d.

Proof. Let

M = max

�
dr,

�
d

2

�
r2, . . . ,

�
d

j

�
rj , . . . , rd

�
,

and set

F =




f(x) = xd +
d−1�

j=0

zjx
j ∈ Z[x] : |zj | ≤ M




 .

Then |F| < ∞. Set
S = {α ∈ F : f(α) = 0 for some f(x) ∈ F}.

Then |S| < ∞, as well. If α ∈ F with |θj(α)| ≤ r for all j = 1, 2, . . . , d, then

|sj(θ1(α), . . . , θd(α))| ≤ M,

for all j = 1, 2, . . . , d, where the sj are the elementary symmetric functions given in Defini-
tion A.16 on page 333. Since α ∈ OF , then sj(θ1(α), . . . , θd(α)) ∈ Z by Corollaries 1.11 on
page 37 and A.9 on page 334. Therefore,

d�

j=1

(x− θj(α)) ∈ F,

which implies that α ∈ S. The result follows. ✷

The following result is due to Kronecker.
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Corollary 3.10 α ∈ RF if and only if |θj(α)| = 1 for all j = 1, . . . , d.

Proof. If α ∈ RF , then θj(α) ∈ RF , since θj(α)n = 1 for some n ∈ N. Thus, |θj(α)|n = 1,
so |θj(α)| = 1.

Conversely, by Theorem 3.17, there exist only finitely many α ∈ OF such that |θj(α)| = 1.
Since αk ∈ OF satisfies |αk| = 1 for all k ∈ N, then it follows that αk = α� for some k < �.
Thus, α�−k = 1, which implies that α ∈ RF , as required. ✷

We conclude this section with a determination of RF for a prime cyclotomic field F .

Theorem 3.18 — Roots of Unity in Prime Cyclotomic Fields

Let F = Q(ζp) for p > 2 prime. Then

RF = �−1� × �ζp�,

as a multiplicative group, and every element u ∈ UOF
may be written as u = wζk

p
where

w ∈ R ∩ UOF
and k ∈ Z.

Proof. By Theorem 3.14 on page 123,OF = Z[ζp]. Clearly, �−1�×�ζp� ⊆ RF . If the inclusion
is proper, there is a ζn ∈ RF with n � 2p. In particular, it must contain either ζn = ζ4q where
q �= p is prime or ζn = ζp2 . However, ζ4 �∈ Q(ζp), since otherwise ζ4 ∈ {1, ζp, . . . , ζp−1

p
},

which is not possible. Since the degree of Q(ζp2) over Q is p(p− 1), then the latter cannot
hold either. Thus, RF = �−1� × �ζp�, as required. Moreover, since there are no more
complex units in UOF

, then the last statement of the theorem must hold. ✷

Example 3.4 Let F = Q(ζp) for a prime p > 2, and set

u =
1− ζj

p

1− ζp
,

so its complex conjugate is

u =
1− ζ−j

p

1− ζ−1
p

=
ζ−j

p
(1− ζj

p
)

ζ−1
p (1− ζp)

= ζ1−j

p
u.

Both are units in OF by Exercise 3.37. Thus,

uu =

�
1− ζj

p

1− ζp

��
1− ζ−j

p

1− ζ−1
p

�
= ζ(1−j)

p
u2,

so if j is odd, then
uu = (ζ(1−j)/2

p
u)2.

Hence,

v =

����
�
1− ζjp
1− ζp

��
1− ζ−j

p

1− ζ−1
p

�
∈ R ∩ UOF

. (3.32)

The distinguished units v in Equation (3.32) are called cyclotomic units, about which we
will learn more later in the text.
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Remark 3.15 A result due to Hilbert, which he proved in 1897, says that the numbers

���
1− ζr

k+1

p

��
1− ζ−r

k+1

p

�� � ��
1− ζr

k

p

��
1− ζ−r

k

p

���1/2
,

where r is a primitive root modulo p and k = 0, 1, . . . , (p− 3)/2, provide a system of in-
dependent units in UOF

for F = Z[ζp]—see Biography 3.4 on page 94. As this chapter
progresses, we will learn substantially more about the role of units.

The above shows that even for the relatively simple fields considered, there is somewhat of
a difficulty in describing the structure of the units. For the general case, we will need to
introduce some geometry to tackle the problem. We do this in §3.5.

Exercises

3.35. Let p be a prime, and a ∈ N. Prove that NF (1 − ζpa) = p, where ζpa is a primitive
pa-th root of unity.

3.36. Suppose that Fj = Q(αj) are number fields, with |Fj : Q| = nj for j = 1, 2. Prove
that

|K : Q| ≤ n1n2,

where
K = F1F2 = Q(α1, α2).

Also, show that if
gcd(|F1 : Q|, |F2 : Q|) = 1,

then
|K : Q| = n1n2.

Is the converse true?

3.37. Let p be a prime, n = pa for some a ∈ N, and F = Q(ζn). Suppose that j ∈ N such
that gcd(j, p) = 1. Prove that

NF

�
1− ζj

n

1− ζn

�
= 1, andΦ n(1) = p.

3.38. Let α ∈ OF be prime, where F = Q(ζn) for n ∈ N. Suppose that

α
�� (ζa

n
− ζb

n
)

for some a, b ∈ Z. Prove that ζa
n
= ζb

n
.

3.39. Let n > 2 be an integer, and set F = Q(ζn). We know that ζn ∈ UOF
. Prove that

NF (ζn) = 1.

3.40. Let n ∈ N with n > 1. Prove that
�

1≤j≤n−1

(1− ζj
n
) = n.
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3.5 Dirichlet’s Unit Theorem

Experience is the name every one gives to their mistakes.
from act 3 of Lady Windermere’s Fan (1892)

Oscar Wilde (1854–1900)
Anglo-Irish dramatist and poet

In this section, the primary goal is to establish Dirichlet’s Unit Theorem, which gives, in an
abstract fashion, a complete description of the group of units UOF

of OF for any number
field F .

First, we need a variant of Definition 3.11 on page 112.

Definition 3.13 — Logarithmic Representations and Spaces

Let F be a number field with signature {r1, r2}, where |F : Q| = n = r1 + 2r2, and note
that (R∗)r1 × (C∗)r2 is the multiplicative group in Rr1 × Cr2 consisting of those elements
with all co-ordinates nonzero. Define the map

Ψ : (R∗)r1 × (C∗)r2 �→ Rr1+r2 ,

by
Ψ(α1, . . . , αr1 , αr1+1, . . . , αr2) = (l1(α1), . . . , lr1(αr1), . . . , lr2(αr2)),

where

lj(αj) =

�
log

e
(|αj |) if 1 ≤ j ≤ r1,

log
e
(|αj |2) if r1 + 1 ≤ j ≤ r1 + r2.

Let the map
LF : F �→ Rr1+r2 ,

be given via the composition of functions

LF = Ψ ◦ΘF ,

whereΘ F is given in Definition 3.11. Then for any α ∈ F ,

LF (α) = (log
e
(|θ1(α)|), . . . , loge(|θr1(α)|), loge(|θr1+1(α)|2), . . . , loge(|θr2(α)|2)).

LF is called the logarithmic representation, or logarithmic map of F , and Rr1+r2 is called
the logarithmic space.

By Exercise 3.41 on page 136, the logarithmic representation LF of Definition 3.13 is a
homomorphism of the multiplicative group F ∗ of nonzero elements of F to the additive
group of the logarithmic space Rr1+r2 . In fact, this is the reason for introducing logarithms
in the first place, namely to link this section with the preceding one in the sense that the
group UOF

is multiplicative, whereas Minkowski’s Convex Body Theorem applies to lattices,
which are additive. Hence, we now have a method that maps from one scenario to the other
via LF . If we consider the restriction of LF to UOF

, we begin to get the picture.
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Lemma 3.4 — The Kernel and Image of LF

If F is a number field with signature {r1, r2}, then

ker(LF ) = RF ,

and LF (UOF
) is a lattice in Rr1+r2 , having dimension less than r1 + r2.

Proof. Since LF (α) = 0 if and only if |θj(α)| = 1 for all j = 1, . . . , r2, then by Corollary 3.10
on page 128, θj(α) ∈ RF for all such j. Hence, ker(LF ) = RF . Let r = r1 + r2 for
convenience. Then for α ∈ UOF

, since

±1 = NF (α) =
n�

j=1

θj(α) =
r1�

j=1

θj(α)
r1+r2�

j=r1+1

θj(α)θj(α) =

r1�

j=1

θj(α)
r1+r2�

j=r1+1

|θj(α)|2,

then
r�

j=1

lj(α) = log
e
(|NF (α)|) = log(1) = 0,

so

LF (UOF
) ⊆ {(x1, . . . , xr) ∈ Rr :

r1�

j=1

xj + 2
r1+r2�

j=r1+1

xj = 0}, 3.2

which has dimension r − 1. To prove that LF (UOF
) is a lattice, we invoke Theorem 3.8 on

page 109. By definition, it is an additive subgroup, so we need only prove that it is discrete.

Let α ∈ UOF
. Then |LF (α)| < r. For n ∈ N, set

Sn = {α ∈ UOF
: |θj(α)| ≤ n for all j = 1, 2, . . . , r} ,

called a cube with side n centered at the origin. Since for each j = 1, . . . , r,

|lj(θj(α))| ≤ log
e
(|LF (α)|) < n,

then |θj(α)| < en for 1 ≤ j ≤ r1, and |θj(α)|2 < en for r1 + 1 ≤ j ≤ r. Hence, Sn has
only finitely many points. However, Θ(Sn) is an injection of Sn into the r − 1-dimensional
hyperplane. Thus, LF (UOF

) is a lattice. ✷

The next step toward the unit theorem is to establish that LF (UOF
) is actually of dimension

r − 1 rather than just contained in a hyperplane of that dimension.

Definition 3.14 — Norms of Elements in Logarithmic Space

If F is a number field with signature {r1, r2}, and � ∈ Rr1 × Cr2 with � = (�1, . . . , �r1+r2),
then the norm of � is given by

NF (�) =
r1�

j=1

�j

r1+r2�

j=r1+1

|�j |2.

3.2This set is an example of a hyperplane. In topological language, an osculating hyperplane of a convex
set S ⊆ Rn is a hyperplane that has a point of its boundary in common with S, but is disjoint from the
interior of S. Recall that the boundary of a set S is defined to be the intersection of the closure of S with
the closure of its complement, whereas the interior of S is the set of all points s ∈ S for which there exists a
disc with center s, contained in S. A fundamental result concerning osculating hyperplanes is the following.
If S is a convex set in Rn, and P is a point on its boundary, there exists at least one osculating hyperplane
of S containing P .
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The term norm in Definition 3.14 is appropriate and in keeping with the notion of norm
given in Definition 2.4—see (3.33) on page 132. In preparation for the following, the reader
is reminded of linear transformations and their matrices as given in Definition A.20 on
page 338.

Lemma 3.5 — Linear Transformations and Norms

Suppose that F is a number field with signature {r1, r2}, and let � ∈ Rr1 × Cr2 . Let the
map

λ� : Rr1 × Cr2 �→ Rr1 × Cr2 ,

be defined by λ�(x) = �x. Then λ� is a linear transformation and det(λ�) = NF (�).

Proof. Choose the canonical basis for Rr1 × Cr2 , namely {vj} for j = 1, 2 . . . , n = r1 + 2r2
where vj = (0, . . . 0, 1, 0 . . . 0), where the 1 is in the jth place for j = 1, 2, . . . , r1, and
vj = (0, . . . 0, 1+

√
−1, 0 . . . 0) with the 1+

√
−1 in the jth place for j = r1 +1, . . . , r1 + r2.

Thus, if

� = (�1, . . . , �r1+r2) = (�1, . . . , �r1 ,mr1+1 + nr1+1

√
−1, . . . ,mr2 + nr2

√
−1),

then the matrix of λ� is given by the almost diagonal matrix,





�1 0 0 · · · 0
0 �2 0 · · · 0
...

. . .
...

0 · · · �r1 0
0 · · · mr1+1 −nr1+1 0
0 · · · nr1+1 mr1+1 0
...

. . .
...

0 · · · mr2 −nr2

0 · · · nr2 mr2





,

whose determinant is given by

r1�

j=1

�j

r1+r2�

j=r1+1

(m2
j
+ n2

j
) =

r1�

j=1

�j

r1+r2�

j=r1+1

|�j |2 = NF (�),

as required. ✷

Now we are in a position to establish the dimension of LF (UOF
).

Theorem 3.19 — The Dimension of LF(UOF)

If F is a number field with signature {r1, r2}, then LF (UOF
) is a lattice of dimension

r1 + r2 − 1 in Rr1+r2 .

Proof. By Exercise 3.41 on page 136 and Definition 2.4 on page 65, for each α ∈ F ,

NF (Θ(α)) = NF (α) =
r1�

j=1

θj(α)
r2�

j=r1+1

θj(α)θj(α) =
r1�

j=1

θj(α)
r2�

j=r1+1

|θj(α)|2. (3.33)

Therefore, for any α ∈ OF , ΘF (α) ∈ LF (UOF
) if and only if |NF (ΘF (α))| = 1. Thus,

for any � ∈ Rr1 × Cr2 with |NF (ΘF (α))| = 1, we must have | det(λ�)| = 1, by Lemma

       



3.5. Dirichlet’s Unit Theorem 133

3.5. Hence, the latticesΘ F (OF ) and λ�(ΘF (OF )), with | det(λ�)| = 1, have the same
fundamental parallelotopes with the same volume, namely

V (Θ(OF )) = (V (λ�(Θ(OF )))) = 2−r2
�
|∆F |,

by Claim 3.5 on page 115.

Let cj ∈ R+ for 1 ≤ j ≤ r1 + r2, and set

S = {(�1, . . . , �r1+r2) ∈ Rr1 × Cr2 : |�j | < cj for 1 ≤ j ≤ r1; |�j |2 < cj for r1 < j ≤ r1 + r2}.

By the same reasoning as that given in the proof of Theorem 3.12 in Case 3.5 on page 118,
we deduce

V (S) = 2r1πr2

r1+r2�

j=1

cj .

Now the object is to use Minkowski’s Convex Body Theorem to get certain required points
in λ�(θF (OF )). To be able to invoke Minkowski’s Theorem, we need

V (S) > 2n2−r2
�

|∆F | = 2nV (λ�(ΘF (OF ))). (3.34)

To achieve this, we can assume that the cj were chosen such that (3.34) holds, with
| det(λ�)| = 1. Therefore, there exists a nonzero α ∈ OF such that λ�(ΘF (α)) ∈ S. Then,
for � = (�1, . . . , �r1+r2),

λ�(ΘF (α)) = (θ1(α)�1, . . . , θr1+r2(α)�r1+r2),

with

|θj(α)�j | < cj for 1 ≤ j ≤ r1, and |θj(α)�j |2 < cj for r1 < j ≤ r1 + r2. (3.35)

Since | det(λ�)| = 1, then by (3.33)

|NF (α)| =
r1�

j=1

|θj(α)|
r1+r2�

j=r1+1

|θj(α)|2 <
r1+r2�

j=1

cj .

By Theorem 3.17 on page 127, there exist only finitely many α ∈ OF such that for all k,

|θk(α)| ≤
r1+r2�

j=1

cj .

Let {β1, . . . , βk} be the set formed by α. Then α must be an associate of one of the βj ’s since
the norms are the same for α and one of the βj ’s. Let α = u1βt for some t = 1, . . . , k, where
u1 ∈ UOF

. Also, in view of (3.35), |θj(α)�j | = |θj(u1)�jθj(βt)| < cj , for each j = 1, . . . , r1,
and |θj(α)�j |2 = |θj(u1)�jθj(βt)|2 < cj , for j = r1 + 1, . . . r1 + r2.

Let aj = min1≤t≤k{|θj(βt)|}. Thus, |θj(u1)| · |�j | < cj/aj (1 ≤ j ≤ r1), and |θj(u1)| ·
|�j | <

√
cj/aj (r1 < j ≤ r1 + r2). Now we place a further restriction upon � (other than

| det(λ�)| = 1), namely we assume that for some B ∈ R+,

|�1| =
1

Br1+r2−1
,

and |�j | = B (2 ≤ j ≤ r1 + r2). Hence,

|θ1(u1)| <
Br1+r2−1c1

a1
, |θj(u1)| <

cj
ajB

(2 ≤ j ≤ r1),
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and

|θj(u1)| <
√
cj

Baj
(r1 < j ≤ r1 + r2).

We may also assume that B is selected to be sufficiently large so that |θj(u1)| < 1 for all
j �= 1. Therefore, lj(θj(u1)) < 0 for all j = 2, . . . , r1 + r2. Also, |NF (u1)| = 1, so by (3.33)
on page 132,

r1+r2�

j=1

lj(θj(u1)) = 0, (3.36)

so

l1(θ1(u1)) = −
r1+r2�

j=2

lj(θj(u1)) > 0.

Continuing in the above fashion, we can manufacture units u2, u3, . . . , ur1+r2−1 ∈ UOF
, such

that
lj(θj(ui)) < 0 if i �= j, (3.37)

and
r1+r2−1�

j=1

lj(θj(ui)) > 0 for all i = 1, . . . , r1 + r2 − 1, (3.38)

where (3.38) follows from the fact that

r1+r2�

j=1

lj(θj(ui)) = log
e
(|NF (α)|) = 0, and lr1+r2(θj(ui)) < 0,

with the first equality stemming from (3.33).

Now we introduce a map that reduces the dimension by one. This will put us within striking
distance of the main result. Let P : Rr1+r2 �→ Rr1+r2−1 be given by the projection,

P(�1, . . . , �r1+r2) �→ (�1, . . . , �r1+r2−1).

Claim 3.10 The vectors P(LF (ui)) for 1 ≤ i ≤ r1 + r2 − 1 are R-linearly independent.

Let M = (mi,j) ∈ Mn×n be the matrix given by mi,j = P(LF (ui)), and n = r1 + r2 − 1 for
convenience. Hence, mi,j < 0 if i �= j, and

n�

j=1

mi,j > 0 for all i = 1, . . . , n. (3.39)

We will have the result if M is nonsingular. Assume that it is not. Then there exist rj ∈ R,
not all zero, such that

n�

j=1

mi,jrj = 0 for all i = 1, . . . , n.

Let n0 ∈ N with n0 ≤ n such that |rn0 | ≥ |rj | for all j = 1, . . . , n, and assume that rn0 > 0
(since we may otherwise replace all rj by −rj). Thus, by (3.39),

0 = rn0mn0,n0 +
�

j �=n0

mn0,jrj > rn0mn0,n0 +




�

j �=n0

mn0,j



 rn0 > 0,

a contradiction that establishes Claim 3.10, and hence the entire result. ✷
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Theorem 3.20 — Dirichlet’s Unit Theorem

Suppose that F is a number field with signature {r1, r2}, and let m = |RF |. Then

UOF

∼= Z× Z× · · · × Z� �� �
r1+r2−1 copies

× �ζm� ∼= �u1� × �u2� × · · · × �ur1+r2−1� × �ζm�,

where ζm is a primitive mth root of unity. Any such system of units uj for j = 1, . . . , r1 +
r2 − 1 is called a fundamental system of units.

Proof. By Theorem 3.19 on page 132, there exist units uj for j = 1, . . . , r1 + r2 − 1 such
that LF (UOF

) has LF (uj) as a Z-basis. Thus, for any u ∈ UOF
, there exist unique zj ∈ Z

such that

LF (u) =
r1+r2−1�

j=1

zjLF (uj).

Therefore,

LF



u
r1+r2−1�

j=1

u−zj



 = 0.

To complete the proof, we need to show that if LF (v) = 0 for v ∈ UOF
, then v ∈ RF .

However, this is Lemma 3.4 on page 131. ✷

Application 3.1 —Units in Real Quadratic Fields

A simple application of Theorem 3.20 is to a real quadratic field. Since r1 = 2, and r2 = 0
for F = Q(

√
∆F ), UOF

∼= �u1� × �−1�, namely there exists a smallest unit u1 > 1 such
that for any u ∈ UOF

, u = ±ua

1 for some a ∈ Z. We denote u1 by ε∆F
and call this

the fundamental unit of Q(
√
∆F ). The uniqueness is given by Dirichlet’s Theorem

and our insistence that the unit be bigger than 1 as a generator. Since∆ F > 0, then
RF = �−1� = �ζ2�.

Example 3.5 If F = Q(
√
∆F ) for∆ F < 0, then r1 = 0, and r2 = 1, so UOF

= RF as
given by Theorem 1.29 on page 47.

Based upon fundamental systems of units, we now show that determinants of logarithmic
representations do not vary. This will allow for the definition of another invariant of a
number field F .

Theorem 3.21 — Determinants of Logarithmic Maps

Suppose that F is a number field with signature {r1, r2}, and {ui}, {vi} for i = 1, 2, . . . , r1+
r2 − 1 are systems of fundamental units. Then | det(LF (ui))| = | det(LF (vi))|, where
(LF (ui)) is a matrix with entries log

e
(|θj(ui)|), and (LF (vi)) is a matrix with entries

log
e
(|θj(vi)|), where θj are the embeddings of F in C.

Proof. Set r = r1 + r2 − 1, and assume that |RF | = m. By Dirichlet’s Unit Theorem, we
may write, for each i = 1, . . . , r,

vi = ζbi
m

r�

j=1

u
ai,j

j
(bi, ai,j ∈ Z),

and

ui = ζci
m

r�

j=1

v
di,j

j
(ci, di,j ∈ Z).
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By uniqueness of representation of units, (di,j)−1 = (ai,j), so det((ai,j)(di,j)) = 1. Hence,
| det(ai,j)| = | det(di,j)|. Since

θj(vi) = θj(ζ
bi
m
)

r�

k=1

θj(uk)
ai,k ,

then log
e
(|θj(vi)|) = log

e
(|θj(ζbim)|) +

�
r

k=1 ai,k loge(|θj(uk)|) =
�

r

k=1 ai,k loge(|θj(uk)|),
where the last equality follows from Corollary 3.10 on page 128. Hence,

| det(log
e
(|θj(vi)|))| = | det(log

e
(|θj(ui)|))|,

so | det(LF (vi))| = | det(LF (ui)|, which is what we sought. ✷

Based upon Theorem 3.21, we may now define an invariant of F .

Definition 3.15 — Regulators

Let {u1, . . . , ur1+r2−1} be a fundamental system of units of a number field F having sig-
nature {r1, r2}. Then the regulator of F is given by

rF = | det(LF (uj))|. (3.40)

Computation of the regulator, given in Equation (3.40), of a number field is difficult, since
we must know in advance a fundamental system of units. However, for real quadratic fields,
knowledge of the fundamental unit is sufficient and tables of such units exist (for instance,
see [49, Appendix B, pp. 287–312]).

Example 3.6 If F = Q(
√
5), then r1 = 2, and r2 = 0. Since the fundamental unit is

ε5 = (1 +
√
5)/2, then

rF = log
e

�
1 +

√
5

2

�
.

Exercises

3.41. Prove that the logarithmic representation LF of Definition 3.13 is a homomorphism
of the the multiplicative group F ∗ of nonzero elements of F to the additive group of
Rr1+r2 .

3.42. Let F be a number field. Prove that ker(LF ) = RF .

3.43. Let F be a real quadratic number field with∆ F ≡ 5(mod 8), and fundamental unit
ε∆F

= (T +U
√
∆F )/2, where T, U ∈ Z. Let G be the subgroup of Z[

√
∆F ] consisting

of the positive units. Prove that G = �ε∆F
� if and only if T and U are both even.

3.44. With reference to Exercise 3.43, prove that G = �ε3∆F
� if T and U are odd.

(This is related to a problem of Eisenstein, namely the determination of criteria
for the solvability of the Diophantine equation |x2 −∆F y2| = 4 with gcd(x, y) = 1
for x, y ∈ Z. There is an underlying interplay between the two rings Z[

√
∆F ], and

Z[(1 +
√
∆F )/2] that helps to explain the phenomenon. Solution of the aforemen-

tioned Diophantine equation, for ∆F ≡ 5(mod 8), is equivalent to ε∆F
�∈ Z[

√
∆F ].

See [49, Exercises 2.1.14–2.1.16, pp. 59–61]. Also, see Example 1.32 on page 52.)
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Biography 3.10 Ferdinand Gotthold Max Eisenstein (1823–1852) was born
on April 16, 1823 in Berlin, Germany. From an early age he suffered from
ill health. While still young, he travelled with his parents to Wales and Ire-
land where he met W.R. Hamilton, who acquainted Eisenstein with the work
of Abel. This inspired Eisenstein to study mathematics further, and he en-
rolled at the University of Berlin upon his return to Germany. Subsequently
he produced many papers, twenty-five of which were published in Crelle’s Jour-
nal where Abel had published his pioneering work. Among his achievements
was the introduction of generalized Jacobi sums to obtain a proof of the law
of biquadratic reciprocity. Gauss had such respect for him that he is pur-
ported to have said that there were only three epoch-making mathematicians:
Archimedes, Newton, and Eisenstein. However, due to his ill health, Eisenstein
was not allowed to fulfill this assessment. Humboldt had collected money for
Eisenstein to travel to Sicily to improve his health. However, he died before he
could go there. His death occurred, at the age of twenty-nine, from pulmonary
tuberculosis on October 11, 1852

If F is a quadratic number field and I2 ∼ 1 in COF , then I is called an ambiguous class
in COF . If I = (a, (b +

√
∆F )/2) is an integral OF -ideal, then I � = (a, (b −

√
∆F )/2) is

the conjugate ideal of I, which we introduced for prime quadratic ideals in Remark 1.24 on
page 52 and illustrated further in Example 2.15 on page 85. Thus, via Exercise 3.20 on
page 107, an ambiguous class of COF is a class I in which I ∼ I �. Indeed, for an ambiguous
class, I = I−1. If I = I �, then I is called an ambiguous OF -ideal. For a prime p ∈ Z, the
maximum elementary abelian p-subgroup of COF is denoted by COF ,p, if |COF ,p| = pr, the
r is called the p-rank of COF—see Definition A.3 on page 320. We let hOF ,p denote the
order of COF ,p.

Exercises 3.45–3.54 below are devoted to studying these ideal classes, and in particular to
establishing Gauss’ result on the 2 rank of OF—Exercises 3.48 and 3.54. Thus, in these
exercises, we are assuming that F is a quadratic number field with discriminant ∆F .

3.45. Suppose that either∆ F < 0 or∆ F > 0 and NF (ε∆F
) = −1. Prove that every class

of COF ,2 has an ambiguous ideal in it.

(Hint: Use Exercise 3.21 on page 107.)

3.46. Let∆ F < 0 be the discriminant of a quadratic field F over Q, and let ω∆F
be defined✰

as in Application 2.1 on page 77. Suppose that I = (a, b±ω∆F
) is an integral OF -ideal

with a > 1, b ≥ 0, and NF (b ± ω∆F
) < NF (ω∆F

)2. Prove that I ∼ 1 if and only if
a = NF (b± ω∆F

).

3.47. Suppose that I is an integral OF -ideal in a quadratic field F = Q(
√
∆F ). Prove that

N(I)
�� ∆F if and only if I = I �.

3.48. Suppose that either∆ F < 0 or∆ F > 0 and NF (ε∆F
) = −1 and that∆ F is divisible✰

by N distinct primes. Prove that hOF ,2 = 2N−1.

(Hint: Use Exercises 3.45–3.46.)

3.49. Assume that∆ F > 0 and NF (ε∆F
) = 1. Then by Exercise 3.21, ε∆F

= α/α� for some
α ∈ OF . Prove that the only primitive ambiguous OF -ideals are (α),

√
DF , OF , and

(α
√
DF ), where DF is the radicand of F defined in Application 2.1 on page 77.

3.50. Suppose that α ∈ I where I is an OF -ideal with N(I) = |NF (α)|. Prove that I = (α).
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3.51. If I is a primitive integral OF -ideal, prove that (N(I)) = II �.

3.52. Assume that∆ F has only one prime divisor, namely∆ F = q ≡ 1(mod 4) is prime or
∆F = 8. Prove that NF (ε∆F

) = −1.

(Hint: Use Exercises 3.21 on page 107 and 3.47.)

3.53. Using Exercise 3.52, prove that for any prime p ≡ 1(mod 4), there exist x, y ∈ Z such
that x2 − py2 = −1.

3.54. Assume that∆ F > 0 and NF (ε∆F
) = 1. Prove that hOF ,2 = 2N−2.

(Hint: Use Exercises 3.49–3.52.)

Let F be a quadratic number field. An OF -ideal I = [N(I), α] is called reduced if it
is primitive and there does not exist an element γ ∈ I such that both |γ| < N(I) and
|γ�| < N(I). Exercises 3.55–3.61 are in reference to reduction in quadratic number fields.

3.55. Prove that if∆ F > 0, then I is reduced if and only if there is an element β ∈ I such✰
that I = [N(I), β], β > N(I), and −N(I) < β� < 0.

(Note that when ∆F < 0, then this means that there is no γ ∈ I such that |γ| < N(I)
where |γ|2 = γγ� = NF (γ). The notion of reduction comes from the theory of binary
quadratic forms—see Definition 3.4 on page 90.)

3.56. Prove that if N(I) <
�
|∆F |/2, then I is reduced.

3.57. Prove that if I is reduced, then N(I) <
√
∆F , when F is real, and N(I) <

�
|∆F |/3

when F is complex.

3.58. Let I be a primitive, ambiguousOF -ideal, where∆ F > 0 . Prove that if N(I) <
√
∆F ,✰

then either I is reduced, or∆ F ≡ 0(mod 4), and I divides the ideal (
�

∆F /4).

3.59. Let I be a primitive, ambiguous OF -ideal, where∆ F > 0. Prove that there exists a
reduced ambiguous ideal J such that J ∼ I.

3.60. Let I be a reduced ambiguous OF -ideal, such that I �= (1), and∆ F > 0. If 4
�� ∆F ,

then also assume that

I �=
�
2, b+

�
∆F /4

�
, where b ≡ ∆F /2 (mod 2).

Prove that either N(I) or N(I)/2 is a nontrivial factor of the radicand D of F .

(This exercise underlies the fact that the so-called Continued Fraction Algorithm can
be used as a method for factoring—see [49].)

3.61. Suppose that F is a real quadratic field. Let I be a primitive principal OF -ideal,
such that gcd(N(I), D) = 1, and N(I) = n2 for some n ∈ N. Prove that there is an
OF -ideal J such that I = J2.

Remark 3.16 Note that in Exercises 3.43–3.44, and 3.52–3.53, we are essentially dealing
with the solutions of Pell’s equation x2 − Dy2 = ±1. Euler misattributed a method of
solving this equation to John Pell (1611–1685), whence its name. However, another English
mathematician, William Brouncker (1601–1665) actually found the method. Lagrange was
the first to prove that the positive Pell equation always has infinitely many solutions—see
Biography 3.3 on page 93. The above exercises show that the Pell equation is actually
about the fundamental unit of a quadratic field. Often, in an elementary number theory
course, continued fractions are employed to solve the equation—see [53, §5.3, pp. 232–239]
for instance.

       



Chapter 4

Applications: Equations and
Sieves

If we could find the answer to that [why it is that we and the universe exist], it would
be the ultimate triumph of human reason—for then we would know the mind of God.

from A Brief History of Time (1988).
Stephen Hawking (1942–)
English theoretical physicist

This chapter is devoted to looking at how we may apply the first three chapters to the
solutions of Diophantine equations and to factoring via the number field sieve and Pollard’s
sieve.

4.1 Prime Power Representation

We have looked at representation problems, without calling them such, in Example 2.16 on
page 85 for instance. Also, emanating from Theorem 1.30 on page 49, we may expand our
understanding by employing it as follows, some of which is adapted from [54].

Recall that by Corollary 3.4 on page 106, we know that hOF < ∞. Also, recall from
Application 3.1 on page 135 the definition of ε∆F

as the fundamental unit of a real quadratic
field.

Theorem 4.1 — Prime Representation and hOF

Let F be a quadratic field with discriminant∆ F and (wide) class number hOF . Suppose
that p > 2 is a prime such that gcd(∆F , p) = 1 and∆ F is a quadratic residue modulo p.
Then the following hold.

(a) If either∆ F < 0 or∆ F > 0 and NF (ε∆F
) = −1, then there exist relatively prime

integers a, b such that

phOF =

� a2 −∆F b2 if∆ F ≡ 1(mod 8),
a2 − ∆F

4 b2 if∆ F ≡ 0(mod 4),
a2 + ab+ 1

4 (1−∆F )b2 if∆ F ≡ 5(mod 8).

(b) If∆ F > 0 and NF (ε∆F
) = 1, then there exist relatively prime integers a, b such that

139
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phOF =

� ±(a2 −∆F b2) if ∆F ≡ 1(mod 8),
±(a2 − ∆F

4 b2) if ∆F ≡ 0(mod 4),
±(a2 + ab+ 1

4 (1−∆F )b2) if ∆F ≡ 5(mod 8).

Proof. By Theorem 1.30, since p > 2, then if (∆F /p) = 1, we have (p) = P1P2 where Pj

are distinct prime OF -ideals for j = 1, 2. Thus,

(phOF ) = (p)hOF = P
hOF
1 P

hOF
2 ∼ (1),

since Pj
hOF ∼ (1) for j = 1, 2 by Exercise 3.18 on page 107. Hence, P

hOF
j

is a principal
ideal for j = 1, 2. Let

P
hOF
1 =

�
u+ v

√
∆F

2

�

where u ≡ v (mod 2), if∆ F ≡ 1(mod 4), and u is even if∆ F ≡ 0(mod 4). Then via the
proof of Theorem 1.30 we know that P2 must be the conjugate of P1, namely

P
hOF
2 =

�
u− v

√
∆F

2

�
.

Hence,

(phOF ) =

�
u2 −∆F v2

4

�
,

so there exists an α ∈ UF such that

phOF = α

�
u2 −∆F v2

4

�
.

However,

α =
4phOF

u2 −∆F v2
∈ Q.

But, by Corollary 1.12 on page 37, OF ∩Q = Z, so α ∈ UZ = {±1}. Thus,

4phOF = ±(u2 −∆F v
2). (4.1)

Claim 4.1 If∆ F ≡ 0(mod 4), then gcd(u/2, v) = 1, and if∆ F ≡ 1(mod 4), gcd(u, v) = 1
or 2.

If∆ F ≡ 1(mod 4), let q > 2 be a prime such that q
�� gcd(u, v). Then there exist integers

x, y such that u = qx and v = qy, where x ≡ y (mod 2). Therefore, by (4.1), q2
�� 4phOF ,

but q > 2 so q = p. Hence,

P
hOF
1 = (p)

�
x+ y

√
∆F

2

�
= P1P2

�
x+ y

√
∆F

2

�
,

which forces P2

�� P
hOF
1 , contradicting that P1 and P2 are distinct OF -ideals. We have

shown that gcd(u, v) = 2c for some integer c ≥ 0. It follows from (4.1) that 4c
�� 4 so c = 0

or c = 1.

If∆ F ≡ 0(mod 4), and q is a prime such that q
�� gcd(u/2, v), then there exist integers x, y

such that u = 2qx and v = qy, so

phOF = ±((qx)2 − (∆F /4)(qy)
2)
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which forces p = q and this leads to a contradiction as above. This is Claim 4.1.

If∆ F < 0 then the plus sign holds in (4.1), since u2 −∆F v2 > 0. When∆ F > 0 and there
exists an α ∈ UF with NF (α) = −1, we may multiply by

NF (α) = N(r + s
�
∆F ) = r2 −∆F s

2 = −1

to get

−(u2 −∆F v
2) = (r2 −∆F s

2)(u2 −∆F v
2) = (ru+∆F sv)

2 −∆F (rv + su)2.

To complete the proof, we need only show how the a, b may be selected to satisfy parts
(a)–(b) of our theorem.

When∆ F ≡ 1(mod 4), then by (4.1), if u and v are odd, 4phOF ≡ 0(mod 8), contradicting
that p > 2. Thus, by Claim 4.1, gcd(u, v) = 2 so we select a = u/2 and b = v/2. If
∆F ≡ 0(mod 4), then by Claim 4.1, we may select a = u/2 and b = v. Lastly, when∆ F ≡ 5
(mod 8), since u ≡ v (mod 2), set u = b+2a and b = v where a, b ∈ Z. Then (4.1) becomes,

±4phOF = u2 −∆F v
2 = (b+ 2a)2 −∆F b

2 = 4a2 + 4ab+ (1−∆F )b
2,

so

phOF = ±(a2 + ab+
1

4
(1−∆F )b

2),

which secures our result. ✷

Remark 4.1 As a counterfoil to Theorem 4.1 on page 139, we note that, by Exercise 3.9
on page 94, if∆ F is not a quadratic residue modulo a prime p > 2, then there is no binary
quadratic form that represents pk for any positive integer k. Hence, there cannot exist
integers (a, b, c) such that pk = ax2 + bxy + cy2 for any integers x, y.

Theorem 4.1 has certain value when hOF = 1. In particular, we have the following results,
the first of which is a special case of Theorem A.27 on page 343.

Corollary 4.1 Let p be a prime. Then there exist relatively prime integers a, b such that

p = a2 + b2 if and only if p = 2 or p ≡ 1 (mod 4).

Proof. By Theorems 3.2 on page 92 and 3.6 on page 103, for∆ F = −4,

hOF = hZ[√−1] = 1.

Thus, by Theorem 4.1, if (∆F /p) = 1, namely p ≡ 1(mod 4), then p = a2 + b2 for a, b ∈ N.
Since 2 = 12 + 12, then we have one direction. Conversely, if p = a2 + b2, and p > 2, then
by Exercise 3.9 on page 94, (−4/p) = (−1/p) = 1, which implies that p ≡ 1(mod 4). ✷

Corollary 4.2 Let p be a prime. Then there exist relatively prime integers a, b such that

p = a2 + 2b2 if and only if p = 2 or p ≡ 1, 3 (mod 8).

Proof. First, we know that (−8/p) = (−2/p) = 1 if and only if p ≡ 1, 3(mod 8). By
Theorems 3.2 and 3.6, for∆ F = −8,

hOF = hZ[√−1] = 1.

Therefore, by Theorem 4.1, if (−8/p) = 1, p = a2 + 2b2 for a, b ∈ N. Also, 2 = 02 + 2 · 12.
Conversely, if

p = a2 + 2b2, and p > 2,

then by Exercise 3.9, (−8/p) = (−2/p) = 1. ✷
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Corollary 4.3 Let p be a prime. Then there exist relatively prime integers a, b such that

p = a2 + ab+ b2 if and only if p = 3 or p ≡ 1 (mod 3).

Proof. From Exercise 4.1, (−3/p) = 1 if and only if p ≡ 1(mod 3). By Corollaries 1.1–1.2
on page 13, Theorem 1.28 on page 45, and Theorem 3.6 on page 103, we have that

hZ[(1+√
−3)/2] = 1.

Thus, by Theorem 4.1, if (∆F /p) = (−3/p) = 1, then

p = a2 + ab+ b2 for some integers a, b.

Also 3 = 12 + 1 · 1 + 12. Conversely, by Exercise 3.9, if p > 3 and p = a2 + ab + b2, then
(−3/p) = 1. ✷

Corollary 4.4 Let p be a prime. Then there exist relatively prime integers a, b such that
p = a2 + 7b2 if and only if p = 7 or

p ≡ 1, 9, 11, 15, 23, 25 (mod 28).

Proof. By Exercise 4.2, (−7/p) = 1 if and only if

p ≡ 1, 9, 11, 15, 23, 25 (mod 28).

Also, as in the proof of Corollary 4.3, for∆ F = −7,

hOF = hZ[(1+√
−7)/2] = h−7 = 1.

Therefore, by Theorem 4.1, if (−7/p) = 1, p = a2 + 7b2 for a, b ∈ N. Also, 7 = 02 + 7 · 12.
Conversely, if

p = a2 + 7b2, and p �= 7,

then by Exercise 3.9, (−7/p) = 1. ✷

Exercises

4.1. Prove that (−3/p) = 1 for a prime p > 3 if and only if p ≡ 1(mod 3).

(Hint: You may use (A.11) on page 342.)

4.2. Prove that (−7/p) = 1 for an odd prime p if and only if p ≡ 1, 9, 11, 15, 23, 25(mod 28).

In Exercises 4.3–4.6, use the techniques of Corollary 4.3 to solve the representation prob-
lems.

4.3. Prove that a prime p is representable in the form

p = a2 + ab+ 3b2 for relatively prime a, b ∈ Z

if and only if

p = 11 or p ≡ 1, 3, 5, 9, 15, 21, 23, 25, 27, 31 (mod 44).
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4.4. Prove that a prime p is representable in the form

p = a2 + ab+ 5b2 for relatively prime a, b ∈ N

if and only if p = 19 or

p ≡ 1, 5, 7, 9, 11, 17, 23, 25, 35, 39, 43, 45, 47, 49, 55, 61, 63, 73 (mod 76).

4.5. Prove that a prime p is representable in the form

p = a2 + ab+ 11b2 for relatively prime a, b ∈ Z

if and only if p = 43 or

p ≡ 1, 9, 11, 13, 15, 17, 21, 23, 25, 31, 35, 41, 47, 49, 53, 57, 59, 67, 79, 81,

83, 87, 95, 97, 99, 101, 103, 107, 109, 111, 117, 121, 127, 133,

135, 139, 143, 145, 153, 165, 167, 169 (mod 172).

4.6. Prove that a prime p is representable in the form

p = a2 + ab+ 17b2 for relatively prime a, b ∈ Z

if and only if p = 67 or

p ≡ 1, 9, 15, 17, 19, 21, 23, 25, 29, 33, 35, 37, 39, 47, 49, 55, 59, 65, 71, 73, 77, 81,

83, 89, 91, 93, 103, 107, 121, 123, 127, 129, 131, 135, 143, 149, 151, 153, 155,

157, 159, 163, 167, 169, 171, 173, 181, 183, 189, 193, 199, 205, 207, 211, 215,

217, 223, 225, 227, 237, 241, 255, 257, 261, 263, 265 (mod 268).

4.7. From Corollaries 1.1–1.2 on page 13, Theorem 1.28 on page 45, and Theorem 3.6 on
page 103,we know that hOF = hZ[(1+√

−163)/2] = 1. Thus, Theorem 4.1 on page 139

informs us that odd primes p with (∆F /p) = (−163/p) = 1 satisfy that p = a2 + ab+
41b2 for some relatively prime integers a, b. Show that for b = 1, a2 + a+41 is indeed
prime for a = 0, 1, . . . , 39.

(This is related to a result of Rabinowitsch [60], which states that for negative ∆F ,
with ∆F ≡ 1(mod 4), we have that hOF = 1 if and only if x2 + x + (1 − ∆F )/4 is
prime for x = 0, 1, . . . , �|∆F |/4 − 1�. The reader may now go to Exercises 4.3–4.6
and verify this fact for those values as well.)

(See Biography 4.1 on the next page.)

4.8. Related to the Rabinowitsch result in Exercise 4.7 is the following, known as the
Rabinowitsch–Mollin–Williams criterion for real quadratic fields–see [46]. If F is a
real quadratic field with discriminant∆ F ≡ 1(mod 4), then |x2 + x + (1 − ∆F )/4|
is 1 or prime for all x = 1, 2, . . . , �(

√
∆F − 1)/2� if and only if hOF = 1 and either

∆F = 17 or∆ F = n2 + r ≡ 5(mod 8) where r ∈{± 4, 1}–see [50, Theorem 6.5.13, p.
352]. Verify this primality for the values

∆F ∈ {17, 21, 29, 37, 53, 77, 101, 173, 197, 293, 437, 677}.

(See Biography 4.2 on the following page.)
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4.9. It is known that for∆ F = −20, hOF = 2 and P = (2, 1+
√
−5) is an ideal representing

the nonprincipal class. Use the identification given in the proof of Theorem 3.5 on
page 101 to prove the following, where p �= 5 is an odd prime.

(a) p = a2 + 5b2 if and only if p ≡ 1, 9(mod 20).

(b) p = 2a2 + 2ab+ 3b2 if and only if p ≡ 3, 7(mod 20).

Biography 4.1 The following was taken from a most interesting article about
G. Rabinowitsch by Mordell [55]. Mordell writes: “In 1923, I attended a meet-
ing of the American Mathematical Society held at Vassar College in New York
State. Someone called Rainich from the University of Michigan at Ann Arbor,
gave a talk upon the class number of quadratic fields, a subject in which I was
very much interested. I noticed that he made no reference to a rather pretty
paper written by Rabinowitz from Odessa and published in Crelle’s Journal.
I commented upon this. He blushed and stammered and said, “I am Rabi-
nowitz.” He had moved to the U.S.A. and changed his name.... The spelling of
Rabinowitsch in this book coincides with that which appears in Crelle [60].

Biography 4.2 Hugh Cowie Williams was born in London, Ontario, Canada
on July 23, 1943. He graduated with a doctorate in computer science from the
University of Waterloo in 1969. Since that time, his research interests have been
in using computational techniques to solve problems in number theory, and in
particular, those with applications to cryptography. He held a Chair under
Alberta Informatics Circle of Research Excellence (iCORE) at the University
of Calgary (U of C) until 2009. He oversaw the Centre for Information Security
and Cryptography (CISaC), a multi-disciplinary research centre at the U of C
devoted to research and development towards providing security and privacy
in information communication systems. There are also more than two dozen
graduate students and post doctoral fellows being trained at the centre. The
iCORE Chair is in algorithmic number theory and cryptography (ICANTC),
which is the main funder of CISaC. The initial funding from iCORE was $3
million dollars for the first five years and this has been renewed for another five
years. In conjunction with this iCORE Chair, Professor Williams had set up
a research team in pure and applied cryptography to investigate the high-end
theoretical foundations of communications security. Previous to the iCORE
chair, Professor Williams was Associate Dean of Science for Research and De-
velopment at the University of Manitoba, as well as, Adjunct Professor for the
Department of Combinatorics and Optimization at the University of Waterloo.
He has an extensive research and leadership background and a strong interna-
tional reputation for his work in cryptography and number theory. CISaC and
ICANTC were acronyms coined by this author, who initiated the application
for the Chair, and is currently a member of the academic staff of CISaC, as
well as professor at the U of C’s mathematics department. This author and
Professor Williams have coauthored more than two dozen papers in number
theory, and computational mathematics, over the past quarter century.
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4.2 Bachet’s Equation

No enemy is worse than bad advice.
Sophocles (c. 496–406 B.C.)

Greek dramatist

In this section we look at unique factorization in certain quadratic domains to find solutions
of certain Bachet equations, those of the form

y2 = x3 + k (4.2)

where k ∈ Z—see Biography 4.3 on page 147.

Theorem 4.2 — General Solutions of Bachet’s Equation

Let F = Q(
√
k) be a complex quadratic field with radicand k < −1 such that k �≡ 1(mod 4),

and hOF
�≡ 0(mod 3). Then there are no solutions of (4.2) in integers x, y except in the

following cases: there exists an integer u such that

(k, x, y) = (±1− 3u2, 4u2 ∓ 1, ε u(3∓ 8u2)),

where the ± signs correspond to the ∓ signs and ε = ±1 is allowed in either case.

Proof. Suppose that for k as given in the hypothesis, (4.2) has a solution.

Claim 4.2 gcd(x, 2k) = 1.

Given that y2 ≡ 0, 1(mod 4), and k ≡ 2, 3(mod 4), then

x3 = y2 − k ≡ 1, 2, 3 (mod 4).

However, x3 ≡ 2(mod 4) is not possible. Hence, x is odd. Now let p be a prime such that
p
�� gcd(x, 2k), where p > 2 since x is odd. Since k is a radicand, it is squarefree, so

p||k = y2 − x3. (4.3)

However, p
�� x so p

�� y, which implies that p2
�� (y2 − x3), a contradiction to (4.3), that

establishes the claim.

By Claim 4.2, there exist integers r, s such that

rx+ 2ks = 1. (4.4)

Claim 4.3 The OF -ideals (y +
√
k) and (y −

√
k) are relatively prime.

If the claim does not hold, then there is a prime OF -ideal P dividing both of the given
ideals by Theorem 1.19 on page 30. Therefore, by Corollary 1.7 on page 27, y ±

√
D ∈ P.

Therefore, 2
√
k = y +

√
k − (y −

√
k) ∈ P, so

2
√
k ·

√
k = 2k ∈ P. (4.5)

Given that
(y +

√
k)(y −

√
k) = (y2 − k) = (x3) = (x)3,
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then by Corollary 1.7 again, since (x)3 ⊆ P, then P
�� (x)3. However, since P is prime

P
�� (x), and once more by Corollary 1.7, we conclude that

x ∈ P. (4.6)

Now we invoke (4.4)–(4.6) to get that both rx and 2ks are in P so 1 = rx + 2ks ∈ P, a
contradiction that establishes the claim.

By Theorem 1.26 on page 42, OF is a Dedekind domain, so by Claim 4.4 and Exercise 4.10,
there exists an integral OF -ideal I such that (y +

√
k) = I

3. In other words, I3 ∼ 1, but
hOF

�≡ 0(mod 3), so by Exercise 4.11, I ∼ 1. Thus, by Theorem 1.28 on page 45, there
exist u, v ∈ Z such that I = (u+ v

√
k). Hence,

(y +
√
k) = (u+ v

√
k)3 =

�
[u+ v

√
k]3

�
.

By Exercise 1.28 on page 19, there is a unit w in OF such that

y +
√
k = w(u+ v

√
k)3, (4.7)

where we observe that since k �≡ 1(mod 4), then 2 does not split in Q(
√
k)—see Remark 1.24

on page 52. Also, by Theorem 1.29 on page 47, w = ±1. Now we conjugate (4.7) to get

y −
√
k = w(u− v

√
k)3. (4.8)

Hence,

x3 = y2 − k = (y −
√
k)(y +

√
k) = w2(u+ v

√
k)3(u− v

√
k)3 = (u2 − v2k)3.

Therefore,
x = u2 − v2k. (4.9)

Now by adding (4.7)–(4.8), we get

2y = w
�
(u+ v

√
k)3 + (u− v

√
k)3

�
= 2w(u3 + 3uv2k), (4.10)

and by subtracting (4.8) from (4.7), we get

2
√
k = w

�
(u+ v

√
k)3 − (u− v

√
k)3

�
= 2w

√
k(3u2v + v3k). (4.11)

Hence, from (4.10)–(4.11), we get, respectively, that

y = w(u3 + 3uv2k) (4.12)

and
1 = w(3u2v + v3k) = wv(3u2 + v2k). (4.13)

From (4.13), we get that v = ±w, so from (4.9), (4.12)–(4.13), we have,

x = u2 − k, y = w(u3 + 3uk), and 1 = ±(3u2 + k).

It follows that k = ±1− 3u2, x = 4u2 ∓ 1, and y = ε(3u∓ 8u3), where ε = ±1 is allowed in
either case. Therefore, the two cases are encapsulated in the following

(k, x, y) = (±1− 3u2, 4u2 ∓ 1, ε u(3∓ 8u2))

and

x3 + k = (4u2 ∓ 1)3 ± 1− 3u2 = 64u6 ∓ 48u4 + 9u2 = (εu(3∓ 8u2))2 = y2,

as required. ✷

As special cases, we get the following two celebrated results—see Biographies 4.4 and 4.5
on page 148.
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Application 4.1 —Euler’s Solution of Bachet’s Equation

The only solutions with x, y ∈ Z of (4.2) for k = −2 are x = 3 and y = ±5.

Application 4.2 —Fermat’s Solution of Bachet’s Equation

The only solutions with x, y ∈ Z of (4.2) for k = −4 are

(x, y) ∈ {(5,±11), (2,±2)}.

Remark 4.2 Note that in Theorem 4.2, u is odd when k = 1 − 3u2 and u is even when
k = −1−3u2 by the hypothesis that k �≡ 1(mod 4), and the fact that k is a radicand, which
precludes that k ≡ 0(mod 4)—see Application 2.1 on page 77.

See Exercises 4.13–4.14 for more illustrations. Also, see Exercise 4.15 for results similar
to Theorem 4.2 on page 145 for the case where k > 0.

Biography 4.3 Claude Gasper Bachet de Méziriac (1581–1638) was born in
Bourg-en-Bresse in Savoy that was a region variously allied with France, Italy,
or Spain. In his early years, he was educated by the Jesuits. Indeed, after both
his parents died when he was only six, the Jesuit Order took care of him in a
house belonging to the duchy of Savoy. Later, he studied with the Jesuits in
Lyon, France, and Milan, Italy. He also spent time in Paris and Rome. His
principal income was generated by his luxurious estate at Bourg-en-Bresse. In
1620, he married and had seven children. By the 1630s, he developed a sequence
of health problems including rheumatism and gout. He died on February 26,
1638.

Bachet’s contribution to mathematics was as a writer of books on mathematical
puzzles, which were seminal in that later books on recreational mathematics
were modeled after his. In 1612, for instance, he published Problèmes plaisans
et delectables qui se font par les nombres, the last edition published in 1959!
His puzzles were largely arithmetical, such as number systems other than base
10. Also, he was fond of card tricks, magic square problems, watch-dial puzzles
depending on numbering schemes, and what we would call today think-of-a-
number problems. As noted in this section, he also contributed to number
theory, being perhaps best known for his Latin translation of Diophantus’s
Greek book Arithmetica, in which Fermat wrote his now famous Last Theorem
marginal notes—see Biography 4.5 on the next page.

Exercises

4.10. Suppose that I, J are nonzero integral R-ideals where R is a Dedekind domain with
I and J relatively prime—see Definition 1.26 on page 29. Prove that if K is an
R-ideal and n ∈ N such that IJ = Kn, then there exist R-ideals I, J such that
I = I

n, J = J
n, and K = IJ.

(Hint: use Theorem 1.17 on page 28.)

4.11. Let OF be the ring of integers of an algebraic number field F with class number
hOF

. Prove that if I is an integral OF -ideal such that In ∼ 1 for some n ∈ N with
gcd(hOF

, n) = 1, then I ∼ 1.
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4.12. Show that the only rational integer solutions of y2 = x3−1 are x = 1 and y = 0 using
unique factorization in Z[i].

4.13. Suppose that p is a prime of the form p = u2 + 13v2 for some u, v ∈ N. Find all
solutions to y2 = p3m − 13, for m ∈ N if any exist.

(Note that 13 is the smallest value of |k| of the form |k| = 1 + 3u2 such that the
hypothesis of Theorem 4.2 is satisfied. Also, hZ[√−13] = 2.)

4.14. Find all solutions of y2 = x3 − 193 if they exist.

(With reference to Exercise 4.13, the next smallest |k| of the form |k| = 1 + 3u2 such
that the hypothesis of Theorem 4.2 is satisfied is |k| = 193. Also, hZ[√−193] = 4.)

4.15. Suppose that k ∈ N is a radicand of a real quadratic field F = Q(
√
k) and k �≡ 1

(mod 4), such that hOF
�≡ 0(mod 3), with F having fundamental unit εk—see Appli-

cation 3.1 on page 135. Let ε = εk if εk has norm 1, and ε = ε2
k
otherwise, and set

ε = T + U
√
k. Prove that (4.2) on page 145 has no solutions if k ≡ 4(mod 9) and

U ≡ 0(mod 9).

(Hint: Assume there is a solution (x, y) to (4.2). Then you may assume that y+
√
k =

w(u + v
√
k)3 for a unit w ∈ OF and some u, v ∈ Z, since the argument is the same

as in the proof of Theorem 4.2.)

(Note that more results for k > 0 of this nature, which typically involve congruences
on T and U , may be found, for instance, in Mordell’s classic text [56] on Diophantine
equations.)

Biography 4.4 Leonard Euler (1707–1783) was a Swiss mathematician who
studied under Jean Bernoulli (1667–1748)—see Biography 4.7 on page 161.
Euler was extremely prolific. In his lifetime, he is estimated to have written
over eight hundred pages a year. He published over five hundred papers during
his lifetime, and another three hundred and fifty have appeared posthumously.
It took almost fifty years for the Imperial Academy to finish publication of his
works after his death. Euler had spent the years 1727–1741 and 1766–1783 at
the Imperial Academy in St. Petersburg under the invitation of Peter the Great.
Euler lost the sight in his right eye in 1735, and he was totally blind for the last
seventeen years of his life. Nevertheless, his phenomenal memory (having the
entire Aeneid committed to memory for example) made the difference, and so
his mathematical output remained high. In fact, about half of his works were
written in those last seventeen years. He died on September 18, 1783.

Biography 4.5 Pierre de Fermat was not a professional mathematician, and
published none of his discoveries. In fact, he was a lawyer. However, he did
correspond with other mathematicians such as Pascal, de Bessy, and Mersenne.
It is from this correspondence that we know about much of his work. Moreover,
Fermat’s son found his copy of Bachet’s translation of Diophantus’ Arithmetica,
in which he had written margin notes—see Biography 4.3 on the preceding page.
These were published by his son, so we now have a further record of Fermat’s
work.
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4.3 The Fermat Equation

All animals are equal but some animals are more equal than others.
from chapter 10 of Animal Farm (1945)

George Orwell (Eric Blair) (1903–1950)
English novelist

In this section, we look at Fermat’s Last Theorem (FLT), and its related prime Fermat
equation

xp + yp + zp = 0. (4.14)

It suffices to solve (4.14) in order to solve the general Fermat equation xn + yn = zn for
n ∈ N. As is now well-known, FLT was solved by Andrew Wiles—see [54, Theorem 10.4,
p. 365] for a proof that is given in one paragraph at the end of the book.

We begin with the anchor case where p = 3, provided by Gauss—see Biography 3.5 on
page 95—then move to the larger picture provided by Kummer—see Biography 4.9 on
page 164. The following result employs not only the unique factorization in a quadratic
domain Z[ζ3] (where ζ3 is a primitive cube root of unity) but also Fermat’s method of
infinite descent. This method involves assuming the existence, in natural numbers, of a
solution to a given problem and constructing new solutions using smaller natural numbers;
and then from the new ones other solutions using still smaller natural numbers, and so on.
Since this process cannot go on indefinitely for natural numbers, then the initial assumption
must have been false.

Theorem 4.3 — Gauss’s Proof of FLT for p = 3

There are no solutions of
α3 + β3 + γ3 = 0

for nonzero α, β,γ ∈ OF = Z[ζ3], where F = Q(ζ3). In particular, there are no solutions to

x3 + y3 = z3,

in nonzero rational integers x, y, z.

Proof. We assume that there are nonzero α, β,γ ∈ OF such that

α3 + β3 + γ3 = 0,

and achieve a contradiction. Without loss of generality, we may assume that

gcd(α,β ) = gcd(α,γ ) = gcd(β,γ ) = 1,

—see Exercise 1.17 on page 6 and Remark 1.8 on page 13. Let

λ = 1− ζ3 =
3−

√
−3

2
,

—see Example 1.4 on page 2. Then NF (λ) = λλ� = 3, where λ� = (3 +
√
−3)/2 is the

algebraic conjugate of λ. Therefore, by Corollaries 1.1–1.2 on page 13 and Exercise 1.22 on
page 14, λ is prime in OF . We will achieve the desired contradiction by an infinite descent
argument. This is not done directly, but rather we get a contradiction to the equation
α3 + β3 + λ3nρ3 = 0. Thus, we first show that the latter equation holds. We require two
claims. Note that congruence of elements follows the development in §1.5 on ideals, namely
σ ≡ ω (mod ν) means ν

�� (σ − ω) in OF—see Remark 1.17 on page 32, as well as Exercises
4.25–4.32 on pages 163–164 for further developments.
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Claim 4.4 If λ � δ ∈ OF , then δ ≡ ±1(mod λ).

Let δ = a + bζ3, where a, b ∈ Z. Then δ = u + vλ, where u, v ∈ Z. If λ|u, then δ ≡ 0
(mod λ), a contradiction, so λ � u. Since λ|3, then 3 � u, so u ≡ ±1(mod 3) in Z. Thus,
there is a t ∈ Z such that

δ = ±1 + 3t+ vλ.

But λ|3, so there exists a σ ∈ OF such that

δ = ±1 + tσλ+ vλ = ±1 + λ(tσ + v).

In other words, δ ≡ ±1(mod λ), which is Claim 4.4.

Claim 4.5 If λ � δ ∈ OF , then δ3 ≡ ±1(mod λ4).

By Claim 4.4, we may assume that δ ≡ 1(mod λ) since the other case is similar. Therefore,
δ = 1 + λσ for some σ ∈ OF . Thus,

δ3 − 1 = (δ − 1)(δ − ζ3)(δ − ζ23 ) = λσ(λσ + 1− ζ3)(λσ + 1− ζ23 ) =

λσ(λσ + λ)(λσ + λ(1 + ζ3)) = λ3σ(σ + 1)(σ − ζ23 ), (4.15)

where the last equality follows from the fact that
�2

j=0 ζ
j

3 = 0, given in Example 1.5 on
page 2. Since

ζ23 − 1 = (ζ3 + 1)(ζ3 − 1) = (ζ3 + 1)λ,

then ζ23 ≡ 1(mod λ), so since δ ≡ 1(mod λ), then by (4.15),

0 ≡ (δ3 − 1)λ−3 ≡ σ(σ + 1)(σ − ζ23 ) ≡ σ(σ + 1)(σ − 1) (mod λ).

Hence,
δ3 ≡ 1 (mod λ4),

and we have Claim 4.5.

Claim 4.6 λ
�� αβγ.

Suppose that λ � αβγ. Then by Claim 4.5,

0 = α3 + β3 + γ3 ≡ ±1± 1± 1 (mod λ4),

from which it follows that λ4
�� 1 or λ4

�� 3. The former is impossible since λ is prime, and
the second is impossible since

3 = (1− ζ3)(1− ζ23 ) = (1− ζ3)
2(1 + ζ3) = λ2(1 + ζ3),

and 1 + ζ3 is a unit, so not divisible by λ2. This contradiction establishes Claim 4.6.

By Claim 4.6, we may assume without loss of generality that λ
�� γ. However, by the gcd

condition assumed at the outset of the proof, λ � α, and λ � β. Let n ∈ N be the highest
power of λ dividing γ. In other words, assume that

γ = λnρ, for some ρ ∈ OF with λ � ρ.

Thus, we have
α3 + β3 + λ3nρ3 = 0. (4.16)
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We now use Fermat’s method of infinite descent to complete the proof. First we establish
that n > 1. If n = 1, then by Claim 4.4,

−λ3ρ3 = α3 + β3 ≡ ±1± 1 (mod λ4).

The signs on the right cannot be the same since λ � 2. Therefore,

−λ3ρ3 ≡ 0 (mod λ4),

forcing λ
�� ρ, a contradiction that shows n > 1. Given the above, the following claim, once

proved, will yield the full result by descent.

Claim 4.7 If Equation (4.16) holds for n > 1, then it holds for n− 1.

Let

X =
β + αζ3

λ
, Y =

βζ3 + α

λ
, and Z =

(β + α)ζ23
λ

.

Observe that X,Y, Z ∈ OF by Corollary 1.1 on page 13, Equation (4.16), and the fact that
ζ3 ≡ 1(mod λ). Also, by Example 1.5,

�2
j=0 ζ3 = 0,

X + Y + Z = 0, (4.17)

and

XY Z =
β3 + α3

λ3
=

�
−λnρ

λ

�3

= λ3n−3 (−ρ)3 ,

so λ3n−3
�� XY Z, but λ3n � XY Z, since λ � ρ. Also, since

β = −ζ3X + ζ23Y , and α = ζ3Z −X,

then by the gcd condition assumed at the outset of the proof, we have

gcd(X,Y ) = gcd(X,Z) = gcd(Y, Z) = 1.

Hence, each of X, Y , and Z is an associate of a cube in OF . Also, we may assume without
loss of generality that λ3n−3

�� Z. By unique factorization in OF , we may let X = u1ξ3,
Y = u2η3, and Z = u3λ3n−3ν3 for some ξ, η,ν ∈ OF , and uj ∈ UOF

for j = 1, 2, 3.
Therefore, from (4.17),

ξ3 + u4η
3 + u5λ

3n−3ν3 = 0, (4.18)

where uj = u−1
1 uj−2 for j = 4, 5. Therefore, ξ3 + u4η3 ≡ 0(mod λ3). By Claim 4.5

ξ3 ≡ ±1 (mod λ4), and η3 ≡ ±1 (mod λ4).

Hence,
±1± u4 ≡ 0 (mod λ3).

Since the only choices for u4 are ±1, ±ζ3, and ±ζ23 , then the only values that satisfy the last
congruence are u4 = ±1, since λ3 � (±1± ζ3), and λ3 � (±1± ζ23 ). If u4 = 1, then Equation
(4.18) provides a validation of Claim 4.7. If u4 = −1, then replacing η by −η provides a
validation of the claim. This completes the proof. ✷

Theorem 4.3 is the lynchpin case for the next result. The following uses factorization in
prime cyclotomic fields F = Q(ζp), where ζp is a primitive p-th root of unity for a prime
p > 2 when p � hOF

, in which case p is called a regular prime. The proof is due to Kummer
and is an application of techniques we have learned thus far.

In the following, we note that for historical reasons and for convenience, FLT is usually bro-
ken down into two cases. Case I is that p � xyz and Case II is that p|xyz—see Theorem 5.22
on page 240.
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Theorem 4.4 — Kummer’s Proof of FLT for Regular Primes–Case I

Let p be an odd prime such that p � hOF
for F = Q(ζp). Then if p � xyz, the Fermat

equation (4.14) on page 149 has no integer solution xyz �= 0.

Proof. Assume that (4.14) has a solution x, y, z ∈ Z with xyz �= 0. We may assume that
x, y, z ∈ Z are pairwise relatively prime, and we may write (4.14) as the ideal equation

p−1�

j=0

(x+ ζj
p
y) = (z)p. (4.19)

Claim 4.8 (x+ ζj
p
y) and (x+ ζk

p
y) are relatively prime for 0 ≤ j �= k ≤ p− 1.

Let P be a prime OF -ideal dividing both of the above ideals. Therefore, P divides

(x+ ζk
p
y)− (x+ ζj

p
y) = yζk

p
(1− ζj−k

p
).

By Exercise 3.37 on page 129, λ = 1 − ζp and 1 − ζj−k

p
are associates for j �= k, and by

Exercise 3.39, ζk
p
is a unit, so P

�� (yλ). By primality, P
�� (y) or P

�� (λ). If P
�� (y), then

P
�� (z) from (4.19). Since gcd(y, z) = 1, there exist u, v ∈ Z such that uy + vz = 1. Since

y, z ∈ P, then 1 ∈ P, a contradiction. Hence, P
�� (λ). By Exercise 2.24 on page 68 and

Corollary 2.8 on page 85,
N((λ)) = NF (λ) = p.

Thus, by Exercise 2.45 on page 86, (λ) is a prime OF -ideal. Therefore, P = (λ), so (λ)
�� (z).

By Exercise 2.46, NF (λ)
�� NF (z). However, by Corollary 1.17 on page 41, NF (z) = zp−1,

so p = NF (λ)
�� z, contradicting the hypothesis. This completes Claim 4.8.

By Claim 4.8 and Theorem 1.17 on page 28,

(x+ ζpy) = Ip,

for some OF -ideal I. Since p � hOF
, then by Exercise 4.11 on page 147, I ∼ 1. Hence, there

exists an α ∈ OF such that
x+ ζpy = u1α

p,

where u1 ∈ UOF
. By Theorem 3.18 on page 128, u1 = wζk

p
for some k ∈ Z and w ∈ R∩UOF

.
Therefore,

x+ ζpy = wζk
p
αp. (4.20)

By Exercise 4.32 on page 164 there exists a z1 ∈ Z such that α ≡ z1 (mod (λ)). By taking
norms on the latter, we get

αp − zp1 =
p−1�

j=0

(α− ζj
p
z1).

Since ζp ≡ 1(mod (λ)), then for each j = 0, 1, . . . , p− 1,

α− ζj
p
z1 ≡ α− z1 (mod (λ)).

Hence,
αp ≡ zp1 (mod (λ)p),

so (4.20) becomes
x+ ζpy ≡ wzp1ζ

k

p
(mod (λ)p).
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However, (p) = (λ)p−1 by Exercise 4.19 on page 162, so

x+ ζpy ≡ wzp1ζ
k

p
(mod (p)).

Since ζk
p
is a unit, then

ζ−k

p
(x+ ζpy) ≡ wzp1 (mod (p)). (4.21)

By taking complex conjugates in (4.21), we get

ζk
p
(x+ ζ−1

p
y) ≡ wzp1 (mod (p)). (4.22)

Subtracting (4.22) from (4.21), we get

ζ−k

p
x+ ζ1−k

p
y − ζk

p
x− ζk−1

p
y ≡ 0 (mod (p)). (4.23)

Claim 4.9 2k ≡ 1(mod p).

If p
�� k, then ζk

p
= 1, so (4.23) becomes

0 ≡ y(ζp − ζ−1
p

) ≡ yζ−1
p

(ζ2
p
− 1) ≡ yζ−1

p
(ζp − 1)(ζp + 1) ≡ yζ−1

p
λ(ζp + 1) (mod (p)).

However, by Exercise 4.20, 1 + ζp ∈ UOF
, so

yλ ≡ 0 (mod (p)).

Also, by Exercise 4.19,
(p) = (λ)p−1,

and p ≥ 3, so λ
�� y. Taking norms on the latter and using Exercise 2.46 again, we get that

p
�� y, contradicting the hypothesis. Therefore, k �≡ 0(mod p). By (4.23) there exists an

α1 ∈ OF such that
α1p = xζ−k

p
+ yζ1−k

p
− xζk

p
− yζk−1

p
. (4.24)

By Exercise 4.21, k �≡ 1(mod p). Since k �≡ 0, 1(mod p), then

α1 =
x

p
ζ−k

p
+

y

p
ζ1−k

p
− x

p
ζk
p
− y

p
ζk−1
p

. (4.25)

By Theorem 3.14 on page 123,
{1, ζp, . . . , ζp−1

p
}

is a Z-basis of OF . Thus, if all exponents −k, 1 − k, k and k − 1 are incongruent modulo
p, then x/p ∈ Z, contradicting the hypothesis. Thus, two of the aforementioned exponents
are congruent modulo p. The only possibility remaining after excluding k ≡ 0, 1(mod p) is

2k ≡ 1 (mod p).

This establishes Claim 4.9.

Hence, (4.24) becomes

α1pζ
k

p
= x+ yζp − xζ2k

p
− yζ2k−1

p
= (x− y)λ.

By taking norms and applying Exercise 2.46 one more time, we get p
�� (x− y), namely

x ≡ y (mod p).
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Thus, by (4.14)
y ≡ z (mod p)

as well. Therefore, since p � x,

0 ≡ xp + yp + zp ≡ 3xp (mod p).

Thus, p = 3, which was eliminated in Theorem 4.3, so we have completed the proof. ✷

Now that we have completed Kummer’s verification of Case I of FLT for regular primes,
we turn our attention to irregular primes namely those primes p such that p

�� hOF
. We are

interested in the number of them. Kummer stated that there are infinitely many regular
primes. In [66], published in 1964, Siegel made this more precise by conjecturing that
approximately e−1/2 of all primes are regular, namely in the asymptotic sense using natural
density, about 60.75% of primes are regular. However, at the time of the writing of this book,
this still has not been proved. That there are infinitely many irregular primes is known,
proved by K.L. Jensen in 1915, and this is the focus of our next result. The mechanism for so
doing requires an equivalent definition of an irregular prime necessitating the introduction
of more celebrated numbers.

First, we need to introduce the following, which first appeared in the posthumous work Ars
Conjectandi by Jacob (Jacques) Bernoulli in 1713—see Biography 4.7 on page 161. Also,
the reader should be familiar with the background on the basics concerning series—see
Appendix B.

Definition 4.1 — Bernoulli Numbers

In the Taylor series, for a complex variable x,

F (x) =
x

ex − 1
=

∞�

j=0

Bjxj

j!
,

the coefficients Bj are called the Bernoulli numbers.

Example 4.1 Using the recursion formula given in Exercise 4.16 on page 161, we calculate
the first few Bernoulli numbers:

n 0 1 2 3 4 5 6 7 8 9 10

Bn 1 −1/2 1/6 0 −1/30 0 1/42 0 −1/30 0 5/66

n 11 12 13 14 15 16 17 18 19

Bn 0 −691/2730 0 7/6 0 −3617/510 0 43867/798 0

Example 4.1 suggests that B2n+1 = 0 for all n ∈ N and this is indeed the case—see
Exercise 4.23 on page 162.

Suppose that x, s are complex variables and set

F (s, x) =
sexs

es − 1
=

∞�

n=0

Bn(x)
sn

n!
, for |s| < 2π. (4.26)

Then by comparing coefficients of xn in

∞�

n=0

Bn(x)
sn

n!
= F (s, x) = F (s)exs =

∞�

n=0

Bn

sn

n!

∞�

j=0

xj
sj

j!
,

we get the following.
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Definition 4.2 — Bernoulli Polynomials

For x ∈ C,

Bn(x) =
n�

j=0

�
n

j

�
Bjx

n−j ,

called the n-th Bernoulli polynomial.

Example 4.2 Using the recursion formula in Exercise 4.16 again, we calculate the first few
Bernoulli polynomials:

B0(x) = 1, B1(x) = x− 1

2
, B2(x) = x2 − x+

1

6
,

B3(x) = x3 − 3

2
x = x(x− 1)

�
x− 1

2

�
,

B4(x) = x4 − 2x3 + x2 − 1

30
,

B5(x) = x5 − 5

2
x4 +

5

3
x3 − 1

6
x.

B6(x) = x6 − 3x5 +
5

2
x4 − 1

2
x2 +

1

42
.

The following is Kummer’s notion of a regular prime which is equivalent to the one given
on page 154. Recall that a rational number q = a/b is written in lowest terms when
gcd(a, b) = 1.

Definition 4.3 — Bernoulli Numbers, Regular, and Irregular Primes

An odd prime number p is said to be a regular prime if p does not divide the numerator of
any of the Bernoulli numbers Bn when Bn is written in lowest terms for n = 2, 4, 6, . . . , p−3.

We need the following result by Jacob Bernoulli on sums of n-th powers and Bernoulli
polynomials.

Lemma 4.1 — Bernoulli Numbers, Polynomials, and Sums of Powers

For every nonnegative n ∈ Z and k ∈ N,

Sn(k) =
k−1�

j=1

jn =
Bn+1(k)−Bn+1

n+ 1
=

1

n+ 1

n�

j=0

�
n+ 1

j

�
Bjk

n+1−j .

Proof. Since F (s, x)− F (s, x− 1) = ses(x−1), then

Bn+1(x)−Bn+1(x− 1)

n+ 1
= (x− 1)n. (4.27)

Adding (4.27) for x = 1, 2, . . . k, we get the result. ✷

In order to obtain a crucial result on Bernoulli numbers, which is the final lead-up to proving
the infinitude of irregular primes, we need to establish a realtionship between Bernoulli
numbers and the Riemann zeta function

ζ(s) =
∞�

j=1

j−s for s ∈ C with �(s) > 1,
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where �(s) = a is the real part of s = a + b
√
−1 for a, b ∈ R—see [53, §1.9, pp. 65–72] as

well as the development in Appendix B on pages 352–354. This was established by Euler
as follows.

Theorem 4.5 — Bernoulli Numbers and the Riemann Zeta Function

For k ∈ N,

ζ(2k) =
(2π)2k

2(2k)!
|B2k|.

Proof. First we note that by putting x = 0 in Equation (4.26) and adding s/2 to both sides,
we get (where coth denotes the hyperbolic cotangent):

s

2

�
es + 1

es − 1

�
=

s

2
coth

�s
2

�
=

∞�

k=0

B2k
s2k

(2k)!
(4.28)

observing that B1 = −1/2 is the only nonzero, odd-indexed Bernoulli number. Then by
setting s = 2ix in (4.28), we get

x cotx = 1 +
∞�

k=1

(−1)kB2k
22kx2k

(2k)!
, (4.29)

recalling that eix = cosx + i sinx, so cosx = (eix + e−ix)/2 and sinx = (eix − e−ix)/(2i).
Secondly, from the known infinite product expansion for the sine function

sin(x) = x
∞�

n=1

�
1− x2

n2π2

�
, (4.30)

—see Application B.2 on page 354—we take the logarithmic derivative of (4.30) to achieve,

x cot(x) = 1 + 2
∞�

n=1

x2

x2 − n2π2
. (4.31)

To proceed, we need the following.

Claim 4.10 For x ∈ C,
x2

x2 − n2π2
= −

∞�

k=1

x2k

n2kπ2k
.

We have

−
∞�

k=1

x2k

n2kπ2k
= 1−

∞�

k=0

(nπ/x)−2k = 1− lim
N→∞

N�

k=0

��nπ
x

�−2
�k

.

However, by Theorem B.4 on page 347 this equals

1− lim
N→∞





��
nπ

x

�−2
�N+1

− 1
�
nπ

x

�−2 − 1



 = 1 +
1

�
nπ

x

�−2 − 1
=

x2

x2 − n2π2
,

which is Claim 4.10.
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Now by plugging the result of Claim 4.10 into (4.31), and equating the result with (4.29),
we get

1 +
∞�

k=1

(−1)kB2k
22kx2k

(2k)!
= 1− 2

∞�

n=1

∞�

k=1

x2k

n2kπ2k
,

so

(−1)k+1B2k
22k−1x2k

(2k)!
=

∞�

n=1

x2k

n2kπ2k
=

x2k

π2k

∞�

n=1

1

n2k
=

x2k

π2k
ζ(2k).

Since (−1)k+1B2k > 0, then this implies the desired result,

|B2k|
(2π)2k

2(2k)!
= ζ(2k).

✷

Corollary 4.5 For n ∈ N,
lim
n→∞

����
B2n

2n

���� = ∞.

Proof. By Theorem 4.5,

|B2n| >
2(2n)!

(2π)2n
,

given that ζ(2n) > 1. Since (2n)! > (2n/e)2n, by Stirling’s formula given in (A.7) on page
339, then

|B2n| > 2
� n

πe

�2n
,

and the result follows. ✷

We are now ready for a key result in our pursuit to establish the infinitude of irregular
primes. For convenience, we introduce the following notion.

Definition 4.4 — p-Integers and Rational Congruences

If q ∈ Q, and p ∈ Z is a prime, then q = a/b for a, b ∈ Z written in lowest terms is called a
p-integer provided that p � b. For any n ∈ N, a congruence

q1 ≡ q2 (mod n) with q1, q2 ∈ Q

means that q1 − q2, written in lowest terms, is a rational number with numerator divisible
by n.

Remark 4.3 The term p-integer comes from the notion of a p-adic integer, which we
will not study per se in this text since we are concentrating on a global approach—see [54,
Chapter 6] for an introduction to p-adic analysis.

The reader can easily verify that for any rational number q1 with denominator prime to n,
there exists a unique rational integer r2 with 0 ≤ r2 ≤ n− 1 such that

q1 ≡ r2 (mod n).

The following result was proved independently by T. Clausen and C. von Staudt. Clausen
was described by Gauss as a man of “outstanding talents.” The following was communicated
to Gauss by von Staudt, who published a proof in 1840. Just prior to this, Clausen had
published a statement of the result—see Biographies 4.6 on page 159 and 4.8 on page 162.
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Theorem 4.6 — von Staudt–Clausen

Let p be a prime and n ∈ N even. If (p− 1) � n, then Bn is a p-integer. If (p− 1)
�� n, then

pBn is a p-integer, and
pBn ≡ −1 (mod p).

Proof. We use induction on n. Since B2 = 1/6, then the denominator of B2 is not divisible
by p unless p = 2, 3. If p = 3, then pB2 = 1/2 is a p-integer, and pBn = 1/2 ≡ −1(mod 3).
If p = 2, then pB2 = 1/3 is a p-integer, and pB2 = 1/3 ≡ −1(mod 2). This is the induction
step. Now we use the fact given in Lemma 4.1 on page 155, for our case, namely

(k + 1)Sk(p) =
k�

j=0

�
k + 1

j

�
Bjp

k+1−j .

Therefore,

pBk = Sk(p)−
1

k + 1

k−1�

j=0

�
k + 1

j

�
pk−jpBj , (4.32)

where pBj for j < k is a p-integer. Consider

1

k + 1

�
k + 1

j

�
pk−j , (4.33)

which is divisible by p = 2, given that j < k, since k + 1 is odd. If p > 2, then write (4.33)
as

1

k + 1

�
k + 1

k + 1− j

�
pk−j =

k(k − 1) · · · (j + 1)

(k + 1− j)!
pk−j ,

where the last equality follows, via (4.33), from the symmetry property in Pascal’s triangle,�
k+1

k+1−j

�
=

�
k+1
j

�
—see [53, Exercise 1.15, p. 14]. We have that

pr
�� (k + 1− j)!, (4.34)

where

r =
∞�

�=1

�
k + 1− j

p�

�
<

∞�

�=1

k + 1− j

p�
=

k + 1− j

p− 1
≤ k + 1− j

2
≤ k − j,

with the second equality following from Theorem B.4 on page 347. Therefore,

pk−j

(k + 1− j)!

is a p-integer, so from (4.32) and (4.34),

pk−j

(k + 1− j)!
≡ 0 (mod p).

Hence, pBk is a p-integer, so
pBk ≡ Sk(p) (mod p). (4.35)

Also, if (p− 1)
�� k, then xk ≡ 1(mod p), for 1 ≤ x ≤ p− 1. Therefore,

Sk(p) =
p−1�

x=1

xk ≡
p−1�

x=1

1 = p− 1 (mod p),
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so
Sk(p) ≡ −1 (mod p) if (p− 1)

�� k. (4.36)

On the other hand, if (p− 1) � k, then let g be a primitive root modulo p. Thus,

Sk(p) =
p−1�

x=1

xk ≡
p−2�

�=0

g�k =
g(p−1)k − 1

gk − 1
(mod p),

where the last equality comes from Theorem B.4 again. Therefore, since gp−1 ≡ 1(mod p)
and gk �≡ 1(mod p), then

Sk(p) ≡ 0 (mod p) if (p− 1) � k. (4.37)

Comparing (4.35) and (4.37), we see that pBk ≡ 0(mod p) when (p − 1) � k, so Bk is a
p-integer. Similarly, comparing (4.35) and (4.36), we get that pBk ≡ −1(mod p), when
(p− 1)

�� k. ✷

Biography 4.6 Carl Georg Christian von Staudt (1798–1867) was born in
the Imperial Free City of Rothenburg (now Rothenburg ob der Tauber, Ger-
many) on January 24, 1798. He attended Gauss’s alma mater, Göttingen, from
1818 to 1822, the year in which he received his doctorate in astronomy from
Erlangen, Bavaria (now Germany). In 1827, he became Professor of Mathemat-
ics at the Polytechnic School at Nuremburg, and in 1835 at the University of
Erlangen. One of his feats was the demonstration of how to construct a regular
polygon of seventeen sides (a 17-gon) using only compasses. Then he turned
his attention to Jacob Bernoulli’s numbers described above. However, he is
principally known for his work in geometry. In 1847, he published Geometrie
der Lage, which was on projective geometry. His work showed that projective
geometry did not need to have reference to magnitude or number. He died on
June 1, 1867 in Erlangen.

Corollary 4.6 If p > 2 is prime and n ∈ N is even with n ≤ p− 1, then

pBn ≡ Sn(p) (mod p2).

