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Preface

This is the second edition of a text that is intended for a one-semester course in algebraic
number theory for senior undergraduate and beginning graduate students. The Table of
Contents on pages vii—viii is essentially self-descriptive of each chapter’s contents, requir-
ing no need for repetition here. What differs from the first edition deserves elucidation.
Comments from numerous instructors and students over more than a decade since the first
edition appeared have given way to a new style, methodology, and presentation.

The focus has changed from the first edition approach of introducing algebraic numbers
and number fields in the first two chapters and leaving ideals until Chapter 3, to the second
edition strategy of looking at integral domains, ideals and unique factorization in Chapter
1 and field extensions including Galois theory in Chapter 2. This changes the first edition
method of having the entirety of Galois theory relegated to an appendix and bringing it,
in this edition, to the main text in a more complete, comprehensive, and involved fashion.
Chapter 3 in this edition is devoted to the study of class groups, and as a new feature, not
touched in the first edition, we include the study of binary quadratic forms and comparison
of the ideal and form class groups, which leads into the general ideal class group discussion
and paves the way for the geometry of numbers and Dirichlet’s Unit Theorem. In the first
edition, this was done in Chapter 2 along with applications to the number field sieve. In this
edition, the applications are put into a separate Chapter 4 including the number field sieve in
§4.5, introduced via §4.4 on factoring, including Pollard’s cubic factoring algorithm, which is
more comprehensive than that of the first edition. In turn, §4.1-84.3 are applications leading
to the latter that involve solutions of Diophantine equations including Bachet, Fermat, and
prime power representation. This includes Kummer’s proof of Fermat’s Last Theorem (FLT)
for regular primes, Case I, which was put into Chapter 3 in the first edition. This edition
maintains the inclusion of Bernoulli numbers, the Riemann zeta function, and connections
via von Staudt—Clausen to the infinitude of irregular primes. Applications also appear at
the end of Chapter 5 with an overview of primality testing and, as an application of the
Kronecker—-Weber Theorem, Lenstra’s primality test employing the Artin symbol. A special
case of this test is presented as the Lucas—Lehmer test for Mersenne primes.

Chapter 5 replaces Chapter 4 of the first edition in its discussion of ideal decomposition in
number fields but spreads out the number of sections to more evenly present the material.
One feature of the second edition that distinguishes it from the first is that there is much
less emphasis on using exercises with the framework of proofs in the main text. Exercises
are referenced in the proofs only when they represent material that is routine and more
appropriate for a student to do. Throughout the text, this is one of the major changes. In
particular, in the proof of the Kronecker—-Weber Theorem, as well as in the proofs of the
reciprocity laws in Chapter 6, what were exercises in the first edition are now explained in
full in the main text. Moreover, exercises in this edition are designed to test and challenge
the reader, as well as illustrate concepts both within the main text as well as extend those
ideas. For instance, in the exercises for §2.1, Galois theory is expanded from the number
field case to finite fields and general fields of characteristic zero which is then invoked in
85.4 to discuss residue class fields and connections with the Frobenius automorphism. Thus,
the reader is led at a measured pace through the material to a clear understanding of the
pinnacles of algebraic number theory. What is not included from the first edition is any
separate discussion of elliptic curves. This is done to make the text more self-contained
as a one-semester course for which the addition of the latter is better placed in a related
course such as given in [54]. Also, the numbering system has changed from the first edition
consecutive numbering of all objects to the standard method in this edition.

ix



X Algebraic Number Theory

& Features of This Text

e The book is ideal for the student since it is exercise-rich with over 310 problems. The
more challenging exercises are marked with the symbol Y. Also, complete and detailed
solutions to all of the odd-numbered exercises are given in the back of the text. Throughout
the text, the reader is encouraged to solve exercises related to the topics at hand. Complete
and detailed solutions of the even-numbered exercises are included in a Solutions Manual,
which is available from the publisher for the qualified instructor.

e The text is accessible to anyone, from the senior undergraduate to the research scientist.
The main prerequisites are the basics of a first course in abstract algebra, the fundamentals
of an introductory course in elementary number theory, and some knowledge of basic matrix
theory. In any case, the appendices, as described below, contain a review of all of the
requisite background material. Essentially, the mature student, with a knowledge of algebra,
can work through the book without any serious impediment or need to consult another text.

e There are more than forty mini-biographies of those who helped develop algebraic number
theory from its inception. These are given, unlike the footnote approach of the first edition,
in boxed highlighted text throughout, to give a human face to the mathematics being
presented, and set so they do not interfere with the flow of the discourse. Thus, the reader
has immediate information at will, or may treat them as digressions, and access them later
without significantly interfering with the main mathematical text at hand. Our appreciation
of mathematics is deepened by a knowledge of the lives of these individuals. I have avoided
the current convention of gathering notes at the end of each chapter, since the immediacy
of information is more important.

e There are applications via factoring, primality testing, and solving Diophantine equations
as described above. In §4.5, we also discuss the applications to cryptography.

e The appendices are given, for the convenience of the reader, to make the text self-
contained. Appendix A is a meant as a convenient fingertip reference for abstract algebra
with an overview of all the concepts used in the main text. Appendix B is an overview
of sequences and series, including all that is required to develop the concepts. Appendix
C consists of the Greek alphabet with English transliteration. Students and research math-
ematicians alike have need of the latter in symbolic presentations of mathematical ideas.
Thus, it is valuable to have a table of the symbols, and their English equivalents readily
at hand. Appendix D has a table of numerous Latin phrases and their English equivalents,
again important since many Latin phrases are used in mathematics, and historically much
mathematics was written in Latin such as Bachet’s Latin translation of Diophantus’ Greek
book Arithmetica.

e The list of symbols is designed so that the reader may determine, at a glance, on which
page the first defining occurrence of a desired notation exists.

e The index has over two thousand entries, and has been devised in such a way to ensure
that there is maximum ease in getting information from the text. There is maximum cross-
referencing to ensure that the reader will find ease-of-use in extracting information to be
paramount.

e The bibliography has over seventy entries for the reader to explore concepts not covered in
the text or to expand knowledge of those covered. This includes a page reference for each
and every citing of a given item, so that no guesswork is involved as to where the reference
is used.

e The Web page cited in the penultimate line will contain a file for comments, and any
typos/errors that are found. Furthermore, comments via the e-mail address on the bottom
line are also welcome.
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Suggested Course Outlines

A glance at the Table of Contents will reveal that there is a wealth of material beyond
a basic course in algebraic number theory. This section is intended for the instructor, by
giving several routes from a course in the basics of algebraic number theory to a more
advanced course with numerous applications, as well as other aspects such as Kummer’s
proof of FLT for regular primes, and advanced reciprocity laws.

Chapters 1 through 3 are essential as a foundation, whereas Chapter 4 is optional, and the
instructor may skip it or add any section as an application of the material in the previous
chapters. §4.4-§4.5 go together as advanced material on factoring, with §4.4 preparatory
material using Pollard’s algorithm to set the stage for the description of the number field
sieve in §4.5.

In §5.1-85.4, the groundwork is laid for ramification theory. However, in §5.5, the theory of
Kummer extensions and applications to Kummer’s proof of FLT for regular primes in the
second case may be eliminated from a basic course in algebraic number theory. §5.6 on the
proof of the Kronecker—Weber theorem, is a significant application of what has gone before,
but is again not necessary for a basic course. §5.7 is an applications section on primality
testing.

In a bare-bones course, one does not need to proceed into Chapter 6. However, the chap-
ter illustrates some of the pinnacles of algebraic number theory with proofs of the cubic,
biquadratic, and Eisenstein reciprocity laws, as well as development of the Stickelberger re-
lation. In a more advanced course, these topics should be included. The following diagram
is a schematic flow-chart to illustrate the possible routes for the course, from the most basic
course to one filled with applications.

XV
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Chapter 1

Integral Domains, Ideals, and
Unique Factorization

Take care of your body with steadfast fidelity. The soul must see through these eyes
alone, and if they are dim, the whole world is clouded.

Johann Wolfgang von Goethe (1749-1832), German poet, novelist, and
dramatist

In this chapter, we introduce integral domains, and develop the concepts of divisibility,
irreducibility, and primes which we apply to Dedekind domains. This preamble allows us to
develop Noetherian, principal ideal, and unique factorization domains later in the chapter
thereby setting the foundation for the introduction of algebraic number rings and number
fields. The reader should be familiar with some basic abstract algebra, such as groups, rings,
and fields and their properties, which are reviewed in Appendix A, starting on page 319,
for convenience and finger-tip reference.

1.1 Integral Domains

In order to define concepts in the sequel, we will need the following.
Definition 1.1 — Units

An element « in a commutative ring R with identity 1 is called a unit in R when there is
a 0 € R such that a8 = 1z. The multiplicative group of units in R is denoted by p—see
Exercise 1.7 on page 6.
Example 1.1 In Z[v2] = R, 1 ++/2 is a unit, since

(1+V2)(-1+V2) =1 = 1.

For the following, recall that a zero divisor in a commutative ring R is a nonzero element
a € R such that aff = 0 where 5 # 0.

Definition 1.2 — Integral Domains

An integral domain is a commutative ring D with identity 1p, having no zero divisors. In
particular, if every nonzero element is a unit, then D is a field.

1



2 1. Integral Domains, Ideals, and Unique Factorization

Application 1.1 — The Cancellation Law

One of the most important properties of an integral domain D is that the cancellation law
holds, namely if o, € D with a nonzero and aff = oy, then g = ~.

Example 1.2 The ordinary or rational integers
z={..,-2,-1,01,2,...}

provide us with our first example of an integral domain.

Example 1.3 For any nonsquare integer n,
Zlvn) ={a+bVD:a,be 7}

is an example of an integral domain. For example, if n = —1, we have the Gaussian
integers. Indeed, n = —1 yields v/—1 = i which is an example of a special kind of unit, the
generalization of which we now define.

Definition 1.3 — Primitive Roots of Unity

For m € N = {1,2,3,...} the natural numbers (,, denotes a primitive m™ root of unity,
which is a root of 2™ — 1, but not a root of z% — 1 for any natural number d < m.

th

Example 1.4 With reference to Example 1.3, where n = —1, v/—1 = ¢ = (4 is a primitive
fourth root of unity, since it is a root of 2* — 1, but not root of 27 — 1 for j = 1,2, 3. Also,

G=(-1++v-3)/2

is a primitive cube root of unity, since it is a root of 3 — 1, but clearly not a root of 22 — 1
orx—1.

Example 1.5 Suppose that p is a prime and ¢, is a primitive p-th root of unity. If we set

p—1
— J
r= ZCP
=0

then
p—1 p—1
G = Gt =Y =1 (1.1)
§=0 §=0

Thus, if z # 0, dividing through (1.1) by z gives {, = 1, a contradiction. Thus,
I+G+G+-+¢ =0

This fact will prove useful when discussing notions surrounding roots of unity later in
the text—see Exercise 2.25 on page 69, for instance. Also, we generalize this example in
Exercise 6.28 on page 310.



1.1. Integral Domains 3

Example 1.3 is a motivator for the more general concept, which later turns out to be the
so-called “ring of integers of a quadratic field”—see Theorem 1.28 on page 45.

Application 1.2 — Quadratic Domains and Norms

If n is a nonsquare integer, then Z[y/n] is an integral domain as given in Example 1.3, where
we note that Z[/n] is a subset of the field Q(y/n). We call domains in Q(y/n) quadratic
domains. There is a slightly larger subset of Q(4/n) that is also an integral domain when
n = 1(mod 4)—see Exercise 1.1 on page 6

2[5 covm

2

Now we may combine Example 1.3 with this application to describe some special quadratic
domains as follows. Define

Zw,] = {a+ bwy, : a,b € Z},

where

vn if n # 1(mod 4).

Then Z|w,] is a quadratic domain.

w { (I1++n)/2 ifn=1(mod 4),

Another concept we will see in greater generality later, but applied here to quadratic do-
mains, is the quadratic norm N : Q(y/n) — Q via

N(a+byn) = (a +byn)(a — by/n) = a®> — nb* € Q.
In particular, by Exercise 1.3
a € Uz, if and only if N(a) = £1.

We will be using the concept of a norm throughout our discussion to establish properties
of, in this case, quadratic domains, or in general, rings of integers, that we have yet to
define—see Definition 1.30 on page 36.

The notion of divisibility of elements in an integral domain is a fundamental starting point
for understanding how algebraic number theory generalizes the notions of “divisibility,”
“primality,” and related concepts from the integers Z to other integral domains such as
Z|wn).

Definition 1.4 — Divisors and Trivial Factorizations

If o, € D an integral domain, then « is said to be a divisor of 3, if there exists an element
v € D such that 8 = a7y, denoted by « | B. If a does not divide 3, then we denote this by
at . If B = ary, where either « € $p or v € Up, then this is called a trivial factorization

of 3.

Example 1.6 Consider the notion of units given in Definition 1.1 on page 1 and the
illustration given in Example 1.1. Then we have that both (14 +v/2) | 1 and (=1 + v/2) | 1.
Indeed, this may be said to characterize units in D, namely

a s a unit in an integral domain D if and only if « ’ 1.

This may be used as an alternative to that of Definition 1.1. The following notion allows
for the introduction of a different approach.



4 1. Integral Domains, Ideals, and Unique Factorization

Definition 1.5 — Associates

If D is an integral domain and «,8 € D with « | B and B | a, then « and 8 are said to be
associates, and we denote this by a ~ . If @ and [ are not associates, we denote this by

a o B.

Example 1.7 From Definition 1.5 and Example 1.6, we see that « is a unit in an integral
domain D if and only if a ~ 1. Furthermore, if @ ~ § for any «,f € D, then there is a unit
u € D such that a = uf. To see this, since « ‘ B, then there is a v € D such that 8 = va.
Conversely since ‘ a, there is a § € D such that a = §3. Hence, a = §3 = dva, so by the
cancellation law exhibited in Application 1.1 on page 2, 1 = 67, so § = v~} = u is a unit
and o = uf.

Example 1.8 In Z[/10], 2 + /10 ~ 16 + 51/10 since

16 +5v10 = (2 + V10)(3 + V10),
so (24 +/10) | (16 4 5v/10), and

2+ /10 = (16 4+ 5v10)(—3 + V/10)
so (16 4+ 5v/10) | (2 + V/10).

Example 1.9 Since

6 = (4+V10)(4 — V10),
then (4 £ v/10) | 6 in Z[v/10].

Notice that 6 = 2 - 3 so it appears that 6 does not have a “uniqueness of factorization”
in Z[+/10] in some sense that we now must make clear and rigorous. Now we develop the
notions to describe this phenomenon which is distinct from Z where 6 does have unique
factorization via the Fundamental Theorem of Arithmetic. In fact, in Z, a prime, is defined
to be an integer p such that the only divisors are &1 and £p. Thus, primes satisfy that

if p ‘ ab, then either p ’ a or p ’ b (1.2)
—see [63, Lemma 1.2, p. 32]. Also, primes in Z satisfy that
if p=ab, then a = £1 or b = +£1. (1.3)

The following generalizes property (1.3) to arbitrary integral domains. Then we will discuss
property (1.2) and show how (1.2)-(1.3) generalize to similar notions in general integral
domains.

Definition 1.6 — Irreducibles

If D is an integral domain and a nonzero, nonunit element 8 € D satisfies the property that
whenever 8 = a7y, then either a € {p or v € Up, then 3 is said to be irreducible. In other
words, the irreducible elements of D are the nonzero, nonunit elements having only trivial
factorizations. If a nonzero, nonunit element of D is not irreducible, it is called a reducible
element.
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Example 1.10 Any prime p € Z is irreducible, since its only factorizations are p =
(£1)(£p). Conversely, if n € Z is irreducible, then the only factorizations are trivial so n
is prime in Z. In other words, in Z, p is prime if and only if it is irreducible. This fails to
be the case in arbitrary integral domains and this provides the fodder for algebraic number
theory.

Example 1.11 Consider
D = Z[V10] and 8 = 4 + V/10.
If 3 is not irreducible, then 3 = a~y, where neither a nor v is a unit in Z[v/10]. Since
N(8) = N(a)N()
by Exercise 1.2 on the next page, then without loss of generality
N(a) = N(a+bV/10) = 3,
where o = a + bv/10. Thus, a? — 106> = 3 so the Legendre symbol equality holds:

()= ()= ()

a contradiction, so 4 4+ /10 is irreducible. Similarly, its conjugate 4 — 1/10 is irreducible.