Proof. In the proof of Theorem 4.6, if n ≤ p − 1, then p − 1 does not divide any k < n.
Therefore, all Bk for k < n are p-integers. Hence, every term on the right-hand side of
(4.32) is divisible by p2. ✷

The last result required for putting together the machinery necessary to establish the in-
finitude of irregular primes is due to Kummer.

Theorem 4.7 — Kummer’s Congruence

If p is a prime and n ∈ N is even with (p− 1) � n, then Bn/n is a p-integer, and

Bn+p−1

n+ p− 1
≡ Bn

n
(mod p).

In this case, we say that the values Bn/n have period length p−1 modulo p when (p−1) � n.
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Proof. Let g be a primitive root modulo p with 1 < g < p, and set

F (x) =
gx

egx − 1
− x

ex − 1
=

∞�

n=1

Bn(gn − 1)

n!
xn, (4.38)

where the last equality comes from Definition 4.1 on page 154. We may also write, via
Theorem B.4 on page 347 and the Binomial Theorem,

F (x) = x
∞�

j=0

aj(e
x − 1)j , (4.39)

where each aj is a p-integer, by (4.38). Also, since the (ex−1)j are each linear combinations
of the expressions:

ekx =
∞�

�=0

k�

�!
x�, (4.40)

and since k�+p−1 ≡ k� (mod p) by Fermat’s Little Theorem, then (4.39) becomes, via (4.40),

F (x) = x
∞�

n=0

bn
n!

xn, (4.41)

where the bn are p-integers. Comparing coefficients of xn in (4.38) and (4.41), we get

Bn(gn − 1)

n!
=

bn−1

(n− 1)!
,

so
Bn

n
(gn − 1) = bn−1.

Since (p − 1) � n, then gn �≡ 1(mod p), so the values gn − 1 have period length p − 1 by
Fermat’s Little Theorem. Also, since the bn are p-integers, then Bn/n are p-integers, and
have period length p− 1, when (p− 1) � n. ✷

Theorem 4.8 — Infinitude of Irregular Primes

There exist infinitely many irregular primes.

Proof. Let p1, p2, · · · , pr be irregular primes for r ∈ N. It suffices to prove the existence of
an irregular prime p �= pj for any j = 1, 2, . . . , r. Let

n = s
r�

j=1

(pj − 1) ≡ 0 (mod 2),

where s ∈ N may be chosen sufficiently large so that |Bn/n| > 1, by Corollary 4.5 on
page 157. Let p be a prime dividing the numerator of Bn/n, in lowest terms. If (p− 1)

�� n,
then by Theorem 4.6, p divides the denominator of Bn, a contradiction. Hence, (p− 1) � n,
and p � 2

�
r

j=1 pj . Suppose that n = q(p− 1) + t, where 2 ≤ t ≤ p− 3. By Theorem 4.7 on
the preceding page,

Bt

t
≡ Bn

n
(mod p).

Since Bn/n ≡ 0(mod p), then Bt/t ≡ 0(mod p). By Definition 4.3 on page 155, p is
irregular, and we are done. ✷
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One conclusion from the results of this section and the relatively recent proof of FLT using
elliptic curves is that the manifold attempts to prove it are far more valuable and far-
reaching than the relevance of FLT itself. In fact, it may be said that the very existence
of algebraic number theory itself is due to the deep and fertile ideas generated by such
attempts to prove FLT.

Biography 4.7 Jacob Bernoulli (1654–1705) was born on December 27, 1654
in Basel, Switzerland. He was one of ten children of Nicolaus and Margaretha
Bernoulli. His brother Johann (1667–1748) was the tenth child of the union,
and the two brothers had an influence on each other’s mathematical develop-
ment. Jacob was the first to explore the realms of mathematics, and being the
pioneer in the family in this regard, he had no tradition to follow as did his
brothers after him. In 1681, Bernoulli travelled to the Netherlands where he
met the mathematician Hudde, then to England where he met with Boyle and
Hooke. This began a correspondence with numerous mathematicians that con-
tinued over several years. In 1683, he returned to Switzerland to teach at the
University in Basel. He studied the work of leading mathematicians there and
cultivated an increasing love of mathematics. Jacob’s first seriously important
work was in his 1685 publications on logic, algebra, and probability. In 1689,
he published significant work on infinite series and on his law of large numbers.
The latter is a mathematical interpretation of probability as relative frequency.
This means that if an experiment is carried out for a large number of trials,
then the relative frequency with which an event occurs equals the probability
of the event. By 1704, Jacob had published five works on infinite series con-
taining such fundamental results such as that

�∞
j=1 1/j diverges—see Exercise

4.17. Although Jacob thought he had discovered the latter, it had been already
discovered by Mengoli some four decades earlier. In 1690, Jacob published an
important result in the history of mathematics by solving a differential equa-
tion using, in modern terms, separation of variables. This was the first time
that the term integral was employed with its proper meaning for integration.
In 1692, he investigated curves, including the logarithmic spiral, and in 1694,
conceived of what we now call the lemniscate of Bernoulli. By 1696, he had
solved what we now call the Bernoulli equation: y� = p(x)y + q(x)yn. Eight
years after his death, the Ars Conjectandi was published in 1713, a book in
which the Bernoulli numbers first appear—see Definition 4.1 on page 154. In
the book, they appear in his discussion of exponential series. Jacob held his
chair at Basel until his death on August 16, 1705, when it was filled by his
brother Johann. Jacob was always enthralled with the logarithmic spiral men-
tioned above. Indeed, he requested that it be carved on his tombstone with
the (Latin) inscription I shall arise the same though changed.

Exercises

4.16. Prove the following recursion formula for Bernoulli numbers for n ∈ N,
n−1�

i=0

�
n

i

�
Bi =

�
1 if n = 1,
0 if n > 1,

where
�
n

i

�
is the binomial coefficient.

(Hint: Use the fact that ex =
�∞

i=0
x
i

i! .)
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4.17. Prove that
�∞

j=1(1/j) diverges.

(Hint: Assume
�∞

j=1(1/j) = d ∈ R and reach a contradiction.)

4.18. Prove that, from Definition 4.2 on page 155,

Bn(1) =

�
1/2 if n = 1,
Bn if n > 1.

(Hint: Use Exercise 4.16.)

Biography 4.8 Thomas Clausen (1801–1885) was born in Snogebaek, Den-
mark on January 16, 1801. Clausen took care of the livestock of a local priest,
who in turn taught Latin, Greek, and astronomy to him. Clausen became an
assistant at the Altona Observatory in 1824, then later he went to the Opti-
cal Institute in Munich. His lack of any significant duties there left him with
ample time to study mathematics and astronomy. However, his suffering from
a degree of mental illness caused him to leave Munich and return to Altona.
For the next two years he engaged in what many consider to be the best re-
search of his life. In 1842, he was appointed to the observatory in Dorpat (now
Tartu), Estonia. Then two years after that, he received his Ph.D. under the
supervision of F.W. Bessel (1784–1846). In 1866, he was appointed director
of the Dorpat Observatory, a post which he held until his retirement in 1872.
During his lifetime he published more than one-hundred and fifty papers in the
areas of mathematics, astronomy, and geophysics. Among his achievements
was the factoring of the sixth Fermat numbera in 1854 (see [71, p. 99] for a
discussion of Clausen’s factoring method). He also found a new method for
factoring numbers in general. He died on May 23, 1885 in Dorpat.)

aRecall that a Fermat number is one of the form Fn = 22
n

+ 1 for any n ∈ N.

4.19. Let p > 2 be prime, and set λ = 1 − ζp, where ζp is a primitive pth root of unity.
Prove that the following ideal equation holds

(λ)p−1 = (p).

4.20. Let p > 2 be prime, and let ζp be a primitive pth root of unity. Prove that 1+ζp ∈ UOF
,

where F = Q(ζp).

4.21. Show that k �≡ 1(mod p) in Claim 4.9 on page 153 of the proof of Theorem 4.4.

4.22. Establish the following derivative formula for Bernoulli polynomials,

B�
n+1(x) = (n+ 1)Bn(x).

(Hint: Replace the x by x + 1 in Equation (4.27) on page 155 and differentiate with
respect to x.)

4.23. Prove that the Bernoulli numbers Bn = 0 for n > 1 an odd integer. (Hint: Use
Definition 4.1 on page 154.)

4.24. Compute the Bernoulli numbers Bn for even n where 8 ≤ n ≤ 24.
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4.25. Let F be a number field and I a nonzero OF -ideal. In Remark 1.17 on page 32 we
talked about congruence modulo an ideal, which we further develop here. If α,β ∈ I,
we say that α and β are congruent modulo I if α− β ∈ I, denoted by

α ≡ β (mod I).

We call all those α ∈ OF which are congruent to each other a residue class modulo I .
Prove that the number of residue classes is equal to N(I).

Note: The balance of the exercises in this section are in reference to Exercise 4.25.

4.26. Let R be a Dedekind domain. Prove that if gcd(α, I) = 1, then for any β ∈ R, there
is a γ ∈ R, uniquely determined modulo I, such that

αγ ≡ β (mod I).

Furthermore, prove that this congruence is solvable for some γ ∈ OF if and only if
gcd(α, I)

�� (β).

4.27. In view of Exercise 4.26, two elements of OF that are congruent modulo I have the
same gcd with I. Hence, this is an invariant of the class, since it is a property of the
whole residue class. We denote the number of residue classes relatively prime to I, by
the symbol Φ(I). Let I, J be relatively prime OF -ideals. Prove that

Φ(I) = N(I)
�

P

��
I

�
1− 1

N(P)

�
,

where the product runs over all distinct prime divisors of I. Conclude, in particular
that if I, J are relatively prime OF -ideals, then

Φ(IJ) = Φ(I)Φ(J).

4.28. Suppose that I =
�

r

j=1 P
aj

j
, where the Pj are distinct OF -ideals. Prove that

Φ(I) = N(I)
r�

j=1

�
1− 1

N(Pj)

�
.

Note that when F = Q, then Φ is the ordinary Euler totient function φ.

4.29. Let αj ∈ OF for j = 1 . . . , d, and let P be a primeOF -ideal. Prove that the polynomial
congruence

f(x) = xd + α1x
d−1 + · · ·+ αd−1x+ αd ≡ 0 (mod P)

has at most d solutions x ∈ OF that are incongruent modulo P, or else f(α) ≡ 0
(mod P) for all α ∈ OF . (We also allow the case where deg(f) = 0, in which case
f(x) = α0 ≡ 0(mod P) means that α0 ∈ P.)

4.30. Prove that the residue classes modulo I, relatively prime to I, form an abelian group
under the multiplication given by (a+ I)(b+ I) = ab+ I. Prove that this group has
order Φ(I). In particular, show that if I is a prime OF -ideal, then the group is cyclic.
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4.31. Suppose that I is a nonzero OF -ideal and α ∈ OF is relatively prime to I. Prove that

αΦ(I) ≡ 1 (mod I),

called Euler’s Theorem for Ideals. Conclude that if I = P is a prime OF -ideal, then

αN(P)−1 ≡ 1 (mod P),

called Fermat’s Little Theorem for Ideals.

4.32. Let P be a nonzero prime OF -ideal, and let α ∈ OF . Prove that there exists a z ∈ Z
such that α ≡ z (mod P) if and only if αp ≡ α(mod P), where (p) = P ∩ Z.

Biography 4.9 Eduard Kummer (1810–1893) was born on January 29, 1810
in Sorau, Brandenburg, Prussia (now Germany). He entered the University of
Halle in 1828. By 1833, he was appointed to a teaching post at the Gymnasium
in Liegniz which he held for 10 years. In 1836, he published an important paper
in Crelle’s Journal on hypergeometric series, which led to his correspondence
with Jacobi and Dirichlet, who were impressed with his talent. Indeed, upon
Dirichlet’s recommendation, Kummer was elected to the Berlin academy in
1839, and was Secretary of the Mathematics Section of the Academy from
1863 to 1878. In 1842, with the support of Dirichlet and Jacobi, Kummer was
appointed to a full professorship at the University of Breslau, now Wroclaw,
in Poland. In 1843, Kummer was aware that his attempts to prove Fermat’s
Last Theorem were flawed due to the lack of unique factorization in general.
He introduced his “ideal numbers” that was the basis for the concept of an
ideal, thus allowing the development of ring theory, and a substantial amount
of abstract algebra later on. In 1855, Dirichlet left Berlin to succeed Gauss
at Göttingen, and recommended to Berlin that they offer the vacant chair to
Kummer, which they did. In 1857, the Paris Academy of Sciences awarded
Kummer the Grand Prize for his work. In 1863, the Royal Society of London
elected him as a Fellow. He died in Berlin on May 14, 1893.

Although Kummer may be best known for his failed attempt to prove FLT and
the mathematics that derived from it, there are some not-so-well-known results
that bear his name. For instance, in 1864 he published the discovery, now called
the Kummer surface, that is a fourth order surface, based upon the singular
surface of the quadratic line complex. This surface has sixteen isolated conical
double points and sixteen singular tangent planes. This discovery emanated
from his algebraic approach to geometric problems involving ray systems that
had been studied by Sir William Rowan Hamilton (1805–1865).
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4.4 Factoring

The thing which is the most outstanding and chiefly to be desired by all healthy and
good and well-off persons, is leisure with honour.

from chapter 98 of Pro Sestio
Cicero (Marcus Tullius Cicero) (106–43 B.C.)

Roman orator and statesman
—see the quotation on page 65.

The problem of factoring rational integers has taken on significant importance in the modern
era. To a great extent, this is due to the increased need for security in the transmission of
sensitive data such as military or banking communications. The theory that is behind all of
this is called cryptography, the study of methods for sending messages in secret, namely in
enciphered or disguised form to a recipient who has the knowledge to remove the disguise or
decipher it. The RSA cryptosystem, for instance, is based upon the presumed difficulty of
factoring—see [51] for details on RSA and other cryptosystems. (Think of a cryptosystem,
also called a cipher, as a method for enciphering and deciphering.) Herein we will be
concerned with the applications of algebraic number theory to such important problems as
factoring, but not to the cryptographic descriptions themselves, which may be found in an
introductory text on cryptography such as [51].

It is somewhat surprising that long-standing problems such as Fermat’s Last Theorem have
fallen to the sword of mathematical intellect, yet we still cannot do something as seemingly
simple as that of factoring a 200-digit integer in reasonable computational time. However,
this is the case. Factoring is intrinsically difficult. However, even this latter statement
has only historical validation in the sense that a plethora of mathematicians and computer
scientists have worked diligently to try to get efficient algorithms for factoring and, for all
the work done, we have not advanced very far. However, there is no proof that verifies the
intractability of factoring.

In this section, we will look at two closely allied factoring algorithms. We first look at some
elementary facts about factoring that will historically lead into our algorithms that are the
feature of this section.

◆ The Integer Factoring Problem—(IFP)

Given n ∈ N, find primes pj for j = 1, 2, . . . , r ∈ N with p1 < p2 < · · · < pr and ej ∈ N for
j = 1, 2, . . . , r, such that

n =
r�

j=1

p
ej

j
.

A simpler problem than the IFP is the notion of splitting of n ∈ N, which means the finding
of factors r, s ∈ N such that 1 < r ≤ s such that n = rs. In order to solve the IFP for any
integer, one merely splits n, then splits n/r and s if they are both composite, and so on
until we have a complete factorization.

Trial Division: The oldest method of splitting n is trial division, by which we mean
dividing n by all primes up to

√
n. For n < 108, or within that neighbourhood, this is

not an unreasonable method in our computer-savvy world. However, for larger integers, we
need more elaborate methods.

Fermat Factoring: If we have an n ∈ N such that

x2 ≡ y2 (mod n) with x �≡± y (mod n) for some x, y ∈ Z, (4.42)
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then n is necessarily composite since gcd(x − y, n) provides a nontrivial factor of n. This
idea was known to Fermat who, in 1643, developed a method of factoring based upon the
following observation.

If n = rs is an odd natural number with 1 < r <
√
n, then

n = a2 − b2 where a = (r + s)/2 and b = (s− r)/2.

Thus, in order to find a factor of n, we need only look at values x = y2 − n for

y = �
√
n�+ 1, �

√
n�+ 2, . . . , (n− 1)/2

until a perfect square is found. This is called Fermat’s difference of squares method.

Euler’s Factoring Method: This method applies only to integers of the form

n = x2 + ay2 = z2 + aw2,

where x �= z and y �= w. In other words, n can be written in two distinct ways in this
special form for a given nonzero value of a ∈ Z. Then

(xw)2 ≡ (n− ay2)w2 ≡ −ay2w2 ≡ (z2 − n)y2 ≡ (zy)2 (mod n),

from which we may have a factor of n, namely, provided that xw �≡± zy (mod n). In this
case, the (nontrivial) factors of n are given by gcd(xw ± yz, n).

The Euler method essentially is predicated on the congruence (4.42), but unlike the Fermat
method, not all integers have even one representation in the form n = x2 + ay2.

Legendre’s Factoring Method: This method is a precursor to what we know today as
continued fraction methods for factorization—see [51]. Legendre reasoned in the following
fashion. Instead of looking at congruences of the form (4.42), he looked at those of the form

x2 ≡ ±py2 (mod n) for primes p, (4.43)

since a solution to (4.43) implies that ±p is a quadratic residue of all prime factors of n.
For instance, if the residue is 2, then all prime factors of n are congruent to ±1(mod 8)
(since it is a fact from elementary number theory that 2 is a quadratic residue modulo p
if and only if p ≡ ±1(mod 8)—see (A.10) on page 342). Therefore, he would have halved
the search for factors of n. Legendre applied this method for various values of p, thereby
essentially constructing a quadratic sieve by getting many residues modulo n. (A sieve
may be regarded as any process whereby we find numbers via searching up to a prescribed
bound and eliminating candidates as we proceed until only the desired solution set remains.
A [general] quadratic sieve is one in which about half of the possible numbers being sieved
are removed from consideration, a technique used for hundreds of years as a scheme for
eliminating impossible cases from consideration.) This allowed him to eliminate potential
prime divisors that sit in various linear sequences, as with the residue 2 example above.
He realized that if he could achieve enough of these, he could eliminate primes up to

√
n,

thereby effectively developing a test for primality.

The linchpin of Legendre’s method is the continued fraction expansion of
√
n, since he was

simply finding small residues modulo n. Legendre was essentially building a sieve on the
prime factors of n, which did not let him predict, for a given prime p, a different residue to
yield a square. This meant that if he found a solution to x2 ≡ py2 (mod n), he could not
predict a solution, w2 ≡ pz2 (mod n), distinct from the former. If he had been able to do
this, he would have been able to combine them as

(xw)2 ≡ (pzy)2 (mod n)
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and have a factor of n provided that xw �≡± pzy (mod n) since we are back to congruence
(4.42).

In the 1920s, one individual expanded the idea, described above, of attempting to match
the primes to create a square. We now look at his important influence.

Kraitchik’s Factoring Method: Maurice Kraitchik determined that it would suffice to
find a multiple of n as a difference of squares in attempting to factor it—see Biography 4.10
on page 173. For this purpose, he chose a polynomial of the form, kn = ax2 ± by2, for
some integer k, which allowed him to gain control over finding two distinct residues at a
given prime to form a square, which Legendre could not do. In other words, Kraitchik
used quadratic polynomials to get the residues, then multiplied them to get squares (not a
square times a small number). Kraitchik developed this method over a period of more than
three decades, a method later exploited by D.H. Lehmer and R.E. Powers—see [37]). They
employed Kraitchik’s technique but obtained their residues as Legendre had done.

In the early 1980s, Carl Pomerance was able to fine tune the parameters in Kraitchik’s
method described above—see [59]. We describe that process below but first need some
notions used therein to be defined.

An important role in factorization is played by the following notion, which we will need as
part of the algorithm to be described.

Definition 4.5 — Smooth Integers

A rational integer z is said to be smooth with respect to y ∈ Z, or simply y-smooth, if all
prime factors of z are less than or equal to y.

Remark 4.4 The term factor base means the choice of a suitable set of rational primes
over which we may factor a set of integers. Also, if F = {p1, p2, . . . , pk} is a factor base,
then from knowledge about the distribution of smooth integers close to

√
n, the optimal k

is known to be one that is chosen to be

k ≈
�
exp(

�
log(n) log log(n)). (4.44)

Now we are ready to describe the sieve.

Application 4.3 — The Quadratic Sieve (QS) Algorithm

(1) Choose a factor base F = {p1, p2, . . . , pk}, where the pj are primes for j = 1, 2, . . . , k ∈
N.

(2) For each nonnegative integer j, let t = ±j. Compute

yt = (�
√
n�+ t)2 − n

until k + 2 such values are found that are pk-smooth. For each such t,

yt = ±
k�

i=1

p
ai,t

i
, (4.45)

and we form the binary k + 1-tuple,

vt = (v0,t, v1,t, v2,t, . . . , vk,t),

where vi,t is the least nonnegative residue of ai,t modulo 2 for 1 ≤ i ≤ k, v0,t = 0 if
yt > 0, and v0,t = 1 if yt < 0.
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(3) Obtain a subset S of the values of t found in step (2) such that for each i = 0, 1, 2, . . . , k,
�

t∈S

vi,t ≡ 0 (mod 2). (4.46)

In this case,

x2 =
�

t∈S

x2
t
≡

�

t∈S

yt = y2 (mod n),

where xt = �
√
n� + t, so gcd(x ± y, n) provides a nontrivial factor of n if x �≡± y

(mod n).

In step (2), we have that yt ≡ x2
t
(mod n). Thus, if a prime p

�� yt = x2
t
− n, we have x2

t
≡ n

(mod p). Thus, we must exclude from the factor base any primes p for which there is no
solution x ∈ Z to the congruence x2 ≡ n(mod p). In other words, we exclude from the
factor base any primes p for which n is not a quadratic residue modulo p.

Example 4.3 Let n = 60377. From Equation (4.44) on page 167, k = 13, so we choose
the first thirteen primes for which n is a quadratic residue. They comprise our factor base
F = {2, 7, 11, 23, 29, 31, 37, 41, 53, 59, 61, 67, 71}. In the table below, we see, by inspection,
that a subset S of the values of t such that

�
t∈S

vi,t ≡ 0(mod 2) for each i = 0, 1, 2, . . . , 13
is S = {−1,−3,−6,−22}. (Note that �

√
n� = 245 in this case.) Thus,

�

t∈S

x2
t
= 2442 · 2422 · 2392 · 2232 ≡ 508852 ≡ x2 (mod 60377),

and �

t∈S

yt = 26 · 72 · 114 · 292 · 372 ≡ 254082 ≡ y2 (mod 60377).

By computing both of the values,

gcd(x− y, n) = gcd(50885− 25408, 60377) = 349

and
gcd(x+ y, n) = gcd((50885 + 25408, 60377) = 173,

we get that n = 60377 = 173 · 349.

t xt yt vt

−1 244 −292 (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
−3 242 −72 · 37 (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)
3 248 72 · 23 (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
−4 241 −23 · 7 · 41 (1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)
4 249 23 · 7 · 29 (0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
−6 239 −23 · 11 · 37 (1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)
6 251 26 · 41 (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)
7 252 53 · 59 (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0)

−10 235 −25 · 7 · 23 (1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
11 256 7 · 11 · 67 (0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)
−16 229 −28 · 31 (1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)
16 261 26 · 112 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
−20 225 −23 · 23 · 53 (1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0)
−22 223 −23 · 113 (1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
22 267 25 · 11 · 31 (0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)
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Some elementary linear algebra underlies the solution to a factorization problem using the
QS as depicted in Example 4.3. By ensuring that there are k + 2 vectors vt in a k + 1-
dimensional vector space Fk+1

2 , we guarantee that there is a linear dependence relation
among the vt. In other words, we ensure the existence of the set S in step (3) of the algorithm
such that congruence (4.46) holds. There is no guarantee that x �≡± y (mod n), but there
are usually several dependency relations among the vt, so there is a high probability that
at least one of them will yield an (x, y) pair such that x �≡± y (mod n). The problem, of
course, is that for “large” smoothness bounds B, we need a lot of congruences before we
may be able to get these dependency relations.

The first successful implementation of the QS in which a serious number was factored
occurred in 1983 when J. Gerver [21] factored a 47-digit number. Then, in 1984, the
authors of [16] factored a 71-digit number.

The QS has been employed using an approach called factoring by electronic mail. This is a
term used by Lenstra and Manasse in [40] to mean the distribution of the Quadratic Sieve
operations to hundreds of physically separated computers all over the world, and in 1988
they used this approach to factor a 106-digit number. Indeed, it is this parallel computing
that picks up the time.

In 1994, the authors of [2] factored the RSA-129 number4.1 by using the electronic mail
factoring technique with over 1600 computers and more than 600 researchers around the
globe. The unit of time measurement for factoring is called a mips year, which is defined
as being tantamount to the computational power of a computer rated at one million in-
structions per second (mips) and used for one year, which is equivalent to approximately
3 · 1013 instructions. For instance, factoring the RSA-129 challenge number required 5000
mips years, and in 1989 the aforementioned factorization of the 106-digit number needed
140 mips years.

Now we are ready to present an algorithm that is closely tied to the QS, and is also a
precursor for the number field sieve presented in §4.5. This algorithm involves factoring
using certain cubic integers, namely the integers from

OF = Z[ 3
√
−2] = Z[ 3

√
2]

(since 3
√
−2 = − 3

√
2, which is the ring of integers of

F = Q( 3
√
−2) = Q( 3

√
2),

by Exercise 4.33 on page 173). In this section, we will show how we may employ these cubic
integers in Z[ 3

√
−2] to factor integers in Z. Some of what follows is adapted from [54].

We begin with a motivating example.

Example 4.4 We look at how to factor the fifth Fermat number

F5 = 232 + 1.

For convenience, set α = 3
√
−2. First, notice that

2F5 = x3 + 2, where x = 211,

and that
NF (x− α) = x3 + 2, with x− α ∈ Z[α].

4.1Integers with n digits that are a product of two primes of approximately the same size are denoted by
RSA-n, called an RSA challenge number.
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In fact, by Exercise 4.35 on page 173, any β = a+ bα+ cα2 has norm

NF (β) = a3 − 2b3 + 4c3 + 6abc. (4.47)

By Exercise 4.34, there is a prime β ∈ Z[α] such that β
�� (x − α), so by Exercise 2.46 on

page 86,
NF (β)

�� NF (x− α) = x3 + 2.

Hence, we may be able to find a nontrivial factorization of F5 via norms of certain elements
of Z[α]. We do this as follows.

Consider elements of the form a+ bα ∈ Z[α], for convenience, and sieve over values of a and
b, testing for

gcd(NF (a+ bα), F5) = gcd(a3 − 2b3, F5) > 1.

For convenience, we let a run over the values 1, 2, . . . , 100, and b run over the values b =
1, 2, . . . 20. Formal reasons for this approach will be given later. We fix each value of a, and
let b run over its range of values. The runs for 1 ≤ a ≤ 15 and 1 ≤ b ≤ 20 yield

gcd(a3 − 2b3, F5) = 1.

However, at a = 16, b = 5, we get

gcd(163 − 2 · 53, F5) = 641.

In fact,
F5 = 641 · 6700417.

We may factor 16 + 5α as follows.

16 + 5α = (1 + α)(−1 + α)(α)(−9 + 2α− α2),

where 1 + α is a unit with norm −1; −1 + α has norm −3; α has norm −2; and

β = −9 + 2α− α2

has norm −641. This accounts for

163 − 2 · 53 = 2 · 3 · 641,

and shows that β is the predicted prime divisor of x−α, which gives us the nontrivial factor
of F5.

The method in Example 4.4 works well largely because of the small value of F5. However,
it may not be feasible for larger values to check all of the gcd conditions over a much larger
range. The following method of Pollard, which he introduced in 1991 in [58], uses the above
notions of factorizations in Z[α] to factor F7, which was first accomplished in 1970.
As in the above case, suppose that n ∈ N with

2n = m3 + 2.

For instance,
2F7 = m3 + 2

where m = 243. Pollard’s idea to factor n = F7 involves B-smooth numbers of the form
a + bm, for some suitable B that will be the number of primes in a prescribed set defined
in the algorithm below. Also, a+ bα will be B-smooth meaning that its norm is B-smooth
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in the sense of Definition 4.5 on page 167. Thus, if we get a factorization of a + bα in
Z[α], we also get a corresponding factorization of a+ bm modulo F7. To see this, one must
understand a notion that we will generalize when we discuss the number field sieve in §4.5.
We let

ψ : Z[α] �→ Z/nZ
be a ring homomorphism such that ψ(α) = m. Thus, in Z/nZ,

x3 = −2 = −(1 + 1), where 1 is the identity of Z/nZ.

Hence, ψ is that unique map which is defined element-wise by the following.

ψ




2�

j=0

zjα
j



 =
2�

j=0

zjm
j ∈ Z/nZ, where zj ∈ Z.

The role of this map ψ in attempting to factor a number n is given by the following.

Suppose that we have a set S of polynomials

g(x) =
2�

j=0

zjx
j ∈ Z[x]

such that �

g∈S

g(α) = β2

where β ∈ Z[α], and �

g∈S

g(m) = y2,

where y ∈ Z. Then if ψ(β) = x ∈ Z, we have x2 ≡ ψ(β)2 ≡ ψ(β2) ≡ ψ
��

g∈S
g(α)

�
≡

�
g∈S

g(m) ≡ y2 (mod n). In other words, this method finds a pair of integers x, y such that

x2 − y2 ≡ (x− y)(x+ y) ≡ 0 (mod n),

so we may have a nontrivial factor of n by looking at gcd(x− y, n).

We now describe the algorithm, but give a simplified version of it, since this is meant
to be a simple introduction to the ideas behind the number field sieve. We use a very
small value of n as an example for the sake of simplicity, namely n = 23329. Note that
2n = 363 + 2 = m3 + 2. We will also make suitable references in the algorithm in terms of
how Pollard factored n = F7.

Application 4.4 — Pollard’s Algorithm

Step 1: Compute a factor base.

In the case of cubic integers in Z[α] = Z[ 3
√
−2], we take for n = 23329 only the first eleven

primes as the factor base, those up to and including 41 (or for n = F7, Pollard chose the
first five hundred rational primes) as FB1, the first part of the factor base, and for the
second part, FB2, we take those primes of Z[α] with norms ±p, where p ∈ FB1. (The
reasons behind the choice of the number of primes in FB1 are largely empirical.) Also, we
include the units −1, 1 + α, and 1/(1 + α) = −1 + α− α2 in FB2. Here, we have discarded
the Z[α]-primes of norm p2 or p3, since these cannot divide our n, given that they cannot
divide the a+ bα, with the assumptions we are making.
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Step 2: Run the sieve.

In this instance, the sieve involves finding numbers a+bm that are composed of some primes
from FB1. For n = 23329, we sieve over values of a from −5 to 5 and values of b from 1 to
10 (or for n = F7, Pollard chose values of a from −4800 to 4800, and values of b from 1 to
2000). Save only coprime pairs (a, b).

Step 3: Look for smooth values of the norm, and obtain factorizations of a+bx and a+bα.

Here, smooth values of the norm means that N = NF (a+ bα) = a3 − 2b3 is not divisible by
any primes bigger than those in FB1. For those (a, b) pairs, factor a+ bm by trial division,
and eliminate unsuccessful trials. Factor a + bα by computing the norm NF (a + bα) and
using trial division. When a prime p is found, then divide out a Z[α]-prime of norm ±p
from a+ bα. This will involve getting primes in the factorization of the form a+ bα+ cα2

where c �= 0. Units may also come into play in the factorizations, and a table of values of
(1 + α)j is kept for such purposes with j = −2, · · · , 2 for n = 23329 (or for F7, one should
choose to keep a record of units for j = −8,−7, . . . , 8). Some data extracted for the run on
n = 23329 is given as follows.

Table 4.1

a+ bα+ cα2 N factorization of a+ bα+ cα2

5 + α 3 · 41 (−1 + α)(−1− 2α− 2α2)
4 + 10α −24 · 112 −(3 + 2α)2α4(−1 + α− α2)2

−1 + α −3 −1 + α
−1− 2α− 2α2 −41 −1− 2α− 2α2

3 + 2α 11 3 + 2α
α −2 α

−1 + α− α2 −1 unit

Table 4.2

a+ bm+ cm2 factorization of a+ bm+ cm2

5 +m 41
4 + 10m 22 · 7 · 13
−1 +m 5 · 7

−1− 2m− 2m2 −5 · 13 · 41
3 + 2m 3 · 52

m 22 · 32
−1 +m−m2 −13 · 97

Step 4: Complete the factorization.

By selecting −1 times the first four rows in the third column of Table 4.1, we get a square
in Z[α]:

β2 = (−1 + α)2(−1− 2α− 2α2)2(3 + 2α)2α4(−1 + α− α2)2, (4.48)

and correspondingly, since β2 is also −1 times the first four rows in the first column of Table
4.1, we get:

β2 = (5 + α)(−4− 10α)(−1 + α)(−1− 2α− 2α2). (4.49)

Then we get a square in Z from Table 4.2 by applying ψ to (4.49):

ψ(β2) = (5 +m)(−4− 10m)(−1 +m)(−1− 2m− 2m2) = 22 · 52 · 72 · 132 · 412 = y2.

Also, by applying ψ to β via (4.48), we get:

ψ(β) = (−1 +m)(−1− 2m− 2m2)(3 + 2m)m2(−1 +m−m2) ≡ 9348 (mod 23329),
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so by setting x = ψ(β), we have

x2 = ψ2(β) = ψ(β2) ≡ y2 (mod n).

Since
y = 2 · 5 · 7 · 13 · 41 ≡ 13981 (mod 23329),

then y − x ≡ 4633(mod 23329). However, gcd(4633, 23329) = 41. In fact 23329 = 41 · 569.
Pollard used the algorithm in a similar fashion to find integers X and Y for the more serious
factorization gcd(X − Y, F7) = 59649589127497217. Hence, we have a factorization of F7

as follows.
F7 = 59649589127497217 · 5704689200685129054721.

Essentially, the ideas for factoring using cubic integers above is akin to the notion of the
strategy used in the QS method. There, we try to generate sufficiently many smooth
quadratic residues of n close to

√
n. In the cubic case, we try to factor numbers that are

close to perfect cubes. In §4.5, we will extend these ideas to show how F9 was factored
using the number field sieve, and Z[ 5

√
2].

Exercises

4.33. Prove that Z[ 3
√
−2] is the ring of integers of Q( 3

√
−2).

4.34. Prove that every nonzero ideal in a Dedekind domain R must contain a prime element.

4.35. Prove that (4.47) holds in Example 4.4.

4.36. Use Pollard’s method to factor F6.

In Exercises 4.37–4.39, use the gcd method described before Pollard’s method to find an odd
factor of the given integer.

4.37. 577 − 1.

4.38. 7149 + 1. (Hint: Use Z[ 3
√
−7].)

4.39. 3239 − 1. (Hint: Use Z[ 3
√
3].)

Factor each of the integers in Exercises 4.40–4.43 using the QS method.

4.40. n = 3191491.

4.41. n = 12358397.

4.42. n = 42723991.

4.43. n = 74299271.

Biography 4.10 Maurice Borisovich Kraitchik (1882–1957) obtained his
Ph.D. from the University of Brussels in 1923. He worked as an engineer
in Brussels and later as a Director at the Mathematical Sciences section of the
Mathematical Institute for Advanced Studies there. From 1941–1946, he was
Associate Professor at the New School for Social Research in New York. In
1946, he returned to Belgium, where he died on August 19, 1957. His work
over thirty-five years on factoring methods stands tall today because he devised
and used a variety of practical techniques that are found today in computer
methods such as the QS method. He is also the author of the popular book
Mathematical Recreations [34].
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4.5 The Number Field Sieve

When fortune is lavish of her favours, beware of adversity; events do not always
succeed each other in one train of fortunes.

Cato the elder (Marcus Porcius Cato) (234 B.C.–149 B.C.)
Roman statesman, orator, and writer

In §4.4 we provided a motivator for the sieve in this section via Pollard’s algorithm, which
we showed to be linked to the QS. Some of what follows is adapted from [54].

In 1988, John Pollard circulated a manuscript that contained the outline of a new algorithm
for factoring integers, which we studied in §4.4. In 1990, the first practical version of
Pollard’s algorithm was given in [39], published in 1993, the authors of which dubbed it
the number field sieve. Pollard had been motivated by a discrete logarithm algorithm given
in 1986, by the authors of [13], which employed quadratic fields. Pollard looked at the
more general scenario by outlining an idea for factoring certain large integers using number
fields. The special numbers that he considered are those large composite natural numbers
that are “close” to being powers, namely those n ∈ N of the form n = rt − s for small
natural numbers r and |s|, and a possibly much larger natural number t. Examples of such
numbers, which the number field sieve had some successes factoring, may be found in tables
of numbers of the form

n = rt ± 1, called Cunningham numbers.

However, the most noteworthy success was factorization of the ninth Fermat number F9 =
22

9
+1 = 2512+1 (having 155 decimal digits), by the Lenstra brothers, Manasse and Pollard

in 1990, the publication of which appeared in 1993—see [41].

To review some of the history preceding the number field sieve, we observe the following.
Prior to 1970, a 25-digit integer was considered difficult to factor. In 1970, the power of the
continued fraction method raised this to 50 digits—see [53, §5.4, pp. 240–242]. Once the
algorithm was up and running in 1970, legions of 20- to 45-digit numbers were factored that
could not be factored before. The first major success was the factorization of the seventh
Fermat number

F7 = 22
7

+ 1 = 2128 + 1,

a 39-digit number, which we described via Pollard’s method in §4.4. By the mid 1980s, the
quadratic sieve algorithm was felling 100-digit numbers. With the dawn of the number field
sieve, 150-digit integers were now being tackled. The number field sieve is considered to
be asymptotically faster than any known algorithm for the special class of integers of the
above special form to which it applies. Furthermore, the number field sieve can be made to
work for arbitrary integers. For details, see [7], where the authors refer to the number field
sieve for the special number n = rt − s as the special number field sieve. The more general
sieve has come to be known as the general number field sieve.

Much older than any of the aforementioned ideas for factoring is that attributed to Fermat,
namely the writing of n as a difference of two squares. However, this idea was enhanced
by Maurice Kraitchik in the 1920s, both approaches we also reviewed in §4.4. To further
describe Kraitchik’s influence, we review it from a slightly different perspective here. He
reasoned it might suffice to find a multiple of n as a difference of squares, namely,

x2 ≡ y2 (mod n), (4.50)
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so that one of x−y or x+y could be divisible by a factor of n. We say could here since we fail
to get a nontrivial factor of n when x ≡ ±y (mod n). However, it can be shown that if n is
divisible by at least two distinct odd primes, then for at least half of the pairs x (modulo n),
and y (modulo n), satisfying (4.50) with gcd(x, y) = 1, we will have 1 < gcd(x− y, n) < n.

This classical idea of Kraitchik had seeds in the work of Gauss, but Kraitchik introduced it
into a new century in the pre-dawn of the computer age. This idea is currently exploited
by many algorithms via construction of these (x, y)-pairs. For instance, the QS algorithm
uses it. More recently, the number field sieve exploits the idea. To see how this is done, we
give a brief overview of the methodology of the number field sieve. This will motivate the
formal description of the algorithm.

For n = rt−s we wish to choose a number field of degree d over Q. The following choice for
d is made for reasons (which we will not discuss here), which make it the optimal selection,
at least theoretically. (The interested reader may consult [39, Sections 6.2–6.3, pp. 31–32]
for the complexity analysis and reasoning behind these choices.) Set

d =

�
(3 + o(1)) log n

2 log log n

�1/3

. (4.51)

Now select k ∈ N, which is minimal with respect to kd ≥ t. Therefore, rkd ≡ srkd−t

(mod n). Set
m = rk, and c = srkd−t. (4.52)

Then md ≡ c(mod n). Set
f(x) = xd − c,

and let α ∈ C be a root of f . Then this leads to a choice of a number field, namely
F = Q(α). Although the number field sieve can be made to work when Z[α] is not a
UFD, the assumption that it is a UFD simplifies matters greatly in the exposition of the
algorithm, so we will make this assumption. Note that once made, this assumption implies
that OF = Z[α]. See [39] for a description of the modifications necessary when it is not a
UFD.

Now the question of the irreducibility of f arises. If f is reducible over Z, we are indeed
lucky, since then f(x) = g(x)h(x), with g(x), h(x) ∈ Z[x], where 0 < deg(g) < deg(f).
Therefore, f(m) = n = g(m)h(m) is a nontrivial factorization of n, and we are done. Use of
the number field sieve is unnecessary. However, the probability is high that f is irreducible
since most primitive polynomials over Z are irreducible. Hence, for the description of the
number field sieve, we may assume that f is irreducible over Z.
Since f(m) ≡ 0(mod n), we may define the natural homomorphism,

ψ : Z[α] �→ Z/nZ,

given by
α �→ m ∈ Z/nZ.

Then

ψ




�

j

ajα
j



 =
�

j

ajm
j .

Now define a set S consisting of pairs of relatively prime integers (a, b), satisfying the
following two conditions: �

(a,b)∈S

(a+ bm) = c2, (c ∈ Z), (4.53)
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and �

(a,b)∈S

(a+ bα) = β2, (β ∈ Z[α]). (4.54)

Thus, ψ(β2) = c2, so ψ(β2) ≡ c2 (mod n). In other words, since ψ(β2) = ψ(β)2, then if we
set ψ(β) = h ∈ Z, h2 ≡ c2 (mod n). This takes us back to Kraitchik’s original idea, and we
may have a nontrivial factor of n, namely gcd(h± c, n) (provided that h �≡± c(mod n)).

The above overview of the number field sieve methodology is actually a special case of an
algebraic idea, which is described as follows. Let R be a ring with homomorphism

φ : R �→ Z/nZ× Z/nZ,

together with an algorithm for computing nonzero diagonal elements (x, x) for x ∈ Z/nZ.
Then the goal is to multiplicatively combine these elements to obtain squares in R whose
square roots have an image under φ not lying in (x,±x) for nonzero x ∈ Z/nZ. The number
field sieve is the special case

R = Z× Z[α], with φ(z,β ) = (z,ψ (β)).

Before setting down the details of the formal number field sieve algorithm, we discuss the
crucial role played by smoothness introduced in Definition 4.5 on page 167. Recall that a
smooth number is one with only “small” prime factors. In particular, n ∈ N is B-smooth
for B ∈ R+, if n has no prime factor bigger than B. Smooth numbers satisfy the triad of
properties:

(1) They are fairly numerous (albeit sparse).

(2) They enjoy a simple multiplicative structure.

(3) They play an essential role in discrete logarithm algorithms.

If F = Q(α) is a number field, then by definition

an algebraic number a+ bα ∈ Z[α] is B-smooth if |NF (a+ bα)| is B-smooth.

Hence, a+ bα is B-smooth if and only if all primes dividing |NF (a+ bα)| are less than B.
Thus, the idea behind the number field sieve is to look for small relatively prime numbers
a and b such that both a + αb and a + mb are smooth. Since ψ(a + αb) = a + mb, then
each pair provides a congruence modulo n between two products. Sufficiently many of these
congruences can then be used to find solutions to h2 ≡ c2 (mod n), which may lead to a
factorization of n.

The above overview leaves open the demanding questions as to how we choose the degree
d, the integer m, and how the set of relatively prime integers a, b such that Equations
(4.53)–(4.54) can be found. These questions may now be answered in the following formal
description of the algorithm.

Application 4.5 — The Number Field Sieve Algorithm

Step 1—Selection of a Factor Base and Smoothness Bound

There is a consensus that smoothness bounds are best chosen empirically. However, there
are theoretical reasons for choosing such bounds as

B = exp((2/3)2/3(log n)1/3(log log n)2/3),
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which is considered to be optimal since it is based upon the choice for d as above. See [39,
Section 6.3, p. 32] for details. Furthermore, the reasons for this being called a smoothness
bound will unfold in the sequel.

Define a set S = S1 ∪ S2 ∪ S3, where the component sets Sj are given as follows. S1 = {p ∈
Z : p is prime and p ≤ B},

S2 = {uj : j = 1, 2, . . . , r1 + r2 − 1, where uj is a generator of UOF
}.

(Here {r1, r2} is the signature of F , and the generators uj are the generators of the infinite
cyclic groups given by Dirichlet’s Unit Theorem that we presented as Theorem 3.20 on
page 135.) Also,

S3 = {β = a+ bα ∈ Z[α] : |NF (β)| = p < B2 where p is prime},

where B2 is chosen empirically. Now we set the factor base as

F = {aj = ψ(j) ∈ Z/nZ : j ∈ S}.

Also, we may assume gcd(aj , n) = 1 for all j ∈ S, since otherwise we have a factorization of
n and the algorithm terminates.

Step 2—Collecting Relations and Finding Dependencies

We wish to collect relations (4.53)–(4.54) such that they occur simultaneously, thereby
yielding a potential factor of n. One searches for relatively prime pairs (a, b) with b > 0
satisfying the following two conditions.

(i) |a + bm| is B-smooth except for at most one additional prime factor p1, with B <
p1 < B1, where B1 is empirically determined.

(ii) a + bα is B2-smooth except for at most one additional prime β ∈ Z[α] such that
|NF (β)| = p2 with B2 < p2 < B3, where B3 is empirically chosen.

The prime p1 in (i) is called the large prime, and the prime p2 in (ii) is called the large
prime norm. Pairs (a, b) for which p1 and p2 do not exist (namely when we set p1 = p2 = 1)
are called full relations, and are called partial relations otherwise. In the sequel, we will
only describe the full relations since, although the partial relations are more complicated,
they lead to relations among the factor base elements in a fashion completely similar to the
ones for full relations. For details on partial relations, see [41, Section 5].

First, we show how to achieve relations in Equation (4.53), the “easy” part (relatively
speaking). (This is called the rational part, whereas relations in Equation (4.54) are called
the algebraic part.) Then we show how to put the two together. To do this, we need the
following notion from linear algebra.

Every n ∈ N has an exponent vector v(n) defined by n =
�∞

j=1 p
vj

j
, where pj is the jth

prime, only finitely many of the vj are nonzero, and

v(n) = (v1, v2, . . .) = (vj)
∞
j=1

with an infinite string of zeros after the last significant place. We observe that n is a square
if and only if each vj is even. Hence, for our purposes, the vj give too much information.
Thus, to simplify our task, we reduce each vj modulo 2. Henceforth, then vj means vj
reduced modulo 2. We modify the notion of the exponent vector further for our purposes
by letting B1 = π(B), where π(B) is the number of primes no bigger than B. Then, with

p0 = −1, a+ bm =
�

B1

j=0 p
vj

j
is the factorization of a+ bm. Set

v(a+ bm) = (v0, . . . , vB1),
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for each pair (a, b) with a + bα ∈ S3. The choice of B allows us to make the assumption
that |S3| > B1 + 1. Therefore, the vectors in v(a + bm) for pairs (a, b) with a + bα ∈ S3

exceed the dimension of the F2-vector space FB1+1
2 . In other words, we have more than

B1+1 vectors in a B1+1-dimensional vector space. Therefore, there exist nontrivial linear
dependence relations between vectors. This implies the existence of a subset T of S3 such
that �

a+bα∈T

v(a+ bm) = 0 ∈ FB1+1
2 ,

so �

a+bα∈T

(a+ bm) = z2 (z ∈ Z).

This solves Equation (4.53).

Now we turn to the algebraic relations in Equation (4.54). We may calculate the norm
of a + bα by setting x = a and y = b in the homogeneous polynomial (−y)df(−x/y) =
xd − c(−y)d, with f(x) = xd − c. Therefore, NF (a+ bα) = (−b)df(−ab−1) = ad − c(−b)d.
Let

Rp = {r ∈ Z : 0 ≤ r ≤ p− 1, and f(r) ≡ 0 (mod p)}.

Then for gcd(a, b) = 1, we have NF (a + bα) ≡ 0(mod p) if and only if a ≡ −br (mod p),
and this r is unique. Observe that by the relative primality of a and b, the multiplicative
inverse b−1 of b modulo p is defined since, for b ≡ 0(mod p), there are no nonzero pairs
(a, b) with NF (a+ bα) ≡ 0(mod p).

The above shows that there is a one-to-one correspondence between those β ∈ Z[α] with
|NF (β)| = p, a prime and pairs (p, r) with r ∈ Rp. Note that the kernel of the natural map
ψ : Z[α] �→ Z/pZ is ker(ψ) = �a+ bα�, the cyclic subgroup of Z[α] generated by a+ bα. It
follows that |Z[α] : �a+ bα�| = |NF (a+ bα)| = p, so Z[α]/�a+ bα� is a field.

This corresponds to saying that the Z[α]-ideal P = (a+bα) is a principal, first-degree prime
Z[α]-ideal, namely one for which NF (P) = p1 = p. Hence, Z[α]/P ∼= Fp, the finite field of p
elements.

The above tells us that in Step 1 of the number field sieve algorithm, the set S3 essentially
consists of the first-degree prime Z[α]-ideals of norm NF (P) ≤ B2. These are the smooth,
degree one, prime OF -ideals, namely those ideals whose prime norms are B2-smooth.

In part (ii) of Step 2 of the algorithm on page 177, the additional prime element β ∈ Z[α]
such that |NF (β)| = p2 with B2 < p2 < B3 corresponds to the prime OF -ideal P2 called
the large prime ideal. Moreover, P2 corresponds to the pair (p2, c(mod p2)), where c ∈ Z is
such that a ≡ −bc(mod p2), thereby enabling us to distinguish between prime ideals of the
same norm. If the large prime in Step 2 does not occur, we write P2 = (1). Now, since

|a+ bm| =
�

p∈S1

pvp ,

and
|a+ bα| =

�

u∈S2

utu

�

s∈S3

svs , (4.55)

for nonnegative tu, vs ∈ Z, and since ψ(a+ bm) = ψ(a+ bα), then

�

p∈S1

ψ(p)vp =
�

u∈S2

ψ(u)tu
�

s∈S3

ψ(s)vs ,
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in Z/nZ. Therefore, we achieve a relationship among the elements of the factor base F, as
follows �

u∈S2

ψ(u)tu
�

s∈S3

ψ(s)vs ≡
�

p∈S1

ψ(p)vp (mod n). (4.56)

Furthermore, we may translate (4.55) ideal-theoretically into the ideal product

|a+ bα| =
�

u∈S2

utu

�

P∈S3

πvP

P
, (4.57)

where P ranges over all of the first-degree prime Z[α]-ideals of norm less than B2, and πP

is a generator of P.

Thus, (4.56) gives rise to the identity

�

p∈S1

ψ(p)vp =
�

u∈S2

ψ(u)tu
�

P∈S3

ψ(πP)
vP .

If |S3| > π(B), then by applying Gaussian elimination for instance, we can find x(a, b) ∈
{0, 1} such that simultaneously

�

a+bα∈S3

(a+ bα)x(a,b) =

��
�

u∈S2

utu

��
�

s∈S3

svs

��2

,

and

�

a+bα∈S3

(a+ bm)x(a,b) =








�

p∈S1

pvp








2

,

hold. From this a factorization of n may be gleaned, by Kraitchik’s method.

Practically speaking, the number field sieve tasks consist of sieving all pairs (a, b) for b =
b1, b2 . . . , bn for short (overlapping) intervals [b1, b2], with |a| less than some given bound.
All relations, full and partial, are gathered in this way until sufficiently many have been
collected.

The big prize garnered by the number field sieve was the factorization of F9, the ninth
Fermat number, as described in [41]. In 1903, A.E. Western found the prime factor
2424833 = 37 · 216 + 1 of F9. Then in 1967, Brillhart determined that F9/2424833 (having
148 decimal digits) is composite by showing that it fails to satisfy Fermat’s Little Theorem.
Thus, the authors of [41] chose

n = F9/2424833 =
�
2512 + 1

�
/2424833.

Then they exploited the above algorithm as follows. If we choose d as in Equation (4.51)
on page 175, we get that d = 5. The authors of [41] then observed that since 2512 ≡ −1

(mod n), then for h = 2205, we get h5 ≡ 21025 ≡ 2 ·
�
2512

�2 ≡ 2(mod n). This allowed them

to choose the map ψ : Z[ 5
√
2] �→ Z/nZ, given by ψ : 5

√
2 �→ 2205. Here Z[ 5

√
2] is a UFD.

Then they chose m and c as in Equation (4.52), namely since r = 2, s = −1, and t = 512,
then the minimal k with 5k = dk ≥ t = 512 is k = 103, and m = 2103, so c = −8 ≡ 25·103

(mod n). This gives rise to f(x) = x5+8 with root α = − 5
√
2
3
, and Z[α] ⊆ Z[ 5

√
2]. Observe

that 8F9 = 2515 + 8 =
�
2103

�5
+ 8. Thus, ψ(α) = m = 2103 ≡ −2615 ≡ −

�
2205

�3
(mod n).

Notice that 2103 is small in relation to n, and is in fact closer to 5
√
n. Since

ψ(a+ bα) = a+ 2103b ∈ Z/nZ,
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we are in a position to form relations as described in the above algorithm. Indeed, the
authors of [41] actually worked only in the subring Z[α] to find their relations. The sets
they chose from Step 1 are S1 = {p ∈ Z : p ≤ 1295377},

S2 = {−1,−1 + 5
√
2,−1 + 5

√
2
2
− 5

√
2
3
+ 5

√
2
4
},

for units u1 = −1, u2 = −1 + 5
√
2, and u3 = −1 + 5

√
2
2 − 5

√
2
3
+ 5

√
2
4
, and

S3 = {β ∈ Z[α] : |NF (β)| = p ≤ 1294973, p a prime}.

The authors began sieving in mid-February of 1990 on approximately thirty-five worksta-
tions at Bellcore. On the morning of June 15, 1990 the first of the dependency relations
that they achieved turned out to give rise to a trivial factorization! However, an hour
later their second dependency relation gave way to a 49-digit factor. This and the 99-digit
cofactor were determined by A. Odlyzko to be primes, on that same day. They achieved:
F9 = q7 · q49 · q99, where qj is a prime with j decimal digits as follows: q7 = 2424833,

q49 = 7455602825647884208337395736200454918783366342657,

and q99 = 741640062627530801524787141901937474059940781097519

023905821316144415759504705008092818711693940737.

Fermat numbers have an important and rich history, which is intertwined with the very
history of factoring itself. Euler was able to factor F5. In 1880, Landry used an idea
attributable to Fermat to factor F6. As noted above, F7 was factored by Pollard. Brent
and Pollard used a version of Pollard’s rho-method to factor F8 (see [53, pp. 206–208] for
a detailed description with examples of the rho-method). As we have shown above, F9 was
factored by the number field sieve. Lenstra’s elliptic curve method was used by Brent to
factor F10 and F11—see [52, pp. 522–524]. Several other Fermat numbers are known to
have certain small prime factors, and the smallest Fermat number for which there is no
known factor is F24. On March 27, 2010 Michael Vang found the sixth known factor of
F12: 17353230210429594579133099699123162989482444520899 ·215+1. On March 26, 2010
David Bessell found the factor of F22: 3853959202444067657533632211 · 224 + 1. No factor
of the 1262612-digit F22 was previously known. On February 3, 2010 Tapio Rajala found
the factor of F14: 1784180997819127957596374417642156545110881094717 · 216 + 1. For
updates on prime factors of Fermat numbers, see the website:

http://www.prothsearch.net/fermat.html.

Exercises

4.44. Let n, d ∈ N and m = �n1/d�, with n > 2d
2
. Write n to base m via integers cj ∈

{0, 1, . . . ,m− 1} for j = 1, 2, . . . , d, namely

n =
d�

j=0

cjm
j = c0 + c1m+ · · ·+ cd−1m

d−1 + cdm
d.

Prove that cd = 1, and cd−1 ≤ d. (The polynomial

f (x ) = xd + cd−1 x
d−1 + · · ·+ c0

is the polynomial used in the general number field sieve. See [7].)

4.45. Use the number field sieve to find two prime factors of 2153 + 3.

4.46. Use the number field sieve to find a prime factor of 2488 + 1.
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Chapter 5

Ideal Decomposition in Number
Fields

At his best, man is the noblest of all animals; separated from law and justice he is the
worst.

Aristotle (384–322 B.C.)
Greek philosopher

This chapter builds upon the ideas developed for quadratic fields in Theorem 1.30 on
page 49 and the discussion surrounding it. We extend the notions and definitions given
in Remark 1.24 on page 52 to arbitrary number fields and link this with the Galois theory
developed in §2.1.

5.1 Inertia, Ramification, and Splitting of Prime Ideals

If K/F is an extension of number fields, namely |K : F | < ∞, and |F : Q| < ∞, we call K a
relative extension of F . If F = Q, then K is called an absolute extension. Our main interest
continues to be the number rings, so we now look at the interplay among the ideals of OF

and those of OK . We remind the reader of the notation for the class group and discussion
surrounding it in Remark 3.7 on page 100. Since OF ⊆ OK , we may consider the map

ιK/F : I∆F
�→ I∆K

,

given by
ιK/F : I �→ IOK , (5.1)

where IOK is the smallest fractional OK-ideal containing I. This consists of all sums�
n

j=1 αjβj with n ∈ N, αj ∈ I, and βj ∈ OK for j = 1, 2, . . . , n. This is also called the
fractional ideal generated by I in OK . It follows from Theorem 1.17 on page 28, that

IOK =
r�

j=1

P
ej

j
,

where the Pj are distinct, prime OK-ideals, and ej ∈ Z are nonzero, and possibly negative
for j = 1, 2, . . . , r. By Exercise 5.1 on page 194,

IOK ∩ F = I,

181
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and by Exercise 5.2, ιK/F is a group monomorphism that induces a mapping5.1

ιK/F : COF �→ COK , (5.2)

given by

ιK/F : I �→
r�

j=1

P
ej

j
.

Remark 5.1 We are mainly interested in the case where I is a prime OF -ideal and its
decomposition in extension fields, since the prime ideals are the generators of the class group
as demonstated in Remark 3.7.

Definition 5.1 — Ramification, Inertia, and Decomposition Numbers

Let K/F be an extension of number fields, and let p be a prime OF -ideal with

pOK =
g�

j=1

P
ej

j
, ej ∈ N

where the Pj are distinct, prime OK-ideals. We say that the prime OK-ideals Pj lie over
p, or are above p. Also, p is said to lie under the Pj .

The number ej is called the ramification index of Pj in OK , denoted by

eK/F (Pj).

Also, Pj is said to be ramified in OK if eK/F (Pj) > 1, and p is also said to be ramified in
OK as well. Furthermore, p is said to be unramified in OK provided that eK/F (Pj) = 1 for
each j = 1, 2, . . . , g. The number g is called the decomposition number of p in OK , denoted
by

gK/F (p).

The degree |OK/Pj : OF /p| is called the inertial degree, or relative degree, of Pj in OK ,
denoted by

fK/F (Pj).

The fields OK/Pj and OF /p are called the residue class fields or simply residue fields at
Pj and p, respectively. Thus, fK/F (Pj) is the degree of the extension of these finite fields.

A useful fact that we will need in what follows is the next result using the above notions.

Lemma 5.1 Let K/F be an extension of number fields and let P be a prime OK-ideal,
then there exists exactly one OF -ideal p lying below P.

Proof. Since 1 �∈ P ∩OF , then P ∩OF is an OF -ideal with OF �= P ∩OF , and P ∩OF is
nonzero since NK/F (α) ∈ P ∩ OF for all α ∈ P. Also, given that P ∩ OF ⊆ P, then this
induces an embedding

ψ : OF /(P ∩OF ) �→ OK/P,

5.1The term induces here may be interpreted as “gives rise to,” which means that the mapping in (5.1)
gives rise to the well-defined mapping in (5.2) by moving to quotient groups.
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and since OK/P is a field by Theorems 1.11 on page 18 and 1.26 on page 42, then as a
subring embedded in it, OF /(P ∩ OF ) must be an integral domain by Theorem 1.9 on
page 17, so P ∩OF is a prime OF -ideal. Since

ιK/F (P ∩OF ) = (P ∩OF )OK ⊆ POK ∩OK = P,

then P lies over P ∩ OF . If p is another prime OF -ideal below P, then p ⊆ P ∩ OF , so
p = P ∩OF , by Condition B of Definition 1.23 on page 25. ✷

Example 5.1 Let us consider the ideals in Example 2.14 on page 84. We have the OK =
Z[
√
10]-ideal (2)Z[

√
10] = P

2 where P = (2,
√
10), so the prime ideal (2) in OF = Z is

ramified in OK . Since

(3)OK = (3, 1 +
√
10)(3, 1−

√
10) = PP

�,

then the ramification indices of P and P
� are 1, so 3 is unramified in OK . Its decomposition

number is 2. Lastly, (7)OK = P a prime OK-ideal since |OK/P : OF /(7)| = 2, its inertial
degree in K.

There is an easier way to determine the relative degrees of primes in extensions via poly-
nomials in certain circumstances by way of Exercise 5.4.

Example 5.2 Let K = Q( 3
√
2) = Q(α) and F = Q. Then by Exercise 4.33 on page 173,

OK = Z[ 3
√
2]. For p = 7, we have that

x3 − 2 = mα,Q(x)

is irreducible modulo 7. Therefore, (7)OK = P, where P is an OK-prime ideal with
eK/F (P) = 1 = gK/F (7) and fK/F (P) = 3, so 7 is inert in K by Exercise 5.4.

If p = 29, then
x3 − 2 ≡ (x+ 3)(x2 + 26x− 20) (mod 29),

where x2 + 26x− 20 is irreducible modulo 29 so by Exercise 5.4,

(29)OK = P1P2,

where the fK/F (P1) = 1, and fK/F (P2) = 2, eK/F (P1) = eK/F (P2) = 1, and gK/F (29) = 2.
Thus, 29 is unramified in OK .

If p = 31, then
x3 − 2 ≡ (x− 4)(x− 7)(x+ 11) (mod 31),

so by Exercise 5.4,
(31)OK = P1P2P3,

where eK/F (Pj) = fK/F (Pj) = 1 for j = 1, 2, 3, and gK/F (31) = 3, so 31 is completely split
in OK .

Some properties of ramification and inertia are given in the following. In the sequel, a
tower of number fields F ⊆ K ⊆ L means that F , K, and L are number fields, with L an
extension of K, and K an extension of F .
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Theorem 5.1 — Transitivity of Ramification and Inertial Degrees

Let F ⊆ K ⊆ L be a tower of number fields, and let Q be a prime OL-ideal above the prime
OK-ideal P. Then

eL/K(Q)eK/F (P) = eL/F (Q),

and
fL/K(Q)fK/F (P) = fL/F (Q).

Proof. The transitivity of the inertial degrees follows directly from Definition 5.1. To see
this, let p be the prime OF -ideal below P. Then

fL/K(Q)fK/F (P) = |OL/Q : OK/P||OK/P : OF /p| =

|OL/Q : OF /p| = fL/F (Q).

Also, since p ⊆ P ⊆ Q, then

eL/F (Q) = eL/K(Q)eK/F (P).

✷

The reader may now recall Theorem 1.30 on page 49, the quadratic case, which we will use
in the following illustration—see also Remark 1.24 on page 52.

Example 5.3 Let L = Q(
√
−1,

√
10), K = Q(

√
10), and F = Q. Then by Theorem 1.30,

we have for p = 5 that
pOL = P

2
1P

2
2,

where P1 and P2 are prime OL-ideals with eL/K(P1) = eL/K(P2) = 1, and eK/F (p1) =
eK/F (p2) = 2, where Pj ∩OK = pj for j = 1, 2. Thus,

eL/F (Pj) = eL/K(Pj)eK/F (pj) = 2.

Also, if p = 3, then by Theorem 1.30, p is completely split in K and is inert in Q(
√
−1).

Therefore, 3OL = Q1Q2, where Qj for j = 1, 2 are prime OL-ideals, and fL/K(Qj) = 2 for
j = 1, 2, while fK/F (qj) = 1 where Qj ∩OK = qj . Hence, for j = 1, 2,

fL/F (Qj) = fL/K(Qj)fK/F (qj) = 2.

We will now develop tools that will allow us to refine our knowledge of the ramification,
inertial, and decomposition numbers, especially as we tie them into the theory developed
in the preceding chapters. First, we extend the notion of trace and norm.

Definition 5.2 — Relative Norms and Traces of Elements

Let K/F be an extension of number fields with |K : F | = n, and let θj for j = 1, 2, . . . , n
be all of the F -isomorphisms of K—see Exercise 2.6 on page 63. Let α ∈ K and set

NK/F (α) =
n�

j=1

θj(α),

called the relative norm of α in K/F . Also, set

TK/F (α) =
n�

j=1

θj(α),

called the relative trace of α in K/F . Observe that when F = Q, then these notions coincide
with those given in Definition 2.4 on page 65, and in this case, we call NK/Q the absolute
norm and TK/Q the absolute trace.
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Example 5.4 Let K = Q(
√
−1,

√
3), and F = Q(

√
3). Then

NK/F (5 +
√
−1) = (5 +

√
−1)(5−

√
−1) = 26,

and
NK/Q(5 +

√
−1) = N2

K/F
(5 +

√
−1) = 262 = 676.

Also,
TK/F (5 +

√
−1) = (5 +

√
−1) + (5−

√
−1) = 10,

and
TK/Q(1 +

√
−1) = 2TK/F (1 +

√
−1) = 20.

Example 5.4 motivates the following, which uses the ideas developed in Exercise 2.6.

Theorem 5.2 — Properties of Relative Norms and Traces

If F ⊆ K ⊆ L is a tower of number fields, then for α ∈ L the following hold.

(a) NL/F (α) = NK/F (NL/K(α)), and NL/F (α) ∈ F .

(b) TL/F (α) = TK/F (TL/K(α)), and TL/F (α) ∈ F .

(c) If |L : F (α)| = r, then

NL/F (α) = (NF (α)/F (α))
r, and TL/F (α) = r(TF (α)/F (α)).

Proof. (a) Let θj for j = 1, 2, . . . , n = |L : K| be all of the K-isomorphisms of L and let ψk

for k = 1, 2, . . . ,m = |K : F | be all of the F -isomorphisms of K. Then

NK/F (NL/K(α)) =
m�

k=1

ψk(
n�

j=1

θj(α)) =
m�

k=1

n�

j=1

ψk(θj(α)) = NL/F (α),

since the ψkθj are all distinct and comprise the F -isomorphisms of L. Observe as well that
if ψ1 is the identity embedding of K, then θj |K = ψ1 for all j = 1, 2, . . . , n, and that ψk

extends to n embeddings of L into C for each k = 1, 2, . . . ,m.

(b) The property for the trace is proved in a similar fashion to that of (a), employing
additivity instead of multiplicativity.

(c) These formulas are proved in the same fashion as that given in the proof of Theorem 2.5
on page 66. ✷

Example 5.5 Let L = Q(
√
5,
√
−1), K = Q(

√
−1), and F = Q. If α =

√
5 +

√
−1, then

NK/F (NL/K(α)) = NK/F ((
√
5 +

√
−1)(−

√
5 +

√
−1)) = NK/F (−6) = 36 =

(
√
5 +

√
−1)(−

√
5 +

√
−1)(

√
5−

√
−1)(−

√
5−

√
−1) = NL/F (α).

Also,
TK/F (TL/K(α)) =

TK/F ((
√
5 +

√
−1) + (−

√
5 +

√
−1)) = TK/F (2

√
−1) = 2

√
−1− 2

√
−1 = 0 =

(
√
5 +

√
−1) + (−

√
5 +

√
−1) + (

√
5−

√
−1) + (−

√
5−

√
−1) = TL/F (α).

If β = 3 +
√
−1, then

NL/F (β) = (NK/F (β))
2 = 102 = 100,

and
TL/F (β) = 2TK/F (β) = 2 · 6 = 12.
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The following makes use of Lemma 5.1 on page 182 to introduce a new notion.

Definition 5.3 — Relative Norms of Ideals

Let K/F be an extension of number fields, and let P be a prime OK-ideal above the unique
prime OF -ideal p = P ∩OF . Set

NK/F (P) = p
f
K/F

(P)
,

and extend to I ∈ I∆F
via

NK/F (I) =
n�

j=1

p
ajfK/F (Pj)
j

,

where

I =
n�

j=1

P
aj

j
,

as a product of distinct prime powers in OK and Pj ∩OF = pj . When F = Q,

NK/Q(I) = (N(I)),

the principal ideal in Z generated by N(I) as given in Definition 2.8 on page 83. We call
NK/Q the absolute norm.

Definition 5.3 tells us, in particular, that NK/F (I) is an OF -ideal for any OK-ideal I. The
reader may develop further properties of the relative norm of ideals by solving Exercises
5.3–5.6.

Example 5.6 Let K = Q(
√
−3,

√
5), F = Q(

√
5), and p = 11. Then pOK = P1P2,

where Pj for j = 1, 2 are distinct prime OK-ideals, and eK/F (Pj) = 1, fK/F (Pj) = 2 by
Theorem 1.30 on page 49, and Theorem 5.1 on page 184. Hence,

NK/F (Pj) = p
2
j
, where pj = Pj ∩OF .

Also,
NK/Q(Pj) = (11)2,

since pj ∩ Z = (11).

What is hidden in the development thus far is the relationship between |K : F | and the
ramification and inertial degrees.

Theorem 5.3 — Field Degrees, Ramification, and Inertia

Let K/F be an extension of number fields. Suppose that p is a prime OF -ideal and

pOK = P
e1
1 · · ·Peg

g
,

where the Pj are distinct prime OK-ideals, and g = gK/F (p). Then for ej = eK/F (Pj), and
fj = fK/F (Pj),

g�

j=1

ejfj = |K : F |.
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Proof. The embedding of OF into OK induces an embedding of the field OF /p into the
ring OK/pOK . We now show that the dimension of the ring as a vector space over the field
is indeed |K : F | = n, and that this is also the required sum.

Claim 5.1 |OK/P
ej

j
: OF /p| = ejfj .

By Exercise 2.40 on page 82, we have

|OK/P
ej

j
: OK/Pj | = ej .

Therefore,

|OK/P
ej

j
: OF /p| = |OK/P

ej

j
: OK/Pj ||OK/Pj : OF /p| = ejfj ,

which establishes Claim 5.1.

By Claim 5.1 and Exercise 2.40,

|OK/pOK : OF /pOF | =
g�

j=1

ejfj . (5.3)

It remains to show that this dimension is also n. First, we show that it is at most n. We
do this by demonstrating that any n+ 1 elements of OK/pOK are linearly dependent over
OF /pOF . Let αj for j = 1, 2, . . . , n+1 be elements of OK and let αj be the corresponding
elements of OF /pOF . Since the αj are linearly dependent over F , then they are linearly
dependent over OF by Lemma 1.4 on page 38. Therefore, there exist βj ∈ OF not all zero
such that

n+1�

j=1

βjαj = 0. (5.4)

Claim 5.2 There exists a γ ∈ F−OF with γ(β1, . . . , βn+1) ⊆ OF , but γ(β1, . . . , βn+1) �⊆ p.

By Exercise 1.38 on page 33, there is a non-zero OF -ideal I such that I(β1, . . . , βn+1) = (α)
for some α ∈ OF . Thus, I(β1, . . . , βn+1) �⊆ αp, since otherwise α ∈ αp implies 1 ∈ p. Let
β ∈ I such that β(β1, . . . , βn+1) �⊆ p. Then by setting γ = β/α, we get the claim.

By Claim 5.2, reducing (5.4) modulo p yields a nontrivial relation among the αj . In other
words, not all βjare zero modulo p, so the αj are linearly dependent over OF /pOF . Hence,
we have shown that

|OK/pOK : OF /pOF | ≤ n.

We conclude by establishing the full equality.

Let p ∩ Z = (p), and let pk for k = 1, 2, . . . , gF/Q(p) = g1 be all of the prime OF -ideals
above p. Now we show that n = nk = |OK/pkOK : OF /pk| for each k = 1, 2, . . . , g1.

Claim 5.3
�

g1

j=1 eF/Q(pj)fF/Q(pj) = |F : Q|.

We have

NF/Q(pOF ) =
g1�

j=1

(p)eF/Q(pj)fF/Q(pj) = (p)
�g1

j=1 eF/Q(pj)fF/Q(pj),

and by Corollary 2.8 on page 85, this equals

|OF /(p)| = (NF (p)) = (p)|F :Q|.
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Since NF/Q(pOF ) = N(p) = (|OF : (p)|) = (NF (p)) by Definition 5.3 on page 186, this
establishes Claim 5.3.

Therefore, since pOF =
�

g1

k=1 p
eF/Q(pk)
k

, then using (5.3),

NK/Q(pOK) =
g1�

k=1

(NK/Q(pkOK))eF/Q(pk) =
g1�

k=1

NF/Q(pk)
nkeF/Q(pk) =

g1�

k=1

(p)nkeF/Q(pk)fF/Q(pk) = (p)
�g1

k=1 nkeF/Q(pk)fF/Q(pk),

by Claim 5.1 and Exercise 5.6 on page 195. However, by the same reasoning as in Claim
5.3,

NK/Q(pOK) = (p)
�

g

j=1 eK/Q(Pj)fK/Q(Pj) = (p)|K:Q|.

Therefore,

|K : Q| =
g1�

k=1

nkeF/Q(pk)fF/Q(pk),

so

n|F : Q| = n
g1�

k=1

eF/Q(pk)fF/Q(pk) =
g1�

k=1

neF/Q(pk)fF/Q(pk) ≥

g�

k=1

nkeF/Q(pk)fF/Q(pk) = |K : Q| = n|F : Q|.

Thus, nk = n for each k = 1, . . . , g1. In particular, for pk = p, the equality holds. This
completes the proof. ✷

In view of Theorem 5.3, we may extend the notions given in Definition 5.1 as follows.

Definition 5.4 — Inert, Completely Split, and Totally Ramified

Let K/F be an extension of number fields, and let p be a prime OF -ideal with

pOK =
g�

j=1

P
ej

j
, ej ∈ N

where the Pj are distinct, prime OK-ideals. Then p is said to be completely ramified, or
totally ramified in OK whenever

ej = eK/F (Pj) = |K : F | for some j = 1, 2, . . . , g,

so fK/F (Pj) = 1 = gK/F (Pj). p is said to split completely, or to be completely split in OK

if
g = gK/F (p) = |K : F |,

so eK/F (Pj) = 1 = fK/F (Pj). If fK/F (Pj) = |K : F | for j = 1, 2, . . . , g, then p is said to be
inert5.2 in OK , so eK/F (Pj) = 1 = gK/F (Pj).

5.2It is a common and accepted abuse of language in the literature to say that p ramifies, splits or is inert
in K, rather than OK .
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Example 5.7 Consider the situation given in Example 5.2 on page 183. For p = 29,

(29)OK = (29)Z[ 3
√
2] = P1P2,

for primeOK-ideals P1, and P2, where eK/Q(Pj) = 1 for j = 1, 2, fK/Q(P1) = 1, fK/Q(P2) =
2, and g(29) = 2. Thus,

|Q( 3
√
2) : Q| = |K : F | =

g�

j=1

ejfj = 1 · 1 + 1 · 2 = 3.

The reader is reminded of the definition of normal extension given in Exercise 2.2 on page 62.
For such extensions, Theorem 5.3 on page 186 is given as follows.

Theorem 5.4 — Normal Extensions, Ramification, and Inertia

Let K/F be a normal extension of number fields, and let p be a prime OF -ideal with

pOK =
g�

j=1

P
ej

j
,

where g = gK/F (p) and ej = eK/F (Pj). Then

eK/F (Pj) = eK/F (Pk) = eK/F (p), and fK/F (Pj) = fK/F (Pk) = fK/F (p)

for all j, k ∈ {1, 2, . . . , g}. Thus,

eK/F (p)fK/F (p)gK/F (p) = n = |K : F |.

Proof. The last assertion will follow as an immediate consequence of the initial results via
Theorem 5.3.

If we can show that for each Pj and Pk for any j, k ∈ {1, 2, . . . , g}, there exists an F -
isomorphism θ of K such that θ(Pj) = Pk,5.3 then the initial assertions follow. To see this,
suppose that θ(P1) = Pk. Then

pOK = θ(pOK) =
g�

j=1

θ(Pj)
ej ,

then e1 = ek by uniqueness of factorization of ideals. Also,

fk = |OK/Pk : OF /p| = |OK/θ(P1) : OF /p| = |OK/P1 : OF /p| = f1.

Hence, it remains to show that the Pj are conjugates over F .

Let θ be any F -isomorphism of K. Since P
hK

1 = (α) for some α ∈ OK , then α ∈ P1 since
P1 is prime. Since

NK/F (α) =
n�

j=1

θj(α) ∈ P1,

where θj for j = 1, 2, . . . , n are all of the F -isomorphisms of K, then

NK/F (α)OK ⊆ pOK ,

5.3When this occurs, we say that the Pj are conjugates over F . The reader may easily verify that θ(Pj) is
a prime OK-ideal, so θ(Pj)∩OF=p forcing θ(Pj)=Pk for some k∈N—see Exercise 2.40 on page 82.
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so pOK

�� NK/F (α)OK , which in turn implies that Pk

�� (NK/F (α)) for all k ∈ {1, 2, . . . , n}.
Thus, for some � ∈ {1, 2, . . . , n}, θ�(α) ∈ Pk. Therefore,

θ�(P1)
hK = θ�(α)OK ⊆ Pk,

from which it follows that θ�(P1) = Pk since both P1 and Pk are primes. Hence, the Pj are
all conjugates over F . ✷

The action of the F -isomorphisms of K on the prime OK-ideals established in the above
proof has a name. We also say that the F -isomorphisms of K transitively permute the Pj ,
or act transitively on them. Thus, we have the following immediate consequence.

Corollary 5.1 If K/F is a normal extension of number fields, then the F -isomorphisms of
K transitively permute the prime OK-ideals above a fixed prime ideal p in OF .

Example 5.8 Let pk > 2 where p is a rational prime and k ∈ N. Set K = Q(ζpk) and let
λ = 1− ζpk . Then (λ) = λOK is a principal OK-ideal, and is prime since

NK/Q(λOK) = (p),

by Corollary 2.8 on page 85 and Exercise 3.35 on page 129. Furthermore, since p = Φpk(1) =�
j
(1− ζj

pk), where the product ranges over all natural numbers j < pk relatively prime to

p, and by Exercise 3.35, we get p = uλφ(pk) where u ∈ OK is a unit. Thus,

pOK = (λOK)φ(p
k),

so since K/Q is normal, we get

eK/Q(p) = φ(pk) = |K : Q|, and fK/Q(p) = 1 = gK/Q(p).

We give an interpretation of the relative norm of an ideal that is similar to the relative
norm of an element. We will employ the Galois theory developed in §2.1.

Theorem 5.5 — Ideal Norms as Conjugates

Let K/F be an extension of number fields, and let L be the minimal normal extension of
F containing K. Set H = Gal(L/F )/Gal(L/K).5.4 Then for I ∈ I∆F

,

NK/F (I)OL =
�

θ∈H

θ(IOL).

In particular, if K/F is a normal extension, then

NK/F (I)OK =
�

θ∈Gal(K/F )

θ(I).

Proof. By Exercise 5.3 on page 194, it suffices to prove the result for I = P, a prime OK-
ideal. Let p = P ∩ OF . First we prove the result for K/F a normal extension, namely
K = L. By Theorem 5.4 on the preceding page,

pOK = (P1P2 · · ·Pg)
ef ,

5.4The reader is cautioned that the set H is not, in general, a group.
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where P = P1, e = eK/F (p), f = fK/F (p), and g = gK/F (p). Since the F -isomorphisms of
K transitively permute the Pj , for j = 1, 2, . . . , g, and since

efg = n = |K : F |,

then for each such j there are ef of these isomorphisms that send P1 to Pj . Therefore,

�

θ∈H

θ(P) =
�

θ∈Gal(K/F )

θ(P) =
g�

j=1

P
ef

j
= (pOK)f = NK/F (P)OK .

This completes the proof for the case where K = L.

In the general case, if θ1θ
−1
2 ∈ H, then θ1(POL) = θ2(POL). Therefore,

�
�

θ∈H

θ(POL)

�|L:K|

=
�

θ∈Gal(L/F )

θ(POL) = NL/F (POL)OL,

by the above case, and by Exercises 5.6–5.7, this equals,

NK/F (NL/K(POL))OL = NK/F (P)|L:K|
OL =

�
NK/F (P)OL

�|L:K|
,

and the desired result follows. ✷

Corollary 5.2 Assuming the hypothesis of Theorem 5.5, let I = (α) ∈ P∆K
. Then

NK/F (I) ∈ P∆F
is the principal fractional OF -ideal generated by NK/F (α).

Proof. From Theorem 5.5, we get

NK/F (I)OL =
�

θ∈H

θ(IOL) =
�

θ∈H

θ(αOL) = NL/K(α)OL.

Therefore, by Exercise 5.1,

NK/F (I) = NK/F (I)OL ∩K = NK/F (α)OL ∩K = NK/F (α)OK ,

which is the required result. ✷

Example 5.9 Let K = Q( 3
√
2), which is not normal over Q as observed above. However,

L = Q(ζ3,
3
√
2) is normal over Q, where ζ3 is a primitive cube root of unity. In fact, it

is the minimal normal extension of Q containing K. The embeddings of L into C are
{1, θ1, θ2, θ21, θ1θ2, θ21θ2} where:

θ1 : 3
√
2 �→ ζ3

3
√
2, and θ1 : ζ3 �→ ζ3,

θ2 : ζ3 �→ ζ−1
3 , and θ2 : 3

√
2 �→ 3

√
2.

As shown in Example 5.7 on page 189, we have the OK-ideal

(29)OK = P1P2,

with fK/Q(P1) = 1 = eK/Q(Pj) for j = 1, 2, and fK/Q(P2) = 2. Also, 29 is inert in
Q(ζ3) = Q(

√
−3) by Theorem 1.30 on page 49. Therefore, by Theorem 5.1 on page 184,

(29)OL = Q1Q2Q3,
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where the Qj for j = 1, 2, 3 are OL-ideals with

fL/K(Q1) = 2, and fL/K(Qj) = eL/K(Qj) = 1, for j = 2, 3.

Also, here

H = Gal(L/Q)/Gal(L/K) = �θ1� = {1, θ1, θ
2
1},

where θ1 is the image of θ1 under the natural map that takes Gal(L/Q) to the set H. Thus,
again by Theorem 5.1,

θ1(Q1) = Q1, θ1(Q2) = Q3, and θ1(Q3) = Q2.

Hence,

NK/Q((29)OK)OL = NK/Q(P1P2)OL =
3�

j=1

θ
j

1(Q1Q2Q3) = Q
3
1Q

3
2Q

3
3.

Notice that by Definition 5.3 on page 186,

NK/Q((29)OK) = NK/Q(P1P2) = NK/Q(P1)N
K/Q(P2) =

(29)fK/Q(P1)(29)fK/Q(P2) = (29) · (29)2 = (29)3,

which coincides with the new characterization of relative norms for ideals, since

NK/Q((29)OK)OL = 293OL = (Q1Q2Q3)
3.

If we consider the norm from L, then as in the proof of Theorem 5.5, we get,

NL/Q((29)OL)OL =
�

θ∈Gal(L/Q)

θ(Q1Q2Q3) =

�
�

θ∈H

θ(Q1Q2Q3)

�2

= (Q1Q2Q3)
6 .

Observe that, since L/Q is normal, then eL/Q(29) = 1, fL/Q(29) = 2, and gL/Q(29) = 3.
Again, by our original Definition 5.3 on page 186, we get

NL/Q(Q1Q2Q3) =
3�

j=1

NL/Q(Qj) =
3�

j=1

(29)2 = (29)6,

so we achieve, as above, that

NL/Q((29)OL)OL = 296OL = (Q1Q2Q3)
6.

Yet another way to see this is to use Exercise 5.6 on page 195 and Definition 5.3 to get,

NL/Q(Q1Q2Q3) = NK/Q(NL/K(Q1Q2Q3)) = NK/Q




3�

j=1

NL/K(Qj)



 =

NK/Q
�
P
fL/K(Q1)
1 P

fL/K(Q2)
2 P

fL/K(Q3)
2

�
= NK/Q(P2

1P2P2) = NK/Q(P2
1P

2
2) =

(29)2fK/Q(P1)(29)2fK/Q(P2) = (29)2·1(29)2·2 = (29)6.

All of the above methods are instructive, but the easiest is to look at Corollary 5.2, from
which we get that NK/Q((29)OK), respectively, NL/Q((29)OL), is the principal Z-ideal
generated by NK/Q(29) = 293, respectively, NL/Q(29) = 296.
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Corollary 5.2 allows us to achieve yet another characterization for the norm of ideals.

Theorem 5.6 — Norms of Ideals Generated by Norms of Elements

Let K/F be an extension of number fields. If I ∈ I∆K
, then NK/F (I) is the smallest ideal

of I∆F
which contains all norms NK/F (α) where α ranges over all elements of I.

Proof. By Corollary 5.2, NK/F (α) ∈ NK/F (I) for all α ∈ I. It remains to show that the

NK/F (α) generate NK/F (I). First, we assume that I is an integral OK-ideal.

Claim 5.4 There exist α,β ∈ I with (α) + (β) = I.

Suppose that H is an OK-ideal relatively prime to I =
�

n

j=1 p
aj

j
, and let

αj ∈ p
aj

j
− p

aj+1
j

.

Also, by Exercise 1.38 on page 33, there is an OK-ideal I1 such that αOK = II1 for some
α ∈ OK . Then by Theorem 1.21 on page 32, there is a solution y = β to the system of
congruences

y ≡ αj (mod p
aj+1
j

) for j = 1, 2, . . . , n,

and y ≡ 1 (mod I1H).

Therefore, β ∈ I and we may set βOK = II2 where I2 is an OK-ideal with

I2 + I1HI = OK ⊆ I2 + I1,

so I1 + I2 = OK . Hence,

αOK + βOK = II1 + II2 = I(I1 + I2) = I,

which secures the claim.

By Claim 5.4, NK/F (I1) and NK/F (I2) must be relatively prime since I1 and I2 are rela-
tively prime implying that NK/F (I1)OK and NK/F (I2)OK are relatively prime. Also,

NK/F (αOK) = NK/F (I)NK/F (I1),

and
NK/F (βOK) = NK/F (I)NK/F (I2).

Thus, NK/F (I1) = NK/F (αI−1OK) and NK/F (I2) = NK/F (βI−1OK) are relatively prime.
Hence,

NK/F (αOK) +NK/F (βOK) = NK/F (I)(NK/F (I1) +NK/F (I2)) = NK/F (I),

and this completes the proof for the integral case.

If I is any fractional OK-ideal, then I = γ−1J for some γ ∈ OK and some integral OK-ideal
J by Remark 1.13 on page 26. However,

NK/F (γ)γ
−1 = δ ∈ OK ,

since γ
�� NK/F (γ). Thus,

I = δJ(δγ)−1
OK = Hσ−1,

where H = δJOK is an integral OK-ideal and

σ = δγ = NK/F (γ) ∈ OF .
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By Exercise 5.3 and the proof for the integral case, the fractional ideal generated by all of
the elements NK/F (α) for α ∈ I is

σ−|K:F |NK/F (H) = NK/F (σ−1H) = NK/F (I),

as required. ✷

Example 5.10 In Example 5.8, with K = Q(ζpk) and F = Q, we have the principal prime
OK-ideal λOK = (λ), and

NK/F (λOK) = (p) = (NK/F (λ)).

Example 5.11 In Example 5.9, K = Q( 3
√
2), F = Q, and

NK/Q((29)OK) = (29)3 = (NK/Q(29)).

In the next section, we will look at another ideal-theoretic concept called the different, which
will allow us to say much more about prime decomposition in number fields, especially
cyclotomic and pure extensions such as those illustrations given in our closing examples for
this section.

Exercises

5.1. Let K/F be an extension of number fields, and let I ∈ I∆K
. Prove that

IOK ∩ F = I.

Also, show that if I, J ∈ I∆F
with IOK = JOK , then I = J.

(Hint: Use Exercises 3.31–3.32 on page 121.)

5.2. Prove that the mapping ιK/F given in (5.1) is a group monomorphism that induces
the map given in (5.2).

(Hint: Use Exercise 5.1.)

5.3. Let K/F be an extension of number fields, and let I, J ∈ I∆F
. Prove that

NK/F (I)NK/F (J) = NK/F (IJ).

5.4. Let K/F be an extension of number fields and assume that OK = OF [α] for some
α ∈ OK . Let p be a prime OF -ideal, and let mα,F (x) be the polynomial determined
from the minimal polynomial mα,F (x) by reducing its coefficients modulo p. Suppose
further that

mα,F (x) =
g�

j=1

gj(x)
ej , ej ∈ N

where the gj(x) are distinct irreducible polynomials over the field OF /p = OF . Prove
that

pOK =
g�

j=1

P
ej

j
,

where the Pj are distinct prime OK-ideals such that fK/F (Pj) = deg
OF

(gj). Further-
more, show that for each j = 1, 2, . . . , g,

Pj = pOK + gj(α)OK .
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(Hint: Use Theorem A.5 on page 328 and Theorem 1.21 on page 32.)

(This phenomenon does not always occur, as shown by Example 2.13 on page 79. In
other words, OK need not necessarily be of the form OK = OF [α].)

5.5. Let I and J be nonzero ideals in a Dedekind domain R with quotient field F . Prove
that if I �= R, there exists a γ ∈ F such that γJ ⊆ R, but γJ �⊆ I.

(Hint: Use Exercise 1.38 on page 33.)

5.6. Let F ⊆ K ⊆ L be a tower of number fields. Prove that if I ∈ I∆L
, then

NL/F (I) = NK/F (NL/K(I)).

5.7. Let K/F be an extension of number fields, and let I ∈ I∆F
. Prove that

NK/F (I) = I
n,

where n = |K : F |.
(Hint: Use Exercise 5.3 and Theorem 5.3 on page 186.)

5.8. Let K/F be an extension of number fields. Show that there exists a number field L
that is a normal extension of F containing K.

(Hint: Use Theorem 1.24 on page 39.)

5.9. Let f(x) ∈ Z[x] be nonconstant. Prove that there exist infinitely many rational primes
p such that f(x) ≡ 0(mod p), for some x ∈ Z.
(Hint: Use Theorem A.7 on page 330.)

5.10. Let K/F be an extension of number fields. Prove that there are infinitely many prime
OF -ideals that are completely split in OK .

(Hint: Use Theorem 1.24 on page 39.)

5.11. Prove that there are no inert primes in Q(ζ2n) for any n ∈ N with n > 2.

(Hint: Use Exercise 5.4 and Theorem 1.30 on page 49)
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5.2 The Different and Discriminant

Nothing is so strong as gentleness and nothing is so gentle as real strength.
Ralph W. Sockman (1889–1970)

Senior pastor of the United Methodist Christ Church in New York City

In this section we will develop tools that will allow us to generalize the notion of the
discriminant of a number field, and prove more powerful results than those achieved thus
far. First, we need the following.

Definition 5.5 — The Dual/Codifferent

Let K/F be an extension of number fields, and let I ∈ I∆F
. Then

I
∗ = {β ∈ K : TK/F (βI) ⊆ OF }

is called the dual or codifferent of I over F , where TK/F (βI) ⊆ OF means TK/F (βα) ∈ OF

for all α ∈ I.

Lemma 5.2 — The Dual is Fractional

If K/F is an extension of number fields with I ∈ I∆K
, then I

∗ ∈ I∆K
.

Proof. Let α1, α2 ∈ I
∗, and β1, β2 ∈ OK . Then

TK/F ((β1α1 + β2α2)I) ⊆ TK/F (β1I) + TK/F (β2I) ⊆ OF ,

so I
∗ is an OK-module. Since I ∈ I∆K

, then by Definition 1.24 on page 26, there exists a
nonzero β ∈ OK such that βI ⊆ OK . By Definition 5.5, all such β are in I

∗, which must
therefore be nonzero.

Claim 5.5 There exists a β∗ ∈ OK such that

β∗
I
∗ ⊆ OK .

Let β1, β2, . . . , βn be a basis for K over F with βj ∈ OK for j = 1, 2, . . . , n, which is allowed
by Exercise 2.42 on page 82. Let β ∈ I ∩OK be nonzero, and set

β∗ = NK/F (β) det(TK/F (βiβj)).

Let

γ =
n�

j=1

αjβj ∈ I
∗ (αj ∈ F ),

be arbitrarily chosen. Then

TK/F (NK/F (β)γβi) ∈ OF ,

since NK/F (β)βi ∈ OK . However, for each i = 1, 2, . . . , n,

TK/F (NK/F (β)γβi) = NK/F (β)TK/F (γβi) = NK/F (β)
n�

j=1

αjTK/F (βiβj).

Hence, for each such i, j,

αjNK/F (β) det(TK/F (βiβj)) ∈ OF ,

so β∗γ ∈ OK . This establishes Claim 5.5, from which it follows that I∗ ∈ I∆K
. ✷
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Lemma 5.3 — Properties of the Dual

Let K/F be an extension of number fields, and let I ∈ I∆K
. Then each of the following

holds.

(a) II
∗ = O∗

K
.

(b) If I is an integral OK-ideal, then (I∗)−1 is an integral OK-ideal.

(c) If J ∈ I∆K
and I ⊆ J, then I

∗ ⊇ J
∗.

Proof. Let α ∈ I
∗. Then TK/F (αI) ⊆ OF , so TK/F (αIOK) ⊆ OK . Therefore, αI ⊆ O∗

K
. In

other words, α ∈ I
−1O∗

K
. We have shown that

I
∗ ⊆ I

−1
O

∗
K
.

By reversing the argument, we get that

I
−1

O
∗
K

⊆ I
∗.

Hence, we have I
∗ = I

−1O∗
K
, so

II
∗ = II

−1
O

∗
K

= O
∗
K
,

which is (a). In particular, if I ⊆ OK , then OK ⊆ I∗. Therefore,

(I∗)−1 = OK(I∗)−1 ⊆ I∗(I∗)−1 = OK ,

which is (b).

For (c) assume that I ⊆ J. Then for any β ∈ J
∗,

TK/F (βI) ⊆ TK/F (βJ) ⊆ OF .

Hence, β ∈ I
∗, so I

∗ ⊇ J
∗. ✷

By Lemma 5.2, if I ∈ I∆K
, then I

∗ ∈ I∆K
. In particular, by part (b) Lemma 5.3, if I is an

integral OK-ideal, then (I∗)−1 is an integral OK-ideal. In any case, (I∗)−1 is a special kind
of ideal.

Definition 5.6 — The Different

Let K/F be an extension of number fields and let I ∈ I∆K
. Then the ideal (I∗)−1 ∈ I∆K

is called the different of I over F , denoted by DK/F (I). If I = OK , then DK/F (I) is called
the different of the extension K/F , denoted by DK/F .

We now employ the Galois theory developed in §2.1.

Lemma 5.4 — Properties of the Different

Let F ⊆ K ⊆ L be an extension of number fields. Then each of the following holds.

1. If I ∈ I∆K
, then DK/F (I) = IDK/F .

2. DL/F = DL/KDK/F .

3. If K/F is normal, then for any σ ∈ Gal(K/F ), Dσ

K/F
= DK/F . In other words, DK/F

is fixed, also called invariant under the action of the Galois group. The notations
σ(DK/F ) and D

σ

K/F
for the action of σ are used interchangeably.
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4. If I ∈ I∆F
and J ∈ I∆K

, then TK/F (J) ⊆ I if and only if J ⊆ ID
−1
K/F

.

Proof. For part 1, we use part (a) of Lemma 5.3 on the previous page to get, (II∗)−1 =
(O∗

K
)−1, so

(I∗)−1 = (I−1)−1(O∗
K
)−1 = I(O∗

K
)−1,

namely DK/F (I) = IDK/F .

For part 2, we observe that α ∈ D
−1
L/K

if and only if TL/K(α) ∈ OK by Definition 5.5 on
page 196. In turn the latter is equivalent to

D
−1
K/F

TL/K(α) ⊆ D
−1
K/F

, (5.5)

by part (c) of Lemma 5.3. Also, (5.5) holds if and only if

TK/F (D
−1
K/F

TL/K(α)) = TK/F (TL/K(αD−1
K/F

)) = TL/F (αD
−1
K/F

) ⊆ OF , (5.6)

by part (b) of Theorem 5.2 on page 185. Lastly, (5.6) is equivalent to saying that αD−1
K/F

⊆
D

−1
L/F

. We have shown that α ∈ D
−1
L/K

if and only if α ∈ DK/FD
−1
L/F

, namely D
−1
L/K

=

DK/FD
−1
L/F

. In other words, DL/F = DL/KDK/F .

For part 3, let β ∈ O∗
K
, and σ ∈ Gal(K/F ). Then since TK/F (βOK) ⊆ OF , we have

TK/F (β
σ
OK) = TK/F (βO

σ
−1

K
) = TK/F (βOK) ⊆ OF .

Therefore, O∗
K

σ ⊆ O∗
K

for all σ ∈ Gal(K/F ). Similarly, O∗
K

σ
−1

⊆ O∗
K
, so O∗

K
⊆ O∗

K

σ.
Hence, O∗

K
= O∗

K

σ, namely D
σ

K/F
= DK/F .

Finally, for part 4, TK/F (J) ⊆ I if and only if I−1TK/F (J) = TK/F (I
−1

J) ⊆ OF , which in

turn holds if and only if I−1
J ⊆ D

−1
K/F

, namely when J ⊆ ID
−1
K/F

.
✷

We now are able to generalize the notion given in Definition 2.7 on page 77.

Definition 5.7 — Discriminant of a Relative Extension

Let K/F be an extension of number fields. Then the discriminant of K/F is NK/F (DK/F ),
denoted by∆ K/F . In particular,∆ K/Q = ( ∆K) is called the absolute discriminant of K.

The reader should now go to Exercise 5.17 on page 212 for an explicit example of the above.
An important property of relative discriminants is given as follows.

Lemma 5.5 — Relative Discriminants in Towers

If F ⊆ K ⊆ L is a tower of number fields, then∆ L/F = ∆|L:K|
K/F

NK/F (∆L/K).

Proof. From part 2 of Lemma 5.4, we have

∆L/F = NL/F (DL/KDK/F ) = NL/F (DL/K)NL/F (DK/F ),

where the last equality comes from Exercise 5.3 on page 194. By Exercises 5.6–5.7 the latter
equals,

NK/F (NL/K(DL/K))NK/F (NL/K(DK/F )) = NK/F (∆L/K)NK/F (D|L:K|
K/F

)

= NK/F (∆L/K)NK/F (DK/F )
|L:K| = NK/F (∆L/K)∆|L:K|

K/F
,

as required. ✷

The next result verifies that the absolute discriminant coincides with the notion given in
Definition 2.7 as an ideal generator.
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Theorem 5.7 — Dual Basis, Different, and Discriminant

Let F be an algebraic number field, and let I ∈ I∆F
with Z-basis B = {α1, α2, . . . , αn} and

set B∗ = {α∗
1, α

∗
2, . . . , α

∗
n
} with α∗

j
∈ F defined by

TF/Q(αiα
∗
j
) = δi,j ,

where δi,j = 0 if i �= j and δi,j = 1 if i = j.5.5 Then the set B∗ is an integral basis for I∗,
called a dual basis. Furthermore,

NF/Q(DF/Q(I)) = NF/Q(I)|∆F |.

In particular,
NF/Q(DF/Q) = |∆F |.

In other words, as ideals,
∆F/Q = ( ∆F ).

Proof. Let A be the matrix with entries (TF/Q(αiαj)). From Theorem 2.8 on page 73, we
know that det(A) �= 0. Thus, A is invertible, so AA−1 = In. The diagonal of this identity
matrix consists of elements αiα∗

i
= 1, where the

α∗
i
=

n�

k=1

αk

det(Ak,i)

det(A)
∈ F,

from Theorem A.22 on page 338. Also, the off-diagonal elements of the identity matrix
give us that αiα∗

j
= 0, with the α∗

j
∈ F similarly determined by Theorem A.22. Hence,

TF/Q(αjα∗
j
) = 1 and TF/Q(αiα∗

j
) = 0 for i �= j. This establishes the existence of the

elements in B
∗, and so secures the validity of the first assertion.

Let β ∈ F . Then by the definition of the α∗
j
, there exist qj ∈ Q such that β =

�
n

j=1 qjα
∗
j
.

Also, for any α ∈ I, there exist zj ∈ Z such that α =
�

n

i=1 ziαi. Thus,

TF/Q(αβ) =
n�

i=1

n�

j=1

qjziαiα
∗
j
,

so TF/Q(αβ) ⊆ Z exactly when qj ∈ Z for j = 1, 2, . . . , n, so B
∗ is an integral basis for I∗.

For the assertion on norms, we first assume that I = OF . By the above, O∗
F
= D

−1
F/Q has

dual basis consisting of the α∗
j
. Let m ∈ N such that

mα∗
j
= m∗

j
∈ OF , (5.7)

which is allowed by Lemma 1.4 on page 38. Let J = mDF/Q
−1 ⊆ OF . Then by Corollary 2.8

on page 85,

NF/Q(D−1
F/Q)

2 = NF/Q(Jm−1)2 = NF/Q(J)2NF/Q(m)−2 = NF/Q(J)2m−2n,

and by Theorem 2.12 on page 85, this equals

disc ({m∗
1,m

∗
2, . . . ,m

∗
n
})∆F

−1m−2n = disc ({α∗
1, α

∗
2, . . . , α

∗
n
})∆F

−1,

where the last equality follows from (5.7).

5.5The δi,j is called the Kronecker delta.
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To complete the proof, we observe that the following matrix equation holds,

(TF/Q(αiα
∗
j
)) = (θj(αi))(θj(α

∗
i
))t,

where θ1, θ2, . . . , θn are the Q-isomorphisms of F . Hence by the Kronecker delta symbol,
this is the identity matrix, so

disc(α∗
1, . . . , α

∗
n
) = disc−1(α1, . . . , αn) = ∆F

−1.

We have shown that NF/Q(DF/Q)2 = ∆F
2, so

NF/Q(DF/Q) = |∆F |.

By part 1 of Lemma 5.4 on page 197, if I ∈ I∆F
, then

NF/Q(DF/Q(I)) = NF/Q(IDF/Q) = NF/Q(I)NF/Q(DF/Q) = NF/Q(I)|∆F |,

as required. ✷

Corollary 5.3 Suppose that L is a number field with squarefree discriminant ∆
L
. If Q ⊆

K ⊆ L is a tower of number fields, then K = Q or K = L.

Proof. By Remark 3.14 on page 116, if K �= Q, there is a prime p
�� ∆K . By Lemma 5.5 on

page 198, and Theorem 5.7 on the previous page,

(p)|L:K| �� ∆L/Q = ( ∆L),

contradicting the squarefreeness, so L = K. ✷

Corollary 5.4 If Q ⊆ K ⊆ L is a tower of number fields, then

∆K
|L:K| �� ∆L.

Proof. By Lemma 5.5,
∆K/Q

|L:K| �� ∆L/Q,

which secures the result. ✷

The reader will observe that Corollary 5.4 generalizes Kronecker’s result given in Theo-
rem 3.15 on page 126.

The following result, which was known to Euler in a different form, is another tool in our
quest to establish a fundamental result in the theory of the different that, in turn, will allow
us to establish important results in ramification theory in §5.3.

Theorem 5.8 — Generators for the Dual of a Primitive Extension

Let K/F be an extension of number fields, with K = F (α) where α ∈ OK , and set
|K : F | = n. Then

OF [α]
∗ =

OF [α]

m�
α,F

(α)
,

where m�
α,F

is the formal derivative of mα,F . In other words, OF [α]∗ is generated as an
OF -module by the elements

αj/m�
α,F

(α) for j = 0, 1, 2, . . . , n− 1.
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Also,

TK/F

�
αj

m�
α,F

(α)

�
= 0 for all j = 0, 1, 2, . . . , n− 2, (5.8)

and

TK/F

�
αn−1

m�
α,F

(α)

�
= 1. (5.9)

Proof. Let αj , for j = 1, 2, . . . , n, be the conjugates of α over F , where α1 = α—see Ex-
ercise 2.1 on page 62. By applying the Lagrange interpolation formula—see Theorem A.26
on page 342—we get

1 =
n�

i=1

mα,F (x)

m�
αi,F

(α)(x− αi)
=

n�

i=1

mα,F (x)

m�
αi,F

(α)

∞�

k=0

αk

i

xk+1
, (5.10)

where the last equality comes from Theorem B.4 on page 347. Also, if

mα,F (x) = xn +
n�

k=1

akx
n−k,

then
1

mα,F (x)
=

1

xn
+

∞�

k=1

ak
xn+k

. (5.11)

By comparing (5.10)–(5.11), we get (5.8)–(5.9), which also says that

TK/F

�
αj

m�
α,F

(α)

�
∈ OF ,

so
αj/m�

α,F
(α) ∈ OF [α]

∗.

In other words,
OF [α]

m�
α,F

(α)
⊆ OF [α]

∗.

It remains to establish the reverse inclusion. Let y ∈ OF [α]∗.

Since the elements αj/m�
α,F

(α) for j = 0, 1, 2, . . . , n− 1 form a basis for K over F , we may
write

y =
n−1�

j=0

aj
αj

m�
α,F

(α)
.

Therefore,

TK/F (y) =
n−1�

j=0

ajTK/F

�
αj

m�
α,F

(α)

�
= an−1,

by (5.8)–(5.9) established above. Since y ∈ OF [α]∗, then an−1 ∈ OF . Now let

mα,F (x) = xn +
n−1�

k=0

bkx
k, with bk ∈ OF , (5.12)
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since α ∈ OK . Thus,

TK/F (yα) =
n−1�

j=0

ajTK/F

�
αj+1

m�
α,F

(α)

�
= an−2 + an−1TK/F

�
αn

m�
α,F

(α)

�
,

and from (5.12), this equals

an−2 − an−1

�
n�

k=1

bkTK/F

�
αn−k

m�
α,F

(α)

��
= an−2 − an−1b1.

Since an−2 − an−1b1 ∈ OF , then an−2 ∈ OF . Continuing in this fashion, we see that all
aj ∈ OF , so y ∈ OF [α], which completes the reverse inclusion, and hence the entire proof.✷

Now we turn to a concept that will help to explain the term different.

Definition 5.8 — Different of an Element

Let K/F be an extension of number fields with K = F (α) for α ∈ OK . The different of α
is m�

α,F
(α), denoted by

δK/F (α).

The reason for the name “different” in Definition 5.8 is that m�
α,F

(α) �= 0 exactly when
α is different from all of its conjugates over F . In other words, α �= θj(α) for all F -
isomorphisms θj of K that are not the identity embedding, namely when α is a primitive
element over F . Now it is important to compare O∗

K
with OF [α]∗. We know that O∗

K
⊆

OF [α]∗ = OF [α]/m�
α,F

(α), since for any β ∈ O∗
K
, we must have TK/F (βOF [α]) ⊆ OF , given

that OF [α] ⊆ OK for α ∈ OK . Now we look at the reverse inclusion from the following
perspective.

Definition 5.9 — The Conductor

Let K/F be an extension of number fields, and let R be a subring of OK such that OF ⊆ R.
Let fR 5.6 be the greatest common divisor of the OK-ideals contained in R. We call fR the
conductor of R in OK .

Lemma 5.6 — Conductor Characterization

Let K/F be an extension of number fields, and let R be a subring of OK such that OF ⊆ R.
Then

fR = {β ∈ K : βR∗ ⊆ O
∗
K
},

and fR is an OK-ideal contained in R. In particular, if R = OF [α] for some α ∈ OK , then

fα = m�
α,F

(α)O∗
K

= δK/F (α)O
∗
K

is the conductor of OF [α] in OK and is the largest OK-ideal contained in OF [α].

Proof. Set
I = {β ∈ K : βR∗ ⊆ O

∗
K
}.

For β ∈ I, γ ∈ OK , we have
γβR∗ ⊆ γO∗

K
⊆ O

∗
K
.

5.6The letter f is used here since the origin is in the German language, where the term for conductor is
Führer.
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Therefore, I is an O∗
K
-module. (Observe that if R �= OK , then R∗ is an OF -module, but

not an OK-module.) Also, R∗ ⊆ O∗
K
, so

TK/F (IR
∗) ⊆ TK/F (O

∗
K
) ⊆ OF .

Therefore, R∗ ⊆ I∗, so I ⊆ R ⊆ OK . This shows that I is an OK-ideal contained in R.
Consequently, the OK-ideal fR divides I.

Suppose that J is an OK-ideal in R and β ∈ R∗, namely TK/F (βR) ⊆ OF . Then

TK/F (βJOK) ⊆ TK/F (βR) ⊆ OF .

Therefore, βJ ⊆ O∗
K
, which implies that J ⊆ I. Thus, I divides all OK-ideals in R, so

I
�� fR. Hence,

I = fR ⊆ R,

as required.

Now if R = OF [α], then by the above and the fact that O∗
K

⊆ OF [α]∗, we get,

m�
α,F

(α)O∗
K

⊆ m�
α,F

(α)OF [α]
∗ = OF [α] ⊆ OK ,

where the equality comes from Theorem 5.8 on page 200. Thus, m�
α,F

(α)O∗
K

is an OK-ideal
contained in fα. Also, from the proof of Theorem 5.8,

TK/F

�
OF [α]

m�
α,F

(α)

�
∈ OF .

Therefore, OF [α]/m�
α,F

(α) ⊆ O∗
K
, but fα ⊆ OF [α] by the first part of the proof, so

fα/m
�
α,F

(α) ⊆ O
∗
K
.

In other words, fα ⊆ m�
α,F

(α)O∗
K
. Hence,

fα = m�
α,F

(α)O∗
K
,

which is the first required equality. For the second one, we first note that since OK ⊆
OF [α]∗, and OF [α] ⊆ O∗

K
, then

{β ∈ OF [α] : βOK ⊆ OF [α]} ⊆ fα.

Conversely, from the first proved equality, and the fact that

m�
α,F

(α)O∗
K

⊆ m�
α,F

(α)OF [α]
∗ = OF [α],

from Theorem 5.8, then for any β ∈ fα = m�
α,F

(α)O∗
K

we get that β ∈ OF [α] and βOK ⊆
OF [α]. Hence, fα ⊆ {β ∈ OF [α] : βOK ⊆ OF [α]}, so we have the full equality.

Lastly, fα is the largest OK-ideal contained in OF [α] by the above and Remark 1.15 on
page 31. ✷

The reader is now encouraged to solve Exercise 5.18 as an explicit example of the above.

The following links our previous notion of different to the above.

Theorem 5.9 — Generation by Differents of Elements

Let K/F be an extension of number fields. Then DK/F is the OK-ideal generated by the
δK/F (α), where α runs over the elements of OK .
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Proof. By Lemma 5.6 on page 202, δK/F (α) ∈ DK/F for all α ∈ OK . In fact, from that
lemma we have:

δK/F (α)O
∗
K

= fαDK/F .

Now we show that it suffices to find an α ∈ OK such that P � fα for all prime OK-ideals P.

If such an α exists, then the ideal
�

α∈OK
fα generated by ∪α∈OK

fα must equal OK . Hence,

DK/F = DK/FOK = DK/F

�
�

α∈OK

fα

�
=

�

α∈OK

DK/F δK/F (α)O
∗
K

=

�

α∈OK

δK/F (α)O
∗
K
(O∗

K
)−1 =

�

α∈OK

δK/F (α)OK ,

which shows that DK/F is generated by the δK/F (α). Hence, it remains to show that such
an α exists.

Let P be a prime OK-ideal, and let p be the prime OF -ideal lying below it. Furthermore,
suppose that pOK = P

e
I, where e ∈ N and P � I.

Claim 5.6 There exists an α ∈ I, with α �∈ P, such that its residue class, α, modulo
P is a generator of the multiplicative group of nonzero elements of the field OK/P—see
Exercise 4.25 on page 163.

Let β ∈ OK with β �∈ P. Then β is a generator of the multiplicative group of nonzero
elements of the field OK/P. By Exercise 4.31 on page 164,

βN(P) ≡ β (mod P).

If βN(P) ≡ β (mod P
2), then let γ ∈ P, with γ �∈ P

2. Then

β + γ ≡ β (mod P) and (β + γ)N(P) ≡ βN(P) (mod P
2),

by the Binomial Theorem—see Corollary A.11 on page 341. Therefore,

(β + γ)N(P) ≡ β + γ (mod P) and (β + γ)N(P) �≡ β + γ (mod P
2).

Since I and P are relatively prime, then OK = P
2 + I, so β + γ = β1 + α where β1 ∈ P

2

and α ∈ I. Thus,
α ≡ β + γ − β1 ≡ β (mod P),

so α is a generator of the multiplicative group of nonzero elements of the field OK/P, and
α �∈ P. This completes Claim 5.6.

Claim 5.7 Let n ∈ N and suppose that S is a system of n representatives of OK modulo
P, with 1 ∈ S and let ω ∈ P, ω �∈ P

2. Then

T =






n−1�

j=0

ajω
j : aj ∈ S for j = 0, 1, . . . , n− 1




 ,

is a system of representatives of OK modulo P
n.
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We use induction on n. If n = 1, then S = T, so we have the induction step. Assume, for
the induction hypothesis that the result holds for n − 1. Let t1, t2 ∈ T with tj = bj + ωsj
for j = 1, 2. if t1 − t2 ∈ P

n, then (b1 − b2) ∈ P
n − (s1 − s2)ω ⊆ P. Thus, b1 = b2 and

(s1 − s2)ω ∈ P
n. Therefore, there exists an OK-ideal J such that

OK(s1 − s2)ω = P
nJ.

Also, since P
2 � (ω) = ωOK , there is an OK-ideal I, not divisible by P such that

OKω = PI.

Thus,
P
nJ = OK(s1 − s2)ω = OK(s1 − s2)PI,

so
P
n−1

�� OK(s1 − s2).

Therefore, s1 − s2 ∈ P
n−1. By induction hypothesis, s1 = s2, so t1 = t2. We have

shown that for any t1, t2 ∈ T, with t1 − t2 ∈ P
n, we get t1 = t2. Hence, T has N(P)n

different representatives of OK modulo P
n. By Exercise 4.25 on page 163, T is a system of

representatives of OK modulo P. This is Claim 5.7.

Claim 5.8 For any n ∈ N and any β ∈ OK , there exists a unique γ ∈ OF [α] such that

β ≡ γ (mod P
n).

Let ω = αN(P)−α. Observe that by the same argument as used above on β+γ, we get that
ω �∈ P

2. Thus, by Claim 5.7, for any β ∈ OK , there exists a unique
�

n−1
j=0 ajωj ∈ OF [α]

with aj ∈ S such that β − γ ∈ P
n. This is Claim 5.8.

Finally, we now show that P � fα.
Let β ∈ OKm�

α,F
(α) ∩OF . Then βOF = paJ, where a is a nonzero integer and the prime

p below P does not divide the OF -ideal J. Consider

βhFOF = (σ1) and p
ahF = (σ2).

Therefore, σ1 = σ2σ3 where σ3 ∈ J
hF . Also, σ3 �∈ p since pahF+1 � (σ1). We now demon-

strate that OK(σ3αahF ) ⊆ OF [α]. By Claim 5.8, for any given ρ ∈ OK , there exists a
γ ∈ OF [α] such that ρ− γ ∈ P

eahF . Since

ρσ3α
ahF = (ρ− γ)σ3α

ahF + γσ3α
ahF ,

and γσ3αahF ∈ OF [α], then it suffices to show that (ρ − γ)σ3αahF ∈ OF [α]. Since (σ2) =
pahF , then

OK(ρ− γ)σ3α
ahF =

OK(ρ− γ)σ2σ3OKαahF

OKpahF

⊆ OKσ1P
eahFOKαahF

PeahF IahF

⊆ OKβhF ⊆ OF [α],

where the penultimate inclusion comes from the fact that α ∈ I, and the final inclusion
arises from the fact that m�

α,F
(α)OK ⊆ OF [α] by Exercise 5.12 on page 211. Having shown

that the ideal OK(σ3αahF ) ⊆ OF [α], then it follows from Lemma 5.6 on page 202 that
OK(σ3αahF ) ⊆ fα. Since σ3 �∈ p, then σ3 �∈ P. Thus, since α �∈ P, we get by primality that
σ3αahF �∈ P. Hence, fα �⊆ P, namely P � fα, which is the entire result. ✷

From the proof of Theorem 5.9 emerge two immediate consequences.
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Corollary 5.5 If K/F is an extension of number fields, then for all prime OK-ideals P

there exists an α ∈ OK such that P � fα.

Corollary 5.6 — Dedekind, 1881

Let K/F be an extension of number fields, and let P be a prime OK-ideal. Suppose that I
is an OK-ideal not divisible by P. Then there exists an α ∈ I such that for all β ∈ OK and
any n ∈ N, there exists an element γ ∈ OF [α] with

β ≡ γ (mod P
n).

Our next goal is to establish what may be considered as the main result in the theory of
the different, namely the link between the different and ramification. We will prove that
the primes that ramify in an extension K/F of number fields are precisely those primes
that divide the different, and therefore that there are only finitely many of them. There
are many methods in the literature for achieving such a task. One of them involves an idea
put forth by Weil in 1943—see Biography 5.1 on page 211. He observed that the different
is intimately linked to the notion of abstract differentiation in commutative rings.

Definition 5.10 — Derivations

Let R be a commutative ring with identity and let M be an R-module. A homomorphism
d from R into M is called a derivation of R on M provided that, for all α,β ∈ R,

d(αβ) = αd(β) + βd(α). (5.13)

If T is a subring of R such that a derivation d of R on M satisfies

d(α) = 0 for all α ∈ T,

then d is called a derivation of R on M that is trivial on T . In the case where M is
a commutative ring, a derivation d is deemed to be essential if there exists an element
γ ∈ d(R) such that γ is not a zero divisor.

Remark 5.2 Observe that since d is a homomorphism of additive abelian groups, then in
addition to (5.13), we have that

d(α+ β) = d(α) + d(β),

for all α,β ∈ R. Also, note that (5.13) is the analogue of the standard product formula for
derivatives in elementary calculus.

The reader may now solve Exercises 5.14–5.16 on page 212.

Theorem 5.10 — Differents and Derivations

Let K/F be an extension of number fields. Then DK/F is the least common multiple of all
OK-ideals I for which there exists an essential derivation

d : OK �→ OK/I

that is trivial on OF .
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Proof. We first show that it suffices to prove the result for I = P
n where n ∈ N and P is

a prime OK-ideal. Let I =
�

n

j=1 P
aj

j
, where the Pj are prime OK-ideals, and aj ∈ N for

j = 1, 2, . . . , n. Suppose that
d : OK �→ OK/I

is an essential derivation of OK into OK/P
aj

j
, which is trivial on OF . Then

dj : OK �→ OK/P
aj

j

defined for each β ∈ OK by
dj(β) ≡ d(β) (mod P

aj

j
)

is also an essential derivation of OK into OK/P
aj

j
that is trivial on OF . Conversely, if

dj is an essential derivation of OK into OK/P
aj

j
that is trivial on OF , then the n-tuple

d = (d1, . . . , dn) acting on

OK/I ∼=
n�

j=1

OK/P
aj

j
,

via Theorem 1.21 on page 32, the Chinese Remainder Theorem, induces a derivation d� of
OK into OK/I that is trivial on OF . It remains to show that d� is essential. Suppose that
the n-tuple (β1, . . . , βn) ∈ OK is such that dj(βj) is not a zero divisor in OK/P

aj

j
. By

Theorem 1.21, again, we may choose β ∈ OK such that

β ≡ βj (mod P
aj

j
)

for each j = 1, 2, . . . , n. Therefore, d�(β) is not a zero divisor in OK/I.

Our remaining task is to prove that an essential derivation of OK into OK/Pn exists if and
only if Pn

�� DK/F . If d is such a derivation, then by Corollaries 5.5–5.6, we may select an
α ∈ OK such that P � fα, and for any n ∈ N and any β ∈ OK we have

β ≡ g(α) (mod P
n+1)

for some g(α) ∈ OF [α]. For such a congruence, we get from Exercise 5.15 that

d(β) = d(g(α)) = g�(α)d(α),

where the last equality follows from the very definition of a derivation, with g� being the
derivative of g. If d(α) is a zero divisor, then d(β) is a zero divisor for all β ∈ OK ,
contradicting the choice of d. Thus, d(α) is not a zero divisor, so

0 = d(0) = d(mα,F (α)) = m�
α,F

(α)d(α).

Therefore,
m�

α,F
(α) ≡ 0 (mod P

n).

By Lemma 5.6 on page 202,
m�

α,F
(α)O∗

K
= fαDK/F ,

but P � fα, so P
n
�� DK/F .

Conversely, assume that Pn
�� DK/F , and select α ∈ OK such that P � fα. Let β ∈ fα with

β �∈ P. By Lemma 5.6 again, every γ ∈ OK may be written as

γ =
g(α)

β
,
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where g(x) ∈ OF [x]. Since β ∈ fα ⊆ OF [α], by Lemma 5.6 one more time, then β = h(α) ∈
OF [α]. Since β �∈ P, then β has a multiplicative inverse σ ∈ OK modulo P, namely

βσ ≡ 1 (mod P
n). (5.14)

Define for each γ = g(α)/β ∈ OK ,

d(γ) = (g�(α)h(α)− g(α)h�(α))σ2 (mod P
n). (5.15)

Claim 5.9 d is an essential derivation of OK into OK/Pn which is trivial on OF .

If γ = gj(α)/β for j = 1, 2 are two expressions for γ ∈ OK , then

g1(α)− g2(α) = 0,

so there exists a k(x) ∈ OF [x] such that

g1(x)− g2(x) = mα,F (x)k(x).

Therefore,
g�1(α)− g�2(α) = m�

α,F
(α)k�(α) ≡ 0 (mod P

n),

where the congruence comes from Theorem 5.9 on page 203, since

P
n
�� DK/F

�� m�
α,F

(α)OK .

This shows that (5.15) is well-defined.

If we consider the product

g(α)

β
= γ = β1β2 =

g1(α)

β

g2(α)

β
,

then β1 = σg1(α) and β2 = σg2(α). Therefore,

β1d(β2) + β2d(β1) ≡ σg1(α) [g
�
2(α)h(α)− g2(α)h

�(α)]σ2

+σg2(α) [g
�
1(α)h(α)− g1(α)h

�(α)]σ2

≡ σ3 ([g1(α)g
�
2(α) + g�1(α)g2(α)]h(α)− 2g1(α)g2(α)h

�(α)) (mod P
n). (5.16)

Since
g1(α)g2(α) = βg(α) = g(α)h(α),

then for some �(x) ∈ OF [x],

g1(x)g2(x) = g(x)h(x) +mα,F (x)�(x).

By differentiating the latter, evaluating at x = α, and looking at it modulo P
n, we achieve,

g1(α)g
�
2(α) + g�1(α)g2(α) ≡ g�(α)h(α) + g(α)h�(α) (mod P

n). (5.17)

Hence, by comparing (5.16)–(5.17) and using (5.14), we get

β1d(β2) + β2d(β1) ≡ σ2 (g�(α)h(α)− g(α)h�(α)) (mod P
n),

so
β1d(β2) + β2d(β1) = d(β1β2).

Thus, d is a derivation, and it clearly is trivial on OF . Since d(α) is the identity of OK/Pn,
then d is essential.

This completes the proof.5.7 ✷

We are now in a position to establish the following main result.

5.7Observe that (5.15) is the analogue of the quotient rule in elementary calculus.
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Theorem 5.11 — Fundamental Theorem of the Different

Let K/F be an extension of number fields, P a prime OK-ideal with p the prime OF -ideal
below it, and set e = eK/F (P). Then

P
e−1

�� DK/F .

Furthermore, if gcd(e,NF/Q(p)) = 1, then

P
e � DK/F .

Proof. Let pOK = P
eI, where p = P ∩OF , P � I, and e = eK/F (P). If β ∈ PI, there must

exist an n ∈ N sufficiently large such that

βp
n

∈ P
p
n

I ⊆ POK ,

where p = p ∩ Z. By Exercise 5.8 on page 195, there exists a normal extension L of F
containing K. Thus, if θj for j = 1, 2, . . . , d = |L : F | are all of the F -isomorphisms of L
into C, then for each such j, θj(βp

n

) ∈ OL. Hence,

TL/F (β
p
n

) ∈ POL ∩OF = p.

Thus, by the Binomial Theorem,

TL/F (β
p
n

)− TL/K(β)p
n

∈ p.

Hence, TL/K(β) ∈ p, so
TL/K(PI) ⊆ p.

Therefore, by part 4 of Lemma 5.4 on page 197,

PI ⊆ pD
−1
K/F

.

In other words,
PIDK/F ⊆ p ⊆ POK = P

eI.

Hence, DK/F ⊆ P
e−1, namely

P
e−1

�� DK/F ,

as required for the first statement.

Now we establish the second statement. By Theorem 5.10, it suffices to prove that every
derivation d of OK into OK/Pe, which is trivial on OF , satisfies that d(β) is a zero divisor
for all β ∈ OK such that d(β) �= 0.

We break this into three cases.

Case 5.1 β ∈ P− P
2

Let α ∈ p− p2. Then there exist γ,σ ∈ OK − P such that α = βeγ/σ , so

σα = βeγ.

Therefore, since α ∈ OF , and d(βe) = 0, then

0 = d(βeγ) = βe
d(γ) + γd(βe) = γd(βe) = γeβe−1

d(β),

where the last equality is from Exercise 5.15. Since p � e, γ �∈ P, and βe−1 �∈ P
e, then d(β)

is a zero divisor. This completes case 5.1.
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Case 5.2 β ∈ P
n for n ≥ 2.

We may assume that n < e, since otherwise d(β) = 0. Also, we may assume that β �∈ P
n−1.

Thus, there is a ρ ∈ P−P
2 and γ,σ ∈ OK −P such that β = ρnγ/σ . Therefore, by Exercise

5.15,
d(σβ) = d(ρnγ) = γd(ρn) + ρnd(γ) = γnρn−1

d(ρ) + ρnd(γ),

and the right-hand side is an element of Pn/Pe, so the left-hand side is also such an element.
However,

d(σβ) = σd(β) + βd(σ),

and βd(σ) ∈ P
n/Pe, so σd(β) ∈ P

n/Pe. Consequently, (σd(β))e−n ∈ P
e, so since σ �∈ P,

then d(β) is a zero divisor in OK/Pe. This is Case 5.2.

Case 5.3 β �∈ P.

By Exercise 4.31 on page 164,

βNK/Q(P)−1 ≡ 1 (mod P),

so there exists an α ∈ P such that

βNK/Q(P)−1 = 1 + α.

By Exercise 5.15,

d(βNK/Q(P)−1) = (NK/Q(P)− 1)βNK/Q(P)−2
d(β),

and we also have that
d(βNK/Q(P)−1) = d(1 + α) = d(α),

where d(α) ∈ P is a zero divisor, since βα = β(βNK/Q(P)−1) = βNK/Q(P) − β ∈ P. Given
that (NK/Q(P) − 1)βNK/Q(P)−2 �∈ P, then d(β) is a zero divisor. This completes Case 5.3,
and so the entire result. ✷

The following consequences of Theorem 5.11 are the promised links between the different
and ramification.

Corollary 5.7 If P is a prime OK-ideal, then P ramifies in K/F if and only if P
�� DK/F .

Consequently, there are only finitely many ramified primes in K/F .

Proof. The first assertion is immediate from Theorem 5.11. That there are only finitely
many follows from the first assertion via Exercise 2.52 on page 86. ✷

Corollary 5.8 A prime OF -ideal p ramifies in K if and only if p
�� ∆K/F .

Proof. If
p
�� ∆K/F = NK/F (DK/F ),

then P|p for some prime OK-ideal dividing DK/F . By Corollary 5.7, P must ramify in K/F ,
whence, p ramifies in K. Conversely, if p ramifies in K, there exists a prime OK ideal P
above p which ramifies in K/F . By Corollary 5.7, P

�� DK/F , so

p
�� pfK/F (P) = NK/F (P)

�� NK/F (DK/F ) = ∆K/F ,

which follows from Exercise 2.46 on page 86. ✷

The interpretation of Theorem 5.11 on the preceding page will be expanded in §5.3 when
we introduce ramified and unramified field extensions.
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Biography 5.1 André Weil, pronounced vay, (1906–1998) was born on May
6, 1906 in Paris, France. As he said in his autobiography, The Apprenticeship
of a Mathematician, he was passionately addicted to mathematics by the age
of ten. He was also interested in languages, as evidenced by his having read
the Bhagavad Gita in its original Sanskrit at the age of sixteen. After graduat-
ing from the École Normal in Paris, he eventually made his way to Göttingen,
where he studied under Hadamard. His doctoral thesis contained a proof of the
Mordell-Weil Theorem, namely that the group of rational points on an elliptic
curve over Q is a finitely generated abelian group. His first position was at Ali-
garh Muslim University, India (1930–1932), then the University of Strasbourg,
France (1933–1940), where he became involved with the controversial Bourbaki
project, which attempted to give a unified description of mathematics. The
name Nicholas Bourbaki was that of a citizen of the imaginary state of Pol-
davia, which arose from a spoof lecture given in 1923. Weil tried to avoid the
draft, which earned him six months in prison. It was during this imprisonment
that he created the Riemann hypothesis—see Hypothesis B.1 on page 354. In
order to be released from prison, he agreed to join the French army. Then he
came to the United States to teach at Haverford College in Pennsylvania. He
also held positions at Sao Paulo University, Brazil (1945–1947), the University
of Chicago (1947–1958), and thereafter at the Institute for Advanced Study at
Princeton. In 1947 at Chicago, he began a study, which eventually led him to a
proof of the Riemann hypothesis for algebraic curves. He went on to formulate
a series of conjectures that won him the Kyoto prize in 1994 from the Inamori
Foundation of Kyoto, Japan. His conjectures provided the principles for mod-
ern algebraic geometry. His honours include an honorary membership in the
London Mathematical Society in 1959, and election as a Fellow of the Royal
Society of London in 1966. However, in his own official biography he lists his
only honour as Member, Poldevian Academy of Science and Letters. He is also
known for having said In the future, as in the past, the great ideas must be the
simplifying ideas, as well as God exists since mathematics is consistent, and the
devil exists since we cannot prove it. This is evidence of his being known for
his poignant phrasing and whimsical individuality, as well as for the depth of
his intellect. He died on August 6, 1998 in Princeton, and is survived by two
daughters, and three grandchildren. His wife Eveline died in 1986.

Exercises

5.12. Let K/F be an extension of number fields, and let α ∈ OK such that K = F (α).
Prove that m�

α,F
(α)OK ⊆ OF [α].

5.13. LetK/F be an extension of number fields, and let α ∈ OK such thatK = F (α). Prove
that (O∗

K
)−1 = OKm�

α,F
(α) if and only if OK = OF [α]. (Hint: Use the Lagrange

Interpolation Formula in Appendix A.)

5.14. Let K/F be an extension of fields. Show that the set of all derivations of F in K
form a vector space over K. For two given such derivations d1, d2, define the bracket
operation,

[d1, d2] = d2d1 − d1d2.

Show that the bracket operation is a derivation of F into K. Furthermore, for any
three such derivations dj for j = 1, 2, 3, establish the Jacobi identity:

[[d1, d2], d3] + [[d2, d3], d1] + [[d3, d1], d2] = 0.

       



212 5. Ideal Decomposition in Number Fields

(Hint: In the process of verification, establish and use the fact that the bracket opera-
tion is anticommutative, namely that [d1, d2] = −[d2, d1].) (The resulting vector space
with the bracket operation forms a nonassociative algebra, called a Lie Algebra, over
K, and the bracket operation is called a Lie Product, or commutator product.)

5.15. Let S be a commutative ring with identity and R a subring, and d a derivation of R
into S. Prove that for all n ∈ N and α ∈ R,

d(αn) = nαn−1
d(α).

5.16. Let K/F be an extension of number fields, and let P be a prime OK-ideal. Suppose
that for a given n ∈ N,

d : OK �→ OK

Pn

is a derivation of OK into OK/Pn. Prove that d(α) = 0 for all α ∈ P
n+1.

5.17. Let F = Q(
√
10), and I = (2,

√
10). Find I∗, DF/Q(I), DF/Q, I∗

−1 and∆ F/Q.

5.18. With reference to Exercise 5.17, find f√10.

Biography 5.2 Marius Sophus Lie (1842–1899) was born on December 17,
1842 in Nordfjordeid, Norway. Ludwig Sylow (1832–1918) was one of Lie’s
teachers at the University of Christiana (which became Oslo in 1925), from
which he graduated in 1865. In 1869, Lie went to Berlin where he met Felix
Klein (1849–1925). This began a collaborative effort that resulted in several
joint publications. Among the consequences of this work is Klein’s characteriza-
tion of geometry involving properties invariant under group actions, which was
established in 1872. As a result of the Franco-German war of 1870, both Lie and
Klein left France. Lie planned to go to Italy, but was arrested as a German spy,
with the unfortunate assumption being made that his mathematical notes were
coded messages. Only after the intervention of Gaston Darboux (1842–1917),
a leading French geometer at the time, did Lie get released. Lie then returned
to Christiana, and obtained his doctorate there. He began an investigation
of differential equations in an attempt to find an analogue of Galois theory.
Ultimately, he was led to a structure that we now call a Lie algebra. He aban-
doned the study of partial differential equations in favour of his new structure.
In 1900, Elie Cartan (1869–1951) published the classification of semisimple Lie
algebras. However, Wilhelm Killing (1847–1923) had independently introduced
Lie algebras with a different purpose since his interest was non-Euclidean ge-
ometry. Lie collaborated for about a decade with Friedrich Engel (1861–1941).
Their joint publication in 1893, Theorie der Tansformationgruppen appeared
in three volumes, and perhaps best represents Lie’s major work on continuous
groups of transformations. Engel was sent by Klein to study under Lie. Engel
became Lie’s assistant in 1892 when Lie succeeded Klein for his chair at Leipzig.
In 1898, Lie returned to Kristiana, the intermediate name taken by Christiana
before it became Oslo. There he took a chair that had been specially created
for him. However, he died shortly thereafter on February 18, 1899.
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5.3 Ramification

Everything is what it is, and not another thing.
Joseph Butler (1692–1752)
English bishop and theologian

In this section we look at the following concept in extensions of number fields employing
the notions presented in §5.2

Definition 5.11 — Ramified and Unramified Extensions

If K/F is an extension of number fields such that there does not exist a prime OK-ideal,
which is ramified in K/F , then the extension is said to be unramified.5.8 At the other end
of the spectrum are those extensions for which there exists a prime OK-ideal P with

eK/F (P) = |K : F |,

in which case the extension is called totally ramified, fully ramified, or purely ramified at P.
If P is a ramified prime OK-ideal with

P ∩ Z = (p), and p � eK/F (P),

then P is said to be tamely ramified in K/F . An extension K/F is said to be tamely
ramified, provided that all ramified primes in K/F are tamely ramified. Thus, in particular,
unramified extensions are tamely ramified. When p divides eK/F (P), then P is called wildly
ramified, and the extension is called wildly ramified at P.

Corollary 5.9 If K/Q is an unramified extension, then K = Q.

Proof. By Remark 3.14 on page 116, if K �= Q, then |∆K/Q| > 1. Therefore, there must
exist a ramified prime in K/Q, by Corollary 5.8 on page 210. ✷

Remark 5.3 In view of Definition 5.11, the Fundamental Theorem of the Different, The-
orem 5.11 on page 209, says that any tamely ramified prime OK-ideal P in K/F satisfies
the property that

P
e−1

�� DK/F , but P
e � DK/F , where e = eK/F (P).

Hence, if K/F is normal, then pn � ∆K/F , where p = P ∩ F , and n = |K : F |—see
Exercise 5.20 on page 219. Later, we will see that the converse is also true, namely, that a
normal extension for which∆ K/F is not divisible by the nth power of a prime OF -ideal p
must be tamely ramified at p—see Exercise 5.46 on page 253.

Now we look at ramification in composita of number fields—see Application A.1 on page 325
and the discussion surrounding it.

5.8This includes the so-called infinite primes, namely the embeddings of F into C. This is the term used
in class-field theory—see Theorem 5.21 on page 239. In an arbitrary extension K/F of number fields, a real
embedding of F into C that extends to a complex embedding of K into C is said to ramify—see Exercise 2.11
on page 63. Thus, these infinite “primes” that ramify must be excluded as well. We explore and develop
the notion of these infinite primes in Exercise 5.24 on page 220. The primes that are not infinite are called
the finite primes.
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Theorem 5.12 — Ramification in a Compositum of Number Fields

Let the number fields Kj for j = 1, 2 be extensions of the number field F , and let L = K1K2

be the compositum of K1 and K2 over F . Then a prime OF -ideal p divides∆ L/F if and
only if it divides∆ K1/F

∆K2/F
.

Proof. By Lemma 5.5 on page 198, any prime divisor of∆ K1/F
∆K2/F

is a divisor of∆ L/F .
Conversely, assume that the prime OF -ideal p divides∆ L/F , and p � ∆K1/F

. Thus, there
exists a prime OL-ideal P such that P

�� DL/F and P lies over p. Since

DL/F = DL/K1
DK1/F

,

by part 2 of Lemma 5.4 on page 197, then P � DK1/F
OK1 . Thus, P

�� DL/K1
. Select α ∈ OK2

such that K2 = F (α). Then, by Theorem 1.23 on page 38,

mα,F (x) = mα,K1(x)f(x),

for some f(x) ∈ K1[x]. Therefore,

m�
α,F

(α) = m�
α,K1

(α)f(α).

This implies that
m�

α,F
(α) ∈ m�

α,K1
(α)OK .

However, by Theorem 5.9 on page 203,

m�
α,K1

(α) ∈ DL/K1
,

and since P
�� DL/K1

, then
DL/K1

⊆ P.

Therefore, m�
α,K1

(α) ∈ P, so m�
α,F

(α) ∈ P. Hence, by Theorem 5.9 again DK2/F
⊆ P, so

P
�� DK2/F

, as required. ✷

Corollary 5.10 If Kj/F is unramified for j = 1, 2, then K1K2/F is unramified.

Proof. This is immediate from Theorem 5.12, and Corollary 5.8 on page 210. ✷

Corollary 5.11 Let F ⊆ K ⊆ L be a tower of number fields, where L is the smallest
extension field of F containing K such that L is normal over F . Suppose that p is a
nonzero prime OF -ideal. Then∆ L/F and∆ K/F have the same prime divisors, so p is
unramified in L/F if and only if p is unramified in K/F .

Proof. Let θj for j = 1, 2, . . . , n be all of the embeddings of K into C. Then

L = Kθ1Kθ2 · · ·Kθn ,

the compositum of all the embeddings. The result now follows from Theorem 5.12, and
Lemma 5.5. ✷

Remark 5.4 The above results set the stage for later when we develop the so-called Hilbert
class field, which is the maximal, unramified, normal extension of a given number field such
that the Galois group is abelian. This Galois group will be shown to be isomorphic to the
class group of the base field via the celebrated Frobenius automorphism. The Hilbert class
field is called the maximal abelian unramified extension of the base field. There is much
power yet to be developed.
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We continue with further results on composita of number fields and their discriminants.

Theorem 5.13 — Discriminants and Degrees of Composita

Let Kj for j = 1, 2 be number fields with

gcd(∆K1 ,∆K2) = 1,

and
|Kj : Q| = nj .

Then each of the following holds, where L = K1K2 is their compositum.

(a) |L : Q| = n1n2.

(b) OL = OK1OK2 , and if {α1, . . . , αn1} and {β1, . . . , βn2} are integral bases of K1 and
K2, respectively, then {αiβj} for 1 ≤ i ≤ n1, 1 ≤ j ≤ n2 is an integral basis for L.

(c) ∆
L
= ∆n2

K1
∆n1

K2
.

Proof. (a) We have
|L : Q| = |L : K2| · |K2 : Q| = |L : K2|n2.

If |L : Q| < n1n2, then |L : K2| < n1. Let K = Q(α). Then mα,K2(x)
�� mα,Q(x). If F is the

subfield of K2 generated by the coefficients of mα,K2(x), then F �= Q. Since F ⊆ K2, then
∆F

�� ∆K2 , by Theorem 3.15 on page 126. Since the coefficients of mα,K2(x) are elementary
symmetric functions—see Definition A.16 on page 333—of the roots of mα,K2(x), then
mα,K2(x) ∈ N1[x], where N1 is the smallest Galois extension of Q containing K1. Therefore,
F ⊆ N1, so as above∆ F

�� ∆N1 . Let p
�� ∆F be a prime. Then p

�� ∆N1 and p
�� ∆K2 , so

p
�� ∆K1 , by Corollary 5.11, contradicting the hypothesis that gcd(∆1,∆2) = 1. This is (a).

(b) Since OK1OK2 is the smallest subring of OL containing both OK1 and OK2 , then {αiβj}
for 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, is a Z-basis for OK1OK2 . Therefore,

disc ({αiβj}) = det(σiθj(αkβ�))
2, (5.18)

where the σi are the Q-isomorphisms of K1 and the θj are the Q-isomorphisms of K2. The
determinant in (5.18) is the Kronecker product

det(σi(αk))
2n2 × det(θj(β�))

2n1 = ∆n2
K1

∆n1
K2

—see Definition A.21 on page 339. Thus, by the very definition of a field discriminant given
in Definition 2.7 on page 77, {αiβj} is an integral basis for L.

(c) By Lemma 5.5 on page 198,

∆L/Q = ∆|L:K1|
K1/Q NK1/Q(∆L/K1

) = ∆n2

K1/QN
K1/Q(∆L/K1

),

and similarly
∆L/Q = ∆n1

K2/QN
K2/Q(∆L/K2

).

Hence,∆ n2
K1

and∆ n1
K2

both divide∆
L
, and since gcd(∆K1 ,∆K2) = 1, then

∆n2
K1

∆n1
K2

�� ∆
L
.

Since disc ({αiβj}) = ∆n2
K1

∆n1
K2

by part (b), then∆
L
= ∆n2

K1
∆n1

K2
. ✷

The following application of Theorem 5.13 fulfills the promise made at the top of page 126.
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Theorem 5.14 — Discriminants of Cyclotomic Fields

Let n ∈ N, n > 2 and set K = Q(ζn), where ζn is a primitive nth root of unity. If
n =

�
r

j=1 p
aj

j
for distinct primes pj and aj ∈ N, then

∆K =
r�

j=1

∆
φ(n/p

aj

j
)

Q(ζ
p
aj

j

) =
(−1)φ(n)r/2nφ(n)

�
r

j=1 p
φ(n)/(pj−1)
j

.

Proof. We use induction on r. Corollary 3.9 on page 125 establishes the induction step
r = 1, so we assume the induction hypothesis, that the result holds for r − 1, where r > 1.
Thus, by Corollary 3.9, and the induction hypothesis,

gcd(∆Q(ζ
n� ),∆Q(ζ

p
ar
r

)) = 1,

where n� = n/par

r
. Therefore, by part (b) of Theorem 5.13,

∆K =
r�

j=1

∆
φ(n/p

aj

j
)

Q(ζ
p
aj

j

) = ∆
φ(par

r
)

Q(ζ
n� )

∆φ(n�)
Q(ζ

p
ar
r

).

However, by the induction hypothesis,

∆
φ(par

r
)

Q(ζ
n� )

=
(−1)φ(n

�)φ(par
r

)(r−1)/2(n�)φ(n
�)φ(par

r
)

�
r−1
j=1 p

(φ(n�)/(pj−1))φ(par
r )

j

=
(−1)φ(n)(r−1)/2(n�)φ(n)

�
r−1
j=1 p

φ(n)/(pj−1)
j

,

and by Corollary 3.9, (or the induction hypothesis),

∆φ(n�)
Q(ζ

p
ar
r

) =
(−1)(φ(p

ar
r

)/2)φ(n�)p
arφ(p

ar
r

)φ(n�)
r

p(φ(p
ar
r )/(pr−1))φ(n�)

r

=
(−1)φ(n)/2parφ(n)

r

pφ(n)/(pr−1)
r

.

Hence, by multiplying the last two expressions together, we get the final result. ✷

Corollary 5.12 A rational prime q is ramified in Q(ζn) if and only if q
�� n.

Proof. This follows from Theorem 5.14 via Corollary 5.8 on page 210. ✷

We conclude this section with a result on prime decomposition, without ramification, in a
cyclotomic extension.

Theorem 5.15 — Prime Factorization in Cyclotomic Extensions

Let K be a number field, and n ∈ N. Set L = K(ζn), where ζn is a primitive nth root of
unity. Suppose that p is a prime OK-ideal with n �∈ p, and

fK/Q(p) = eK/Q(p) = 1.

If f ∈ N is the smallest value such that pf ≡ 1(mod n), where (p) = p ∩ Z, then

pOL = P1 · · ·Pg,

where the Pj are distinct prime OL-ideals with fL/K(Pj) = f for each j = 1, 2, . . . , n and

fg = |L : K|.
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Proof. The extension L/K is normal since any K-isomorphism θ of L satisfies θ(L) = L.
Hence, we need only show that fL/K(p) = f , since once this fact is proved, the remaining
facts fall into place as an immediate consequence of Theorem 5.4 on page 189. To see that
p is unramified in L/K, use Corollaries 5.10 on page 214 and 5.12 on the preceding page.

Claim 5.10 If fζn is the conductor of OK [ζn] in OL, then fζn

�� nOL.

First, we have that
xn − 1 = mζn,K

(x)g(x),

for some g(x) ∈ OK [x]. Therefore, by taking derivatives and setting x = ζn, we get

nζn−1
n

= δL/K(ζn)g(ζn).

Since ζn−1
n

∈ UOL
, then

δL/K(ζn)OL

�� nOL.

Thus, fζn
�� nOL, by Lemma 5.6 on page 202, which secures Claim 5.10.

By Claim 5.10, and by part (a) of Exercise 5.19 on page 219,

NL/K(fζn)
�� n|L:K|

OK .

Therefore, since n �∈ p, then p � NL/K(fζn). This allows us to invoke Exercise 5.23 on
page 219. Hence, for each γ ∈ OL, there exists a polynomial k(x) ∈ OK [x] such that

γ ≡ k(ζn) (mod pOL).

Thus, by the Binomial Theorem—see Corollary A.11 on page 341—

γN(p)f ≡ k(ζn)
N(p)f ≡ k(ζN(p)f

n
) ≡ k(ζn) (mod pOL),

where we are using Definition 2.8 on page 83 for the norm exponents. Thus,

γN(p)f ≡ γ (mod Pj),

for each j = 1, 2, . . . , g. By Exercises 4.30–4.31 on pages 163–164, the exponent m given by,

(m) = NL/Q(Pj) = NK/Q(p)fL/K
(p)

is the smallest one such that
γm ≡ γ (mod Pj),

for all γ ∈ OL and a given j = 1, 2, . . . , g. Therefore, fL/K(p) ≤ f . If

NL/Q(Pj)
f
L/K

(p) �≡ 1 (mod n), (5.19)

then ζ
f
L/K

(p)

n �= ζn is a primitive nth root of unity, and

ζ
f
L/K

(p)

n − ζn ∈ Pj .

Hence, we have the basis discriminant containment:

disc ({1, ζn, . . . , ζφ(n)
n

}) ∈ Pj .

Thus,
disc ({1, ζn, . . . , ζφ(n)

n
}) ∈ Pj ∩ Z = (p),
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where the prime p does not divide n. Since

disc ({1, ζn, . . . , ζφ(n)
n

}) = ∆Q(ζn)

by Definition 2.7 on page 77, and Theorem 3.14 on page 123, then this contradicts Corol-
lary 5.12 on page 216. Hence, the assumption (5.19) was incorrect, so

N(Pj)
f
L/K

(p) ≡ 1 (mod n),

and f ≤ fL/K(p), by the minimality of the choice of f . Hence, f = fL/K(p). ✷

Corollary 5.13 Let K = Q(ζn) for n ∈ N with n > 2. Suppose that p is a rational prime,
with n = pan�, where a is a nonnegative integer, p � n�, and f is the least natural number
such that pf ≡ 1(mod n�), then

pOK = P1 · · ·Pg,

where
eK/Q(p) = φ(pa) ≥ 1, fg = φ(n�),

and all Pj distinct prime OK-ideals with

fK/Q(Pj) = f = fK/Q(p).

Proof. If n = n�, namely when a = 0, then the result is an immediate consequence of
Theorem 5.15 on page 216. If a ∈ N, then let F = Q(ζn�). Therefore,

|F : Q| = φ(n�), and |K : Q| = φ(n),

so
|K : F | = φ(n)/φ(n�) = φ(pa) = |Q(ζpa) : Q|,

via Corollary 1.17 on page 41. By Theorem 5.15,

pOF = p1 · · · pg

for distinct prime OF -ideals pj , j = 1, . . . , g, and g = φ(n�)/f . Moreover,

pOK = (P1 · · ·Pm)e (5.20)

for some m, e ∈ N. However, by Theorem 5.4 on page 189,

mefK/Q(Pj) = |K : Q| = φ(n).

Since p is not ramified in F/Q, then e
�� |K : F | = φ(pa). By Example 5.8 on page 190,

p = u(1− ζpa)φ(p
a),

where u ∈ UZ[ζpa ], so using (5.20), we get

pOK = (1− ζpa)φ(p
a)
OK = (P1 · · ·Pm)e,

but e
�� φ(pa), so e = φ(pa) is forced. Since m ≥ g, given that each pj could decompose

further in K/F , it remains to show that m ≤ g. Since

mφ(pa)fK/Q(Pj) = φ(n) = φ(pa)φ(n�),
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then
mfK/Q(Pj) = φ(n�),

but we also have that

fg = φ(n�), and fK/Q(Pj) = fK/F (Pj)f.

Hence, mfK/F (Pj) = g, so g ≥ m, thereby completing the proof. ✷

In §5.4 we marry the Galois theory developed in §2.1 with the results developed thus far in
this chapter to further develop the theory of decomposition of ideals in number fields.

Exercises

5.19. Let K/F be an extension of number fields, and let I, J be OK-ideals. Establish each
of the following.

(a) If I ⊆ J , then NK/F (I) ⊆ NK/F (J).

(b) If I and NK/F (J)OK are relatively prime, then NK/F (I) and NK/F (J) are
relatively prime OF -ideals.

(Hint: Use Corollary 1.7 on page 27.)

5.20. Let K/F be a normal extension of number fields, and let p be a prime OF -ideal that
is tamely ramified in K. Prove that

p
n � ∆K/F ,

where n = |K : F |.
(Hint: Use Theorem 5.5 on page 190, Theorem 5.11 on page 209, and part 3 of
Lemma 5.4 on page 197.)

5.21. Let Kj/F for j = 1, 2 be an extension of number fields, and let L = K1K2 be their
compositum. Prove that

DL/K2

�� DK1/F
OL.

(Hint: Use Theorem 5.9 on page 203.)

5.22. Let Kj/F for j = 1, 2 be an extension of number fields, and let L = K1K2 be their
compositum. Prove that

NK2/F (∆L/K2
)
�� ∆|L:K1|

K1/F
,

and
NK1/F (∆L/K1

)
�� ∆|L:K2|

K2/F
.

(Hint: Use Exercise 5.21 in conjunction with Exercise 5.6 on page 195.)

5.23. Let L/K be an extension of number fields with L = K(α) for some α ∈ OL. Suppose
that p is a prime OK-ideal such that

p � NL/K(fα).

Prove that for any γ ∈ OL, there exists a k(x) ∈ OK [x] such that

γ ≡ k(α) (mod pOL).

(Hint: Use Theorem 1.21 on page 32.)
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In the next exercise, we develop the notion of an infinite prime first mentioned in Foot-
note 5.8 on page 213. To do so we make use of valuation theory a complete overview of
which may be found in [54, Chapter 6].

First of all, an absolute value on a field F is a function | · | : F �→ R satisfying each of the
following.

(a) |x| ≥ 0 for all x ∈ F and |x| = 0 if and only if x = 0.

(b) |x · y| = |x| · |y| for all x, y ∈ F .

(c) |x+ y| ≤ |x|+ |y| for all x, y ∈ F . (Triangle inequality)

If the triangle inequality can be replaced by the condition

|x+ y| ≤ max{|x|, |y|} for all x, y ∈ F, (5.21)

then the absolute value is said to be a non-Archimedean valuation, and otherwise it is called
an Archimidean valuation.

Two valuations |x| and |x|1 are said to be equivalent if |x| < 1 holds if and only if |x|1 <
1, which is an equivalence relation—see Exercise 1.8 on page 6. An equivalence class of
valuations on a field F is called a prime of F , denoted by p, with the valuation in p denoted
by | · |p and its value at x denoted by |x|p. An equivalence class of Archimedean valuations
is called an infinite prime of F and an equivalence class of non-Archimedean valuations is
called a finite prime of F .

If p is an infinite prime of F and θ : F �→ C is an embedding of F into C such that |θ(x)|
is in p and θ is a complex embedding, then p is called a complex prime, and if θ is a real
embedding, then it is called a real prime—see Exercise 2.11 on page 63 for the definitions
of real and complex embeddings.

If K/F is an extension of number fields then extensions of p to primes of K are described
as follows. By Exercise 2.6 on page 63, θ extends to exactly g = |K : F | F -isomorphisms
P1, · · · ,Pg of K, which are infinite primes of K and that are the extensions of p. To be
consistent with the finite case we write

p = P1 · · ·Pg.

5.24. Let K/F be an extension of number fields and p be an infinite prime of F with
P1, · · · ,Pg the primes ofK that extend p. Let the ramification number ei = eK/f (Pi)
equal 2 if p is real and Pi is complex and ei = 1 otherwise. Set fi = FK/F (Pi) = 1 in
all cases. Prove that

g�

i=1

eifi = |K : F |.

In the remaining exercises, we provide applications of the above-defined valuations.

5.25. If F is a field and α,β ∈ F with |α| < |β| for a non-Archimedian valuation | · |, prove
that |α+ β| = |β|.
(This says that, with respect to | · |, every triangle is isosceles.)

5.26. Suppose that F is a field with a non-Archimedean valuation | · |. Prove that the
valuation of F can be extended to the polynomial ring F [x] by defining the absolute
value of f(x) = a0 + a1x+ · · · anxn to be |f | = max{|a0|, . . . , |an|}.
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5.4 Galois Theory and Decomposition

Trivial personalities decomposing in the eternity of print.
Virginia Woolf (1882–1941)

English novelist

We begin with an illustration of a Galois extension as a motivator for an important concept.

Example 5.12 Let K = Q(ζ35) and F = Q(ζ5). Then K/Q is a Galois extension, and
H = �σ� given by

σ : ζ7 �→ ζ37 and σ : ζ5 �→ ζ5

is a subgroup of Gal(K/Q) with fixed field Q(ζ5). Notice that any rational prime p ≡ 1
(mod 5) is completely split in Q(ζ5) by Corollary 5.13 on page 218.

Example 5.12 motivates the following.

Definition 5.12 — Decomposition Groups and Fields

Let K/F be a Galois extension of number fields with Galois group Gal(K/F ), and let P be
a prime OK-ideal. Then

DP(K/F ) = {σ ∈ Gal(K/F ) : Pσ = P}

is called the decomposition group of P in K/F . The fixed field of DP(K/F ),

ZP(K/F ) = {β ∈ K : βσ = β for all σ ∈ DP(K/F )},

is called the decomposition field of P in K/F . When Gal(K/F ) is abelian, then the decom-
position group and the decomposition field depend only on p = P ∩OF , so in this case, we
denote them by

Dp(K/F ) and Zp(K/F ),

and call them the decomposition group of p, and the decomposition field of p in K/F . When
Gal(K/F ) is abelian, we say that K/F is an abelian extension.

We begin with a fundamental result on decomposition groups.

Lemma 5.7 — Conjugacy of Decomposition Groups

Let K/F be a Galois extension of number fields, and let P be a prime OK-ideal. Then for
all σ ∈ Gal(K/F ),

σ−1
DP(K/F )σ = DPσ (K/F ).

Proof. Let τ ∈ DP(K/F ) and σ ∈ Gal(K/F ). Then

(Pσ)σ
−1

τσ = P
τσ = P

σ.

Therefore, σ−1τσ ∈ DPσ (K/F ). Hence,

σ−1
DP(K/F )σ ⊆ DPσ (K/F ).
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It remains to verify the reverse inclusion. If γ ∈ DPσ (K/F ), then

P
σγ = P

σ which implies that Pσγσ
−1

= P.

Thus, σγσ−1 ∈ DP(K/F ). In other words, γ ∈ σ−1
DP(K/F )σ, so

DPσ (K/F ) ⊆ σ−1
DP(K/F )σ,

as required. ✷

Example 5.13 In Example 5.12 on the preceding page, the decomposition group of any
rational prime p ≡ 31(mod 35) in the abelian extension Q(ζ35)/Q is

Dp(Q(ζ35)/Q) = Gal(Q(ζ35)/Q(ζ5)),

and the decomposition field of p is

Zp(Q(ζ35)/Q) = Q(ζ5).

Remark 5.5 Lemma 5.7 on the previous page shows that if K/F is a Galois extension of
number fields, and P is a prime OK-ideal, then for any σ ∈ Gal(K/F ),

σ−1
DP(K/F )σ = DPσ (K/F ).

This is the group-theoretic analogue of the fact established for prime ideals, Corollary 5.1
on page 190, namely that the prime OK-ideals are transitively permuted by the elements
of Gal(K/F ). In other words, if p is a prime OF -ideal with

pOK =
g�

j=1

P
ej

j
,

then the decomposition groups DPj
(K/F ) for 1 ≤ j ≤ g are transitively permuted by the

elements of Gal(K/F ). In the case where K is an abelian extension of F , then

DPj
(K/F ) = DPk

(K/F ) = Dp(K/F ),

for all natural numbers j, k ≤ g. In other words, in the abelian case, the decomposition
groups are all the same, thereby justifying the penultimate remark made in Definition 5.12
on the previous page for the use of the notations Dp(K/F ) and Zp(K/F ).

The decomposition field is aptly named, as shown by the following.

Theorem 5.16 — Splitting in the Decomposition Field

Let K/F be a Galois extension of number fields, and let P be a prime OK-ideal with
P ∩OF = p. Then for Z = ZP(K/F ),

|K : Z| = |DP(K/F )| = eK/F (p)fK/F (p),

and if P ∩OZ = PZ , then
fZ/F (PZ) = eZ/F (PZ) = 1.

       



5.4. Galois Theory and Decomposition 223

Proof. By Theorem 2.4 on page 60,

|Gal(K/F ) : DP(K/F )| = |ZP(K/F ) : F |.

By Lemma 5.7, each right coset DP(K/F )σ of DP(K/F ) via σ ∈ Gal(K/F ) sends P to P
σ.

In other words, if γ ∈ DP(K/F )σ, then

P
γ = P

τσ = P
σ,

for all τ ∈ DP(K/F ). Therefore, DP(K/F )σ = DP(K/F )τ for σ,τ ∈ Gal(K/F ) implies

that DP(K/F ) = DP(K/F )τσ−1, so P → P
τσ

−1
. In other words, Pσ = P

τ . Therefore,
we have established a one-to-one correspondence between the right coset DP(K/F )σ in
Gal(K/F ) and the primes Pσ. By Corollary 5.1, these primes are transitively permuted by
the σ ∈ Gal(K/F ), so there must exist gK/F (p) of them. Hence,

|ZP(K/F ) : F | = gK/F (p).

Thus, by Theorem 5.4 on page 189,

|DP(K/F )| = eK/F (p)fK/F (p).

Now we verify the last statement in the theorem. Let Z = ZP(K/F ), and PZ = P ∩ Z. By
Theorem 2.4, K/Z is a normal extension. Therefore,

Gal(K/Z) = DP(K/F ),

so P
σ = P for all σ ∈ Gal(K/F ). By Theorem 5.4, gK/Z(PZ) = 1, and

|K : Z| = eK/Z(PZ)fK/Z(PZ). (5.22)

Also,
|K : F | = eK/F (p)fK/F (p)gK/F (p), (5.23)

and we have already shown that

|Z : F | = gK/F (p). (5.24)

Hence, putting (5.22)–(5.24) together, we get

eK/F (p)fK/F (p)gK/F (p) = eK/Z(PZ)fK/Z(PZ)gK/F (p),

so
eK/F (p)fK/F (p) = eK/Z(PZ)fK/Z(PZ). (5.25)

However, by Theorem 5.1 on page 184,

eK/F (p) = eK/Z(PZ)eZ/F (PZ), (5.26)

and
fK/F (p) = fK/Z(PZ)fZ/F (PZ). (5.27)

By comparing (5.25)–(5.27), we get

eZ/F (PZ) = 1 = fZ/F (PZ),

as required. ✷
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Corollary 5.14 If K/F is a Galois extension of number fields, and P is a prime OK-ideal
with P ∩OF = p, then

|ZP(K/F ) : F | = gK/F (p).

Furthermore, if DP(K/F ) is a normal subgroup of Gal(K/F ), then p is completely split in
ZP(K/F ).

Proof. From the proof of Theorem 5.16, we have the first statement. By Theorem 2.4, if
DP(K/F ) is normal in Gal(K/F ), then Z/F is a normal extension where Z = ZP(K/F ),
so by Theorem 5.16,

fZ/F (PZ) = fZ/F (p) = 1 = eZ/F (PZ) = eZ/F (p),

where PZ = P ∩ Z. Therefore,

gZ/F (p) = |Z : F | = gK/F (p),

namely p is completely split in Z. ✷

Example 5.14 If we let L = Q(ζ3,
3
√
2), and F = Q, then Gal(K/F ) = S3, the symmetric

group on three letters—see Definition A.1 on page 320. In Example 5.9 on page 191 we
demonstrated that p = 29 splits into two primes

pOK = P1P2

where K = Q( 3
√
2), with fK/Q(P1) = 1 = eK/Q(Pj) for j = 1, 2, and fK/Q(P2) = 2. Also,

fL/K(Q1) = 2, where Q1 is the prime OL-ideal over P1. Thus,

ZQ1(L/Q) = K,

which is not normal over Q, as demonstrated in Exercise 2.12 on page 63. Similarly, the
decomposition fields for Q2 and Q3 are, respectively,

Q(ζ3
3
√
2) and Q(ζ23

3
√
2).

In none of these (isomorphic) fields is 29 completely split, since

|ZQ1(L/Q)| = 3 = gK/F (29),

but fK/Q(Pj) ≤ 2 for j = 1, 2. This shows that the normality assumption in Corollary 5.14
is indeed necessary.

There exists another important subgroup of the Galois group from the perspective of de-
composition. The reader unfamiliar with residue classes modulo an ideal should review
Exercises 4.30–4.32 on pages 163–164 before proceeding.

Definition 5.13 — The Inertia Group and Inertia Field

Let K/F be a Galois extension of number fields, and let P be a prime OK-ideal. Then

TP(K/F ) = {σ ∈ Gal(K/F ) : ασ ≡ α (mod P) for all α ∈ OK}

is called the inertia group of P in K/F , and its fixed field,

TP(K/F ) = {β ∈ K : βσ = β for all σ ∈ TP(K/F )},

is called the inertia field of P in K/F .5.9

5.9The T is used for inertia subgroup since it comes from the German Trägheitskörper, and, similarly,
Z for the decomposition field comes from Zerlegungskörper. These were the terms used by Hilbert in
his Zahlbericht, where the theory was published for the first time. However, there is a certain consensus
that Dedekind knew about the decomposition and inertia subfields, as shown by his papers, which were
unpublished at the time that Hilbert wrote down his ramification theory.
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Lemma 5.8 — Inertia and Conjugacy

Let K/F be a Galois extenion of number fields, and let P be a prime OF -ideal. Then, for
all σ ∈ Gal(K/F ),

σ−1
TP(K/F )σ = TPσ (K/F ).

Proof. If τ ∈ TP(K/F ) and σ ∈ Gal(K/F ), then for α ∈ K,

στσ−1(α)− α = στ(σ−1(α))− σσ−1(α) = σ(τ(σ−1(α))− σ−1(α)) ∈ σ(P),

so σTP(K/F )σ−1 ⊆ Tσ(P)(K/F ). By the same reasoning,

σ−1
Tσ(P)(K/F )σ ⊆ TP(K/F ),

so we also have the reverse inclusion. ✷

The following gives a value to the order of the inertia group.

Theorem 5.17 — Index of the Inertia Group

Let K/F be a Galois extension of number fields, and let P be a prime OK-ideal with
P ∩OF = p. Then TP(K/F ) is a normal subgroup of DP(K/F ), and

|Gal(K/F ) : TP(K/F )| = fK/F (p)gK/F (p).

Also, for T = TP(K/F ), and PT = P ∩OT , we have that fK/T (P) = 1, eT/F (PT ) = 1, and
eK/T (P) = eK/F (p).

Proof. Let OK/P = KP and OF /p = Fp. Define a mapping

ψ : DP(K/F ) �→ Gal(KP/Fp),

by
ψ(σ) = σ,

where σ(α) = σα, with α being the residue class of α in OK/P. Thus, σ ∈ Gal(KP/Fp),
and ψ is a homomorphism. By the definition of TP(K/F ), we get that ker(ψ) = TP(K/F ),
so by Theorem A.5 on page 328,

DP(K/F )/TP(K/F ) ∼= Gal(KP/Fp),

and TP(K/F ) is a normal subgroup of DP(K/F )—see also Lemma 5.7 on page 221. Since
Theorem 5.16 on page 222 gives us that |DP(K/F )| = eK/F (P)fK/F (P), and by Defini-
tion 5.1 on page 182, |KP : Fp| = fK/F (P), then

|TP(K/F )| = eK/F (p),

so
|Gal(K/F ) : TP(K/F )| = fK/F (p)gK/F (p),

which is the first result. Next, we show that fK/T (P) = 1. Let TPT
= OT /PT . By the

definition of inertial degree, we need only show that

|KP : TPT
| = 1. (5.28)

To show this, we demonstrate that if β ∈ KP, then

f(x) = (x− β)e ∈ TPT
[x],

       



226 5. Ideal Decomposition in Number Fields

where e = |TP(K/F )| = |K : TP(K/F )|. Once shown, then every element of Gal(KP/TPT
)

sends β to a root of f(x), namely β itself, so Gal(KP/TPT
) is trivial and (5.28) holds.