Via Example 1.9, we have 4 + 1/10 divides 6 but by Exercise 1.4, 4 + /10 divides neither 2
nor 3. This motivates the next concept, generalizing (1.2).

Definition 1.7 — Primes

If B is a nonzero, nonunit in an integral domain D, then g is called a prime if whenever

I6] } a7y, then either g | aor | 5.

Example 1.12 From Example 1.11 we see that 4 + /10 are not primes in Z[\/ﬁ] Now
we show that 2,3 are not primes in Z[/10] (although they are primes in Z). From Example
1.9, 2 and 3 both divide (4 + v/10)(4 — v/10). However, by Exercise 1.4 on the following
page, neither of them divides 4 4 /10, so neither is prime. Yet by Exercise 1.4 both are
irreducible. This illustrates the departure, in general integral domains, from the case in Z,
where all irreducibles are prime as shown in Example 1.10. Yet, the following shows us that
primes are always irreducible.

Theorem 1.1 — Primes Are Irreducible

If D is an integral domain and 8 € D is prime, then g is irreducible.

Proof. Let B € D be prime and suppose that 8 = avy. Then a fortiori, 5 | a7y so S | Q
or f | ~. Without loss of generality, assume that (3 | «. Then there is a § € D such that
a = (4. It follows that 8 = ay = (6, so by Application 1.1 on page 2, 1 = §~, which
makes v a unit in D. Hence, [ is irreducible. O

Remark 1.1 We have seen that the converse of Theorem 1.1 does not hold. Now our
task is to determine those integral domains for which it does hold. This will involve making
precise the notion of “unique factorization” of elements in general integral domains. We
begin this delineation in §1.2.
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Exercises

1.1.

1.2.
1.3.
1.4.

1.5.

1.6.
1.7.
1.8.

1.9.

1.10.
1.11.

1.12.

1.13.
1.14.
1.15.
1.16.

1.17.

Let n be a nonsquare integer. Prove that if n = 1(mod 4), then the subring

Zlw,) € Q(v/n)

given in Application 1.2 on page 3, is an integral domain. Conclude that Z[/n], for
any nonsquare n, is an integral domain by similar reasoning.

Prove that norms in quadratic domains are multiplicative, i.e. N(a7y) = N(a)N(y).
Prove that an element « in Z[w,] is a unit if and only if N(«) = +1.

Prove that in a quadratic domain D, if « | 8 in Z[wp], then N(a) | N(B) in Z.

Conclude that 4 £+ /10 are not associates of either 2 or 3 in Z[v/10]. Also, conclude
that 2 and 3 are irreducible in Z[v/10].

Let D = Z[w,] be a quadratic domain and let o € D satisfy the property that
|N(a)| = p, a prime in Z. Prove that « is irreducible in D. Provide either a proof or
a counterexample to the converse: If o € D is an irreducible element, then |N(a)| is
a prime in Z.

Prove that 2 is irreducible but not prime in Z[/—5].
Prove that the units of an integral domain form a multiplicative abelian group.

Prove that the relation ~ given in Definition 1.5 on page 4, is an equivalence relation,
namely that it is reflexive: a ~ a, symmetric: a ~ b implies b ~ a, and transitive: if
a~band b~ c, then a ~ ¢ for all a,b,c € D.

Prove that in an integral domain D an element « is irreducible if and only if every
divisor of « is either an associate of « or a unit.

If D is a quadratic domain show that if a,8 € D with @ ~ 8, then |[N(«a)| = |[N(8)].

Is the converse of Exercise 1.10 true? If so prove it, and if not, provide a counterex-
ample.

Find an a € Z[v15] such that @ = aias = (182 where o, §; are irreducible for
J = 1,2 but neither of a1, s is an associate of 8; for j =1,2.

Apply the question in Exercise 1.12 to Z[v/30].
Show that 1 +¢ =1+ +/—1 is prime in the Gaussian integers Z][i].
Find all units in the Gaussian integers Z[i].

Prove that +(1 ++/2)" € Uy sz for all n € Z. Prove that there are no other units in
Z[/2]. In other words, show that

Uyryg = (£ +V2)" i n e Z}.

If D is an integral domain and «,8 € D, not both zero, then v € D is called a greatest
common diwvisor (ged) of @ and (B if the following two conditions are satisfied.

(a) ’y’a,and'y‘ﬁ.
(b) Ifo |, and o | B for some o € D, then o | 7.

Prove that any two gcds must be associates. Also, provide an example of a ring in
which elements exist that have no greatest common divisor.
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1.2 Factorization Domains

Not everything that can be counted counts, and not everything that counts can be
counted. (Attributed)
Albert Einstein (1879-1955), German-born theoretical physicist

In this section we explore and solidify the notions of unique factorization in certain integral
domains and the intimate connection with the core features of algebraic number theory
which this engenders.

Definition 1.8 — Factorization Domains

If D is an integral domain in which every nonzero, nonunit can be represented as a finite
product of irreducible elements of D, then D is called a factorization domain. A factorization
domain in which any nonzero, nonunit can be expressed as a product of irreducibles that
is unique up to units and the order of the factors is called a unique factorization domain
(UFD).

Remark 1.2 Definition 1.8 says that D is a unique factorization domain when the follow-
ing occurs. Suppose that a € D is arbitrarily chosen with

a =yt
where u € D is a unit, n,a; € N and ; is irreducible for j = 1,2,...,n. Then D is a unique

factorization domain if any other representation:

a = vn?lngz e /fl,’,;”
where v € D is a unit, m,b; € N, and x; is irreducible for j = 1,2,...,m, implies that m =n
and after possibly rearranging the v;, we have v; = k;, and a; =b; for j =1,2,...,n.

Now we look at a criterion for a factorization domain to be a unique factorization domain in
terms of the concepts we studied in §1.1. This will be the defining feature of such domains
in terms of these concepts.

Theorem 1.2 — Unique Factorization—Irreducibles Are Prime

If D is a factorization domain, then D is a unique factorization domain if and only if every
irreducible element of D is prime.

Proof. Assume that all such factorizations are unique. If o € D is irreducible, we must
show that « is prime. If « | v03, there exists a 0 € D such that 78 = ao. Each of 3,v,0
has unique factorization, so write

T S t
ﬁ:uHﬁj, A/:vHij, J:wHaj,
j=1 j=1 j=1

where u, v, w € Up, and each f;,v;,0; is irreducible. Thus,

t s T
aw]:[cfj :aa:fyﬁ:fuuH’yj Hﬂj.
j=1 j=1 j=1
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Since « is irreducible, then by unique factorization, «r is an associate of one of the 3; or ;.
In other words, « ’ B, or « | v, SO « is prime.

Conversely, assume that every irreducible in D is prime. Suppose that
uay -y =0vPy - fs forr > s> 1, and u,v € Uy ., (1.4)

with «;, 85 irreducible. We must show that r = s, and that each «a; is an associate of some
Br. We use induction on r. If » = 1, then s = 1, so we are done. Assume that unique
factorization holds for all factorizations of length at most » — 1 > 1. Since [, ’ uUQy - Qs
then [ | a; for some i € {1,2,...,r}, since f5 is not a unit. Thus, B, is an associate of «;.
Renumber the «; so that a; = o,.. Thus, by Application 1.1 on page 2, we may cancel the
a, = Bsw (where w is a unit) from each side of Equation (1.4) to get

ey oo =w By B

By the induction hypothesis, 7 — 1 = s — 1, and the «; are associates of the ;. The result
now follows by induction. m]

Remark 1.3 Theorem 1.2 provides the key to understanding unique factorization in in-
tegral domains, namely the failure of unique factorization is the failure of (some) set of
irreducibles to be prime.

In Exercise 1.17 on page 6 we defined greatest common divisors in integral domains, but
there, only sought to find domains without geds. Now we will look at an example of an inte-
gral domain where such divisors always exist. This provides a motivator for a more general
class of domains where there is a “norm” similar to that we found in quadratic domains
introduced in Application 1.2 on page 3. These domains are important in our understanding
of the basics. First we need to establish a division algorithm. '"'We specialize to Gaussian
integers as a motivator for what follows. Recall from the definition in Application 1.2 on
page 3 that the norm N is defined for any quadratic domain.

Theorem 1.3 — Division Algorithm for Gaussian Integers
Let o, € Z[i] with 8 # 0. Then there exists 0,0 € Z[i] such that

o = fo+9,
where 0 < N(3) < N(B).
Proof. Let o/ = c+di € C. Set
f=lc+1/2) = Ne(c), and g = |d +1/2] = Ne(d),

where Ne(z) is the nearest integer function. Here |y] is the floor function or greatest integer
function—see [53, §2.5]. Hence, there are k,¢ € R such that

k| < 1/2, and |¢] < 1/2 (1.5)

L1The term algorithm is derived from the Persian mathematician Mohammed ibn Musa al-Khowarizmi
Mohammed, son of Moses of Kharezm, now Khiva (circa 790-850 A.D.). His book Algorithmi de Numero
Indorum, the Latin translation of the no longer extant original Arabic text, was highly influential in bringing
the Hindu-Arabic number system to Europe. Shortly after the appearance of these Latin translations,
readers began contracting his name to algorism, and ultimately algorithm, which we use today to mean any
methodology following a set of rules to achieve a goal.
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with
c+di=(f+k)+ (g+0)i. (1.6)

Set
c=f+giand 6 = a— fo. (1.7)

Then it remains to show
0 < N(0) < N(p).

We know that N(§) > 0, since the norm is just a sum of two squares. Now we show that
N(8) < N(B).
By Exercise 1.2 on page 6 (the multiplicativity of the norm), we have
N(6) = N(a— o) = N((a/B —0)B)
— N(a/B—0)N(B) = N(c+di — 0)N(B).

However, from (1.6)—(1.7), we get

c+di—o=c+di—(f+gi)=(c—f)+(d—g)i=k+ li.
Therefore, by (1.5),

N(8) = N(k+ 6N () =

(k* + C)N(B) < ((1/2)* + (1/2)*)N(B) < N(8)/2 < N(B),

as required. O

Remark 1.4 The o in Theorem 1.3 is called a quotient and the § is called a remainder
of the division. This follows the notions for the division algorithm in Z.

Remark 1.5 Although Theorem 1.3 gives us a criterion for the existence of an algorithm
for division in Z[i], there is no uniqueness attached to it. In other words, we may have
many such representations as the following illustration demonstrates.

Example 1.13 Let o = 10+ ¢ and § = 2 4 5i, then we may find 0,0 € Z[i] using the
techniques established in the proof of Theorem 1.3. We have

a 1047 (10+i)(2—5) 25 48,

B 2+5i (2+5)(2-5) 29 29"

1 25 1 1 48 1

Therefore, 0 =1—2i and § = a— fo = 1047 — (24 5¢)(1 — 2¢) = —2. Moreover, we verify

c+di=

N({)=N(-2)=4< N(B)=N(2+5i) =29
with
a=10+i=(2+45i)(1 —2i) — 2= FBo + . (1.8)

However, these choices are not unique since we need not follow the techniques of Theorem
1.3. For instance, if we choose 0 =1 — i and § = 3 — 2i, then

a=1041i=(245i)(1—i)+3—2i = o+, (1.9)

where N(0) = 13 < 29 = N(2 + 5i) = N(f). Thus, by (1.8)—(1.9), we see that, when
employing the division algorithm for Gaussian integers, the quotient and remainder are not
unique.
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Now we look at an integral domain where the existence of geds is guaranteed, namely the
Gaussian integers.

Theorem 1.4 — Gaussian GCDs Always Exist

If a,8 € Z[i] = D, where at least one of o or § is not zero, then there exists a ged v € Z]i]
of o and f.

Proof. Given fixed a,8 € Z][i], not both zero, set
8§ ={N(ca+pB)>0:0,p €Zli},
with 8§ # @ since
N(a)=N(1-a+0-8),and N(f) =NO-a+1-0) (1.10)

at least one of which is not zero and nonnegative, then at least one of them is in 8. Thus, we
may employ the well-ordering principle—see page 340—to get the existence of an element
Yo = oo + pof, for which its norm is the least value in 8, namely

N(v0) < N(oa+ pB) for all o,p € Z]i].
Claim 1.1 7y is a greatest common divisor of a and f.

Let 7 € Z[i] with T ‘ o and T | B. Then there exists 1,02 € Z][i] such that a = 76; and
B = 705. Hence,

Yo :an-l-p()B:O'()T(Sl-i-poT(SQ :7(0051 +p0(52), (111)

SO T | ~o. It remains to show that ~g divides both « and g.

Let
/i:)\la+)\25 (112)

be such that N(k) € 8. Thus, by Theorem 1.3 on page 8, there exist u,v € Z[i] such that
= o+ v (1.13)
with
0 < N(v) < N(v). (1.14)
Also, by (1.12)—(1.13),

v=rk—"m=Aa+ X — (coa+ pof)u = (A — gop)a + (A2 — pop) 3,

so if v # 0, then N(v) € 8. However, by (1.14), this contradicts the minimality of N () in
8, so v = 0. We have shown that g divides every element whose norm is in 8. In particular,
by (1.10)—(1.11), it divides v and 3, which secures claim 1.1. Hence, we have the result. O

Now we may look at the promised extension of the idea of a norm from Gaussian integers
to a distinguished class of integral domains, which have more general functions describing
them.

Definition 1.9 — Euclidean Domains and Functions

If D is an integral domain, then a mapping ¢ : D — Z is called a Fuclidean function if it
satisfies the two conditions:



1.2. Factorization Domains 11

(a) If a € D, ¢(af) > ¢(a) for all nonzero g € D.
(b) If o, € D with 8 # 0, there exist 7,0 € D such that « = v5 + 0 and ¢(0) < ¢(5).

When D possesses a Euclidean function then D is called a Euclidean domain.

Example 1.14 In Z, ¢(z) = |z|, the usual absolute value, is a Euclidean function. Hence,
Z is a Euclidean domain.

Remark 1.6 In Definition 1.9 part (b), we cannot guarantee the uniqueness of the ele-
ments ~,0. However, there are some distinguished domains for which they are unique.

Example 1.15 If F is a field and D = F[x] is the polynomial ring in the indeterminate x,
then

¢(f(x)) = deg(f(x)),

the degree of f(z) € D is a Euclidean function on D. Note that if f(x) = 0, the zero
polynomial, then

deg(f(x)) = ~1

by convention. In this case, the values in part (b) of Definition 1.9 are unique—see [61].

We now examine integral domains having Euclidean functions for which the converse of
Theorem 1.1 on page 5 holds, since this is a door leading into domains with unique factor-
izations via Theorem 1.3 on page 8. First we need the following notion.

Definition 1.10 — Field of Quotients

If D is an integral domain, then the field F consisting of all elements of the form a8~! for
a,f € D with 8 # 0 is called the field of quotients or simply the quotient field of D.

Remark 1.7 There is, in actuality, an isomorphic copy of D in F, but in practice it is
standard to assume that D is identified with this copy. In the case of a quadratic domain it
is clear from Application 1.2 on page 3 that the quotient field of Z[w,] is F = Q(v/n)—see
Theorem 1.28 on page 45.

Example 1.16 If F is any field, then the quotient field of the polynomial domain F[x] is
the field F'(z) of rational functions in z. Moreover, the quotient field of Z is Q.

Definition 1.11 — Norm-Euclidean Quadratic Domains

A quadratic domain D with quotient field F' is said to be norm-Euclidean if

for any p € F there exists a o € D such that |[N(p — o) < 1. (1.15)

Now we demonstrate that the condition in Definition 1.11 is tantamount to the norm being
a Euclidean function.

Theorem 1.5 Let D be a quadratic domain. Then D is a Euclidean domain with respect
to the norm function if and only if condition (1.15) holds.
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Proof. Suppose that (1.15) holds. If a,8 € D with § # 0, then by Exercise 1.2 on page 6
IN(aB)| = [N(@)[IN(B)] = [N(e)|

which is part (a) of Definition 1.9. It remains to show part (b) holds. If o, € D, then by
(1.15) there exists a o € D such that

|IN(a/B —0)] < 1. (1.16)
Hence, if we let

0=a—op,

then

IN(O)| = [N(a— oB)| = [N((a/B)B = 0B)| = IN (/B = 0)| - IN(B)| < |[N(B)|
by (1.16) which establishes (b).
Conversely, if N is a Euclidean function on D, then for any p = /8 € Q(y/n), with
o, € D, we have by part (b) of Definition 1.9 that there exist v, € D such that

a =5+ with N(§) < N(5).

N(g—7> :N(O‘ 575> :N(Z) <1
This establishes (1.16) and so the entire result. |
The following turns out to be one of two possible domains Z[/n] which is norm-Euclidean
for n a negative squarefree integer and we look at the positive case as well. (Note that the

other n < 0 for which we get Euclidean domains are those of the form Z[(1 + v/n)/2]—see
Theorem 1.28.)

Therefore

Example 1.17 We show that
¢(a+bi) = a® + b* = N(a + bi)

is a Euclidean function on the Gaussian integers a + bi € Z[i] = D using Theorem 1.5.
To see that D is norm-Euclidean, select p = ¢+ ri € Q(7). We must find 0 = a +bi € D
with
(g —a)* + (r —b)* < 1.
This is accomplished by choosing;:
a = Ne(q) and b = Ne(r) where Ne(x) = [z + 1/2] for any x € R.

It can be shown that the only other squarefree n < 0 for which Z[\/n] is norm-Euclidean
is for n = —2. Indeed the a,b chosen above for n = —1 will work for n = —2 as well. If
we allow for w,, as defined in Application 1.2 on page 3, then Z[(1 + /n)/2] for squarefree
n < 0 is norm Euclidean if and only if

ne{—3,-7,—11}
—see [54, Theorem 1.15, p. 34].

The case for positive D is also settled due to the efforts of several mathematicians culmi-
nating in the complete solution in the middle of the last century. The positive squarefree
integers n for which Z[w,] is norm-Euclidean are given as follows—see [54, Remark 1.19,
Theorem 1.21, p. 50]:

n€{2,3,5,6,7,11,13,17, 19,21, 29, 33, 37, 41,57, 73}.



1.2. Factorization Domains 13

Remark 1.8 It can be shown that Theorem 1.4 on page 10 generalizes to any Euclidean
domain. In other words, there always exist gcds for elements in Euclidean domains. This
comes from the verifiable fact that in a Euclidean domain D with respect to a Euclidean
function ¢, we may select any oo = oy, 8 = By € D with apSp # 0 and Sy fovp and recursively
define a; = 5;0 +y; with ¢(v;) < ¢#(8;), where a; = B;_1 and 8; = 7,_1. The smallest
n € N such that v, = 0 yields 7,,—1 as the ged of o and S—see [54, Theorem 1.14, p. 33].

Example 1.17 is an example of a more general phenomenon, namely that the converse of
Theorem 1.1 on page 5 always holds for Euclidean domains.

Theorem 1.6 — Euclidean Domains Are UFDs

If D is a Euclidean domain then o € D is irreducible if and only if « is prime.
Proof. First, we establish that D is a factorization domain. By part (a) of Exercise 1.18,
d(a) = ¢(1p) if and only if « € iUp.

In this case « is vacuously a product of irreducible elements. Hence, we may use induction
on ¢(«). By Exercise 1.21, ¢(1p) < ¢(«v). Assume that o & 4p, and that any S € D with
¢(B) < ¢() has a factorization into irreducible elements. If « is irreducible, we are done.
Assume otherwise. Then o = By for 8,7 € D and 8,y € Up. Thus, by property (a) of
Euclidean domains given in Definition 1.9, ¢(8) < ¢(«), and ¢(y) < ¢(«). By part (b) of
Exercise 1.18,

¢(7) # ¢(), and ¢(B) # ¢(a).

Hence, ¢(8) < ¢(a) and ¢(y) < ¢(a) so, by the induction hypothesis, both § and v have
factorizations into irreducibles. Thus, so does a. We have shown that D is a factorization
domain.

In view of Theorems 1.1 on page 5 and 1.2 on page 7, we need only show that irreducibles
are primes. Suppose that «|87y for some 3,7 € D. If at 8, then given the irreducibility of
a, the only common divisors of & and 8 in D are units. In particular, 1p is a ged of o and
B. By Exercise 1.19, there exist 0,06 € D such that 1p = ca + 65. Therefore,

v =oay+ By
Since «|fB7, then aly, so a is prime. O

Thus, via Example 1.17 we have the solution for squarefree D.

Corollary 1.1 If n € Z is squarefree, then Z[w,] is a norm-Euclidean domain if and only
if
ne{-1,-2,-3,-7,-11,2,3,5,6,7,11,13,17,19, 21, 29, 33, 37,41, 57, 73}.

The following is immediate from Theorem 1.6 and is implicit in the header thereof. However,
the converse of the following result fails to hold—see Exercise 1.25.

Corollary 1.2 If D is a Euclidean domain, then D is a UFD.
Exercises

1.18. Establish the following facts concerning Euclidean functions ¢ on an integral domain
D, introduced in Definition 1.9 on page 10.
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1.19.

1.20.

1.21.

1.22.

1.23.

1.24.

1.25.

1. Integral Domains, Ideals, and Unique Factorization

() If o ~  then 6(a) = 6(8).

(b) If o | B and ¢(a) = ¢(B) then a ~ B.
(¢) a € Up if and only if ¢p(a) = ¢(1p).
(d) ¢(a) > ¢(0) for all nonzero o € D.

With reference to Exercise 1.17 on page 6, prove that any common divisor v of a and
B, where a,3 are elements of a Euclidean Domain D, may be written in the form

y=oca+p
for some 0,0 € D.

Prove that condition (a) in Definition 1.9 on page 10 is equivalent to the condition
(c)If | B for o3 € D, with 8 # 0, then ¢(a) < ().

Prove that a Euclidean domain D with Euclidean function ¢ satisfies ¢(1p) < ¢(«)
for all nonzero o € D.

If « € D, a UFD, and |N ()| is prime, show that « is prime in D.

Either provide a counterexample to, or prove the converse of the statement in Exercise
1.22.

Prove that the condition in Definition 1.11 on page 11 is tantamount to the condition:
Given a,8 € D with 8 # 0, there exist 0,0 € D with o = fo+06 and |N(8)| < |[N(B)|.

An integral domain D is said to be an almost Fuclidean domain provided that: there
exists a function ¢ : D — NU {0} called an almost Euclidean function, such that

(a) #(0) = 0 and ¢(a) > 0 for a # 0 in D.
(b) If 5 is a nonzero element of D then ¢(af) > ¢(«) for all @ € D.
(¢) For any «,8 € D with 8 # 0, one of the following holds.

(i) There exists a v € D such that a = 7.
(ii) There exist z,y € D such that 0 < ¢(ax + By) < ¢(B).

Prove that an almost Euclidean domain is a UFD.

(This topic was introduced by Campoli [9]. With reference to our discussion
herein, he produced integral domains, such as his example

Z|(~1 - V=19)/2]

that are UFDs which are not Euclidean domains. Campoli called his example
“almost EBuclidean.” This resulted in the production of counterexamples to the
converse of Corollary 1.2 on the previous page. Later Greene [25] showed that
the conditions given above for an almost Euclidean domain are equivalent to being
a “Principal Ideal Domain” (PID) which we will study in §1.5 and revisit this
topic—see Fxercises 1.47-1.48 on page 34. It turns out that Fuclidean domains
are PIDs which in turn are UFDs. However, neither converse holds. Examples
of UFDs that are not PIDs are the hardest to produce and hence the above delin-
eation. More recently, such as in [31], almost Euclidean spaces have been used
for applications in complexity theory and error-correcting codes.
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1.3 Ideals

Intelligence without ambition is a bird without wings.
Salvador Dali (1904-1989), Spanish painter

In this section we set the stage for the introduction of two types of domains based upon the
theory of ideals which will elevate the factorization debate from elements to ideals. This
allows us to witness the influence of Dedekind and others on the development of algebraic
number theory. Some of the following is adapted from [54].

Definition 1.12 — Ideals

An R-ideal is a nonempty subset I of a commutative ring R with identity having the
following properties.

(a) fa,8 €I, thena+pe€l.
(b) If a € I and r € R, then ra € 1.

Remark 1.9 It is inductively clear that Definition 1.12 implies that if aq, a9, ..., an € T

for any n € N, then ray + 71200 + -+ - + rpa,, € I for any r1,79,...,7, € R. Moreover, if
1 €I, then I = R. Also, if we are given a set of elements {a1,as,...,a,} in an integral
domain R, then the set of all linear combinations of the a; for j =1,2,...,n

eraj:rjERforjzl,Z...,n

J=1

is an ideal of R denoted by (a1,aq,...,a,). In particular, when n = 1, we have the
following.
Definition 1.13 — Principal and Proper Ideals

If D is an integral domain and I is a D-ideal, then I is called a principal D-ideal if there
exists an element « € I such that I = («), where « is called a generator of I. If I # D,
then I is called a proper ideal.

Example 1.18 Let n € Z and set nZ = {nk : k € Z}, which is an ideal in Z and
nZ = (n) = (—n) is indeed a principal ideal. Moreover, it is a proper ideal for all n # +1.

Example 1.19 In D = Z[i], (2) and (3) are proper principal ideals. Moreover, the latter is
an example of a special type of ideal that we now define—see Example 1.20 on the following

page.

Definition 1.14 — Prime Ideals

If D is an integral domain, then a proper D-ideal P is called a prime D-ideal if it satisfies
the property that whenever a8 € P, for o, € D, then either « € P or 5 € P.

In order to discuss any more features of ideal theory, we need to understand how multipli-
cation of ideals comes into play.
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Definition 1.15 — Products of ideals

If D is an integral domain and I, J are D-ideals, then the product of I and J, denoted by
1J, is the ideal in D given by

n
IJ:{TGD:r:Zaij where n € Nyand o € I,8; € J for 1 < j < n}.
j=1

Theorem 1.7 — Criterion for Prime Ideals

If D is an integral domain and I is a proper D-ideal, then [ is a prime D-ideal if and only
if the following property is satisfied:

for any two D-ideals J, K, with JK C I, either J C [ or K C I. (1.17)

Proof. Suppose that (1.17) holds. Then if o, € D such that a8 € I, then certainly
(af) = (a)(B) C I, taking J = (o) and K = (B) in (1.17), which therefore implies that
() CTor (B)CI. Hence, o € I or € I. We have shown that (1.17) implies I is prime.

Conversely, suppose that I is a prime D-ideal. If (1.17) fails to hold, then there exist D-
ideals J, K such that JK CIbut K € I and J Z I. Let a € J with o ¢ I and 8 € K with
B & I, then af € I with neither of them being in I, which contradicts Definition 1.14 on
the previous page. Hence, (1.17) holds and the result is secured. a

Now we prove a result that links the notion of prime element and prime ideal in the principal
ideal case.

Theorem 1.8 — Principal Prime Ideals and Prime Elements

If D is an integral domain and a € D is a nonzero, nonunit element, then («) is a prime
D-ideal if and only if « is a prime in D.

Proof. Suppose first that («) is a prime D-ideal. Then for any 8,y € D such that « ’ B8,
By € (87) C («). Since () is a prime D-ideal, then 8 € (a) or v € («) by Definition 1.14.
In other words, a ’ B or « ’ v, namely « is a prime in D.

Conversely, suppose that « is prime in D. If 8,4 € D such that v € («), then there exists
an r € D with 8y = ar. Since « is prime, then « ‘ B or a ’ ~v. If ‘ 3, there is an s € D
such that = as, so 8 € (o). If « ’ 7, there is a t € D such that v = at, so v € (a). We
have shown that («) is a prime D-ideal by Definition 1.14, which completes the proof. O

Example 1.20 In Example 1.19 on the preceding page, (2) and (3) were considered as
principal ideals in the Gaussian integers. By Exercises 1.26-1.27 on page 19, 3 is a prime in
Zli], but 2 is not. Therefore, by Theorem 1.8, (3) is a prime ideal in the Gaussian integers
but (2) is not.

Now that we may look at products of ideals, we may we look at the notion of division in
ideals in order to link this with elements and primes.

Definition 1.16 — Division of Ideals

If D is an integral domain, then a nonzero D-ideal [ is said to divide a D-ideal J if there
is another D-ideal H such that J = HI.

The following shows that division of ideals implies containment.



1.3. Ideals 17

Lemma 1.1 — To Divide is to Contain
If D is an integral domain and I, J are D-ideals, with I | J, then J C 1.

Proof. Since I ‘ J, then by Definition 1.16, there is a D-ideal H such that J = I H. However,
by Definition 1.12 on page 15, J = IH C IR C I, as required. O

Corollary 1.3 Suppose that D is an integral domain and I is a D-ideal satisfying the
property:
whenever [ ’ JK for D-ideals J, K, we have I | J or I | K. (1.18)

Then I is a prime D-ideal.

Proof. Suppose that [ | JK, then by Lemma 1.1, JK C I, and (1.18) implies that either
J CIor K CI. Thus, by Theorem 1.7, I is a prime D-ideal. O

The question now arises as to the validity of the converse of Lemma 1.1 in certain domains.
In order to discuss this topic, we must prepare the stage with some essential topics. First
of all there are types of ideals which are core to the theory.

Definition 1.17 — Maximal Ideals

In an integral domain D, an ideal M is called mazimal if it satisfies the property that
whenever M C I C D, for any D-ideal I, then either I = D or I = M.

The next concept is necessary to prove our first result about maximal ideals. First note
that if I, J are R-ideals, then I + J is necessarily an R-ideal since for any r € R, a € I,
Bed,r(a+ ) €I+ J by Definition 1.12 on page 15. We formalize this in the following.

Definition 1.18 — Sums of Ideals Are Ideals

If I, J are ideals in D, a commutative ring with identity, then I+J = {a+8:a € 1,5 € I},
is an ideal in D.

We use the above to prove our first result that we need to link maximality with primality.

Theorem 1.9 — Quotients of Prime Ideals Are Integral Domains

If D is an integral domain, then a D-ideal P is prime if and only if D/P is an integral
domain.

Proof. Suppose that P is a prime D-ideal. Then D/P is a commutative ring with multi-
plicative identity 1z + P and additive identity Or + P. We must verify that D/P has no
zero divisors. If o, € D with (a +P)(8+P) =0 +P =P, then af+ P =P, so aff € P.
Since P is prime, then either « € P or f € P. In other words, either a« +P = 0z + P or
B+ P =0g + P. We have shown that D/P has no zero divisors.

Conversely, if D/P is an integral domain, then o € P implies that
(a+P)B+P)=af+P=0g+2.

Thus, having no zero divisors in D/P, either « + P =0g +P or §+ P = 0r + P. In other
words, either a« € P or 5 € P, so P is a prime D-ideal. O

Now we link prime ideals with maximal ones.



18 1. Integral Domains, Ideals, and Unique Factorization

Theorem 1.10 — Maximal ideals Are Prime

If D is an integral domain, then every nonzero maximal D-ideal is prime.

Proof. Suppose M # (0) is a maximal D-ideal, and M ’ 1J for some D-ideals I,.J, with M
dividing neither factor. By Lemma 1.1 on the preceding page, there exist « € [ and g € J
such that

M | 1J | (a)(B)

with M dividing neither («) nor (8), namely « ¢ M and 8 ¢ M. Therefore, by Defini-
tion 1.18 on the previous page, M + («) and M + (8) are D-ideals, both of which properly
contain M, so M # D. Hence, by the maximality of M, we have,

M+ () =D=M+ (8).
Therefore,
M C D=D?=(M+ (a))(M+(8)) € M? + ()M + (B)M + (a)(8)M C M,

a contradiction. We have shown that either M | (o) or M | (3). Therefore, by Corollary 1.3
on the preceding page, M is prime. O

The next result tells us when an ideal is maximal with respect to quotients in integral
domains.

Theorem 1.11 — Fields and Maximal ideals
If D is an integral domain, then M is a maximal D-ideal if and only if D/M is a field.

Proof. First we need the following fact.
Claim 1.2 D is a field if and only if the only ideals in D are (0) and D.

If D is a field and I # (0) is a D-ideal, then there exists a nonzero element o € I. However,
since D is a field, then there exists an inverse ! € D of a.. By Definition 1.12 on page 15,
aa t=1p el sol=D.

Conversely, suppose that the only D-ideals are (0) and D. If @ € D is nonzero, let

(o) =aD =1.

By hypothesis, I = D. Thus, there exists a 8 € D such that fa = 1p, so « is a unit.
However, a was chosen as an arbitrary nonzero element in D, so D is a field. This is Claim
1.2.