Let α ∈ KP. Then
g(x) =

�

σ∈TP(K/F )

(x− ασ) ∈ OT [x].

By reducing coefficients modulo P, we get that g(x) ∈ KP[x], so by the definition of
TP(K/F ), g(x) ∈ TPT

[x], and ασ = α so

g(x) = (x− α)e,

and we have verified (5.28) as required.

Now we show that eT/F (PT ) = 1. Since we have shown above that

|T : F | = |Gal(K/F ) : TP(K/F )| = fK/F (p)gK/F (p),

then eT/F (PT ) = 1, and since fK/T (P) = 1, then eK/F (P) = eK/F (p). ✷

Maintaining the notation and assumptions of Theorem 5.17, we have the following conse-
quence.

Corollary 5.15 For any Galois extension K/F , we have

|TP(K/F )| = eK/F (p),

and if DP(K/F ) is a normal subgroup of Gal(K/F ), then each of the gK/F (p) prime OZ-
ideals is inert in T where Z = ZP(K/F ), and each prime PT -ideal is an eth power in
K.

Proof. From the proof of Theorem 5.17, |TP(K/F )| = eK/F (P). By Corollary 5.14 on
page 224, there exist g = gK/F (P) prime Z = ZP(K/F )-ideals above p. Hence, there exists
exactly one prime OK-ideal above each of the g prime OZ-ideals. Thus, the inertial degrees
of each of the g prime Z-ideals in T is the same. To prove that each prime OZ-ideal is
inert in T , it suffices to prove that each is unramified in T . However, from Theorem 5.17,
eT/F (PT ) = eZ/F (PZ) = 1. The result now follows from Theorem 5.4 on page 189. Hence,
in consideration of the above results, PTOK = P

e, where e = eK/F (p). ✷

In the following, an intermediate field in the extension K/F means an extension field of F
contained in K.

Corollary 5.16 — Intermediate Fields as Decomposition and Inertia Fields

Let K/F be a Galois extension of number fields, and let P be a prime OK-ideal. Then

(a) If L is an intermediate field, then ZL is the decomposition field of P in K/L.

(b) If L is an intermediate field, then LT is the inertia field of P in K/L.

Proof. (a) Let F1 = OLZ/P1 where P1 = P ∩ OLZ , F2 = OL/P2 where P2 = P ∩ OL,
F3 = OZ/P3 where P3 = P ∩ OZ , and F4 = OL∩Z/P4 where P4 = P ∩ OL∩Z . Then
Gal(F1/F2) may be embedded into Gal(F3/F4) via restriction of automorphisms. However,

Gal(F3/F4) = |F3 : F4| = fZ/L∩Z(P3) = 1,

by definition, so fLZ/L(P1) = 1. Furthermore, PL cannot split any further by Theorems
5.16–5.17. Hence, LZ is the decomposition field of PL in K/L.

(b) This is proved in a similar fashion to that given part (a), by comparing the Galois
groups of LT/L and T/(L ∩ T ). ✷
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Corollary 5.17 Let K/F be a Galois extension of number fields, and let P be a prime
OK-ideal. Then each of the following hold.

(a) ZP(K/F ) is the smallest intermediate field L such that P is the only prime OK-ideal
lying over PL = P ∩OL.

(b) The field ZP(K/F ) is the largest intermediate field L such that

eL/F (PL) = fL/F (PL) = 1.

(c) The field TP(K/F ) is the largest intermediate field L such that

eL/F (PL) = 1.

(d) The field TP(K/F ) is the smallest intermediate field L such that

eK/L(P) = |K : L|.

Proof. (a) Suppose that P is the only prime OK-ideal lying over PL. Since Gal(K/L)
transitively permutes the prime OK-ideals above PL by Corollary 5.1 on page 190, then
Gal(K/L) is forced to be in DP(K/F ). Thus, by Theorem 2.4 on page 60,

ZP(K/F ) ⊆ L,

which establishes (a).

(b) If
eL/F (PL) = fL/F (PL) = 1,

then by Theorem 5.1 on page 184,

eK/F (P) = eK/L(P)eL/F (PL),

and
fK/F (P) = fK/L(P)fL/F (PL).

Therefore,
eK/F (P) = eK/L(P) and fK/F (p) = fK/L(P).

Thus, for Z = ZP(K/F ), by Theorem 5.16 on page 222,

eK/F (P)fK/F (P) = |K : Z|.

Also,
|K : ZL| = eK/L(P)fK/L(P),

since the decomposition field of PL in K/L is ZL, by part (a) of Corollary 5.16. Thus,
Z = ZL, so L ⊆ Z, which is (b).

(c) If eL/F (PL) = 1, and T = TP(K/F ), then by part (b) of Corollary 5.16, LT is the
inertia field of P in K/L. Thus,

eK/F (P) = |K : T | = |K : LT | = eK/L(P).

Hence, T = LT , so L ⊆ T , which verifies (c).

(d) If PL is totally ramified in K, then by part (b) of Corollary 5.16,

eK/L(P) = |K : L| = |K : LT | = eK/L(P).

Therefore, LT = L so T ⊆ L, which completes the entire result. ✷
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Corollary 5.18 Let K/F be a Galois extension of number fields, and let P be a prime
OK-ideal with P∩OF = p. Then if DP(K/F ) is normal in Gal(K/F ), p is completely split
in an intermediate field L if and only if L ⊆ ZP(K/F ).

Proof. If p is completely split in L/K, then eL/F (PL) = fL/F (PL) = 1, where PL = P∩OL.
Therefore, by part (b) of Corollary 5.17, L ⊆ ZP(K/F ). Conversely, by Corollary 5.14 on
page 224, p is completely split in ZP(K/F ), so a fortiori it is completely split in L. ✷

Diagram 5.1 — Inertia, Ramification, and Decomposition

Let K/F be a Galois extension of number fields, and let P be a prime OK-ideal. Then
the following illustrates the theory developed above. In what follows, KP = OK/P, T =
TP(K/F ), PT = P ∩ T , TPT

= OT /PT , Z = ZP(K/F ), PZ = P ∩ Z, ZPZ
= OZ/PZ ,

p = P ∩ F , and Fp = OF /p.

Primes Groups Fields Degrees Residue Fields
P K KP

TP(K/F )

�����

�
eK/F (P)

�����
PT

�
| T TPT

DP(K/F )

�����

�
fK/F (P)

�����
PZ

�
| Z ZPZ

Gal(K/F )

�����

�
gK/F (P)

�����
p F Fp

The above diagram is augmented by the following one that motivates an important concept.

Diagram 5.2 — Residue Class Fields and Their Global Counterparts

Let K/F be a Galois extension of number fields, and let P be a prime OK-ideal with
KP = OK/P. Every element of Gal(K/F ) restricts to an automorphism of OK . Thus, if
σ ∈ DP(K/F ), there is an induced mapping ψ : OK �→ KP with ker(ψ) = P. Therefore,
each σ ∈ DP(K/F ) induces an automorphism σ of KP in a fashion such that the following
diagram commutes.5.10

OK

σ−−−−→ OK

�ψ

�ψ

KP

σ−−−−→ KP

Also σ fixes the finite field OF /p = Fp where p = P∩OF . Hence, σ ∈ Gal(KP/Fp), so this
yields a mapping

ρ : DP(K/F ) �→ Gal(KP/Fp),

which is a group homomorphism since products in DP(K/F ) correspond to products in
Gal(KP/Fp). Also ker(ρ) = TP(K/F ), so TP(K/F ) is a normal subgroup of DP(K/F )—see
Exercise 5.43 on page 253 for a generalization of this fact. This tells us that the quotient

5.10We remind the reader that a commutative diagram, in this case, means that we have the equality of
composite maps ψ◦σ=σ◦ψ.
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group DP(K/F )/TP(K/F ) is embedded in Gal(KP/Fp). A fundamental fact, which is
buried in the proof of Theorem 5.17 on page 225, is that ρ is an epimorphism, so

DP(K/F )/TP(K/F ) ∼= Gal(KP/Fp).

From Exercise 2.16 on page 64, the Galois group Gal(KP/Fp) is cyclic of order fK/F (P). If
P is unramified in K/F , then by the aforementioned proof,

�σP� = Gal(KP/Fp) ∼= DP(K/F ),

and there is a unique σP ∈ DP(K/F ) such that σP �→ σP. The generator of the decom-
position group in this case is a very distinguished element, which is named as follows—see
Biography 2.3 on page 80.

Definition 5.14 — The Frobenius Automorphism

If K/F is a Galois extension of number fields, and P is a prime OK-ideal unramified in
K/F with P ∩OF = p, then DP(K/F ) is cyclic and has generator:

�
K/F

P

�
,

called the Frobenius automorphism of P in K/F , given by
�
K/F

P

�
(α) ≡ αN

F/Q(p) (mod P).

When Gal(K/F ) is abelian, then the Frobenius automorphism depends only on p and we
write �

K/F

p

�
(α) ≡ αN

F/Q(p) (mod pOK),

where as usual pOK is the product of the prime OK-ideals lying over p. In the abelian case,�
K/F

p

�
is also called the Artin symbol—see Remark 5.7 on page 239.

Definition 5.14 allows us to state one final consequence of Theorem 5.17.

Corollary 5.19 Let K/F be a Galois extension of number fields, with P a prime OK-
ideal. If P is unramified in K/F , then DP(K/F ) is cyclic of order fK/F (p) generated by
the Frobenius automorphism of P in K/F . In particular, P is completely split in K if and

only if
�

K/F

P

�
= 1.

Application 5.1 —The Frobenius Automorphism on Cyclotomic Galois Groups

Let ζn for n ∈ N be a primitive nth root of unity, and set K = Q(ζn). We now apply the
Frobenius automorphism to show that Gal(K/Q) is isomorphic to (Z/nZ)∗, the multiplica-
tive group of nonzero elements of Z/nZ.
Any σ ∈ Gal(K/Q) is determined by its action on ζn, namely ζσ

n
= ζnσ

n
, where nσ ∈ Z is

uniquely determined modulo n. Also, this action is independent of the choice of ζn since σ
acting on any primitive nth root of unity raises it to the power nσ, given that all roots of
unity are powers of ζn. Thus, if σ,τ ∈ Gal(K/Q), then

ζnστ

n
= ζστ

n
= (ζnσ

n
)τ = ζnσnτ

n
.
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Thus, nσnτ ≡ nστ (mod n). In other words, the mapping defined by

σ ∈ Gal(K/Q) �→ nσ ∈ Z/nZ∗,

is a homomorphism. Since each σ uniquely determines nσ, then this map is a monomor-
phism. It remains to show that it is an epimorphism. Let p � n be a rational prime.
Therefore, the Frobenius automorphism

σp =

�
K/Q
p

�

is well-defined since p is unramified in K. If P is any prime OK-ideal over p, then this
automorphism is given by

αnσp ≡ αp (mod P). (5.29)

From Exercise 1.54 on page 43 it follows that if f(x) = xn − 1, then

�

k

(ζp
n
− ζk

n
) = f �(ζp

n
),

where the product runs over all nonnegative k ≤ n− 1 with p � k. Since f �(ζp
n
) = nζp(n−1)

n ,
then

�
k
(ζp

n
− ζk

n
) �∈ P. Hence, αnσp ≡ αp (mod P) represents the residue class of p modulo

n. In other words, the mapping σ �→ nσ is an isomorphism of Gal(K/F ) onto Z/nZ∗.

We now illustrate how the Frobenius automorphism can be used to prove Gauss’s quadratic
reciprocity law.

Application 5.2 — The Quadratic Reciprocity Law via Frobenius

Let K = Q(ζp) where p > 2 is prime and ζp is a primitive pth root of unity. Set p∗ =
(−1)(p−1)/2p. Then by Exercise 5.35 on page 232, Q(

√
p∗) = F is a quadratic subfield of

K. In fact, it is the unique quadratic subfield of K, since Gal(K/Q) is cyclic of order p− 1,
given that it is generated by σ where σ(ζp) = ζg

p
with g being a primitive root modulo p.

By Application 5.1 on the preceding page, Gal(F/Q) corresponds to the subgroup F∗
p
of

nonzero elements of the field of p elements, Fp. Hence, if q �= p is any odd prime, and

�
K/Q
q

�
= σq

is the Artin automorphism of q in K/Q, then its restriction to F ,

σq|F =

�
K/Q
q

� �����
F

=

�
F/Q
q

�
,

is the identity on F precisely when σq : ζp �→ ζq
p
, where q is a square in F∗

p
. Otherwise, it

is the nontrivial automorphism, with q being a nonsquare in F∗
p
. Thus, by considering the

natural identifications:

Gal(F/Q) ∼=
Gal(K/Q)

Gal(K/F )
∼= {±1},

we get �
F/Q
q

�
=

�
q

p

�
, (5.30)
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by the very definition of the Legendre symbol. From another perspective, since F = Q(
√
p∗),

then q splits in F if and only if �
F/Q
q

�
= 1,

and q is inert exactly when �
F/Q
q

�
= −1,

so for odd q, we get �
F/Q
q

�
=

�
p∗

q

�
. (5.31)

By comparing (5.30)–(5.31), we get

�
q

p

�
=

�
p∗

q

�
=

�
−1

q

�(p−1)/2 �p

q

�
.

However, �
−1

q

�
= (−1)(q−1)/2

so �
q

p

�
= (−1)

p−1
2

q−1
2

�
p

q

�
,

which is Gauss’s Quadratic Reciprocity Law.

Application 5.2 also suggests how a rational prime splits in a cyclotomic field.

Application 5.3 — Frobenius and Splitting in Cyclotomic Fields

Suppose that n ∈ N, n > 1, and without loss of generality n �≡ 2(mod 4), sinceK = Q(ζn) =
Q(ζ2n) for n odd by Corollary 1.17 on page 41. Then by Application 5.1 on page 229,

G = Gal(K/Q) ∼= (Z/nZ)∗.

Thus,

σp =

�
K/Q
p

�

is defined for p � n, and depends only on p since G is abelian. Thus, ασp ≡ αp (mod pOK),
for all α ∈ OK = Z[ζp], by Corollary 5.13 on page 218. Hence, p is completely split in K
if and only if p ≡ 1(mod n), which is tantamount to saying that σp = 1, namely α ≡ αp

(mod pOK) for all α ∈ OK—see Exercises 4.31–4.32 on page 164.

Exercises

5.27. Let Fq the finite field of q = pf elements for some prime p. A map χ from F∗
q
to the

multiplicative group of roots of unity in C∗ such that

χ(ab) = χ(a)χ(b) for all a, b ∈ F∗
q

is called a (multiplicative) character on F∗
q
.5.11 If χ(a) = 1 for all a ∈ F∗

q
, then χ is

called the trivial character on F∗
q
, denoted by �. It is convenient to extend the domain

of definition from F∗
q
to Fq by setting χ(0) = 1 if χ = �, and χ(0) = 0 if χ �= �. The

order of χ is the least m ∈ N such that χm = �. Establish each of the following.

5.11Notice that the Legendre symbol ( ap ) is an example of a character on Fp by considering (ap ) as a coset

of a modulo p—see Exercise 5.33.

       



232 5. Ideal Decomposition in Number Fields

(a) χ(1) = 1.

(b) χ(a)q−1 = 1 for all a ∈ F∗
q
.

(c) χ(a−1) = χ(a)−1 = χ(a) for all a ∈ F∗
q
, where χ(a) is the complex conjugate of

χ(a).

Exercises 5.28–5.32 will be with reference to characters as defined in Exercise 5.27.

5.28. Let χ be a character on Fq. Prove that

q−1�

j=0

χ(j) =

�
0 if χ �= �,
q if χ = �.

5.29. Prove that the characters on F∗
q
form a multiplicative group, denoted by Ch(F×

q
),

via the definition of multiplication and inverses given by χλ(a) = χ(a)λ(a), and
χ−1(a) = (χ(a))−1, for a ∈ F∗

q
and characters χ and λ.

5.30. Prove that Ch(F×
q
), given in Exercise 5.29, is cyclic of order q − 1 and that if a ∈ F∗

q

with a �= 1, there exists a character χ on Fq such that χ(a) �= 1.

Henceforth, if χ is a character on F∗
q
, then χ is said to be of order n, where n

�� q − 1,
provided that n is the smallest such value for which χn = �.

5.31. Suppose that a ∈ F∗
q
with a �= 1. Prove that

�

χ∈Ch(F×
q
)

χ(a) = 0.

5.32. Suppose that a ∈ F∗
q
, and n ∈ N with q ≡ 1(mod n) such that xn = a has no solution

for any x ∈ Fq. Prove that there exists a character χ on Fq of order n such that
χ(a) �= 1.

5.33. For an odd prime p, let (x
p
) denote the Legendre symbol with ( 0

p
) = 0 for convenience,

and for k ∈ Z, set

G(k) =
p−1�

j=0

�
j

p

�
ζjk
p
,

called a quadratic Gauss sum. Prove that

G(k) =

�
k

p

�
G(1).

5.34. With reference to Exercise 5.33, prove that G2(1) = (−1)
p−1
2 p.✰

5.35. Let p > 2 be a prime, and set p∗ = (−1)(p−1)/2p. Prove that5.12 Q (
√
p∗) ⊆ Q(ζp).

5.36. Let p �= q be rational primes with p odd, and let d be a fixed divisor of p− 1. Prove
that q ≡ xd (mod p) is solvable for some x ∈ Z if and only if q is completely split in
the unique subfield of Q(ζp) having degree d over Q. (Observe that Gauss’s Quadratic
Reciprocity Law follows from this, the case where d = 2—see also Application 5.2 on
page 230.)

5.12In Chapter 5, we will generalize this result considerably with a proof of the celebrated Kronecker-Weber
Theorem (see Theorem 5.23 on page 244).
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5.5 Kummer Extensions and Class-Field Theory

I don’t like people who have never fallen or stumbled. Their virtue is lifeless and it
isn’t of much value. Life hasn’t revealed its beauty to them.

From Part 2, Chapter 13, Section 12 of Doctor Zhivago (1958)
Boris Pasternak (1890–1960)

Russian novelist and poet

In this section, we commence with another type of extension distinct from the quadratic
and cyclotomic extensions considered in §5.4, which will lead us into class-field theory that
is an aspect of “higher algebraic number theory.”

Definition 5.15 — Kummer Extensions

Let F be a number field containing a primitive nth root of unity for a given fixed n ∈ N,
and set f(x) = xn − α for a given α ∈ F . Then K = F ( n

√
α) is called a Kummer extension

of F , where n
√
α is a root of f(x).

Lemma 5.9 — Kummer Extensions are Cyclic

If K = F ( n
√
α) is a Kummer extension of F , then K is a normal extension of F and

Gal(K/F ) is cyclic of order n.

Proof. Let εj = ζj
n
for j = 1, 2, . . . , n be all of the nth roots of unity in F , where ζn is a

primitive nth root of unity. If σ is an F -isomorphism of K, then

σ : n
√
α �→ εj

n
√
α ∈ F,

for some j = 1, 2, . . . , n, which is another root of xn−α. Thus, K/F is a normal extension.
If σk, σ� ∈ Gal(K/F ), are given by σj( n

√
α) = εj n

√
α for j = k,� , then

σkσ�(
n
√
α) = σk(ε�

n
√
α) = εkε�

n
√
α = ε�εk

n
√
α = σ�σk(

n
√
α),

so Gal(K/F ) is abelian. Select σ ∈ Gal(K/F ), such that σ : n
√
α �→ εj n

√
α, where εj is

a primitive nth root of unity. Then σn = 1 but σm �= 1 for any natural number m < n,
because εm

j
�= 1 for any such m, so σ generates Gal(K/F ). In other words, Gal(K/F ) is

cyclic of order n. ✷

Theorem 5.18 — Decomposition in Kummer Extensions

Let K/F be a Kummer extension of degree n with K = F (β) such that βn = α ∈ OF . If p
is a prime OF -ideal such that nα �∈ p and g is the maximal divisor of n such that

xg ≡ α (mod p),

has a solution in x ∈ OF , then
pOK = P1 · · ·Pg,

for distinct prime OK-ideals Pj , 1 ≤ j ≤ g, and

fg = |K : F |,

where f is the minimal exponent such that

βf ≡ α (mod p).
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Proof. Let Fp denote the field OF /p, and let x denote the image of x in Fp under the
natural map from OF .

Claim 5.11 If f ∈ N is the smallest exponent such that

β
f

= α ∈ Fp,

then m(x) = xf − α is irreducible over Fp.

Since β
n ∈ Fp, then n ≥ f . If n = fq+r where q ∈ N and 0 ≤ r < f , then αr = αn−fq ∈ Fp,

so r = 0, by the minimality of f . Thus, f
�� n. Since a primitive n-th root of unity, ζn ∈ Fp,

then ζn/fn = ζf ∈ Fp. Also,

xf − α =
f−1�

j=0

(x− βζj
f
).

If g(x) properly divides (xf −α) for some g(x) ∈ Fp[x], then g(0) = β
k

γ ∈ Fp, where γ ∈ Fp

and k < f . Hence, by the minimality of f , we must have that k = f , a contradiction. This
establishes Claim 5.11.

Let KP denote the field OK/P where P is a prime OK-ideal over p. Since a root of m(x)
generates the field extension KP/Fp, then

fK/F (P) = fK/F (p) = |KP : Fp| = f,

where the penultimate equality comes from Claim 5.1 in the Proof of Theorem 5.3 on page
187, and the last equality comes from the fact that

KP
∼=

Fp[x]

(m(x))
∼= Fp(β),

which is a result of (A.3) on page 325. Hence,

|KP : Fp| = deg
Fp

(m) = f.

Since nα �∈ p, then p is unramified in K. Thus, by Theorem 5.4 on page 189,

g = |K : F |/f.

Since f is the minimal divisor of n such that

xf ≡ β (mod p),

has a solution x ∈ OF , then g is the maximal divisor of n such that

xg ≡ β (mod p)

has a solution in OF , so
pOK = P1 · · ·Pg,

and this secures the proof. ✷

A special case of Theorem 5.18 is worth isolating, especially in view of the fact that this
will be one of the stepping stones in concluding Kummer’s proof of FLT for regular primes,
which we will see in Theorem 5.22 on page 240.
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Corollary 5.20 Suppose that p is a rational prime and F is a number field containing a
primitive pth root of unity. Then if α is not a pth power of an element of OF , xp − α is
irreducible over F and Gal(K/F ) is cyclic of order p. In the latter case, one of the following
two events occurs for any prime OF -ideal q, where pα �∈ q.

(a) The congruence
xp ≡ α (mod q) (5.32)

has a solution, in which case gK/F (q) = p, and fK/F (q) = 1 = eK/F (q), namely q is
completely split in K.

(b) The congruence (5.32) has no solution, in which case fK/F (q) = p, and gK/F (q) =
1 = eK/F (q), namely q is inert in K.

We need the following result for the ensuing development.

Lemma 5.10 Let K = F ( p
√
α), where α ∈ OF is not a pth power in OF , ζp ∈ F , and p is

a rational prime. Then any prime OF -ideal q satisfies exactly one of the properties

(a) eK/F (q) = 1 = fK/F (q) and gK/F (q) = p, in which case q is completely split in K.

(b) gK/F (q) = 1 = eK/F (q) and fK/F (q) = p, in which case q is inert in K.

(c) fK/F (q) = 1 = gK/F (q) and eK/F (q) = p, in which case q is totally ramified in K.

Proof. This is immediate from Theorem 5.4 on page 189 and Lemma 5.9 on page 233 . ✷

Remark 5.6 The case where pα ∈ q in Corollary 5.20 deserves to be settled as well since
it has fundamental consequences for the aforementioned proof by Kummer. The following
observation will assist the reader with the next result. If α ∈ q, then αOF = qnI, where
n ∈ N and I is an OF -ideal not divisible by q. In this case, we may assume without
loss of generality that p � n. To see this, assume p

�� n, let γ ∈ q with γ2 �∈ q, and set

α1 = α(γ−n/p)p. Then a root of xp − α1 generates the same field extension K/F , since a
root β1 of the latter equation satisfies βp

1 = α1 = α(γ−n/p)p. Therefore, β1 ∈ F (β), where
βp = α and conversely β ∈ F (β1). Notice, as well, that once this translation is made, then
the exact power of q dividing α1 is equal to n− (n/p)p = 0, so gcd(αOF , q) = 1.

Theorem 5.19 — Kummer p-Extensions

Suppose that p is a rational prime and F is a number field containing a primitive pth root
of unity. Set K = F (β) where βp = α ∈ F , and α is not the pth power of an element of
OF . If pα ∈ q, where q is a prime OF -ideal, then one of the following occurs.

(a) If α ∈ q, then αOF = qnI, where n ∈ N, and I is an OF -ideal with q � I. If p � n,
then q ramifies in K, namely eK/F (q) = p, and fK/F (q) = 1 = gK/F (q).

(b) If α �∈ q, but p ∈ q, namely q∩Z = (p), then OF (1−ζp) = qnJ where J is an OF -ideal
not divisible by q and n ∈ N, and one of the following occurs.

(i) The congruence
xp ≡ α (mod q

np+1) (5.33)

has a solution x ∈ OF , in which case q is completely split in K. Conversely, if q
is completely split in K, then congruence (5.33) has such a solution.
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(ii) The congruence (5.33) has no solution in OF , but the congruence

xp ≡ α (mod q
np) (5.34)

has a solution x ∈ OF , in which case q is inert in K.

(iii) The congruence (5.34) has no solution in OF , in which case q is totally ramified
in K.

Proof. We begin with an observation, the proof of which is similar to the demonstration
given in Remark 5.6 on the preceding page.

Claim 5.12 We may assume without loss of generality that

q
�� αOF , but q

2 � αOF .

Let γ ∈ q, and γ �∈ q2. Since gcd(p, n) = 1, there exist r, s ∈ Z such that rp+ sn = 1. Let
α1 = αsγrp. Then a root of xp − α1 generates the same field extension K/F . To see this,
we observe that if

βp

1 = α1 = αsγrp = βpsγrp = (βsγr)p,

then
β1 = βsγrζk

p
∈ F (β),

for some nonnegative integer k. Conversely,

αn

1 = αsnγnrp = α(αsn−1)γnrp = α(α−rp)γnrp = α(α−1γn)rp.

Therefore,
α = αn

1 (αγ
−n)rp,

so α ∈ F (β1), as above. Hence, F (β) = F (β1) as asserted.

From the choice of γ, the exact power of q dividing α1OF = αsOF γrpOF is qns+rp = q.
Hence, αOF = qI, where q � I. This is Claim 5.12.

Let
Q = gcd(qOK , βOK).

Then
Q
p = gcd(qpOK , αOK) = qOK .

By Theorem 5.4 on page 189, Q is a prime ideal so q is totally ramified in K. This completes
the proof of (a).

To establish part (i) of (b), we first assume that q is completely split in K, so let

qOK = Q1 · · ·Qp,

where the Qj are distinct prime OK-ideals. Thus, fK/F (Qj) = 1 = eK/F (Qj) for j =
1, 2, . . . , p. Therefore, Qm

j
∩OF �= qm−1 for m ∈ N, since if we have that Qm

j

�� (qOK)m−1 =
qm−1OK , then eK/F (Qj) > 1, a contradiction.

Claim 5.13 Q
m

j
∩OF = qm for any m ∈ N.
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We use induction on m. If m = 1, then the result holds by Lemma 5.1 on page 182. Assume
the induction hypothesis, that the result holds for m− 1. Then

q
m ⊆ Q

m

j
∩OF ⊆ Q

m−1
j

∩OF = q
m−1,

with Q
m

j
∩OF �= qm−1. Thus, Qm

j
∩OF = qm, which is Claim 5.13.

By Claim 5.13, OF /qnp+1 is a subring of OK/Qnp+1
j

. However, since q is completely split

in K, then |OK/Qj : OF /q| = fK/F (q) = 1, so |OF /qnp+1| = |OK/Qnp+1
j

|, by Exercise 2.40
on page 82. Therefore, there exists a γ ∈ OF such that

β ≡ γ (mod Q
np+1
1 ),

namely
Q
np+1
1

�� (γ − β)OK .

Thus,
NK/F (Q1)

np+1
�� NK/F (γ − β)OK .

However,
NK/F (x− β) = xp − βp = xp − α,

so
q
np+1

�� (γp − α),

which means that
xp ≡ α (mod q

np+1),

has a solution x = γ ∈ OF .

Conversely, let (5.33) have a solution x = γ ∈ OF . Select u ∈ q−n with u �∈ q−n+1, so that
OFuqn = I is an OF -ideal. We have that v = u(γ − β) is a root of (x− uγ)p + upα.

Claim 5.14 (x− uγ)p − upα ∈ OF [x].

Since qn(p−1)
�� OF (1− ζp)p−1 by hypothesis, then for all j ∈ N such that j ≤ p−1, we have

n(p− 1)− nj ≥ 0, so �
p

j

�
ujγj ∈ OF .

Since

(x− uγ)p + upα =
p−1�

j=0

(−1)j
�
p

j

�
ujγjxp−j − up(γp − α),

and γp − α ∈ qn+1, then up(γp − α) ∈ q since u ∈ q−n. This completes Claim 5.14.

By Claim 5.14, v ∈ OK , and so are the other roots, u(γ− ζj−1
p

β) for j = 0, 1, . . . , p− 1. Set

Qj = gcd(qOK , u(γ − ζj−1
p

β)OK).

Then Qj �= OK for 0 ≤ j �= k ≤ p− 1 since

q
�� NK/F (vOK) = up(γp − α).

Also,
qOK = Q1 · · ·Qp,
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since every element of
�

p

j=1 Qj is a sum of elements of the form

p�

j=1

(σj + τju(γ − ζj−1
p

β)) = σ + τup(γp − α) ∈ qOK ,

where σj , σ ∈ qOK and τj , τ ∈ OK . Thus, Qj ∩ OF = q for each such j and each Qj is
distinct by Theorem 5.4 on page 189. This completes the proof of part (i) of (b).

If (5.34) has a solution x = γ ∈ OF , then as in the proof of part (i), v = u(γ − β) ∈ OK

with minimal polynomial
mK/F (v) = (x− uγ)p − upα,

and
δK/F (v) = m�

K/F
(v) = p(uβ)p−1,

with gcd(δK/F (v),Q) = 1 for any prime OK-ideal Q dividing q. Thus, by Theorem 5.9 on
page 203 and Corollary 5.7 on page 210, q is unramified in K. By part (i), and Lemma 5.10
on page 235, q must be inert in K. This secures part (ii).

For part (iii), assume that (5.34) on page 236 is unsolvable in OF , and let � be the largest
exponent such that xp ≡ α(mod q�) is solvable in OF . By Exercise 4.31 on page 164, we
must have that � ∈ N.

Claim 5.15 p � �

Suppose that γ ∈ OF such that for some natural number t ≤ n − 1, we have a solution
γ ∈ OF to the congruence

γp ≡ α (mod q
pt).

Suppose further that λ ∈ OF such that λp ≡ 0(mod qt), but λp �≡ 0(mod qt+1). Then for
any ω ∈ OF ,

(γ + λω)p ≡ γp + λpωp (mod q
tp+1).

However, since ωp ranges over all residue classes modulo q, we may chose ω such that

α ≡ (γ + λω)p (mod q
tp+1),

a contradiction to the hypothesis. However, since � < np, then p � �. This completes Claim
5.15.

By Claim 5.15, we may select natural numbers t, r ≤ n−1 such that � = tp+r. Let u ∈ q−t

with u �∈ q−t+1, and set v = u(γ − β), which is a root of (x − uγ)p − upα. By a similar
argument to the above, v ∈ OK and qr is the exact power of q dividing

NK/F (v) = up(γp − α).

Thus,
gcd(qOK , vOK)

is an OK-ideal distinct from OK and qOK . Hence, qOK is not a prime OK-ideal, and by
part (i), qOK is not completely split in K. By Lemma 5.10, q must be totally ramified in
K. ✷

A direct consequence of Corollary 5.20 and Theorem 5.19 on page 235 is the following
important unramified extensions result.
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Theorem 5.20 — Unramified Kummer Extensions

Let F be a number field, α,ζ p ∈ F such that α is not a pth power in F , p a rational prime
such that K = F ( p

√
α), and gcd(αOF , pOF ) = 1. Then DK/F = OF = (1) if and only if

both of the following hold:5.13

(a) αOF = Ip for some OF -ideal I, and

(b) There exists a γ ∈ OF such that

γp ≡ α (mod (1− ζp)
p
OF ).

Remark 5.7 The cyclic unramified extensions described by Theorem 5.20 play an impor-
tant role in Kummer’s proof of Fermat’s Last Theorem for regular primes in the second
case. In fact, this is a beginning of an introduction to an aspect class-field theory. We will
not develop the tools to discuss this area in depth, but we will describe some fundamental
aspects, since they pertain to our completion of Kummer’s aforementioned proof.

Recall from Definition 5.14 on page 229, when K/F is an unramified Galois extension of

number fields, then the Frobenius automorphism (K/F

P
) is defined for any prime OK-ideal

P. Thus, for any unramified Galois extension of number fields K/F , we may define the
Artin map

φK/F : I∆K
�→ Gal(K/F )

via

φK/F (I) =
r�

j=1

�
K/F

Pj

�aj

,

where I ∈ I∆K
with I =

�
r

j=1 P
aj

j
for distinct OF -ideals Pj .5.14 The Artin map may be

shown to be an epimorphism, so

I∆F
/ ker(φK/F ) ∼= Gal(K/F ).

In fact, a fundamental result of class-field theory says more.

Theorem 5.21 — Fundamental Theorem of Class-Field Theory

If F is a number field and K(1) is the maximal unramified 5.15 abelian extension of F , called
the Hilbert Class Field, then

Gal(K(1)/F ) ∼= COF

via
φK(1)/F : I∆

K(1)
�→ Gal(K(1)/F ).

Furthermore, since K(1) contains every abelian unramified extension of F , then for a tower
F ⊆ K ⊆ K(1),

|K : F |
�� hOF

= |K(1) : F |.
5.13Note that there is no ramification at the infinite primes for odd primes p since F is totally complex in
that case.
5.14The Artin map may be defined for more general extensions, which may be ramified, by excluding a set
of ramified primes, a necessarily finite set by Corollary 5.7 on page 210. However, for our purposes herein,
we need only look at the special case of unramified extensions. Also, note that from Theorem 5.20, if K/F

is an abelian unramified extension, then the Artin map depends only on the ideal class of a given ideal I.
5.15In this context “unramified” also excludes those infinite primes that ramify (see Footnote 5.8 on
page 213).
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Proof. See [33]. ✷

An immediate and important consequence of this result from class-field theory is the fol-
lowing, which the reader should compare with Exercise 3.33 on page 121.

Corollary 5.21 A prime OF -ideal p splits completely in K(1) if and only if p is a principal
ideal.

Remark 5.8 Corollary 5.21 tells us that the Hilbert class fieldK(1) of F is characterized by
the fact that the primes that split completely in K(1) are precisely the principal prime OF -
ideals. Note that in Theorem 5.21 on the preceding page, the association of the Galois group
Gal(K(1)/F ) with COF explains why K(1) is called a class field. Moreover, the theorem
shows that there is a one-to-one correspondence between unramified abelian extensions K of
F and subgroups H of the class group COF . Furthermore, if the extension K/F corresponds
to the subgroup H ⊆ COF , then the Artin map induces an isomorphism

COF/H ∼= Gal(K/F ).

This last comment may be taken to be class-field theory for unramified abelian extensions.
This illustrates the central theme of class-field theory, namely that the unramified extensions
of a given number field F are classified in terms of the subgroups of the ideal class group
COF . In other words, the class of unramified extensions are classified in terms of data
intrinsic to F .

In the special case established in Theorem 5.20 on the previous page, we see that p
��

hOF
. This is enough to prove a crucial result that will allow us to complete Kummer’s

aforementioned proof. The reader is encouraged to solve Exercise 5.39 on page 243, which
is related to the following lemma. Recall, as cited on page 151, that p is regular if p � hOF

where F = Q(ζp).

Lemma 5.11 — Kummer’s Lemma

Let p be a regular prime, and let F = Q(ζp). If u ∈ UOF
such that

u ≡ z (mod pOF )

for some z ∈ Z, then u = vp where v ∈ UOF
.

Proof. Let K = F ( p
√
u), where p

√
u is a real root of xp − u. If u is not the pth-power of an

element of UOF
, then K/F is a nontrivial Kummer extension. Since

pOF = (1− ζp)
p−1

by Example 5.8 on page 190, then by Exercise 4.32 on page 164 the hypothesis of Theorem
5.20 is satisfied, namely K/F is an unramified extension. Therefore, by Theorem 5.21,
p
�� hOF

, a contradiction to the regularity of p. ✷5.16

Theorem 5.22 — Kummer’s Proof of FLT Case II for Regular Primes

If p is an odd regular prime, then (4.14) on page 149 has no solutions in rational integers
x, y, z with p

�� xyz.
5.16Without the use of Theorem 5.21, the proof of Kummer’s lemma is long, and relatively difficult by
comparison since it involves Kummer’s use of p-adic numbers. For instance, see [5, pp. 367–377]. By
employing the elegant Theorem 5.21, even without proving it, we get an insight into the power of class-field
theory, and it allows us to complete Kummer’s proof of FLT for regular primes with less difficulty.
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Proof. Clearly, we may assume without loss of generality that gcd(x, y, z) = 1, so p
�� z

and p � xy may also be assumed without loss of generality. Set z = pkz1 with k ∈ N, and
gcd(z1, p) = 1. If F = Q(ζp), then by Example 5.8

pOF = (1− ζp)
p−1u,

where u ∈ UOF
. Thus, (4.14) becomes

xp + yp + upk(1− ζp)
pnz1

p = 0, (5.35)

where n = k(p − 1) ∈ N. To prove the theorem, it will suffice (a fortiori) to prove that
(5.35) cannot hold when x, y, z1 ∈ OF with x, y, z1 relatively prime to 1− ζp.

We use proof by contradiction. Assume that (5.35) is solvable for some such x, y, z1 ∈ OF ,
and let n ∈ N be the smallest value for which it holds. Rewriting (5.35) as an ideal equation
we get,

p−1�

j=0

(x+ ζj
p
y) = p

pnJp, (5.36)

where p is the prime OF -ideal (1 − ζp), and J is an OF -ideal. Although long, the proof
amounts to essentially a descent argument where we contradict the minimality of n by
showing that (5.36) holds for n− 1.

Since n ∈ N, then for j ≥ 0
p
�� (x+ ζj

p
y).

However,
x+ ζj

p
y = x+ ζk

p
y − ζk

p
(1− ζj−k

p
)y.

Therefore, since p
�� (1 − ζj−k

p
), then p

�� (x + ζj
p
y) for all nonnegative j ≤ p − 1. Also, we

cannot have that
x+ ζk

p
y ≡ x+ ζj

p
y (mod p

2),

for j �= k, since in that case we get

ζk
p
y(1− ζj−k

p
) ≡ 0 (mod p

2),

which cannot hold since gcd(ζk
p
y, p) = 1, given that p � y, and by Exercise 3.37 on page 129,

1−ζj−k

p
and 1−ζp are associates. Hence, x+ζj

p
y are pairwise incongruent modulo p2. Thus,

(z + ζj
p
y)(1− ζp)−1 are pairwise incongruent modulo p for 0 ≤ j ≤ p− 1. By Exercise 4.25

on page 163, these values provide a complete residue system modulo p. Therefore, for some
nonnegative j ≤ p− 1,

(x+ ζj
p
y)(1− ζp)

−1 ≡ 0 (mod p).

Thus, for only this value j do we have

x+ ζj
p
y ≡ 0 (mod p

2).

Since we may replace y by ζk
p
y for any nonnegative k ≤ p− 1 in (5.35), we may assume at

this stage, without loss of generality, that we have already chosen

x+ y ≡ 0 (mod p
2) and x+ ζj

p
y ≡ 0 (mod p), with p

2 � (x+ ζj
p
y) for 1 ≤ j ≤ p− 1,

so the left side of (5.36) is divisible by at least pp−1p2 = pp+1. This implies that n ≥ 2.
Our assumption is that gcd(x, y, p) = 1, so p � gcd(x, y) = g, the gcd of the two OF -ideals
(x) and (y). Therefore,
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(x+ ζj
p
y) = pgIj ,

where Ij is an OF -ideal for 0 ≤ j ≤ p− 1, and

(x+ y) = p
p(n−1)+1

gI0.

Claim 5.16 gcd(Ij , Ik) = 1 for 0 ≤ j �= k ≤ p− 1.

Let q
�� gcd(Ij , Ik) for a prime OF -ideal q with j �= k. Thus, if

pgq
�� gcd(x+ ζj

p
y, x+ ζk

p
y),

then
pgq

�� gcd(x(1− ζk−j

p
), ζj

p
y(1− ζk−j

p
)).

Thus,
gq

�� gcd(x, y),

contradicting the definition of g. This completes the proof of Claim 5.16.

By Claim 5.16, we may write (5.36) as

g
p
p
pn

p−1�

j=0

Ij = ppnJp,

where Ij = Jp

j
for some OF -ideal Jj

�� J with 0 ≤ j ≤ p− 1. Hence,

(x+ y) = p
p(n−1)+1

gJp

0 , (5.37)

and
(x+ ζj

p
y) = pgJp

j
for 1 ≤ j ≤ p− 1. (5.38)

From (5.37), we get
(x+ y)p−(p(n−1)+1)J−p

0 = g,

Substituting this into (5.38), we get

(x+ ζj
p
y)pp(n−1) = (x+ y)(JjJ

−1
0 )p. (5.39)

Since p = (1−ζp) is a principal prime OF -ideal, then (JjJ
−1
0 )p is principal. By invoking the

regularity of p and using Exercise 4.11 on page 147, we must have that JjJ
−1
0 is principal.

Therefore, for 1 ≤ j ≤ p− 1, we may set

JjJ
−1
0 = (αj/βj),

where αj , βj ∈ OF . Since gcd(Jj , p) = 1 = gcd(J0, p), we may assume that gcd(αj , p) =
1 = gcd(βj , p). Thus, from (5.38)–(5.39),

(x+ ζj
p
y)(1− ζp)

p(n−1) = (x+ y)(αj/βj)
puj , (5.40)

where uj ∈ UOF
. Since (x+ ζpy)(1 + ζp)− (x+ ζ2

p
y) = ζp(x+ y), we may multiply this by

(1− ζp)p(n−1) and use (5.40) with j = 1, 2 to get,

(x+ y)

�
α1

β1

�p

u1(1 + ζp)− (x+ y)

�
α2

β2

�p

u2 = (x+ y)ζp(1− ζp)
p(n−1).
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Multiplying through by (β1β2)p/[u1(x+ y)(1 + ζp)], we get,

(α1β2)
p − u2

u1(1 + ζp)
(α2β1)

p =
ζp

u1(1 + ζp)
(1− ζp)

p(n−1)(β1β2)
p.

By letting α = α1β2 ∈ OF , v = −u2/[u1(1 + ζp)] ∈ UOF
, β = α2β1 ∈ OF , γ = β1β2, and

v1 = ζp/[u1(1 + ζp)] ∈ UOF
, we achieve,

αp + vβp = v1(1− ζp)
p(n−1)γp. (5.41)

We now proceed to show that this contradicts the minimality of n, which will complete the
proof.

Above we showed that n ≥ 2, so p(n− 1) ≥ p. Therefore,

αp + vβp ≡ 0 (mod p
p). (5.42)

Since p � β by assumption, then β has a multiplicative inverse β1 modulo pp, namely ββ1 ≡ 1
(mod pp). Multiplying through (5.42) by βp

1 and rewriting, we get,

v ≡ (−β1α)
p (mod p

p).

From Exercises 4.31–4.32 on page 164,

−β1α ≡ z (mod p),

where z ∈ Z, so
(−β1α)

p ≡ zp (mod p
p).

In other words,
v ≡ zp (mod p

p).

By Lemma 5.11 on page 240, there exists a w ∈ UOF
such that v = wp. Hence, via the

above congruence, (5.41) becomes

αp + (wβ)p = v1(1− ζp)
p(n−1)γp,

which contradicts the minimality of n, and establishes the full result proved by Kummer.✷

This concludes this section, and in conjunction with previous sections, establishes a num-
ber of powerful results that will allow us to establish the fundamental theorem of abelian
extensions, the Kronecker-Weber Theorem in §5.6.

Exercises

5.37. Let Kj/F for j = 1, 2 be extensions of number fields, and let p be a prime OF -ideal.
Prove that if p is unramified in Kj for j = 1, 2, then p is unramified in K1K2. In
particular, show that if p is completely split in Kj for j = 1, 2, then p is completely
split in K1K2.

5.38. Let F/Q be an abelian extension of number fields. In the next section, the Kronecker-
Weber Theorem will verify that

F ⊆ Q(ζf ) for some f ∈ N.
The smallest such f is called the conductor of F . Prove that if the conductor is odd
and squarefree, then F/Q is tamely ramified.

5.39. Let p > 2 be prime F = Q(ζp), and λ = 1 − ζp. Prove that for any γ ∈ OF , there
exists a z ∈ Z such that

γp ≡ z (mod λp).

Conclude that
γp ≡ z (mod p).
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5.6 The Kronecker-Weber Theorem

All the people we used to know.
They’re an illusion to me now.
Some are mathematicians.
Some are carpenter’s wives.

From Tangled Up in Blue (1974)
Bob Dylan (1941–)

American singer and songwriter

This section is devoted to a proof of the Fundamental Theorem of Abelian Extensions, also
known as the following.5.17

Theorem 5.23 — The Kronecker–Weber Theorem

If F is a number field, which is an abelian extension of Q, there exists a natural number n
such that F ⊆ Q(ζn). Moreover, n can be chosen in such a way that n and∆ F have the
same prime factors.

We establish Theorem 5.23 via a sequence of lemmas. We begin by showing that it suffices
to restrict our attention to the case of prime-power degree.

Lemma 5.12 If Theorem 5.23 holds for abelian extensions of prime power degree over Q,
then it holds for any abelian extension of Q.

Proof. First we show that every number field F abelian over Q is a compositum of abelian
extensions of prime power degree over Q. By Theorem A.1 on page 321,

Gal(F/Q) ∼=
r�

j=1

Gj ,

where Gj is an abelian group of order |Gj | = p
aj

j
for distinct primes pj , aj ∈ N, and

|F : Q| = |Gal(F/Q)| =
r�

j=1

p
aj

j
.

Let Fi for i = 1, 2, . . . , r be the fixed field of
�

j �=i
Gj , the product ranging over all j �= i for

1 ≤ j ≤ r. Thus, |Fi : Q| = |Gal(F/Q)/
�

j �=i
Gj | = |Gi| = pai

i
, by Theorem 2.4 on page 60.

Therefore, by Exercise 3.36 on page 129, the compositum has degree
�����

r�

i=1

Fi : Q
����� =

r�

j=1

p
aj

j
= |F : Q| .

Since
�

r

i=1 Fi ⊆ F , then F =
�

r

i=1 Fi.

5.17If we had developed the full force of class-field theory herein, then one could “easily” prove this funda-
mental theorem. For instance see [15, Theorem 8.8, p. 163]. However, even therein, where the main results
of class-field theory are stated but not proved, it is admitted that “the general theorems of class-field theory
are complicated to state.” Thus, there is some price to pay in attaining the result no matter what the route
happens to be since it is a relatively difficult theorem from any perspective.
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Now assuming that Theorem 5.23 holds for all such Fi, then Fi ⊆ Q(ζni
) for some ni ∈ N.

Let � = lcm(n1, n2, . . . , nr). Then

F =
r�

i=1

Fi ⊆ Q(ζn1 , ζn2 , . . . , ζnr
) ⊆ Q(ζ�),

and the result is proved in view of Theorem 5.13 on page 215. ✷

The next lemma is a Galois-theoretic result required for the subsequent lemma.

Lemma 5.13 Let Kj/F be Galois extensions of number fields for j = 1, 2. Then each of
the following holds.

(a) K1K2/K2 is a Galois extension and

Gal(K1K2/K2) ∼= Gal(K1/K1 ∩K2).

(b) The extension K1K2/K1∩K2 is Galois, and we have the isomorphism of Galois groups,
Gal(K1K2/K1 ∩ K2) ∼= Gal(K1/K1 ∩ K2) × Gal(K2/K1 ∩ K2). In particular, if
K1 ∩K2 = F , then

Gal(K1K2/F ) ∼= Gal(K1/F )×Gal(K2/F ).

(c) If Kj/F for j = 1, 2 are abelian extensions of number fields, then K1K2/F is also
abelian.

Proof. (a) By Exercise 2.6 on page 63 there exist |K1K2 : K2| embeddings of K1K2 into C
that fix K2 pointwise. If σ is such an extension, then

σ(K1K2) = σ(K1)σ(K2) = σ(K1)K2 ⊆ K1K2.

Hence, K1K2/K2 is Galois. Consider the mapping

ψ : Gal(K1K2/K2) �→ Gal(K1/K1 ∩K2),

given by σ �→ σ|K1 , the restriction to K1. By Exercise 2.6 this is an epimorphism. It
remains to show that ker(ψ) = 1. If ψ(σ) = 1, then σ fixes K1 pointwise, but σ already
fixes K2 pointwise by definition, so σ fixes K1K2 pointwise. In other words, σ = 1, so
ker(ψ) = 1, and

Gal(K1K2/K2) ∼= Gal(K1/K1 ∩K2).

(b) By the same reasoning as in the proof of part (a), K1K2/K1 ∩K2 is Galois. Also, by
Theorem 2.4 on page 60, Kj/K1 ∩K2 is Galois for j = 1, 2. Consider the mapping

ρ : Gal(K1K2/K1 ∩K2) �→ Gal(K1/K1 ∩K2)×Gal(K2/K1 ∩K2)

given by
ρ : σ �→ (σ|K1 , σ|K2),

the restrictions to K1 and K2 respectively, which is an epimorphism by Exercise 2.6. We
need to verify that ker(ρ) = 1. If ρ(σ) = (1, 1), then σ fixes both K1 andK2 pointwise, so
σ = 1, as required.
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(c) By part (b),

Gal(K1K2/K1 ∩K2) ∼= Gal(K1/K1 ∩K2)×Gal(K2/K1 ∩K2) = G1 ×G2.

Since Gj ⊆ Gal(Kj/F ) for j = 1, 2, both of which are abelian, then Gj is abelian for
j = 1, 2, so Gal(K1K2/K1 ∩K2) is abelian. However, by Exercise 2.6, K1K2/F is Galois,
and the F -automorphisms of K1 ∩ K2 extend to |K1K2 : K1 ∩ K2| embeddings of K1K2

into C, so Gal(K1K2/F ) is abelian. ✷

Lemma 5.14 If F/Q is an abelian extension with |F : Q| and∆ F both being powers of a
prime p, then F ⊆ Q(ζk

p
) for some k ∈ N.

Proof. We split the proof into the odd and even cases.

Case 5.4 p > 2

Let
K = Q(ζpm+1), where |F : Q| = pm.

By Application 5.1 on page 229, Gal(K/Q) is cyclic of order φ(pm+1). Let H be a subgroup
of it of order p− 1, and let L be the fixed field of H.

Claim 5.17 |FL : Q| is a power of p.

Since |H| = p−1, then L/Q is a cyclic extension with∆
L
a power of p given that∆

L

�� ∆K .
Thus, FL is an abelian extension of Q by part (c) of Lemma 5.13 on the preceding page.
Also,

|FL : Q| = |FL : L| · |L : Q| = |F : F ∩ L| · |L : Q|,

which is a power of p, where the last equality comes from part (a) of Lemma 5.13.

Claim 5.18 ∆FL is a power of p.

Suppose that q
�� ∆FL. Then by Exercise 5.37 on page 243, either q is ramified in L/Q or q

is ramified in F/Q. Therefore, either q
�� ∆

L
or q

�� ∆F . However,∆
L

�� ∆Q(ζ
pm+1 ), which is

a power of p, and∆ F is a power of p by hypothesis, so q = p. This establishes Claim 5.18.

In view of Claims 5.17–5.18, we may invoke Exercise 5.41 on page 253 to get that Gal(FL/Q)
is cyclic of prime power order. Since, by part (b) of Lemma 5.13,

Gal(FL/L ∩ F ) ∼= Gal(F/L ∩ F )×Gal(L/L ∩ F ),

then by Exercise 5.40, either Gal(F/L∩F ) = 1 or Gal(L/L∩F ) = 1. If the former occurs,
then F = L ∩ F , so F ⊆ L, and in the latter case, L = L ∩ F , so L ⊆ F . However,
|F : Q| = |L : Q|, so F = L, which implies that F ⊆ Q(ζpm+1), thereby establishing Case
5.4.

Case 5.5 p = 2

Claim 5.19 For any m ∈ N, there exists a totally real field K such that |K : Q| = 2m with
∆K = 2n, and K ⊆ Q(ζ2m+2) for some n ∈ N.

Let L = Q(ζ2m+2) and set K = L∩R. Since m+2 ≥ 3, then
√
−1 = i ∈ L, so for a±bi ∈ L,

we must have 2a, 2b ∈ K. Therefore, a, b ∈ K and L = K(i). Hence, |L : K| = 2, so
|K : Q| = 2m. If q

�� ∆K for a prime q, then q ramifies in K, so q ramifies in L. Thus,
q
�� ∆K , which is a power of 2, so q = 2. Thus,∆ K = 2n for some n ∈ N. This completes

Claim 5.19.
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Claim 5.20 For a given m ∈ N, the field K in Claim 5.19 is unique.

K is the maximal real subfield of Q(ζ2m+2). If K1 �= K is another such field, then

|KK1 : Q| ≥ 2m+2.

Therefore, KK1 = Q(ζ2m+2), contradicting the fact that KK1 is real. This establishes
Claim 5.20.

Since F and Q(i) are abelian extensions of Q, then F (i) is an abelian extension with degree
a power of 2 over Q, by part (c) of Lemma 5.13. Let

K = F (i) ∩ R.

Then K is a real extension of Q,
|K : Q| = 2s

for some s ∈ N, and∆ K is also a power of 2. By Claims 5.19–5.20, K ⊆ Q(ζ2s+2). Since
F (i) = K(a+ bi) for some a, b ∈ R, then given that a− bi ∈ F (i), we must have a ∈ K and
bi ∈ F (i). Thus, b2 ∈ K, so a+ bi is a root of

x2 − 2ax+ a2 + b2 ∈ K[x].

Hence, |F (i) : F | = 2. Therefore,

F ⊆ F (i) = K(i) ⊆ Q(ζ2s+2 , i) ⊆ Q(ζr),

for some r ∈ N, which establishes the full result. ✷

Before proceeding, we need the following important concepts, which are related to Defini-
tion 5.13 on page 224.

Definition 5.16 — Ramification Groups and Ramification Fields

Let K/F be a Galois extension of number fields, and let P be a prime OK-ideal. For each
nonnegative integer j define:

Vj = {σ ∈ TP(K/F ) : ασ ≡ α (mod P
j+1) for all α ∈ OK},

called the jth ramification group of P in K/F . The fixed field V (j)
P

(K/F ) is called the jth

ramification field.5.18 (Note that TP(K/F ) = V0 and V (0)
P

(K/F ) = TP(K/F ).)

We now establish some properties of the concepts in Definition 5.16 since they are needed
in the sequel.

Lemma 5.15

(a) Vj is a normal subgroup of TP(K/F ).

(b) TP(K/F ) = V0 ⊇ V1 ⊇ · · · .

(c) There exists an m ∈ N such that Vm = 1.

5.18The letter V is used for the ramification fields given that the derivation is from the German Verzwei-
gungskörper—see Footnote 5.9 on page 224. The ramification groups were first defined by Hilbert in
1894—see Biography 3.4 on page 94.
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(d) If K∗
P
denotes the multiplicative group of nonzero elements of the field KP = OK/P,

there exists a natural group isomorphism of TP(K/F )/V1 into K∗
P
.

(e) TP(K/F )/V1 is a cyclic group with order not divisible by p where p = P ∩ Z.

(f) For j ≥ 0, the groups Vj−1/Vj are elementary abelian p-groups. In other words, they
are finite dimensional vector spaces over Fp.

(g) V1 is a p-group, and T (1)
P

(K/F ) is the maximal tamely ramified extension at P con-
tained in K.

(h) Suppose that DP(K/F ) is abelian, and set q = |Fp| = NF/Q(p), where Fp = OF /p.
Then τ q−1 ∈ V1 for all τ ∈ TP(K/F ) and

|TP(K/F )/V1|
�� (q − 1).

Proof. (a) If σ ∈ TP(K/F ), then P
σ = P, so (Pj+1)σ = P

j+1. Thus, σ has the action

σ(α) = σ(α),

where the x denotes the image of x ∈ OK in OK/Pj+1 under the natural mapping

ψ : OK �→ OK/Pj+1.

Therefore, σ ∈ Vj if and only if σ is the identity mapping on OK/Pj+1. Since ker(ψ) = Vj ,
then by Theorem A.5 on page 328, Vj is a normal subgroup of TP(K/F ).

(b) We have that Vj+1 ⊆ Vj for j = 0, 1, . . . since ασ ≡ α(mod P
j+2) implies that ασ ≡ α

(mod P
j+1).

(c) If σ ∈ ∩∞
j=0Vj , then σ(α)− α ∈ ∩∞

j=0P
j+1. Therefore, σ(α) = α for all α ∈ OK . Hence,

∩∞
j=0Vj = 1. However, TP(K/F ) is a finite group, so there must exist an m ∈ N such that

Vm = 1.

(d) Let OK/P = KP.

Claim 5.21 For a fixed γ ∈ P − P
2, and any σ ∈ TP(K/F ), there exists ασ ∈ OK such

that for
γσ ≡ ασγ (mod P

2),

where ασ is uniquely determined modulo P.

Let γOK = PI, where P � I. Then by Theorem 1.21 on page 32, there exists a solution to
the system of congruences

x ≡ γσ (mod P
2),

x ≡ 0 (mod I).

Let ασ = xγ−1. Then ασ is uniquely determined modulo P and

ασγ = x ≡ γσ (mod P
2).

This completes the proof of Claim 5.21.

Claim 5.22 For any σ,τ ∈ TP(K/F ), αστ ≡ ασατ (mod P).
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We have
αστγ ≡ γστ ≡ (γσ)τ ≡ (ασγ)

τ ≡ ατ

σ
γτ ≡ ατ

σ
ατγ (mod P

2).

Since γ ∈ P− P
2, then by multiplying through the congruence

αστγ ≡ ατ

σ
ατγ (mod P

2)

by γ−1 we get,
αστ ≡ ατ

σ
ατ (mod P).

However, ατ

σ
≡ ασ (mod P) for all τ ∈ TP(K/F ). This yields Claim 5.22.

Define a map:
ρ : TP(K/F ) �→ K∗

P
,

by
ρ : σ �→ ασ.

By Claims 5.21–5.22, ρ is a well-defined homomorphism of groups. Since ασ = 1 if and only
if γσ ≡ γ (mod P

2), by Claim 5.21, then ασ = 1 holds if and only if σ ∈ V1, so V1 = ker(ρ).
This completes the proof of (d).

(e) If e1 = |img(ρ)|, then p � e1 since

e1
�� |K∗

P
| = pe − 1

for some e ∈ N. Also, since img(ρ) is a subgroup of K∗
P
, then by Theorem A.8 on page 331,

TP(K/F )/V1 is a cyclic group, and by the above has order prime to p. This is (e).

(f) This part proceeds in much the same fashion as the solution to (d), except that we work
on the additive group K+

P
of KP. Let γ ∈ P − P

2 be fixed. Then γj ∈ P
j − P

j+1 for any
j ∈ N.

Claim 5.23 For any σ ∈ Vj−1, there exists ασ ∈ OK such that

γσ ≡ γ + ασγ
j (mod P

j+1).

Set γOK = P
jI where P � I. By the Chinese Remainder Theorem for ideals cited above,

there exists a solution to the congruences

x ≡ γσ (mod P
j+1), and x ≡ 0 (mod I).

Select ασ = (x− γ)γ−j . Then

ασγ
j ≡ x− γ ≡ γσ − γ (mod P

j+1).

Thus,
γσ ≡ γ + ασγ

j (mod P
j+1),

which is Claim 5.23.

Claim 5.24 For all σ,τ ∈ Vj−1, αστ ≡ ασ + ατ (mod P).

We have that

αστγ
j ≡ γστ − γ ≡ (γσ)τ − γ ≡ (γ + ασγ

j)τ − γ ≡ γτ + ατ

σ
γjτ − γ

≡ γ + ατγ
j + ατ

σ
(γτ )j − γ ≡ γj(ατ + ατ

σ
γj(τ−1)) (mod P

j+1).

       



250 5. Ideal Decomposition in Number Fields

Thus, multiplying through by γ−j we get

αστ ≡ ατ + ατ

σ
γj(τ−1) (mod P).

Since ατ

σ
≡ ασ (mod P) for all τ ∈ Vj−1 ⊆ V0 and γj(τ−1) ≡ 1(mod P) given that γjτ ≡ γj

(mod P), then Claim 5.24 follows.

Define a map
ρ1a : Vj−1 �→ K+

P
,

by
σ �→ ασ,

which is a well-defined additive group homomorphism independent of the choice of α by
Claims 5.23–5.24, and ker(ρ1) = Vj . Hence, Vj−1/Vj is a direct sum of cyclic groups of
order p, since K+

P
is such a sum, so Vj−1/Vj is an elementary abelian p-group, thereby

securing (f).

(g) By parts (b)–(c) above,
V0 ⊇ V1 ⊇ · · · ⊇ Vm = 1,

for some m ∈ N. Also, V0/V1 is a cyclic group, and Vj−1/Vj is an elementary abelian

p-group by parts (e)–(f) just proved, so V1 is a p-group. Hence, T (1)
P

(K/F ) is the maximal
tamely ramified extension at P contained in K, which is (g).

(h) Let σ ∈ DP(K/F ) be the element such that its image in Gal(KP/Fp) is the Frobenius
automorphism. Then for each τ ∈ TP(K/F ), we have from Claim 5.21 in the proof of part
(d) that

γσ
−1

τσ ≡ (γασ−1)τσ ≡ (γτατ

σ−1)σ ≡ (ατγα
τ

σ−1)σ

≡ ασ

τ
γσατσ

σ−1 ≡ ασ

τ
γσασ

σ−1 ≡ ασ

τ
ασγα

σ

σ−1 (mod P
2).

We have shown that
γσ

−1
τσ ≡ ασ

τ
ασα

σ

σ−1γ (mod P
2). (5.43)

Claim 5.25 ασασ

σ−1 ≡ 1(mod P
2).

We have
γσ ≡ ασγ (mod P

2), (5.44)

and
γσ

−1

≡ ασ−1γ (mod P
2). (5.45)

Putting together (5.44)–(5.45), we get

(ασ−1)σασ ≡ (γσ
−1

γ−1)σασ ≡ γγσ
−1

ασ ≡ (γασ)γ
σ
−1

≡ γσγσ
−1

≡ 1 (mod P
2),

as required to complete Claim 5.25.

By Claim 5.25 and (5.43) and the fact that σ is the element such that its image in
Gal(KP/Fp) is the Frobenius automorphism,

γστσ
−1

≡ ασ

τ
γ ≡ αq

τ
γ (mod P

2). (5.46)

However, γτ ≡ ατγ (mod P
2), γτ

2 ≡ α2
τ
γ (mod P

2), and so on. Thus, by induction

γτ
q

≡ αq

τ
γ (mod P

2). (5.47)
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Combining (5.46)–(5.47), we get γστσ
−1 ≡ γτ

q

(mod P
2). Thus, γστσ

−1
τ
−q ≡ γ (mod P

2).
We have shown that στσ−1τ−q ∈ V1. When DP(K/F ) is abelian, then

(στσ−1τ−q)−1 = τ q−1 ∈ V1,

for all τ ∈ TP(K/F ). Since TP(K/F )/V1 is cyclic and τ q−1
V1 = V1, then

|TP(K/F )/V1|
�� (q − 1),

which is (h) so we are done. ✷

Lemma 5.16 Let F be an abelian number field over Q with |F : Q| = n. Then for every
prime p

�� ∆F , with p � n, there exists an abelian number fieldK over Q such that |K : Q|
�� n,

F ⊆ K(ζp), and p � ∆K . Furthermore, any prime divisor of∆ K is a prime divisor of∆ F .

Proof. We break this into two cases.

Case 5.6 p
�� ∆F , p � n, and ζp ∈ F .

Since p � n, then by Theorem 5.4 on page 189, p � eF/Q(p). By part (g) of Lemma 5.15 on

page 247, |F : V (1)
p (F/Q)| is a power of p, but |F : V (1)

p (F/Q)|
�� n, so F = V (1)

p (F/Q),
where p is a prime OF -ideal over p. By part (h) of Lemma 5.15, |Tp(F/Q)/V1|

�� (p − 1),

but since F = V (1)
p (F/Q), then |Tp(F/Q)|

�� (p− 1). However, by Theorem 5.1 on page 184,

eF/Q(p) = eF/Q(ζp)(p)eQ(ζp)/Q(p ∩ Z[ζp]).

Since |Q(ζp) : Q| = p− 1, by Corollary 1.17 on page 41, then eF/Q(ζp)(p) = 1.

Claim 5.26 K = Tp(F/Q) satisfies the conditions of the lemma.

Since Gal(F/Q) is abelian, then K/Q is an abelian extension with |K : Q|
�� n. Also,

Tp(K/Q(ζp)) = Tp(F/Q) ∩Gal(K/Q(ζp)).

By a similar argument to the above, the first ramification field of p in F/Q(ζp) is

V (1)
p (F/Q(ζp)) = F.

Therefore, |F : K(ζp)| = ep(F/Q(ζp)) = 1, so F = K(ζp). Since K = Tp(K/Q), then
p � ∆K by Corollary 5.8 on page 210. Furthermore, if q �= p is a prime with q

�� ∆K , then q
ramifies in K/Q, and so must ramify in F/Q. Hence, q

�� ∆F , which completes Claim 5.26,
and so Case 5.6.

Case 5.7 p
�� ∆F , p � n, and ζp �∈ F .

Let L = F ∩ Q(ζp). Then by part (b) of Lemma 5.13 on page 245, Gal(F (ζp)/L) ∼=
Gal(F/L)×Gal(Q(ζp)/L). Thus,

|F (ζp) : L| · |L : Q| = |F (ζp) : Q| = |F : L| · |Q(ζp) : L| · |L : Q|,

and this last value equals both

|F : L| · |Q(ζp) : Q| = |F : L| · (p− 1), (5.48)

and
|F : Q| · |Q(ζp) : L| = n · |Q(ζp) : L|. (5.49)
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From (5.48)–(5.49),
|F (ζp) : Q| = |F : L| · (p− 1), (5.50)

and
|F (ζp) : Q| = n · |Q(ζp) : L|. (5.51)

Thus, by multiplying (5.50)–(5.51), we get |F (ζp) : Q|2 = |F : L| · (p − 1) · n · |Q(ζp) : L|.
Therefore, since part (a) of Lemma 5.13 tells us that |F (ζp) : F | = |Q(ζp) : L|, we have
|F (ζp) : Q| · |L : Q|2 = (p− 1) · n. Hence,

|F (ζp) : Q|
�� n · (p− 1). (5.52)

Since p ramifies in F , then p ramifies in F (ζp)/Q. Therefore, p
�� ∆F (ζp). From (5.52), this

yields that p � |F (ζp) : Q|. Let P be a prime OF (ζp)-ideal over p. Now we apply Case 5.6 to
F (ζp). Let K = TP(F (ζp)/Q) ⊆ F (ζp). Then |F (ζp) : K| = eP(F (ζp)/Q) = p− 1. Also,

|F (ζp) : Q| = |F (ζp) : K| · |K : Q| = (p− 1) · |K : Q|.

Thus, by (5.52), |K : Q|
�� n. Since p is unramified in K/Q, then p � ∆K . Also, if q �= p is a

prime such that q
�� ∆K , then q ramifies in K/Q, so also in F (ζp)/Q. By Exercise 5.37 on

page 243, q must be ramified in F/Q or in Q(ζp)/Q. Since q �= p, then by Corollary 3.9 on
page 125, q ramifies in F/Q, so q

�� ∆F , and we have completed the entire proof. ✷

Lastly, we have the following concluding lemma.

Lemma 5.17 If Theorem 5.23 holds for abelian number fields whose degree and discrimi-
nant are a power of a given prime p, then it holds for arbitrary abelian extensions of degree
a power of p.

Proof. Let |F : Q| = pm. If q �= p is a prime dividing∆ F , then by Lemma 5.16, there
exists an abelian extension K/Q such that F ⊆ K(ζq), |K : Q|

�� |F : Q|, q � ∆K , and if
r is a prime dividing∆ K , then r|∆F . Hence,∆ K has fewer distinct prime divisors than
∆F . Suppose that∆ K is not a power of p. Then we repeat the above argument on K
and get another field K1 with∆ K1 having fewer distinct prime factors than∆ K , while K1

satisfies the properties of Lemma 5.16. Since there exist only finitely many such primes
by Corollary 5.7 on page 210, we terminate this process after a finite number, r + 1, of
iterations. Therefore, for integers s = 0, 1, . . . , r, we have abelian extensions Ks/Q such
that |Ks : Q| is a power of p, and Ksj

⊆ Ks(ζsj ), for some sj ∈ N, and Kr ⊆ Q(ζr) for
some r ∈ N, with the last containment coming from Lemma 5.14 on page 246. Hence,

F ⊆ K(ζs0), K ⊆ K1(ζs1), K1 ⊆ K2(ζs2), . . . ,Kr ⊆ Q(ζsr ).

Therefore, F ⊆ Q(ζs0 , ζs1 , . . . , ζsr ) ⊆ Q(ζn), where n is the lcm of the orders of the ζsj for
j = 0, 1, . . . , r. ✷

Theorem 5.23 is now an immediate consequence of Lemmas 5.12–5.17. The proof of the
Kronecker-Weber Theorem places us at the doorstep of class-field theory, at which we
have already had a peek via Theorem 5.21 on page 239. The celebrated Kronecker-Weber
Theorem was first stated by Kronecker in 1856, and first proved by H. Weber in 1886—see
Biographies 4.9 on page 164 and 5.4 on page 254. Numerous proofs have been given since
then. Among them are one given by Hilbert in 1896, one by F. Mertens in 1906, and
another by Weber himself in 1907. A proof was given by the late Hans Zassenhaus in
1969. More recently a proof was given by Greenberg in 1974—see [23]–[24]. Although the
proof of the latter is deemed to be “elementary,” once all the facts cited therein are proved,
the proof turns out to be longer than the once presented here and essentially the same
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sequence of lemmas is employed, so the reader is now provided with a relatively complete
and straightforward introduction to the theorem.

Exercises

5.40. Let G be a cyclic group of order pn where n ∈ N and p is prime. Prove that if
G ∼= G1×G2 where Gj are cyclic groups of order pmj for j = 1, 2, then either m1 = 0
or m2 = 0.

5.41. Prove that any number field F abelian overQ with both degree overQ and discriminant
a power of an odd prime must be a cyclic extension of Q.

5.42. Let G be a finite abelian p-group, where p is prime, and let |G| = pm, for m ∈ N.
Establish the following two facts.

(a) For any subgroup H of G of order pn with n ∈ N, there exists a subgroup of G
of order pr for n ≤ r ≤ m containing H.

(b) If G has only one subgroup of order pm−1, then G is cyclic.

5.43. Let K/F be a Galois extension of number fields, and let P be a prime OK-ideal. Prove
that all ramification groups Vj for j ≥ 0 are normal subgroups of DP(K/F ).

(Hint: See Lemma 5.15 on page 247.)

5.44. Let K/F be a Galois extension of number fields, and let P1,P2, . . . ,Pn be the prime
OK-ideals ramified in K/F (possibly the empty set—see Remark 5.8 on page 240).
Suppose thatH is the subgroup of Gal(K/F ) generated by the inertia groups TPj

(K/F )
for j = 1, 2, . . . , n, and let L be the fixed field of H. Prove that L is the maximal
subfield of K that is unramified over F . In particular, conclude that if F = Q,
then Gal(K/F ) = H is generated by the inertia groups. (This result is called the
Monodromy Theorem for algebraic number fields.)

5.45. Suppose that K/F is a Galois extension of number fields with P a prime OK-ideal.
Let Vj for j = 0, 1, 2, . . . ,m − 1 be all of the nontrivial ramification groups of K/F
with different DK/F . Prove that if Ps

�� DK/F , but P
s+1 � DK/F , then

s =
m−1�

j=0

(|Vj | − 1).

(This equation is called Hilbert’s formula.)

5.46. Let K/F be a Galois extension of number fields of degree n, and let P be a prime
OK-ideal with e = eK/F (P). Prove that P is tamely ramified in K/F if and only if
P
e � DK/F . Conclude that P is tamely ramified in K/F if and only if pn � ∆K/F where

p = P∩OF . (Note that this establishes the promised converse of the result discussed
in Remark 5.3 on page 213.)

5.47. Let K/F be an extension of number fields. Prove that TK/F (OK) = OF if and only
if there is no prime OF -ideal p that divides DK/F .

5.48. Suppose that G is a multiplicative group of order n and R is a ring. Let R[G] denote
the additive abelian group �

g∈G

R = R+ · · ·+R� �� �
n copies

.
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Thus, R[G] consists of the formal sums
�

n

j=1 rgjgj for rgj ∈ R and gj ∈ G, with the
sum ranging over all of the n elements gj of G. Addition is defined by

n�

j=1

rgjgj +
n�

j=1

shj
gj =

n�

j=1

(rgj + sgj )gj ,

with possibly some zero coefficients to ensure that any two of these formal sums range
over the same indices gj for j = 1, 2, . . . , n. Also, multiplication is defined by

�
m�

i=1

rgigi

�


n�

j=1

shj
hj



 =
m�

i=1

n�

j=1

(rgishj
)(gihj).

Then with these operations R[G] is called the group ring of G over R. Let K/F
be a Galois extension of number fields with G = Gal(K/F ) and R = OF . Suppose
further that R[G] ∼= OK . Prove that TK/F (OK) = R. In particular, when F = Q,
we think of OK and K as Z[G]-modules by the action (

�
g
rgg)x =

�
g
rgg(x) for

x ∈ K. Use this to conclude that a Galois extension K/Q has a normal integral basis,
namely a basis consisting of conjugates of a single integer, if and only if Z[G] ∼= OK

as Z[G]-modules—see Remark 2.3 on page 79.

5.49. Let K/F be a Galois extension of number fields such that OF [G] ∼= OK where G =
Gal(K/F ) (see Exercise 5.48). Prove that there does not exist any prime OF -ideal
p such that pn

�� ∆K/F where n = |G|. Conclude that if OK
∼= OF [G] as an OF [G]-

module, then K/F is tamely ramified. (This result was first proved by A. Speiser in
1916.)

Biography 5.3 Andreas Speiser (1885–1970) was born on October 6, 1885.
He studied at Göttingen from 1904 to 1909 as a student of Minkowski. His
dissertation was on binary quadratic forms over general algebraic number
fields. He wrote a book on group theory entitled Die Theorie der Gruppen
von endlicher Ordnung, which was published in 1923. Several new editions
came out, with the last one in 1980. He is also known for his editing of several
collected works including, and especially, that of Euler. He died on December
10, 1970.

5.50. With reference to Exercises 5.48–5.49, prove that a quadratic extension K of Q with
∆K/Q even cannot have a normal integral basis.

Biography 5.4 Heinrich Martin Weber (1842–1913) was born on May 5,
1842 in Heidelberg, Germany. He was a student of Dedekind, and worked
principally in algebra and number theory. His best-known work is his three-
volume Lehrbuch der Algebra, which was published in 1895. This text became
a standard, and influenced an entire generation of mathematicians to bring
group theory into the twentieth century as a major branch of mathematics in
its own right. Weber’s proof of Theorem 5.23 on page 244 is known to have
gaps (see the introduction to [27]). He died on May 17, 1913 in Strasbourg,
Germany (now part of France).
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5.7 An Application—Primality Testing

La dernièr chose qu’on trouve en faisant un ouvrage, est de savoir celle qu’il faut
mettre la première.
The last thing one knows in constructing a work is what to put first.

From Section I, no. 19 of Pensés (1670), ed. I. Brunschvieg (1909)
Blaise Pascal (1623–1662)

French mathematician, physicist, and moralist

In this last section of chapter five, we look at an application of the contents to primality
testing. By a primality test, we mean an algorithm that determines whether a given n ∈ N
is prime. In this section, we look at a primality test described by Lenstra in [42]. This
algorithm relies upon arithmetic in abelian extensions of Q, and certain residue symbols.
Hence, this may be viewed as an introduction to Chapter 6, as well as an application of the
results of this chapter, including the Artin symbol and the Kronecker-Weber Theorem—see
Definition 5.14 on page 229 and Theorem 5.23 on page 244.

The genesis of primality testing may be said to originate two hundred years before Christ
with the Sieve of Eratosthenes—see [53, p. 32]. There is also the observation attributed to
Fibonacci that a composite n ∈ N has a prime divisor less than

√
n. Another classical test

given by Wilson’s Theorem says that

n ∈ N is prime if and only if n
�� [(n− 1)! + 1].

However, each of these three tests is highly inefficient. In other words, there is no known
way to compute

(n− 1)! + 1 (mod n),

for instance, in reasonable time for large values of n. Gauss computed large tables of
primes, which provided enough data for him to conjecture the Prime Number Theorem—see
Theorem A.28 on page 343. Gauss himself recognized the importance of factoring and
primality testing, citing these being among the most important problems in arithmetic—see
§4.4 for an overview of factoring. In the twentieth century, the pioneering work of D.H.
Lehmer produced a school of thought in computational number theory that led to an array
of very clever ideas for factoring and primality testing—see Biography 5.5 on page 259.

There are numerous primality tests both classical and recent. There is the Elliptic curve
test, which the reader will find in [54], the Lucas-Lehmer test, Pepin’s test, and Pocklington’s
Theorem, the details, for the latter three, which the reader will find in [53]. See also [71]
for a detailed history of primality testing.

The test to be described in this section is based upon the following obvious result.

Theorem 5.24 Criterion for Primality

If n ∈ N with n > 1, then n is prime if and only if every divisor r of n is a power of n.

Of course, in practice, primality tests do not directly check that divisors of n are powers of
n. However, this is done for images of r and n in certain groups G. Given a number n ∈ N
to be tested, we proceed as follows. Set

S = {r ∈ N : r
�� n}.
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There are three stages in primality testing algorithms based upon Theorem 5.24 on the
previous page. They are described as follows.

Stage 1. This stage consists of finding a group G and a natural map σ from S to G with
the property that σ(r1r2) = σ(r1)σ(r2) whenever r1, r2 ∈ S. For instance, G = (Z/sZ)∗ for
some s ∈ Z such that gcd(s, n) = 1 and σ(r) = r, where r is the least positive residue of r
modulo s, will suffice.

In the tests described below, G will always be Gal(K/Q) for some finite abelian extension
K of Q such that gcd(∆K , n) = 1. By the Kronecker-Weber Theorem, there is an s ∈ N
such that K ⊆ Q(ζs) with gcd(s, n) = 1. Let θ ∈ Gal(Q(ζs)/Q) defined by θ(ζs) = ζr

s

for a given r ∈ S. Then define σ(r) = θ|K . Observe that σ(r1r2) = σ(r1)σ(r2). Also, by
Corollary 5.8 on page 210, r is unramified in K for any prime divisor r of n. Thus, if r is

prime we may view σ(r) as the Artin symbol
�

K/Q
r

�
.

For any r ∈ S, we define
Kσ(r) = {α ∈ K : ασ(r) = α},

and observe that if r is prime, then

Kσ(r) = Zr(K/Q)

see Definition 5.12 on page 221.

Stage 2. This stage consists of showing that σ(r) is a power of σ(n) for any r
�� n, and we

clearly may restrict our attention to prime divisors of n. In practice, this stage consists of
putting n through a number of pseudoprimality tests—such as the Miller-Selfridge-Rabin
test—[53, p. 119]— satisfying the properties:

(a) It is known that n passes the tests if n is prime.

(b) If n passes the tests, then we may conclude that σ(r) is in the subgroup of G generated
by σ(n) for all divisors r of n.

In the tests described below, this stage will consist of looking for a ring homomorphism,

ψ : O
K

σ(n) �→ Z/nZ,

with ψ(1) = 1. To show that the finding of such a homomorphism will do the job described
above for stage 2, we first show that when n is prime that such a homomorphism exists.
Then we show that indeed its existence implies that σ(r) is in the subgroup of G generated
by σ(n) for all divisors r of n.

Given that n is prime, σ(n) is the Frobenius automorphism, or Artin symbol which generates
the decomposition group of n in K/Q. Therefore, by part (b) of Corollary 5.17 on page 227,
the decomposition field of n in K/Q,

Kσ(n) = Zn(K/Q),

is the largest subfield of K in which n splits completely. Therefore, there exists a prime
O

K
σ(n) -ideal p above n such that

O
K

σ(n)/p ∼= Z/nZ ∼= Fn

is the residue class field, so we have the existence of a ring homomorphism

ψ : O
K

σ(n) �→ Z/nZ
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—see Definition 5.1 on page 182 and Diagram 5.2 on page 228. However, if such a ψ exists,
this does not ensure that n is prime. The methods for finding such a ψ usually detect
a composite number, for example by finding an integer a such that an �≡ a(mod n)—see
Exercise 4.31 on page 164. However, there exist composite integers such as n = 561 =
3 · 11 · 17 for which an ≡ a(mod n) for all integers a—see Exercise 5.51 on page 260.

Suppose now that we have found such a ψ in stage 2 (and we assume that we can do so in
computationally feasible time).5.19 Let r be a prime divisor of n, and let

ρ : Z/nZ �→ Z/rZ

be the canonical map. Form ρ ◦ ψ : OK �→ Z/rZ, which is a ring homomorphism. Thus,
the kernel of ρ ◦ ψ is an ideal R in OKσ(n) , and since

OKσ(n)/R = OKσ(n)/ ker(ρ ◦ ψ) = img(ρ ◦ ψ) = Z/rZ,

then R is prime. Since R is of degree one, then

Kσ(n) ⊆ Zr(K/Q).

Thus, Kσ(n) is fixed by σ(n), and Zr(K/Q) is fixed by σ(r). Thus, by Theorem 5.21 on
page 239, �σ(r)� ⊆ �σ(n)�, as desired. Thus, we have shown that the existence of such a ψ
guarantees that (b) above holds.

Stage 3. Use the information in Stages 1–2 to finish the primality test. In other words,
the information will verify that n is prime or it will determine that it is composite.

The following is an application of the above primality test.

Example 5.15 Let n ∈ N be given, and let s be the largest divisor of n− 1 for which we
know a complete factorization. If K = Q(ζs), then by Application 5.1 on page 229,

Gal(K/Q) ∼= (Z/sZ)∗,

where σ(r) ∈ Gal(K/Q) corresponds to r, with r denoting the residue class of r in (Z/sZ)∗.
Since n ≡ 1(mod s), then

Kσ(n) = K, OK = Z[ζs], and mζs,Z(x) = Φs(x).