Suppose that D/M is a field for a given D-ideal M. If M C I C D for a D-ideal I, then
I/M is an ideal of D/M, so by Claim 1.2, I/M = (0) or I/M = D/M. In other words,
either I = D or I = M, namely M is maximal.

Conversely, if M is maximal, then by Theorem 1.10, either M = (0) or M is prime. If
M = (0), then D/(0) 2 D is a field by Claim 1.2, given that (0) is maximal, implying that
D has no proper ideals. If M is prime, then by Theorem 1.9 on the preceding page, D/M
is an integral domain. Thus, it remains to show that all nonzero elements of D/M have
multiplicative inverses, namely that if o+ M # M, then o+ M has a multiplicative inverse
in D/M. Given a + M # M, then o ¢ M. Thus, M is properly contained in the ideal
() + M. Hence, (o) + M = D. In other words,

1p = m+ ra for some m € M and r € D.

Therefore, 1p —ra=m € M,solp+ M =ra+ M = (r + M)(a+ M), namely r + M is
a multiplicative inverse of o + M in D/M, so D/M is a field. O
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Example 1.21 If D =7Z/nZ, where n € N, then by Theorem 1.11, Z/nZ is a field if and
only if nZ is maximal. Later we will see that Z, being a special case of the ring of integers
of a number field, always satisfies the property that all prime ideals are maximal—see
Definition 1.23 on page 25 and Theorem 1.26 on page 42. Hence, in conjunction with
Theorem 1.10, we have

Z/nZ is a field if and only if nZ is prime.

Example 1.22 Let F' be a field, r € F is a fixed nonzero element, and

I'={f(x) € Fla] : f(r) = 0}.

We now demonstrate that I is a maximal ideal in F[z]. First, we show that I is indeed an
ideal in Flx]. If g(x) € F[z], then for any f(x) € I, g(r)f(r) = 0, so g(x)f(z) € I, and
clearly f(r)+ h(r) = 0 whenever f(z),h(z) € I, which shows that I is an F[z]-ideal. If we
define ¢ to be the map

¢: Flz] = Flz]/I,
given by

¢(f(2)) = f(z) + 1,

then an easy check shows that I = ker(¢)—see (A.3) on page 325 in Appendix A, from
which it follows that I is maximal, as

F = Flz]/I.

In §1.4, we will use ideal theory developed herein to introduce and explore two distinguished
types of domains that set the stage for Dedekind’s masterpiece contribution presented in
§1.5. This makes way for the foundational building bricks of algebraic number theory in §1.6,
where algebraic numbers and numbers fields as generalizations of Z and Q are introduced.
This provides the springboard to the balance of the text that explores this magnificent
edifice of mathematics.

The last section of this chapter, §1.7, is a motivator for Chapter 2 by looking in detail at
the least nontrivial extension of Q, namely the quadratic field case, which builds upon the
quadratic domains introduced and discussed in §1.2.

Exercises

1.26. Prove that any prime p € Z with p = 3 (mod 4) is a prime in Z[i].

(By Corollary 1.1 of Theorem 1.6 on page 13 it only needs to be shown that p is
irreducible.)

1.27. Prove that if o € Z[i] and Np(«) = p, where p is prime in Z, then « is a prime in Z[{]
but p is not a prime in Z[i] and p = 1(mod 4) or p = 2.

1.28. Prove that in an integral domain D with «,8 € D nonzero, as ideals () = (8) if and
only if af~1 € Up.

1.29. For some indexing set J, let R be a ring and let {R; : j € J} be any set of subrings of
R. Prove that N;cgR; is a subring of R. Also, show that if

RMCRyC---CR; C---,

then U;egR; is a subring of R.



20 1. Integral Domains, Ideals, and Unique Factorization

1.4 Noetherian and Principal Ideal Domains

Whether you think you can, or you can’t—you are right.
Henry Ford (1863—1947), American car manufacturer

In this section, we use our knowledge of ideals to proceed to build the foundations of
algebraic number theory by investigating two kinds of domains that will lead us into the
building bricks of algebraic number fields. The following is crucial in the sequel. Some of
the following is adapted from [54].

Definition 1.19 — Ascending Chain Condition (ACC)

An integral domain R is said to satisfy the ascending chain condition (ACC) if every chain
of R-ideals I; C Iy C --- I, C ---terminates, meaning that there is an ng € N such that
I, = I, for all n > ng.

Remark 1.10 An equivalent way of stating the ACC is to say that R does not possess
an nfinite strictly ascending chain of ideals.

The above is a segue to the following important notion that will carry us forward toward
our goals—see Biography 1.1 on page 23.

Definition 1.20 — Noetherian Domains
An integral domain R possessing the ACC is called a Noetherian Domain.

For the following, the reader is reminded of the general notion of finite generation given in
Definition A.7 on page 324 in Appendix A. Also, see Remark 1.9 on page 15.

Lemma 1.2 — Finite Generation and Noetherian Domains

If R is an integral domain, then R is a Noetherian Domain if and only if every R-ideal is
finitely generated.

Proof. Suppose that every R-ideal is finitely generated. Let
LCLC--CI,C---
be an ascending chain of ideals. It follows from Exercise 1.29 on the previous page that

I = U2, 1; is an R-ideal, and since any R-ideal is finitely generated, then there exist a; € R
for j =1,2,...,d € N such that

I'= (v, 0,...,0q).

Therefore, for each j = 1,2,...,d, there is a k; with a; € Iy;. Let n = max{ki, ko, ..., ka}.
Then since I, € I and I; C I,,, given that k; < n for each such j, we have (a1, az, ..., aq) €
I,,, which implies that I C I,,. Hence, I, = U2,I; and so I,, = I; for each j > n. Since the
chain terminates, R satisfies the ACC, so is a Noetherian domain.

Conversely, suppose that R is a Noetherian domain. If I is an R-ideal that is not finitely
generated, then I # (0), so there exists oy € I with a3 # 0, and («1) C I. Since I # (o),
given that the former is not finitely generated, then there exists as € I and as & (o) so
we have

(041) C (0417042) cl.

Continuing inductively in this fashion, we get the strictly ascending chain of ideals,
(a1) C (a1, a0) C--- C (a1, a0,...,00) C - C 1,

contradicting that R is a Noetherian domain. Hence, every R-ideal is finitely generated. O
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Corollary 1.4 Let R be a Noetherian domain. Then every nonempty subset of R-ideals
contains a maximal element.

Proof. Let T be the set of ideals with the property that for every ideal I of T, there exists
an ideal J of T with I C J. If T # &, then by its definition we may construct an infinite
strictly ascending chain of ideals in T, contradicting Lemma 1.2. This is the result. O

Immediate from Corollary 1.4 is the following result.

Corollary 1.5 In a Noetherian domain R, every proper R-ideal is contained in a maximal
R-ideal.

We need the following concept that is intimately linked to the notion of a UFD, especially
when we are dealing with Dedekind domains—see Definition 1.8 on page 7.

Definition 1.21 — Principal Ideal Domain (PID)

An integral domain R in which all ideals are principal is called a principal ideal domain, or
PID.

Theorem 1.12 — PIDs and Noetherian Domains
If R is a PID, then R is a Noetherian domain.

Proof. If we have a nested sequence of R-ideals
(a1) € (a2) C -+ () -+,

then it follows from Exercise 1.29 that U2, () is an R-ideal. Thus, since R is a PID, there
exists an @ € R such that US2, () = (a), so there exists an n € N such that a € (ay).

Therefore,

(o) = (o) = (@)
for all j > n. Thus, the ACC condition of Definition 1.19 is satisfied and R is a Noetherian
domain. O

The following strengthens Corollary 1.2 on page 13 and puts Exercise 1.25 on page 14 into
clearer focus.

Corollary 1.6 A Fuclidean domain is a PID, and so is Noetherian.

Proof. If D is a Euclidean domain, then D has a Euclidean function ¢ by Definition 1.9 on
page 10. Let I be a nonzero D-ideal and set

8§ ={¢(a) : v €I, #0}.

Given that I # (0), 8 # @. Using the Well-Ordering Principle—see page 340—S8 has a least
element ¢(3) where g € I, 8 # 0. Let v € I be arbitrary. Then by part (b) of Definition
1.9, there exist r,q € D with

v = qB +r with ¢(r) < ¢(f).

By Definition 1.12 on page 15, r = v — ¢ € I, so by the minimality of ¢(3), we must have
that » = 0. Therefore, v = ¢, which implies, since v was arbitrarily chosen, that I = ().
We have shown that every ideal of D is principal (given that the zero ideal is principal as
well), so D is a PID. By Theorem 1.12, D is therefore Noetherian. o
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Remark 1.11 Note that via Exercise 1.25, Corollary 1.6 is more general than Corollary
1.2 since there are UFDs that are not PIDs and the following shows that Corollary 1.2
follows from Corollary 1.6. Also, see the related Exercise 1.47 on page 34

Theorem 1.13 — PIDs and UFDs
If R is a PID then R is a UFD.

Proof. Let 8 be the set of all @ € R such that « is not a product of irreducible elements.
If 8§ # @, then by Corollary 1.4 on the preceding page, via Theorem 1.12, § has a maximal
element m. Thus, (m) is a proper ideal (since a unit is vacuously a product of irreducible
elements by Definition 1.6 on page 4). Therefore, (m) is contained in a maximal R-ideal
(M) for some M € R, by Corollary 1.5 on the preceding page, again via Theorem 1.12.
Thus, M | m and (M) # (m) by Theorem 1.10 on page 18. Since M is a product of
irreducible elements, there exists an « | m such that « is irreducible. Therefore, m = af
for some g € R. If 8 is a unit, then m is irreducible since associates of irreducibles are
also irreducible, a contradiction. Hence, £ is not a unit. If () € 8, then 3 is a product of
irreducibles, and so is m, a contradiction. Thus, (8) € 8. However, ‘ m, so (m) C (B) by
Lemma 1.1 on page 17. Also, (m) # (f) since « is not a unit, given that it is irreducible.
Hence, (m) is properly contained in () C 8, a contradiction to the maximality of (m) in
8, so § = @. This establishes that all nonzero elements of R are expressible as a product of
irreducible elements.

We may complete the proof by showing that all irreducible elements are prime and invoke
Theorem 1.2 on page 7. Suppose that r € R is an irreducible element and r | af, a,p € R,
with r not dividing «. Then by the irreducibility of r, we must have that » and « are
relatively prime, namely R = (1) + («), so there exist s1, $2 € R such that 1z = rs; + ass.
Therefore,

(B) = (rs18 + as2) C (r),

since r ‘ af implies that (r) D (af), so both rs15 € (r) and assf € (). In other words,
r | [, so r is prime as required. O

Exercises

1.30. In a commutative ring R with identity, an R-module M 1is defined to be Noetherian
if every ascending chain of submodules of M terminates in the same sense as in
Definition 1.19 on page 20. Prove that if N is a submodule of a Noetherian R-module
M, then both N and M/N are Noetherian R-modules.

1.31. With reference to Exercise 1.30, either provide a counterexample to the converse or
prove that: if N is a submodule of an R-module M such that both N and M/N are
Noetherian R-modules, then M is a Noetherian R-module.

1.32. If R is a Noetherian ring, prove that any finitely generated R-module is Noetherian.

1.33. Let D; be integral domains for j = 1,2 with Dy C Dy. If D, is Noetherian and D, is
finitely generated as a Dj-module, prove that Dy is a Noetherian domain.

1.34. Prove that Z[/n] is a Noetherian domain for any nonsquare integer n.

1.35. A commutative ring R with identity is said to satisfy the descending chain condition,
denoted by DCC, on ideals if every sequence Iy 2 Iy 2 --- 2 I; D --- of R-ideals
terminates. In other words, there exists an n € N such that I; = I, for all j > n.
Prove that R satisfies the DCC if and only if every nonempty collection of ideals
contains a minimal element. (Rings of the above type are called Artinian rings.)
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Biography 1.1 Emmy Amalie Noether (1882-1935) was born in Erlangen,
Bavaria, Germany on March 23, 1882. She studied there in her early years
and, in 1900, received certification to teach English and French in Bavarian
girls’ schools. However, she chose a more difficult route, for a woman of that
time, namely to study mathematics at university. Women were required to get
permission to attend a given course by the professor teaching it. She did this
at the University of Erlangen from 1900 to 1902, and passed her matricula-
tion examination in Niirnberg in 1903, after which she attended courses at the
University of Gottingen from 1903 to 1904. By 1907, she was granted a doctor-
ate from the University of Erlangen. By 1909, her published works gained her
enough notoriety to warrant an invitation to become a member of the Deutsche
Mathematiker- Vereinigung, and in 1915, she was invited back to Gottingen by
Hilbert and Klein. However, it took until 1919 for the university to, grudgingly,
obtain her Habilitation,!'! and permit her to be on the faculty. In that year
she proved a result in theoretical physics, now known as Noether’s Theorem,
praised by Albert Einstein as a penetrating result, which laid the foundations
for many aspects of his general theory of relativity. After this, she worked in
ideal theory, developing ring theory, which turned out to be of core value in
modern algebra.

Her work Idealtheorie in Ringbereichen, published in 1921, helped cement this
value. In 1924, B.L. van der Waerden published his work Moderne Algebra,
the second volume of which largely consists of Noether’s results. Her most
successful collaboration was in 1927 with Helmut Hasse and Richard Brauer
on noncommutative algebra. She was recognized for her mathematical achieve-
ments through invitations to address the International Mathematical Congress,
the last at Zurich in 1932. Despite this, she was dismissed from her position at
the University of Gottingen in 1933 due to the Nazi rise to power, given that
she was Jewish. She fled Germany in that year and joined the faculty at Bryn
Mawr College in the U.S.A. She died at Bryn Mawr on April 14, 1935. She was
buried in the Cloisters of the Thomas Great Hall on the Bryn Mawr campus.

23

L-1Habilitation is the highest academic qualification achievable in certain European and Asian countries.
Typically Habilitation is earned after obtaining a research doctorate (Ph.D.), which is sufficient qualification
for a senior faculty position at a university in North America. However, a Habilitation requires a professorial
thesis, reviewed by and defended before an academic committee similar to that for a North American
Ph.D., but the level of scholarship expected is usually much higher. In practice, for instance in Germany,
a Habilitation is required to supervise doctoral students, a post that is known as Privatdozent and there
are similarly termed appointments in other countries. After serving as Privatdozent, the next step is often
appointment as a professor in the faculty in which the candidate sits.
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Biography 1.2 Emil Artin (1898-1962) was born on March 3, Vienna, Austria
in 1898. He served in the Austrian army in World War I, after which he entered
the University of Leipzig. In 1921 he obtained his doctorate, the thesis of
which was on quadratic extensions of rational function fields over finite fields.
In 1923, he had his Habilitation, allowing him to become Privatdozent at the
University of Hamburg—see Footnote 1.1 on the previous page. In 1925, he
was promoted to extraordinary professor at Hamburg. In that same year,
he introduced the theory of braids, which is studied today by algebraists and
topologists. In 1928, he worked on rings with minimum condition, the topic
of Exercise 1.35 on page 22, which are now called Artinian rings. In 1937,
Hitler enacted the New Official’s Law, which enabled a mechanism for removing
not only Jewish teachers from university positions but also those related by
marriage. Since Artin’s wife was Jewish, although he was not, he was dismissed.
In 1937, he emigrated to the U.S.A. and taught at several universities there,
including eight years at Bloomingdale at Indiana University during 1938-1946,
as well as Princeton from 1946 to 1958. During this time, in 1955, he produced
what was, arguably, the catalyst for the later classification of finite simple
groups, by proving that the only (then-known) coincidences in orders of finite
simple groups were those given by Dickson in his Linear Groups. In 1958,
he returned to Germany where he was appointed again to the University of
Hamburg. Artin’s name is attached not only to the aforementioned rings,
but also to the reciprocity law that he discovered as a generalization of Gauss’s
quadratic reciprocity law. One of the tools that he developed to do this is what
we now call Artin L-functions. He also has the distinction of solving one of
Hilbert’s famous list of twenty-three problems posed in 1900—see Biography 3.4
on page 94.

He was an outstanding and respected teacher. In fact, many of his Ph.D.
students such as Serge Lang, John Tate, and Max Zorn went on to major
accomplishments. He also had an interest in astronomy, biology, chemistry,
and music. He was indeed an accomplished musician in his own right, playing
the flute, harpsichord, and clavichord. He died in Hamburg on December 20,
1962.
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1.5 Dedekind Domains

Mathematics is the only instructional material that can be presented in an entirely
undogmatic way.

Max Wilhelm Dehn (1878-1952), German mathematician who
introduced one of the first structured elucidations on topology

§1.4 put us in a position to define a contribution by Dedekind —see Biography 1.3 on
page 29. First we need the following notion.

Definition 1.22 — Integral Over a Domain and Integral Closure

If D C S where D and S are integral domains, then « € S is said to be integral over D if
there exists a d € N, and a polynomial

f@)=a%+ g1z -+ B+ B with 8, € D for j =0,1,...,d—1
such that f(a) = 0.

D is said to be integrally closed in S if each element of S that is integral over D is actually
in D.

Example 1.23 The integral domain Z is integrally closed in @, but not in C since v/—1 € C
is integral over Z.

The following will prove to be a useful tool in §1.6, and is of interest in its own right. The
reader should solve Exercise 1.40 on page 33 in anticipation of the proof.

Theorem 1.14 — Towers of Integral Domains

If RC S CT is a tower of integral domains with S integral over R and t € T integral over
S, then t is integral over R.

Proof. Given that t € T is integral over S, there exist s1, s9,..., s, € S such that

t" + Snfltn_l + -+ Slt + 8¢ = 0.

Hence, we have shown that ¢ is integral over R[sq, $1,.. ., S,]. Since s; € S is integral over
R for j = 0,1,...,n — 1, then by part (c) of Exercise 1.40, R[sqg,S1,...,S,] is a finitely
generated R-module. Since ¢ is integral over R|[sg, s1,. .., Sp], then the same exercise part

(d) shows that
R[S0,51, -, 8a][t] = R[S0, 81, .-, 5n, 1]

is a finitely generated R-module. Hence, by part (e) of the exercise, ¢ is integral over R. O
Now we bring in Dedekind’s ideas.
Definition 1.23 — Dedekind Domains
A Dedekind Domain is an integral domain D satisfying the following properties.
(A) Every ideal of D is finitely generated.
(B) Every nonzero prime D-ideal is maximal.

(C) D is integrally closed in its quotient field F'.
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Remark 1.12 Condition (C) says that if a/ € F is the root of some monic polynomial
over D, then o/ € D, namely ‘ «a in D. Also, note that by Lemma 1.2 on page 20,
Condition (A) may be replaced by the condition that R is a Noetherian domain.

Now we aim at the main goal of this section, which is a unique factorization theorem for
ideals. To this end, we first settle conditions for which the converse of Lemma 1.1 on page 17
holds. We require a more general notion of ideal in order to proceed.

Definition 1.24 — Fractional Ideals

Suppose that D is an integral domain with quotient field F. Then a nonempty subset I of
F is called a fractional D-ideal if it satisfies the following three properties.

1. Forany a,8 €I, a+ B € 1.
2. Foranyaelandr e D, racl.

3. There exists a nonzero v € D such that vI C D.

When I C D, we call T an integral D-ideal (which is the content of Definition 1.12 on
page 15) to distinguish it from the more general fractional ideal.

Remark 1.13 It is immediate from Definition 1.24 that if I is a fractional D-ideal, then
there exists a nonzero v € D such that vI = J where J is an integral D-ideal.

Example 1.24 Let D = Z, and F = Q. Then the fractional D-ideals are the sets
I,={qZ:qeQt}.

Since qZ = (—q)Z, we may restrict attention to the positive rationals Q% without loss of
generality. Also,

I 14, = 1o = 1y, -
We have the isomorphism

8§={l,:qeQ"}=Q",
as multiplicative groups. The unit element of § is Z and the inverse element of I, € 8 is
(I,)~' = ¢ 'Z. (See Exercise 1.43 on page 33.)

Example 1.24 motivates the following.

Theorem 1.15 — Inverse Fractional Ideals

If D is an integral domain with quotient field F, and [ is a fractional D-ideal, then the set
I''={a€F:al CD}

is a nonzero fractional D-ideal.

Proof. If a,8 € I™1, then oI € D and 8I C D, so
(a+B8) I Cal+pICD,

which implies a + 3 € I"'. f a € I"' and r € D, ol C D, then ral C D, from which
it follows that ra € I~'. Lastly, let v be a nonzero element of I. Then for any o € I~ 1,
al C D, so in particular, ya € D. Hence, yI~! C D. This satisfies all three conditions in
Definition 1.24. a
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Definition 1.25 — Invertible Fractional Ideals

In an integral domain D a fractional D-ideal I is called invertible if
I7'I =D,
where I~!, given in Theorem 1.15, is called the inverse of I.
Now we may return to Dedekind domains and the pertinence of the above to them.

Theorem 1.16 — Invertibility in Dedekind Domains

If D is a Dedekind domain, then every nonzero integral D-ideal is invertible.

Proof. Since D is a Dedekind Domain, then every D-ideal I is finitely generated, so for
I # (0), there are a; € D for 1 < j < d such that I = (a1, ®2,...,0q). If d =1, then
I™' = (a7') and IT~' = D. Now the result may be extrapolated by induction, and the
result is established. O

Corollary 1.7 — To Divide is the Same as to Contain
If D is a Dedekind domain, and I, J are D-ideals, then

I'| Jif and only if J C I
Proof. In view of Lemma 1.1, we need only prove one direction. Suppose that
JCI. (1.19)
Now let H = I~1J, in which case J = IH where H is a D-ideal since by (1.19),
I"'Jcrr=n,

where the equality follows from Theorem 1.16. Thus, | J, and we have secured the result.O

As a consequence of Corollary 1.7, we see that a prime D-ideal P in a Dedekind domain D
satisfies the same property as prime elements in Z—see Example 1.9 on page 4.

Corollary 1.8 Suppose that D is a Dedekind domain. Then P is a prime D-ideal if it
satisfies the property that for any D-ideals I, J,

T|IJifandonlyif3’|Ior?’J.

Proof. By Corollary 1.7, P | 1J if and only if IJ C P and the latter holds, by (1.17) on
page 16, if and only if I C P or J C P, so applying Corollary 1.7 to the latter we get the
result. O

We have the following result that mimics the same law for nonzero elements of Z.

Corollary 1.9 — Cancellation Law for Ideals in Dedekind Domains

Let D be a Dedekind domain. If I,J, L are D-ideals with I # (0), and IJ C IL, then
JCL.

Proof. If IJ = IL, then by Theorem 1.16,
J=DJ=I'1JCcI 'IL=DL=1,

as required. O

Now we are ready for the promised unique factorization result.
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Theorem 1.17 — Unique Factorization of Ideals

Every proper nonzero ideal in a Dedekind domain D is uniquely representable as a product
of prime ideals. In other words, any D-ideal has a unique expression (up to order of the
factors) of the form

I =715 ... P,

where the P; are the distinct prime D-ideals containing I, and a; € N for j =1,2,...,n.

Proof. First we must show existence. In other words, we must show that every ideal is
indeed representable as a product of primes. Let 8§ be the set of all nonzero proper ideals
that are not so representable.

It follows from Remark 1.12 on page 26 and Corollary 1.4 on page 21 that if 8 # &, then
8 has a maximal member M. By assumption, M cannot be prime and hence not maximal
in D, so contained in some maximal prime D-ideal P. Also, P is maximal by part (B) of
Definition 1.23. Hence,

DCPltcm?,

which implies
MCMPCMM =D

)

where the equality follows from Theorem 1.16 on the previous page. We have shown that
M®P~1 is an integral D-ideal. If P~'M = M, then

PP~IM =PM C P,

where the latter inclusion comes from the fact that P is an ideal. Hence, M = P by
the maximality of P, a contradiction to M € 8. Thus, P~'M # M, so M C P~ 1M,
namely P~1M is an integral ideal not in 8. This means there are prime ideals P; for
j=1,2,...d € N such that

PIM = PPy --- Py,

which implies
M =DM = PP M = PP, Py --- Py,

contradicting that M € 8. We have shown 8§ = @, thereby establishing existence. It remains
to show uniqueness of representation.
Let P; and Qi be (not necessarily distinct) prime D-ideals such that

Py P =0 Q. (1.20)
Hence,

Py DQ - Q,
so Q; C Py for some j =1,2,...,s. Without loss of generality, we may assume that j =1,

by rearranging the Q; if necessary. However, by condition (B) of Definition 1.23, P; = Q;.
Multiplying both sides of (1.20) by P!, we get

Py P, =0Qy---0Q,.

Continuing in this fashion, we see that by induction, r = sand P; = Q;for 1 <j <s=r.0
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Biography 1.3 Julius Wilhelm Richard Dedekind (1831-1916) was born in
Brunswick, Germany on October 6, 1831. There he attended school from the
time he was seven. In 1848, he entered the Collegium Carolinum, an educational
bridge between high school and university. He entered Gottingen at the age
of 19, where he became Gauss’ last student, and achieved his doctorate in
1852, the topic being Eulerian integrals. Although he taught in Goéttingen
and in Zirich, he moved to Brunswick in 1862 to teach at the Technische
Hochschule, a technical high school. In that year he also was elected to the
Gottingen Academy, one of many honours bestowed on him in his lifetime. He
maintained this position until he retired in 1894. Dedekind’s creation of ideals
was published in 1879 under the title Uber die Theorie der ganzen algebraischen
Zahlen. Hilbert extended Dedekind’s ideal theory, which was later advanced
further by Emmy Noether. Ultimately this led to the general notion of unique
factorization of ideals into prime powers in what we now call Dedekind domains.
Another of his major contributions was a definition of irrational numbers in
terms of what we now call Dedekind cuts.He published this work in Stetigkeit
und Irrationale Zahlen in 1872. He never married, and lived with his sister
Julie until she died in 1914. He died in Brunswick on February 12, 1916.

Now we look at PIDs and UFDs in the case of Dedekind domains.

Theorem 1.18 — UFDs are PIDs for Dedekind domains
If R is a Dedekind domain, then R is a UFD if and only if R is a PID.

Proof. In view of Theorem 1.13 on page 22, we need only prove that R is a PID when it is
a UFD. Therefore, if there exists an R-ideal that is not principal, then by Theorem 1.17,
there exists a prime R-ideal P that is not principal. Let 8 consist of the set of all R-ideals I
such that PI is principal. By Exercise 1.38 on page 33, § # @. By Remark 1.12 on page 26
and Corollary 1.4 on page 21, 8§ has a maximal element M. Let

PM = ().

If & = B~ where 8 € P is irreducible, then (8) = PJ where J is an R-ideal such that J | M,
so J 2O M. By the maximality of M, we have J = M, so 7 is a unit and « is irreducible.
Since P is not principal, there is a nonzero ¢ € P — (), and since M = («) would imply
that P = R, there is a nonzero 0 € M — (). Thus, do € PM C (), so « | do. However, o
divides neither § nor o, so « is not prime. This contradicts Theorem 1.2 on page 7. O

The developments in this section allow us to now define ged and lem concepts for ideals
that mimic those for rational integers.

Definition 1.26 — A gcd and lcm for Ideals
If D is a Dedekind domain, and I, J are D-ideals, then

ged(I,J) =1+ J, and lem(I,J)=1NJ.

If ged(I,J) = D, then I and J are said to be relatively prime.
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Remark 1.14 The notion of relative primality given in Definition 1.26 is the direct ana-
logue for rational integers since D = (1p) is a principal ideal. This is of course what we
mean in Z, since such a pair of integers can have no common divisors. Let us look at this
directly.

If I, J are relatively prime, then

ged(I,J)=1+J=D.
If a D-ideal H divides both I and J, then by Corollary 1.7 on page 27, I C H, J C H, so
I+J=DCH,

which means that H = D. Hence, the only D-ideal that can divide both I and J is D = (1).

The next result is the generalization of the result for rational integers proved in a course in
elementary number theory.

Lemma 1.3 — Product of the Ideal-Theoretic gcd and lcm
If D is a Dedekind domain and I, J are D-ideals, then

ged(I, J) -lem(I,JJ) = (I +J)INJ)=1J.

Proof. By the definition of an ideal, any elements of I 4+ J times any element of I N J must
be in I and J, so in IJ. Thus,
INnJ)yI+J)C1J.

Conversely, any element of I.J is in both I and J, so in I N J, and trivially in I + J. Thus,
IJCc({InJg(I+J),

from which the desired equality follows. O

The following exploits our unique factorization result to provide an analogue of the same
result for rational integers.

Theorem 1.19 — Prime Factorizations of gcd and lcm of Ideals

Suppose that D is a Dedekind domain and I, J are D-ideals with prime factorizations given,

via Theorem 1.17, by
aj _ bj
I=]]%y and J=]] 77,
j=1 j=1
where P; are prime D-ideals with integers a;,b; > 0. Then

ged(I,J) = H?mﬂ and lem(I,.J) H?
j=1

where m; = min(a;,b;) and M; = max(a;,b;), foreach j=1,...,r

Proof. Since ged(1,J) =1+ J, then

ged(1, J) H:Pag + HT ]__‘[I:Plgr‘nj(]:[l??j_mj + ]T‘[lipl;j—mj).
J= 1= j=
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However, for each j, one of a; —m; or b; —m; is zero, so the right-hand sum is D since the
two summands are relatively prime. In other words,

ged(1,7) = [ 9",
j=1
as required. Now, by Lemma 1.3, (INJ)(I + J) =1J, so

=12y =2/ ung) = +nanJg),

j=1 j=1
SO
T T
_ _ aj+bj—m; M;
lem(I,J) =InJ =] =] 2",
j=1 j=1
and we have the complete result. O

Remark 1.15 Theorem 1.19 tells us that, when D is a Dedekind domain, lem(Z,J) is
actually the largest ideal contained in both I and J, and ged(7,J) is the smallest ideal
containing both I and J.

The following allows us to compare unique factorization of elements with that of ideals and
show where Dedekind’s contribution comes into play.

Definition 1.27 — Irreducible Ideals, gcds and lems

If D is an integral domain, then a D-ideal I is called irreducible if it satisfies the property
that whenever a D-ideal J | I, then J=1or J=D.

Theorem 1.20 — Irreducible = Prime in Dedekind Domains

If D is a Dedekind domain, and I is a D ideal, then I is irreducible if and only if [ is a
prime D-ideal.

Proof. Let I be irreducible and let J, K be D-ideals such that I | JK. Since ged(1, J) | 1,
then ged(I,J) =1 or ged(I,J) = D. If ged(I, J) = I, then I + J = I, which means that

I=J=gcd(I,J).

Now suppose that I {1 J. Then ged(I,J) = D, so there exist « € I and 8 € J such that
a + = 1p. Therefore, given an arbitrary v € K, v = ya + v8. Since [ | JK, then by
Corollary 1.7 on page 27, JK C I, so 8y € I since By € JK. However, ay € I so v € I.
This shows that K C I, so by Corollary 1.7, we have that [ ‘ K. Hence, by Theorem 1.7
on page 16, [ is prime.

Conversely, suppose that I is prime. If I = HJ for some nontrivial D-ideals H and J, then
either I|H or I|J. If I|H, there is a D-ideal L such that H = IL. Therefore,

I=HJ=1ILJ.
By Corollary 1.9 on page 27, (1) = D = LJ. Hence, J = (1) = D, so [ is irreducible. O

The following is immediate from Theorem 1.20, and is the analogue of the definition of a
rational prime.
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Corollary 1.10 If D is a Dedekind domain, then I is a prime D-ideal if and only if it
satisfies the property that whenever J | I for a proper D-ideal J then I = J.

Remark 1.16 It follows from Theorem 1.1 on page 5 and Theorem 1.2 on page 7 that the
failure of unique factorization in an integral domain D is the failure of irreducible elements
to be prime in D. However, since Theorem 1.20 tells us that irreducible ideals are the same
as prime ideals in a Dedekind domain, then we have unique factorization restored at the
ideal level via Theorem 1.17 on page 28. Thus, the magnitude of of Dedekind’s contribution
is brought to light by this fact.

We conclude this section with a result that is the generalization of the result for Z. The
reader should be familiar with the basics of ring actions such as that covered in Appendix
A, pages 326-328.

Theorem 1.21 — Chinese Remainder Theorem for Ideals

Let R be a commutative ring with identity and let I,..., I, be pairwise relatively prime
ideals in R. Then the natural map

'LZJIR/O;:le'—)R/le---XR/IT

is an isomorphism.