If a ∈ Z such that
as ≡ 1 (mod n),

and
gcd(as/q − 1, n) = 1

for all primes q
�� s, then the residue class of the sth cyclotomic polynomial at a modulo n

vanishes, namely
Φs(a) = 0

in Z/nZ. Given such a value a, we get a ring homomorphism ψ : OKσ(n) �→ Z/nZ by
mapping ζs to a. Observe that ζs

s
�→ as = 1 in Z/nZ. Thus, by the discussion of stage

2 above, �σ(r)� ⊆ �σ(n)�. Therefore, r ≡ 1(mod s) for all r
�� n. Hence, if s >

√
n, it is

certain that n is prime. This is known as Pocklington’s Theorem see [53, Theorem 2.25, p.
123].

5.19The term computationally feasible or computationally easy means in reasonable computational time.
On the other hand, problems that are computationally infeasible, or computationally impossible are those
for which there (theoretically) exists a unique answer, but we cannot find it even if we devoted every scintilla
of time and resources available. However, it should be stressed here that there is no proved example of a
computationally infeasible problem.

       



258 5. Ideal Decomposition in Number Fields

A simple illustration of Example 5.15 on the previous page, is to test the fourth Fermat
number

F4 = 216 + 1 = n

for primality. Let s = 216, K = Q(ζs), and select a = 3. Then

as = 32
16

≡ 1 (mod n), and as/2 = 32
15

�≡ 1 (mod n).

Hence, by Pocklington’s Theorem, F4 is prime.

The main application of Lenstra’s primality test is described as follows.

Let s ∈ N such that gcd(s, n) = 1, where the complete factorization of s is assumed to be
known. Let t be the order of n modulo s. In other words, t ∈ N is the smallest value such
that

nt ≡ 1 (mod s).

Thus, t is the order of n in (Z/sZ)∗. For computational purposes, we assume that t is
relatively small. Let K = Q(ζs), so

Gal(K/Q) ∼= (Z/sZ)∗

as above. By Corollary 5.13 on page 218,

|K : Kσ(n)| = t,

and

m
ζs,K

σ(n)(x) =
t−1�

j=0

(x− ζn
j

s
).

It follows from Example 1.22 on page 19 thatO
K

σ(n) is generated as a ring by the coefficients
of m

ζs,K
σ(n)(x). Thus, to find a ring homomorphism

ψ : O
K

σ(n) �→ Z/nZ,

it suffices to find a ring extension R of Z/nZ and a homomorphism

ψ̂ : Z[ζs] �→ R,

mapping the coefficients of m
ζs,K

σ(n)(x) inside Z/nZ. Suppose that we have such a ring.

To find ψ̂, it suffices to find
ψ̂(ζs) = a ∈ R

such that as = 1, as/q − 1 ∈ R∗ for all primes q
�� s, and

t−1�

j=0

(x− an
j

) ∈ Z
nZ [x].

If such an element a has been found, there exists a ring homomorphism

ψ : O
K

σ(n) �→ Z/nZ,

so from Stage 2, it follows that every r
�� n is congruent to a power of n modulo s.

If we assume that s >
√
n, then it suffices to try the least residues nj modulo s for j =

0, 1, 2, . . . , t− 1 as possible divisors of n.5.20

To illustrate the above, we show that the following classical result is a special case of our
test.

5.20In [42] it is concluded that the expected running time of the algorithm is less than (logn)c log log log n,
where c is some effectively computable constant.
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Application 5.4 — Lucas–Lehmer Test for Mersenne Primes

Let n = 2m − 1 with m ∈ N, m > 2. Set e1 = 4 and ej+1 = e2
j
− 2 if j ≥ 1. Then n is prime

if and only if em−1 ≡ 0(mod n).

To show that this test is a special case of our algorithm, we let s = 2m+1 and t = 2. The
interesting case occurs when m is odd (since the case for m even is easy). Define a ring

R =
(Z/nZ)[x]

(x2 −
√
2x− 1)

,

where
√
2 means

2(m+1)/2 (mod n) ∈ Z/nZ.
Let ψ̂ : Z[ζs] �→ R, as above and set ψ(x) = a. Set b =

√
2−a = −a−1, which is “the other”

zero of x2 −
√
2x−. in R. By a simple induction argument

a2
j

+ b2
j

≡ ej (mod n), (5.53)

for j ∈ N. If n is prime, then R is a field in which a and b are conjugate, so an = b by the
theory of finite fields—see §2.1. Hence,

a2
m

= an+1 = ba = −1,

so from (5.53), we get, em−1 ≡ a2
m−1

+ b2
m−1 ≡ a2

m−1
+ a−2m−1 ≡ 0(mod n). Conversely,

if em−1 ≡ 0(mod n), then a2
m ≡ −1(mod n), so as = a2

m+1 ≡ 1(mod n). Thus, as/2 − 1 =
−2 ∈ R∗. From an = a2

m−1 ≡ −a−1 ≡ b(mod n), we get

(x− a)(x− an) ≡ (x− a)(x− b) (mod n),

and

(x− a)(x− b) = x2 −
√
2x− 1 ∈ Z

nZ [x].

Hence, these conditions guarantee that there exists a ring homomorphism

O
K

σ(n) �→ Z/nZ,

via Stage 1, and that every divisor of n is congruent to 1 or n modulo s. Hence, for s > n,
we get that n is prime.

The test in this section can be used with that given in [1]. The reader is encouraged to solve
Exercise 5.52 which opens the door to understanding the concepts used in [1], which also
employs Artin symbols. Furthermore, the solution of Exercise 5.52 generalizes the notion
of a quadratic Gauss sum given in Exercise 5.33 on page 232, and prepares the reader for
Chapter 6 where we look at Reciprocity laws and residue symbols in general.

Biography 5.5 Derrick Henry Lehmer (1905–1991) was born on February 23,
1905 in Berkeley, California. He got his first degree from the University of
California there in 1927. Then he achieved his Sc.M. from Brown University
in 1929. Perhaps the best insight into his contributions may be seen in his col-
lected works [36]. He was truly a pioneering giant in the world of computational
number theory, and was widely respected in the mathematical community. He
was also known for his valued sense of humour, as attested by John Selfridge
in the forward to the aforementioned collected works, as well as by one of
Lehmer’s students, Ron Graham. In particular, Selfridge concludes with an
apt description of Lehmer’s contributions saying that he “has shown us this
beauty with the sure hand of a master.” He died on May 22, 1991.
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Exercises

5.51. Prove that x561 ≡ x(mod 561) for all x ∈ N.
(The value 561 is the smallest Carmichael number, which is a composite integer n ∈ N
such that an−1 ≡ 1(mod n) for all a ∈ N such that gcd(a, n) = 1. They are also known
as absolute pseudoprimes. We have occasion to use this in text—see page 257.)

5.52. Let q = pn where p is prime and n ∈ N. If χ is a character on F∗
q
and α ∈ F∗

q
, then

Gα(χ) =
q−1�

x=0

χ(x)ζ
TFq/Fp (xα)
p ,

is called the Gauss sum on Fq belonging to the character χ. (Recall that the trace

of an element TFq/Fp
(α) =

�
n−1
j=0 αp

j

, the sum of its conjugates over the base field,
which is essentially the same as that given in Definitions 2.4 on page 65 and 5.2 on
page 184 for number fields.)

Prove that for any α ∈ F∗
q
and any character χ on F∗

q
,

Gα(χ) = χ(α−1)G(χ),

where G(χ) = G1(χ). Conclude in particular that

Gα(�) = 0.

5.53. Prove that if α, x, y ∈ Fq, then

1

q

�

α∈Fq

ζ
TFq/Fp (α(x−y))
p = δx,y,

where δx,y is the Kronecker delta—see Theorem 5.7 on page 199 and Exercise 5.52.

5.54. Suppose that χ �= � in Exercise 5.52. Establish the following generalization of Exer-
cise 5.34 on page 232:

|Gα(χ)| =
√
q.

In particular, conclude that for any α ∈ F∗
q
, we have

Gα(χ)Gα(χ
−1) = χ(−1)q.

(Hint: Use Exercise 5.53.)

       



Chapter 6

Reciprocity Laws

Laws are like cobwebs, which catch small flies, but let wasps and hornets break through.
from A critical essay upon the faculties of the mind (1709)

Jonathan Swift (1667–1745)
Anglo-Irish poet and satirist

It may be said that the story of reciprocity laws is intimately linked with the history
of algebraic number theory itself. Indeed, the historical evolution and generalization of
the quadratic reciprocity law to residue symbols in algebraic number fields, essentially
from Gauss to Artin, uses the techniques of algebraic number theory as an indispensable
tool. Hence, understanding reciprocity laws is an integral part of algebraic number theory.
Thus, we have left this topic to the concluding chapter, albeit we have already had a solid
introduction via Definition 5.14 on page 229, Applications 5.1–5.3 on pages 229–231, and
Exercise 5.36 on page 232, as well as the applications in §5.7. Furthermore, we motivated
this chapter with the generalization of the quadratic Gauss sum given in Exercise 5.52.
Since we have already dealt with the quadratic reciprocity law, as mentioned above, we
begin with the next level up.

6.1 Cubic Reciprocity

Reciprocity laws arise from the following question. Given a fixed n ∈ N, for which primes
p, is there a solution x ∈ Z to the congruence

xn ≡ a (mod p),

where a ∈ Z is known? More generally, we have the following.

Definition 6.1 — Power Residues

If m,n ∈ N and a ∈ Z with gcd(a,m) = 1, then we say that a is an nth power residue
modulo m provided that

xn ≡ a (mod m) (6.1)

is solvable for some x ∈ Z.

For instance, when n = 2, the residues are called quadratic residues, when n = 3 they are
called cubic residues, when n = 4, they are called quartic residues, also called biquadratic
residues, when n = 5 quintic residues, when n = 6, sextic residues, and so on.

261

       



262 6. Reciprocity Laws

When n = 2 and m is a prime, we get Gauss’s Quadratic Reciprocity Law discussed in
the preamble to this section on page 261. In this section, we study n = 3, called cubic
reciprocity, predicted by Gauss. Eisenstein gave the first published proof of the Cubic
Reciprocity Law in 1844—see Biography 3.10 on page 137. In this section, we will provide
one of Eisenstein’s proofs of this law.6.1 First we need the following preliminary result,
which is based upon ideal congruences introduced and explored in Exercises 4.25–4.32 on
pages 163–164 with which the reader should be familiar at this juncture.

Remark 6.1 Note that by Corollaries 1.1 on page 13 and 1.6 on page 21, Z[ζ3] is a PID,
equivalently a UFD by Theorem 1.18 on page 29. Thus, in what follows, the congruences
modulo a prime element π of Z[ζ3] may be interpreted as congruences modulo the principal
prime ideal (π).

Proposition 6.1 — Cubic Congruences

Suppose that F = Q(ζ3) and π is a prime element of OF . If α ∈ OF = Z[ζ3] where
NF (π) �= 3 and π � α, then there exists a unique nonnegative integer n ≤ 2 such that

α(NF (π)−1)/3 ≡ ζn3 (mod π).

Proof. Since

αNF (π)−1 − 1 =
2�

j=0

(α(NF (π)−1)/3 − ζj3), (6.2)

then given π � α, we must have that π divides one of the factors on the right side of (6.2). If
π divides two of these factors, then π divides the difference of them. The possible differences
are ±(1 − ζ3), ±(1 − ζ23 ), and ±ζ3(1 − ζ3), and by Exercises 2.24 on page 68 and 3.37 on
page 129, the absolute value of the norms of any of these elements is 3. Therefore, by
Exercise 2.46 on page 86, via Remark 6.1, NF (π)

�� 3, a contradiction since NF (π) �= 1, 3.✷

Proposition 6.1 provides the evidence that the following is well-defined.

Definition 6.2 — Cubic Residue Symbol

Suppose that F = Q(ζ3) and π is a prime element of OF with NF (π) �= 3. If α ∈ OF , then
(α
π
)3 is defined by �α

π

�

3
= 0 if π

�� α,

and �α
π

�

3
= ζn3 if π � α,

where n is the unique integer determined by the congruence in Proposition 6.1.

If β ∈ OF is a nonzero, nonunit element, and

β =
m�

j=1

πj ,

6.1Jacobi had already worked out the laws in 1836 and written them down in notes for lectures given at
Königsberg in late 1836 and early 1837. In 1846, Jacobi even went so far as to write in a footnote of a paper,
which was a republished version of an 1837 paper, that Eisenstein had gotten the proof from Jacobi’s notes.
Eisenstein responded in a paper published in Crelle’s Journal in 1847 that he had neither seen Jacobi’s
lecture notes, nor was he aware of the proofs in them. See [12] for more historical details. Two proofs,
essentially those of Eisenstein and Jacobi, can be found in [32].

       



6.1. Cubic Reciprocity 263

where πj are prime elements of OF with NF (πj) �= 3 for j = 1, 2, . . . ,m, then (α
β
)3 is defined

by �
α

β

�

3

=
m�

j=1

�
α

πj

�

3

.

If β ∈ UOF
, then set �

α

β

�

3

= 1,

for all nonzero α ∈ OF , and �
0

β

�

3

= 0.

For the following, the reader is reminded of the introduction of Gauss sums and related
characters in Exercises 5.27–5.34 on pages 231–232.

Remark 6.2 Suppose that F = Q(ζ3), α,β ∈ OF , π is a prime element of OF , and (α
π
)3

is the cubic residue symbol. Then immediately from Definition 6.2,

�
αβ

π

�

3

=
�α
π

�

3

�
β

π

�

3

,

and if α ≡ β (mod π), then
�α
π

�

3
=

�
β

π

�

3

.

Therefore (α
π
)3 is a cubic character on the field Z[ζ3]/(π) of NF (π) elements, namely

χ(3)
π (α) = (α

π
)3 is a multiplicative character of order 3 on the finite field FNF (π).

By Exercise 6.2 on page 275, (α
π
)3 = 1 if and only if α is a cubic residue modulo π.

By Exercise 6.5, every nonzero element of Z[ζ3] has six associates. Thus, to refine our
development of the cubic reciprocity law, we need the following notion.

Definition 6.3 — Primary Cubic Integers

If π ∈ Z[ζ3], then we call π primary if π ≡ ±1(mod 3).6.2 In particular, if π is a prime
element, then it is called a primary prime.

Lemma 6.1 — Primary Property via Primary Factors

Let F = Q(ζ3) and let α ∈ OF be a nonzero, nonunit element. Then α is primary if and
only if there exists a decomposition in which all of its prime factors are primary.

Proof. Let α =
�

n

j=1 πj where each πj is a prime element of OF and n ∈ N. If α is primary,
then 3 � NF (πj) for any j = 1, . . . , n. By Exercise 6.6, we may write πj = ujρj where
uj ∈ UF and ρj is a primary prime in OF . Thus, we may write

n�

j=1

uj = ±ζm3

6.2Some texts are more restrictive in their definition of primary, namely they define these elements to be
those π ≡ 2(mod 3), instead of π ≡ ±1(mod 3) (see [32, Definition, p. 113] for instance). However, the
theory is made simpler by the more general congruence.
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for m = 0, 1, 2. Therefore, α = ±ζm3
�

n

j=1 ρj . Since α ≡ ±1(mod 3) and for each j, ρj ≡ ±1
(mod 3), then ζm3 ≡ ±1(mod 3). However, ζ3 �≡ −1(mod 3) since 1 + ζ3 is a unit by
Exercise 4.20 on page 162. If ζ3 ≡ 1(mod 3), then 1− ζ3 = 3β for some β ∈ OF . Thus,

1− ζ3 = 3β = (1− ζ3)(1− ζ23 )β,

so 1 = (1 − ζ23 )β forcing (1 − ζ23 ) to be a unit contradicting the fact that 3
�� (1 − ζ23 ). We

have shown that m �= 1. If m = 2, and ζ23 ≡ 1(mod 3), then by a similar argument to the
above, we get that 1−ζ3 is a unit and this is a contradiction since 3 divides it. If m = 2 and
ζ23 ≡ −1(mod 3), then this contradicts the fact that 1+ζ23 is a unit. Hence, m �= 2. We have
shown that m = 0. Therefore, α = ±

�
n

j=1 ρj , a product of primary primes. Conversely, if
α is such a product, then the product is congruent to ±1 modulo 3, so α is primary. ✷

We need one more concept and the results related to it before establishing the Cubic Reci-
procity Law.

Definition 6.4 — Jacobi Sums

Let χ and λ be characters on Fq where q = pn for a prime p and n ∈ N. Then

Jn(χ,λ ) =
q−1�

x=0

χ(x)λ(1− x)

is called a Jacobi sum. If n = 1, we write J1 = J for convenience. The order m of the
Jacobi sum Jn(χ,λ ) is the least common multiple of the orders of χ and λ. Therefore, a
Jacobi sum of order m is an integer in Q(ζm).

Lemma 6.2 — Properties of Jacobi Sums

(a) Let χ and λ be characters on Fq where q = pn for a prime p and n ∈ N. Then

Jn(χ,λ ) =
G(χ)G(λ)

G(χλ)
.

(b) If χ = χ(3) is a cubic character on Fp where p ≡ 1(mod 3) is prime, and

J(χ,χ ) = a+ bζ3,

then 3
�� b and a ≡ 2(mod 3).

(c) For any prime p,
J(�,χ ) = 0,

where χ is any nontrivial character on Fp, and

J(�,� ) = p.

Proof. (a) We have that

G(χ)G(λ) =
�

x∈Fq

χ(x)ζ
TFq/Fp (x)
p

�

y∈Fq

χ(y)ζ
TFq/Fp (y)
p

=
�

x,y∈Fq

χ(x)λ(y)ζ
TFq/Fp (x+y)
p =

�

t∈Fq

� �

x∈Fq

χ(x)λ(t− x)
�
ζ
TFq/Fp (t)
p . (6.3)
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If t = 0, then

�

x∈Fq

χ(x)χ(t− x) =
�

x∈Fq

χ(x)λ(−x) = λ(−1)
�

x∈Fq

χλ(x) = 0,

by Exercise 5.28 on page 232, since χλ �= �. If t �= 0, then by replacing x by tx1 we get,

�

x∈Fq

χ(x)λ(t− x) =
�

x1∈Fq

χ(tx1)λ(t− tx1)

=
�

x1∈Fq

χλ(t)χ(x1)λ(1− x1) = χλ(t)
�

x1∈Fq

χ(x1)λ(1− x1) = χλ(t)Jn(χ,λ ).

Hence, by substituting the above expression into (6.3), we get that,

G(χ)G(λ) =
�

t∈Fq

χλ(t)Jn(χ,λ )ζ
TFq/Fp (t)
p = Jn(χ,λ )G(χλ),

which secures (a).

For part (b), we first need the following.

Claim 6.1 Suppose that χ is a character of order n > 2. Then

G(χ)n = χ(−1)p
n−2�

j=1

J(χ,χ j).

In particular, for a cubic character χ = χ(3), we have

G(χ)3 = pJ(χ,χ ).

By part (a), G(χ)2 = J(χ,χ )G(χ2). Multiplying this by G(χ), we get

G(χ)3 = J(χ,χ )G(χ2)G(χ) = J(χ,χ )J(χ,χ 2)G(χ3).

Continuing in this manner, we see that

G(χ)n−1 = J(χ,χ )J(χ,χ 2) · · · J(χ,χ n−2)G(χn−1). (6.4)

Since χn−1 = χ−1 = χ by Exercise 5.27 on page 231, then

G(χn−1)G(χ) = G(χ)G(χ) = χ(−1)p,

where the last equality follows from Exercise 5.54 on page 260. Therefore, G(χn−1) =
χ(−1)p/G(χ), and substituting this into (6.4) yields Claim 6.1.

By Exercise 5.52,

G(χ)3 =
p−1�

x=0

χ3(x)ζ3x3 =
p−1�

x=1

ζ3x3 = −1,

where the last equality follows from Example 1.5 on page 2, and the penultimate equality
comes from the facts that χ(0) = 0 and χ3(x) = 1. Therefore, by Claim 6.1,

G(χ)3 = pJ(χ,χ ) ≡ a+ bζ3 ≡ −1 (mod 3). (6.5)
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By part (c) of Exercise 5.27 on page 231,

G(χ)3 = pJ(χ, χ) ≡ a+ bζ3 ≡ −1 (mod 3). (6.6)

Thus, subtracting (6.6) from (6.5) yields, b(ζ3 − ζ3) ≡ 0(mod 3), namely

b
√
−3 ≡ 0 (mod 3),

which implies that 3b2 ≡ 0(mod 9), thereby forcing 3
�� b. Hence, from (6.5),

a+ bζ3 ≡ −1 (mod 3),

so a ≡ 2(mod 3).
In particular, if χ is a cubic character, then

G(χ) = χ(−1)pJ(χ,χ ) = pJ(χ,χ ),

since χ(−1) = χ((−1)3) = χ3(−1) = 1. This secures part (b).

(c) The first assertion is immediate from Exercise 5.31 on page 232 and the second assertion
is immediate from Definition 6.4. ✷

Lemma 6.3 — Cubic Jacobi Sums

Suppose that F = Q(ζ3), π is a primary prime element of OF , and NF (π) = p ≡ 1(mod 3).
Then

J(χ(3)
π

, χ(3)
π

) =

�
−π if π ≡ 1 (mod 3),
π if π ≡ −1 (mod 3).

Proof. For the sake of simplicity of notation, we set χ(3)
π = χ for the balance of the proof.

Let J(χ,χ ) = a + bζ3. By part (b) of Lemma 6.2 on page 264, a ≡ 2(mod 3) and 3
�� b.

Also, by Exercise 5.54 on page 260 and Claim 6.1

NF (J(χ,χ )) = NF (G(χ)3/p) = NF (π) = p.

Therefore, J(χ,χ )J(χ,χ ) = p = ππ, so π
�� J(χ,χ ) or π

�� J(χ,χ ). We now show that the
former holds. We have,

J(χ,χ ) =
p−1�

x=0

χ(x)χ(1− x) ≡
p−1�

x=0

x(p−1)/3(1− x)(p−1)/3

≡
p−1�

x=0

x(p−1)/3
(p−1)/3�

j=0

�
(p− 1)/3

j

�
(−x)j

≡
(p−1)/3�

j=0

�
(p− 1)/3

j

�
(−1)j

p−1�

x=0

x(p−1)/3+j (mod π),

where the middle congruence comes from the Binomial Theorem. Also, we have that

(p− 1)/3 + j < p− 1

for j = 0, 1, . . . , (p − 1)/3, so by Exercise 6.13 on page 277,
�

p−1
x=0 x

(p−1)/3+j = 0 in Fp.
Hence, J(χ,χ ) ≡ 0(mod π). Since π

�� J(χ,χ ), which is itself a primary prime element of
OF given that J(χ,χ ) ≡ a ≡ −1(mod 3), then J(χ,χ ) = ±π, and the result follows. ✷
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Theorem 6.1 — Cubic Reciprocity Law

Let α,β be relatively prime primary elements of OF where F = Q(ζ3). Then

�
α

β

�

3

=

�
β

α

�

3

.

Proof. If α ∈ UOF
, then α = ±1 since α is primary and ±ζj3 �≡± 1(mod 3) for j = 1, 2.

Thus, by definition, �
α

β

�

3

= 1 =

�
β

α

�

3

.

If α is not a unit, then by Remark 6.2 and Lemma 6.1 on page 263 it suffices to prove the
result for the case where α,β are primary primes.

Case 6.1 α,β are rational primes, which are inert in F .

Since α and β are relatively prime, then by the last statement of Exercise 6.4 on page 275,

�
α

β

�

3

= 1 =

�
β

α

�

3

.

This completes Case 6.1.

For a given prime element π of OF , set χπ(γ) = χ(3)
π (γ) = ( γ

π
)3 in what follows.

Case 6.2 α = q ≡ 2(mod 3) is inert and β = π with NF (π) = p ≡ 1(mod 3).

By Lemma 6.3 and Claim 6.1 on page 265,

G(χπ)
3 = pJ(χπ, χπ) = ±pπ.

Therefore, G(χπ)q
2−1 = (pπ)(q

2−1)/3 ≡ χq(pπ) ≡ χq(π)(mod q), where the last congruence
follows from Remark 6.2 on page 263 since p ≡ 1(mod 3). Thus,

G(χπ)
q
2

≡ χq(π)G(χπ) (mod q). (6.7)

However, by the Multinomial Theorem—see Theorem A.25 on page 341—

G(χπ)
q
2

≡
p−1�

x=0

χq
2

π
(x)ζq

2
x

p
(mod q).

Also, since q2 ≡ 1(mod 3) and χπ(x) is a cube root of unity, then

p−1�

x=0

χq
2

π
(x)ζq

2
x

p
=

p−1�

x=0

χπ(x)ζ
q
2
x

p
= Gq2(χπ), (6.8)

and by Exercise 5.52 on page 260,

Gq2(χπ) = χ
π
(q2)G(χπ). (6.9)

Combining (6.7)–(6.9), we get

χ
π
(q2)G(χπ) ≡ χq(π)G(χπ) (mod q).
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However, by part (c) of Exercise 5.27 on page 231,

χ
π
(q2) =

�
q2

π

�

3

=
� q

π

�2

3
=

� q

π

�−1

3
=

� q

π

�

3
=

� q

π

�

3
= χπ(q),

so
χπ(q)G(χπ) ≡ χq(π)G(χπ) (mod q).

Since G(χπ)G(χ
π
) = p from Exercise 5.54 on page 260, then multiplying the latter congru-

ence by G(χ
π
), we get

χπ(q)p ≡ χq(π)p (mod q),

so we may divide out the p and use the uniqueness given in Definition 6.2 to conclude that

χπ(q) = χq(π),

which completes Case 6.2.

Case 6.3 Assume that α = π1 with NF (π1) = p ≡ 1(mod 3) and β = π2 with NF (π2) =
q ≡ 1(mod 3), and p �= q.

Since π1 is primary, then as in Case 6.2

G(χπ1)
q−1 = (±pπ1)

(q−1)/3 ≡ χπ2(pπ1) (mod π2).

In other words,
G(χπ1)

q ≡ χπ2(pπ1)G(χπ1) (mod π2). (6.10)

However, as above, by the Multinomial Theorem and Exercise 5.52,

G(χπ1)
q ≡

p−1�

x=0

χq

π1
(x)ζxq

p
= G

q
(χπ1) = χ

π1
(q)G(χπ1) (mod q), (6.11)

where χ
π1
(q) �= 0 since p �= q. Comparing (6.10) and (6.11), and using part (c) of Exercise

5.27 we get,
χπ2(pπ1) = χ

π1
(q) = χπ1(q)

−1 = χπ1(q)
2 = χπ1(q

2).

We have shown that
χπ2(pπ1) = χπ1(q

2). (6.12)

Now we repeat the above argument that led to (6.12), with the role of π2 replacing that of
π1, and π1 replacing that of π2. Then instead of (6.12), we get

χπ1(qπ2) = χπ2(p
2). (6.13)

Also, by Exercise 6.4 on page 275, and part (c) of Exercise 5.27,

χπ1(q
2) = χ

π1
(q2) = χπ1(q). (6.14)

Multiplying (6.12) by χπ1(π2) we get,

χπ1(π2)χπ2(pπ1) = χπ1(π2)χπ1(q
2). (6.15)

Also, by multiplying (6.14) by χπ1(π2), the latter equals,

χπ1(π2)χπ1(q) = χπ1(qπ2), (6.16)
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and by (6.13) ,
χπ2(p

2) = χπ2(pπ1π1) = χπ2(π1)χπ2(pπ1). (6.17)

Hence, from (6.13)–(6.17),

χπ1(π2)χπ2(pπ1) = χπ2(π1)χπ2(pπ1).

Dividing out by χπ2(pπ1) yields,

χπ1(π2) = χπ2(π1),

which establishes Case 6.3.

We have proved the Cubic Reciprocity Law for all except the following (often overlooked)
case.

Case 6.4 6.3 Assume that α = π �∈ Z is a primary prime and β = π.

By Remark 6.2 on page 263 and the cases already proved,

�π
π

�

3
=

�
π + π

π

�

3

=

�
π

π + π

�

3

=

�
−π

π + π

�

3

,

since −1 is a cubic residue, and since −π ≡ π (mod π + π), then this in turn equals,
�

π

π + π

�

3

=

�
π + π

π

�

3

=

�
π

π

�

3

,

and the proof is complete. ✷

Corollary 6.1 Let p ≡ 1(mod 3) be a prime with p = ππ where π = a + bζ3 ∈ Z[ζ3]. If
A,B ∈ Z are such that

4p = A2 + 27B2,

then A is a cubic residue modulo p.

Proof. Since
�π
π

�

3
=

�
π

π

�−1

3

,

by Exercise 6.4, then necessarily

�π
π

�

3
=

�
π

π

�

3

= 1, (6.18)

by the cubic reciprocity law. Also, we have,

π + π = a+ bζ3 + a+ bζ23 = 2a− b,

where the last equality comes from Example 1.5 on page 2.

Claim 6.2 For any prime p ≡ 1(mod 3), there are unique A,B ∈ N such that

4p = A2 + 27B2,

with A ≡ ±1(mod 3). Here we say “unique” in the sense that, although −A and −B will
also satisfy the equation, they are not natural numbers. Usually, one says that the A and
B are unique “up to sign.” Our choice of only the positive sign by selecting only natural
numbers ensures uniqueness of sign.

6.3The elegant proof of this case is due to Ron Evans, who suggested it in the writing of the first edition,
as is the suggestion of Corollary 6.1, an application of cubic reciprocity based upon this case.
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By the proof of part (b) of Lemma 6.2 on page 264,

J(χ,χ ) = a+ bζ3

with
|J(χ,χ )|2 = p

and
p = a2 − ab+ b2.

Set A = 2a− b ∈ N and B = |b|/3. Then

4p = (2a− b)2 + 3b2 = A2 + 27B2.

Since 3
�� b and a ≡ 2(mod 3) by part (b) of Lemma 6.2, then it follows that

A = |2a− b| ≡ ±1 (mod 3).

Uniqueness of representation is shown by choosing A to be the smallest such value, from
which it follows that there can be no other representation of this type. This is Claim 6.2.

By Claim 6.2,

4p = 4(a+ bζ3)(a− bζ23 ) = 4a2 − 4ab+ 4b2 = (2a− b)2 + 3b2 = A2 + 27B2.

Therefore, from (6.18) and the fact that π + π = A, we get:

�
A

π

�

3

= 1 =

�
A

π

�

3

.

That A is a cubic residue modulo p will follow from the next result.

Claim 6.3 For a given δ ∈ Z[ζ3], δ ≡ γ3 (mod p) for some γ ∈ Z[ζ3] if and only if δ ≡ α3

(mod π) and δ ≡ β3 (mod π) for some α,β ∈ Z[ζ3]. Furthermore, δ ≡ γ3 (mod p) for some
γ ∈ Z[ζ3] if and only if δ ≡ a3 (mod p) for some a ∈ Z.

By Theorem 1.21 on page 32, for any α,β ∈ Z[ζ3], there exists a γ ∈ Z[ζ3] such that

γ ≡ α (mod π) and γ ≡ β (mod π),

from which the first result clearly follows. For the other assertion, we note that

OF /π = Z[ζ3]/π ∼= Z/pZ,

since NF (π) = p—see Definition 5.1 on page 182. Therefore, given γ ∈ OF , there exists
a rational integer a such that γ ≡ a(mod π). Thus, if δ ≡ γ3 (mod p), then we have that
δ ≡ a3 (mod p). The converse is trivial, with a = γ. ✷

Example 6.1 Let p = 19. Then 4 · 19 = 72 + 27. Thus, by Corollary 6.1, there exists an
x ∈ Z such that 7 ≡ x3 (mod 19). In fact, 7 ≡ 43 (mod 19).

Corollary 6.1 is an application of Case 6.4 in the proof of Theorem 6.1. We may exploit
that case further to motivate another application of the Cubic Reciprocity Law.
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Example 6.2 Let α = 2 + 3
√
−3 = π and β = 2 − 3

√
−3 = π, both clearly primary

elements of Z[ζ3] = Z[(1 +
√
−3)/2] = OF , and NF (π) = NF (π) = 31 = p. Also, to

explicitly illustrate Case 6.4, we have,

π(NF (π)−1)/3 = (2 + 3
√
−3)10 ≡ 1 ≡ ζ03 (mod π),

since

(2 + 3
√
−3)10 = 24663337− 8393412

√
−3 = 1 + (2− 3

√
−3)(4027980 + 1845264

√
−3),

so (2− 3
√
−3)10 ≡ 1 ≡ ζ03 (mod π) as well, since

(2− 3
√
−3)10 = 1 + (2 + 3

√
−3)(4027980− 1845264

√
−3).

Thus,
�π
π

�

3
=

�
2 + 3

√
−3

2− 3
√
−3

�

3

= 1 =

�
2− 3

√
−3

2 + 3
√
−3

�

3

=

�
π

π

�

3

.

Notice that
p = 31 = 22 + 27,

a case not covered by Corollary 6.1, in the sense that we cannot use it to determine if 2 is
a cubic residue modulo p. The following result does tell us how to determine when 2 is a
cubic residue modulo p in the general case.

By Exercise 6.2, we know that α ∈ OF = Z[ζ3] is a cubic residue modulo a prime element
π ∈ OF if and only if (α

π
)3 = 1. In particular, the cubic residuacity of 2 is of special

importance from both a historical perspective and from the point of view of representation
of rational primes as norms of cubic integers. In order to establish such results we need the
following, which was proved by Gauss in 1801—see Biography 3.5 on page 95.

Theorem 6.2 — The Cubic Residuacity of 2

Let p ≡ 1(mod 3) be a prime and let 4p = a2+3b2, where a ≡ 1(mod 3) and b ≡ 0(mod 3)
are the unique natural numbers determined in Exercise 6.10 on page 276. Then

2 ≡ x3 (mod p) for some x ∈ Z if and only if 2
�� a.

Proof. Since p ≡ 1(mod 3), then it follows from Remark 1.24 on page 52 that p = ππ�

where π is a prime element of OF = Z[ζ3] and π� is the algebraic conjugate of π. We may
let π = (a+ b

√
−3)/2 since

NF (π) = ππ� = p =
a2 + 3b2

4
.

If 2 ≡ x3 (mod p), then 2 ≡ x3 (mod π), so

a+ b
√
−3

2
= π ≡ 1 (mod 2),

by Exercise 6.3. This in turn holds if and only if

a+ b

2
≡ 1 (mod 2) and b ≡ 0 (mod 6).

Together, these imply that 2
�� a.
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Conversely, if 2
�� a, then necessarily 2

�� b, so we may write a = 2a1 and b = 2b1. Therefore,

π =
a+ b

√
−3

2
= 1 + 2

�
a1 − 1 + b1

√
−3

2

�
≡ 1 (mod 2),

so by Exercise 6.3 and Claim 6.3 on page 270, 2 ≡ x3 (mod p) has a solution x ∈ Z. ✷

Remark 6.3 The reader is cautioned that ( 2
p
)3 = 1 does not necessarily imply that 2 ≡ x3

(mod p) has a solution x ∈ Z. Exercise 6.4 tells us that in fact ( 2
p
)3 = 1 for any prime

p > 3. Consider the following example, which motivates the next result conjectured by
Euler.

Example 6.3 Let p = 7, so p = ππ, in OF = Z[ζ3], where π = (5 +
√
−3)/2. Thus, one

calculates that �
2

π

�

3

≡ 2(NF (π)−1)/3 = 4 ≡ ζ3 (mod π),

since

4 =
−1 +

√
−3

2
−
�
5 +

√
−3

2

��
−3 +

√
−3

2

�
= ζ3 − πγ,

where γ = (−3 +
√
−3)/2. Similarly,

�
2

π

�

3

≡ ζ23 (mod π).

Therefore, �
2

p

�

3

=

�
2

π

�

3

�
2

π

�

3

= ζ3ζ
2
3 = 1.

Yet, 2 �≡ x3 (mod p) for any x ∈ Z, by Theorem 6.2, since 2 � a = 1 where 4 · 7 = 12 +3 · 32.

Theorem 6.3 – Prime Representation and Cubic Residuacity6.4

If p is a rational prime, then there exist x, y ∈ Z such that p = x2+27y2 if and only if p ≡ 1
(mod 3) and 2 ≡ z3 (mod p) for some z ∈ Z.

Proof. If p ≡ 1(mod 3) and 2 ≡ z3 (mod p) for some z ∈ Z, then by Theorem 6.2 we have
that 2

�� a, so p = x2 + 27y2, where x = a/2 and y = b/6. Conversely, if p = x2 + 27y2,
then certainly p ≡ 1(mod 3). Since 4p = (2x)2 +3(6y)2, then by Theorem 6.2, we have the
result. ✷

In the next section, we will see Gauss’s proof of another of Euler’s conjectures, this time
using biquadratic reciprocity.

Example 6.4 Returning to a consideration of Example 6.3, we see that 7 certainly cannot
be represented in the form x2+27y2. What is hidden here is that in the non-maximal order
Z[
√
−27]—see Remark 3.5 on page 99—the ideal P = [7, 1 +

√
−27] is not principal. In

fact, if p ≡ 1(mod 3) is prime, then by Exercise 6.1, there is a rational integer b such that

6.4Euler conjectured this in Tractatus de numerorum doctrina capita sedecim quae supersunt, which he
wrote during the years 1748–1750. However, the work was not completed and did not get published until
1849 (see [18]). Gauss was the first to prove the result as a consequence of his work on cubic residuacity
including the result in Theorem 6.2.
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−27 ≡ b2 (mod p). Thus, by Exercise 6.14, there exist x, y ∈ Z such that p = x2+27y2 if and
only if the ideal P = [p, b+

√
−27] is principal in Z[

√
−27].6.5 Therefore, P = [7, 1+

√
−27]

is not principal in Z[
√
−27]. What Example 6.3 shows is that p = 7 is a product of prime

elements ππ in Z[ζ3] where π, π �∈ Z[
√
−27]. Thus, Euler’s criterion given in Theorem 6.3

says that primes p ≡ 1(mod 3) are representable in the form p = x2 + 27y2 if and only if
π ∈ Z[

√
−27]. Thus, we have a surprisingly simple interpretation in terms of ideal theory.

Excluded from the Quadratic Reciprocity Law is the fact (given in (A.10) on page 342),
that �

2

p

�
= (−1)(p

2−1)/8,

which is therefore called the Supplement to the Quadratic Reciprocity Law. We close this
section with the cubic analogue of this fact.

Theorem 6.4 — Supplement to the Cubic Reciprocity Law

Let π = −1 + 3m+ 3nζ3 ∈ OF = Z[ζ3] be a primary prime element.6.6 Then

�
1− ζ3

π

�

3

= ζ2m3 .

Proof. Suppose first that π = q ≡ −1(mod 3), so q = −1 + 3m. Since

(1− ζ3)
2 = −3ζ3, (6.19)

then we need only show that (−3ζ3
π

)3 = ζm3 . By the last statement in Exercise 6.4,

�
−3ζ3
π

�

3

=

�
−3

q

�

3

�
ζ3
q

�

3

=

�
ζ3
q

�

3

= ζ(NF (q)−1)/3
3 = ζ(q

2−1)/3
3 = ζ3m

2−2m
3 = ζm3 .

Now we let a = 3m − 1 and b = 3n where n �= 0, and gcd(a, b) = 1, so π = a + bζ3 with
p = ππ. 6.7

Claim 6.4 �
ζ3
π

�

3

= ζm+n

3 .

This follows from the fact that �
ζ3
π

�

3

= ζ(p−1)/3
3 ,

and (p− 1)/3 ≡ n− 2m ≡ m+ n(mod 3), since p = NF (π) = a2 − 2ab+ b2.

Claim 6.5 � a

π

�

3
= ζm3 .

6.5This phenomenon is studied in detail in [49]. Therein, such so-called non-maximal orders as Z[
√
−27]

and their relationship with the maximal order or ring of integers such as Z[ζ3] = Z[(1+
√
−3)/2] is explored

in depth. See also, [50, pp. 349–352] for an overview of the above from an elementary standpoint.
6.6There is no loss of generality in assuming that π≡−1(mod 3) since one of ±π must satisfy the congruence.

Also, by Example 1.5 on page 2, there is no need for a term involving ζ23 in the given expression for π.
6.7The ideas used in the balance of the proof are due to K. S. Williams [72].
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By the Cubic Reciprocity Law and the last statement in Exercise 6.4,

� a

π

�

3
=

�π
a

�

3
=

�
a+ bζ3

a

�

3

=

�
bζ3
a

�

3

=

�
b

a

�

3

�
ζ3
a

�

3

= ζ(a
2−1)/3

3 .

However, since (a2 − 1)/3 ≡ m(mod 3), then we have Claim 6.5.

Claim 6.6 �
a+ b

π

�

3

= ζ2n3

�
1− ζ3

π

�

3

.

Since (a+ b)ζ3 ≡ −a(1− ζ3)(mod π), then

�
a+ b

π

�

3

=

�
(a+ b)ζ3ζ23

π

�

3

=

�
−a(1− ζ3)ζ23

π

�

3

=
� a

π

�

3

�
ζ3
π

�

3

2 �1− ζ3
π

�

3

,

so by Claims 6.4–6.5, this equals

ζm3 ζ2m+2n
3

�
1− ζ3

π

�

3

= ζ2n3

�
1− ζ3

π

�

3

,

which establishes Claim 6.6.

Claim 6.7 �
π

a+ b

�

3

= ζ2(m+n)
3 .

Since π ≡ −b(1− ζ3)(mod a+ b), then

�
π

a+ b

�

3

=

�
−b(1− ζ3)

a+ b

�

3

=

�
−b

a+ b

�

3

�
1− ζ3
a+ b

�

3

=

�
1− ζ3
a+ b

�

3

,

where the last equality comes from the last statement in Exercise 6.4. However, by (6.19),

�
1− ζ3
a+ b

�

3

=

�
(1− ζ3)2

a+ b

�

3

2

=

�
−3ζ3
a+ b

�

3

2

=

�
−3

a+ b

�

3

2� ζ3
a+ b

�

3

2

,

and by the last statement in Exercise 6.4 again, this equals

�
ζ3

a+ b

�

3

2

= ζ
2
3 ((a+b)2−1)
3 = ζm+n

3 ,

which completes the proof of Claim 6.7.

By Claims 6.6–6.7, and the Cubic Reciprocity Law,

�
1− ζ3

π

�

3

= ζ−2n
3

�
a+ b

π

�

3

= ζ−2n
3

�
π

a+ b

�

3

= ζ−2n
3 ζ2(m+n)

3 = ζ2m3 ,

which establishes the result. ✷
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Exercises

6.1. Let F = Q(ζn) where n ∈ N, α ∈ OF , π a prime element of OF with NF (π) = q, and
g = gcd(n, q − 1). Prove that

xn ≡ α (mod π)

has a solution x ∈ OF if and only if

α(q−1)/g ≡ 1 (mod π).

(Hint: Use Theorem A.8 on page 331 and Theorem A.24 on page 340.)

6.2. Suppose that F = Q(ζ3), α,β ∈ OF , π is a prime element of OF , (
α

π
) is the cubic

residue symbol given in Definition 6.2 on page 262, and NF (π) �= 3. Prove that
�α
π

�

3
= 1 if and only if β3 ≡ α (mod π),

for some β ∈ OF .

(Hint: Use Exercsie 6.1.)

6.3. Let F = Q(ζ3) and π is a primary prime in OF , with π �∈ Z. Prove that

β3 ≡ 2 (mod π)

has a solution β ∈ OF if and only if

π ≡ 1 (mod 2).

(Hint: Use Proposition 6.1 on page 262, Exercise 6.2, and the Cubic Reciprocity Law.)

6.4. Suppose that α,β ∈ Z[ζ3] = OF where α is a prime element with NF (α) �= 3 and
α � β. Prove that

χ(3)
α
(β) = χ(3)

α
(β).

Use this to deduce that for r, s ∈ Z with gcd(r, s) = 1 and 3 � s,
�r
s

�

3
= 1.

(Hint: Use Exercise 6.2.)

6.5. Prove that every nonzero element of Z[ζ3] has six associates.

6.6. Let F = Q(ζ3), and let α ∈ OF be a nonzero element such that 3 � NF (α). Prove that
exactly two of the associates of α are primary, and that if β is a primary associate of
α, then −β is the other one.

6.7. Prove that
J(χ,χ−1) = −χ(−1),

for any nontrivial character χ on Fp where p is prime.

(Hint: Use Exercise 5.28 on page 232.)

Exercises 6.8–6.12 are designed as applications of Jacobi sums to certain Diophantine
equations, especially over finite fields, not covered in the main text. For more information,
see [3].

       



276 6. Reciprocity Laws

6.8. Let χ and λ be characters on Fp where p is prime and χ,λ ,χλ �= �. Prove that

|J(χ,λ )| = √
p.

Use this fact to prove the following.

(a) If p ≡ 1(mod 4), then there exist a, b ∈ Z such that p = a2 + b2.

(b) If p ≡ 1(mod 3), then there exist a, b ∈ Z such that p = a2 − ab+ b2.

(Hint: Use Exercises 5.30 on page 232, 5.54 on page 260, and part (a) of Lemma 6.2
on page 264).

6.9. Suppose that

f(x1, . . . , xn) = α0 +
n�

j=1

αjx
kj

j
,

where αj ∈ Fq, n, kj ∈ N, and let Nf,q be the number of solutions of

f(x1, . . . , xn) = 0

in Fq, where q = pm, m ∈ N for some rational prime p.6.8 Prove that if

f(x) = xn − α

for α ∈ F×
p
, n ∈ N and a prime p ≡ 1(mod n), then

Nf,p =
n�

j=1

χj(α),

where χ is a character of order n on Fp. In particular, use this fact to prove the
following, where (x

p
) is the Legendre symbol. If

f(x) = x2 − a

and p > 2, then

Nf,p = 1 +

�
a

p

�
.

(Hint: Use Exercises 5.30 and 5.32 on page 232.)

6.10. With reference to Exercise 6.9, suppose that p ≡ 1(mod 3) is prime and✰

f(x, y) = x3 + y3 − 1.

Prove the following result due to Gauss. There are A,B ∈ Z with A ≡ 1(mod 3)
uniquely determined such that

4p = A2 + 27B2, and Nf,p = p− 2 +A.

(Hint: Use Exercise 6.7, parts (b)–(c) of Lemma 6.2, and the proof of Claim 6.2 on
page 269.)

6.8Equations of this form are called diagonal equations. For an in-depth analysis of such equations, see [3]
and [43].

       



6.1. Cubic Reciprocity 277

6.11. With the notation of Exercise 6.9 in place, prove that if

f(x, y) = x2 + y2 − 1

and p > 2, then

Nf,p =

�
p− 1 if p ≡ 1 (mod 4),
p+ 1 if p ≡ −1 (mod 4).

(Hint: Use Exercises 6.7, 6.9, and see the solution to Exercise 5.33 on page 398.)

6.12. Let p ≡ 1(mod 3) be prime and set

f(x, y) = x3 + y3 − 1.

Prove that, in the notation of Exercise 6.9,

|Nf,p − p+ 2| ≤ 2
√
p.

6.13. Let k ∈ N and p > 2 prime. Prove that

�

x∈Fp

xk =

�
0 if (p− 1) � k,
−1 if (p− 1)

�� k.

6.14. Let p ≡ 1(mod 3) be a rational prime, and (as shown in Example 6.4), let b ∈ Z such
that b2 ≡ −27(mod p). Prove that there exists x, y ∈ Z such that

p = x2 + 27y2

if and only if the ideal
P = [p, b+

√
−27]

is principal in Z[
√
−27].

6.15. With reference to Exercise 6.14, prove that P
3 ∼ 1 in Z[

√
−27]. In fact, it can be

shown that the class number of Z[
√
−27] is 3 see [49, Footnote (1.5.9), pp. 25–26].

Biography 6.1 Carl Gustav Jacob Jacobi (1804–1851) was born in Potsdam
in Prussia on December 10, 1804, to a wealthy German banking family. In
August of 1825, Jacobi obtained his doctorate from the University of Berlin
on a topic involving partial fractions. The next year he became a lecturer at
the University of Königsberg and was appointed professor there in 1831. Ja-
cobi’s first major work was his application of (his first love) elliptic functions to
number theory. Moreover, Jacobi and his good friend Dirichlet both generated
their own brands of analytic number theory. As well, Jacobi was interested in
the history of mathematics and was a prime mover in the publication of the
collected works of Euler—a task, incredibly, not completed fully to this day.
Outside of number theory, he made contributions to analysis, geometry, and
mechanics. Although many of his colleagues felt that he might work himself to
death, he died of smallpox on February 18, 1851.
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6.2 The Biquadratic Reciprocity Law

The doors we open and close each day decide the lives we lead.
Flora Whittemore—see [14]

American Homesteader

Gauss was the first to state the Biquadratic (or Quartic)6.9 Reciprocity Law, but he never
published a proof. However, in [19, pp. 101–171], he made serious use of complex numbers
to discuss biquadratic residues.6.10 Eisenstein was the first to publish a proof in 1844.
Indeed, Eisenstein went on to publish five separate proofs of this law between 1844 and
1847. In order to present a proof in this section, we must develop a theory analogous to that
developed for the cubic case. We begin with the following quartic version of Proposition 6.1
on page 262.

Proposition 6.2 — Quartic Congruences

Let F = Q(ζ4) = Q(i), and let π be a prime element of

OF = Z[i] = Z[
√
−1].

If
α ∈ OF , π � α and NF (π) �= 2,

then there exists a unique nonnegative rational integer n ∈ {0, 1, 2, 3} such that

α(NF (π)−1)/4 ≡ in (mod π).

Proof. From Exercise 4.31 on page 164, it follows that since F is a PID,

αNF (π)−1 ≡ 1 (mod π),

and by Remark 1.24 on page 52,

NF (π) ≡ 1 (mod 4).

Thus, α(NF (π)−1)/4 is a root of x4 ≡ 1(mod π), as are ±1 and ±i. Hence, α(NF (π)−1)/4

must be one of in for 0 ≤ n ≤ 3 modulo π. ✷

Proposition 6.2 now allows us to formulate the following.

Definition 6.5 — Biquadratic/Quartic Residue Symbol

Let π be a prime element in OF = Z[i] with NF (π) �= 2, and let α ∈ OF . If π � α, then we
set �α

π

�

4
= in,

where n is the unique integer given by Proposition 6.2. If π
�� α, then we set

�α
π

�

4
= 0.

6.9We will use the terms quartic and biquadratic interchangeably.
6.10Indeed, Gauss was the first to use the term complex number and introduced the symbol i for

√
−1—see

[11, p. 254].Thanks to Gopala Srinivasan for pointing out the latter reference.
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If β = π1π2 · · ·πm, where each πj 1 ≤ j ≤ m ∈ N is a prime element of OF with NF (πj) �= 2,
then set �

α

β

�

4

=

�
α

π1

�

4

�
α

π2

�

4

· · ·
�

α

πm

�

4

.

If β ∈ UOF
, then set �

α

β

�

4

= 1,

for every nonzero α ∈ OF , and set �
0

β

�

4

= 0.

Now we establish some properties of the quartic residue symbol.

Proposition 6.3 — Properties of the Quartic Residue Symbol

Let α,β ∈ OF = Z[i], and let π be a prime element of OF . Then each of the following
holds.

(a) If α,β are both nonzero and gcd(α,β ) = 1, then
�
α

β

�

4

�
α

β

�

4

= 1,

where x is the algebraic conjugate of x.6.11

(b) If π � α, then
�α
π

�

4
= 1 if and only if x4 ≡ α (mod π) has a solution x ∈ O

∗
F
.

(c)
�

αβ

π

�

4
=

�
α

π

�

4

�
β

π

�

4
.

(d) If α ≡ β (mod π), then (α
π
)4 =

�
β

π

�

4
.

Proof. (a) By Definition 6.5 and Proposition 6.2, it suffices to prove this for β = π, a prime
element of OF , so α(NF (π)−1)/4 ≡ (α

π
)4 (mod π), which implies

α(NF (π)−1)/4 ≡
�α
π

�

4
(mod π).

Also, by Definition 6.5,
�
α

π

�

4

= α(NF (π)−1)/4 = α(NF (π)−1)/4,

so �
α

π

�

4

=
�α
π

�

4
,

and multiplying both sides by
�
α

π

�
4
yields part (a).

Part (b) follows from Exercise 6.1 on page 275, and parts (c) and (d) are immediate from
Definition 6.5. ✷

6.11Note that in this case, x = x
� is both the algebraic and complex conjugate of x = a+ bi for the special

case of the Gaussian integers, since x
� = a− bi = x.
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Remark 6.4 From Proposition 6.3, we see that (α
π
)4 is a quartic character on the field

Z[i]/(π) of NF (π) elements, called a quartic residue character, and we write

χ(4)
π

(α) =
�α
π

�

4
.

Now we introduce the quartic analogue of Definition 6.3 on page 263.

Definition 6.6 — Primary Gaussian Integers

If α = a+ bi ∈ Z[i], then α is said to be primary if

a ≡ 1 (mod 2), b ≡ 0 (mod 2) and a+ b ≡ 1 (mod 4).

Lemma 6.4 — A Formulation for Primary Gaussian Integers

α = a+ bi ∈ Z[i] is a primary if and only if a+ bi ≡ 1(mod 2 + 2i).

Proof. If a+ b ≡ 1(mod 4), where a is odd and b is even, then

a+ bi = 1 +

�
−1 + a+ b

4
+

�
1− a+ b

4

�
i

�
(2 + 2i) ≡ 1 (mod 2 + 2i).

Conversely, if a+ bi ≡ 1(mod 2 + 2i), then there exist c, d ∈ Z such that

a+ bi = 1 + (c+ di)(2 + 2i) = 1 + 2c− 2d+ (2c+ 2d)i.

Thus, by comparing coefficients,

a = 1 + 2c− 2d ≡ 1 (mod 2), b = 2c+ 2d ≡ 0 (mod 2),

and
a+ b = (1 + 2c− 2d) + (2c+ 2d) = 1 + 4c ≡ 1 (mod 4).

✷

Remark 6.5 By Proposition 6.4, the only unit that is primary is 1. Also, by Exercise 6.19
on page 292, a Gaussian integer not equal to 1 is primary if and only if it can be factored
into a product of primary Gaussian primes. Also, if α is primary, then (1 + i) � α. Any
Gaussian integer not divisible by 1 + i is said to be odd. This is in keeping with the fact
that if (1 + i)

�� α, then 2
�� NF (α). Given an odd Gaussian integer, exactly one of its four

associates is primary. This is the quartic analogue of Exercise 6.6 on page 275.

We now establish some properties of primary integers.

Lemma 6.5 — Properties of Primary Integers

Let α = a+ bi be a primary element of Z[i] = OF . Then
�

i

α

�

4

= i(1−a)/2.

Furthermore, if α = π with NF (π) = p ≡ 1(mod 4) is a primary prime element of OF , then

J(χ(4)
π

, χ(4)
π

) = (−1)(p+3)/4π.
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Proof. First, we show that to prove the first assertion it suffices to prove the result for
α = π, a primary prime. Let α = a+ bi and β = c+di be primary Gaussian integers. Then
b ≡ 1 − a(mod 4) and d ≡ 1 − c(mod 4), which together imply that (1 − a)(1 − c) ≡ bd
(mod 8). It follows that b+ d ≡ 1− ac+ bd(mod 8). Thus, if

�
i

α

�

4

= i(1−a)/2 and

�
i

β

�

4

= i(1−c)/2,

then �
i

α

�

4

�
i

β

�

4

= i(1−a)/2i(1−c)/2 = i(b+d)/2 = i(1−ac+bd)/2 =

�
i

αβ

�

4

.

Hence, we may assume that α = π = a+ bi is a primary prime element. Therefore,

�
i

a+ bi

�

4

= i(NF (π)−1)/4 = i(a
2+b

2−1)/4 = i(1−a)/2,

where the last equality comes from the fact that a2 + b2 − 1 ≡ 2− 2a(mod 16), given that
b ≡ 1− a(mod 4). This establishes the first assertion.6.12

To prove the second assertion, we set χ(4)
π = χ for simplicity. By Exercise 6.8 on page 276,

J(χ,χ )J(χ,χ ) = p = ππ.

By the same reasoning as in the proof of Lemma 6.3 on page 266, J(χ,χ ) ≡ 0(mod π). How-
ever, by Exercise 6.8 again, NF (J(χ,χ )) = p. Therefore, J(χ,χ ) is prime by Exercise 1.27
on page 19. Thus, there exists u ∈ UOF

such that

uJ(χ,χ ) = π. (6.20)

Claim 6.8
(−1)(p+3)/4J(χ,χ )

is primary.

Since χ(x) = χ(p− x) for x = 2, 3, . . . , (p− 1)/2, then by Definition 6.4 on page 264

J(χ,χ ) = 2

(p−1)/2�

x=2

χ(x)χ(1− x) + χ

�
p+ 1

2

�2

.

Since χ(x), χ(1− x) ∈ UOF
, then

χ(x) ≡ χ(1− x) ≡ 1 (mod 2 + 2i).

Therefore,

J(χ,χ ) ≡ 2

�
p− 3

2

�
+ χ

�
p+ 1

2

�2

(mod 2 + 2i).

However, as well we have that

χ

�
p+ 1

2

�2

= χ(2−1)2 = χ(2)−2 = χ(−i(1 + i)2)2 = χ(−i)2 = χ((−i)2) = χ(−1),

6.12We observe that this first assertion is often called one of the supplementary laws to the Biquadratic
Reciprocity Law—see Theorems 6.7 and 6.8 below for the others.
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and since p ≡ 1(mod 2 + 2i), then

J(χ,χ ) ≡ 2

�
p− 3

2

�
+ χ(−1) ≡ −2 + χ(−1) (mod 2 + 2i).

Therefore,
−χ(−1)J(χ,χ ) ≡ 2χ(−1)− 1 ≡ 1 (mod 2 + 2i),

where the last congruence follows from the fact that χ(−1) = ±1. By Lemma 6.4 on
page 280, −χ(−1)J(χ,χ ) is primary. Since π is primary, then the congruences in Defini-
tion 6.6 on page 280 imply that

a+ 1

2
≡ p+ 3

4
(mod 2).

Thus, since −χ(−1) = (−1)(a+1)/2, then (−1)(p+3)/4J(χ,χ ) is primary. This is Claim 6.8.

Now, by Claim 6.8 and Exercise 6.20 on page 292, u = (−1)(p+3)/4, so the result follows by
multiplying (6.20) on page 281 through by (−1)(p+3)/4. ✷

At this juncture, we have developed sufficient machinery to establish the Quartic Reciprocity
Law. The following proof is similar to the proofs given by Eisenstein and Jacobi using the
theory of cyclotomy.6.13

Theorem 6.5 — The Biquadratic Reciprocity Law

Let α = a+ bi,β = c+ di ∈ Z[i] such that gcd(α,β ) = 1 with both α and β primary. Then
�
α

β

�

4

=

�
β

α

�

4

(−1)bd/4 . (6.21)

Proof. We break the proof into two cases.

Case 6.5 α ∈ Z.

In this case, (6.21) becomes �
α

β

�

4

=

�
β

α

�

4

. (6.22)

By the factorization property given in Definition 6.5 on page 278, we may assume without
loss of generality that α = ±p, where p is an odd rational prime (since 2 is not primary),
and β is a Gaussian prime. The case where β ∈ Z is covered by Exercise 6.16, so we assume

that β �∈ Z and NF (β) = p ≡ 1(mod 4). For simplicity, we set χ(4)
π = χ. First we assume

that α = −q where q ≡ 3(mod 4) is a rational prime.

By Lemma 6.5 on page 280,
J(χ,χ ) = ±π.

Also, by Theorem A.25 on page 341, since q ≡ −1(mod 4),

Jq(χ,χ ) ≡ J(χ, χ) (mod q). (6.23)

6.13The term cyclotomy refers to the theory of cyclotomic numbers, which may be defined as follows.
For a given odd prime power pn=q=kf+1 where f,k,n∈N with k≥2, fix a primitive root g modulo q. Then
given integers s and t, the cyclotomic number (s,t)k of order k is the number of ordered pairs of integers
(a,b) with gak+s+1=gbk+t for 0≤a,b≤(q−1)/k. Thus, we see that the theory of cyclotomy essentially involves
consideration of equations of the form axk+byk=1. The theory of cyclotomy was originated by Gauss.
Kummer first observed the connection between Jacobi sums and cyclotomic numbers. Later, interest in the
theory was renewed by the work of Dickson, and authors of the modern day keep the flame burning. See
[3] for an in-depth analysis of this theory and its consequences.
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Therefore,

πq+1 = Jq+1(χ,χ ) ≡ J(χ, χ)J(χ,χ ) = |J(χ,χ )|2 = p (mod q), (6.24)

where the last equality comes from Exercise 6.8 on page 276. Moreover, by Exercises 5.27
on page 231, 5.52 on page 260, 6.17 on page 292, (with β = q), and Theorem A.25 on
page 341, (which allows us to bring the q inside the sum),

Gq(χ) ≡ χq(q)G(χq) = χ(q)G(χ) (mod q). (6.25)

Multiplying (6.25) through by G(χ), and using Exercise 5.54, we get

Gq+1(χ) ≡ G(χ)χ(q)G(χ) ≡ χ(−1)pχ(q) (mod q).

Hence,
Gq+1(χ) ≡ χ(−q)p (mod q). (6.26)

From Exercise 6.21 in conjunction with (6.24) and (6.26), we get

χ(−q)πq+1 ≡ χ(−q)p ≡ Gq+1(χ) = (G2(χ))(q+1)/2

≡ (
√
pJ(χ,χ ))(q+1)/2 ≡ (pJ2(χ,χ ))(q+1)/4 (mod q),

and since J2
p
(χ,χ ) = π2, by Lemma 6.5, then the last congruence becomes

(pπ2)(q+1)/4 ≡ (πq+3)(q+1)/4 (mod q),

where the last congruence follows from (6.24). Therefore, we have shown that
�
−q

π

�

4

= χ(−q) ≡ π(q+3)(q+1)/4−(q+1) = π(q2−1)/4 ≡
�

π

−q

�

4

(mod q).

Thus (6.22) holds for α = −q ≡ 1(mod 4).

Now we assume that α = q where q ≡ 1(mod 4) is a rational prime. By Exercise 5.52 and
Theorem A.25,

Gq(χ) ≡ χqG(χq) ≡ χ(q)G(χ) (mod q).

Multiplying through by G−1(χ), we get,

Gq−1(χ) ≡ χ(q) (mod q).

Therefore, by Exercise 6.21,

χ(q) ≡ Gq−1(χ) ≡ (G4(χ))(q−1)/4 ≡ (pJ2
p
(χ,χ ))(q−1)/4 (mod q).

However, by Lemma 6.5, J2(χ,χ ) = π2. Thus, the last congruence becomes,

(pπ2)(q−1)/4 ≡ (π3π)(q−1)/4 (mod q).

Now let q = γγ in Z[i]. Then by Proposition 6.2 on page 278, the above congruence becomes

�
π

γ

�

4

�
π

γ

�

4

3

≡
�
π

γ

�

4

�
π

γ

�

4

(mod q).

Hence, in particular, we have shown that

χ(q) =
� q

π

�

4
≡

�
π

γ

�

4

�
π

γ

�

4

(mod γ).
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By taking complex conjugates, we get,
� q

π

�

4
≡

�
π

γ

�

4

�
π

γ

�

4

≡
�
π

q

�

4

(mod γ),

which establishes (6.22) for α = q ≡ 1(mod 4), thereby securing Case 6.5.

Case 6.6 α,β ∈ Z[i] are arbitrary primary integers with gcd(α,β ) = 1.

By Case 6.5 and the factorization property given in Definition 6.5, we may assume that
gcd(a, b) = gcd(c, d) = 1.

Claim 6.9 If a ∈ Z, a ≡ 1(mod 4) and β ∈ Z[i] is primary with gcd(β, a) = 1, then
�
β

a

�

4

=

�
a

β

�

4

.

Given the factorization property in Definition 6.5, Claim 6.9 follows from Case 6.5 and
Lemma 6.5.

Let
σn = (−1)(n−1)/2,

where n ∈ Z is odd. The reader may easily check that σaa, σcc, and σaσc(ac + bd) are
primary. In the sequel, we will use the facts that

σc = (−1)(c−1)/2 = (−1)d/2 = id, (6.27)

and similarly,
σa = ib. (6.28)

Since cα ≡ ac+ bd(mod β), then
�
σcc

β

�

4

�
α

β

�

4

=

�
σc(ac+ bd)

β

�

4

=

�
σa

β

�

4

�
σaσc(ac+ bd)

β

�

4

, (6.29)

where the last equality follows from the fact that (σa

β
)4

2 = 1. Also, by Claim 6.9,
�
σcc

β

�

4

=

�
β

σcc

�

4

=

�
c+ di

σcc

�

4

=

�
di

σcc

�

4

=

�
i

σcc

�

4

= i(1−σcc)/2,

where the penultimate equality comes from Lemma 6.5 and Exercise 6.16 on page 292.
Thus, from Case 6.5 and Claim 6.9, (6.29) becomes

�
α

β

�

4

=

�
σa

β

�

4

�
β

σaσc(ac+ bd)

�

4

i(σcc−1)/2. (6.30)

By a similar argument to the above,
�
β

α

�

4

=
�σc

α

�

4

�
α

σaσc(ac+ bd)

�

4

i(σaa−1)/2. (6.31)

By taking complex conjugates in (6.31), we get
�
β

α

�

4

=
�σc

α

�

4

�
α

σaσc(ac+ bd)

�

4

i(1−σaa)/2,

since (σc

α
)4 = ±1 from (6.27). Now we multiply this last equation by (6.30) to get,

�
α

β

�

4

�
β

α

�

4

=
�σc

α

�

4

�
σa

β

�

4

�
βα

σaσc(ac+ bd)

�

4

i(σcc−σaa)/2. (6.32)
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Claim 6.10
�σc

α

�

4

�
σa

β

�

4

�
βα

σaσc(ac+ bd)

�

4

=

�
i

σaσc(ac+ bd)

�

4

.

First, we need to show that gcd(ad− bc, ac+ bd) = 1 in order to invoke Exercise 6.16. If a
prime

p
�� gcd(ad− bc, ac+ bd),

then p is necessarily odd. Let p = ππ in Z[i]. Then since π
�� p,

π
�� αβ = (ac+ bd) + (ad− bc)i,

and
π
�� αβ = (ac+ bd)− (ad− bc)i.

Since gcd(α,β ) = 1 = gcd(α, β), then

π
�� α and π

�� α,

or
π
�� β and π

�� β.
Without loss of generality, we may assume that the former is the case. Hence,

π
�� αα and π

�� (α+ α) = 2a,

so π
�� a and π

�� b, given that p > 2. Hence p
�� gcd(a, b) = 1, a contradiction. Now we may

invoke Exercise 6.16 to get
�

βα

σaσc(ac+ bd)

�

4

=

�
ac+ bd+ (ad− bc)i

σaσc(ac+ bd)

�

4

=

�
(ad− bc)i

σaσc(ac+ bd)

�

4

=

�
i

σaσc(ac+ bd)

�

4

.

Also, from Lemma 6.5 and (6.27)–(6.28), it follows that

�σc

α

�

4

�
σa

β

�

4

=

�
id

α

�

4

�
ib

β

�

4

=

�
i

α

�d

4

�
i

β

�b

4

= i(1−a)d/2i(1−c)b/2 = ibd/2ibd/2 = 1,

since α and β are primary. This completes the proof of Claim 6.10.

By Claim 6.10, (6.32) becomes

�
α

β

�

4

�
β

α

�

4

=

�
i

σaσc(ac+ bd)

�

4

i(σcc−σaa)/2 = i(1−σaσc(ac+bd)+σcc−σaa)/2.

However, by definition σcc ≡ σaa ≡ 1(mod 4), so the latter equals

i−σaσcbd/2 = (−1)−σaσcbd/4 = (−1)bd/4.

This establishes (6.21) in general. ✷

An application of the Biquadratic Reciprocity Law is the following.

Theorem 6.6 — Quartic Reciprocity and Prime Representation

Suppose that p ≡ 1(mod 4) is a rational prime with a ≡ (−1)(p−1)/4 (mod 4), where p =
a2 + b2. Also, let b/2 ≡ 1(mod 4) if p ≡ 5(mod 8).6.14 Then b is a quartic residue modulo
p if p ≡ 1(mod 8), and b/2 is a quartic residue modulo p if p ≡ 5(mod 8).

6.14These choices of a and b are made without loss of generality since one of ±a and one of ±b/2 must
satisfy the congruences.
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Proof. If p ≡ 1(mod 8), then a + bi = π is primary since a ≡ 1(mod 4) and b ≡ 0
(mod 4). Therefore, by the Biquadratic Reciprocity Law, Proposition 6.3 and Exercise 6.16
on page 292,

�
b

π

�

4

=

�
ai

π

�

4

=
� a

π

�

4

�
i

π

�

4

=
�π
a

�

4

�
i

π

�

4

=

�
a+ bi

a

�

4

i(1−a)/2

=

�
bi

a

�

4

i(1−a)/2 =

�
b

a

�

4

�
i

a

�

4

i(1−a)/2 =

�
b

a

�

4

ia−1 = 1.

Hence, by Exercise 6.22, b is a quartic residue modulo p.

If p ≡ 5(mod 8), then since −a ≡ b/2 ≡ 1(mod 4), both π = a + bi and b/2 are primary.
Therefore, by the Biquadratic Reciprocity Law, and Exercise 6.16,

�
b/2

π

�

4

=

�
π

b/2

�

4

=

�
a

b/2

�

4

= 1.

Thus, by Exercise 6.22, b/2 is a quartic residue modulo p. ✷

In Theorem 6.4 on page 273, we gave the Supplement to the Cubic Reciprocity Law. Now
we look at the exceptional element 1 + i in the quartic case. The following result is due to
Eisenstein, and the ideas in the proof are due to K. S. Williams [72].

Theorem 6.7 — Supplement to the Biquadratic Reciprocity Law

Let α = a+ bi ∈ Z[i] be primary. Then
�
1 + i

α

�

4

= i(a−b−1−b
2)/4.

Proof. First we establish the result for the case b = 0.

Claim 6.11 If α = a ∈ Z, where a ≡ 1(mod 4), then
�
1 + i

a

�

4

= i(a−1)/4.

It suffices to prove the claim for a = ±p where p is a rational prime. To see this, assume
that we have rational integers a1 ≡ a2 ≡ 1(mod 4). Then

(a1 − 1)/4 + (a2 − 1)/4 ≡ (a1a2 − 1)/4 (mod 4). (6.33)

We first assume that a = p ≡ 1(mod 4) is a rational prime, so p = ππ in Z[i]. Then
�
1 + i

p

�

4

=

�
1 + i

π

�

4

�
1 + i

π

�

4

=

�
1 + i

π

�

4

�
i

π

�

4

�
1− i

π

�

4

, (6.34)

where the last equality follows from the fact that 1 + i = i(1− i). Thus, (6.34) becomes,

�
i

π

�

4

�
1 + i

π

�

4

�
1 + i

π

�

4

=

�
i

π

�

4

= i(NF (π)−1)/4 = i(p−1)/4.

Now we may assume that a = −p ≡ 1(mod 4) where p is a rational prime. By the Binomial
Theorem,

(1 + i)p =
p�

j=0

�
p

j

�
ij ≡ 1 + ip = 1 + i3 = 1− i (mod p),
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since p ≡ 3(mod 4) and i3 = −i. Therefore,

(1 + i)p−1 ≡ (1− i)(1 + i)−1 ≡ (1− i)22−1 = −2i2−1 ≡ −i ≡ i−1 (mod p).

Hence,
�
1 + i

−p

�

4

= (1 + i)(p
2−1)/4 = ((1 + i)p−1)(p+1)/4 ≡ i(−p−1)/4 (mod p),

which establishes Claim 6.11.

By (6.33) and Claim 6.11, we may assume that a + bi is primary with gcd(a, b) = 1. Set
a∗ = (−1)b/2a ≡ 1(mod 4). Then by Exercise 6.16 on page 292, Lemma 6.5 on page 280
and part (d) of Proposition 6.3,

�
1 + i

a+ bi

�

4

=

�
i

a∗

�

4

−1 � bi

a∗

�

4

�
1 + i

a+ bi

�

4

= i(a
∗−1)/2

�
a+ bi

a∗

�

4

�
1 + i

a+ bi

�

4

.

However, since a∗ = a(−1)b/2 = aib, then by the Biquadratic Reciprocity Law, the previous
equation equals

i(a
∗−1)/2

�
a∗

a+ bi

�

4

�
1 + i

a+ bi

�

4

= i(a
∗−1)/2

�
aib

a+ bi

�

4

�
1 + i

a+ bi

�

4

= i(a
∗−1)/2

�
i

a+ bi

�

4

b �a+ ai

a+ bi

�

4

= i(a
∗−1)/2ib(1−a)/2

�
a+ ai

a+ bi

�

4

and since a+ ai = a+ bi+ i(a− b), then by Lemma 6.5 this equals,

i(a
∗−1+b(1−a))/2

�
i(a− b)

a+ bi

�

4

= i(a
∗−1+b(1−a))/2i(1−a)/2

�
(a− b)

a+ bi

�

4

i(a
∗−a+b(1−a))/2

�
(a− b)

a+ bi

�

4

= i3b
2
/4

�
(a− b)

a+ bi

�

4

,

where the last equality follows from the fact that

(a∗ − a)/2 + b(1− a)/2 ≡ b2/4 + b2/2 ≡ 3b2/4 (mod 4).

Since a− b ≡ 1(mod 4) is primary, then by the Biquadratic Reciprocity Law,

i3b
2
/4

�
(a− b)

a+ bi

�

4

= i3b
2
/4

�
(a+ bi)

a− b

�

4

= i−b
2
/4

�
(a− b+ b+ bi)

a− b

�

4

= i−b
2
/4

�
(b+ bi)

a− b

�

4

= i−b
2
/4

�
(1 + i)

a− b

�

4

,

where the last equality follows from Exercise 6.16 on page 292. From Claim 6.11, this equals

i−b
2
/4i(a−b−1)/4 = i(a−b−1−b

2)/4,

which completes the proof. ✷

An application of Theorem 6.7 on the preceding page is the following, which also is con-
sidered to be one of the supplementary laws for biquadratic reciprocity—see Lemma 6.5 on
page 280.
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Theorem 6.8 — The Quartic Nature of 2

If π = a+ bi ∈ Z[i] is a primary prime, then

�
2

π

�

4

= iab/2.

Proof. Since 2 = i3(1 + i)2, then

�
2

π

�

4

=

�
i

π

�

4

3�1 + i

π

�

4

2

,

so by Theorem 6.7 on page 286 and Lemma 6.5 on page 280,
�
2

π

�

4

= i3(1−a)/2i(a−b−1−b
2)/2 = i(2−2a−b−b

2)/2.

Since a+ b ≡ 1(mod 4), then

2− 2a− b− b2 = 2(1− a)− b− b2 ≡ 2b− b− b2 = b(1− b) ≡ ab (mod 4),

from which the result follows. ✷

The following consequence of Theorem 6.8 was conjectured by Euler and proved by Gauss
as a consequence of his work on biquadratic reciprocity.

Corollary 6.2 Let p ≡ 1(mod 4) be a rational prime. Then there exist x, y ∈ Z such that
p = x2 + 64y2 if and only if 2 ≡ z4 (mod p) for some z ∈ Z. In other words, if p splits in
Q(i), then p = x2 + 64y2 for some x, y ∈ Z if and only if 2 is biquadratic residue modulo p.

Proof. Since p ≡ 1(mod 4), then p = a2 + b2 = ππ, where π = a+ bi ∈ Z[i] is primary since
we may choose a to be odd and b to be even. By Theorem 6.8, Exercise 6.22 on page 293,
and part (b) of Proposition 6.3 on page 279, 2 ≡ x4 (mod p) if and only if 8

�� b. In other
words, p = x2 + 64y2 for some x, y ∈ Z if and only if 2 is a quartic residue modulo p. ✷

We continue with a result from the realm of rational biquadratic reciprocity. This refers to
those quartic residue symbols which assume only values ±1 —see Exercises 6.16–6.18 on
page 292. In particular, if p ≡ q ≡ 1(mod 4) are primes such that p is a square modulo
q, then by Exercise 6.17, ( q

π
)4 = 1 or −1 depending upon whether q is a quartic residue

modulo p or not. Thus, ( q
π
)4 depends only upon p and q and not upon π.6.15 This naturally

leads us to ask for the relationship between ( q
π
)4 and (p

ρ
)4 where q = ρρ in Z[i]. In 1969,

K. Burde [8] discovered the following elegant answer.

Theorem 6.9 — Burde’s Rational Quartic Reciprocity Law

Let p ≡ q ≡ 1(mod 4) be rational primes with Legendre symbol (p
q
) = 1, and set p = ππ,

q = ρρ where π = a+ bi,ρ = c+ di ∈ Z[i], are primary.6.16 Then

� q

π

�

4

�
p

ρ

�

4

=

�
ac+ bd

q

�
= (−1)(q−1)/4

�
ad− bc

q

�
=

�
ac+ bd

p

�
.

6.15The reader is cautioned that, for the above reasons, it is common practice in the literature, to use the
symbol ( p

q
)4 for ( p

ρ
)4. However, Exercise 6.16 tells us that ( p

q
)4=1, so when ( p

q
)4 is used as a rational residue

symbol, it takes on a different meaning from that established in Definition 6.5, so a caveat has to be given
to that effect—see [3, p. 252], for instance. For the sake of clarity, especially for the “browsing” reader, we
break with convention and avoid such notation, which is unnecessary in view of Exercise 6.22.
6.16We lose no generality by assuming primary π and ρ here. See Claim 6.14.
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Proof. First, we establish the following.

Claim 6.12
�

q

π

�

4
=

�
π

q

�

4
.

Using Proposition 6.3 on page 279 and the Biquadratic Reciprocity Law, we get

� q

π

�

4
=

�
ρρ

π

�

4

=
� ρ

π

�

4

�
ρ

π

�

4

=

�
π

ρ

�

4

�
π

ρ

�

4

=

�
π

ρρ

�

4

=

�
π

q

�

4

,

which secures Claim 6.12.

Claim 6.13
�

q

π

�

4

�
p

ρ

�

4
≡ π(q−1)/2 (mod ρ).

By Claim 6.12, and Proposition 6.3,

� q

π

�

4

�
p

ρ

�

4

=

�
π

q

�

4

�
p

ρ

�

4

=

�
π

ρ

�

4

�
π

ρ

�

4

�
π

ρ

�

4

�
π

ρ

�

4

=

�
π

ρ

�2

4

.

However, by Proposition 6.2 on page 278,

�
π

ρ

�2

4

≡
�
π(NF (ρ)−1)/4

�2
≡ π(q−1)/2 (mod ρ),

which yields Claim 6.13.

By the Quadratic Reciprocity Law,

c(q−1)/2 ≡
�
c

q

�
=

�
|c|
q

�
=

�
q

|c|

�
=

�
c2 + d2

|c|

�
=

�
d2

|c|

�
= 1 (mod q).

Thus, from Claim 6.13,

� q

π

�

4

�
p

ρ

�

4

≡ (ac+ bci)(q−1)/2 = (ac+ bd+ b(c+ di)i)(q−1)/2

≡ (ac+ bd)(q−1)/2 ≡
�
ac+ bd

q

�
(mod ρ),

from which the first equality in the statement of the theorem follows, since the latter
congruence also holds modulo ρ given that both sides of the congruence are ±1. To get the

last two equalities, we need the following, which establishes that
�

ad+bc

q

�
is independent of

sign.

Claim 6.14
�

ad−bc

q

�
=

�
ad+bc

q

�
.

Since q = c2 + d2, then

�
ad− bc

q

��
ad+ bc

q

�
=

�
a2d2 − b2c2

q

�
=

�
a2d2 + b2d2 − b2d2 − b2c2

q

�

=

�
d2(a2 + b2)− b2(c2 + d2)

q

�
=

�
d2(a2 + b2)

q

�
=

�
d2p

q

�
=

�
p

q

�
= 1.

This completes the proof of Claim 6.14.
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From Claim 6.14 we have,

�
ac+ bd

q

��
ad− bc

q

�
=

�
ac+ bd

q

��
ad+ bc

q

�
=

�
abq + cdp

q

�
=

�
cdp

q

�

=

�
cd

q

�
=

�
2

q

��
2cd

q

�
=

�
2

q

��
(c+ d)2 − q

q

�
=

�
2

q

�

= (−1)(q
2−1)/8 = ((−1)(q+1)/2)(q−1)/4 = (−1)(q−1)/4,

from which the penultimate equality of the theorem follows. The last equality in the state-
ment of the theorem follows by symmetry. ✷

Given distinct primes p ≡ q ≡ 1(mod 4), such that p is a quartic residue modulo q, Burde’s
Theorem gives necessary and sufficient conditions for q to be a quartic residue modulo p.
For instance, we have the following illustration.

Example 6.5 Let p = 29 and q = 181. Here we may take a = 5, b = 2, c = 9 and d = 10.
Since 64 ≡ 29(mod 181), then ( 29

ρ
)4 = 1, where q = c2 + d2 = ρρ. Therefore, by Burde’s

Theorem with p = a2 + b2 = ππ,

� q

π

�

4
=

�
181

π

�

4

=

�
ac+ bd

q

�
=

�
65

181

�

=

�
5

181

��
13

181

�
=

�
181

5

��
181

13

�
=

�
181

13

�
=

�
8

13

�
=

�
2

13

�
= −1,

by (A.10) on page 342. Hence, 181 is not a fourth power modulo 29. However,
�
181
29

�
=�

7
29

�
= 1, so 181 is a quadratic residue modulo 29. This places 29 in category (b) of

Exercise 6.18 on page 292.

As valuable as rational biquadratic reciprocity has shown to be, it has its limitations in the
greater scope of applications of biquadratic reciprocity. For instance, if n ≥ 3 is an odd
integer and p = 4n+ 1 is prime, then

N = 22n + 1 = (2n − 2(n+1)/2 + 1)(2n + 2(n+1)/2 + 1) = AB,

is not prime. The Quadratic Reciprocity Law tells us that

22n + 1 = 2(p−1)/2 + 1 ≡
�
2

p

�
+ 1 ≡ 0 (mod p),

since p ≡ 5(mod 8) by (A.10). Thus, p
�� N . The question naturally arises (and was posed

by Brillhart in [6]): Which of A or B does p divide? To answer the question, we need to know
A modulo p. Since 2n = 2(p−1)/4 and ( 2

p
) = −1, we need to determine which of 2(p−1)/4 ≡ i

(mod π), or 2(p−1)/4 ≡ −i(mod π) holds, where p = ππ with π, π ∈ Z[i]. In other words,
we are in category (a) of Exercise 6.18. Rational quartic reciprocity does not help us here.
Instead, we close this section with a demonstration of how the Biquadratic Reciprocity
Laws and its supplements may be used to answer the above question. The following was
first proved by Gosset [22] in 1910, but the following proof is due to Lemmermeyer [38].
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Theorem 6.10 Quadratic Reciprocity and Factorization

Let p = 4n+ 1 = a2 + 4b2 be a prime where n ∈ N is odd. Then

22n + 1 = AB,

where
A = 2n − 2(n+1)/2 + 1, B = 2n + 2(n+1)/2 + 1,

b ≡ ±3 (mod 8) if and only if p
�� A and B ≡ 2(1 + 2n) (mod p),

and
b ≡ ±1 (mod 8) if and only if p

�� B and A ≡ 2(1 + 2n) (mod p).