The above statement is equivalent to saying that if 81, 8o, ..., 8, € R, there exists a § € R
such that 8 — 8; € I; for each j = 1,2,...,r, where 8 is uniquely determined modulo
ﬂ;zlfj. The latter means that

any v satisfying v — ; € I; for each such j implies 8 —~ € N;_I;. (1.21)

Proof. Since 9(s) = 0 if and only if s € N’_, I;, then ker(z)) = (0), since the I; are pairwise
relatively prime. It remains to show that v is a surjection. Let 1, fo,..., 8, € R. We must
show that there is a 8 € R such that ¢(8) = (B1,...,8,). This is tantamount to saying:
there is a 5 € R such that § — 8y € I for each k. Since I; + I; = R for all i # j, then by
induction Iy + Njx,l; = R. Thus, for each such k, there exists an ay € I, and r € N2l
such that
Br = ay + 1 with 8 — r, € I, and 1y €l for all j # k.
Set 8 =37, rj. Then
B—Br=> 1+ (rx—Br) € I,
ik

as required. O
Remark 1.17 In Theorem 1.21, we may use the notation

v=06; (mod I;),
to denote v — 8 € I;. Then (1.21) becomes:

any v satisfying v = 8; (mod I;) for 1 < j <r implies 8 =~ (mod N;_; I;).
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Exercises

1.36.

1.37.

1.38.

1.39.

1.40.

1.41.

1.42.

1.43.

Let R be a Dedekind domain. If I,.J are R-ideals, prove that there exists an o« € [
such that ged((a), IJ) = 1.

Let R be a Dedekind domain, and let I,.J, H be R-ideals. Prove that

I(J+H)=1J+IH.

Let R be a Dedekind domain and I, J nonzero R-ideals. Prove that there is an R-ideal
H, relatively prime to J, such that HI is principal.

Let R be an integral domain with quotient field F. Prove that every invertible frac-
tional R-ideal is a finitely generated R-ideal—see Appendix A pages 323-326.

Establish each of the following.
(a) If RC S C T is a tower of integral domains and ¢ € T is integral over R, then ¢

is integral over S.

(b) Let R, S be integral domains such that R C S. If s € S, then s is integral over
R if and only if R[s] is a finitely generated R-module.

(c) Let R, S be integral domains such that R C S. If s1,52,...,8, € S are integral
over R, then R[s1,Sa,...,Sy,] is a finitely generated R-module.

(d) If s € S and there is an integral domain U such that R[s] C U C S with U
a finitely generated R-module, then s is integral over R and R][s| is a finitely
generated R-module.

(e) If RC S C T is a tower of integral domains with S integral over R, and ¢t € T is
integral over S, then ¢ is integral over R.

(f) If R C S C T is a tower of integral domains with T integral over S and S integral
over R, then T is integral over R. (Transitivity of integrality.)

Let R be an integral domain with quotient field F'. Prove that every nonzero finitely-
generated submodule I of I is a fractional R-ideal.

Prove that in an integral domain R, the following are equivalent.

(a) Every nonzero fractional R-ideal is invertible.

(b) The set of all fractional R-ideals G forms a multiplicative group.
Prove that in an integral domain R, the following are equivalent.

(i) R is a Dedekind domain.

(ii) Every proper R-ideal is a unique product of a finite number of prime ideals (up
to order of the factors), and each is invertible.

(iii) Every nonzero R-ideal is invertible.
(iv) Every fractional R-ideal is invertible.

(v) The set of all fractional R-ideals forms a multiplicative abelian group.

(Hint: Use Ezercises 1.39-1.42.)
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1.44.

1.45.

1.46.

1.47.

1.48.

1.49.

1.50.

1. Integral Domains, Ideals, and Unique Factorization

Suppose that R is a Dedekind domain with quotient field F' and I is an R-ideal. Also,
we define:
ordp(I) =a

where a > 0 is the largest power of the prime ideal P dividing I. In other words,
P | I but P**! does not divide I. The value ordy(I) is called the order of I with
respect to P. Prove the following.

(a) For R-ideals I, J,
ordp(IJ) = ordp(I) + ordp(J).

(b) For R-ideals I, J,
ordp(I + J) = min(ordp (1), ordp(J)).

(¢) For any R-ideal I, there exists an o € F' such that ordp((«)) = ordp(I) for any
prime R-ideal P | 1.

(We will have occasion to invoke this new concept when we have developed the tools to
study reciprocity laws—see Proposition 6.8 on page 296 and the discussion following
it.)

Prove that every R-ideal in a Dedekind domain R can be generated by at most two
elements.

(Hint: Use Exercise 1.44.)

Prove that D is a Dedekind domain if and only if D is integrally closed, every nonzero
prime ideal is maximal, and D is Noetherian.

With reference to Exercise 1.25 on page 14, prove that an almost Euclidean domain
is a PID, and hence Noetherian.

(Note that this is stronger than Exercise 1.25 since there are UFDs that are not
PIDs—see Remark 1.11 on page 22.)

Prove the converse of Exercise 1.47, namely that a PID is almost Euclidean.

(Hint: Define a function ¢ on the PID such that ¢(a) = 2™ where n € N is the number
of irreducibles into which o uniquely factors.)

(Ezercises 1.47-1.48 verify the assertion made in Exercise 1.25 wherein we noted that
Greene [25] proved: D is almost Fuclidean domain if and only if D is a PID.)

Determine whether or not
U:{%:n,meZ,sz,n>O}
is a fractional Z-ideal.
Let F = Q(v/10) and O = Z[/10]. Find the inverse of the O p-ideal
I= (6,24 V10)

—see Definition 1.25 on page 27.
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1.6 Algebraic Numbers and Number Fields

Only a fool learns from his own mistakes. The wise man learns from the mistakes of
others.

Otto von Bismark (1815-1898), German statesman

§1.1-81.5 built the foundation for us to introduce the fundamentals of algebraic number
theory. This involves the generalization of the integral domain Z and its quotient field Q.
To see how this is done, we consider the elements of Z as roots of linear monic polynomials,
namely if a € Z, then a is a root of f(z) = x — a. Then we generalize as follows, with some
of what follows adapted from [54].

Definition 1.28 — Algebraic Integers

If « € Cis a root of a monic, integral polynomial of degree d, namely a root of a polynomial

of the form .,

f(.%‘) = Zaja:j =ag+ax+---+ ad,lxd_l + % € Z[w],
=0

which is irreducible over Q, then « is called an algebraic integer of degree d.

Example 1.25 a+ by/—1 = a + bi, where a,b € Z, with b # 0 is an algebraic integer of
degree 2 since it is a root of £2 — 2ax + a® + b® but not a root of a linear, integral, monic
polynomial since b # 0.

In Definition 1.3 on page 2 we introduced primitive roots of unity which are a distinguished
type of algebraic integer. Another special type of algebraic integer is given by the following.

Example 1.26 Numbers of the form zo + 21, + 202 + -+ + 2,-1(" 71, for z; € Z are
called cyclotomic integers of order n.

Now we develop the generalization of the rational number field as a quotient field of a special
ring for which this sets the stage.

Definition 1.29 — Algebraic Numbers and Number Fields

An algebraic number, «, of degree d € N is a root of a monic polynomial in Q[z] of degree
d and not the root of any polynomial in Q[z] of degree less than d. In other words, an
algebraic number is the root of an irreducible polynomial of degree d over Q. Denote the
subfield of C consisting of all algebraic numbers by N, and the set of all algebraic integers
in N by A. An algebraic number field, or simply number field, is of the form

F =Q(aq,09,...,0,,) € C with n € N where a; € N for j =1,2,...,n.

An algebraic number of degree d € N over a number field F' is the root of an irreducible
polynomial of degree d over F'.

Remark 1.18 If Fis a simple extension, namely of the form Q(«), for an algebraic number
a, then we may consider this as a vector space over Q, in which case we may say that Q(«a)
has dimension d over Q having basis {1, ,...,a? !}, (See Theorem A.4 on page 325. Also,
see Exercise 1.51 on page 43 to see that all number fields are indeed simple.)
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By Definition 1.29, Q is the smallest algebraic number field since it is of dimension 1 over
itself, and the simple field extension Q(«) is the smallest subfield of C containing both Q
and a.

We now demonstrate that A, as one would expect, has the proper structure in N, which
will lead us to a canonical subring of algebraic number fields. If necessary, the reader may
review the basics on modules beginning on page 323 in Appendix A.

Theorem 1.22 — The Ring of All Algebraic Integers
A is a subring of N.

Proof. Tt suffices to prove that if a,5 € A, then both o + 5 € A and o € A. To this end
we need the following.

Claim 1.3 If a € A, then Z[a] = {f(c) : f(z) € Z[z]} is a finitely generated Z-module.
Since o € A, then there exist a; € Z for j =0,1,...,d — 1 for some d > 1 such that

ot — ay 10

— - —aja—ag=0.
Therefore,

al = ad_lad_l + ad_gad_Q 4+ 4 aa+ag € Za*t '+ 4 Za+ Z,
and

ot = a4 10+ ag_20t TV + -+ @10 + apa € Za + Zat T + - + Za? + Za
CZa* ' +7Za% %2+ + Za+ Z.
Continuing in this fashion we conclude, inductively, that
a®e€Za’ '+ 2o+ 4 Za+ Z,
for any ¢ > d. However, clearly,
a®e€Za® '+ Za% 2+ + Za+ Z,
forc=1,2,---,d—1, so
ateZa® '+ Za% 2+ 4 Za+ 7,

for any ¢ > 0. Hence, Z[a] is a finitely generated Z-module. This completes Claim 1.3.

By Claim 1.3, both Z[a] and Z[f] are finitely generated. Suppose that ai,as,...,a; are
generators of Z[a]| and by, by, ..., by are generators of Z[S]. Then Z[w,] is the additive
group generated by the a;b; for 1 <i <k and 1 < j </{. Thus, Z[a,B] is finitely generated.
Since a + 3, a8 € Z]a,8] C A we have secured the theorem. m]

Given an algebraic number field F'; FFN A is a ring in F', by Exercise 1.29 on page 19. This
leads to the following.

Definition 1.30 — Rings of Integers

If F is an algebraic number field, then F'N A is called the ring of (algebraic) integers of F,
denoted by Op.
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With Definition 1.30 in hand, we may now establish a simple consequence of Theorem 1.22.

Corollary 1.11 The ring of integers of Q is Z, namely Og = QN A =Z.

Proof. If &« € ANQ, then a = a/b where a,b € Z and ged(a,b) = 1, with b # 0. Since
a € A, there exists an

d
f(x) = a0+ a0l € Lfa]
j=1

with ag = 1, such that f(«a) = 0. If d = 1, then we are done, since ag + o € Z and ag € Z.

If d > 1, then
d

ap + Zajaj el
Jj=1

, a;al b7
o) = J
g ajo’ = E X €.
j=1 j=1

Therefore, b? divides Z?Zl aja’b?=I. Since d > 1, b divides Z?;i aja’b?7, so0 b | a?. But
ged(a,b) =1,s0b=1 and o € Z. O

SO

Corollary 1.12 If F' is an algebraic number field, then QN Of = Z.

Proof. Since O C A, then by Corollary 1.11, QNOr C QNA = Z. But clearly Z C QNOp,
so we have equality. O

Remark 1.19 In order to state the next result, we require a few comments on the notion
of finite generation. By Definition 1.29 and Claim 1.3 in the proof of Theorem 1.22, we
know that for any number field F', O is finitely generated as a Z-module. Thus, any O p-
ideal I will have a representation as I = (aq,as,...,aq) with o; € Op for j =1,2,...,d,
and we say that [ is finitely generated. In the instance where d = 1, we are in the case of
Definition 1.13 on page 15, namely a principal ideal. Also, see Remark 1.9 on page 15.

Corollary 1.13 If F is a number field, then O is a Noetherian domain.

Proof. This follows from Remark 1.19 above and Lemma 1.2 on page 20. O

In Definition 1.22 on page 25, we defined integrality over a domain. Now we extend this
notion to algebraic numbers and number fields.

Definition 1.31 — Elements Algebraic Over a Domain

If R C S where R and S are integral domains, then if R is a field and « is integral over R,
then « is said to be algebraic over R. Also, if every nonconstant polynomial f(z) € Rlx]
has a root in R, then R is said to be algebraically closed. Moreover, any extension field that
is algebraic over R and is algebraically closed is called an algebraic closure of R, and it may
be shown that an algebraic closure is unique up to isomorphism.

Remark 1.20 In view of Definition 1.29 on page 35, and Definition 1.31 above, we may
now restate the notion of an algebraic number as a complex number that is algebraic over
Q. Moreover, in view of Definition 1.28 on page 35 and Definition 1.31, we see that an
algebraic integer is a complex number that is integral over Z.
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Given an element « that is algebraic over a number field F', Definition 1.31 tells us that
there is a monic polynomial m,, rp(x) € Flz] with mq, r(a) = 0. We may assume that mq
has minimal degree. Hence, m,, r must be irreducible, since otherwise, o would be the root
of a polynomial of lower degree. Thus chosen, mq, () is called the minimal polynomial of
a over F. It turns out this polynomial is also unique.

Theorem 1.23 — Minimal Polynomials Are Unique

A number a € C is an algebraic number of degree d € N over a number field F' if and only
if v is the root of an unique irreducible monic polynomial

M, r(z) € Flx].
Any h(z) € F[z] such that h(a) = 0 must be divisible by mq, p(z) in Flz].

Proof. If « is an algebraic number of degree d over F', then by Definition 1.29, we may let
f(z) € F[z] be a monic polynomial of minimal degree with f(a) = 0, and let h(z) € F|x]
be any other monic polynomial of minimal degree with h(«a) = 0. Then by the Euclidean
algorithm for polynomials (see Theorem A.13 on page 333) there exist ¢(x),r(z) € F[x]
such that

h(z) = q(z) f(z) + r(z), where 0 < deg(r) < deg(f) or r(z) = 0, the zero polynomial.

However f(a) =0 so h(a) =0 = f( ), and r(a) = 0, contradicting the minimality of f
unless r(z ) =0 for all z. Hence, f(z) | h(z). The same argument can be used to show that
) | f(z). Hence, h(z) = cf(z) for some ¢ € F. However, f and h are monic, so ¢ = 1
and h = f. This proves that f(z) = mq, r(z) is the unique monic polynomial of « over F'.
The converse of the first statement follows a fortiori.
To prove the second statement, assume that h(z) € F[z] such that h(e) = 0 and use the
Euclidean algorithm for polynomials as above to conclude that mg, p(z) ’ h(zx) by letting
mq,r(z) = f(x) in the above argument. O

Corollary 1.14 An irreducible polynomial over an algebraic number field has no repeated
roots in C. In particular, all the roots of m,, p(z) are distinct.

Proof. If F is a number field and f(z) € F[z] is irreducible with a repeated root «, then

f(@) = c(z — a)’g(x),

for some ¢ € F and g(z) € C[z]. By Theorem 1.23, mq r(2) | f(2) so f(z) = amq,p(z) for
some a € F, since f is irreducible. However, f'(z) = 20(3@ —a)g(z) + c(zr — a)?g’(x), where
[’ is the derivative of f. Hence, f'(a) = 0, so by Theorem 1.23, again mq r(z) | f'(z),
contradicting the minimality of mq, r(x) since deg(f’) < deg(f). O

Corollary 1.15 If o € A, then mq g(z) € Z[z].

Proof. This follows from Definition 1.28 on page 35 and Theorem 1.23. O

Now our goal is to demonstrate that algebraic integers are sufficient to characterize algebraic
number fields. First we need the following crucial result.

Lemma 1.4 — Algebraic Numbers as Quotients of Integers

Every algebraic number is of the form a/¢ where « is an algebraic integer and ¢ € Z is
nonzero.
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Proof. By Definition 1.29, if v is an algebraic number, there exist a; € Q for j =
0,1,2,...,d — 1 such that « is a root of

f(ZC) :ao+a1$—|—a2x2+...+ad_1zd71+xd.

Since
a0+a1’Y+a2’yQ+...+ad_17d—l _|_,de0

we may form the least common multiple, ¢, of the denominators of the a; for j = 0,1,...,d.
Then multiplying through by /£,

() + (Laa—1) ()" + -+ (€7 ar) () + lag = 0.

Thus v is the root of a monic integral polynomial, so ¢y is an algebraic integer, say, «
Hence, v = o/¢, with o € A and ¢ € Z. O

Corollary 1.16 — Quotient Fields of Number Rings
If F' is a number field, then the quotient field of O is F.

Proof. Let K = {af~! : a,8 € OF, # 0} be the quotient field of Or. Suppose that
v=aB" ! € K. Since O C F, then v € F, so K C F. Now if v € F, then by Lemma 1.4,
~v = «a/l where a € A and ¢ € Z. However, since a = v¢ € F N A = Op by Definition 1.30
on page 36, then a € Op C F, so K C F. Hence, K = F. O

Theorem 1.24 — The Primitive Element Theorem for Number Fields
If F is an algebraic number field, then there is an algebraic integer « such that F' = Q(«).
Additionally, if 8 is algebraic over F' with minimal polynomial mg p(x), then

[F(B) : F| = deg(mg.r).

Proof. By Exercise 1.51 on page 43, F' = Q(v) for some algebraic number 7, and by Lemma
1.4, Q(v) = Q(a/f) = Q(«) or some «a € A.

The second statement will follow if we can show that every element § € F(8) is uniquely

represented in the form
d—1

§="a;f € Fg],

=0

where deg(mgp (xz)) = d. Since 6 = f(B8)/g(8) with f(z),g(x) € F[z] and g(8) # 0,
then by Theorem 1.23 on the facing page, mg r(z) does not divides g(z). Therefore,

ged(g(z), mp,r(x)) = 1, so by Theorem A.13, there exist s(x),t(z) € F[z] such that
s(x)g(x)+t(x)mp,p(x )—1 Since mg r(8) = 0 then s(8) = 1/g(B3). Thus, § = f(8)/9(8) =
F(B)s(B). Let h( ) = f(z)s(z) € Flx]. By Theorem A.13 again, there exist q(z),r(x) €
F|z] such that h(z) = q(x)mg,r(z) + r(z) such that deg(r) < deg(mg r(x)) or r(x) = 0.
However,

6 = f(B)s(B) = h(B) = q(B)mp r(B) +1(B) = r(B).

It remains to show that r(z) is unique. Suppose that v(z) € F[z] such that deg(v) < d—1
and 6 = v(3). Thus, r(8) —v(B) =0 so B is a root of r(x) — v(z) € F|x] contradicting the
minimality of mg g(x), whence r(z) — v(z) = 0, the zero polynomial, namely r(x) = v(x)
as required to secure the second statement. O
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Example 1.27 Let E = Q(v/2,1), where i = 4 = v/—1 is a primitive fourth root of unity.
Then by Exercise 1.53 on page 43,

Qi v2) = Q (t;)  and g — 1\7;.

Example 1.28 If F = Q(i) and o = (g is a primitive eight root of unity, then
M, r(z) =22 —i

is the minimal polynomial of a over F. Moreover, the minimal polynomial of o over Q is
given by
8
°—1 4
ma;@(x) = 41 =a" +1,

which is an example of the following type of distinguished polynomial.

Definition 1.32 — Cyclotomic Polynomials

If n € N, then the n*" cyclotomic polynomial is given by

e (2)= [ -,
ged(n,j)=1
1<j<n

where (, is given by Definition 1.3 on page 2. The degree of® ,(z) is ¢(n), where ¢(n) is
the Euler totient—see Definition A.22 on page 342.

Remark 1.21 The reader may think of the term cyclotomic as “circle dividing,” since
the n'" roots of unity divide the unit circle into n equal arcs. The cyclotomic polynomial
also played a role in Gauss’s theory of constructible regular polygons—see [20, §365-§366,
pp. 458-460].

Note that since the roots of the n'"* cyclotomic polynomial are precisely the primitive nt”

roots of unity, then the degree of® ,(z) is necessarily ¢(n). We now demonstrate the
irreducibility of the cyclotomic polynomial.

Theorem 1.25 — Irreducibility of the Cyclotomic Polynomial
For n € N, ®,(x) = me, o(z), so® ,(x) is irreducible in Z[z].

Proof. We may let
,(z) = me, o(x)g(z) for some g(z) € Z[z]

by Theorem 1.23 on page 38.
Claim 1.4 m¢, ¢(¢%) = 0 for any prime p { n.

If me, o(¢®) # 0, then g(¢Z) = 0, so ¢, is a root of g(aP). By Theorem 1.23 again,
g(aP) = me, o(z)h(z) for some h(x) € Z[z]. Let

flx) = Zajxj € Zlx]
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have image
Fla) =) aj!
J
under the natural map
Zlz] — (Z/pZ)x).
Thus,

g(a”) =, o(z)h(z).

gP(x) since char(Z/pZ) = p. Therefore, 0 = G(¢2) = (9(¢n))? = 9(¢n)-

Since® ,(z) | (z™ — 1), then

However, g(zP)
2"~ 1= D, (@)k(z) = me, o(@)g()k(e),
for some k(z) € Z[z]. Therefore, in Z/pZ|x],

2 T =7 —1=mg, o@)g(@)k(z).

Since g and m¢, @ have a common root (,, then 2™ — 1 has a repeated root. However,
this is impossible by irreducibility criteria for polynomials over finite fields, since p t n, (see
Corollary A.8 on page 332 where we see:

z™ — 1 is irreducible if and only if ged(z™ —1, a? — xz)=1for1<i<|n/2]).

We have established Claim 1.4, namely that (% is a root of m¢, g(«) for any prime p { n.
Repeated application of the above argument shows that y? is a root of m¢, g(«) whenever y

is a root. Hence, ¢} is a root of me, g(x) for all j relatively prime to n such that 1 < j < n.
Thus, deg(me, o) > ¢(n). However, m¢, o(x) f b, () so

mCmQ(x) = (I)n (il?),

as required. O

Corollary 1.17 For n € N, |Q(¢,) : Q| = ¢(n).
Proof. By Theorems 1.24-1.25, in view of Definition 1.32, the result follows. O
At this juncture, we look at general properties of units in rings of integers, in keeping with
one of the themes of this section.
Proposition 1.1 Let a € A. Then the following are equivalent.

(a) « is a unit.

(b) « ‘ 1in A.

(¢) If F =Q(«), then my, r(0) = £1.

Proof. The equivalence of (a) and (b) comes from Definition 1.1 on page 1. Now assume
that « is a unit. Then, by Exercise 1.52 on page 43,

d
Mo, r(0) = (~1)* [[ oy = £1
j=1

if and only if @ € Up, so (a) and (c) are equivalent. O
One of our main goals is the following result that leads us toward a unique factorization
theory for ideals in rings of algebraic integers. In order to state it we need the following
result which is motivated by Example 1.18 on page 15.
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Lemma 1.5 — 9Op-Ideals Intersecting 7Z

If F' is a number field and I is a nonzero O g-ideal, then I N Z contains a nonzero element
of Z.

Proof. Let a € I where o # 0 and consider m, o(7) = ag+ar1z+- -+ ag4_179 1 + 2%, where
a; € Z for all 5 =0,1,...,d—1 by Corollary 1.15 on page 38. If d = 1, then ap = —a # 0,
and if d > 1, then ag # 0 since mq () is irreducible in Q[z] by Corollary 1.15. Hence,

d—1

ag = —a100 — -+ — Qg1 —aler

as required. O

Theorem 1.26 — Rings of Integers are Dedekind Domains

If F is an algebraic number field, then 9D is a Dedekind domain.

Proof. By Corollary 1.13 on page 37 (in view of the comment on condition (A) in Re-
mark 1.12 on page 26), condition (A) of Definition 1.23 on page 25 is satisfied.

Now we show condition (B) holds. Assume that there is a prime O p-ideal P # (0) that is
not maximal. Therefore, the set 8, of all proper O p-ideals that strictly contain P, must
be nonempty. By Corollary 1.4 on page 21, there is a maximal ideal M € § such that
P Cc M C Op. By Theorem 1.10 on page 18, M is a prime O p-ideal. By Lemma 1.5, there
exists a nonzero a € P NZ. By Exercise 1.29 on page 19, PN Z is a Z-ideal.

Suppose that ab € PNZ, where a,b € Z. Since P is a prime O p-ideal, then a € P or b € P so
a € PNZ or b € PNZ, which means that PNZ is a prime Z-ideal. If p € PNZ is a rational
prime, then (p) € PNZ and (p) is a maximal Z-ideal by Theorem 1.11 on page 18 since
Z/(p) is a field by Example 1.21 on page 19. Hence, since P NZ # Z, we have (p) = PN Z.
However, (p) =PNZC MNZCZ,where 1 ¢ M, so (p) =PNZ=MnNZ. Since M € 8,
then P # M, so there exists an a € M such that o ¢ P. Consider

Mag() = 2%+ ag_12 + - + a1z + ag € Z[] for some d € N.

Then mq,g(e) = 0 € P. Now define ¢ € N to be the least value for which there exist integers
b; such that
X=ao"+b1a" '+ Fba+byeP, (1.22)

for j =0,1,---,¢—1. Since @ € M, then by properties of ideals,
Y =a(a™ +b 102+ +b) e M. (1.23)

Since P C M, then by (1.22)-(1.23), X - Y =by € M,s0bg e MNZ =PNZ. If L =1,
then a € P, a contradiction, so £ > 1. Thus, by (1.22),

of + b0 b+ by —bp = (@ b0t b)) € P

However, since P is prime and o € P, then a*~! + by_1a’~2 + --- + b; € P, contradicting
the minimality of £ > 1. We have shown 8§ = @, which establishes that condition (B) of
Definition 1.23 holds.

For condition (C), we note that since F' is the quotient field of Or by Corollary 1.16 on
page 39, then any a € F is integral over Op. Since O is integral over Z, then by part (e)
of Exercise 1.40 on page 33, « is integral over Z. In other words, « is an algebraic integer
in F, namely a € Op. Hence, O is integrally closed and we have part (C) that establishes
the entire result. m|
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Exercises

1.51.

1.52.

1.53.

1.54.

Prove that if an algebraic number field F is of the form
F= Q(O{l,az, .. '7an)

for n € N where «; for j = 1,2,...,n are algebraic numbers, then there is an alge-
braic number v such that ' = Q(). (Hence, all algebraic number fields are simple
extensions of Q.)

(Hint: It suffices to prove this for n = 2 with o1 = o and as = 3. Let

do
mag(@) = [ —ay),
j=1

where the o are the conjugates of o over Q, and let

dg

mpo(@) = [J(= - 8)),

j=1
where the B; are the conjugates of B1 = § over Q. Select ¢ € Q with

q# (a—ax)/(B; = B)

forany k=1,2,...,d, and any j =1,2,...,dg Also, let

v=a+qfb
and
f(x) =maoly — qz).

Prove that B is the only common root of f(x) and mgg(x). Show that this implies
Q(a,8) CQ(y). The reverse inclusion is clear.)

Let F' be an algebraic number field. Prove that if o € Up, then a; € Up for all
j=1,2,...,d, where my () = ¢ + ag_12%71 + -+ + a1z + ao, for some d € N is
the minimal polynomial of « over F, and «; are the roots of m,, r(z). Conclude that
if F' is an algebraic number field, then « € 4y if and only if H;l:1 o = £1.

Referring to Example 1.27 on page 40, prove that

Q(,v2) = Q (1%) |

and that if (g is a primitive eighth root of unity, then it is an odd power of (1414)/v/2.

Prove that
2" —1= H@d(x),

d|n

where® ;4(z) is the cyclotomic polynomial given in Definition 1.32 on page 40.
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1.7 Quadratic Fields

It’s not that I'm so smart; it’s just that I stay with the problem longer.
Albert Einstein (1879-1955), German-born theoretical physicist

In this section we use the tools developed in this chapter and apply them to quadratic fields.
This is a precursor to the general number field development later in the text and gives an
overview of the least nontrivial case of a number field extension of Q.

First we establish the rings of integers for quadratic fields. This extends our discussion begun
in Application 1.2 on page 3. Then, we show that a given quadratic field is determined by
a unique squarefree integer. We note that if f(z) = 2% + ax + b € Q[z], is irreducible, and
a € Cis aroot of f(z), then the smallest subfield of C containing both Q and « is given
by adjoining « to Q, denoted by Q(«), so

Qo) ={x +ya:z,y € Q}.

This is what we call a quadratic field, which we loosely discussed in Application 1.2 on
page 3.

Quadratic polynomials with the same squarefree part of the discriminant give rise to the
same quadratic field. To see this suppose that:

f(z) = 2% + bz + c and g(z) = 2* + bz + ¢; € Q[z] are irreducible,

A =b%—4c=m?D,

and
Ay = b} —4c; =miD,

where m, my € Z and D is squarefree.

Then
Q(VA) =Q(Vm2D) = Q(mvD) = Q(vVD)

—QmvD) = @ (niD) = a(v/AD).
Thus, we need the following to clarify the situation on uniqueness of quadratic fields.

Theorem 1.27 — Quadratic Fields Uniquely Determined
If F is a quadratic field, there exists a unique squarefree integer D such that F = Q(v/D).

Proof. Suppose that F' = Q(a), where « is a root of the irreducible polynomial 2 + bx + c.
By the well-known quadratic formula « € {a1, as}, where

_fb+\/6274c —b—Vb?% —4c

5 ,and ag = 5

Since a1 = —ap — b with b € Q, then Q(a1) = Q(a2) = Q(«). However,

Q1) =0Q <_b+2b2_46> = Q(vb? — 4c).

aq

Let a = b> —4c = e/f € Q. Then a # d? for any d € Q since 2% 4 bx + c is irreducible
in Q[z]. Without loss of generality we may assume that ged(e, f) = 1 and f is positive.
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Let ef = n?D, where D is the squarefree part of ef. Hence, D # 1, and arguing as in
the preamble to this theorem, Q(v/D) = Q(y/a), observing that Q(/e/f) = Q(v/ef). This

shows existence. It remains to prove uniqueness.

If Dy is a squarefree integer such that Q(v/D) = Q(v/Dy), then VD = u + v\/D; with
u,v € Q. By squaring, rearranging, and assuming that uv # 0, we get

D — 2_D2
/D, = = — % — 2V <,

2uv

which contradicts that D, is squarefree. Thus, uv = 0. If v = 0, then v/ D € Q, contradicting
the squarefreeness of D. Therefore, u = 0 and D = v2D;, but again, D is squarefree, so
v? = 1, which yields that D = D;. O
Now we are in a position to determine the ring of integers of an arbitrary quadratic field,
which we motivated in Application 1.2 on page 3.

Theorem 1.28 — Rings of Integers in Quadratic Fields

Let F be a quadratic field and let D be the unique squarefree integer such that F' = Q(\/ﬁ)
Then

5 _{ Z [H;@} if D =1(mod 4),
b=
Z|V D] if D 2 1(mod 4).

Proof. Let

) 2 if D=1(mod 4),
971 1 if D#1(mod 4).

Then since (1 ++v/D)/o is a root of 22 — 22 /0 + (1 — D)/o? we have
—-14++vD
Z+Z<” * ) C .
o

It remains to prove the reverse inclusion.

Let « € Op C F. Then o = a + bv/D where a,b € Q. We may assume that b # 0, since
otherwise we are done, given that

ZCZ—l—Z(M).
o

Since O is a ring, then o/ = (a — bV/D), a + o/ = 2a, and ae/ = a?> — Db? are all in
Or. However, the latter two elements are also in QQ, and by Corollary 1.12 on page 37,
OrNQ =17, so

2a,a> — Db* € Z. (1.24)
Case 1.1 a ¢ Z.

We must have a = (2¢+1)/2 for some ¢ € Z. Therefore, by (1.24), 4(a®> — Db?) € Z, which
implies 4Db? € Z. However, since D is squarefree, then 2b € Z. (To see this, observe that
if 2b = g/f where g, f € Z with ged(f,g) = 1, and f > 1 is odd, then 4Dg? = f2h for some



46 1. Integral Domains, Ideals, and Unique Factorization

h € Z. Thus, since ged(4g, f) = 1, f? | D contracting its squarefreeness.) If b € Z then, by
(1.24), a € Z, contradicting that a = (2¢ + 1)/2. Therefore, b = (2k + 1)/2 for some k € Z.
Thus,

(2c+1)2  D(2k+1)? 1-D

2 2: _ :2 _ 2 - =
a® — Db " 1 e~ (K +k)D+ —

which implies (D —1)/4 = c® 4+ ¢ — (k* + k)D — a® + Db? € Z, hence, D = 1(mod 4) and:

(2k +1)(1 + VD)

2c+1 2k+1)vD
oo et +( +1)vVD

5 5 =(c—k)+ 5
€Z+Z<1+2\/E> :Z+Z<U_1U+‘/E>.