Proof. First, set π = a+ 2bi, where we may assume that a ≡ 3(mod 4) and 2b ≡ 2(mod 4)
without loss of generality since one of ±π must satisfy the congruences. As shown in the
preamble to this theorem, p

�� (22n + 1). Thus, by Theorem 6.8 on page 288,

2(p−1)/4 ≡
�
2

π

�

4

≡ iab ≡ i−b (mod π). (6.35)

Also, 2(p+3)/8 = ((1 + i)2i−1)(p+3)/8 = (1 + i)(p+3)/4i−(p+3)/8, from which it follows that

2(p+3)/8(1 + i)−1 = (1 + i)(p−1)/4i−(p+3)/8 ≡
�
1 + i

π

�

4

i−(p+3)/8

≡ i(a−2b−1−4b2)/4i−(p+3)/8 ≡ i(2a−4b−a
2−12b2−5)/8 (mod π),

where the penultimate congruence follows from Theorem 6.7 on page 286. A calculation
shows that

2a− 4b− a2 − 12b2 − 5

8
≡ 3− b

2
(mod 4).

Thus, we have shown that

2(p+3)/8 ≡ (1 + i)i(3−b)/2 (mod π). (6.36)

We now use (6.35)–(6.36) in each of the following cases.

If b ≡ 1(mod 8), then

B = 2(p−1)/4 + 2(p+3)/8 + 1 ≡ i−b + i(3−b)/2(1 + i) + 1 ≡ i3 + i+ i2 + 1 ≡ 0 (mod π).

By taking complex conjugates, i+ i3 + i2 + 1 ≡ 0(mod π), so B ≡ 0(mod p).

If b ≡ −1(mod 8), then

B ≡ i−b + i(3−b)/2 + i(5−b)/2 + 1 ≡ i+ i2 + i3 + 1 ≡ 0 (mod π),

so as in the previous case p
�� B.

If b ≡ 3(mod 8), then

A = 2(p−1)/4 − 2(p+3)/8(1 + i) + 1 ≡ i−b − i(3−b)/2(1 + i) + 1 ≡ i− (1 + i) + 1 ≡ 0 (mod π),

so as above, p
�� A.

If b ≡ −3(mod 8), then

A ≡ i−b − i(3−b)/2(1 + i) + 1 ≡ i3 − i3(1 + i) + 1 ≡ 0 (mod π),

and as above A ≡ 0(mod p).

Since A+B = 2 + 2n+1, then the remaining congruences follow. ✷
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Exercises

6.16. Let a, b ∈ Z with b odd, a nonzero and gcd(a, b) = 1. Prove that
�a
b

�

4
= 1.

6.17. Let a ∈ Z be nonzero, and let p ≡ 1(mod 4) be a rational prime with p = ππ where
π is a prime element of Z[i]. Prove that

� a

π

�2

4
=

�
a

p

�
,

where the symbol on the right is the Legendre symbol. In particular, conclude that

� a

π

�

4
= ±1 if and only if

�
a

p

�
= 1.

6.18. With the same hypothesis as that of Exercise 6.17, prove that

�
Z[i]
πZ[i]

�∗
∼=

�
Z
pZ

�∗
,

and that this multiplicative group is partitioned into three parts as follows:

(a) The biquadratic residues, namely those for which ( a
π
)4 = 1.

(b) The quadratic residues that are not biquadratic residues, namely those for which
( a
π
)4 = −1.

(c) The quadratic nonresidues, namely those for which ( a
π
)4 = ±i.

The facts established in Exercises 6.16–6.18 are aspects of what is called rational biquadratic
reciprocity. See the preamble to Theorem 6.9.

6.19. Prove that a Gaussian integer, which is not a unit, is primary if and only if it can be
factored into a product of primary Gaussian primes.

6.20. Let α ∈ Z[i] = OF be a nonunit with (1 + i) � α. Prove that there exists a unique
unit u ∈ UOF

such that uα is primary. In particular, conclude (via Remark 6.5 on
page 280) that if α is primary, then u = 1.

6.21. Let χ = χ(4)
π = (

π
)4 where p ≡ 1(mod 4) is a rational prime with p = ππ in Z[i], and

π primary. Prove that

G2(χ) = J(χ,χ )
√
p = (−1)(p+3)/4π

√
p.

(The fact that G2(χ) = (−1)(p+3)/4π
√
p has some historical interest. It implies that

G(χ) = σ
�

(−1)(p+3)/4π
√
p, where σ = ±1 and the square root has positive real part.

In 1979, Matthews [45] proved that

σ = −β

�
2i

π

�

4

�
2|b|
a

�
,

where the symbol on the right is the Jacobi symbol and β = ±i is defined by β ≡
�
p−1
2

�
!

(mod π).)
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6.22. Suppose that p ≡ 1(mod 4) is a rational prime with p = ππ in Z[i]. Prove that a
given δ ∈ Z[i] is a quartic residue modulo p if and only if it is a quartic residue modulo
both π and π. Furthermore, prove that δ is a quartic residue modulo p if and only if
δ ≡ z4 (mod p) for some z ∈ Z.

6.23. Let p ≡ 3(mod 4) be a rational prime, and a ∈ Z with p � a. Prove that a is a
biquadratic residue modulo p. Furthermore, establish that there exists an x ∈ Z such

that a ≡ x4 (mod p) if and only if
�

a

p

�
= 1, where the latter is the Legendre symbol.

6.24. Let p > 2 be a rational prime. Prove that if

2 ≡ x4 (mod p) for some x ∈ Z[i], then p ≡ ±1 (mod 8).

6.25. Let p ≡ 1(mod 8) be a rational prime, so p = a2 + 2b2 for some a, b ∈ Z—see
Corollaries 4.1–4.2 on page 141. Also, let p = ππ for π, π ∈ Z[i]. Prove that

�
2

π

�

4

=

�
a

p

�
,

where the right-hand symbol is the Legendre symbol.

This fact that for a prime p ≡ 1(mod 8), the biquadratic character of 2 is determined
by its decomposition p = a2 + 2b2, was first proved by Gauss.

6.26. Let p = a2 + b2 and q = c2 + d2 be distinct primes with b ≡ d ≡ 0(mod 2). Use
Theorem 6.9 on page 288 to prove that

�
ac+ bd

p

�
=

�
ac+ bd

q

�
.

6.27. Let p = a2 + b2 = 4m + 1 be a rational prime where π = a + bi ∈ Z[i] is primary.
Establish each of the following.

(a) If χ = χ(4)
π , then J(χ,χ 2) = π.

(b) 2a ≡ (−1)m
�2m
m

�
(mod p).

The result in part (b) was first proved by Gauss in 1828. A more involved result in
this direction was found by Cauchy, namely if

p = 20m+ 1 = u2 + 5v2

is prime, then �
10m

m

��
10m

3m

�
≡ 4u2 (mod p).

Numerous results involving congruences and binomial coefficients have been found over
the last century see [3, Chapter 9, pp. 268–293] for details.
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6.3 The Stickelberger Relation

Personal relations are the important thing for ever and ever, and not this outer life
of telegrams and anger.

from Chapter 19 of Howard’s End (1910)
E.M. Forster

English Novelist

In §6.4, we will prove the Eisenstein Reciprocity Law, which generalizes the laws studied
thus far in this chapter. However, in order to do so, we need to develop some notions
surrounding the concept in the title, which is the primary object of study in this section—see
Theorem 6.12 on page 302. First we need the following generalization of ideas developed in
the preceding two sections.

Proposition 6.4 — Power Residue Congruences

Suppose that F = Q(ζn) where n ∈ N and p is a primeOF -ideal with N(p) = q ≡ 1(mod n).
If α ∈ OF and α �∈ p, then there exists a j ∈ Z, unique modulo n, such that

α(q−1)/n ≡ ζj
n

(mod p).

Proof. Since |(OF /p)∗| = q − 1, then αq−1 ≡ 1(mod p). Therefore, since N(p) = q ≡
1(mod n), then α(q−1)/n is a root of xn ≡ 1(mod p), as are the distinct values ζj

n
for

j = 0, 1, . . . , n − 1. Thus, α(q−1)/n must be (uniquely) one of them by Exercise 4.29 on
page 163. ✷

Definition 6.7 — Power Residue Symbol

Let F = Q(ζn), where n > 1 is an integer, α ∈ OF , and p is a prime OF -ideal with n �∈ p.
Then the nth power residue symbol is defined to be

�
α

p

�

n

≡ α(N(p)−1)/n ≡ ζj
n

(mod p), when α �∈ p,

where j is the unique integer given in Proposition 6.4, and
�
α

p

�

n

= 0, when α ∈ p.

If I is an OF -ideal and

I =
m�

j=1

Pj

is the prime factorization of I given by Theorem 1.17 on page 28, where the Pj are not
necessarily distinct, and gcd((n), I) = 1, then

�α
I

�

n

=
m�

j=1

�
α

Pj

�

n

,

and if gcd(α,β ) = 1, then �
α

β

�

n

=

�
α

(β)

�

n

.
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Proposition 6.5 — Properties of the Power Residue Symbol

Suppose that F = Q(ζn), α,β ∈ OF and I, J are OF -ideals relatively prime to n. Then

(a) (αβ
I
)
n
= (α

I
)
n
(β
I
)
n
.

(b) ( α

IJ
)
n
= (α

I
)
n
(α
J
)
n
.

(c) If α is prime to I and xn ≡ α(mod I) is solvable for some x ∈ OF , then (α
I
)
n
= 1.

Proof. Part (c) follows from Exercise 6.1 on page 275, and parts (a)–(b) follow directly from
Definition 6.7. ✷

Now we bring Galois theory into the picture.

Proposition 6.6 — Galois Action on Residue Symbols

Let F = Q(ζn), and let I be an OF -ideal with gcd(I, (n)) = 1. If σ ∈ Gal(F/Q), then

�α
I

�σ

n

=

�
ασ

Iσ

�

n

.

Proof. Given property (b) of Proposition 6.5, it suffices to prove this for the case where
I = p is a prime OF -ideal. By Definition 6.7 and the fact that N(p) = N(pσ),

�
ασ

pσ

�

n

≡ (ασ)(N(pσ)−1)/n = (ασ)(N(p)−1)/n = (α(N(p)−1)/n)σ ≡
�
α

p

�σ

n

(mod p),

which is the desired result. ✷

Now we bring Gauss sums into the picture. For a reminder of the definition of Gauss sums,
see Exercise 5.52 on page 260.

Definition 6.8 — Power Residue Characters

Let F = Q(ζn) where n ∈ N and p is a prime OF -ideal such that n �∈ p. Suppose further
that N(p) = q = pf , p is a rational prime and f = fF/Q(p), where pf ≡ 1(mod n)—see
Corollary 5.13 on page 218. If ψ(α) = a is the image of α under the natural map ψ : OF �→
OF /p, then for ψ(α) = a �= 0, define a character χ(n)

p on Fq = OF /p by

χ(n)
p (a) =

�
α

p

�−1

n

=

�
α

p

�

n

.

The reason for the choice of the inverse in Definition 6.8 will become evident in the proof
of Theorem 6.11 on page 298. On the basis of Definition 6.8 and the definition of Gauss
sums given in Exercise 5.52, we introduce the following link to Gauss sums.

Definition 6.9 — Gauss Sums and Power Residues

With the assumptions of Definition 6.8, we let χ = χ(n)
p . Then we define

G(p) = G1(χ) = G(χ) =
�

x∈Fq

χ(x)ζ
TFq/Fp (x)
p , (6.37)

and
G(p) = G(p)n, (6.38)

The G(p) were studied by Jacobi in 1827 for the case where q = p.
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Proposition 6.7 — Properties of Power Residue Gauss Sums

With the assumptions of Definition 6.8, each of the following holds.

(a) G(p) ∈ Q(ζnp).

(b) |G(p)|2 = q.

(c) G(p) ∈ Q(ζn).

Proof. By Equation (6.37) on page 295, and the fact that the values of χ(n)
p are nth roots

of unity, with p � n, then (a) follows—see Exercise 5.27 on page 231. Part (b) follows from
Exercise 5.54 on page 260. Part (c) follows from Claim 6.1 on page 265 since the proof of
that claim extends to Fq. ✷

In order to establish the Stickelberger Relation, we need to understand the decomposition
of primes above p in various cyclotomic extensions—see Biography 1.4 on page 54. The
following development is toward that goal. We first remind the reader of the notion of the
order of an ideal modulo a prime ideal introduced in Exercise 1.44 on page 34, denoted by
ordp(I).

Proposition 6.8 — Properties of ordp(I)

The integer ordp(I) satisfies each of the following.

(a) If q is a prime OF -ideal, then ordp(q) = 0 if p �= q, and ordp(q) = 1 if p = q.

(b) If I and J are OF -ideals, then ordp(IJ) = ordp(I) + ordp(J).

(c) Suppose that I is an OF -ideal and

I =
�

p

p
a(p),

where the product is taken over all distinct prime OF -ideals p, is the unique factor-
ization given by Theorem 1.17 on page 28 with a(p) �= 0 for only finitely many such
integers. Then a(p) is that unique nonnegative integer given by

a(p) = ordp(I).

Proof. Since p �⊆ p2 and since ordp(q) > 0 if and only if q ⊆ p, then part (a) follows. Part
(b) is part (a) of Exercise 1.44. Part (c) follows from Theorem 1.17 on page 28. ✷

Diagram 6.1
P ⊆ OK −−−−→ OK/P
����

����

����

P ⊆ OL −−−−→ OL/P
����

����

����

p ⊆ OF −−−−→ OF /p
����

����

����

p ⊆ Z −−−−→ Z/pZ
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Diagram 6.1 will be a visual aid for the reader in the proof of the next result.

We now return to a consideration of the decomposition of p in cyclotomic fields discussed
above. The following sets the stage for the Stickelberger Relation, since what is at the heart
of this relation is prime ideal decomposition in cyclotomic fields, given that Gauss sums are
in such fields. The reader should be familiar with the results surrounding Corollary 5.13 on
page 218 before proceeding.

Let n ∈ N, F = Q(ζn), p a rational prime such that p � n, and p a prime OF -ideal
above p. Furthermore, let K = Q(ζp(q−1)), L = Q(ζq−1), where q = pf ≡ 1(mod n), and
f = fF/Q(p). Also let P be a prime OK-ideal above p, and set P ∩ L = P.

Proposition 6.9 — Order of Ideals in Cyclotomic Fields

With notation as in the above preamble, each of the following holds.

(a) ordP(pOK) = p− 1.

(b) ordP(1− ζp) = 1.

(c) ordP(p) = p− 1.

(d) OF /p ∼= OL/P.

Proof. Part (a) is an immediate consequence of Corollary 5.13. Also, from Example 5.8 on
page 190, we see that

pOF = pOQ(ζp) = (1− ζp)
p−1

OQ(ζp) = (1− ζp)
p−1

OF ,

so

pOK = pOQ(ζp)OK = (1− ζp)
p−1

OK =




g�

j=1

Pj




p−1

,

where P1 = P say, and g = gK/Q(p). Thus, (1 − ζp)OK =
�

g

j=1 Pj , and (b) follows. Also,
from Corollary 5.13,

p

g�

j=2

pjOK =



P

g�

j=2

Pj




p−1

.

Therefore, since gcd(P,Pj) = 1 for j > 1,

pOK = P
p−1,

from which (c) follows.

Lastly, we establish part (d). By Corollary 5.13,

fL/Q(p) = |OL/P : Z/(p)|

is the smallest natural number such that pfL/Q(p) ≡ 1(mod q − 1). However, q = pf , so
pf ≡ 1(mod q − 1), and f = fL/Q(p), so by Theorem 5.1 on page 184,

f = fL/Q(p) = fL/F (p)fF/Q(p) = fL/F (p)f.

Thus,
1 = fL/F (p) = |OL/P : OF /p|,

from which (d) follows via Definition 5.1 on page 182. ✷
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Remark 6.6 Part (d) of Proposition 6.9 on the preceding page allows us to define a
character for on Fq = OL/P ∼= OF /p, as a (q − 1)-th power residue symbol, namely for
γ ∈ OL,

χ(q−1)
P

(ψ(γ)) =

�
γ

P

�

q−1

where ψ is the natural map ψ : OL �→ Fq. Thus, χ(q−1)
P

has order q − 1, so it generates
Ch(F×

q
). This allows us to introduce another important Gauss sum.

Definition 6.10 — Gauss sums on Fq

With the setup given in Diagram 6.1 on page 296, and m ∈ N, set

Gm(P) = G((χ(q−1)
P

)−m).

Remark 6.7 Notice that if m = (q− 1)/n in Definition 6.10, then Gm(P) = G(p) given in
(6.37) on page 295, since for any α ∈ OF we have,

�
α

P

�(q−1)/n

q−1

=

�
α

p

�

n

.

The following result will give us the necessary machinery to prove the desired Stickelberger
Relation.

Theorem 6.11 — Orders of Gauss Sums on Fq

Given the setup in Diagram 6.1, and m ∈ N with 0 < m < q,

ordP(Gm(P)) =
f−1�

j=0

a(m)
j

, (6.39)

where the a(m)
j

are defined by

m =
f−1�

j=0

a(m)
j

pj (6.40)

which is the unique representation of m to base p with 0 ≤ a(m)
j

< p.

Proof. If q = 2, then
G1(P) = G1(p) = G(1) = ±

√
±p

by Exercise 5.34 on page 232. Therefore, ordP(G1(P)) = 1. We may now assume that
q > 2.

First, we note that it is a fact from elementary number theory that any integer has a unique
representation as given in (6.40)—for instance see [53, Theorem 1.5, p. 8], known as the
Base Representation Theorem. To establish (6.39), we first consider the case m = 1. Let

λp = 1− ζp and set χ = χ(q−1)
P

. Then

G1(P) =
q−1�

j=0

χ−1(j)ζ
TFq/Fp (j)
p =

q−1�

j=0

χ−1(j)(1− λp)
TFq/Fp (j).
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We may let nj ∈ N such that

nj ≡ TFq/Fp
(ψ(ζj

q−1)) (mod p),

where ψ is given in Definition 6.8 on page 295, so since

χ−1(ψ(ζj
q−1)) =

�
ζj
q−1

P

�−1

q−1

= ζ−j

q−1,

then

G1(P) =
q−2�

j=0

ζ−j

q−1(1− λp)
TFq/Fp (j).

Furthermore, since the Binomial Theorem tells us that

(1− λp)
nj ≡ 1− njλp (mod P

2)

via Example 5.8 on page 190, given that q > 2, and since

nj ≡ TFq/Fp
(ψ(ζj

q−1)) =
f−1�

k=0

ζjp
k

q−1 (mod p),

by the definition of relative trace in finite fields—see Exercise 5.52 on page 260—then it
follows that

G1(P) ≡
q−2�

j=0

ζ−j

q−1

�
1− λp

f−1�

k=0

ζjp
k

q−1

�
≡ −λp

f−1�

k=0

q−2�

j=0

ζj(p
k−1)

q−1 ≡ −λp(q − 1) (mod P
2),

where the last two congruences follow from Exercise 6.28 on page 310, since

q−2�

j=0

ζj(p
k−1)

q−1 =

�
0 for k = 1, 2, . . . , f − 1,
q − 1 if k = 0.

Thus, since q = pf ≡ 0(mod P
2), then

G1(P) ≡ λp (mod P
2).

Since λp ∈ P−P
2 by part (b) of Proposition 6.9 on page 297, then ordP(G1(P)) = 1, which

completes the proof for m = 1.

Claim 6.15 If 1 ≤ m,n,m+ n < q − 1, then

ordP(Gm+n(P)) ≤ ordP(Gm(P)) + ordP(Gn(P)).

By part (a) of Lemma 6.2 on page 264,

Gm(P)Gn(P) = Jq(χ
−m, χ−n)Gm+n(P). (6.41)

Thus, by part (b) of Proposition 6.8 on page 296

ordP(Gm(P)) + ordP(Gn(P))

= ordP(Jq(χ
−m, χ−n)) + ordP(Gm+n(P)) ≥ ordP((Gm+n(P)),

and Claim 6.15 follows.
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Claim 6.16 ordP(Gm+n(P)) ≡ ordP(Gm(P)) + ordP(Gn(P))(mod p− 1).

By Corollary 5.13 on page 218,
POK = P

p−1,

and by Exercise 5.27 on page 231,

Jq(χ
−m, χ−n) ∈ L,

so
(p− 1)

�� ordP(Jq(χ−m, χ−n)),

from which we get Claim 6.16, via (6.41).

Claim 6.17 For m ∈ N, ordP(Gpm(P)) = ordP(Gm(P)).

Since

Gpm(P) =
q−1�

j=0

χ(j)−pmζ
TFq/Fp (j)
p =

q−1�

j=0

χ(jp)−mζ
TFq/Fp (j

p)
p = Gm(P),

since j �→ jp is an automorphism of Fq, and TFq/Fp
(j) = TFq/Fp

(jp). Claim 6.17 follows.

Claim 6.18 If 1 ≤ m < q, then

ordP(Gm(P)) ≤
f−1�

j=0

a(m)
j

.

By Claims 6.15, 6.16 and the already proved fact that ordP(G1(P)) = 1, we get

ordP(Ga(P)) = a

for 1 ≤ a < p. Thus, using Claims 6.15 and 6.17,

ordP(Gm(P)) ≤
f−1�

j=0

ordP(G
a
(m)
j

pj
(P)) =

f−1�

j=0

ordP(G
a
(m)
j

(P)) =
f−1�

j=0

a(m)
j

,

which is Claim 6.18.

Claim 6.19
�

q−2
m=1 ordP(Gm(P)) = f(p−1)(q−2)

2 .

By Exercise 5.54 on page 260,

Gm(P)Gq−1−m(P) = χ(−1)mq = χ(−1)mpf , (6.42)

since
Gq−1−m(P) = G((χ(q−1)

P
)m). (6.43)

By taking ordP of both sides of (6.42), and using part (c) of Proposition 6.9 on page 297,
we get,

ordP(Gm(P)) + ordP(Gq−1−m(P)) = f(p− 1).

Thus,
q−2�

m=1

ordP(Gm(P)) +
q−2�

m=1

ordP(Gq−1−m(P)) = f(p− 1)(q − 2).
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However, by (6.43),

q−2�

m=1

ordP(Gm(P)) =
q−2�

m=1

ordP(Gq−1−m(P)),

so Claim 6.19 follows.

Claim 6.20
�

q−2
m=1

�
f−1
j=0 a(m)

j
= f(p−1)(q−2)

2 .

Since q − 1 =
�

f−1
j=0 (p− 1)pj by Theorem B.4 on page 347, then by (6.40) on page 298,

q − 1−m =
f−1�

j=0

�
p− 1− a(m)

j

�
pj .

This shows that a(q−1−m)
j

= p− 1− a(m)
j

for j = 0, 1, . . . , f − 1. Therefore,

f−1�

j=0

a(m)
j

+
f−1�

j=0

a(q−1−m)
j

= f(p− 1).

Thus,
q−2�

m=1




f−1�

j=0

a(m)
j

+
f−1�

j=0

a(q−1−m)
j



 = f(p− 1)(q − 2).

However, an easy check shows that

q−2�

m=1

f−1�

j=0

a(m)
j

=
q−2�

m=1

f−1�

j=0

a(q−1−m)
j

,

so Claim 6.20 is established.

The main result now follows from Claims 6.18–6.20. ✷

Corollary 6.3 ordp(G(p)) = n

p−1

�
f−1
j=0 a((q−1)/n)

j
.

Proof. By part (c) of Proposition 6.9,

(p− 1) ordp(G(p)) = ordP(G(p)), (6.44)

but by Theorem 6.11, and the fact, from Remark 6.7 on page 298, that G(q−1)/n(P) = G(p),

n
f−1�

j=0

a((q−1)/n)
j

= n · ordP(G(q−1)/n(P)) = ordP(G(q−1)/n(P)n) = ordP(G(p)),

so from (6.44) we get the result. ✷

We are now in a position to state and prove the following, first proved by Stickelberger in
1890. The special case where n is a prime and p ≡ 1(mod n) was first proved by Kummer
in 1847.
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Theorem 6.12 — The Stickelberger Relation

Suppose that F = Q(ζn) where n ∈ N, n > 1, and p is a prime OF -ideal with n �∈ p. Then
in OF we have the ideal decomposition,

(G(p)) = p
�

t
tσ

−1
t ,

where the sum runs over all natural numbers t < n with gcd(t, n) = 1, and σt ∈ G =
Gal(F/Q) is given by σt : ζn �→ ζt

n
.

Proof. By part (b) of Proposition 6.7 on page 296,

|G(p)|2 = q = pf ,

so the only prime OF -ideals dividing G(p) are those dividing p. Let p1 be a prime OF -ideal
above p. Then, by Corollary 5.1 on page 190, there exists a

σt ∈ Gal(Q(ζn)/Q)

such that
p
σt

1 = p.

Thus, for natural numbers t < n, relatively prime to n, we define

pt = p
σ
−1
t . (6.45)

Claim 6.21 ordpt
(G(p)) = n

p−1

�
f−1
j=0 a(t(q−1)/n)

j
.

From (6.45), we have,

ordpt
(G(p)) = ord

p
σ
−1
t

(G(p)) = ordp(G(p)σt). (6.46)

Let z ∈ Z such that z ≡ t(mod n) and z ≡ 1(mod p). Then

G(p)σz =

�
q−1�

x=0

χ(n)
p (x)ζ

TFq/Fp (x)
p

�σz

=
q−1�

x=0

χ(n)
p (x)tζ

TFq/Fp (x)
p ,

since ζσz

p
= ζp by the choice of z. Therefore,

G(p)σt =

�
q−1�

x=0

�
χ(n)
p (x)

�t

ζ
TFq/Fp (x)
p

�n

=
�
Gt(q−1)/n(P)

�n
,

where the last equality follows from the fact that

�
χ(n)
p

�t

=
�
χ(q−1)
P

�−t(q−1)/n
,

via Definition 6.10 on page 298. Thus, by Theorem 6.11,

n
f−1�

j=0

a(t(q−1)/n)
j

= n · ordP(Gt(q−1)/n(P)) = ordP(Gt(q−1)/n(P)n) =

= ordP(G(p)σt) = (p− 1) ordp(G(p)σt) = (p− 1) ordpt
(G(p)),
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where the penultimate equality follows from part (c) of Proposition 6.9 on page 297, and
the last equality comes from (6.46). We have established Claim 6.21.

Given t ∈ N, t < n and gcd(t, n) = 1, we let ti be defined by

t ≡ tip
j (mod n),

for some unique pair (i, j) with 0 ≤ j < f and 1 ≤ i ≤ g, where g is the number of cosets
of UZ/nZ/�ψ(p)�. Thus, t1, t2, . . . , tg are the rational integer representatives of those cosets.
Claim 6.21 tells us that

(G(p)) = p
r,

where

r =
n

p− 1

g�

i=1




f−1�

j=0

a(ti(q−1)/n)
j



σ−1
ti

.

Claim 6.22 If {x} = x − �x�, called the fractional part of the real number x, and �x� is
the floor function, then

r = n
g�

i=1




f−1�

j=0

�
pjti
n

�

σ−1
ti

.

For simplicity set

m =
f−1�

j=0

a(s)
j

,

with s = (ti(q − 1)/n).

For i ≥ 0, we let f − i+ j denote the residue class modulo f of the integer f − i+ j. Then

pim ≡
f−1�

j=0

pja(s)
(f−i+j)

(mod q − 1).

Since
f−1�

j=0

pja(s)
(f−i+j)

< q − 1

for all such i, then
�

pim

q − 1

�
=

1

q − 1

f−1�

j=0

pja(s)
(f−i+j)

,

for all such i. It follows that

f−1�

i=0

�
pim

q − 1

�
=

1

q − 1

�
f−1�

i=0

pi
�


f−1�

j=0

a(s)
j





and by Theorem B.4 on page 347, this equals

1

q − 1

�
1− pf

1− p

� f−1�

j=0

a(s)
j

=
1

p− 1

f−1�

j=0

a(s)
j

,
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which yields Claim 6.22.
However, pσp = p, by Corollary 5.13 on page 218. In other words,

�σp� = Dp(F/Q)

—see Application 5.3 on page 231. Therefore, r may be replaced by

n
g�

i=1




f−1�

j=0

�
pjti
n

�

σ−1
ti

σ−1
pj = n

n−1�

t=1

�
t

n

�
σ−1
t

=
�

t

tσ−1
t

, (6.47)

where the last sum runs over all natural numbers t < n and relatively prime to n, and the
last equality follows from the fact that

n

�
t

n

�
≡ t (mod n).

We have shown that
(G(p)) = p

�
t
tσ

−1
t ,

where the sum runs over all natural numbers t < n relatively prime to n, which is the
Stickelberger Relation. ✷

The proof of the Stickelberger Relation provides us with a distinguished element that we
will be able to use in §6.4.

Definition 6.11 — The Stickelberger Element and Ideal

With notation as in Theorem 6.12,

θ =
�

t

�
t

m

�
σ−1
t

is called the Stickelberger Element. The Stickelberger Ideal is

I(F ) = Z[G] ∩ θZ[G],

which are the Z[G]-multiples of θ that have coefficients in Z.

Remark 6.8 In view of Definition 6.11, Equation (6.47) in the proof of the Stickelberger
Relation tells us that

(G(p)) = p
nθ.

Also observe that
θ ∈ Q[G],

where
G = Gal(F/Q).

See Exercise 5.48 on page 253 for the general definition of a group ring.

The following three examples illustrate Theorem 6.12 for small values of n.
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Example 6.6 If n = 2, then Q(ζ2) = Q, and p = (p) where p > 2 is a rational prime such
that

G(p)2 = (−1)(p−1)/2p.

This is the trivial case with
G = Gal(F/Q) = 1.

The Stickelberger Relation does not precisely say this, but we know that this holds by
Exercise 5.34 on page 232.

Example 6.7 Suppose that n = 3, f = 1, and p ≡ 1(mod 3). Then p = (π), where π is a
primary element of OF . Thus, by Claim 6.1 on page 265 and Exercise 6.8 on page 276,

G(p)3 = pπ = ππ2 = π1+2σp ,

where
�σp� = Gal(F/Q) = Gal(Q(ζ3)/Q).

Example 6.8 Let n = 4, f = 1, and p ≡ 1(mod 4). Then p = (π), where π is a primary
element of OF = Z[i]. By Exercise 6.21 on page 292,

G4(p) = pπ2 = ππ3 = π1+3σp ,

where
�σp� = Gal(F/Q) = Gal(Q(i)/Q).

The following application of the Stickelberger Relation appears as Theorem 145 in Hilbert’s
Zahlbericht, and was known to Kummer. The following is also a motivator for another result
of Stickelberger, which we will establish at the conclusion of this section.

Theorem 6.13 — Stickelberger and Class Groups of Quadratic Fields

Let F = Q(
√
−�) where � ≡ 3(mod 4) is prime and � > 3. Then

C(N−R)/�
OF

= 1,

where
N =

�

n

n

is the sum over all natural numbers n < � such that (−�

n
) = −1, and

R =
�

r

r

is the sum over all natural numbers r < � such that (−�

r
) = 1, where (∗∗ ) is the Kronecker

symbol.

Proof. Let K = Q(ζ�). Since inert primes are always principal and since the ramified prime
q in F is principal since q = (

√
−�), then it suffices to look at primes p = pp� where p is a

prime OF -ideal with p �= p�. Thus, by Theorem 1.17, it suffices to prove that (N − R)/�
annihilates6.17 the class �p�, where

(N −R)/� ∈ Z
6.17This means that the exponent sends the class group to the trivial group.
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by Exercise 6.31 on page 310. Let Z denote the decomposition subfield of p in K/Q, and
let P be a prime OK-prime over p. From the proof of the Stickelberger Relation, we know
that G(P) is a power of G(P) and so all conjugates of G(P) are in Z. Therefore, the ideal
generated by G(P) is in Z, but this does not necessarily mean that G(P) ∈ Z. We must
prove this. Set

χ = χ(�)
P

, and q = pf where f = fK/Q(p).

If we let σ̂p be an element of Gal(Q(ζp�)/Q) such that σ̂p|K = σp, then

G(P)σ̂p = G(χ)σ̂p =
�

x∈Fq

χ(x)σp

�
ζ
TFq/Fp (x)
p

�σ̂p

=
�

x∈Fq

χ(xσp)
�
ζ
TFq/Fp (x

σp )
p

�σ̂p

. (6.48)

Since

χ(x) =

�
xσp

P

�−1

�

= χ(xσp),

given that σp ∈ DP(K/Q), and

TFq/Fp
(x) = TFq/Fp

(xσp), 6.18

then (6.48) becomes

G(P)σ̂p =
�

x∈Fq

χ(x)ζ
TFq/Fp (xa(p))
p , (6.49)

since xσp ranges over Fq as x does, and a(p) is defined by

ζσp

p
= ζa(p)

p

for some a(p) ∈ (Z/pZ)∗. In turn, (6.49) is equal to

�

x∈Fq

χ−1(a(p))χ(x)σpζ
TFq/Fp (x)
p = χ−1(a(p))G(χ).

We have shown that
G(P)σ̂p = χ−1(a(p))G(χ).

Therefore, since G(P)� = G(P) ∈ K, then

G(P)σp =
�
G(P)�

�σp

= (χ−1(a(p))�G�(P) = G�(P) = G(P).

Hence, G(P) ∈ Z.

For convenience sake, we may now let P denote both the prime OK-ideal above p and the
prime OZ-ideal above p, since there is no splitting between Z and K. Diagram 6.2 below
illustrates the scenario in the balance of the proof. By the Stickelberger Relation,

�
G(P)�

�
= (G(P)) = P

�
�−1
t=1 tσ

−1
t .

Thus, by taking norms, we get

(β) =
�
NZ/F (G(P))

�
=

�
NZ/F (P)

���−1
t=1 tσ

−1
t

6.18Recall from Exercise 2.16 on page 64 and Definition 5.1 on page 182 that σp may be regarded
as an element of Gal(Fq/Fp) via the natural map Gal(K/Q) �→ Gal(Fq/Fp) since Fq = OK/P and
Fp = OZ/P = Z/pZ, where P = P ∩ Z.
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= p
�

�−1
t=1 tσ

−1
t = p

�
r
r
p
�
�

n
n
= p

R
p
�N = p

R−N ,

since pσn = p� for each n such that (−�

n
) = −1.6.19 Now let γ = �

√
β. Then we have the

ideal equation in M = F (ζp) given by,

(γ) =
�
NL/M (G(P))

�
= p

(R−N)/�,

where L = Z(ζp).

Diagram 6.2
Q(ζp�)

� �
L = Z(ζp) K = Q(ζ�)

� � �
M = F (ζp) Z = Zp(K/Q)

� �
F = Q(

√
−�)

It remains to show that γ ∈ F . Let R = F ( �
√
β). Since M/F is totally ramified at p and

R ⊆ M , then it suffices to show that R/F is unramified, since then R = F . Given that we
chose p to be unramified in K, then K( �

√
β)/K is totally ramified at p by Theorem 5.1 on

page 184. However, since (β) is the �th power of an ideal in K, then K( �
√
β)/K can only

ramify at prime OK-ideals over � by Theorem 5.19 on page 235. This forces K( �
√
β) = K

so R = F . Observe that p(R−N)/� ∼ 1 implies that

p
(N−R)/� ∼ 1,

so the result is secured.6.20 ✷

Example 6.9 Let � = 23 and F = Q(
√
−23). Then

N = 5 + 7 + 10 + 11 + 14 + 15 + 17 + 19 + 20 + 21 + 22 = 161,

and
R = 1 + 2 + 3 + 4 + 6 + 8 + 9 + 12 + 13 + 16 + 18 = 92,

so
N −R

�
= 3.

In fact, hF = 3.

Remark 6.9 Dirichlet actually proved that, for � ≡ 3(mod 4) a prime, � �= 3,

hQ(
√
−�) =

1

�
(N −R), (6.50)

the proof of which involves analytic number theory. Furthermore, we will see as a special
case of Exercise 6.31 on page 310 that (N −R)/� is indeed an integer, but the proof that

(N −R)/� ∈ N

also involves analytic number theory. Moreover, there is a link between the class numbers
of Q(

√
�) and Q(

√
−�) and continued fraction expansions of

√
� see [30] and [73], as well as

[49, pp. 158–162] for related results.

6.19It is instructive to compare this with Applications 5.1–5.3 on pages 229–231.
6.20Jacobi discovered that 4p(N−R)/� = x

2 + �y
2, for some x, y ∈ Z. On the basis of this result, he conjec-

tured that hF = (N −R)/�.
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Example 6.10 One can use (6.50) on page 307 to find class number one complex quadratic
fields by setting � = N −R, from which one calculates that for

∆F = −� ∈{− 7,−11,−19,−43,−67,−163}

we have hF = 1.

Remark 6.10 Theorem 6.13 on page 305 says that the class group of F = Q(
√
−�), for

� ≡ 3(mod 4) a prime, is annihilated by

−1

�

�−1�

x=1

x
�x
�

�
=

1

�

�
�

n

n−
�

r

r

�
=

1

�
(N −R),

where the residue symbol is the Lengendre symbol. In other words,

C
− 1

�

�
�−1
x=1 x( x

� )
OF

= C(N−R)/�
OF

= 1.

There is a more general result about annihilation of class groups as follows.

Theorem 6.14 — Stickelberger on Annihilation of Class Groups

Let F = Q(ζn) where n ∈ N, and let θ be the Stickelberger element. If α ∈ Z[G], where
G = Gal(F/Q), such that αθ ∈ Z[G], then αθ annihilates COF .

Proof. Let p be a rational prime, with p a prime OF -ideal above p � n. Then by the
Stickelberger Relation,

(G(p)n) = (G(p)) = p
nθ.

Thus, if α ∈ Z[G] such that αθ ∈ Z[G], then
�
p
θα
�n

=
�
p
nθ
�α

= (G(p)n)α = (G(p)α)n .

Let γ = G(p)nα, and set L = F ( n
√
γ), so L is a Kummer extension. Since

αθ ∈ Z[G] ∼= OF

by Exercise 5.48 on page 253, then (G(p)α) = pθα is an OF -ideal, so (γ) is the nth power of
an OF -ideal. We now show that G(p)α ∈ F . It follows from Theorem 5.19 on page 235 (by
looking at successive prime degree, q, extensions of F in L for q

�� n), that L/F is unramified
for any prime OF -ideal above rational primes not dividing n. Since

F ⊆ L ⊆ Q(ζnp),

by part (a) of Proposition 6.7 on page 296, then L/F must be ramified at primes above p
by Theorem 5.4 on page 189. However, by Corollary 5.13 on page 218, the only ramified
primes in L/F are those above p � n, a contradiction unless L = F . Hence,

G(p)α ∈ F.

We have shown that pθα is a principal ideal in OF . By Theorem 1.17 on page 28, we
have shown that every ideal prime to (n) is principal in OF . However, by Exercise 1.38 on
page 33, every class of COF contains an ideal prime to (n), so the proof is complete. ✷

In Theorem 6.13 on page 305, we were not dealing with a cyclotomic extension. However,
there is a consequence of Theorem 6.14 that does deal with the more general case. In the
following, we use the Kronecker-Weber Theorem presented on page 244. In particular, the
reader is reminded that the conductor of an abelian extension K of Q is the smallest natural
number n such that K ⊆ Q(ζn).
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Corollary 6.4 Suppose that K/Q is an abelian extension with conductor n, and G =
Gal(K/Q). If θ is the Stickelberger Element and α ∈ Z[G] such that αθ ∈ Z[G], thenCαθ

OK
=

1, where the σt in Theorem 6.12 on page 302 denote both the elements of Gal(Q(ζn)/Q) =
Gal(F/Q) and Gal(K/Q), namely we understand σt to mean σt|K when considering Gal(K/Q).

Proof. Let p � n be a rational prime, and let P be a prime OF -ideal over p with P∩OK = p.
Let α ∈ Z[G] such that αθ ∈ Z[G]. Extend the elements of G so that αθ may be regarded

as an element of Z[Gal(Q(ζn)/Q)]. From Theorem 6.14, we have (pOK)αθ = (G(P)α). Let
σ ∈ Gal(F/K), which permute the primeOF -ideals over p by Corollary 5.1 on page 190. Let
τ ∈ Gal(F (ζp)/Q(ζp)) such that τ |F = σ, so ζτ

p
= ζp (recalling that p � n), and pτ = p. Then

G(P)τ = G(Pσ), by Definition 6.9 on page 295. Hence, G(P)ασ = G(P)α, so G(P)α ∈ K.
We have shown that pαθ = (G(P)α), so as in the proof of Theorem 6.14, COK is annihilated
by αθ. ✷

The following illustrates the power of Theorem 6.14 by completely generalizing Theorem
6.13 with ease. The proof of the following is due to Lemmermeyer [38].

Corollary 6.5 Let∆ F < 0 be the discriminant of a complex quadratic field with∆ F �∈
{−3,−4,−8}. Then

C(N−R)/|∆F |
OF

= 1,

where N is the sum of all natural numbers n < |∆F | such that (∆F

n
) = −1, and R is the

sum over all natural numbers r < |∆F | such that (∆F

r
) = 1, where (∗∗ ) is the Kronecker

symbol.

Proof. In this case, the Stickelberger Element is

θ =
R+ σN

|∆F |
,

where
�σ� = Gal(F/Q) = G.

Also, by Exercise 6.31 on the following page, θ ∈ Z[G]. Thus, by Theorem 6.14,

Cθ

OF
= 1,

but C1+σ

OF
= 1, so

C|R−N |/|∆F |
OF

= 1 = C(N−R)/|∆F |
OF

,

as required. ✷

Example 6.11 Let∆ F = −52. Then

N = 3 + 5 + 21 + 23 + 27 + 33 + 35 + 37 + 41 + 43 + 45 + 51 = 364,

and
R = 1 + 7 + 9 + 11 + 15 + 17 + 19 + 25 + 29 + 31 + 47 + 49 = 260

so
C(N−R)/|∆F |

OF
= C2

OF
= 1.

In fact, hF = 2 for F = Q(
√
−13).

Theorem 6.14 was proved for K = Q(ζp), where p is a prime, by Kummer in 1847. It was
proved in general by Stickelberger in 1879.
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Remark 6.11 For the reader interested in exploring the consequences of this theory at a
higher level, we give the following data. Analogues of Theorem 6.14 for totally real fields
have been found by B. Oriat [57] and A. Wiles [70]. There is also the important work
of Thaine [68], where cyclotomic units are used to define an analogue of the Stickelberger
element for real abelian fields. This allowed him to prove a result on the annihilation
of class groups of real abelian number fields. Subsequently Kolyvagin invented tools for
constructing relations in ideal class groups, extending Thaine’s methods. These methods
have had deep and far-reaching consequences. Among them is the use of these tools to give
an elementary proof of the Main Conjecture of Iwasawa theory—see [69] for details on the
results surrounding Kolyvagin’s work.

Exercises

6.28. Let n ∈ N, n > 1, and ζn a primitive nth root of unity in a field F . Prove that�
n−1
j=0 ζj

n
= 0 in F .

6.29. Let Fq where q = pr and p is prime. A Gauss or Jacobi sum over Fq is called pure
if, when raised to a natural number exponent, it becomes real. Prove that quadratic
Gauss sums are pure, but Gauss sums belonging to characters of order k > 2 are never
pure when q = p.

This result was first proved by Stickelberger in 1890. Pure Gauss sums are a useful
tool in many areas including the determination of when −1 is the power of a given
prime modulo a natural number. For instance, see [3].

(Hint: Use Exercise 5.34 on page 232, Exercise 5.52 on page 260 part (a) of Propo-
sition 6.7 on page 296, and part (a) of Proposition 6.7 on page 296.)

6.30. Let � ≥ 3 be a prime with � ≡ 3(mod 4), F = Q(
√
−�) and p a prime OF -ideal above

the rational prime p ≡ 1(mod �). Suppose further that p = pp� in OF , and K = Q(ζ�),
with P is a prime OK-ideal over p. Prove that pOK =

�
r
P
σr , where the product

runs over all natural numbers r < � that are squares modulo �, and σr(ζ�) = ζr
�
.

(Hint: Use Application 5.2 on page 230.)

6.31. With N , R and � > 3 given in Corollary 6.5, prove that

N ≡ R ≡ 0 (mod |∆F |).
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6.4 The Eisenstein Reciprocity Law

The end crowns the work.
Early sixteenth century proverb

The object of this section is to establish the Eisenstein Reciprocity Law—see Theorem 6.15
on page 313 and Biography 3.10 on page 137. First, we need to extend the definition of
G(p), given in (6.38) on page 295, from prime ideals to arbitrary ideals as follows.

Definition 6.12 — Power Residue Gauss Sums Extended

Let F = Q(ζn) and I be an OF -ideal with I =
�

r

j=1 pj , a product of not necessarily distinct
prime OF -ideals. Then

G(I) =
r�

j=1

G(pj).

A sequence of lemmas is required to prepare for the proof of the Eisenstein Reciprocity law.

Lemma 6.6 — More Properties of Power Residue Gauss Sums

Suppose that F = Q(ζn), I, J are OF -ideals, and α ∈ OF with gcd(IJ, n) = 1 = gcd(α, n).
Also let τ =

�
t
tσ−1

t
, where the sum runs over all natural numbers t < n with gcd(t, n) = 1.

Then each of the following holds.

(a) G(I)G(J) = G(IJ).

(b) |G(I)|2 = (N(I))n.

(c) (G(I)) = (Iτ ).

Proof. Part (a) is immediate from Definition 6.12. By part (a), it suffices to prove parts
(b)–(c) for I = p, a prime OF -ideal. By part (b) of Proposition 6.7 on page 296,

|G(p)|2 = pn = (N(p))n,

which yields part (b). Part (c) is Theorem 6.12 on page 302. ✷

We now need to explore the action of τ , defined in Lemma 6.6, on power residue Gauss
sums over principal ideals.

Lemma 6.7 — Galois Action on Power Residue Gauss Sums

Let F = Q(ζn), n ∈ N, I an OF -ideal such that gcd(n, I) = 1, σ ∈ Gal(F/Q), and
τ =

�
t
tσ−1

t
, where the sum runs over all natural numbers t < n with gcd(t, n) = 1. Then

(a) G(I)σ = G(Iσ).

(b) If α ∈ OF , then |ατ |2 = |NF (α)|n.

(c) If α ∈ OF such that gcd(α, n) = 1, then G((α)) = ±ζj
n
ατ for some j ∈ Z.
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Proof. By part (a) of Lemma 6.6 on the preceding page we may let I = p be a prime
OF -ideal. If α ∈ OF , then

G(p) =
q−1�

x=0

�
α

p

�−1

ζ
TFq/Fp (x)
p =

�
χ(n)
p (ψ(α))ζ

TFq/Fp (ψ(α))
p ,

where the sum runs over all coset representatives ψ(α) ∈ OF /p = Fq (with ψ being given
as in Definition 6.8 on page 295). Let

σ̂ ∈ Dp(Q(ζpn)/Q),

where σ̂|F = σ. Then by Proposition 6.6 on page 295,

G(p)σ̂ =
�

χ(n)
p (ψ(ασ))ζ

TFq/Fp (ψ(ασ))
p = G(pσ).

Thus, by raising each side to the nth power we get G(p)σ = G(pσ), from which part (a)
follows.

For part (b), let σ−1 be complex conjugation, namely σ−1 : ζn �→ ζ−1
n

. Therefore,

|ατ |2 = ατατσ−1 = ατ(1+σ−1). (6.51)

Since
σ−1τ = σ−1

�

t

tσ−1
t

=
�

t

tσ−1
t

=
�

t

(n− t)σ−1
n−t

,

then
(1 + σ−1)τ =

�

t

tσ−1
t

+
�

t

(n− t)σ−1
n−t

= n
�

t

σ−1
n−t

= n
�

t

σ−1
t

.

However,

NF (α) =
�

t

ασ
−1
t = α

�
t
σ
−1
t .

Therefore, from (6.51),

|NF (α)|n = |α|n
�

t
σ
−1
t = |α|τ(1+σ−1) = |ατ |2,

which secures (b).

Since
(G((α))) = (α)τ = (ατ ),

by part (c) of Lemma 6.6, then as ideal generators, G(p) and ατ differ by a unit. In other
words,

G((α)) = uατ ,

for some u ∈ UOF
. Since

|G((α))|2 = (NF (α))
n

by part (b) of Lemma 6.6, and
|ατ |2 = |NF (α)|n

by part (b) of this proposition, then

N((α)) = |NF (α)|,
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by Corollary 2.8 on page 85. Hence,

|u| = |G((α))|
|ατ | = 1.

Similarly, it may be shown that |uσ| = 1 for all σ ∈ Gal(F/Q). Therefore, by Corollary 3.10
on page 128, α ∈ RF . In other words, u = ±ζj

n
for some j ∈ Z. ✷

We need one more notion in order to state the Eisenstein Reciprocity Law.

Definition 6.13 — Primary Cyclotomic Integers

Let r > 2 be a prime, F = Q(ζr), and α ∈ OF . Then α is called primary if gcd(α, r) = 1
and

α ≡ z (mod (1− ζr)
2)

for some z ∈ Z.

Remark 6.12 We do not need the notion of semi-primary here, which is what Hilbert
called these α. He needed a stronger notion of primary in order to prove Kummer’s Reci-
procity Law (see [38]). Hilbert called an element α primary if it is semi-primary, or what we
have defined here as primary, together with the additional property that αα is congruent
to a rational integer modulo (1− ζr)r−1.

Theorem 6.15 Eisenstein’s Reciprocity Law

Let r be an odd prime, F = Q(ζr), a ∈ Z and α ∈ OF be a primary element such that
gcd(r, a) = 1 = gcd(α, a). Then �α

a

�

r

=
� a

α

�

r

.

Proof. By Proposition 6.5 on page 295, it suffices to prove this result for a = p1 a prime. Let
p1 be a primeOF -ideal above p1 withN(p1) = pf11 = q1. Then by hypothesis, gcd(p1, r) = 1.

Claim 6.23
�

G((α))
p1

�

r

=
�

N(p1)
α

�

r

.

By part (a) of Lemma 6.6, it suffices to prove the claim for (α) = p, a prime OF -ideal with
N(p) = pf = q. Thus, in OF we have the following congruences:

G(p)q1 ≡
q−1�

x=0

�
χ(r)
p (x)

�q1
�
ζ
TFq/Fp (x)
p

�q1

≡
q−1�

x=0

χ(r)
p (x)ζ

TFq/Fp (q1x)
p (mod p1),

since q1 ≡ 1(mod r) by Corollary 5.13 on page 218. Therefore, the above is in turn congru-
ent to

q−1�

x=0

χ(r)
p (q−1

1 x)ζ
TFq/Fp (x)
p ≡

�
q1
p

�

r

q−1�

x=0

χ(r)
p (x)ζ

TFq/Fp (x)
p ≡

�
q1
p

�

r

G(p) (mod p1).

Also, in OF , we have the following congruence:

G(p)q1−1 = G(p)(q1−1)/r ≡
�
G(p)

p1

�

r

(mod p1).

Hence, �
G(p)

p1

�

r

≡
�
q1
p

�

r

=

�
N(p1)

p

�

r

(mod p1).

Since r �∈ p1, then we must in fact have equality in the last congruence, which establishes
Claim 6.23.
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Claim 6.24 Let G(α) = ±ζj
r
ατ , where τ is given in Lemma 6.7 on page 311. Then

�
±ζj

r

p1

�

r

�
α

N(p1)

�

r

=

�
N(p1)

α

�

r

.

By Claim 6.23 and part (c) of Lemma 6.7,
�
N(p1)

α

�

r

=

�
G((α))

p1

�

r

=

�
±ζj

r

p1

�

r

�
ατ

p1

�

r

, (6.52)

and since �
αtσ

−1
t

p1

�

r

=

�
ασ

−1
t

p1

�t

r

=

�
ασ

−1
t

p1

�σt

r

=

�
α

p
σt

1

�

r

,

by Proposition 6.6 on page 295, then
�
ατ

p1

�

r

=
�

t

�
αtσ

−1
t

p1

�

r

=
�

t

�
α

p
σt

1

�

r

=

�
α

N(p1)

�

r

,

where the last equality comes from Theorem 5.5 on page 190. From (6.52), Claim 6.24 now
follows.

Claim 6.25

�
α

N(p1)

�

r

=

�
N(p1)

α

�

r

.

By Claim 6.24 we need only show that
�

±ζ
j

r

p1

�

r

= 1. However, α is primary, so by Exer-

cise 6.33 on page 317, ±ζj
r
= ±1. Thus,

�
±ζj

r

p1

�

r

=

�
±1

p1

�

r

= (±1)(N(p1)−1)/r = 1,

since r is odd and N(p1)− 1 = pf11 − 1 is even. This completes the proof of Claim 6.25.

By Proposition 6.5 on page 295, Claim 6.25 says that
�

α

p1

�f

r

=

�
α

pf1

�

r

=

�
α

N(p1)

�

r

=

�
N(p1)

α

�

r

=
�p1
α

�f1

r

.

However, since pf11 ≡ 1(mod r), then f1
�� (r − 1), so gcd(f1, r) = 1. Therefore,

�
α

p1

�

r

=
�p1
α

�

r

,

which completes the proof of the Eisenstein Reciprocity Law. ✷

One of the more pleasing applications of the Eisenstein Reciprocity Law is the following
result proved in 1912. This was an important development in the long search for a proof of
FLT. From this result will follow another important such result proved by Wieferich.

Theorem 6.16 — Furtwängler’s Theorem

Let x, y, z ∈ Z be pairwise relatively prime, and let p > 2 be a prime such that

xp + yp + zp = 0. (6.53)

If p � yz and q is a prime divisor of y, then

qp−1 ≡ 1 (mod p2).
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Proof. We remind the reader that, as we saw in the proof of Theorem 4.4 on page 152,
(x+ ζj

p
y) is a pth power in OF for any j ≥ 0, where F = Q(ζp). Let

u = (x+ y)p−2y, α = (x+ y)p−2(x+ ζpy), and λ = 1− ζp.

Then since x+ζpy = x+y−yλ, and by Exercise 4.19 on page 162, (x+y)p−1 ≡ 1(mod λ2),

ζ−u

p
α = (1−λ)−uα ≡ (1−λ)−u((x+y)p−1−yλ(x+y)p−2) ≡ (1+uλ)(1−uλ) ≡ 1 (mod λ2).

This shows that ζ−u

p
α is primary. Thus, by the Eisenstein Reciprocity Law,

�
q

ζ−u
p α

�

p

=

�
ζ−u

p
α

q

�

p

=

�
ζp
q

�−u

p

�
α

q

�

p

.

Since (ζ−u

p
α) = (α) is a pth power, then

1 =

�
q

ζ−u
p α

�

p

=

�
ζp
q

�−u

p

�
α

q

�

p

. (6.54)

However, q
�� y and α ≡ (x+ y)p−1 (mod q), so

�
α

q

�

p

=

�
(x+ y)p−1

q

�

p

=

�
q

(x+ y)p−1

�

p

= 1,

since (x+ y) is a pth power. Thus, by (6.54),
�
ζp
q

�u

p

= 1. (6.55)

Claim 6.26 If g = gF/Q(q) and f = fF/Q(q), then
�
ζp
q

�

p

= ζg(q
f−1)/p

p
.

Let qOF =
�

g

j=1 qj . Then

�
ζp
q

�

p

=
g�

j=1

�
ζp
qj

�

p

=
g�

j=1

ζ(q
f−1)/p

p
= ζ

�
g

j=1(q
f−1)/p

p = ζg(q
f−1)/p

p
,

by Definition 6.7 on page 294. Therefore, by (6.55),

ug
qf − 1

p
≡ 0 (mod p). (6.56)

Since g
�� (p−1) by Theorem 5.4, then p � g and since u = (x+y)p−2y, then p � u. Therefore,

by (6.56), (qf − 1)/p ≡ 0(mod p). In other words,

qf ≡ 1 (mod p2).

Since f
�� (p− 1), then we have Furtwängler’s result. ✷

A simple consequence of Theorem 6.16 is the following, proved in 1909.
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Corollary 6.6 — Wieferich’s Theorem

If xp + yp + zp = 0 has a solution for nonzero x, y, z ∈ Z with p � xyz, then

2p−1 ≡ 1 (mod p2). (6.57)

Proof. Clearly one of x, y, z is even, so we may assume without loss of generality that 2
�� y.

By Furtwängler’s Theorem with q = 2, the result follows. ✷

Remark 6.13 Primes p satisfying (6.57) are called Wieferich primes. The first two such
primes are p = 1093 and p = 3511. More generally, if we replace 2 with any b ∈ N with
b > 2 and require that they satisfy (6.57), then these are also treated as Wieferich primes.
It is unknown if there are infinitely many such primes for a given base b. It is not even
known if there are infinitely many such that (6.57) fails to hold for a given base b. Examples
of bases b > 2 for which (6.57) holds are (b, p) = (5, 53471161), (7, 491531), (11, 71).

There have been many generalizations of the Eisenstein Reciprocity Law given by Artin,
Hasse, Hilbert, and Takagi (see [38] for an overview). Some are beyond the scope of the
theory presented in this book. For instance, for a statement of a general reciprocity law
using local class field theory see [15, pp. 167–168]. For the Artin Reciprocity Law given
in terms of idèles (introduced by Chevalley in order to give an approach different from the
classical one that allows global class field theory to be deduced from the local one), see
Tate’s article in [10, Chapter VII, pp. 162–203]. One may also consult Hasse’s article in
[10, Chapter XI, pp. 266–279]. In fact, we conclude this section with the statement of a
general reciprocity law that is within the purview of the theory provided herein.

Theorem 6.17 — The Artin–Hasse Reciprocity Law

Let F = Q(ζr) where r > 2 is prime and α,β ∈ OF such that gcd(α,β ) = 1, α ≡ 1(mod r),
and β ≡ 1(mod λ), where λ = 1− ζr. Then

�
α

β

�

r

�
β

α

�−1

r

= ζ
TF/Q(

α−1
r

· β−1
λ

)
r .

Proof. See [38]. ✷

To illustrate the power of Theorem 6.17, we show how to easily achieve the Eisenstein
Reciprocity Law from it, as a closing feature of this last section of the main text. The proof
in the following was communicated to this author by Franz Lemmermeyer in the writing of
the first edition.

Example 6.12 Since

� a

α

�

r

=

�� a

α

�−1

r

�−1

r

=

�
ar−1

α

�r−1

=

�
ar−1

αr−1

�

r

,

then it suffices to show that �
ar−1

αr−1

�

r

=

�
αr−1

ar−1

�

r

.

To this end, let b = ar−1 ≡ 1(mod r) and β = αr−1 ≡ 1(mod λ). Thus, Theorem 6.17
applies since

TF/Q

�
b− 1

r
· β − 1

λ

�
=

b− 1

r
TF/Q

�
β − 1

λ

�
≡ 0 (mod r),
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given that r
�� (β − 1)/λ when α is primary. Hence

�
b

β

�

r

=

�
β

b

�

r

.

The Theorem 6.17 is one of the simpler formulations found by Artin and Hasse in a search,
between 1923 and 1926, for what Hilbert called “The most general reciprocity law.” The
quest continues into the realm of non-abelian class field theory, spearheaded by the work of
Langlands and Shimura, and carried on by numerous others.

Exercises

6.32. Let r > 2 be a prime, F = Q(ζr), and I an OF -ideal such that gcd(r, I) = 1. Prove
that

G(I) ≡ ±1 (mod r).

6.33. Let r > 2 be prime, F = Q(ζr), and α ∈ OF a primary element. Prove that G(α) =
±ατ , where τ is given in Lemma 6.7 on page 311.

6.34. Suppose that a ∈ Z, and � is a rational prime such that � � a. Prove that✰

x� ≡ a (mod p)

is solvable for all but finitely many primes p if and only if

a = b�

for some b ∈ Z.
In a course in elementary number theory, one quickly learns the fact that an integer a,
which is a square modulo all primes �, must be the square of a rational integer. This
is usually given as an application of the Jacobi symbol. This exercise is intended to
substantially generalize that fact as an application of the Eisenstein Reciprocity Law.

Biography 6.2 Phillipp Furtwängler (1869–1940) was born on April 21, 1869
near Hildesheim, Germany. By the age of fourteen, he had lost both of his
parents. He went to school in Hildesheim, then went to Göttingen in 1889.
At this time Hilbert had not yet arrived at Göttingen, but Fricke and Klein
were there. Furtwängler completed his dissertation on ternary cubic forms in
1896. He then held numerous positions. The first was as an assistant at the
Geodesic Institute in Potsdam from 1897 to 1903. In 1903, he married Ella
Buchwald, but she died shortly after the birth of their daughter. Then he
was at the Agricultural Academy in Bonn from 1903 to 1907, after which he
taught at the Technical University in Aachen, then returned to Bonn. His
activities during those years included a proof of the reciprocity law for prime
powers, and establishment of the existence of Hilbert class fields. In 1912, he
succeeded Mertens at the University of Vienna. While at Vienna, his research
activities included the problem of capitulation in Hilbert class fields, and a proof
of Hilbert’s principal ideal theorem in 1930. He also worked in Diophantine
approximation, the geometry of numbers, and FLT. In 1929, he married Emilie
Schön at a time when he was already quite ill, and had to retire in 1938. He died
on May 19, 1940 in Wien. There are streets in Germany named Furtwängler
after Phillipp’s distant relative, Wilhelm Furtwängler, the famous conductor
and composer.
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Appendix A

Abstract Algebra

It’s hard to beat a person who never gives up.
Babe Ruth (George Herman Roth) (1895–1948)

American baseball player

The purpose of this appendix is to give a review of the background material required for
understanding the concepts in the text as a finger-tip reference to the basic concepts in
abstract algebra. We do this via a discussion of the fundamental concepts, without proofs,
so the reader may be reminded of the salient background information without having to go
to another source. However, if proofs are required, the reader may consult such standard
texts as [29].

First, we will consider the following set of axioms, and discuss certain sets S, together with
binary operations of addition, denoted by +, and multiplication, denoted by juxtaposition
or by · the multiplication sign. We will determine which sets satisfy certain of these axioms,
and thereby introduce the various concepts in a basic course in abstract algebra

✦ Basic Axioms

A.1. For all α,β ∈ S, α+ β ∈ S. (Additive closure)

A.2. For all α,β ∈ S, αβ ∈ S. (Multiplicative closure)

A.3. For all α,β ∈ S, α+ β = β + α. (Additive commutativity)

A.4. For all α, β,γ ∈ S, (α+ β) + γ = α+ (β + γ). (Additive associativity)

A.5. There is a unique z ∈ S with z + α = α+ z = α. (Additive identity)

(When no confusion can arise, we use the symbol 0 here for the additive identity z,
since it mimics the ordinary zero of the integers.)

A.6. To each α ∈ S, there is an α∗ ∈ S such that α+α∗ = α∗ +α = z. (Additive inverse)

A.7. For all α,β ∈ S, αβ = βα. (Multiplicative commutativity)

A.8. For all α, β,γ ∈ S, (αβ)γ = α(βγ). (Multiplicative associativity)

A.9. There exists a unique 1S ∈ S such that for each α ∈ S, 1Sα = α1S = α. (Multiplicative
identity)

(Here, as with the additive identity above, we can use the symbol 1 in place of the
multiplicative identity 1S, when no confusion will arise from so doing, since 1S mimics
the function of this multiplicative identity of the integers.)

A.10. For all α, β,γ ∈ S, α(β + γ) = αβ + αγ. (Distributivity)

A.11. For all α,β ∈ S, if αβ = z, then α = z or β = z. (No zero divisors)
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A.12. For any α ∈ S, with α �= z there exists an element denoted by α−1 such that αα−1 =
1S = α−1α. (Multiplicative inverse)

✦ Groups

An additive group is a set satisfying A.1 and A.4–A.6. Similarly, a multiplicative group is
a set satisfying axioms A.2, A.8–A.9, and A.12.

In the text—see the proof of Theorem 2.10 on page 77, for instance—we will have need of
a special multiplicative group as follows.

Definition A.1 — The Symmetric Group

The symmetric group on n letters, denoted by Sn, is the set of all bijections of {1, 2, . . . , n}.
Multiplication is given by composition of functions, which is associative. The identity map
is the identity of Sn, and there are unique inverses since bijections are one-to-one and onto
(see the section on Mappings—Morphisms starting on page 326). The elements of Sn are
called permutations, and the cardinality of Sn is n! = n(n−1)(n−2) · · · 2 ·1. A transposition
is an element σ ∈ Sn such that σ interchanges two elements of {1, 2, . . . , n}, while leaving
all of the others fixed.

A basic fact concerning permutation groups is that all permutations are expressible as a
product of transpositions. This leads to a finer classification of the elements of Sn.

Definition A.2 — Even and Odd Permutations

If σ ∈ Sn and σ is the product of an odd number of transpositions, then σ is called an odd
permutation. If σ is the product of an even number of transpositions, then σ is called an
even permutation. The set of all even permutations forms a subgroup of Sn, denoted by
An, called the alternating group on n symbols, and |An| = n!/2. The sign of a permutation
σ, denoted by sgn(σ), is 1 or −1 according as σ is even or odd. The sgn is a well-defined
map since it can be shown that a permutation cannot be both odd and even.

Definition A.3 — Abelian Groups

Any set which satisfies A.1, and A.3–A.6 is an additive abelian group, and if it satisfies A.2,
A.7–A.9, and A.12, then it is a multiplicative abelian group. If G is a multiplicative abelian
group, then G is cyclic whenever the group generated by some g ∈ G, coincides with G.
The element g is the generator of G, denoted by

G = �g�.

If gn = 1G for some n ∈ N, then the smallest such n is the order of the finite cyclic group
G, denoted by n = |G|. If no such n exists, then G is said to be an infinite cyclic group. A
group P is called an elementary abelian p-group for a prime p ∈ Z if every element x ∈ P
satisfies xp = 1. If P is the maximum elementary abelian p-subgroup of a group G, and
|P | = pr, then r is called the p-rank of G. This means that

P ∼= Cp × · · · × Cp� �� �
r factors

,

where Cp is a cyclic group of order p, and G does not contain a subgroup of this type with
more than r factors.A.1

A.1Note that this definition of rank is valid only for abelian groups. In general, one may define the rank
as the number of factors of the maximal p-elementary abelian “factor” group. For instance, the quaternion
group has 2-rank 2, and its maximal elementary abelian subgroup is Z/2Z.
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The following basic result is useful in the main text—see the proof of Lemma 5.12 on
page 244, for instance.

Remark A.1 In the following, a direct product of groups is formed by the component-wise
multiplication of elements.

Theorem A.1 — Fundamental Theorem of Finite Abelian Groups

If G is a finite abelian group, then any two decompositions of G into a direct product of
cyclic groups of prime power order contain the same number of multiplicands of each order.

✦ Cosets of Groups

Let G,H be arbitrary groups with H ⊆ G. Then H is a subgroup of G . Suppose that g ∈ G
is fixed, and set

gH = {gh : h ∈ H}.

Then gH is a left coset of H in G determined by g. A right coset is similarly defined. If G
is abelian, then left and right cosets are equal, and we refer merely to a coset of H in G.

Let g1, g2 ∈ G be fixed. Either
g1H ∩ g2H = ∅

or
g1H = g2H.

Furthermore, the group G is partitioned into disjoint left cosets of H. The number of
distinct left cosets of H in G is denoted |G : H|, called the index of H in G . (In particular,
|G| is the order of G.) Moreover, it is an easy task to verify the following fact.

Proposition A.1 — Group Criterion

If G is a group, then the nonempty set H ⊆ G is a subgroup of G if and only if h1h
−1
2 ∈ H

for all h1, h2 ∈ H.

Given the above discussion, we may conclude that G is partitioned into a disjoint union of
|G : H| subsets, each containing |H| elements. Thus, by counting the number of elements
in G, we get the following.

Theorem A.2 — Lagrange’s Theorem

If G is a group and H is a subgroup of G, then

|G| = |G : H| · |H|.

Corollary A.7 If G is a finite group and |G| = n, then |g|
�� |G|, and gn = 1 for all g ∈ G.

Theorem A.3 A finite abelian group of order n ∈ N has subgroups of all orders dividing
n.

Given the above setup, we may now define another group.
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Definition A.4 — The Quotient Group and Normal Subgroups

Let G be an abelian group, and H a subgroup of it. The quotient group

G = G/H = {g1, . . . , gn} = {g1H, . . . , gnH}

of G by H is the group with multiplication defined by

gjgk = gjgkH = gjHgkH = g�H = g�,

for some � = 1, 2, . . . , n, having identity 1
G

= H = 1G, and inverses gj
−1 = g−1

j
H. The

mapping
ψ : G �→ G, given by ψ : g �→ g

is called the canonical map, or natural map.

If G is not an abelian group, then in order to form the quotient group one needs the following
concept. A subgroup H of G is called normal provided that gH = Hg for all g ∈ G. In
other words, the left and right cosets of H in G agree, or that H is always conjugated
to itself, namely g−1Hg = H for all g ∈ G. When H is normal in G, we may form the
quotient group G as the set of all products of cosets. Since left and right cosets agree,
then the product of any two cosets is again a coset of H in G, so G is a group with this
multiplication.

✦ Rings and Fields

Definition A.5 — Rings, and Fields

(1) A ring is a set together with two binary operations called addition and multiplication,
denoted by + and ×, satisfying the following:

(a) R is an abelian group under addition.

(b) Multiplication is associative: (a× b)× c = a× (b× c) for all a, b, c ∈ R.
(c) The distributive law holds in R, namely for all a, b, c ∈ R multiplication is

distributive over addition, namely

a× (b+ c) = (a× b) + (a× c)

and
(a+ b)× c = (a× c) + (b× c).

(2) If (1) holds, and multiplication is commutative, then R is called a commutative ring.

(3) If (1) holds, and there is an element 1 ∈ R such that

1× a = a× 1 = a for all a ∈ R,

then R is called a ring with identity.

(4) A ring with identity 1 �= 0 is called a division ring or skew field if every nonzero element
of R has a multiplicative inverse.

(5) A commutative division ring is called a field.
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Definition A.6 — Subrings

A subring of a ring R is a subgroup of R that is closed under multiplication.

Remark A.2 Definition A.6 says that, in practice, to show that a subset of a ring R is a
subring it suffices to show that it is nonempty and closed under subtraction and multiplica-
tion.

✦ Modules

Suppose that M is an additive abelian group, and that R is a ring, which satisfy each of
the following axioms:

A.13. For each r ∈ R, m ∈ M , rm ∈ M .

A.14. For each r ∈ R and m,n ∈ M , r(m+ n) = (rm) + (rn).

A.15. For each r, s ∈ R and m ∈ M , (r + s)m = (rm) + (sm).

A.16. For each r, s ∈ R and m ∈ M , r(sm) = (rs)m.

A.17. If R has identity 1R, then for each m ∈ M , 1Rm = m.

Then M is a left module over R. If R is a commutative ring with identity, then M is both a
right and a left R-module called a two-sided, unitary module or for our purposes, simply an
R-module. For example, being a Z-module is equivalent to being an additive abelian group.
If R is a division ring, then M is called a vector space, and multiplication from R is called
scalar multiplication, with the elements of M called vectors.A.2

A submodule of an R-module M is a subset N of M such that

A.18. N is a subgroup of the additive group of M , and

A.19. For all r ∈ R, and n ∈ N , rn ∈ N .

It follows that a subset N of M is an R-submodule of M if and only if

A.20. 0 ∈ N ,

A.21. For all m,n ∈ N , m− n ∈ N , and

A.22. For all r ∈ R, and n ∈ N , rn ∈ N .

For instance, if G is an additive abelian group, then for any n ∈ Z,

ng = ±(g + g + · · ·+ g� �� �
|n| copies

).

Therefore, abelian groups are Z-modules and the submodules are just the subgroups thereof.

Let m ∈ M be fixed, and let N be a submodule of M . Define

m+N = {m+ n : n ∈ N},

the coset of N in M determined by m.

A.2There is a more general definition of vector space (and of a module), which we do not need in this text.
For the more general setup, and details pertaining to it, the reader may consult [29, p. 169 ff].
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A.23. For any m1,m2 ∈ N , m1 +N = m2 +N if and only if mm1 +N = mm2 +N for any
m ∈ M .

A.24. Define
M/N = {m+N : m ∈ M}.

Then M/N is an R-module, called the quotient module of M by N . If M/N is finite,
we denote its order by

|M/N | = |M : N |,

the index of N in M .

If S = {Mj : j = 1, 2, . . . , n} is a set of R-modules, then let M be the set of n-tuples

(m1,m2, . . . ,mn) with mj ∈ Mj for j = 1, 2, . . . n,

with the zero element of M being the n-tuple, (0, 0, . . . , 0). Define addition in M by

(m1,m2, . . . ,mn) + (m�
1,m

�
2, . . . ,m

�
n
) = (m1 +m�

1,m2 +m�
2, . . . ,mn +m�

n
),

for all mj ,m�
j
∈ Mj with j = 1, 2, . . . , n, and multiplication from R on an n-tuple from M

by
r(m1,m2, . . . ,mn) = (rm1, rm2, . . . , rmn) for all r ∈ R.

This defines an R-module structure on M called the direct sum of the modules Mj , j =
1, 2, . . . , n, denoted by

⊕n

j=1Mj = M1 ⊕ · · · ⊕Mn. (A.1)

Definition A.7 — Bases, Dependence, and Finite Generation

If S is a subset of an R-module M , then the intersection of all submodules of M containing
S is called the submodule generated by S, or spanned by S. If there is a finite set S, and S

generates M , then M is said to be finitely generated. If S = ∅, then S generates the zero
module. If S = {m}, a singleton set, then the submodule generated by S is said to be the
cyclic submodule generated by m.

A subset S of an R-module M is said to be linearly independent provided that for distinct
s1, s2, . . . , sn ∈ S, and rj ∈ R for j = 1, 2, . . . , n,

n�

j=1

rjsj = 0 implies that rj = 0 for j = 1, 2, . . . , n.

If S is not linearly independent, then it is called linearly dependent. A linearly independent
subset of an R-module that spans M is called a basis for M .

An important concept that we will need throughout the text is the following notion—see
Theorem 2.9 on page 75, for instance.

Definition A.8 — Free Modules and Free Abelian Groups

If R is a commutative ring with identity, and M is an R-module, then M is called a free
R-module if M has a nonempty basis.
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Remark A.3 The situation of most interest to us in the text is that of a free Z-module,
which is just a Z-module with a basis, and this is the same thing as a free abelian group. It
can be shown that any two such bases for a free abelian group G have the same cardinality.
Therefore, this cardinality is an invariant of G, called the rank of G . If the number of
elements in a basis is finite then the free abelian group is said to be of finite rank. Further-
more, it can be shown that all subgroups of a free abelian group G are also free abelian
with rank at most that of G.

Vector spaces (over division rings, remember) are special.

Theorem A.4 — Vector Spaces and Dimension

If V is a vector space, and S is a subset that spans V , then S contains a basis of V .
Furthermore, any two bases of V have the same cardinality. This is called the invariant
dimension property.

The cardinality of a basis for a vector space V over a division ring D is called the dimension
of V over D, denoted by |V : D|. A submodule of a vector space is called a subspace.

Application A.1 — Field Extensions

If D ⊆ V , where D and V are fields in Theorem A.4, then V is called an extension field of
D and |V : D| is called the degree of the field extension. It follows that if F1 ⊆ F2 ⊆ F3 ⊆ C
with Fj fields for j = 1, 2, 3, then

|F3 : F1| = |F3 : F2| · |F2 : F1|. (A.2)

If S is a subset of a field F , then we call the subfield generated by S the intersection of all fields
containing F and containing S. If E is an extension field of F and S ⊆ E, then the subfield
generated by F and S is defined as the subfield generated by F ∪ S. If S = {α1, α2, . . . , αn}
for some n ∈ N, then the field generated by S and F is denoted by

E = F (α1, α2, . . . , αn)

called a finitely generated extension of F . In the case where n = 1, E is called a simple
extension of F .

When K,F ⊆ C are fields, then the compositum of K and F , also called the composite, is
the smallest subfield of C containing both K and F . This consists of all finite sums

�
αjβj

where αj ∈ K and βj ∈ F . In particular, for the simple extensions defined above, we have
that whenever α ∈ C is algebraic over F , then

F [α] = F (α) ∼= F [x]/(f(x)), (A.3)

where the generator of the ideal, given by f(x), is an irreducible monic polynomial uniquely
characterized by the conditions: (1) f(α) = 0, and (2) if g(x) ∈ F [x] with g(α) = 0, then
f(x)

�� g(x). See Example 1.22 on page 19, for instance, as an application of this result.

In the above, we defined free R-modules. We may now present another characterization of
those free R-modules of finite rank. An R-module M of rank n ∈ N is free provided that
it is isomorphic to a direct sum of n copies of the R-module R. In particular, every free
Z-module M of rank n is of the form

M ∼= Z⊕ · · · ⊕ Z� �� �
n copies

, (A.4)
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and this is called a free abelian group of rank n. Thus, every subgroup of a free abelian
group of rank n is a free abelian group of rank at most n.

✦ Mappings — Morphisms

Let S and T be sets. Then a function (or mapping)

f : S �→ T

is called an injection (or one-to-one) provided that

a = b whenever f(a) = f(b) for any a, b ∈ S.

It is called surjective (or onto) provided that f(S) = T , namely

T = {f(s) : s ∈ S},

or in other words, for each t ∈ T , there exists an s ∈ S such that f(s) = t. A function f is
called bijective (or a bijection) if it is both an injection and a surjection.

Suppose that G and H are two groups where · denotes the operation in G, and ⊗ denotes
the operation in H. If

f : G �→ H

is a function such that
f(g1 · g2) = f(g1)⊗ f(g2),

then f is called a homomorphism of groups (or group homomorphism). When there is no
danger of confusion, we express ⊗ and · simply by juxtaposition, and write

f(g1g2) = f(g1)f(g2),

for convenience. We will maintain this convention in the sequel, namely that we will not
distinguish between the operations in the objects under consideration.

Definition A.9 — Auto, Endo, Iso, and Mono-Morphisms

If f : G �→ H is injective as a map of sets, then f is called a monomorphism of groups (or
group monomorphism), and f is called an epimorphism of groups (or group epimorphism)
provided that f is surjective as a map of sets. If f is bijective as a map of sets, we call
it an isomorphism of groups (or group isomorphism). When the context is clear, and no
confusion can arise, we drop the reference to groups and call f simply a monomorphism,
epimorphism or isomorphism. A homomorphism

f : G �→ G

is called an endomorphism of G, and if f is an isomorphism, then it is called an automor-
phism of G. A field automorphism is an isomorphism of F satisfying the two properties
that f(αβ) = f(α)f(β) and f(α+ β) = f(α) + f(β) for all α,β ∈ F .

The kernel of f : G �→ H is given by

ker(f) = {g ∈ G : f(g) = 0}.

Also, the image of G under f is given by

img(f) = {h ∈ H : f(g) = h for some g ∈ G}.

If S is a subset of H, then

f−1(S) = {g ∈ G : f(g) ∈ S}

is called the inverse image of S .
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Remark A.4 The set of all automorphisms of a group G forms a group itself under com-
position of functions, denoted by Aut(G)—see Lemma 2.1 on page 55 for an application to
field extensions. For instance, the group of automorphisms of a finite field Fpn is a cyclic
group of order n.

Definition A.10 — Homomorphism and Embeddings of Rings

Let R and S be rings. Then a function f : R �→ S is a homomorphism of rings provided
that for all a, b ∈ R

f(a+ b) = f(a) + f(b) and f(ab) = f(a)f(b).

The homomorphism f is called a monomorphism of rings (or embedding of R into S, or
an injection of rings, or a one-to-one homomorphism of rings), if f is injective as a map
of sets. Also, f is called an epimorphism of rings if f is surjective as a map of sets. If f
is a bijection as a map of sets, then f is called an isomorphism of rings. When f is an
isomorphism of rings, we say that R and S are isomorphic, and write

R ∼= S.

As above, we abbreviate to say simply homomorphism, monomorphism, epimorphism, or
isomorphism, when the context is clear. Also, the kernel and image inherit the group
structure from a map of additive abelian groups. If φ is an isomorphism of the ring R, and
S is a subring of R, then the isomorphism given by

s �→ φ(s) for all s ∈ S

is called the restriction isomorphism of φ to S, denoted by

φ|S . (A.5)

Definition A.11 — Cosets and Quotient Rings

If R is a commutative ring with identity and I is an R-ideal, then a coset of I in R is a set,
for a given r ∈ R, of the form r + I = {r + α : α ∈ I}. The set

R/I = {r + I : r ∈ R}

becomes a ring under addition and multiplication of cosets given by

(r + I)(s+ I) = rs+ I and (r + I) + (s+ I) = (r + s) + I for r, s ∈ R

which is independent of the choices of r, s. Then R/I is called the quotient ring or the
factor ring of R by I. It is also referenced as the residue classes of R modulo I.
A mapping

f : R �→ R/I,

which takes elements of R to their coset representatives in R/I, is called the natural map
of R to R/I, and this is easily seen to be an epimorphism. In this case, the cardinality of
R/I is denoted by |R : I|.

If M and N are modules over a ring R, then a function

f : M �→ N
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is an R-module homomorphism provided that for all m1,m2 ∈ M and r ∈ R

f(m1 +m2) = f(m1) + f(m2) and f(rm1) = rf(m1).

If R is a division ring, then an R-module homorphism is called a linear transformation.

Since an R-module homomorphism is necessarily a homomorphism of additive abelian
groups, then the same terminology is carried over to f as an R-module monomorphism,
epimorphism, or isomorphism, provided that f is injective, surjective, or bijective (re-
spectively), as a map of sets. Hence, the kernel (respectively image), of f is its kernel
(respectively image), as a homomorphism of abelian groups.

If R is a commutative ring with identity, then an R-algebra is a ring A such that

A.25. A is an R-module, and

A.26. r(ab) = (ra)b = a(rb) for all r ∈ R and a, b ∈ A.

Any R-algebra that is (as a ring) a division ring, is called a division algebra. An algebra
over a field K is called a finite dimensional algebra over K. A homomorphism (respectively
momomorphism, epimorphism, or isomorphism), of R-algebras

f : A �→ B

is a ring homomorphism (respectively momomorphism, epimorphism, or isomorphism), that
is also an R-module homomorphism, (respectively momomorphism, epimorphism, or iso-
morphism). Also, as in the ring case, the notion of kernel and image of f are inherited
from the group structure.

Fundamental results concerning isomorphisms will be needed in the text. The following is
a fundamental result on isomorphisms of which (A.3) on page 325 is an application.

Theorem A.5 — Fundamental Isomorphism Theorem for RingsA.3

If R and S are commutative rings with identity, and

φ : R �→ S

is a homomorphism of rings, then

R/ ker(φ) ∼= img(φ).

✦ Rings of Quotients

In this section, we look at a generalization of the construction of the rational number field.

Definition A.12 — Multiplicative Sets

A nonempty subset S of a ring R is called multiplicative provided that

r, s ∈ S implies that rs ∈ S.

The classical motivation for the following is to think of the set S of nonzero rational integers.
This is a multiplicative subset of Z. One may construct Q from the relation on the set Z×S
given by

(a, b) ∼ (c, d) if and only if ad− bc = 0,

A.3This holds for more general rings, but our principal object of study in this text is the ring of integers
of a number field, so we look only at this case for convenience. See [29] for the more general case.
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which is an equivalence relation (namely a binary relation R that is reflexive (aRa), sym-
metric (aRb implies bRa), and transitive (aRb and bRc imply aRc)).

Then Q is the set of equivalence classes, denoted by

{(a, b)} = a/b

with addition and multiplication defined in the usual way. These well-defined operations
make Q into a field, and the mapping z �→ z/1 embeds Z in Q. We now generalize this
setup.

Theorem A.6 — Ring of QuotientsA.4

Let S be a multiplicative subset of an integral domain R. Then the relation on R × S
defined by

(a, b) ∼ (c, d) if and only if ad− bc = 0

is an equivalence relation. Denote the set of equivalence classes arising from this equivalence
relation by S−1R. If 0 �∈ S, then S−1R is an integral domain, called the quotient ring of R
or ring of fractions or ring of quotients of R by S. If S is the set of all nonzero elements of
R, then S−1R is a field called the quotient field of R. In the latter case, the map

ψ : R �→ S−1R given by r �→ rs/s for any s ∈ S

is a monomorphism that embeds R in its quotient field. Thus, ψ(s) is a unit in S−1R for
each s ∈ S.

✦ Polynomials and Polynomial Rings

If R is a ring, then a polynomial f(x) in an indeterminant x with coefficients in R is an
infinite formal sum

f(x) =
∞�

j=0

ajx
j = a0 + a1x+ · · ·+ anx

n + · · · ,

where the coefficients aj are in R for j ≥ 0 and aj = 0 for all but a finite number of those
values of j. If an �= 0, and aj = 0 for j > n, then an is called the leading coefficient of
f(x). If the leading coefficient an = 1, then f(x) is said to be monic. The set of all such
polynomials is denoted by R[x].

We may add two polynomials from R[x], f(x) =
�∞

j=0 ajx
j and g(x) =

�∞
j=0 bjx

j , by

f(x) + g(x) =
∞�

j=0

(aj + bj)x
j ∈ R[x],

and multiply them by

f(x)g(x) =
∞�

j=0

cjx
j ,

where

cj =
j�

i=0

aibj−i.

A.4This setup applies to any commutative ring, but our main concern in this text is rings of integers, which
are integral domains, so we specialize to that case here.
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Also, f(x) = g(x) if and only if aj = bj for all j = 0, 1, . . .. Under the above operations
R[x] is a ring, called the polynomial ring over R in the indeterminant x. Furthermore, if
R is commutative, then so is R[x], and if R has identity 1R, then 1R is the identity for
R[x]. Notice that with these conventions, we may write f(x) =

�
n

j=0 ajx
j where an is the

leading coefficient since we have tacitly agreed to “ignore” zero terms.

Note that we could dispense with the indeterminant altogether and write

f = (a0, a1, . . . , an, . . .).

Then the above operations would be on these sequences of elements. Note that f(x) is
not a function and the + in its representation does not represent addition. This is made
clear by the sequential notation. Thus, the abbreviated notation that we have adopted,
f(x) =

�∞
j=0 ajx

j , is called the sigma notation, rather than the summation notation.

If α ∈ R, we write f(α) to represent the element
�

n

j=0 ajα
j ∈ R, called the substitution of

α for x. When f(α) = 0, then α is called a root of f(x). The substitution gives rise to a
mapping f : R �→ R given by f : α �→ f(α), which is determined by f(x). Thus, f is called
a polynomial function over R.

Example A.1 Let R = Z/pZ where p is prime. If f(x) = xp and g(x) = x, then these
two polynomials of R[x] are distinct. However, f(α) = αp and g(α) = α. However, by
Fermat’s Little Theorem, αp = α in R. Hence, distinct polynomials can give rise to the
same polynomial function. (For a detailed discussion of related polynomial congruences and
the theory behind them, see [50, pp. 105–117]).

Definition A.13 — Degrees and Division of Polynomials

If f(x) ∈ R[x], with f(x) =
�

d

j=0 ajx
j , and ad �= 0, then d is called the degree of f(x) over

R, denoted by deg
R
(f). If no such d exists, we write deg

R
(f) = −∞, in which case f(x) is

the zero polynomial in R[x]—see Example A.2 on the next page. We say that a polynomial
g(x) ∈ R[x] divides f(x) ∈ R[x], if there exists an h(x) ∈ R[x] such that f(x) = g(x)h(x).
We also say that g(x) is a factor of f(x). If F is a field of characteristic zero, then

degQ(f) = deg
F
(f)

for any f(x) ∈ Q[x]. In this case, we write deg(f) for deg
F
(f), without loss of generality,

and call this the degree of f(x).

✦ Polynomial Congruences

Theorem A.7 — Lagrange’s Theorem

Suppose that f is an integral polynomial of degree d ≥ 1, and p is a rational prime. Then
f(x) ≡ 0(mod p) has at most d incongruent solutions.

If c is the greatest common divisor of the coefficients of f(x) ∈ Z[x], then c is called the
content of f . If c = 1, then f is called primitive.A.5

A.5The content of a polynomial f is also defined more generally when f(x)∈D[x], where D is a UFD—see
Definition 1.8 on page 7. The content is not uniquely defined since common divisors are not unique given
the existence of units. However, any two contents are necessarily associates in D—see Definition 1.5 on
page 4. In Z, this does not present a problem since the only units are ±1, so the gcd (which is positive),
must be unique. If D is a general UFD, then a polynomial is primitive if the content is a unit in D.
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Definition A.14 — Irreducible Polynomials over Rings

A polynomial f(x) ∈ R[x] is called irreducible (over R), if f(x) is not a unit in R and any
factorization f(x) = g(x)h(x), with g(x), h(x) ∈ R[x] satisfies the property that one of g(x)
or h(x) is in R, called a constant polynomial. In other words, f(x) cannot be the product
of two nonconstant polynomials.

For the following application we remind the reader that a finite field, denoted by Fq with
q ∈ N elements must satisfy the property that q is a prime power. Such fields are also called
Galois fields. If q = pm for a prime p and m ∈ N, then Fp is called the prime subfield of Fq.
In general, a prime subfield is a field having no proper subfields, so Q is the prime subfield
of any field of characteristic 0, and Fp is the prime subfield of any field of characteristic p.

Theorem A.8 — Multiplicative Subgroups of Fields

If F is a field and F ∗ is a finite subgroup of the multiplicative group of nonzero elements
on F , then F ∗ is cyclic. In particular, if F = Fpn is a finite field, then F∗ is a finite cyclic
group.

In general, it is important to make the distinction between degrees of a polynomial over
various rings, since the base ring under consideration may alter the makeup of the polyno-
mial.

Example A.2 The polynomial

f(x) = 2x2 + 2x+ 2

is of degree two over Q. However, over F2, the finite field of two elements, degF2
= −∞,

since f is the zero polynomial in F2[x].

Some facts concerning irreducible polynomials will be needed in the text as follows—see
Exercise 2.15 on page 64, for instance.

Theorem A.9 — Irreducible Polynomials over Finite Fields

The product of all monic irreducible polynomials over a finite field Fq whose degrees divide
a given n ∈ N is equal to xq

n − x.

Based upon Theorem A.9, the next result may be used as an algorithm for irreducibility
over prime fields and thereby generate irreducible polynomials. First, we need a definition.

Definition A.15 — The GCD of Polynomials

If fi(x) ∈ F [x] for i = 1, 2, where F is a field, then the greatest common divisor of f1(x)
and f2(x) is a unique monic polynomial g(x) ∈ F [x] satisfying both:

(a) For i = 1, 2, g(x)|fi(x).

(b) If there is a g1(x) ∈ F [x] such that g1(x)|fi(x) for i = 1, 2, then g1(x)|g(x).

If g = 1, we say that f1(x) and f2(x) are relatively prime, denoted by

gcd(f1(x), f2(x)) = 1.
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Corollary A.8 The following are equivalent.

(a) A polynomial f is irreducible over Fp where p is prime and degFp
(f) = n.

(b) For all natural numbers i ≤ �n/2�, gcd(f(x), xp
i − x) = 1.

There is a general result concerning irreducible polynomials over any field.

Theorem A.10 — Irreducible Polynomials over Arbitrary Fields

Let F be a field and f(x) ∈ F [x]. Denote by (f(x)) the principal ideal in F [x] generated
by f(x). Then the following are equivalent.

(a) f is irreducible over F .

(b) F [x]/(f(x)) is a field.

Our main concern in this text is with subfields of C. In particular, what is the relationship
between degQ(f), and degZ(f)? This is answered by an important result of Gauss, which
relates degrees, and irreducibility of polynomials in Q and Z.

Lemma A.1 — Gauss’s LemmaA.6

If f(x) ∈ Z[x], and
f(x) = g(x)h(x) for g(x), h(x) ∈ Q[x],

then
f(x) = G(x)H(x) for some G(x), H(x) ∈ Z[x].

Furthermore, degQ(g) = degZ(G), and degQ(h) = degZ(H).

Lemma A.1 tells us that any polynomial which is irreducible in Z[x] is also irreducible in
Q[x], or contrapositively, if f(x) is reducible in Q[x], then it is already reducible in Z[x].
Given this fact, it is useful to have an irreducibility test over Q.

Theorem A.11 — Schönemann/Eisenstein CriterionA.7

Let f(x) ∈ Z[x] with f(x) =
�

d

j=0 ajx
j . If there exists a prime p ∈ Z such that both

(a) aj ≡ 0(mod p) for j = 0, 1, . . . , d− 1 with ad �≡ 0(mod p), and

(b) a0 �≡ 0(mod p2)

hold, then f(x) is irreducible in Q[x].

Now that we have the notion of irreducibility for polynomials, we may state a unique
factorization result for polynomials over fields.

A.6Another lemma, also known as Gauss’s Lemma, says that the product of primitive polynomials in Z[x]
is primitive in Z[x].
A.7Although this is known as Eisenstein’s criterion in the literature, it was actually first discovered by
T. Schönemann in [64]. He actually claimed priority over Eisenstein in [65]. The consensus is that
Schönemann’s paper was overlooked because he put the criterion at the end of the paper without any
applications or even a hint as to its importance, whereas Eisenstein put his at the front of the paper and
demonstrated the applicability to such things as the irreducibility of the cyclotomic polynomials.
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Theorem A.12 — Unique Factorization for Polynomials

If F is a field, then every nonconstant polynomial f(x) ∈ F [x] can be factored in F [x] into
a product of irreducible polynomials p(x), each of which is unique up to order and units
(nonzero constant polynomials) in F .

The Euclidean Algorithm applies to polynomials in a way that allows us to talk about
common divisors of polynomials in a fashion similar to that for integers.

There is also a Euclidean result for polynomials over a field.

Theorem A.13 — Euclidean Algorithm for Polynomials

If f(x), g(x) ∈ F [x], where F is a field, and g(x) �= 0, there exist unique q(x), r(x) ∈ F [x]
such that

f(x) = q(x)g(x) + r(x),

where either 0 ≤ deg(r) < deg(g), or r(x) = 0, the zero polynomial with deg(r) = −∞.

Thus, F [x] is a Euclidean domain with respect to the valuation v(f) = 2deg(f), with deg(0) =
−∞, namely 2deg(0) = 0.

Finally, if f(x) and g(x) are relatively prime, there exist s(x), t(x) ∈ F [x] such that

1 = s(x)f(x) + t(x)g(x).

An important concept that we will need, for instance, in the proof of Theorem 3.17 on
page 127, is the following.

Definition A.16 — Symmetric Functions

Let R be a commutative ring with identity, and f(x) ∈ R[x1, x2, . . . , xn], the polynomial
ring in n indeterminates xj for j = 1, 2, . . . , n. Then f is called symmetric if for each
σ ∈ Sn, the symmetric group on n letters,

fσ(x1, x2, . . . , xn) = f(xσ(1), xσ(2), . . . , xσ(n)),

denoted by simply fσ = f . In particular, if

sj(x1, x2, . . . , xn) ∈ R[x1, x2, . . . , xn]

is defined to be the sum of all possible distinct products of j distinct xi, then sj is a
symmetric function called an elementary symmetric polynomial. Thus,

s1(x1, x2, . . . , xn) =
n�

j=1

xj ;

s2(x1, x2, . . . , xn) =
�

1≤i<j≤n

xixj ;

s3(x1, x2, . . . , xn) =
�

1≤i<j<k≤n

xixjxk;

...

sk(x1, x2, . . . , xn) =
�

1≤i1<i2<···<ik≤n

xi1xi2 · · ·xik
;

...

sn(x1, x2, . . . , xn) =
n�

j=1

xj .
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Theorem A.14 — Newton

Let R be a commutative ring with identity. Then every symmetric polynomial in

R[x1, x2, . . . , xn]

is expressible as a polynomial in
R[s1, s2, . . . , sn].

Corollary A.9 Let R be a commutative ring with identity and f(x) ∈ R[x] be a polynomial
of degree d with roots α1, α2, . . . , αd in R. If g(x1, x2, . . . , xd) is a symmetric polynomial
over R, then

g(α1, α2, . . . , αd) ∈ R.

Definition A.17 — Splitting Fields for Polynomials

If f(x) ∈ F [x] where F ⊆ C is a field and αj for 1 ≤ j ≤ d are all of the roots of f(x) in C,
then there exists a smallest extension field E of F such that

f(x) = (x− α1)(x− α2) · · · (x− αd) ∈ E[x]

called the splitting field of f over F . Moreover, E = F (α1, α2, . . . , αd).

Theorem A.15 — Extensions of Isomorphisms

Let K1 and K2 be extension fields of F which has characteristic zero or is finite. Suppose
that fj(x) ∈ Kj [x] with splitting field Ej for j = 1, 2. If φ is an isomorphism of K1 and K2

with φ(f1(x)) = f2(x), then φ can be extended to an isomorphism of E1 to E2.

Corollary A.10 If F is a field of characteristic zero or is finite with f(x) ∈ F [x], then
there exists a splitting field of f(x) which is unique up to F -isomorphism. In particular,
any two algebraic closures are F -isomorphic—see Definition 1.31 on page 37.

Related to the above are the following fundamental facts. See Exercise 2.6 on page 63 for
comparison and usage of notions surrounding these concepts.

Theorem A.16 — The Number of Extensions of Isomorphims

If K is an extension field of F of finite degree |K : F | = n, where F has characteristic
zero or is finite, and if L is an algebraically closed field containing F , then there are n
F -isomorphisms of K into L.

Theorem A.17 — The Primitive Element Theorem

If K is an extension field of F which has characteristic zero or is finite, then there exists
α ∈ K such that K = F (α).

Theorem A.18 — The Fundamental Theorem of Algebra

If f(x) ∈ C[x] and deg(f) = d ∈ N, then f(x) factors into a product of d factors in C[x].
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✦ Basic Matrix Theory

If m,n ∈ N, then an m× n matrix (read “m by n matrix”) is a rectangular array of entries
with m rows and n columns. We will assume that the entries come from a commutative
ring with identity R. If A is such a matrix, and ai,j denotes the entry in the ith row and
jth column, then

A = (ai,j) =





a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
...

am,1 am,2 · · · am,n




.

Two m × n matrices A = (ai,j), and B = (bi,j) are equal if and only if ai,j = bi,j for all i
and j. The matrix (aj,i) is called the transpose of A, denoted by

At = (aj,i).

Addition of two m× n matrices A and B is done in the natural way,

A+B = (ai,j) + (bi,j) = (ai,j + bi,j),

and if r ∈ R, then rA = r(ai,j) = (rai,j), called scalar multiplication. A scalar is a quantity
that has magnitude, but not direction. This term comes from the vector space context,
which we develop below. The case where the term scalar is used most often in practice is
when R = R.
Under the above definition of addition and scalar multiplication, the set of allm×nmatrices
with entries from R, a commutative ring with identity, form an R-module, denoted by
Mm×n(R). If R is a division ring, then Mm×n(R) is a vector space over R.

If A = (ai,j) is an m × n matrix and B = (bi,j) is an n × r matrix, then the product of A
and B is defined as

AB = (ai,j)(bi,j) =

�
n�

k=1

ai,kbk,j

�
, with 1 ≤ i ≤ m, and 1 ≤ j ≤ r.

When multiplication is defined, then it is associative, and distributive over addition. If
m = n, then Mn×n(R) is a ring, with identity given by the n× n matrix:

In =





1R 0 · · · 0
0 1R · · · 0
...

...
...

...
0 0 · · · 1R




,

called the n× n identity matrix, where 1R is the identity of R.

Another important aspect of matrices that we will need throughout the text is motivated
by the following. We maintain the assumption that R is a commutative ring with identity.
Let (a, b), (c, d) ∈ M1×2(R). It is a straightforward exercise for the reader to verify that
(a, b) and (c, d) are linearly independent vectors in M1×2(R) if and only if ad− bc �= 0—see
Definition A.7 on page 324. If we set up these row vectors into a single 2× 2 matrix

A =

�
a b
c d

�
,
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then ad − bc is called the determinant of A, denoted by det(A). More generally, we may
define the determinant of any n×n matrix in Mn×n(R) for any n ∈ N. The determinant of
any r ∈ M1×1(R) is just det(r) = r. Thus, we have the definitions for n = 1, 2, and we may
now give the general definition inductively. The definition of the determinant of a 3 × 3
matrix

A =




a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3





is defined in terms of the above definition of the determinant of a 2 × 2 matrix, namely
det(A) is given by

a1,1 det

�
a2,2 a2,3
a3,2 a3,3

�
− a1,2 det

�
a2,1 a2,3
a3,1 a3,3

�
+ a1,3 det

�
a2,1 a2,2
a3,1 a3,2

�
.

Therefore, we may inductively define the determinant of any n× n matrix in this fashion.
Assume that we have defined the determinant of an n × n matrix. Then we define the
determinant of an (n+ 1)× (n+ 1) matrix A = (ai,j) as follows. First, we let Ai,j denote
the n× n matrix obtained from A by deleting the ith row and jth column. Then we define
the minor of Ai,j at position (i, j) to be det(Ai,j). The cofactor of Ai,j is defined to be

cof (Ai,j) = (−1)i+j det(Ai,j).

We may now define the determinant of A by

det(A) = ai,1cof (Ai,1) + ai,2cof (Ai,2) + · · ·+ ai,n+1cof (Ai,n+1). (A.6)

This is called the expansion of a determinant by cofactors along the ith row of A. Similarly,
we may expand along a column of A.

det(A) = a1,jcof(A1,j) + a2,jcof(A2,j) + · · ·+ an+1,jcof(An+1,j),

called the cofactor expansion along the jth column of A. Hence, a determinant may be
viewed as a function that assigns a real number to an n× n matrix, and the above gives a
method for finding that number. Other useful properties of determinants that we will have
occasion to use in the text are given in the following.

Theorem A.19 — Properties of Determinants

Let R be a commutative ring with identity and let A = (ai,j), B = (bi,j) ∈ Mn×n(R). Then
each of the following hold.

(a) det(A) = det(ai,j) = det(aj,i) = det(At).

(b) det(AB) = det(A) det(B).

(c) If matrix A is achieved from matrix B by interchanging two rows (or two columns),
then det(A) = − det(B).

(d) If Sn is the symmetric group on n letters, then

det(A) =
�

σ∈Sn

(sgn(σ))a1,σ(1)a2,σ(2) · · · an,σ(n),

where sgn(σ) is the sign of σ given in Definition A.2 on page 320.
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If A ∈ Mn×n(R), then A is said to be invertible, or nonsingular if there is a unique matrix
denoted by

A−1 ∈ Mn×n(R)

such that
AA−1 = In = A−1A.

Theorem A.20 — Properties of Invertible Matrices

Let R be a commutative ring with identity, n ∈ N, and A invertible in Mn×n(R). Then
each of the following holds.

(a) (A−1)−1 = A.

(b) (At)−1 = (A−1)t, where “t” denotes transpose.

(c) det(A) is a unit in R.

There is a special class of invertible matrices, which we will have occasion to use in the
development of the basics in this text—for instance see Exercise 1.59 on page 54.

Definition A.18 — General Linear Group and Unimodular Matrices

If R is a field, or R = Z, then the totality of n × n nonsingular matrices with entries
from R forms a group under matrix multiplication, called the general linear group, denoted
by GLn(R). In the case where R = Z, Theorem A.20 tells us that det(A) = ±1 for any
A ∈ GLn(Z). The matrices in GLn(Z) are called unimodular.

Another important fact is contained in the sequel, a result which follows from cofactor
expansions—see Biography B.2 on page 351 for some ironies of attribution in this regard.

Theorem A.21 — Cramer’s Rule

Let A = (ai,j) be the coefficient matrix of the following system of n linear equations in n
unknowns:

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2

...
...

...
...

...

an,1x1 + an,2x2 + · · ·+ an,nxn = bn,

over a field F . If det(A) �= 0, then the system has a solution given by:

xj =
1

det(A)

�
n�

i=1

(−1)i+jbi det(Ai,j)

�
, (1 ≤ j ≤ n).

We may also determine the inverse of a nonsingular matrix via a notion related to the
development of Cramer’s Rule.
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Definition A.19 — Adjoint

Let R be a commutative ring with identity. If A = (ai,j) ∈ Mn×n(R), then the matrix

Aa = (bi,j)

given by
bi,j = (−1)i+j det(Aj,i)

is called the adjoint of A.

Some properties of adjoints related to inverses are as follows.

Theorem A.22 — Properties of Adjoints

If R is a commutative ring with identity and A ∈ Mn×n(R), then each of the following
holds.

(a) AAa = det(A)In = AaA.

(b) A is invertible in Mn×n(R) if and only if det(A) is a unit in R, in which case

A−1 =
Aa

det(A)
.

Note that when R is a field in Theorem A.22, then det(A) is a unit if and only if det(A) �= 0.

The following facts will also prove to be useful in the text—see the proof of Theorem 2.2
on page 58, for instance.

Theorem A.23 — Systems of Linear Homogeneous Equations

A system of m linear equations in n unknowns xi over a field F

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1

...

am,1x1 + am,2x2 + · · · am,nxn = bm

has a (simultaneous) solution if and only if the matrix equation AX = B has a solution
X, where A = (ai,j) ∈ Mm×n(F ), X = (xi) ∈ Mn×1(F ), and B = (bj) ∈ Mm×1(F ). The
system AX = B is called a homogeneous system of linear equations if B = (0) ∈ Mm×1(F )
is the zero vector. If m < n, then AX = 0 has a nontrivial solution, that is to say, one
for which not all xi = 0. In this case, there are elements ci ∈ F not all zero such that�

n

i=1 ai,jci = 0.

We introduced linear transformations on page 328. We now define an associated matrix.

Definition A.20 — Matrix of a Transformation

Suppose that ψ : V �→ V is a linear transformation of a vector space V over a field F . If
{v1, . . . , vn} is a basis for V over F , then the matrix of ψ is given by (αi,j), where αi,j ∈ F
are uniquely determined by

ψ(vi) =
n�

j=1

αi,jvj (1 ≤ i ≤ n).

The determinant of the linear transformation is denoted by det(ψ) = det(αi,j).
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Lastly, for this section on matrices, we define the following, which we will need as a tool in
the main text—see the proof of Theorem 5.13 on page 215, for instance.

Definition A.21 Kronecker Products

If A = (αi,j) ∈ Mr×r(F ) and B = (βk,�) ∈ Ms×s(F ) for a field F , then the Kronecker
product of A and B, denoted by A × B, is obtained by taking the matrix B = (βk,�) and
replacing each entry βk,� by the r × r matrix βk,�(αi,j).

Now we have a smattering of concepts that we will require and we put them under their
own headings.

✦ The Arithmetic-Geometric Mean Inequality

We will have need of the following classical result in the text. See [28, Theorem 5.2, p. 544]
for a proof. If n ∈ N and xj ∈ R+ for j = 1, 2, . . . , n, then

(x1 · x2 · · ·xn)
1/n =




n�

j=1

xj




1/n

≤ 1

n

n�

j=1

xj =
1

n
(x1 + x2 + · · ·+ xn).

✦ Stirling’s Formula

nn

n!
=

e−
α

12n+n

√
2πn

, (A.7)

for some α in the interval (0, 1). This is a version that will be suitable for our purposes in
this text—see the proof of Corollary 3.7 on page 116, for instance.
Another important fact is from the theory of sets.

✦ Zorn’s Lemma

Suppose that S is a linearly orderedA.8 family of sets that is closed with respect to taking
unions. In other words, for any number of Sj ∈ S (possibly infinitely many), ∪jSj ∈ S.
Then S has a maximal element. Zorn’s Lemma is equivalent to the Axiom of Choice (see
[50, p. 367], for instance).

Biography A.1 Max Zorn (1906–1993) was born on June 6, 1906 in Germany.
He received his doctorate from Hamburg in 1930 under the direction of Artin
(see Biography 1.2 on page 24). He was then appointed to Halle in 1933.
However, he left Germany because of the Nazis. He worked at Yale from
1934 to 1936. It was during this period that he produced what we now call
Zorn’s lemma. He then spent ten years in California, after which he moved to
Indiana, where he became a Professor. Perhaps his most famous student was
Israel Nathan Herstein (1923–1988). Zorn did work, not only in set theory,
but also in topology and algebra. One of his other classical results was the
proof that the Cayley numbers are unique in the sense that they form the only
alternative, quadratic, real nonassociative algebra without zero divisors. He
died on March 9, 1993.

A.8Recall that a linear order is a binary relation R on a set S such that the following three conditions are
satisfied.

(1) aRb, or bRa for all a,b∈S, with a distinct from b,
(2) aRa for no a∈S, and
(3) if aRb, and bRc, then aRc.
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Biography A.2 James Stirling (1692–1770), was born in May 1692 in Garden
(near Stirling), Scotland, and educated at Glasgow. In 1717, he published
his first work Linae Terti Ordinis Neutonianae, extending Newton’s theory of
plane curves by classifying cubic curves. He was elected to the Royal Society
in London in 1726, and in 1730, he published, as Example 2 of Proposition
28, in the Methodus differentialis, the approximation n!≈

√
2πn(n

e )
n, in the same

year as Abraham de Moivre (1657–1705) published his Miscellanea analytica.
There is a certain consensus among mathematical historians that de Moivre
knew a version of formula (A.7) earlier than Stirling. De Moivre used many
such formulas in his research in probability theory. For instance, de Moivre
was ostensibly the first to work with the probability formula

� ∞
0 e

−x
2
dx=

√
π/2,

which appeared in 1733 in a privately printed paper entitled Approximatio ad
summam terminorum binomii (a + b)n in seriem expansi. In 1735, Stirling
returned to Scotland, and became manager of the Scotch Mining Company
at Leadhills. In 1746, he was elected to the Royal Society of Berlin. In that
same year Colin Maclaurin (1698–1746) died, and Stirling was offered his chair
at Edinburgh, but he declined. He is also known for numbers called Stirling
numbers, which have to do with permutations of lists of numbers. Stirling died
on December 5, 1770 in Edinburgh.

We also remind the reader of the following elementary, albeit important facts.

✦ Dirichlet’s Box Principle

If more than n ∈ N objects are placed in n boxes, then at least one of the boxes contains
more than one element.

This is also called the Pigeonhole Principle based upon the application of n + 1 pigeons
flying into n holes.

✦ The Well-Ordering Principle

Every non-empty subset of N contains a least element.
It can be shown that the Well-Ordering principle is logically equivalent to following—see
[53, Exercise 1.3, p. 11].

✦ The Principle of Mathematical Induction

Suppose that S ⊆ N and both (a) and (b) below hold.

(a) 1 ∈ S, and

(b) If n > 1 and n− 1 ∈ S, then n ∈ S.

Then S = N.
The following will be useful in text—see the solution of Exercise 6.1 on page 401 for instance.

Theorem A.24 Solutions of Linear Congruences

For a, b ∈ Z and n ∈ N,
ax ≡ b (mod n) (A.8)

has a solution x ∈ Z if and only if g = gcd(a, n)
�� b. Furthermore, if such a solution exists,

then there are exactly g incongruent solutions modulo n and exactly one of these is in the
least residue system modulo n/g, this being the unique solution to (A.8).
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The following result was first proved by Leibniz and has a familiar consequence as a special
case, which is used throughout the text—see the proof of the cubic reciprocity law in
Theorem 6.1 on page 267, and the proof of the biquadratic reciprocity law in Theorem 6.5
on page 282, for instance.

✦ The Multinomial Theorem

Theorem A.25 Let R be a commutative ring with identity, and let m,n ∈ N with m > 1.
If a1, a2, . . . , am ∈ R, then

(a1 + a2 + · · ·+ am)n =
�

(j1,j2,...,jm)

n!aj11 aj22 · · · ajm
m

j1!j2! · · · jm!
,

where the sum ranges over all m-tuples (j1, j2, . . . , jm) of nonnegative integers ji with
j1 + j2 + · · ·+ jm = n.

Corollary A.11 — The Binomial Theorem

Let R be a commutative ring with identity, a, b ∈ R, and n ∈ N. Then

(a+ b)n =
n�

j=0

�
n

j

�
ajbn−j ,

where �
n

j

�
=

n!

(n− j)!j!
∈ Z

is the binomial coefficient.

Biography A.3 Gottfried Wilhelm von Leibniz (1646–1716), was born on
July 1, 1646 in Leipzig, Saxony (now Germany). By the age of twelve, he
had taught himself Latin and Greek in order to be able to read the books of
his father, who was a philosophy professor at Leipzig. Leibniz studied law at
Leipzig from 1661 to 1666 and ultimately received a doctorate in law from the
University of Altdorf in 1667. He pursued a career in law at the courts of Mainz
from 1667 to 1672. Then he went to Paris from 1672 to 1676, during which time
he studied mathematics and physics under Christian Huygens (1629–1695). In
1676, he left for Hannover, Hanover (now Germany), where he remained for
the balance of his life. Leibniz began looking for a uniform and useful notation
for the calculus in 1673. In 1684, he published the details of the differential
calculus, the year before Newton published his famed Principia. The bitter
dispute between Newton and Leibniz concerning priority over the discovery
of the calculus is detailed in [50, pp. 234–235]. In 1700, Leibniz founded
the Berlin Academy and was its first president. Then he became increasingly
reclusive until his death in Hannover on November 14, 1716.

The following will be of use in the text—see the proof of Theorem 5.8 on page 201, for
instance.
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✦ The Lagrange Interpolation Formula

Theorem A.26 Let F be a field, and let aj for j = 0, 1, 2, . . . , n be distinct elements of
F . If cj for j = 0, 1, 2, . . . , n are any elements of F , then

f(x) =
n�

j=0

(x− a0) · · · (x− aj−1)(x− aj+1) · · · (x− an)

(aj − a0) · · · (aj − aj−1)(aj − aj+1) · · · (aj − an)
cj

is the unique polynomial in F [x] such that f(aj) = cj for all j = 0, 1, . . . , n.

For ease of reference and convenience, the reader is reminded of the following definitions.

✦ Some Elementary Number Theory

We remind the reader of the Definition of Euer’s totient for convenience.

Definition A.22 — Euler’s Totient

For any n ∈ N the Euler totient, also known as Euler’s φ-function, φ(n) is defined to be the
number of m ∈ N such that m < n and gcd(m,n) = 1.

Definition A.23 — The Legendre Symbol

If c ∈ Z and p > 2 is prime such that p � c, then the Legendre symbol is given by:

�
c

p

�
=

�
1 if c is a quadratic residue modulo p,
−1 otherwise.

Note that the above implies

�
c

p

�
≡ c(p−1)/2 (mod p). (A.9)

Also, we have for the c = 2 case that

�
2

p

�
= (−1)(p

2−1)/8. (A.10)

As well, �
3

p

�
=

�
1 if p ≡ ±1 (mod 12),
−1 if p ≡ ±5 (mod 12).

(A.11)

Definition A.24 — The Jacobi Symbol

Let n ∈ N, n > 1 be odd, and c ∈ Z with gcd(c, n) = 1. Suppose that n =
�

k

j=1 pj where
the pj are (not necessarily distinct) primes. Then the Jacobi symbol is

� c

n

�
=

k�

j=1

�
c

pj

�
,

where the right-hand symbols are Legendre symbols.
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Definition A.25 — The Kronecker Symbol

Suppose that n ∈ N and∆ F is the discriminant of a quadratic number field—see Defin-
tion 1.33 on page 46. The Kronecker symbol

�
∆F

n

�
is given by

�
∆F

n

�
= 0

if gcd(∆F , n) > 1, and

�
∆F

2

�
=

�
1 if ∆F ≡ 1 (mod 8),
−1 if ∆F ≡ 5 (mod 8).

�
∆F

p

�
is the Legendre symbol for any prime p > 2.

�
∆F

n

�
is the Jacobi symbol if n is odd and gcd(n,∆F ) = 1.

If n = 2am where m is odd, then

�
∆F

n

�
=

�
∆F

2

�a �∆F

m

�
,

where
�
∆F

m

�
is the Jacobi symbol.

Also, of value in the text is the following result on representation of natural numbers—see
[53, Corollary 6.1, p. 245], for instance.

Theorem A.27 A natural number n can be represented as the sum of two integer squares
if and only if every prime factor of the form p ≡ −1(mod 4) appears to an even power in
the canonical prime factorization of n.

We conclude this appendix with a statement of the following celebrated result. Gauss first
studied the number of primes less than x, denoted by π(x). He observed that as x increases
π(x) behaves akin to x/ log

e
(x). Therefore, he conjectured in 1793, at the age of sixteen,

that the following holds.

Theorem A.28 — The Prime Number Theorem

lim
x→∞

π(x)

x/ log
e
(x)

= 1,

denoted by
π(x) ∼ x/ log

e
(x).A.9

A.9In general, if f and g are functions of a real variable x, then f(x) ∼ g(x) means limx→∞ f(x)/g(x) = 1.
Such functions are said to be asymptotic.
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Although Riemann had given an outline of a proof for Theorem A.28, the necessary tools had
not yet been developed. This outline was one of the major motivations for the development
of complex analysis from 1851 until the first proofs were given in 1896 independently by
Hadamard, and Poussin.

There are better approximations to π(x) such as the logarithmic integral

li(x) =

�
x

2
dt/ log

e
(t),

which Gauss also conjectured, after postulating the validity of Theorem A.28.

Biography A.4 Charles Jean Gustave Nicholas De La Vallée Poussin (1866–
1962) was born in Louvain, Belgium on August 14, 1866. In 1891, he became
an assistant at the University of Louvain, where he worked with Louis Claude
Gilbert, one of his former teachers. Gilbert died at the age of twenty-six, and
Poussin was elected to his chair in 1893. He held that chair for the next fifty
years. He is perhaps best known for his proof of the Prime Number Theorem
in 1896, and his important, fundamental textbook Cours d’analyse, which saw
several editions. However, the text contained no complex function theory.
Poussin did turn to the theory of complex variables after 1925. He wrote Le
potential logarithmique, which was published after the war in 1949. He died on
March 2, 1962 in Louvain.

Biography A.5 Jacques Salomon Hadamard (1865–1963) was born in Ver-
sailles, France on December 8, 1865. He studied at the École Normale
Supérieure, where Emile Picard was one of his teachers. He obtained his doc-
torate in 1892 on the topic of functions defined by Taylor series. Hadamard was
elected to a chair at Paris where he discovered his proof of the prime number
theorem. This proof was only part of his work in complex analysis. He is cred-
ited with approximately three-hundred publications including contributions to
the theory of integral functions and singularities of functions represented by
Taylor series, as well as a generalization of Green’s functions. Hadamard was
also deeply involved with politics. A relation of his, Alfred Dreyfus, who was
a French army officer, was tried for treason. This began a controversy that
lasted over a decade, and became known as the Dreyfus Affair, which scarred
the history of the French Third Republic. Hadamard actively participated in
clearing Dreyfus’s name. This occurred on July 22, 1906, when Dreyfus was
exonorated and decorated with the Legion of Honour—see [52, p. 77] for an
overview of the Dreyfus scandal and the surrounding issues. Hadamard lost
two of his sons in World War I after which his politics moved to the left, partly
in response to the rise of Nazi power. After France fell in 1940, Hadamard
left for the United States, but returned to Paris in 1944. After World War II,
he became an active peace campaigner. He died just before his ninety-eighth
birthday on October 17, 1963 in Paris.
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Appendix B

Sequences and Series

Simplicity is the ultimate sophistication.
Leonardo da Vinci (1452–1519)

Florentine painter, sculptor, architect, engineer, inventor

We look at the important fundamental notions behind sequences and series as they will be
needed in the main text. The proofs for most of what follows may be found in any standard
first- or second- year calculus text.

Definition B.1 — Sequences

A sequence is a function whose domain is N, with images denoted by an, called the nth

term of the sequence. The entire sequence is denoted by {an}∞n=1, or simply {an}, called an
infinite sequence or simply a sequence. If {an} is a sequence, and L ∈ R such that

lim
n→∞

an = L,

then the sequence is said to converge, whereas sequences that have no such limit are said
to diverge. If the terms of the sequence are nondecreasing, an ≤ an+1 for all n ∈ N, or
nonincreasing, an ≥ an+1 for all n ∈ N, then {an} is said to be monotonic. A sequence
{an} is called bounded above if there exists an M ∈ R such that an ≤ M for all n ∈ N. The
value M is called an upper bound for the sequence. A sequence {an} is called bounded below
if there is an B ∈ R such that B ≤ an for all n ∈ N, and B is called a lower bound for the
sequence. A sequence {an} is called bounded if it is bounded above and bounded below.

Some fundamental facts concerning sequences are contained in the following.

Theorem B.1 — Properties of Sequences

Let {an} and {bn} be sequences. Then

(a) If {an} is bounded and monotonic, then it converges.

(b) If limn→∞ an = limn→∞ bn = L ∈ R, and {cn} is a sequence such that there exists an
N ∈ N with an ≤ cn ≤ bn for all n > N , then limn→∞ cn = L.

(c) If limn→∞ |an| = 0, then limn→∞ an = 0.

Definition B.2 — Infinite SeriesB.1

If {aj} is an infinite sequence, then
∞�

j=1

aj

B.1One may trace infinite series back to Archimedes (287–212 B.C.). He established a result on the
quadrature of the parabola, thereby essentially proving that the series

�∞
j=1 4

−j converges.
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is called an infinite series. The sum

Sn =
n�

j=1

aj

is called the nth partial sum of the series. The series is said to converge if the sequence
{Sn} converges, and it is said to diverge if the sequence diverges. If the series converges,
then limn→∞ Sn = S ∈ R is called the sum of the series, denoted by

S =
∞�

j=1

aj .

An infinite series of the form

∞�

j=0

arn (a, r ∈ R, a, r �= 0)

is called a geometric series with ratio r.

Theorem B.2 — Properties of Infinite Series

Let
�∞

j=1 aj and
�∞

j=1 bj be infinite series. Then each of the following hold.

(a) If
�∞

j=1 aj converges, then the sequence {aj}∞j=1 converges to 0.

(b) If c ∈ R is constant, then
�∞

j=1 caj = c
�∞

j=1 aj .

(c) If
�∞

j=1 aj = S1 ∈ R, and
�∞

j=1 bj = S2 ∈ R, then
�∞

j=1(aj + bj) = S1 + S2.

Remark B.1 If an infinite series is convergent, then one may remove or insert any finite
number of terms without affecting its convergence. Also, one may group the terms of the
series in brackets, without altering the order of the terms, and the resulting series converges
to the same sum. However, the converse of the last statement is false. In other words,
one cannot remove brackets and have a series that necessarily converges. For instance, the
infinite series (1− 1) + (1− 1) + · · · is convergent, but the series obtained by removing the
brackets is not. Hence, brackets may be inserted without affecting convergence, but may
not be removed—see Remark B.2 on page 349.

We now look at some well-known tests for convergence.

Theorem B.3 — Integral Test for Convergence

If f is a positive, continuous, decreasing function of a real variable x ≥ 1 and aj = f(j),
then

∞�

j=1

aj and

� ∞

1
f(x)dx

either both converge or both diverge.
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Theorem B.4 — Convergence of Geometric Series

The geometric series
∞�

j=0

arj

diverges if |r| ≥ 1. If 0 < |r| < 1, the series converges to the sum

∞�

j=0

arj =
a

1− r
.

Also, for any r �= 1, the nth partial sum of the geometric series is given by

Sn =
n�

j=0

arj =
a(1− rn+1)

1− r
.

Theorem B.5 — Direct Comparison Test

Suppose that
�∞

j=1 aj and
�∞

j=1 bj are infinite series such that 0 ≤ aj ≤ bj for all j ∈ N.
Then

∞�

j=1

aj converges if
∞�

j=1

bj converges.

Note that the contrapositive is:

∞�

j=1

bj diverges if
∞�

j=1

aj diverges.

Definition B.3 — Harmonic Series and p-Series

A series of the form
∞�

j=1

1

jp
=

1

1p
+

1

2p
+ · · ·+ 1

jp
+ · · ·

is called a p-series, where p ∈ R+ is constant. If p = 1, then

∞�

j=1

1

j
= 1 +

1

2
+

1

3
+ · · ·+ 1

j
+ · · ·

is called a harmonic series.

Theorem B.6 — Convergence of p-Series

The series
�∞

j=1
1
jp

converges for p > 1 and diverges for 0 < p ≤ 1.

Theorem B.7 — Limit Comparison Test

Let aj > 0, bj > 0 and

lim
n→∞

�
aj
bj

�
= L ∈ R+.

Then
�∞

j=1 aj and
�∞

j=1 bj both converge, or they both diverge.
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Definition B.4 — Alternating Series

An infinite series of the form

∞�

j=1

(−1)jaj or
∞�

j=1

(−1)j+1aj ,

with aj > 0, is called an alternating series.

Biography B.1 The fact that the harmonic series diverges was first discov-
ered by Nicolae Oresme in the fourteenth century. His birth year is unknown
with any degree of certainty by historians, but most set it at 1323. There is also
some disagreement as to where he was born, but most data supports that it was
somewhere near Caen, France, if not in Caen itself. He was a Parisian scholar,
who studied theology, and became bursar at the University of Paris. Later he
became canon, then dean of Rouen. In 1370, he was appointed chaplain to King
Charles V, advising the King on spiritual as well as financial matters. Oresme
was also the among the first, even before Descarte, to use a coordinate system
for graphing, incorporating such ideas as velocity-time graphs. He suggested a
three-dimensional generalization of the concept in his work Tractatus de Figu-
ratione Potentarium et Mensurarum. The work contained implicit suggestions
of a four-dimensional geometry, but analytic geometry was not yet developed
to take him further. In his Algorismus Proportionum, Oresme developed the
idea of fractional powers. He suggested that irrational exponents such as, in
modern notation, x

√
2 are possible. This was undoubtedly the first appearance

of the notion of a higher transcendental function. However, he did not have
enough development of either notation or terminology to take the notion very
far. Oresme’s ingenious idea for proving the divergence of the harmonic series
was to group successive terms in the series placing the first term in the first
group, the next two terms in the second group, the next four in the third group,
continuing so that the nth group has 2n−1 terms. He then deduced that since
there are infinitely many groups with each group having a sum of at least 1/2,
then adding together enough terms, one can achieve a number larger than any
given number. Oresme ultimately became the Bishop of Lisieux, France and
died there on July 11, 1382.

Theorem B.8 — Alternating Series Test

The alternating series

∞�

j=1

(−1)jaj and
∞�

j=1

(−1)j+1aj , with aj > 0 for all j ∈ N

converge if both limj→∞ aj = 0 and a1 > a2 > a3 > · · · .

Theorem B.9 — Absolute and Conditional Convergence

If the series
∞�

j=1

|aj |

       



Sequences and Series 349

converges, then
�∞

j=1 aj converges and we call
�∞

j=1 aj is absolutely convergent. On the

other hand, if
�∞

j=1 aj converges, but
�∞

j=1 |aj | diverges, we say that
�∞

j=1 aj is condition-
ally convergent.

Remark B.2 If an infinite series is absolutely convergent, then its terms can be rearranged
in any order without changing the sum of the series. On the other hand, if a series is
conditionally convergent, then the series can be rearranged to give a different sum.

Theorem B.10 — Ratio Test

If
�∞

j=1 aj is an infinite series, with aj �= 0 for all j ∈ N, then each of the following holds.

(a)
�∞

j=1 aj is absolutely convergent if

lim
j→∞

����
aj+1

aj

���� < 1.

(b)
�∞

j=1 aj diverges if

lim
j→∞

����
aj+1

aj

���� > 1 or lim
j→∞

����
aj+1

aj

���� = ∞.

Theorem B.11 — Root Test

Let
�∞

j=1 aj be an infinite series. Then each of the following holds.

(a) If limj→∞
n

�
|aj | < 1, then

�∞
j=1 aj is absolutely convergent.

(b) If limj→∞
n

�
|aj | > 1 or limj→∞

n

�
|aj | = ∞, then

�∞
j=1 aj diverges.

The simplest and most important of the infinite series are the following, with which we will
be most concerned in the main text.

✦ Power Series

Definition B.5 — Power Series

If x is a real variable, then
∞�

j=0

aj(x− c)j

is called a power series centered at c ∈ R.

Theorem B.12 — Convergence of Power Series

If
�∞

j=0 aj(x− c)j is a power series, then exactly one of the following holds.

(a) The series is absolutely convergent for all x ∈ R.

(b) The series converges only for x = c.

(c) There exists an R ∈ R such that the series is absolutely convergent for |x − c| < R,
and diverges for |x− c| > R.
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The value R is called the radius of convergence of the series. Thus, in part (a), R = ∞
and in part (b), R = 0. In part (c), the real interval (c−R, c+R) is called the interval of
convergence of the series.

Theorem B.13 — Abel’s Theorem

If the radius of convergence of the power series
�∞

j=0 ajx
j is R and

∞�

j=0

ajR
j

is convergent, then

lim
x→R




∞�

j=0

ajx
j



 =
∞�

j=0

ajR
j .

Corollary B.12 If R = 1 and
�∞

j=0 aj is convergent, then

lim
x→1




∞�

j=0

ajx
j



 =
∞�

j=0

aj .

Application B.1 — Hyperbolic Tangent

Consider the infinite series 1− t2 + t4 − t6 + · · · the sum of which for |t| < 1 is (1 + t2)−1.
Integrating termwise for −1 < x < 1, we get

arctan(x) =

�
x

0

dt

1 + t2
= x− x3

3
+

x5

5
− · · ·

which implies that

lim
x→1

arctan(x) = tan−1(1) =
π

4
= 1− 1

3
+

1

5
− · · ·

which is the formula for π discovered by Gregory—see Biography B.2 on the facing page.

Of particular importance is the following.

Theorem B.14 — Taylor and Maclaurin Polynomials and Series

If a function f of a real variable x has derivatives f (j) for j = 1, 2, . . . n at c, then

Pn(x) =
n�

j=0

f (j)(c)

j!
(x− c)j

is called the nth Taylor polynomial for f at c. If c = 0, then it is called the nth Maclaurin
polynomial for f .

If f has derivatives of all orders at c, then the series

∞�

j=0

f (j)(c)

j!
(x− c)j

is called the Taylor series for f at c. If c = 0, then the series is called the Maclaurin series
for f .
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Biography B.2 Colin Maclaurin (1698–1746) is known today almost exclu-
sively for the series that bears his name, namely f(x) =

�∞
j=0 f

(j)(0)xj/j!,

where f (j) is the jth derivative of the function f—see Theorem B.14. This
series appeared in his Treatise of Fluxions in 1742. However, it is a special
case of the more general Taylor series published by the secretary of the Royal
Society, Brook Taylor (1685–1731) in his Methodus Incrementorum of 1715.
However, this series was known long before by the Scotsman James Gregory
(1638–1675), although Taylor was not aware of this. Furthermore, the se-
ries appeared in Methodus differentialis by Stirling more than a decade before
Maclaurin’s publication—see Biography A.2 on page 340. There is also evi-
dence that this series was known to Indian mathematicians such as Kelallur
Nilakantha Somayaji (1444–1544). It is somewhat ironic that Maclaurin is
known for the above series, when he had deep results of his own in geometry.
Maclaurin is considered by many historians to be the most outstanding of the
generation of British mathematicians after Newton. He was born in Argyll-
shire, Scotland, and was educated at Glasgow. He was Professor at Marischal
College, Aberdeen from 1717 to 1725, then at the University of Edinburgh from
1725 until 1745. In 1740, he shared a prize from the Académie des Sciences,
with Euler and Daniel Bernoulli, for a study of tides—see Biography 4.7 on
page 161. The irony of attribution is compounded by the fact that a discov-
ery made by Maclaurin in 1729 is credited to Gabriel Cramer (1704–1752)—see
Theorem A.21 on page 337. Maclaurin was also actively involved in the defense
of Edinburgh during the Jacobite rebellion of 1745, and fled the city for York
when it fell to “Bonnie Prince Charlie.” The war in the trenches had taken its
toll on him however. He died the next year on June 14, 1746 in Edinburgh.
Maclaurin’s Treatise of Algebra was published posthumously in 1748.

Definition B.6 — Remainder of a Taylor Polynomial

If f is a function of a real variable x and Pn(x) is the nth Taylor polynomial for f at c, then

Rn(x) = f(x)− Pn(x)

is called the nth remainder of f(x).

Lagrange’s form of the remainder of a Taylor polynomial is given in the following—see
Biography 3.3 on page 93.

Theorem B.15 — Taylor’s Theorem

If f is a function such that f (j) exists for j = 1, 2, . . . , n + 1 in an interval I containing c,
then for all x ∈ I, there exists a z between x and c such that

f(x) =
n�

j=0

f (j)(c)

j!
(x− c)j +Rn(x),

where

Rn(x) =
f (n+1)(z)

(n+ 1)!
(x− c)n+1.
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Theorem B.16 — Convergence of a Taylor Series
Let f be a function having derivatives of all orders in an open interval I centered at c. Then

f(x) =
∞�

j=0

f (j)(c)

j!
(x− c)j

if and only if there exists a z between x and c such that

lim
n→∞

Rn(x) = lim
n→∞

f (n+1)(z)

(n+ 1)!
(x− c)n+1 = 0,

for all x ∈ I.

The following formulas will be very useful throughout the main text.

✦ — Power Series for some Elementary Functions

In what follows, the interval for x given for each series is the interval of convergence.

B.1. 1
x
=

�∞
j=0(−1)j(x− 1)j = 1− (x− 1) + (x− 1)2 − · · · with x ∈ (0, 2).

B.2. log(1 + x) =
�∞

j=1
(−1)j−1(x)j

j
= x− x

2

2 + x
3

3 − · · · with x ∈ (−1, 1].

B.3. ex =
�∞

j=0
x
j

j! = 1 + x+ x
2

2! +
x
3

3! + · · · with x ∈ R.

B.4. sin(x) =
�∞

j=0
(−1)jx2j+1

(2j+1)! = x− x
3

3! +
x
5

5! + · · · with x ∈ R.

B.5. cos(x) =
�∞

j=0
(−1)jx2j

(2j)! = 1− x
2

2! +
x
4

4! − · · · with x ∈ R.

B.6. esin(x) = 1 + x+ x
2

2! −
3x4

4! − 8x5

5! − 3x6

6! + 56x7

7! + · · · with x ∈ R.

The following notion brings series into the realm of the complex numbers C and allows us
to introduce important fundamental results to be used in the main text. For instance, we
presented the connection with Bernoulli numbers in Theorem 4.5 on page 156.

Definition B.7 — Dirichlet Series—The Riemann Zeta Function

Dirichlet series is an infinite series of the form

∞�

j=1

aje
−sλj ,

where aj , s ∈ C, λj ∈ R, and the sequence {λj} tends monotonically to infinity. In partic-
ular, if λj = log(j), and aj = 1 for all j ∈ N, then

ζ(s) =
∞�

j=1

j−s

is called the Riemann zeta function—see page 155.
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Biography B.3 Georg Friedrich Bernhard Riemann (1826–1866) was born
on September 17, 1826 in Breselenz, Hanover (now Germany). He was the
son of a Lutheran pastor, and his family was relatively poor. Moreover, he was
physically frail, but what he lacked in physical strength, he more than made up
in intellectual acuity. Furthermore, his lack of financial wealth did not prevent
him from getting a strong education. In 1846, he studied under Jacobi, Dirich-
let, and Eisenstein at Berlin, went to Göttingen in 1849 to study under Gauss,
and achieved his Ph.D. in 1851. In 1854, he became Privatdozent at the Univer-
sity of Göttingen. His Habilitationschrift or inaugural dissertation was given on
his thesis entitled Über die Hypothesen welche der Geometrie zu Grunde liegen
or On the hypotheses which lie at the foundation of geometry. This presented
such a deep general perception of geometry that its results ultimately made way
for Einstein’s theory of general relativity, since Riemann proposed the general
study of curved metric spaces, rather than geometry on a sphere. His ultimate
contributions to theoretical physics were deep, and long-lasting. In 1859, after
the death of Dirichlet, Riemann was appointed to fill his chair at Göttingen.
Riemann’s name is attached to a host of mathematical objects and theorems
including the Riemann integral, the Riemann surface, Riemannian geometry,
the Riemann mapping theorem, Riemann manifolds, and the still unresolved
Riemann hypothesis—see Hypothesis B.1 on the following page—to mention a
few. Riemann married at the age of thirty-six in 1862. The following month he
became ill with pleurisy, which ultimately turned into pulmonary tuberculosis.
He travelled to Italy several times to enjoy the milder climate and recover. On
his final trip, he went to a villa at Selasca, Lake Maggiore in Italy. He died
with his wife by his side on July 20, 1866.

The Riemann zeta function converges for �(s) > 1. If �(s) > 1, then the following is called
Euler’s identity

ζ(s) =
�

p

(1− p−s)−1,

where the product runs over all primes p. Although we shall not explicitly need the following
facts in the text, we state them here for the reader with knowledge of complex analysis. The
function ζ(s) is a holomorphic function in the half plane �(s) > 1, and can be continued
analytically to a meromorphic function on the whole plane. Its unique singularity is the
point s = 1 at which it has a simple pole with residue 1. Riemann proved the above in
1859.

There is also a classical connection of the zeta function with the following concept.

Definition B.8 — Gamma Functions

The gamma function is given by

Γ(s) = s−1e−γs

∞�

j=1

�
1 +

s

j

�−1

es/j ,

where

γ = lim
n→∞

�
1 +

1

2
+ · · ·+ 1

n
− log(n)

�

is called Euler’s constant. For �(s) > 0, we may write

Γ(s) =

� ∞

0
xs−1e−xdx.
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The following application will be useful in text. The Gamma function is used to verify the
following—see [54, Exercise 10.13, p. 345], for instance.

Application B.2 —Infinite Product Expansion for Sine

sin(x) = x
∞�

n=1

�
1− x2

n2π2

�
,

The following relationship between the zeta function and the gamma function is called
the functional equation of the zeta function, proved by Riemann in 1859.

ζ(s) = 2sπs−1 sin
�πs

2

�
Γ(1− s)ζ(1− s).

As a result of the functional equation, it is known that all the nontrivial zeros of ζ(s)
(namely those for which s �= −2,−4,−6 . . .) must lie in the critical strip 0 < �(s) < 1, and
that they are located symmetrically about the critical line �(s) = 1/2. However, heretofore
nobody has been able to prove Riemann’s contention:

Hypothesis B.1 — The Riemann Hypothesis

ζ(s) �= 0 for any s with �(s) > 1/2.

Proofs of the above results may be found in [54, Theorem 5.15, p. 225] and the discussion
surrounding it therein.

Some of the history behind the zeta function is worthy of note. In 1731, Euler had done
calculations that allowed him to conclude that ζ(2) ∼ 1.644934, and later got stronger
approximations. By 1734, Euler had proved that

ζ(2) = π2/6.

He had communicated with Daniel Bernoulli on his early successes in 1734. Daniel found
Euler’s discoveries to be “remarkable.” In 1737, after the successful calculation of ζ(2) under
his belt, Euler published Variae Observationes circa series infinitas, which contained the
now-famous Euler product :

ζ(s) =
2s · 3s · 5s · 7s · 11s · · ·

(2s − 1)(3s − 1)(5s − 1)(7s − 1)(11s − 1) · · · .

Also contained in that paper, he established (in modern notation) that as x → ∞, then

�

p≤x

1

p
= log log(x) + C +O

�
1

log(x)

�
,

where C is a constant.B.2 By 1740 Euler had determined ζ(2n) for any n ∈ N—see The-
orem 4.5 on page 156. However, for odd integers n, ζ(n) remains a mystery. In attempts
to solve the problem, Euler was led to the following result, which he published in a paper
called Exercitationes Analyticae in 1772,

1 +
1

33
+

1

53
+ · · · = π2

4
log(2) + 2

�
π/2

0
x log(sin(x))dx.

What is all the more amazing is that Euler was blind by this time and all the calculations
were done mentally. For further details on the life of Leonard Euler—see Biography 4.4 on
page 148.

B.2We remind the reader that the big O notation is defined by f(x) = O(g(x)), for positive real-valued
functions f and g, provided there exists an r ∈ R such that f(x) < rg(x).
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Appendix C

The Greek Alphabet

Timeo Danaos et dona ferentes: I fear the Greeks though bearing gifts.
Virgil (Publius Vergilius Maro) (70–19 B.C.)

Roman poet

Capital Lower-case English transliteration Pronunciation
A α a alpha
B β b beta
Γ γ g gamma
∆ δ d delta
E � e epsilon
Z ζ z zeta
H η ē eta
Θ θ th theta
I ι i iota
K κ k kappa
Λ λ l lambda
M µ m mu as in mew
N ν n nu as in new
Ξ ξ x xi as in ksee
O o o omicron
Π π p pi as in pie
P ρ r rho as in row
Σ σ s sigma
T τ t tau as in towel
Υ υ y upsilon
Φ φ ph phi as in fee
X χ ch chi as in cheye
Ψ ψ ps psi as in psee

ΩC.1 ω õ omega

The ē denotes a long e as in see, as opposed to the short e as in bed. The symbol õ is
used here to mean an o as in boring, somewhat longer than the o in omicron, but not as
long as the long o in too. The pronunciations given here are those used by English-speaking
people. The Greeks have (sometimes) different pronunciations for the letters. For instance,
the Greeks pronunciation of α is the same as given above, but the Greek pronunciation of
β is vita. Thus, the difference between the conventional ones, given in the column above,
may vary from the real ones used by the Greeks themselves.

C.1“I am the Alpha and the Omega, the first and the last, the beginning and the end.” (Revelation 22:VII)
of the Holy Bible.
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Appendix D

Latin Phrases

amicus certus in re incerta cernitur: a true friend is certain when certainty is uncer-
tain—i.e., a friend in need is a friend indeed.

Latin proverb spoken by Ennius (239–169 B.C.)
Roman writer

Latin Phrase English equivalent
abeunt studia in mores practices, zealously pursued, pass into habits
ab uno disce omnes from one, learn to know all

ad arbitrium at will (arbitrarily)
ad extremum to the extreme (at last)

ad hoc to this (for a particular purpose)
ad infinitum without limit (to infinity)

ad libitum (ad lib) improvise
aere perennius more lasting than bronze

a fortiori from the stronger (argument)
meaning: with greater reason —
used in drawing a conclusion that

is deemed to be even more certain than another
alea jacta est the die is cast

a maximis ad minima from the greatest to the least
animis opibusque parati prepared in mind and resources

arrectis auribus with pricked-up ears (attentively)
aurea mediocritas the golden mean

bonis avibus under good auspices
cadit quaestio the question drops,

meaning the argument fails
cetera desunt the rest is missing

cogito ergo sum I think, therefore I am (exist)
divide et impera divide and rule
docendo discimus we learn by teaching

ecce signum behold the sign (look at the proof)
e contrario on the contrary

exempli gratia (e.g.) for example
e pluribus unum one out of many
et sic de similibus and so of like things

excelsior still higher
exceptis excipiendis with the necessary exceptions
ex necessitate rei from the necessity of the case
ex nihilo nihil fit from nothing comes nothing
ex vi termini from the force of the term
facile princeps easily first
finem respice consider the end
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Latin Phrase English equivalent
finis coronat opus the end crowns the work

hoc opus this is the hard work
id est (i.e.) that is
in aeternum forever
in dubio in doubt (undetermined)

in vino veritas there is truth in wine
in vivo in a living thing,

or in the body of a work
januis clausis behind closed doors
lapsus calami slip of the pen
lapsus linguae slip of the tongue

littera scripta manet the written letter abides
locus in quo place in which

magna est veritas et praevalebit truth is mighty and will prevail
mirabile visu wonderful to behold

multum in parvo much in little
mutatis mutandis with necessary changes made
ne quid nimis nothing in excess
non sequitur a conclusion that does not

logically follow from the premises
nosce te ipsum know thyself

nugae trifles
obscurum per obscurius (explaining) the obscure

by the more obscure
onus probandi burden of proof

si vis pacem para bellum if you wish peace, prepare for war
sic so, thusD.1

sine qua non an indispensable condition
status quo state in which (the existing state)
suo loco in its proper place

tempus fugit time flies
uno animo with one mind (unanimously)

vincit omnia veritas truth conquers all things

D.-1In the current vernacular, this is used to mean “You scratch my back and I’ll scratch yours.”
D.0This refers to a method of proof, which assumes the contrary of a hypothesis to be proved, and deduces
an absurd consequence.
D.1This is used to mean intentionally so written. Sic is used after a quote, calling attention to it, in order
to indicate that it really does reproduce the original, or in the current vernacular, “Yes, they really did say
that.”
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235 (1969), 175–184. (Cited on page 288.)
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Solutions to Odd-Numbered Exercises

Section 1.1

1.1 Since Z[(1 +
√
n)/2] ⊆ Q(

√
n), then if it is a ring, it is an integral domain. Thus, by

Remark A.2 on page 323 it suffices to show that it is closed under subtraction and
multiplication. Closure under subtraction is easy to see, since

�
a+ b

1 +
√
n

2

�
−
�
c+ d

1 +
√
n

2

�
=

�
a− c+ (b− d)

1 +
√
n

2

�
.

Also, since n ≡ 1(mod 4) and

�
a+ b

1 +
√
n

2

��
c+ d

1 +
√
n

2

�
=

�
ac+ bd

n− 1

4

�
+ (ad+ bc+ bd)

1 +
√
n

2
,

there is closure under multiplication. For Z[
√
n] there is no need to restrict to n ≡ 1

(mod 4) since we are dealing only with elements of the form a + b
√
n with a, b ∈ Z.

Hence, the above argument works in the same fashion to show it is an integral domain
as well.

1.3 If α ∈ UZ[ωn], there exist α,β ∈ Z[ωn] = D such that αβ = 1. So N(αβ) = N(1) = 1.
But since N(αβ) = N(α)N(β) by Exercise 1.2, then N(α) = ±1. Conversely, if
N(α) = ±1, then α = a + b

√
n where 2a, 2b ∈ Z, and hence a2 − b2n = ±1. Thus,

β = a− b
√
n ∈ D and αβ = ±1, so α ∈ UD.

1.5 If α = β1β2 for βj ∈ Z[
√
n], then βj = aj + bj

√
n with aj , bj ∈ Z, j = 1, 2. Since

β1β2 = a1a2 + b1b2n+ (a1b2 + b1a2)
√
n,

then
p =

��(a1a2 + b1b2n)
2 − (a1b2 + b1a2)

2n
�� =

��(a21 − b21n)(a
2
2 − b22n)

�� ,

so ��a2
j
− b2

j
n
�� = 1 for one of j = 1, 2.

In other words, one of βj for j = 1, 2 is a unit in Z[
√
n], by Exercise 1.3, so α is

irreducible in Z[
√
n].

The converse fails. For instance 2 = 2 + 0
√
10 = a + b

√
10 is irreducible in Z[

√
10],

but a2 − b2n = 4 in this case.

1.7 Let UD denote the set of units in an integral domain D. Then by ±1D ∈ UD. Also,
given α,β ∈ UD, there exist α1, β1 ∈ D such that

αα1 = 1D (S1)

and ββ1 = 1D, so αβ(α1β1) = 1D, namely αβ ∈ UD, proving that UD is closed
under multiplication. Furthermore, UD inherits the properties of associativity and
commutativity from the integral domain D. Moreover, if α ∈ UD, then by (S1),
α1 ∈ UD is a multiplicative inverse of α. Hence UD is a multiplicative abelian group.

       



366 Algebraic Number Theory

1.9 If α is irreducible and a nonunit β
�� α, there is a γ ∈ D such that α = βγ. However,

since α is irreducible, γ must be a unit, so α ∼ β. Conversely, if the only divisors
of α are associates and units, any factorization α = βγ must be trivial. Thus, α is
irreducible.

1.11 It is false. If α = 4 +
√
10 and β = 4 −

√
10, then N(α) = N(β) = 6. However, if

4+
√
10 = (a+ b

√
10)(4−

√
10), then 4 = 4a− 10b and 1 = 4b−a. However, plugging

a = 4b− 1 into 4 = 4a− 10b, we get that 6b = 8, a contradiction. Hence, α �∼ β.

1.13 Let α = 6 = 2 · 3 = (6+
√
30)(6−

√
30), where 2, 3, (6±

√
30) are irreducible, but not

associates of one another.

1.15 Since u = a+ bi is a unit if and only if N(u) = ±1 by Exercise 1.3, then a2 + b2 = 1.
Hence, (a, b) ∈ {(0,±1), (±1, 0)} implying that the units in the Gaussian integers are
given by

UZ[i] = {±1,±i}.

1.17 If γ and δ are gcds of α and β, then by (b) of the definition γ
�� δ and δ

�� γ, so by
Definition 1.5 on page 4, γ ∼ δ.

The ring D = 2Z has 2 ∈ D, but 2 has no divisors in D. Hence, 2, 4 ∈ D have no
greatest common divisor.

Section 1.2

1.19 Let α,β ∈ D be nonzero elements and set

S = {γ ∈ D : γ = σα+ δβ, for some σ,δ ∈ D}.

Since 1Dα+0 ∈ S and 0+1Dβ ∈ S, then S consists of more than just the zero element.
If f is the Euclidean function on D, we may choose an element γ0 = σ0α + δ0β ∈ S

with f(γ0) as a minimum. Now let γ = σα+ δβ ∈ S be arbitrary. By condition (b) of
Euclidean domains in Definition 1.9, there are q, r ∈ D such that

γ = qγ0 + r, with either r = 0, or f(r) < f(γ0).

Since

r = γ − qγ0 = σα+ δβ − q(σ0α+ δ0β) = (σ − qσ0)α+ (δ − qδ0)β ∈ S,

then if r �= 0, condition (b) of Euclidean domains tells us that

f(r) = f((σ − qσ0)α+ (δ − qδ0)β) < f(γ0),

a contradiction to the minimality of f(γ0). Thus, r = 0, and so γ = qγ0. In other
words, γ0|γ for all γ ∈ S. In particular γ0|α and γ0|β. Hence, γ0 is a common divisor
of α and β as required.

1.21 Since 1D
�� α for all nonzero α ∈ D, then by Exercise 1.20, φ(1D) ≤ φ(α).

1.23 It is false. First we show that 3 is prime inD = Z[i]. SinceD is a UFD by Corollary 1.1
on page 13, then being prime is tantamount to being irreducible by Theorem 1.2 on
page 7. So if 3 = (a+bi)(c+di), and c+di is not a unit, then since N(a+bi) = a2+b2

and N(3) = 9 (with the impossibility of 3 being a sum of two squares of nonzero
integers—see Theorem A.27 on page 343) one of c or d equals 3 and a+ bi is a unit,
namely 3 is prime in D. This provides the counterexample since 3 is prime but its
norm is 9.
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1.25 We assume that D is almost Euclidean and prove that every irreducible element in D
is prime. Suppose that

S =





�

βj∈D

βjαj ∈ D : αj ∈ D is irreducible but not prime




 .

In other words, S consists of all finite linear combinations of elements in D which are
irreducible but not prime. If S �= ∅, there is an element α ∈ S such that φ(α) has
least positive value by the Well-Ordering Principle — see page 340. By property (c)
of an almost Euclidean function, if β ∈ S which is irreducible but not prime, and α
does not divide β, there exist x, y ∈ D such that 0 < φ(αx + βy) < φ(α). However,
αx+ βy ∈ S by definition, contradicting the minimality of φ(α). Hence, α

�� β for all
irreducibles β ∈ S that are not prime. Hence, α ∼ β for all irreducibles β that are not
prime.

Since α is not prime then by definition there exist β1, β2 ∈ D such that α
�� β1β2 and

α does not divide βj for j = 1, 2. However, there exists a β3 such that β1β2 = β3α,
and by the definition of S, β1β2 ∈ S. Let δ be an irreducible such that δ

�� β1 or
δ
�� β2. Without loss of generality suppose δ

�� β1. Then if δ is not prime, from the
above δ ∼ α, so there is a unit δ1 with α = δδ1 and a δ2 ∈ D with β1 = δδ2. Hence,
β1 = δ−1

1 αδ2, forcing α
�� β1, a contradiction. We have shown that any irreducible,

that divides β1 or β2, must be prime. If δ
�� α, then since α is irreducible, α = δu for

a unit u ∈ D. But again, assuming δ
�� β1 we deduce that α

�� β1 as above. Hence,
δ
�� β3. Given that β1 and β2 must be factorizable into a product of irreducibles, using

the same argument as in the proof of Theorem 1.6 on page 13, we have shown that
all irreducibles that divide β1β2 must divide β3, which implies that α is a unit, a
contradiction. Hence S = ∅, which completes the task.

Section 1.3

1.27 Suppose that N(α) = a2 + b2 = p is prime. If α = βγ for β,γ ∈ Z[i], then
NF (β), NF (γ) ∈ Z, so they both divide p. Hence, one of them, say NF (β) = 1.
This means that β is a unit in Z[i]. Thus, any divisor of α is a unit or associate.
Therefore, α is irreducible, and hence a prime in Z[i] by Corollary 1.1 on page 13.

Since N(α) = N(a + bi) = N(a − bi) = (a + bi)(a − bi) = p, then p is not a prime
in Z[i] since it is divisible by both a + bi and a − bi, neither of which is a unit or an
associate of p. Indeed, both a + bi and a − bi are primes in Z[i] by Exercise 1.22 on
page 14. Also, p ≡ 1(mod 4) or p = 2 since a prime is a sum of two squares if and
only if p �≡ 3(mod 4) by Theorem A.27 on page 343.

1.29 Since 0 ∈ Rj for all j ∈ I, then 0 ∈ ∩j∈IRj , so ∩j∈IRj �= ∅. For any a, b ∈ ∩j∈IRj ,
a, b ∈ Rj for all j ∈ I, so a + b, ab ∈ Rj for all such j. Hence, a + b, ab ∈ ∩j∈IRj .
Thus, the latter is a ring in R. To see that ∪j∈IRj is a subring, we first note that
it is nonempty since 0 ∈ ∪j∈IRj , as 0 is in every Rj . If a, b ∈ ∪j∈IRj , then there
are k,� ∈ J such that a ∈ Rk, b ∈ R�. If k ≤ �, then Rk ⊆ R�, so a + b ∈ R�, and
we have additive closure since a + b ∈ ∪j∈IRj . Lastly, since each Rj is closed under
multiplication, so is ∪j∈IRj and we have the result.
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Section 1.4

1.31 It is valid. Here is a proof. Let N and M/N be Noetherian R-modules. If

M1 ⊆ M2 ⊆ · · · (S2)

is an ascending chain of R-submodules of M , for each j ∈ N let

Mj +N = {m+N : m ∈ Mj}.

Then Mj +N is an R-submodule of M/N and Mj +N ⊆ Mj+1 +N . Hence,

M1 +N ⊆ M2 +N ⊆ · · · (S3)

is an ascending chain of submodules of M/N . Since M/N is a Noetherian R-module,
then (S3) terminates so there exists an n ∈ N such that Mj + N ⊆ Mn + N for all
j ≥ n. Since Mj ∩N is clearly a submodule of N and Mj ∩N ⊆ Mj+1 ∩N , then

M1 ∩N ⊆ M2 ∩N ⊆ · · · (S4)

is an ascending chain of submodules of N . Since N is a Noetherian R-module, then
(S4) terminates. Hence, there exists an m ∈ N such that Mj ∩ N = Mm ∩ N for all
j ≥ m. If we set N = max{m,n}, then for any j ≥ N ,

Mj +N = Mj+1 +N and Mj ∩N = Mj+1 ∩N.

We want to show that (S2) terminates. Suppose it does not. Then there exists
an j0 ∈ N such that Mj0 is properly contained in Mj0+1 for some j0 ≥ N . In
this case we may select an element mj0+1 ∈ Mj0+1 with mj0+1 �∈ Mj0 . However,
mj0+1 ∈ Mj0+1 +N = Mj0 +N , so there exists an mj0 ∈ Mj0 and n ∈ N such that
mj0+1 = mj0 + n. By rewriting, mj0+1 −mj0 = n ∈ N . Moreover, Mj0 ⊆ Mj0+1 so
mj0+1−mj0 ∈ Mj0+1, which implies mj0+1−mj0 ∈ Mj0+1∩N ⊆ Mj0 , a contradiction.
We have shown that (S2) terminates, so M is Noetherian as an R-module.

1.33 Let
I1 ⊆ I2 ⊆ · · · (S5)

be an ascending chain of D2-ideals. Since D1 is a Noetherian domain and D2 is a
finitely generated D1 module, then by Exercise 1.32, D2 is a Noetherian D1-module.
Since Ij for any j ∈ N is a D1-submodule of D2 then (S5) must terminate, so D2 is
Noetherian.

1.35 If R does not satisfy the DCC, there exists an infinite nonterminating descending
sequence of ideals {Ij}, so there can exist no minimal element in this set. Conversely,
if R satisfies the DCC, then any nonempty collection S of ideals has an element I. If I
is not minimal, it contains an element I1. If I1 is not minimal, it contains an ideal I2,
and so on. Eventually, due to the DCC, the process terminates, so the set contains a
minimal element.
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Section 1.5

1.37 Since J+H is an ideal, then given α ∈ I,β ∈ J,γ ∈ H, we have α(β+γ) = αβ+αγ ∈
IJ + IH and α(β + γ) ∈ I(J +H).

1.39 Since an invertible fractional R-ideal I satisfies II−1 = R, there exist ai ∈ I−1 and
bi ∈ I such that 1R =

�
n

i=1 aibi. Thus, if α ∈ I, then α =
�

n

i=1(αai)bi. Also, αai ∈ I
for i = 1, 2, . . . , n and since ai ∈ I−1 = {β ∈ F : βI ⊆ R}, then I is finitely generated
as an R-module by the bi, for i = 1, 2, . . . , n.

1.41 Suppose that I = Rb1 + Rb2 + · · · + Rbn where bj = cj/aj ∈ F , for aj , cj ∈ R, with
aj �= 0 for j = 1, 2, . . . , n. Let α =

�
n

j=1 aj . Then α �= 0 and

αI = Rc1

n�

j=2

aj + · · ·+Rcn

n−1�

j=1

aj ⊆ R,

which makes I a fractional R-ideal.

1.43 That (i) implies (ii) is Theorem 1.17 on page 28 and Theorem 1.16 on page 27. That
(ii) implies (iii) is clear. That (iii) implies (iv) follows from Remark 1.13 on page 26
and Theorem 1.16 on page 27. That (iv) is equivalent to (v) is Exercise 1.42. We now
show that (iv) implies (i) to complete the logical circle. By Exercise 1.39, part (A)
of Definition 1.23 on page 25 is satisfied. If α ∈ F , the quotient field of D, then by
Exercise 1.40, R[α] is a finitely generated R-module. Thus, by Exercise 1.41, R[α] is
a fractional R ideal. Accordingly, since R[α]R[α] = R[α], then

R[α] = RR[α] = (R[α])−1(R[α])R[α] = (R[α])−1(R[α][α]) = (R[α])−1R[α] = R,

so α ∈ R, which shows that R is integrally closed in F . This is part (C) of Definition
1.23. It remains to show that every nonzero prime D-ideal is maximal. Since we
have part (A) of Definition 1.23, then by Remark 1.12 on page 26, a prime ideal P is
contained in a maximal D-ideal M. Thus, by (iv) M is invertible. Hence, M−1

P = I
is a fractional R-ideal and

M−1
P ⊆ M−1M = R,

so M−1
P is an integral R-ideal. Moreover, since

M(M−1
P) = RP = P,

and P is prime, then by Theorem 1.7 on page 16, either M ⊆ P or M−1
P ⊆ P. If

M−1
P ⊆ P, then

R ⊆ M−1 = M−1R = M−1
PP

−1 ⊆ PP
−1 ⊆ R,

which shows that M−1 = R. However, R = MM−1 = MR = M , contradicting that
M is maximal. Hence, M ⊆ P, which means that M = P, which is maximal.

1.45 If I = (0) or I = R = (1), then one element suffices, so assume that (0) ⊂ I ⊂ R and
let α ∈ I such that α �= 0, 1. Then (α) ⊆ I and I

�� (α) by Corollary 1.7 on page 27.
Thus, there exists an R-ideal J such that (α) = IJ .

Let S be the set of distinct prime R-ideals Pj for j = 1, 2, . . . , n such that either
ordP(I) �= 0 or ordP(IJ) �= 0, or possibly both. Since I �= R, then S �= ∅.
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By part (c) of Exercise 1.44, there exists a β ∈ F , the quotient field of R such that
ordP((β)) = ordP(I) for all prime R-ideals P dividing I. Therefore, for all prime
R-ideals P

�� I,

ordP(I) = min(ordP(I), ordP((α))) = min(ordP((β)), ordP((α))) = ordP((α) + (β)),

by part (b) of Exercise 1.44. Hence,

I = (α) + (β) = (α,β ),

as required.

1.47 Let D be an almost Euclidean domain and let φ be an almost Euclidean function of
D. Let I be any nonzero ideal of D and let

S = {φ(α) : α ∈ I}

and let φ(m) for m ∈ I be a minimal positive value in S. By part (c) of the definition
of an almost Euclidean function in Exercise 1.25, given γ ∈ I and any x, y ∈ D we
cannot have 0 < φ(γx + my) < φ(m), by the minimality of φ(m), so we must have
γ = mq for some q ∈ D. Hence, I = (m) since γ was arbitrary. This shows that D is
a PID. By Theorem 1.12 on page 21, D is Noetherian.

1.49 No, since property 3 of Definition 1.24 on page 26 fails to hold given that there exists
no integer r such that rI ⊆ Z.

Section 1.6

1.51 Taking the hint, it suffices to prove the result for n = 2, since we may extrapolate by
induction from this case.

Consider mα,Q(x) =
�

dα

j=1(x − αj), where the αj are all of the conjugates of α1 = α

over Q, and let mβ,Q(x) =
�dβ

j=1(x − βj), where the βj are all of the conjugates
of β1 = β over Q. Also, αj �= αk for any j �= k, and βi �= β� for any i �= �, by
Corollary 1.14 on page 38. Select a q ∈ Q such that q �= (α − αk)/(βj − β) for any
k = 1, 2, . . . , dα and any j = 1, 2, . . . , dβ , and let

γ = α+ qβ, (S6)

with
f(x) = mα,Q(γ − qx) ∈ Q(γ)[x].

Since
f(β) = mα,Q(γ − qβ) = mα,Q(α) = 0,

and
mβ,Q(β) = 0,

then β is a common root of f(x) and mβ,Q(x). We now show that this is the only
common root. If there exists a σ ∈ C, with σ �= β, such that f(σ) = 0 = mβ,Q(σ) = 0,
then σ = βj for some j > 1. Since

0 = mα,Q(α) = mα,Q(γ − qβj) = f(βj),

       



Solutions to Odd-Numbered Exercises 371

then there is a k ∈ {1, 2, . . . , dβ} such that γ − qβj = αk. Thus, by (S6),

αk + qβj = γ = α+ qβ,

so

q =
α− αk

βj − β
,

contradicting the choice of q. We have shown that β is the only common root of
f(x) and mβ,Q(x). Therefore, by Theorem 1.23 on page 38, mβ,Q(γ)(x)

�� f(x) and
mβ,Q(γ)(x)

�� mβ,Q(x). However, since f(x) and mβ,Q(x) have only one root in com-
mon, then

deg(mβ,Q(γ)(x)) = 1.

Thus, mβ,Q(γ)(x) = x + δ for some δ ∈ Q(γ). Since mβ,Q(γ)(β) = 0 = β + δ, then
β = −δ ∈ Q(γ), so α = γ − qβ ∈ Q(γ). This shows that Q(α,β ) ⊆ Q(γ). However,
since γ = α + qβ ∈ Q(α,β ), Q(γ) ⊆ Q(α,β ). We have completed the proof that
Q(α,β ) = Q(γ), as required.

1.53 Clearly, Q(
√
2
2 (1 + i)) ⊆ Q(i,

√
2). To see that equality holds, we observe that

�
1 + i√

2

�2

= i = ζ4,

so �
1 + i√

2

�

is a primitive eighth root of unity, and so is any odd power thereof. Since

|Q(i,
√
2) : Q| = 4 =

����Q
�
1 + i√

2

�
: Q

���� ,

then we must have

Q(i,
√
2) = Q

�
1 + i√

2

�
.

Section 1.7

1.55 Let M be a Z-module. If r ∈ Z, and m ∈ M , then

r ·m = m+ · · ·m� �� �
r

,

so the properties of an additive abelian group are inherited from this action.
Conversely, if M is an additive abelian group, then the addition within the group
gives the Z-module action as above.

1.57 We only prove this for σ = 1, since the other case is similar.

Suppose that I is an ideal. Therefore, a
√
D ∈ I, so c|a by the minimality of c.

We have √
D(b+ c

√
D) = b

√
D + cD ∈ I,
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so c|b. Moreover, since
�
b

c
−
√
D

�
(b+ c

√
D) =

b2 − c2D

c
∈ I,

then
a|(b2 − c2D)/c.

In other words,
ac|(b2 − c2D).

Conversely, assume that I satisfies the conditions. To verify that I is an ideal, we
need to show that a

√
D ∈ I and (b+

√
D)

√
D ∈ I. This is a consequence of the

following identities, the details of which we leave to the reader for verification:

a
√
D = −(b/c)a+ (a/c)(b+ c

√
D),

and
b
√
D + cD = −(b2 − c2D)/c+ b(b+ c

√
D)/c,

so I is an ideal.

1.59 If [α,β ] = [γ,δ ], there are integers x, x0, y, y0, z, z0, w, w0 such that

α = xγ + yδ,β = wγ + zδ,

and
γ = x0α+ y0β,δ = w0α+ z0β.

These two sets of equations translate into two matrix equations as follows.
�
α

β

�
= X

�
γ

δ

�
,

where

X =

�
x y
w z

�
,

and �
γ

δ

�
= X0

�
α

β

�
,

where

X0 =

�
x0 y0
w0 z0

�
.

Hence, �
α

β

�
= XX0

�
α

β

�
.

Therefore, XX0 = I2 and hence the determinants of X and X0 are ±1, so the
result follows.

Conversely, assume that the matrix equation holds as given in the exercise. Then
clearly

[α,β ] ⊆ [γ,δ ].

Since the determinant of X is ±1, we can multiply both sides of the matrix
equation by the inverse of X to get that γ and δ are linear combinations of α
and β. Thus,

[γ,δ ] ⊆ [α,β ].

The result is now proved.
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1.61 Let
Ji = (ai, (bi +

√
∆)/2) for i = 1, 2

be OF -ideals such that J1J2 ⊆ P. Then by the multiplication formulas given
on page 48, J1J2 = (a3, (b3 +

√
∆)/2) where a3 = a1a2/g ≡ 0(mod p) with

g = gcd(a1, a2, (b1 + b2)/2)). If p � a2 (which means that J2 �⊆ P), then p
�� a1,

since p cannot divide g, given that it does not divide a2. Thus, to show that
J1 ⊆ P, it remains to show that b1 = 2pn+ b for some n ∈ Z, by Exercise 1.60.
Now, by Exercise 1.57,

b21 ≡ ∆ (mod 4a1) and b2 ≡ ∆ (mod 4p),

so b21 ≡ b2 (mod 4p). Since p is prime, then b1 ≡ ±b(mod 2p). If

b1 ≡ −b (mod 2p), then J1 ⊆ P
� = (p, (−b+

√
∆)/2),

so if (−b+
√
∆)/2 ∈ P, then J1 ⊆ P so we are done by Theorem 1.7 on page 16.

If (−b +
√
∆)/2 �∈ P, then P ∩ P

� = (p), so a3 = 1, and this forces p
�� 1, a

contradiction. The remaining case is b1 ≡ b(mod 2p), so b1 = 2pn + b for some
n ∈ Z, as required.

Section 2.1

2.1 Suppose that θ is an embedding of F in C with θ(α) = β. Since

0 = mα,Q(α) =
d−1�

j=0

qjα
j with qj ∈ Q,

then

0 = θ(0) = θ




d−1�

j=0

qjα
j



 =
d−1�

j=0

qjθ(α)
j =

d−1�

j=0

qjβ
j .

Thus, β = αj for some j = 1, 2, . . . , d. Thus, there are at most d embeddings of F
in C. Now we show that if θj is defined by θj(f(α)) = f(αj) for j = 1, 2, . . . , d, with
f(x) ∈ F [x], then θj is indeed an embedding of F in C. To do this, we first show that θj
is well-defined. If f(α) = g(α) for f(x), g(x) ∈ F [x], then f(x)− g(x) = h(x)mα,Q(x)
for some h(x) ∈ F [x], so f(αj) − g(αj) = h(αj)mα,Q(αj) = 0. Hence, θj(f(α)) =
f(αj) = g(αj) = θj(g(α)), so θj is well-defined, and the conjugates of α are the αj ,
which in turn are precisely the roots of mα,Q(x). Lastly, we demonstrate how the one-
to-one property follows. Suppose that θj(f(α)) = θj(g(α)). Then f(αj) = g(αj), so
as in the above, f(x)− g(x) = h(x)mαj ,Q(x). Thus, f(α)− g(α) = h(α)mαj ,Q(α) = 0
since θ(α) = αj .

2.3 By Theorem 1.23 on page 38, mα,Q(x) ∈ Z[x], so by Exercise 2.2, fαF (x) ∈ Z[x].
We have shown that the F -conjugates of α are roots of a monic polynomial with
coefficients in Z, namely they are algebraic integers by Definition 1.28 on page 35.

2.5 If all the F -conjugates are distinct, then fα,F (x) is a product of distinct linear factors.
Thus, by Exercise 2.2, we have t = 1 and mα,Q(x) = fα,F (x). Therefore,

|Q(α) : Q| = deg(mα,Q(x)) = deg(fα,F (x)) = d = |F : Q|.
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However, since α ∈ F , Q(α) ⊆ F , so F = Q(α).

Conversely assume that F = Q(α). Then

deg(mα,Q(x)) = |F : Q| = d.

By Exercise 2.2, this implies that t = 1 and mα,Q(x) = fα,F (x). Hence, the F -
conjugates of α are distinct.

2.7 Since the minimal polynomial of α over Q is of the form

mα(x) = x2 + bx+ c ∈ Z[x],

then α2 + bα+ c = 0. Therefore, by the quadratic formula,

α = (−b±
�

b2 − 4ac)/2.

Since we may remove all square factors from b2 − 4c = s2d, and since α ∈ Q(
√
d),

then Q(α) = Q(
√
d).

2.9 Since
√
n1 +

√
n2 ∈ Q(

√
n1,

√
n2), we need only show that

√
n1, and

√
n2 are in

Q(
√
n1 +

√
n2). Since

(
√
n1 +

√
n2)

2 = n1 + n2 + 2
√
n1

√
n2,

then
√
n1

√
n2 ∈ Q(

√
n1 +

√
n2). Also, since

n1 − 2
√
n1

√
n2 + n2 = (

√
n1 −

√
n2)

2 ∈ Q(
√
n1 +

√
n2),

then

(
√
n1 +

√
n2)(

√
n1 −

√
n2)

2 = (n1 − n2)(
√
n1 −

√
n2) ∈ Q(

√
n1 +

√
n2).

Therefore,
√
n1 −

√
n2 ∈ Q(

√
n1 +

√
n2). Hence,

√
n1 =

1

2
(
√
n1 −

√
n2 +

√
n1 +

√
n2) ∈ Q(

√
n1 +

√
n2),

and similarly,
√
n2 ∈ Q(

√
n1 +

√
n2).

It remains to determine the Galois group. Let σj :
√
nj �→ −√

nj for j = 1, 2 with
σ1(

√
n2) =

√
n2 and σ2(

√
n1) =

√
n1. These are distinct Q-automorphisms of K,

of order 2, and since |K : Q| = 4, Gal(K/Q) = �σ1� × �σ2�, the Klein four-group,
namely is the direct product of two distinct cyclic groups of order 2—see Remark A.1
on page 321.

2.11 This is immediate from Exercise 2.1 since the complex embeddings come in conjugate
pairs.

2.13 By Fermat’s Little Theorem, we get that (α ± β)p
n

= αp
n ± βp

n

for all α,β ∈ F .
Since 1F �→ 1F , then σ fixes Fp.

2.15 Since F ∗ has order pn − 1, every nonzero α ∈ F satisfies αp
n−1 = 1F . Therefore,

every nonzero α ∈ F is a root of xp
n−1−1F , so also a root of f(x) = x(xp

n−1−1F ) =
xp

n −x ∈ Fp[x]. Since f(0) = 0, then f(x) has pn distinct roots. In other words, f(x)
splits over F . It remains to establish uniqueness. If K is a splitting field for f(x)
over Fp, then f �(x) = −1 and gcd(f(x), f �(x)) = 1. Therefore, by part (b) of Exercise
2.14, f(x) has pn distinct roots in F . Let σ : F �→ F be given by Exercise 2.13. Thus,
α ∈ F is a root of f(x) if and only if φ(α) = α. Hence, the subfield of F having all
roots of f(x) in F must in fact be F , so uniqueness is proved.
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Section 2.2

2.17 From the properties of embeddings, we get

TF (α+β) =
d�

j=1

θj(α+β) =
d�

j=1

(θj(α)+θj(β)) =
d�

j=1

θj(α)+
d�

j=1

θj(β) = TF (α)+TF (β).

Also,

NF (αβ) =
d�

j=1

θj(αβ) =
d�

j=1

(θj(α)θj(β)) =
d�

j=1

θj(α)
d�

j=1

θj(β) = NF (α)NF (β).

For q ∈ Q,

TF (qα) =
d�

j=1

θj(qα) =
d�

j=1

qθj(α) = q
d�

j=1

θj(α) = qTF (α),

and

NF (qα) =
d�

j=1

θj(qα) =
d�

j=1

qθj(α) = qd
d�

j=1

θj(α) = qdNF (α).

2.19 Since the embeddings of F in C are

θ1 :
√
7 �→

√
7, and θ2 :

√
7 �→ −

√
7,

then

TF (α) = α+ α� =

�
1 +

√
7

2

�
+

�
1−

√
7

2

�
= 1,

and
NF (α) = α · α� = (1− 7)/4 = −3/2.

Therefore, by Theorem 2.5 on page 66,

mα(x) = x2 − TF (α)x+NF (α) = x2 − x− 3/2.

2.21 Suppose that α = (a + b
√
p)/c ∈ F with a, b, c ∈ Z, gcd(a, b, c) = 1, and NF (α) = 2.

(The gcd condition may be assumed without loss of generality since we may otherwise
divide out the common factor.) Then

c2NF (α) = a2 − b2p = 2c2.

If c is even, then a and b are both odd by the gcd condition. Thus,

1 ≡ a2 ≡ b2p ≡ p (mod 8),

a contradiction. Therefore, c is odd, so b and c must both be odd. Hence,

2 ≡ 2c2 ≡ a2 (mod p).

However, this is false since 2 is a quadratic residue modulo a prime p > 2 if and only
if p ≡ ±1(mod 8)—see (A.10) on page 342.
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2.23 Let α =
√
2 +

√
3. Then

mα(x) = x4 − 10x2 + 1.

Note that if F = Q(
√
2 +

√
3), then TF (α) = 0, and NF (α) = 1. Thus, we are aided

by Theorem 2.5.

2.25 We have

TF (1− ζj
p
) =

p−1�

j=1

(1− ζj
p
) =

p−1�

j=1

1−
p−1�

j=1

ζj
p
.

However, by Example 1.5,
�

p−1
j=1 ζ

j

p
= −1. Therefore,

TF (1− ζj
p
) =

p−1�

j=1

1− (−1) = p− 1− (−1) = p,

as required.

2.27 ζ3 = 1
4 (g+ ζ3) +

1
4 (g+ ζ3)

3 − 1
2 .

2.29 To prove the hint, we invoke Exercise 1.54 on page 43 and Theorem 1.25 on page 40
to get

xp − 1

x− 1
=

p−1�

j=1

(x− ζj
p
) = mζp

(x),

then by differentiating the left and right-hand sides we get,

pxp − pxp−1 − xp + 1

(x− 1)2
=

�

1≤k≤p−1

p−1�

j=1

j �=k

(x− ζj
p
).

Therefore, if we substitute x = ζi
p
into the left-hand side, we get

p− pζi(p−1)
p

(ζi
p
− 1)2

=
pζp−i

p
(ζi

p
− 1)

(ζi
p
− 1)2

=
pζp−i

p

ζi
p
− 1

,

and for the right-hand side, the substitution yields,

p−1�

j=1

j �=i

(ζi
p
− ζj

p
).

We have shown that:
pζp−i

p

ζi
p
− 1

=
p−1�

j=1

j �=i

(ζi
p
− ζj

p
). (S7)

However, since mζp
(0) = 1, then

p−1�

j=1

ζj
p
= 1,
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and since mζp
(1) = p, then

p−1�

j=1

(1− ζj
p
) = p =

p−1�

j=1

(ζj
p
− 1).

Therefore, by (S7),

p−1�

j=1

p−1�

j=1

j �=i

(ζi
p
− ζj

p
) =

p−1�

j=1

pζp−j

p

ζjp − 1
= pp−1

�
p−1
j=1 ζ

p−j

p�
p−1
j=1(ζ

j
p − 1)

= pp−1/p = pp−2.

This last equation has (p− 1)(p− 2) factors, half of which have i < j, so

�

1≤i<j≤p−1

(ζi
p
− ζj

p
) = (−1)(p−1)(p−2)/2

�

1≤i<j≤p−1

(ζi
p
− ζj

p
)2,

which, since p > 2, is equal to

(−1)(p−1)/2
�

1≤i<j≤p−1

(ζi
p
− ζj

p
)2,

as required.

2.31 By Exercise 2.29,

disc(mα,Q) =
�

1≤i<j≤d

(αi − αj)
2.

Also,

m�
α,Q(x) =

d�

j=1

d�

i=1

i�=j

(x− αi).

Therefore,

m�
α,Q(αj) =

d�

i=1

i�=j

(αj − αi),

so

NF (m
�
α,Q(αj)) =

d�

j=1

m�
α,Q(αj) =

�

1≤i<j≤d

(αj − αi)
�

1≤j<i≤d

(αj − αi),

and since there are d(d− 1)/2 pairs (i, j) with 1 ≤ i < j ≤ d, then the above equals

(−1)d(d−1)/2
�

1≤i<j≤d

(αj − αi)
2 = (−1)d(d−1)/2disc(mα,Q).

This completes the proof.

       



378 Algebraic Number Theory

Section 2.3

2.33 We use induction on d. If d = 2, then

det(αi−1
j

) =

����
1 1
α1 α2

���� = α2 − α1.

This is the induction step. Now assume that the result holds for all such n×n matrices
with n < d. If cof(Ai,j) denotes the cofactor of the matrix A = (αi−1

j
), then by (A.6),

det(αi−1
j

) =
d�

j=1

αi−1
j

cof(Ai,j).

By induction hypothesis, the result holds for each Ai,j , so the entire result holds.

2.35 Let F = Q(
√
2) = Q(α). Then α has minimal polynomial mα,Q(x) = x2 − 2, so via

Exercise 2.31,

disc(mα,Q) = (−1)d(d−1)/2NF (m
�
α,Q(α)) = (−1)2(2−1)/2(2

√
2)(−2

√
2) = 8.

2.37 We have n = |F : Q| = 8, and d = |Q(α) : Q| = 4. Also from Exercise 2.36,
TQ(α)(α) = 0, and NQ(α)(α) = −5. Therefore, by Theorem 2.5,

TF (α) =
8

4
TQ(α)(α) = 0,

and
NF (α) = (NQ(α)(α))

8/4 = (−5)2 = 25.

2.39 Since OF = Z[α], then B = {1, α, . . . , αd−1} is an integral basis for F , where |F :
Q| = d. By Exercise 2.38, disc(B) = disc(mα,Q). Hence,∆ F = disc(mα,Q).

2.41 Suppose that M = N ⊕N1. If r ∈ R, then

Mr∩N = (N⊕N1)r∩N = (Nr⊕N1r)∩N = (Nr∩N)⊕(N1r∩N) = Nr∩N = Nr.

2.43 By Theorem 1.24 on page 39, a basis for Q(α) over Q is {1, α , α2, . . . , αd−1}. Let

mα,Q(x) = xd + cd−1x
d−1 + · · ·+ c0,

be the minimal polynomial of α overQ. Since ααi =
�

d

k=1 bi,kα
k = bi,i+1αi+1 = αi+1,

then the matrix B = (bi,j) is given byS1

B =





0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
−c0 −c1 −c2 · · · − cd−1




.

S1In linear algebra B is called the matrix of the transformation α�→α·αi. Also, the trace of α is given by
�

d
j=1 bj,j , and the norm of α is given by det(B). These are alternative definitions of the norm and trace that

we are now showing to be equivalent to the ones we gave in Definition 2.4 for the more general number field
F (see Theorem 2.5 for the relevant connections).
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By Exercise 2.42, we may form a basis {β1, . . . , βn} for F over Q, where βj = αj for
j = 0, 1, . . . , d−1. Also, by Theorem 2.5 on page 66, d|n, and since αβi =

�
n

j=1 ai,jβj ,
then the matrix A = (ai,j) must have determinant

det(A) = det





B
B

. . .
B




,

where there are n/d blocks of B on the main diagonal. Since

| det(B)| = |c0|, and | det(A)| = | det(B)|n/d,

then
| det(A)| = |c0|n/d.

However, by Theorem 2.5,

|c0| = |NQ(α)(α)|, and (NQ(α)(α))
n/d = NF (α),

so
| det(A)| = |NF (α)|,

as required. (The reader should compare this with Exercise 2.2 on page 62.)

Section 2.4

2.45 Suppose that

I =
r�

j=1

P
aj

j

for distinct prime OF -ideals Pj . Then since

N(I) =
r�

j=1

N(Pj)
aj

is prime, we must have r = 1 = a1, so I is prime.

2.47 Since there are nonzero α,β ∈ OF and integral OF -ideals I, J such that

I =
1

α
I and J =

1

β
J,

then

IJ =
1

αβ
IJ.

Therefore, by Definition 2.8 on page 83,

N(IJ) =
N(IJ)

N((αβ))
,

so by Definition 1.15 on page 16,

N(IJ) =
N(IJ)

N((α)(β))
,
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and by Exercise 2.46,

N(IJ) =
N(IJ)

N((α))N((β))
.

Hence,

N(IJ) =
N(I)

N((α))

N(J)

N((β))
= N(I)N(J).

2.49 Let N(P) =
�

r

j=1 p
mj

j
. By Exercise 2.48, P

�� (N(P)). Therefore, P divides one of the

principal ideals (pj). If P
�� (pk) for some k �= j, then by the Euclidean algorithm, there

exist u, v ∈ Z such that upj+vpk = 1. Since upj , vpk ∈ P, then 1 ∈ P, a contradiction.
Hence, N(P) = pm1

1 = pm a prime power. Thus, N(P)
�� N(p) = pn = p|F :Q|, so

N(P) = pm for some m ≤ n.

2.51 All ideals in Z[
√
10] of norm 6 have the form [6, a+ b

√
10] where

a2 − 10b2 ≡ 0 (mod 6)

by Exercise 1.57 on page 53. Thus, [6, 2 +
√
10] and [6, 2−

√
10] are two of them. By

Exercise 1.59 on page 54, this is all of them.

2.53 This is a direct consequence of Exercises 2.48 and 2.52.

Section 3.1

3.1 Clearly, sincef(x, y) = g(X,Y ) for

X = px+ qy (S8)

and
Y = rx+ sy, (S9)

then equivalent forms represent the same integers by definition. Since ps − qr = ±1
and from (S8)–(S9), x = ±(sX − qY ) and y = ±(rX − pY ), so gcd(x, y) = 1 if and
only if gcd(X,Y ) = 1.

3.3 Suppose that f(x, y) = g(X,Y ) where X = px+ qy, Y = rx+ sy, and ps− qr = 1. If
we set x = X and Y = y, namely p = s = 1 and q = r = 0, then f(x, y) = g(x, y) and
we have the reflexive property. Also, since

g(X1, Y1) = f(x, y),

where X1 = sx− qy and Y1 = py − rx, then we have the symmetry property.

Lastly, for transitivity, assume that

g(X,Y ) = h(PX +QY,RX + SY ),

where PS −QR = 1. Then since

PX +QY = P (px+ qy) +Q(rx+ sy) = (Pp+Qr)x+ (Pq +Qs)y = P1x+Q1y

and

RX + SY = R(px+ qy) + S(rx+ sy) = (Rp+ Sr)x+ (Rq + Ss)y = R1x+ S1y
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we have

P1S1 −Q1R1 = (Pp+Qr)(Rq + Ss)− (Pq +Qs)(Rp+ Sr) =

PRpq +QRrq + PpSs+QrSs− PqRp− PqSr −QsRp−QsSr =

QR(rq − sp) + PS(ps− qr) = −QR+ PS = 1,

so
f(x, y) = h(P1x+Q1y,R1x+ S1y),

with P1S1 −Q1R1 = 1, which is the transitive property.

3.5 If f ∼ g, f = (a, b, c), g = (a1, b1, c1) with f primitive, then

ax2 + bxy + cy2 = a1(px+ qy)2 + b1(px+ qy)(rx+ sy) + c1(rx+ sy)2 =

(a1p
2 + b1pr + c1r

2)x2 + (2pqa1 + (ps+ rq)b1 + 2rsc1)xy + (q2a1 + qsb1 + c1s
2)y2,

so if gcd(a1, b1, c1) = g, then g
�� gcd(a, b, c) = 1, and the result is secured.

3.7 Applying the substitution x = pX + qY and y = rX + sY to the form

f(x, y) = ax2 + bxy + cy2,

we get the form AX2 +BXY + CY 2, where

A = ap2 + bpr + cr2,

B = 2apq + b(ps+ qr) + 2crs,

C = aq2 + bqs+ cs2.

A straightforward calculation shows that

B2 − 4AC = (b2 − 4ac)(ps− qr)2,

which yields the result.

3.9 If the primitive form f(x, y) properly represents n ∈ Z, then

f(x, y) = nx2 + bxy + cy2

may be assumed by Exercise 3.2. Therefore, D = b2 − 4nc. Thus, D is a quadratic
residue modulo n. If n is even, then D ≡ b2 (mod 8) where b is necessarily odd, so
D ≡ 1(mod 8). Conversely, if D ≡ b2 (mod |n|), where n is odd, we may assume that
D and b have the same parity by replacing b by b + n, if necessary. Therefore, since
D ≡ 0, 1(mod 4), then D ≡ b2 (mod 4|n|), which implies that there exists an integer
m such that D = b2 − 4mn. Hence, nx2 + bxy +my2 properly represents n and has
discriminant D. Lastly, since gcd(D,n) = 1, then gcd(n, b,m) = 1, so nx2+bxy+my2

is primitive. If n is even and D ≡ b2 (mod 4|n|), then there exists an integer m such
that D = b2 − 4mn and we proceed as above.

3.11 Let f(x, y) = ax2+bxy+cy2 be a reduced form of discriminant D < 0. Thus, b2 ≤ a2

and a ≤ c. Therefore,

−D = 4ac− b2 ≥ 4a2 − a2 = 3a2,
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whence,
a ≤

�
(−D)/3.

For D fixed, |b| ≤ a. This together with the latter inequality imply that there are only
finitely many choices for a and b. However, since b2 − 4ac = D, then there are only
finitely many choices for c. We have shown that there are only finitely many reduced
forms of discriminant D. By Theorem 3.1 on page 90, the number of equivalence
classes of such forms is finite, which is the required result.

3.13 Since a reduced form has coefficients satisfying b2 ≤ a2 ≤ ac and b2 − 4ac = D, then

D = b2 − 4ac ≤ −3ac,

so ac ≤ −D/3. When D = −4n, this means that

ac ≤ 4n/3. (S10)

We use (S10) to test for values up to the bound to prove the result.

When n = 1, this means that ac ≤ 4/3 so a = c = 1 is forced and b = 0. Hence, the
only reduced form of discriminant −4 is x2+y2. If n = 2, then ac ≤ 8/3, so c = 2 and
a = 1 is forced given that ac must be even since b2 − 4ac = −8. Therefore, b = 0, and
the only reduced form of discriminant −8 is x2 + 2y2. If n = 3, then ac ≤ 4. Again,
since ac must be even, c ≥ a, and gcd(a, b, c) = 1, then c = 3, a = 1, and b = 0 is
forced. Thus x2+3y2 is the only primitive reduced form of discriminant −12. (There
is one imprimitive form, namely 2x2 + 2xy + 2y2, which we do not count.) If n = 4,
then ac ≤ 16/3 < 6. With the caveats as above, we must have c = 4, a = 1, b = 0,
so x2 + 4y2 is the only primitive reduced form of discriminant −16. (There is one
imprimitive form, namely 2x2 + 2y2, which we do not count.)

Lastly, if n = 7, then ac ≤ 28/3 < 9, and (b/2)2 + 7 = ac, so the only possibility is
c = 7, a = 1, and b = 0, so x2+7y2 is the only primitive reduced form of discriminant
−28. (There is one imprimitive form, namely 2x2+2xy+4y2, which we do not count.)

Section 3.2

3.15 If α ∼ −α, then there exist p, q, r, s ∈ Z such that ps− qr = 1 and in the case where
∆F ≡ 0(mod 4),

x2 − ∆F

4
y2 = −(px+ qy)2 +

∆F

4
(rx+ sy)2.

By comparing the coefficients of x2, we get

p2 − ∆F

4
r2 = −1,

so p+ r
�
∆F /4 is a unit of norm −1 in OF = Z[

�
∆F /4].

When∆ F ≡ 1(mod 4), then

x2 + xy +
1−∆F

4
y2 = −(px+ qy)2 − (px+ qy)(rx+ sy)− 1−∆F

4
(rx+ sy)2.

By comparing the coefficients of x2 we get that

(2p+ r)2 −∆F r
2 = −4,
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so

p+
1 +

√
∆F

2
r

is a unit of norm −1 in OF = Z[(1 +
√
∆F )/2].

3.17 Since we have that

C+
OF

=
I∆F

P+
∆F

∼=
I∆F

P∆F

· P∆F

P+
∆F

,

then, when F is real, by Exercise 3.15, C+
OF

= COF if and only if OF has a unit

of norm −1. When F is complex, then P∆F
= P+

∆F
since all norms are positive, so

C+
OF

= COF . This proves the assertion.

3.19 Using the hint, we see that when b2 − 4ac = ∆F ≡ 0(mod 4), then b is even so

acx2 + bxy + y2 = (bx/2 + y)2 − ∆F

4
x2

since comparing the coefficients of x2, we get b2/4 − ∆F /4 = ac, comparing the
coefficients of xy we get b = b/2 · 2, and the coefficients of y2 are both 1. When
∆F ≡ 1(mod 4), then b is odd so

acx2 + bxy + y2 =

�
−b+ 1

2
x− y

�2

+

�
−b+ 1

2
x− y

�
x+

1−∆F

4
x2,

since comparing the coefficients of x2 we get

�
b+ 1

2

�2

− b+ 1

2
+

1−∆F

4
=

b2 + 2b+ 1− 2b− 2 + 1− b2 + 4ac

4
= ac,

and comparing the coefficients of xy we get

2 · b+ 1

2
− 1 = b,

and the coefficients of y2 are both 1.

3.21 Set α = 1 + u if u �= −1, and α =
√
∆F if u = −1. If u �= −1, then

(1 + u�)u = u+ uu� = u+NF (u) = u+ 1.

Therefore,
α

α� =
u+ 1

u� + 1
= u.

If u = −1, then
α

α� =

√
∆F

−
√
∆F

= −1 = u,

as required.

Section 3.3

3.23 This is proved in the same fashion as the solution of Exercise 2.43 presented on page
378.
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3.25 Let S ⊆ Rn be the set of points defined by the inequalities

|F1(x1, . . . , xn)| < c1 + �,

and
|Fj(x1, . . . , xn)| < cj (j = 2, . . . , n),

where 0 < � < 1. Then S is convex, bounded, and symmetric. Hence,

V (S) >

�
c1

−c1

dx1 · · ·
�

cn

−cn

1

| det(ri,j)|
dxn = 2n

n�

k=1

ck
1

| det(ri,j)|
> 2nD(L).

Then Minkowski’s Theorem 3.9 yields the result.

3.27 Let L be the set of all points P ∈ Rn that satisfy the first system of equations in the
exercise for j = 1, . . . , k. Therefore, the implication given in the second display of the
exercise guarantees that L is an additive subgroup of Rn. Also, by that implication,
if

Fj(x) ≡ Fj(y) (mod mj),

then x and y are in the same coset of Zn modulo L. Hence, the number of such
cosets is at most

�
k

j=1 mj . Thus, L is a free abelian group of finite index in Zn.
Therefore, L has rank n, by Exercise 3.24, so L is a lattice. Also, by Exercise 3.23,
D(L) ≤

�
k

j=1 mj . Hence, V (S) > 2nD(L). Now, we apply Exercise 3.25 to get the
result.

3.29 F is clearly a Q-algebra. Also, if α,β ∈ F , then

ΘF (α+ β) = (θ1(α+ β), . . . , θr1+r2(α+ β)) =

(θ1(α) + θ1(β), . . . , θr1+r2(α) + θr1+r2(β)) =

(θ1(α), . . . , θr1+r2(α)) + (θ1(β), . . . , θr1+r2(β)) =Θ F (α) + ΘF (β),

and
ΘF (αβ) = (θ1(αβ), . . . , θr1+r2(αβ)) =

(θ1(α)θ1(β), . . . , θr1+r2(α)θr1+r2(β)) =

(θ1(α), . . . , θr1+r2(α))(θ1(β), . . . , θr1+r2(β)) =Θ F (α)ΘF (β),

soΘ F is a ring homomorphism. If q ∈ Q, then since θj(q) = q for all j, then
ΘF (qα) = qΘF (α) for all q ∈ Q and α ∈ F . Hence,Θ F is a Q-algebra homomorphism.
Finally, since θj is a monomorphism for each j, then it follows thatΘ F is a Q-algebra
monomorphism.

3.31 By Exercise 3.18, IhF = (β) for some β ∈ OF . Let α = β1/hF ∈ A. Since OF (α) =
A ∩ F (α), then α ∈ OF (α). Also,

�
OF (α)I

�hF = OF (α)I
hF = OF (α)(β) = OF (α)(α)

hF =
�
OF (α)(α)

�hF .

By Theorem 1.17,
OF (α)I = OF (α)(α).
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3.33 By Exercise 1.45 on page 34, there are δ, µ ∈ OF , such that I = (δ, µ). Substituting
this into the given ideal equation we get,

OK(γ) = OK(δ, µ).

Therefore,
γ = λδ + νµ

for some λ,ν ∈ OK . By Exercise 3.31, δ, µ ∈ OF (α)(α). Thus, there are η,ζ ∈ OF (α)

such that
δ = ηα, and µ = ζα.

Hence,
γ = ληα+ νζα = α(λη + νζ),

so α
�� γ in A. A similar argument shows that γ

�� α. Hence, α and γ are associates in
A, so there exists a unit u ∈ A such that γ = uα, as required.

Section 3.4

3.35 For j ranging over the values 1 ≤ j ≤ pa with gcd(p, j) = 1, we get

�

j

(x− ζjpa) =
xp

a − 1

xpa−1 − 1
=

p−1�

k=0

xkp
a−1

.

Then set x = 1.

3.37 By Exercise 3.35,

NF

�
1− ζj

n

1− ζn

�
=

NF (1− ζj
n
)

NF (1− ζn)
=

p

p
= 1.

Also, by Definition 1.32 on page 40 and Exercise 3.35,Φ n(1) = p.

3.39 Let n =
�

k

j=1 p
aj

j
be the canonical prime factorization n. For the balance of the

solution, all sums and products range over j ∈ N such that j < p
aj

j
and p � j. A

simple induction shows that

S =
�

j =
p
2aj−1
j

(pj − 1)

2
≡ 0 (mod p

aj

j
),

since n > 2. Therefore, by Theorem 2.5 on page 66,

NF (ζpaj

j

) =

�
NQ(ζ

p
aj

j

)

�
ζ
p
aj

j

��φ(n)/φ(ζ
p
aj

j

)

=

��
ζj
p
aj

j

�φ(n)/φ(ζ
p
aj

j

)

= ζ
Sφ(n)/φ(ζ

p
aj

j

)

p
aj

j

= 1.

Thus,

NF (ζn) = NF




k�

j=1

ζ
p
aj

j



 =
k�

j=1

�
NF

�
ζ
p
aj

j

��
= 1.
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Section 3.5

3.41 From the additive property of the logarithm, LF (αβ) = LF (α) + LF (β). Hence, LF

is a group homomorphism.

3.43 If T and U are both even, then ε∆F
∈ Z[

√
∆F ], so since

Z[
�
∆F ] ⊆ OF = Z[(1 +

�
∆F )/2],

then G = �ε∆F
� if and only if T and U are even.

3.45 Let I ∈ COF ,2. Then I2 ∼ 1 and I ∼ I � by the preamble to this exercise. Thus, by
Definition 3.7 on page 100, there is an α ∈ F such that I = αI �. Taking norms we
have N(I) = N(I �), so NF (α) = ±1. When∆ F < 0, then NF (α) = 1. When∆ F > 0
and NF (α) = −1, we may multiply α by εF to get NF (εFα) = 1. Hence, without loss
of generality, we may assume that NF (α) = 1. Therefore, by Exercise 3.21, there is a
β ∈ OF such that α = β�/β. Therefore, J = βI is an ambiguous ideal in I since

J � = β�I � = βαI� = βI = J.

3.47 Suppose that I = (N(I), (b−
√
∆F )/2). If

I = I � = (N(I), (b−
�

∆F )/2),

then
(b+

�
∆F )/2− (b−

�
∆F )/2 =

�
∆F ∈ I.

Thus, I
�� (
√
∆F ), so by Exercise 2.46 on page 86, N(I)

�� ∆F .

Conversely, if N(I)
�� ∆F , then by Exercise 1.57 on page 53, N(I)

�� b since∆ F is
not divisible by the square of any odd prime. Therefore, −b ≡ 0(mod N(I)), so by
Exercise 1.60 on page 54, I = I �.

3.49 Suppose that (β) = (β�), where β may be assumed to be primitive. Then there is
a unit u ∈ UOF

such that u = β/β �. We may assume, without loss of generality,
that there are no nontrivial rational integer factors in β. Thus, u = ±εn∆F

for some
nonnegative n ∈ Z. If u = εn∆F

, then set ρ = β/αn. Therefore,

ρ� = β�/(α�)n = β�β/((α�)nβ) = β�β/(αnβ�) = β/αn = ρ,

where the third equality follows from the fact that

εn∆F
= (α/α�)n = β/β � implies (α�)nβ = αnβ�.

Hence, ρ = z ∈ Z, so β = αnz, but there are no nontrivial rational integer factors
in β, so |z| = 1. Hence, β = ±αn. However, by Exercise 3.47, NF (β) = NF (αn)
divides∆ F . If n > 1, then |NF (α)|n = 4 is the only possibility, namely n = 2 and
NF (α) = ±2, since the only possible square dividing∆ F is 4. Thus, α = x + y

√
DF

for some x, y ∈ Z with x2 − y2D = ±2. Therefore,

β = ±(x2 + y2DF + 2xy
�
DF ) = ±(±2 + 2y2DF + 2xy

�
DF )

= ±2(±1 + y2DF + xy
�
DF ),

so 2 is a nontrivial rational integer factor of β, a contradiction. Hence, n = 0, or
n = 1. If n = 1, then (β) = (α), and if n = 0, then (β) = (1) = OF .

If β = −εn∆F
β�, then set ρ = β/(αn

√
DF ). Again we get that ρ = ρ� as above. Hence,

±αn
√
DF = β, and NF (β)

�� ∆F , so again n = 0, 1. Thus, either (β) = (
√
DF ) or

(β) = (α
√
DF ).
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3.51 By Exercise 1.57 on page 53, we may set

I = (N(I), (b+
�
∆F )/2),

so I � = (N(I), (−b+
√
∆F )/2). Then by the multiplication formulas on page 48,

II � = (N(I)),

with a1 = a2 = N(I) = g, and a3 = 1.

3.53 By Exercise 3.52, NF (ε∆F
) = −1, where ε∆F

= (r+s
√
p)/2 for rational integers r ≡ s

(mod 2). By taking

x+ y
√
p =

�
r + s

√
p

2

�3

,

we get that x2 − py2 equals

NF (x+ y
√
p) = NF

��
r + s

√
p

2

�3
�

=

�
NF

�
r + s

√
p

2

��3

= (−1)3 = −1,

where x, y ∈ Z is verified by a simple check.

3.55 Assume that I is reduced and let I = [a,α ], where a = N(I) and α = (b+
√
∆F )/2.

Set
β0 = �−α�/a�a+ α ∈ I.

Then, since �−α�/a� > −α�/a− 1,

|β�
0| = −�−α�/a�a− α� < a.

If β0 < 0, then |β0| = −β0 > a, by the definition of reduction. Therefore,

−�−α�/a�a− α = −β0 = −�−α�/a�a− α > a > |β�
0| = −�−α�/a�a− α�.

Hence,
(b−

�
∆F )/2 = α� > α = (b+

�
∆F )/2,

namely −
√
∆F >

√
∆F , a contradiction. Hence, β0 > 0. Therefore, there exists a

least element β ∈ I such that |β�| < a and β > 0 (possibly β = β0). Since I is reduced,
then β > a. Also, since 0 < β − a < β, then |β� − a| > a, by the minimality of β. If
β� > 0, then a− β� = |β� − a| > a, so β� < 0, a contradiction. Hence,

−a = −N(I) < β� < 0.

Since β ∈ I, we may let,

β = am+ αn for some m,n ∈ Z.

If |n| > 1, then let m = s+ nt for t ∈ Z and |s| ≤ |n|/2. Set

γ = |β − sa|/n = |α+ at| ∈ I.

Therefore,
|γ�| = |(β� − as)/n| ≤ |β�/n|+ |as/n| < a/2 + a/2 = a.

However,
γ = |γ| ≤ |β/n|+ |as/n| < β /2 + β/2 = β,
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contradicting the minimality of β. Hence, |n| = ±1. Therefore, by Exercise 1.60 on
page 54, I = [a,β ].

Conversely, suppose that I = [a,α ] such that α > a, and −a < α� < 0. If I is not
reduced, there is a γ ∈ I such that |γ| < a and |γ�| < a. Since γ = ma+ nα for some
m,n ∈ Z, then

|ma+ nα| < a, (S11)

and
|ma+ nα�| < a. (S12)

If mn > 0, then (S11) is contradicted. If mn < 0, then (S12) is contradicted. Thus,
mn = 0. If m = 0, and n �= 0, then (S11) implies that |α| < a, a contradiction. If
n = 0, and m �= 0, then (S12) yields a contradiction. Therefore, m = n = 0, and I is
reduced.

3.57 First, assume that F is real. If I is reduced, then by Exercise 3.55, there is a β ∈ I
such that β > N(I), −N(I) < β� < 0, and I = (N(I), β). Therefore,

N(I) < β − β� = ω∆F
− ω�

∆F
=

�
∆F .

If F is complex, and I = (N(I), α), then

4NF (α)− TF (α)
2 = −∆F .

If I is reduced, then |α| ≥ N(I), and since |TF (α)| ≤ N(I), then

−∆F = 4NF (α)− TF (α)
2 ≥ 4NF (α)−N(I)2 =

4|α|2 −N(I)2 ≥ 4N(I)2 −N(I)2 = 3N(I)2.

3.59 If I is not reduced, so that 4
�� ∆F and

√
∆F /2 ∈ I, then set β =

√
∆F /2. Otherwise,

set β =
√
∆F . By Exercises 3.56 and 3.58, N(I) > β, or I is already reduced. Since

β ∈ I, there exists an OF -ideal J such that IJ = (β), by Corollary 1.7 on page 27.
Since β� = −β, then |NF (β)| = β2 and N(J) < β. Since I = I �, then J = J �. Hence,
J is reduced. Since IJ ∼ 1, then I2J ∼ I. However, I2 ∼ 1 by Exercise 3.47 and
Exercise 3.20 on page 107. Therefore, I ∼ J .

3.61 Let I = (N(I), b+ ω∆F
), and set J = (n, b+ ω∆F

). Since

N(I)
�� NF (b+ ω∆F

), and n
�� N(I),

then J is an OF -ideal. If n is even, and and∆ F ≡ 0(mod 4), then (2)
�� I, contradict-

ing the primitivity of I. Therefore, since

4NF (b+ ω∆F
) = (2b+ ω∆F

+ ω�
∆F

)2 −∆F ,

then gcd(n, 2b+ω∆F
+ω�

∆F
) = 1. Thus, by the multiplication formulas given on page

48,
J2 = (n2, b+ ω∆F

) = I.
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Section 4.1

4.1 We have that (−3/p) = (−1/p)(3/p) = 1 if and only if (−1/p) = (3/p) = −1 or
(−1/p) = (3/p) = 1. Thus, from the hint, (−3/p) = 1 if and only if either p ≡ −1
(mod 4) and p ≡ ±5(mod 12), or else p ≡ 1(mod 4) and p ≡ ±1(mod 12). In other
words, (−3/p) = 1 if and only if either p ≡ −5(mod 12) or p ≡ 1(mod 12), and this
holds if and only if p ≡ 1(mod 3).

4.3 Since (−11/p) = (−1/p)(11/p) = 1 if and only if (−1/p) = (11/p) = −1 or (−1/p) =
(11/p) = 1, then (−11/p) = 1 if and only if either p ≡ −1(mod 4) and p ≡ 1, 3, 4, 5, 9
(mod 11), or else p ≡ 1(mod 4) and p ≡ 1, 3, 4, 5, 9(mod 11). In other words,
(−11/p) = 1 if and only if either p ≡ 3, 15, 23, 27, 31(mod 44) or p ≡ 1, 5, 9, 21, 25
(mod 44), and this holds if and only if

p ≡ 1, 3, 5, 9, 15, 21, 23, 25, 27, 31 (mod 44).

By Corollaries 1.1–1.2 on page 13, Theorem 1.28 on page 45, and Theorem 3.6 on
page 103, we have that h−11 = hZ[(1+√

−11)/2] = 1. Thus, by Theorem 4.1, if (∆F /p) =

(−11/p) = 1, then p = a2+ab+3b2 for some integers a, b. Also 11 = (−1)2−1·2+3·22.
Conversely, by Exercise 3.9, if p �= 11 and p = a2 + ab+ 3b2, then (−11/p) = 1.

4.5 Given that (−43/p) = (−1/p)(43/p) = 1 if and only if (−1/p) = (43/p) = −1 or
(−1/p) = (43/p) = 1, then (−43/p) = 1 if and only if either p ≡ −1(mod 4) and

p ≡ 1, 4, 6, 9, 10, 11, 13, 14, 15, 16, 17, 21, 23,

24, 25, 31, 35, 36, 38, 40, 41 (mod 43), (S13)

or else p ≡ 1(mod 4) and (S13) holds. This implies that (−43/p) = 1 if and only if
either

p ≡ 11, 15, 23, 31, 35, 47, 59, 67, 79, 83, 87, 95, 99,

103, 107, 111, 127, 135, 139, 143, 167 (mod 172), (S14)

or
p ≡ 1, 9, 13, 17, 21, 25, 41, 49, 53, 57, 81, 97, 101, 109,

117, 121, 133, 145, 153, 165, 169 (mod 172), (S15)

Lastly, (S14)–(S15) hold if and only if

p ≡ 1, 9, 11, 13, 15, 17, 21, 23, 25, 31, 35, 41, 47, 49, 53, 57, 59, 67, 79, 81,

83, 87, 95, 97, 99, 101, 103, 107, 109, 111, 117, 121, 127, 133,

135, 139, 143, 145, 153, 165, 167, 169 (mod 172).

Now, as in the solution of Exercise 4.3, we have that h−43 = hZ[(1+√
−43)/2] = 1. Thus,

by Theorem 4.1, if (∆F /p) = (−43/p) = 1, then p = a2 + ab+ 11b2 for some integers
a, b. Also 43 = (−1)2 − 1 · 2 + 11 · 22. Conversely, by Exercise 3.9, if p �= 43 and
p = a2 + ab+ 11b2, then (−43/p) = 1.
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4.7 The following are all the prime values for class number one negative discriminants via
Rabinowitsch.

−∆F x2 + x+ (1−∆F )/4 for x = 0, 1, . . . , �|∆F |/4− 1�
3 x2 + x+ 1 −
7 x2 + x+ 2 2.
11 x2 + x+ 3 3, 5.
19 x2 + x+ 5 5, 7, 11, 17.
43 x2 + x+ 11 11, 13, 17, 23, 31, 41, 53, 67, 83, 101.
67 x2 + x+ 17 17, 19, 23, 29, 37, 47, 59, 73, 89, 107,

127, 149, 173, 199, 227, 257.
163 x2 + x+ 41 41, 43, 47, 53, 61, 71, 83, 97, 113, 131,

151, 173, 197, 223, 251, 281, 313, 347,
383, 421, 461, 503, 547, 593, 641, 691,

743, 797, 853, 911, 971, 1033, 1097, 1163,
1231, 1301, 1373, 1447, 1523, 1601.

4.9 First we note that, using the notation in the proof of Theorem 3.5,

τ : J = (2, 1 +
√
−5) �→ (2, 2, 3),

and
τ : I = (1,

√
−5) �→ (1, 0, 5)

where J �∼ 1 in COF . The latter holds since (1, 0, 5) and (2, 2, 3) are reduced forms
so if they were properly equivalent, then they would be identical by Claim 3.1 on
page 90. Also, we note that J2 = (2).

For part (a), If p ≡ 1, 9(mod 20), then (−5/p) = 1 so by Theorem 1.30 on page 49
and Remark 1.24 on page 52 (p) = PP

�, where P = (p, (b +
√
−20)/2) and P

� =
(p, (−b +

√
−20)/2). Now, if P is principal, then P = (a + b

√
−5) for some integers

a, b. Thus,
(p) = PP

� = (a+ b
√
−5)(a− b

√
−5) = (a2 + 5b2),

so since N(P) = p, then p = a2 + 5b2, as required. If P is not principal, then P ∼ J ,
so PJ ∼ J2 ∼ 1. Hence, there are integers x, y so that PJ = (x+ y

√
−5), so

N(PJ) = N(P)N(J) = 2p = x2 + 5y2.

Thus, both x and y are odd, so 2p ≡ 6(mod 8), whence, p ≡ 3(mod 4), a contradic-
tion. We have established one direction for part (a). Conversely, if p = a2 +5b2, then
(p/5) = (a2/5) = 1, so p ≡ 1, 4(mod 5). Also, since one of a, b must be even, then
p ≡ 1(mod 4). Hence, p ≡ 1, 9(mod 20), as required.

For part (b), first assume that p ≡ 3, 7(mod 20). Then (−5/p) = 1 since (−1/p) =
−1 = (5/p). As above (p) = PP

�. If P is principal, then as above p = a2 + 5b2, which
means that p ≡ 1(mod 4), a contradiction. Thus, as above 2p = x2 + 5y2 for some
integers x, y. Thus, x and y must have the same parity, so we may select an integer
z such that x = y + 2z. Therefore,

2p = (y + 2z)2 + 5y2 = 4z2 + 4yz + 6y2,

and dividing through by 2, we get

p = 2z2 + 2yz + 3z2.
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We have established one direction for part (b). Conversely, assume that there are
integers a, b with p = 2a2 + 2ab+ 3b2. Then

2p = x2 + 5y2,

where x = 2a + b and y = b. Thus, as above, p ≡ 3(mod 4). Also, (−5/p) = 1 by
Exercise 3.9. Therefore, 1 = (−5/p) = (−1/p)(5/p) = −(5/p), so (5/p) = (5/p) = −1.
Thus, p ≡ 2, 3(mod 5), whence p ≡ 3, 7(mod 20), which secures part (b) .

Section 4.2

4.11 Since IhOF ∼ 1, In ∼ 1, and gcd(hOF
, n) = 1, then there exist integers x, y such that

nx+ hOF
y = 1. Therefore,

I = Inx+hOF
y = (In)x(Iy)hOF ∼ 1,

as we sought to prove.

4.13 In Theorem 4.2, let k = −13 = −1−3u2 with u = 2, for which x = pm = 4u2+1 = 17
with m = 1 and y = ±2(3 + 8 · 22) = ±70. Thus, p = 22 + 13, and 702 = 173 − 13.
Thus, (x, y) = (17,±70).

4.15 As per the hint, a solution (x, y) to (4.2) implies that

y +
√
k = w(u+ v

√
k)3 (S16)

for a unit w ∈ OF and some u, v ∈ Z. Then w = ±εz
k
for some z ∈ Z. Since we

may write z = 3z1 + r where r ∈ {0,±1,±2}, then we may absorb (±εz1
k
)3 into the

cube (u + v
√
k)3, so we may assume, without loss of generality, that w = εr

k
, where

r ∈ {0,±1,±2}. Given the definition of ε and the fact that (T +U
√
k)−1 = T −U

√
k,

then we may assume w ∈ {εj
k
: j = 0, 1,−1} if εk has norm 1 and

w ∈ {εj
k
: j = 0, 2,−2}

if εk has norm −1. In either case, w ∈ {εj : j = 0, 1,−1}.

Case S.7 w = 1

From (S16),

y +
√
k = (u3 + 3uv2k) + (3u2v + v3k)

√
k,

so by comparing coefficients of
√
k, we have that

1 = 3u2v + v3k = v(3u2 + v2k), (S17)

so v = ±1. Hence, multiplying (S17) by v yields

±1 = v = 3u2v2 + v4k ≥ k > 1,

a contradiction.

Case S.8 w ∈ {T ± U
√
k}
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From (S16) we have

y +
√
k = (T ± U

√
k)(u+ v

√
k)3 = (T ± U

√
k)

�
(u3 + 3uv2k) + (3u2v + v3k)

√
k
�

= (T (u3 + 3uv2k)± (Uk(3u2 + v3k)) + (T (3u2v + v3k)± U(u3 + 3uv2k))
√
k.

Therefore, by comparing coefficients of
√
k again yields

1 = T (3u2v + v3k)± U(u3 + 3uv2k). (S18)

Since k ≡ 4(mod 9) and U ≡ 0(mod 9), then 1 = T 2 − kU2 implies that

T ≡ ±1 (mod 81).

Hence, by (S18),
1 ≡ α(3u2 + 4v2)v (mod 9), (S19)

where α ≡ ±1(mod 9).

From (S19), αv ≡ ±1(mod 9), so

3u2 + 4 ≡ αv ≡ ±1 (mod 9).

Thus,
3u2 ≡ 4, 6 (mod 9),

which are impossible. This completes all cases.

Section 4.3

4.17 According to the hint, if
�∞

j=1(1/j) = d ∈ R. Then there is an N ∈ N such that
N ≤ d < N + 1. Also, note that

∞�

j=1

1

j
= 1 +

1

2
+

�
1

3
+

1

4

�
+

�
1

5
+

1

6
+

1

7
+

1

8

�
+ · · · > 1 +

1

2
+

1

2
+

1

2
+ · · ·

so each block has a sum bigger than 1/2. Let M ∈ N be chosen such that the number
of blocks larger than 1/2 satisfies M ≥ 2N . Then

d =
∞�

j=1

1

j
> 1 +

2M

2
≥ N + 1,

a contradiction.

4.19 By Exercise 3.37 on page 129, 1−ζp and 1−ζj
p
are associates for all j = 1, 2, . . . , p−1.

By Exercise 2.24 on page 68, we have the ideal equation

p−1�

j=1

(1− ζj
p
) = (p).

However, given the comment on associates,

(1− ζj
p
) = (1− ζp) = (λ),

so
(λ)p−1 = (p),

as required.
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4.21 If k ≡ 1(mod p), then congruence (4.23) on page 153 becomes

x(ζ−1
p

− ζp) ≡ 0 (mod (p)).

In the same fashion as in the elimination of the case k ≡ 0(mod p), we get that p
�� x,

contradicting the hypothesis.

4.23 First, we show that

f(x) =
x

ex − 1
+

x

2

is an even function, namely that f(x) = f(−x). We have

2f(−x) = −x

�
e−x + 1

e−x − 1

�
= −x

�
1 + ex

1− ex

�
= x

�
ex + 1

ex − 1

�
= 2f(x).

Therefore, by Definition 4.1,

x

ex − 1
+

x

2
= 1 +

∞�

n=2

Bn

n!
xn = 1 +

∞�

n=2

Bn

n!
(−x)n,

so
∞�

n=2

Bn

n!
[xn − (−x)n] = 0.

Therefore, the even terms subtract out and we are left with:

2
∞�

m=1

B2m+1

(2m+ 1)!
x2m+1 = 0,

which implies that each coefficient B2m+1 = 0, as required.

4.25 This is immediate from Definition 2.8 on page 83 and Definition A.11 on page 327,
since the different cosets of I in OF form the different residue classes modulo I.

4.27 This will follow from Exercise 2.47 on page 86 once we establish the result for any
prime power. The integers in OF that are not relatively prime to P

a are those divisible
by P. There are N(Pa−1) = (N(P))a−1 of these that are incongruent modulo P

a.
Thus,

Φ(Pa) = N(P)a −N(P)a−1 = N(Pa)

�
1− 1

N(P)

�
.

4.29 Since f is the product of d linear factors in its algebraic closure, then it has exactly
d roots there.

4.31 This follows from Exercises 4.28 and 4.30. Since the residue classes modulo I, rela-
tively prime to I, form a group of order Φ(I), then

αΦ(I) ≡ 1 (mod I),

for any α ∈ OF relatively prime to I. In particular, if I = P, a prime OF -ideal, then
Φ(P) = N(P)− 1, so

αN(P)−1 ≡ 1 (mod P).
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Section 4.4

4.33 Let F = Q(α) where α = 3
√
−2. Since |∆F | is minimal over all discriminants of bases

for F over Q, then by Theorem 2.7 on page 71,

disc{1, α , α2} = D2∆F ,

where D = |OF : Z[α]|. Also, we compute

disc{1, α , α2} = −108 = −22 · 33.

Since
|OF : Z| = |OF : Z[α]| · |Z[α] : Z| = 3,

then D must be odd. If D > 1 then 3
�� D. Since Z[α] = Z[α + 2] = Z[a], where

a = α + 2, we choose to work with the latter at this stage. Since 3
�� D, there must

exist a β ∈ Z[a] such that

β =
b0 + b1a+ b2a2

3
,

where 3 does not divide all of the integers bj for j = 0, 1, 2. Suppose that 3
�� b0 but

3 � b1. Then β−b0/3 = (b1a+b2a2)/3 ∈ OF . Also, γ = b1a2/3 = (β−b0/3)a−a3b2/3 ∈
OF since a/3 is an algebraic integer given that it is a root of

(3x− 2)3 + 2 = 27x3 − 54x2 + 36x− 6.

Therefore,
33NF (γ) = NF (3γ) = NF (b1a

2) = b31NF (a)
2 = −4b31,

so 3
�� b1, a contradiction. The other cases such as 3

�� b1 but 3 � b0 are handled
similarly. Thus, D = 1, disc{1, α , α2} = ∆F , and Z[α] = OF .

4.35 Since, for a primitive cube root of unity ζ3, we have

NF (β) = (a+ bα+ cα2)(a+ bζ3α+ cζ23α
2)(a+ bζ23α+ cζ43α

2),

then using the fact that
�2

j=0 ζ
j

3 = 0 we get

NF (β) = (a+ bα+ cα2)((a2 + 2bc)− (ab+ 2c2)α+ (b2 − ac)α2),

so, by simplifying,
NF (β) = a3 − 2b3 + 4c3 + 6abc.

4.37 Since (57 − 1)
�� (577 − 1) and 4

�� (57 − 1), then (57 − 1)/4 = 19531
�� (577 − 1).

4.39 Since 3(3239 − 1) = 3240 − 3 = x3 − 3, where x = 380, and NF (a + b 3
√
3) = a3 + 3b3,

for F = Q( 3
√
3), then NF (x− 3

√
3) = x3 − 3. An initial run shows that

gcd(3240 − 3, a3 + 3b3) = 479,

for a = 14, and b = 185, so 479|(3239 − 1).

4.41 n = 12358397 = 3361 · 3677.

4.43 n = 74299271 = 7789 · 9539.
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Section 4.5

4.45 Here r = 2, s = −3, and t = 153, for n = 2153 + 3. Thus, from (4.52), k = 77,
m = 277, and c = −6. We select d as in (4.51), to get d = 2. Thus,

f(x) = x2 + 6 with α =
√
6,

and F = Q(
√
6) having ring of integers Z[

√
6] a UFD. A smoothness bound need not

be chosen large since an initial run produces

gcd(a+ b · 277, n) = 5 for a = 3, b = 1,

and
gcd(a+ b · 277, n) = 11 for a = 15, b = 1,

so 5 and 11 are factors. In fact
2153 + 3 =

5 · 11 · 600696432006490087537 · 345598297796034189382757.

Section 5.1

5.1 That I ⊆ IOK ∩ F is clear. We now establish the reverse inclusion. By Remark 1.13
on page 26, there exists a β ∈ A such that βI ⊆ OF . Thus, by Exercise 3.31, there
exists an α ∈ A such that

αOK = βIOK .

Also, by Exercise 3.32,

βIOK ∩ F = αOK ∩ F ⊆ OF (α) ∩ F = βI,

so βIOK ∩F ⊆ βI, from which we get IOK ∩F ⊆ I. Hence, IOK ∩F = I as required.
The last statement in the exercise follows from the above result since

I = IOK ∩ F = JOK ∩ F = J.

5.3 Suppose that I =
�

n

j=1 P
aj

j
and J =

�
n

j=1 Q
bj

j
, where the Pj and Qj are distinct prime

OK-ideals, with aj , bj ∈ Z, and set fK/F (Pj) = fj , fK/F (Qj) = hj . Suppose further
that Pj = Qj for j = 1, 2, . . . ,m ≤ n, where possibly m = 0, meaning that I and J do
not agree on any of the prime factors. Then if pj = Pj ∩OF and qj = Qj ∩OF , then

NK/F (I)NK/F (J) =
n�

j=1

p
ajfj

j

n�

j=1

q
bjhj

j
=

m�

j=1

p
(aj+bj)fj
j

n�

j=m+1

p
ajfj

j
q
bjhj

j
= NK/F (IJ).

5.5 By Exercise 1.38, there exists an ideal H such that HJ = (α) for some α ∈ R. There-
fore, JH �⊆ αI, for if α ∈ αI, then α = ασ for some σ ∈ I, so by the cancellation
law, σ = 1 ∈ I, contradicting that I �= R. If we choose and fix a β ∈ H such that
βJ �⊆ αI, we may set γ = β/α ∈ F . This forces γJ = (β/α)J �⊆ I. Also, since β ∈ H
and HJ = (α), then for any δ ∈ J , βδ = αr for some r ∈ R. Hence, γJ ⊆ R.
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5.7 It suffices to prove this for a prime OF -ideal I = p by Exercise 5.3. Suppose that

pOK =
g�

j=1

P
ej

j
, where ej = eK/F (Pj) and g = gK/F (p).

Then

NK/F (p) =
g�

j=1

NK/F (Pj)
ej =

g�

j=1

p
ejfj = p

�
g

j=1 ejfj = p
n,

by Theorem 5.3 where fj = fK/F (Pj).

5.9 Set f(x) =
�

d

j=0 ajx
j with ad �= 0. Then, if a0 = 0, f(p) ≡ 0(mod p) for all primes p,

so we assume that a0 �= 0. If p1, p2, . . . pk are all of the primes that divide f(x), and

if c = a0
�

k

i=1 pi, then f(cy) = a0g(y) where

g(y) =
d�

j=0

aj

�
k�

i=1

pi

�j

aj−1
0 yj ≡ 1 (mod pi)

for all i = 1, 2, . . . , k. Thus, pi � g(y) for all such i. Therefore, |g(y)| = 1 for all
nonzero y ∈ Z. By Lagrange’s Theorem A.7, the congruences

g(y) ≡ 1 (mod p) and g(y) ≡ −1 (mod p)

each have at most d solutions each for any prime p, so there must exist a y ∈ Z such
that a p|g(y) for some prime p �= pi for any 1 ≤ i ≤ k, a contradiction.

5.11 We use Theorem 1.30 to conclude the following facts. If p ≡ 1(mod 4), then p splits
in Q(i) ⊆ Q(ζ2n). If p ≡ 3(mod 8), then p splits in Q(

√
−2) ⊆ Q(ζ2n), and if p ≡ 7

(mod 8), then p is split in Q(
√
2) ⊆ Q(ζ2n). Since p = 2 ramifies, we are done.

Section 5.2

5.13 If OK = OF [α], then O∗
K

= OK/m�
α,F

(α), by Theorem 5.8, so

(O∗
K
)−1 = O

−1
K

m�
α,F

(α) = OKm�
α,F

(α).

Conversely, if O∗
K

= OK/m�
α,F

(α), we need only show that any β ∈ OK is in OF [α].
However, by the Lagrange Interpolation Formula, there is a polynomial f(x) ∈ F [x]
such that f(α) = β. Hence, β ∈ F [α]. Therefore, β ∈ F [α] ∩OK = OF [α].

5.15 We use induction on n. If n = 1, then the result is clear. The induction hypothesis is
that the result holds for n− 1. Since

d(αn) = αd(αn−1) + αn−1
d(α),

then
d(αn−1) = (n− 1)αn−2

d(α),

by the induction hypothesis, so

d(αn) = (n− 1)αn−1
d(α) + αn−1

d(α) = nαn−1
d(α).
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5.17 By employing Theorem 5.7, it is straightforward to verify that I∗ = ( 14 ,
√
10
20 ). Thus,

I∗−1 = (20, 4
√
10). By part 1 of Lemma 5.4,

I∗−1 = (20, 4
√
10) = 2

√
10I = DF/Q(I) = IDF/Q,

so DF/Q = (2
√
10). Thus,∆ F/Q = (40) = (∆F ). Note that NF (2

√
10) = −40, but as

ideals, (−40) = (40), where∆ F = 40 is also given by Application 2.1 on page 77.

Section 5.3

5.19 (a) Since NK/F (I), NK/F (J) are OF -ideals, then the result follows from Corollary
1.7.

(b) If the desired norms are not relatively prime, there is a prime OF -ideal p dividing
both. Thus, pOK

�� NK/F (J)OK , so pOK is relatively prime to I. Therefore, no prime

above p occurs in the factorization of I. In particular, p does not divide NK/F (I), a
contradiction.

5.21 This proceeds much the same as in the proof of Theorem 5.12 on page 214. Let
α ∈ OK1 . Therefore, mα,K2(x)

�� mα,F (x), so there exists a monic f(x) ∈ OK2 [x] such
that

mα,F (x) = mα,K2(x)f(x).

Thus,
m�

α,F
(α) = m�

α,K2
(α)f(α),

so m�
α,F

(x) ∈ DL/K2
. Therefore, by Theorem 5.9, DK1/F

⊆ DL/K2
, namely

DL/K2

�� DK1/F
OL.

5.23 Suppose that pOL =
�

g

j=1 P
ej

j
for distinct prime OL-ideals Pj . Since we have that

p � NL/K(fα), then Pj � fα for all such j. By the Chinese Remainder Theorem for
ideals, there exists a β ∈ OK [α] such that

β ≡ 0 (mod fα) and β ≡ 1 (mod Pj) for all j = 1, 2, . . . g.

We may let β = g(α) for some polynomial g(x) ∈ OK [x]. Then, for any γ ∈ OL, we
may write γ = h(α)/g(α) for some h(x) ∈ OK [x]. Since gcd(βOL, pOL) = 1, there
exists an n ∈ N such that

g(α)n ≡ 1 (mod pOL).

Therefore,
γ ≡ g(α)n−1h(α) (mod pOL).

By setting k(α) = g(α)n−1h(α), we get the result.

5.25 Clearly we have
|α+ β| ≤ max{|α|, |β|} = |β|.

Also, since β = (α+ β)− α, then

|β| ≤ max{|α+ β|, | − α|},

and since |α| = | − α|, the latter implies that |β| ≤ |α+ β|, so

|α+ β| = |β|.
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Section 5.4

5.27 (a) Since χ(1) �= 0 and χ(1) = χ(1 · 1) = χ(1)χ(1), then χ(1) = 1.

(b) Since aq = a for all a ∈ Fq, then aq−1 = 1 for all a ∈ F∗
q
. Thus,

1 = χ(1) = χ(aq−1) = χ(a)q−1.

(c) Since
1 = χ(1) = χ(a−1a) = χ(a−1)χ(a),

then χ(a−1) = χ(a)−1. By part (b), |χ(a)| = 1, so χ(a) = χ(a)−1.

5.29 We have

χλ(ab) = χ(ab)λ(ab) = χ(a)χ(b)λ(a)λ(b) = χ(a)λ(a)χ(b)λ(b) = χλ(a)χλ(b),

so χλ is a character. Also,

χ−1(ab) = (χ(ab))−1 = (χ(a)χ(b))−1 = χ−1(a)χ−1(b),

so χ−1 is a character. That Ch(F×
q
) is a group now follows from Proposition A.1 on

page 321.

5.31 Let S =
�

χ∈Ch(F×
q
) χ(a). Since a �= 1, then by Exercise 5.30, there exists a λ ∈ Ch(F×

q
)

such that λ(a) �= 1. Thus,

λ(a)S =
�

χ∈Ch(F×
q
)

λ(a)χ(a) =
�

χ∈Ch(F×
q
)

λχ(a) = S,

so (λ(a)− 1)S = 0, which implies that S = 0 since λ(a)− 1 �= 0.

5.33 If p|k, then ζjk
p

= 1 for all j, so

G(k) =
p−1�

j=0

�
j

p

�
= 0 =

�
k

p

�
G(1).

—see [53, Exercise 4.5, p. 187], as well as Exercises 5.27 and 5.31.

If p � k, then
�
k

p

�
G(k) =

p−1�

j=0

�
jk

p

�
ζjk
p

=
p−1�

�=0

�
�

p

�
ζ�
p
= G(1),

where the penultimate equality comes from the fact that � goes over all residues
modulo p as jk does. Hence,

G(k) =

�
k

p

�
G(1).

5.35 This is immediate from Exercises 5.33–5.34.
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Section 5.5

5.37 If p is unramified in Kj for j = 1, 2 and P is any prime OK-ideal over p, we need
only show that eK1K2/F

(P) = 1. By Exercise 5.8 on page 195, there exists a normal
extension field L of F containing K1K2. Let Q be a prime OL-ideal above P. Then
TQ(L/F ) is the is the inertia group of Q with inertia field TQ(L/F ). By part (c) of
Corollary 5.17 on page 227, Kj ⊆ TQ(L/F ) for j = 1, 2. Since K1K2 is the smallest
field containing both K1 and K2, then K1K2 ⊆ TQ(L/F ), so Q ∩ K1K2 = P is
unramified over F .

To prove the last assertion, use the above argument with DQ(L/F ) taking the role of
TQ(L/F ).

5.39 Since NF/Q(λ) = p, by Exercise 2.24 on page 68, there exists an a ∈ Z such that

γ ≡ a (mod λ)

by Exercise 4.32 on page 164. Hence,

γp ≡ ap (mod λp),

so by taking z = ap, we are done. Since p = λp−1u for some u ∈ UF , then

γp ≡ z (mod p)

as well.

Section 5.6

5.41 First we show that there exists exactly one prime OF -ideal p above p, which is totally
ramified in F . Let p1 and p2 be two prime OF -ideals above p. From Lemma 5.7 on
page 221, we know that

Dp1(F/Q) = Dp2(F/Q) = Dp(F/Q),

—see also Remark 5.5 on page 222. By Theorem 5.4 on page 189, p is unramified in
Tp(F/Q) = T , so p � ∆T by Corollary 5.8 on page 210. By Theorem 3.15 on page 126,
∆T

�� ∆F , which is a power of p. Hence, q � ∆T for any q �= p. Therefore,∆ T = 1 and
T = Q by Corollary 5.9 on page 213. Also, since Z = Zp(F/Q) ⊆ T , then Z = Q, so
p is fully ramified in F .

Since Tp(F/Q)/V1 is cyclic by part (e) of lemma 5.15 on page 247 and since V1 = 1,
by the above, then Tp(F/Q) = Gal(F/Q) is cyclic.

5.43 Let τ ∈ DP(K/F ) and σ ∈ Vj . Then for α ∈ OK , we have

ατστ
−1

≡ ((ατ )σ)τ
−1

≡ (ατ )τ
−1

≡ α (mod P
j+1),

by the definition of the Vj . Hence, τστ−1 ∈ Vj , which is therefore normal in
DP(K/F ).

5.45 It suffices to prove the result for K/F totally ramified at P, since the Vj for P in
K/F is the same as the Vj for P in K/T where T = TP(K/F ). Thus, we assume that
F = T , so |K : F | = eK/F (P) = e.
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Let α ∈ P− P
2, then from Claim 5.7 on page 204, it follows that

{1, α , α2, . . . , αe−1}

is an integral basis for KP/Fp, where KP = OK/P and Fp = OF /p with p = P∩OF .
Since

|KP : Fp| = e = |K : F |,

thenOK = OF [α]. Hence, from Theorem 5.8 on page 200 and Lemma 5.6 on page 202,
we have that

δK/F (α)OK = DK/F .

Thus, Ps
�� δK/F (α), but P

s+1 � δK/F (α).

Let σ ∈ Vj−Vj+1. Thus, α−ασ ∈ P
j+1−P

j+2, by the definition of the Vj . Therefore,
s is the exact power of P dividing (α− ασ)OK . Since

mα,F (x) =
�

σ∈Gal(K/F )

(x− ασ),

then
m�

α,F
(x) =

�

σ �=1

(x− ασ),

so
δK/F (α) =

�

σ �=1

(α− ασ).

If we let
OK(α− ασ) = OKP

s(σ),

then

s =
�

σ �=1

s(σ) =
m−1�

j=0

�

σ∈Vj

σ �∈Vj+1

s(σ) =
m−1�

j=0

(|Vj | − |Vj+1|)(j + 1) =

(|V0| − |V1|) + 2(|V1| − |V2|) + 3(|V2| − |V3|) + · · ·+m(|Vm−1| − 1) =

|V0|+ |V1|+ |V2|+ · · ·+ |Vm−1| −m =
m−1�

j=0

(|Vj | − 1),

which is Hilbert’s formula.

5.47 By part 4 of Lemma 5.4 on page 197, with J = OK , we get that TK/F (OK) is the
least common multiple of the OF -ideals dividing DK/F . In other words, the biggest
OF -ideal dividing DK/F is TK/F (OK)OK . So, if TK/F (OK) = OF and p

�� DK/F for
some prime OF -ideal p, then DK/F ⊆ p. However, from part 4 of the aforementioned
lemma again,

OF = TK/F (OK) ⊆ DK/F ,

a contradiction to the primality of p. Conversely, if TK/F is not onto, then given that
it is the lcm of the OF -ideals dividing DK/F , there exists a prime OF -ideal dividing
DK/F .
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5.49 By Exercise 5.47, p � DK/F for any prime OF -ideal. By part 3 of Lemma 5.4,

∆K/FOK = NK/F (DK/F )OK = D
n

K/F
OK .

Thus, if pn
�� ∆K/F , then p

�� DK/F , a contradiction. Therefore, if OK
∼= OF [G] as an

OF [G]-module, then K/F is tamely ramified by Exercise 5.46.

Section 5.7

5.51 Let a ∈ N such that gcd(561, a) = 1. Thus, since 561 = 3 · 11 · 17, then

a2 ≡ 1 (mod 3), a10 ≡ 1 (mod 11), and a16 ≡ 1 (mod 17).

Thus,
a560 ≡ (a2)280 ≡ 1 (mod 3), a560 ≡ (a10)56 ≡ 1 (mod 11),

and
a560 ≡ (a16)35 ≡ 1 (mod 17).

Hence,
a561 ≡ a (mod 561),

for all a ∈ N. Finally, since j561 ≡ j (mod 561) for j = 3, 11, 17, then the result is
secured.

5.53 If x = y, then
1

q

�

α∈Fq

ζ
TFq/Fp (α(x−y))
p =

1

q

�

α∈Fq

1 = 1.

If x �= y, then β = α(x− y) ranges over Fq as α does. Therefore,

1

q

�

α∈Fq

ζ
TFq/Fp (α(x−y))
p =

1

q

�

β∈Fq

ζ
TFq/Fp (β)
p =

1

q
G1(�) = 0,

where the last equality comes from Exercise 5.52.

Section 6.1

6.1 Let γ be a generator of F∗
q
(via the hint, see Theorem A.8) and set x = γa and α = γb.

Then xn = α if and only if γa = γbn, and this is equivalent to saying that

a ≡ bn (mod q − 1).

Via the hint, by Theorem A.24 on page 340, the latter holds if and only if a = gt for
some t ∈ Z. Hence, xn ≡ α(mod p) has a solution x ∈ OF if and only if

α(q−1)/g ≡ (γa)(q−1)/g ≡ (γgt)(q−1)/g ≡ γ(q−1)t ≡ 1 (mod p).

6.3 By Proposition 6.1,

π = π(NF (2)−1)/3 ≡
�π
2

�

3
(mod 2), (S20)

Also, by Exercise 6.2,
�
2

π

�

3

= 1 if and only if β3 ≡ 2 (mod π),
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Therefore,

β3 ≡ 2 (mod π) if and only if
�π
2

�

3
= 1,

by the Cubic Reciprocity Law. Thus, by Congruence (S20), this is equivalent to

π ≡ 1 (mod 2).

6.5 If α = a + bζ3, then the associates are: α = a + bζ3, ζ3α = −b + (a − b)ζ3, ζ23α =
(b− a)− aζ3, −α = −a− bζ3, −ζ3α = b+ (b− a)ζ3, and −ζ23α = (a− b) + aζ3.

6.7

J(χ,χ−1) =
�

a+b=1

a,b∈Fq

χ(a)χ−1(b) =
�

a+b=1

b�=0

χ
�a
b

�
=

�

a �=1

χ

�
a

1− a

�
.

If we set a/(1− a) = c and c �= 1, then a = c/(1 + c). Hence,

J(χ,χ−1) =
�

c �=−1

χ(c),

and by Exercise 5.28, this equals −χ(−1).

6.9 By Exercise 5.30, there exists a character of order n on Fp. Clearly, there are at most n
distinct characters of order dividing n. Thus, χj for 1 ≤ j ≤ n are all of the characters
of order dividing n. If α ∈ F∗

p
and f(x) = 0 is not solvable in Fp, then by Exercise 5.32

there exists a character χ of order n with χ(α) �= 1. Thus, if we set S =
�

n

j=1 χ
j(α),

then trivially Sχ(α) = S, so S(χ(α)− 1) = 0. Since χ(α) �= 1, then S = 0 = Nf,p. If
α ∈ F∗

p
and f(x) = 0 is solvable in Fp, then there exists a β ∈ Fp such that βn = α.

Therefore,
χ(α) = χ(βn) = χ(β)n = 1,

since χn = �. This implies that

n�

j=1

χ(α) = n = Nf,p.

Lastly, if α = 0, then
n�

j=1

χ(α) = �(0) = 1 = Nf,p.

This proves the first assertion. In particular, if p > 2 = n, let χp(a) = (a
p
). Then

Nf,p = �(a) + χp(a) = 1 +

�
a

p

�
.

6.11 Let g(x) = x2 − a and h(x) = x2 − b. Then

Nf,p =
�

a+b=1

a,b∈Fp

Ng,pNh,p,
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so by the last part of Exercise 6.9, this equals

p+
p−1�

a=0

�
a

p

�
+

p−1�

b=0

�
b

p

�
+

�

a+b=1

a,b∈Fp

�
a

p

��
b

p

�
.

A fact from elementary number theory is that the first two sums are equal to zero
(see the solution to Exercise 5.33), so we have only to evaluate the last sum. For this
we employ Exercise 6.7.

J(χ,χ−1) = −χ(−1) = −
�
−1

p

�
= −(−1)(p−1)/2,

from which the result follows.

6.13 If (p− 1)
�� k, then since xp−1 ≡ 1(mod p), by Fermat’s Little Theorem, we have that

the sum is equal to p− 1 ≡ −1(mod p). Now assume that (p− 1) � k, and let α ∈ F∗
p

be a generator—see Theorem A.8 on page 331. Then

p−1�

x=1

xk =
p−2�

j=0

αjk =
p−2�

j=0

(αk)j =
1− αk(p−1)

1− αk
,

where the last equality follows from Theorem B.4 on page 347. By Fermat’s Little
Theorem, the numerator vanishes, but since (p − 1) � k, then the denominator does
not.

6.15 This follows since P
3 = (10 + 3

√
−27), and 73 = 102 + 27 · 32.

Section 6.2

6.17 By Proposition 6.2 on page 278,

� a

π

�

4

2
=

�
a2

π

�

4

≡ a(NF (π)−1)/2 (mod π).

By taking complex conjugates, we get the same congruence modulo π. Thus,
� a

π

�

4

2
≡ a(NF (π)−1)/2 ≡ a(p−1)/2 ≡

�
a

p

�
(mod p).

Therefore, � a

π

�

4

2
=

�
a

p

�
.

6.19 The proof is essentially the same as that given in the solution of Lemma 6.1 on
page 263.

6.21 By part (a) of Lemma 6.2 on page 264,

G2(χ) = G(χ2)J(χ,χ ).

However, by Exercise 5.54 on page 260, and the fact that χ2 = χ−2 = χ2, we have

G(χ2) =
√
p,

and by Lemma 6.5 on page 280,

J(χ,χ ) = (−1)(p+3)/4π.
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6.23 Since p is a prime in Z[i], then
�

a

p

�

4
= 1 by Exercise 6.16, so by part (b) of Proposi-

tion 6.3 on page 279, a is a quartic residue modulo p. Furthermore, if

a ≡ z2 (mod p)

for some z ∈ Z, then certainly (a
p
) = 1. Conversely, if (a

p
) = 1, then a ≡ z2 (mod p)

for some z ∈ Z. By the part just proved, a is a quartic residue modulo p, so

a ≡ α4 (mod p)

for some α = a+ bi ∈ Z[i], as well. Thus, α2 ≡ ±z (mod p). Hence, for some c, d ∈ Z,
we have

a2 − b2 + 2abi = ±z + (c+ di)p,

so by equating coefficients,

a2 − b2 ± z + pc = 0, and 2ab = pd.

Therefore, since p is odd, then either p
�� a or p

�� b. If p
�� a, then

b2 ≡ ±z (mod p),

so
a ≡ α4 ≡ z2 ≡ b4 (mod p).

Similarly, if p
�� b, then

a ≡ α4 ≡ a4 (mod p).

6.25 By Exercise 6.17, (−1
π
)4 = ±1, so by Exercise 6.18 we must have (−1

π
)4 = 1, since

( 2
p
) = 1 from (A.10) on page 342. Therefore,

�
2

π

�

4

=

�
−2b2

π

�

4

,

and by Exercise 6.17 and Proposition 6.3, this equals

�
−p+ a2

π

�

4

=

�
a2

π

�

4

=
� a

π

�

4

2
=

�
a

p

�
,

as required.

6.27 By part (a) of Lemma 6.2 on page 264,

J(χ,χ )2 =
G(χ)4

G(χ2)2
.

However, since χ2 is a quadratic character, then G(χ2) = ±√
p, and by Claim 6.1 on

page 265
G(χ)4 = χ(−1)pJ(χ,χ )J(χ,χ 2).

Thus,
J(χ,χ )2 = χ(−1)J(χ,χ )J(χ,χ 2),

so dividing through by J(χ,χ ) then multiplying through by χ(−1) we get,

J(χ,χ 2) = χ(−1)J(χ,χ ),
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which is part (a), by Lemma 6.5 on page 280. For part (b), we use part (a) in the
following.

J(χ3, χ2) = J(χ3(χ3)2) = χ3(−1)J(χ3, χ3) = χ(−1)J(χ,χ ) = π,

where the last equality comes from Lemma 6.5. Therefore, χ(α) ≡ α(p−1)/4 ≡ αm

(mod π) implies

−J(χ3, χ2) ≡
p−1�

j=1

j3m(1− j)2m (mod π),

and by the Binomial Theorem this is congruent to

p−1�

j=1

j3m
m�

k=0

(−1)k
�
2m

k

�
j2m−k ≡

m�

k=0

(−1)k
�
2m

k

� p−1�

j=1

j5m−k (mod π).

However, by Exercise 6.13 on page 277,
�

p−1
j=1 j

5m−k ≡ 0(mod p) for any k < m, since

in that case, 5m− k < p− 1. Also, if k = m, then
�

p−1
j=1 j

5m−k = −1. Hence,

J(χ3, χ2) ≡ (−1)m
�
2m

m

�
(mod π).

Therefore,

2a = π + π ≡ π = J(χ3, χ2) ≡ (−1)m
�
2m

m

�
(mod π).

By taking complex conjugates, we also get

2a ≡ (−1)m
�
2m

m

�
(mod π).

Thus,

2a ≡ (−1)m
�
2m

m

�
(mod p),

which is part (b).

Section 6.3

6.29 By Exercise 5.34, quadratic Gauss sums are pure. However, suppose that χ has order
k > 2, q = p and g is a primitive root modulo p such that g ≡ 1(mod 4k2). Let
σg ∈ Gal(Q(ζ4k2p)/Q) be defined by σg(ζ4k2p) = (ζ4k2p)

g. Since G(χ) ∈ Q(ζkp), by
part (a) of Proposition 6.7, then by Exercise 5.52,

�
G(χ)k

�σg

= G(χ)k,

so since σg|Q(ζkp) ∈ Gal(Q(ζpk)/Q(ζk)) for g = 1, 2, . . . , p − 1, then G(χ)k ∈ Q(ζk).

Thus, if r = G(χ)/
√
p is a root of unity, then r4k

2
= 1 since r2k ∈ Q(ζk). Thus,

rσg = r. However,

r = rσg =
G(χ)σg

√
pσg

=
χ(g)G(χ)

±√
p

= ±χ(g)r.

Therefore, χ(g) = ±1, contradicting that χ has order k > 2.

This solution is due to R. Evans [17].
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6.31 If |∆F | = � > 3 a prime, then choose r ∈ Z such that r �≡ 1(mod �) and ( �
r
) = 1.

Then rR ≡ R (mod �). Thus, �
�� R(r−1), which forces �

�� R. But R+N =
�

�−1
j=1 j ≡ 0

(mod �), so �
�� N . Now let∆ F = d0d1, where d0 is a discriminant, with |d0| an odd

prime, or one of 4 or 8, and d1 ∈ Z with |d1| �= ±1. Let

f : R �→ (Z/|d0|Z)∗ ,

be the natural map r �→ r. Then f is onto since if (d1
r
) = −1, then

�
∆F /d1

r

�
= −1,

given that
�
∆F

r

�
= 1, so all elements of (Z/|d0|Z)∗ are covered. Hence,

| ker(f)| = φ(|d1|)/2.
Therefore, among the φ(|∆F |)/2 elements in R, exactly φ(|d1|)/2 reduce, modulo |d0|,
to a given element in (Z/|d0|Z)∗. Hence, if |d0| is an odd prime, then

R ≡ 1

2
φ(d1)

|d0|−1�

a=1

a ≡ 0 (mod |d0|).

If d0 = −4, then R ≡ φ(d1)(1 + 3)/2 ≡ 0(mod |d0|), and if d0 = ±8, then R ≡
φ(d1)(1 + 3 + 5 + 7)/2 ≡ 0(mod |d0|). Since d0

�� R for all odd primes and for 4 or 8,
when they occur, then |∆F |

�� R. Similarly, |∆F |
�� N .

The above solution is due to Lemmermeyer [38].

Section 6.4

6.33 By Example 5.8 on page 190,

(1− ζr)
r−1 = (r)

in OF , so
(1− ζr)

σ = (1− ζr)

for all σ ∈ Gal(F/Q). Thus,

(1− ζr)
τ ⊆ (1− ζr).

By Exercise 6.32, G(α) = ±ζj
r
ατ ≡ ±1(mod r). Since α is primary, then

α ≡ z (mod (1− ζr)
2),

for some z ∈ Z, so

ατ ≡ zτ ≡ z
�

r−1
j=1 j = zr(r−1)/2 ≡ (±1)r ≡ ±1 (mod (1− ζr)

2),

where the equality comes from Theorem B.4 on page 347. Therefore,

±1 ≡ ±ζj
r
ατ ≡ ±ζj

r
(mod (1− ζr)

2),

so
ζr ≡ ±1 (mod (1− ζr)

2). (S21)

Therefore, since ζr = 1− (1− ζr) and j > 1 by (S21), then by the Binomial Theorem,

±1 ≡ ζj
r
≡ 1− j(1− ζr) (mod (1− ζr)

2).

If the plus sign holds, then (1 − ζr)
�� 2, so r

�� 2 by Exercise 2.46 on page 86, a
contradiction since r > 2. Thus,

1− j(1− ζr) ≡ 1 (mod (1− ζr)
2),

which implies that (1 − ζr)
�� j, from which we get that r

�� j by Exercise 2.46 again.
This means that ζj

r
= 1, so we have the result.
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