Case 1.2 a € Z.

In this instance, by (1.24), Db? € Z, and arguing as above, since D is squarefree, b € Z.

Hence,
-1 D
a=a+WDeZ+ZVD=Z+17 (HF) ,
o
which completes the reverse inclusion that secures the theorem. O
Definition 1.33 — Quadratic Field Discriminants

If D is the unique squarefree integer such that F' = Q(v/D) is a quadratic field, then the
discriminant of F' is given by

Ap— D if D=1(mod 4),
F= 4D if D # 1(mod 4).

Remark 1.22 Definition 1.33 follows from the fact that the minimal polynomial of F is
22— 2+ (1 - D)/4if D = 1(mod 4), and is 2> — D if D # 1(mod 4). In §2.3, we will
study general number field discriminants and prove the fact, implicit in Definition 1.33,
namelyA g = 0,1(mod 4), holds for any number field F. This is known as Stickelberger’s
Theorem—see Biography 1.4 on page 54 and Theorem 2.10 on page 77.

Example 1.29 Suppose we have an irreducible quadratic polynomial
f(z) = az® 4+ bz + c € Q[z].

Then A= b? —4ac is the discriminant not only of f(z), but also the quadratic field Q(v/A).
By the quadratic formula, the roots of f(x) are given, since a # 0, by

—b+ VA , —b—VA
oa=————and o = ——,
2a 2a

where o is called the algebraic conjugate of o. By Exercise 1.1 on page 6, Q(a) = Q(v/A),
which we know is a simplest nontrivial number field, a quadratic field over Q.

The reader will note that some easily verified properties of conjugates are given as follows.
(a) (aB)" = o'f".
b) (axp) = £0.
(c) (a/B) = a'/B, where a/f = 6§ € Q(vVA).
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Remark 1.23 If D < 0 in Theorem 1.28 on page 45, F' is called a complex (or imaginary)
quadratic field, and if D > 0, F' is called a real quadratic field. Also, the group of units in
a quadratic field forms an abelian group. For real quadratic fields we will learn about this
group later, since it is more complicated than the complex case which we now tackle. The
reader will recall the notion of groups and notation for a cyclic group, (g), generated by an
element g—see Definition A.3 on page 320.

Theorem 1.29 — Units in Complex Quadratic Fields
If F = Q(v/D) is a complex quadratic field, then

(o) = (H4=2) D=3,

Up =%op =4 (¢) = (V=T) i D=1,
(C2) = (—1) otherwise.

Proof. By Theorem 1.28 we may write © = a + bv/D € Uo ., with oa,ocb € Z where o is
defined as in the proof of Theorem 1.28. Hence, if D # 1(mod 4), then a? — D = 1, for
some a,b € Z. If D < —1, then a®> —b>D > 1 for b # 0. Thus, b = 0 for D # 1 (mod 4) with
D < —1. In other words,

Up, ={(—1)=(¢) if D=2,3 (mod 4) and D < —1.

Now we assume that D = 1 (mod 4), so a®> — Db? = 4 for a,b € Z. If D < —4, then for b # 0,
a? — Db? > 4, a contradiction. Hence, for D = 1(mod 4) and D < —4, Uy, = ((2). It
remains to consider the cases D = —1,—3. If D = —1, then by Theorem 1.28, Or = Z+Z][i],
and a+bi is a unit in O if and only if a®+b* = 1. The solutions are (a,b) € {(0£1), (£1,0)}.
In other words,

o = {£1, +:}.
If D = —3, then a? + 3b% = 4, so either a = b =1, or b = 0 and a = 2. Hence, the units are
+1, (1£+/-3)/2, and (-1 + v/=3)/2. However, 1 = (§ and we have: —1 = (2,
(1+v=3)/2 =,

1-V=3)/2=¢,
(-1+V=3)/2=¢,

and
(-1-V=3)/2=¢.
Hence,
Ungy=s = (G,
as required. O

Now we look at multiplication of ideals in quadratic fields. If the reader is in need of a
reminder about the basics involved in modules and their transition to ideals in the rings of
integers in quadratic fields, then see Exercises 1.55-1.58. In any case, see Exercise 1.62 on
page 54.
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Multiplication Formulas for Ideals in Quadratic Fields.

Suppose that

F=Q(VD)

is a quadratic number field, and O is its ring of integers—see Theorem 1.28 on
page 45. LetA g be the field discriminant given in Definition 1.33 on page 46,
and for j = 1,2 with a; € N, b; € Z, let

I = (aj, (bj + VAF)/2),
be O p-ideals. Then

bz + VA
L, = (9) (03, 32F> )

where

aia9
az = )
g2
b1 + b
g = ng a, az, 2 3
and

1
b3 = p <6a2b1 + paibs + g (b1ba + AF)) (mod 2as),

where 9, 1, and v are determined by

das + pnay + %(bl + bg) =g.

Note the above formulas are intended for our context, namely the ring of integers of a
quadratic field Op, called the maximal order. In an order contained in Op that is not
maximal, the above does not work unless we restrict to invertible ideals. For the details
on, and background for, orders in general, see either [49, §1.5] or [50, §3.5]. Also, see
Definition 1.25 on page 27 and Exercise 1.43 on page 33.

Example 1.30 ConsiderA p = 40, with
I = (3,1+10) and I, = (3, —1 4+ v/10),
so in the notation of the above description of formulas for multiplication, we have
a1 =a3=3b1=2=—-b3,g=3,0=0=v,u=1,b3=1,and azg =1,

SO

L1y = (3,1+V10)(3, —1 +v10) = (3). (1.25)

Hence, the product of I; and I5 is the principal ideal (3) in Z[v/10] = O, and by Theo-
rem 1.8 on page 16, (3) is not a prime ideal in O since (3) divides I; Iz but does not divide
either factor. To see this, note that if

(3) | (3, £1 + V10),
then by Lemma 1.1 on page 17,
(3,+1+v10) C (3),
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which is impossible since it is easy to show that +1++/10 & (3). Moreover, by Exercise 1.61
on page 54, I; and I are prime O p-deals.

Example 1.30 motivates a study of prime decomposition of ideals in quadratic fields. For
instance, (1.25) is the decomposition of the ideal (3) in Z[v/10] = O into the product of the
two prime ideals I and I>. In what follows, we have a complete description. The notation
(D/p) in the following denotes the Legendre symbol—see Definition A.23 on page 342. Also,
the symbol N(P) will denote the norm of a quadratic ideal as defined in Exercise 1.58 on
page 54.

Theorem 1.30 — Prime Decomposition in Quadratic Fields

If OF is the ring of integers of a quadratic field F' = Q(\/E), and p € Z is prime, then the
following holds.

PPy ifp>2(D/p)=1,or p=2,D=1 (mod 8),
where P;, are distinct prime O p-ideals for j = 1,2
and N(P;) = p,

(p)=pOp=< P ifp>2,(D/p)=—-1,or p=2,D=5 (mod 8),
where P is a prime O p-ideal with N(P) = p?,

P? ifp>2,p|D,0rp:2,D52,3 (mod 4),
where P is a prime O p-ideal with N(P) = p.

Proof. For the sake of simplicity of elucidation in the following Cases 1.3-1.5, we present
only the instance where O = Z[v/D] since the proof for O = Z[(1 4+ /D) /2] is similar.

Case 1.3 (D/p) =1 for p > 2.
The Legendre symbol equality tells us that there exists a b € Z such that
b =D (mod p).
Also, since p1 D, then ptb. Let
Py = (p,b+ VD) and P, = (p, —b + VD).

If Py = P2, then
2b=b++VD — (=b+ VD) € Py,

SO p ’ 2b by the minimality of p as demonstrated in Exercises 1.56—1.58, namely
2b e P1NZ = (p).

Thus, P; and P, are distinct 9 p-ideals. By the multiplication formulas given on page 48,
we have, in the notation of those formulas, a3 = 1 and g = p, so

P1P2 = (p).
Case 1.4 (D/p) = —1 for p > 2.
Let af € (p), where

a=a1+b0VD,S =ay+byVD € Z|VD).
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Suppose that § & (p). We have
Otﬁ =aias + b1bs D + (a2b1 + albg)\/ﬁ = p($ + y\/ﬁ),

for some x,y € Z. Therefore,
aias + bibe D = pax, (1.26)

and
asb; + a1by = Y. (127)

If by = 0, then by (1.26), p | arag. If p | a1, then @ = a; € (p), so by Definition 1.14 on
page 15, (p) is an O p-prime ideal. If p | ag, then p 1 be since 8 & (p), so by (1.27) p | a1 and
we again have that a € (p). Hence, we may assume that b; # 0. Similarly, we may assume
that a; # 0.

Multiplying (1.27) by a; and subtracting by times (1.26), we get
by(ai — bD) = p(ary — biz).

If p | (af — b3D), then there exists a z € Z such that a? — b}D = pz. Therefore,

2=(2)- () (55)- ()

a contradiction. Hence, p | be. By (1.27), this means that p | agby. If p | as, then

P | (az + by D), so B € (p),
a contradiction to our initial assumption. Thus, p | by, so
p| (a1 + b1V D), which means that o € (p).

Case 1.5 p>2and p ‘ D.

Let P = (p,v/D). Then by the multiplication formulas on page 48, with ag = 1 and g = p
in the notation there, P? = (p). This completes Case 1.5.

It remains to consider the three cases for p = 2.
Case 1.6 p =2 and D = 1(mod 8).

- P = (2, (1+ \/5)/2) and Py = (2, (—1+ \/5)/2) .

Then by the multiplication formulas as used above with a3 = 1 and g = 2, we have
P1Py = (2).

If P; = Pg, then
(1+VD)/2+ (-1+VD)/2=VD e P,

which is not possible. Thus, P; and Py are distinct. This is Case 1.6.

Case 1.7 p=2 and D = 5(mod 8).
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Let af € (2), where
a= (a1 +bVD)/2,8 = (az +bVD)/2 € Z[(1 + VD)/2],

with a; and b; of the same parity for j = 1,2. Suppose that 5 & (2). We have

af =

b1ba D b b2)vV D D

a1a2 + b102 +(a21+a12)\ﬁ:2 z+yvVD — 2+ yVD,
4 2

where x,y € Z are of the same parity. Thus,

aias + blbgD = 41’, (128)

and
a2b1 + a1b2 = 4y (129)

Multiplying (1.29) by a; and subtracting b; times (1.28), we get
by(a? — b2D) = 4(ya; — xby).

If a% — b%D is even, then either a; and by, are both odd or both even. In the former case,
l=a?=0bD=5 (mod8),

a contradiction, so they are both even. Hence,

- <a1/2+ (;1/2>x/ﬁ> €@

s0 (2) is a prime O p-ideal by Definition 1.14. If by is even, then by (1.29), 2 | agby. If 2 | aqg,

then
5= <a2/2+ (b2/2)\/5> € @),

2

contradicting our initial assumption. Hence, by is even and so a; is even since they must be
of the same parity. As above, this implies that « € (2). Thus, (2) is prime. This completes
Case 1.7.

Case 1.8 p=2 and D = 2(mod 4).

Let P = (2,v/D), which is an O p-ideal by Exercise 1.61 on page 54. Moreover, P? = (2),
by the multiplication formulas on page 48 with az =1 and g = 2.

Case 1.9 p=2 and D = 3(mod 4).
Let P = (2,14 v/D), which is an O p-ideal by Exercise 1.61. Moreover, as in Case 1.8,
P2 = (2).

This completes all cases. g
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Remark 1.24 Although we have not developed the full decomposition theory for ideals
in general number fields, we will be able to talk about decomposition of ideals in quadratic
fields. The following terminology will be suited to the more general case—see §5.1—so we
introduce it here. Suppose that F' = Q(\/ﬁ) is a quadratic number field,A g is given as in
Definition 1.33 on page 46, and (Ar/p) denotes the Kronecker symbol—see Definition A.25
on page 343. If p € Z is a prime, then

A
(p) is said to split in F if and only if (pF) =1,

A
(p) is said to ramify in F if and only if <pF> =0,

and A
(p) is said to be inert in F if and only if <pF> =—1.

Note, as well, that from the proof of Theorem 1.30, when (p) = P; P, namely when (p) splits,
then Py is the conjugate of Py. This means that if P; = (p,b++/D) then Py = (p, —b++/D).

Example 1.31 In Example 1.30 on page 48, withA p = 40, we saw that

(3) = I1 I = (3,1 4+ V10)(3, -1 + V10),

Ar) _ (40) _ 1
3) \3) 7
so (3) splits in Q(v/10) into the two prime Z[v/10]-ideals I; and I5.

In Examples 1.19 on page 15 and 1.20 on page 16, we saw that (2) is not a prime ideal in
Z[i] and that (3) is a prime Z[i]-ideal. Since (2) = (1 + i)?, where

where

P=(21+i)=(1+i)=(21—1i)=(1-1)
is a prime Z[i]-ideal, then (2) is ramified in F' = Q(¢), where
Ap —4
(3)-(5)-o

Also, (3) is a prime ideal and we see that
ﬁ — ;4 =1,
3 3

The following illustration shows that the converse of Lemma 1.1 on page 17 does not hold
in general and that the multiplication formulas, on page 48, do not necessarily hold if we
do not have the ring of integers of a quadratic field in which to work.

so (3) is inert in F.

Example 1.32 If R = Z[V/5], then I = (2,1 + 1/5) is an R-ideal by Exercise 1.57, and
clearly (2) = (2,2v/5) C I. If I | (2), then there exists an R-ideal J such that (2) = I.J.
Thus, J has a representation J = (a,b + c\/ﬁ) with a,c € N, b € Z, 0 < b < a, such that
c¢|a, c¢|b, and ac | (b? — D). Moreover, J | (2), so by Lemma 1.1, (2) C J, so there exist
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x,y € Z such that 2 = ax + (b + ¢v/D)y. Therefore, y = 0 and a | 2. If a =1, then I = (2),
which means that 1 4+ /5 € (2), a contradiction, so @ = 2. If b = 1, then ¢ = 1, so

I’ = (2). (1.30)
However, by considering the multiplication of basis elements for I we see that
12 = (4,201 +V5),6 + 2V5) = (4,2(1 + V5)),

where the last equality follows since 6 + 21/5 is a linear combination of the other basis
elements so is redundant. Thus,

2 = (4,2(1+V5)) = (2)(2,1+V5) = ()1,

and combining this with (1.30), we get (2) = (2)I, which implies 2(1 + v/5) € (2), again
a contradiction. We have shown both that although (2) C I, I does not divide (2), and
that the multiplication formulas for ideals in R fail to hold. Note, that R is not the ring
of integers of a quadratic field by Theorem 1.28 on page 45. Indeed, by Corollary 1.7 on
page 27, R is not a Dedekind domain. For instance, (2) is a prime R-ideal but, by the above,
is not maximal, contradicting part (B) of Definition 1.23 on page 25. (R is what is known
as an order in Op = Z[(1 4 /5)/2] for F = Q(v/5) and I is an evample of an ideal in R
which is not invertible in R—see [49, Chapter 1, pp. 23-30]. As we saw in Theorem 1.16
on page 27, all integral ideals in a Dedekind domain are invertible. Thus, the multiplication
formulas work in O, but not in arbitrary orders where invertibility is not guaranteed.)

Exercises

1.55. Suppose that G is an additive abelian group, and that R is a commutative ring with
identity 1z which satisfy each of the following axioms:
(a) Foreach r € R and g,h € G, r(g+ h) = (rg) + (rh).
(b) For each r,s € R and g € G, (r+ s)g = (rg) + (s9).
(c) Foreach r,s € Rand g € G, r(sg) = (rs)g.
(d) Foreach g€ G, 1p-g=g.

Then G is a (two-sided) module over R, or for our purposes, simply an R-module.
Prove that (in general) being a Z-module is equivalent to being an additive abelian

group.
1.56. Let R = Z[wp], D € Z not a perfect square, and wp = (¢ — 1 ++/D) /o, with o = 1

if D # 1(mod 4) and o = 2 otherwise—see Application 1.2 on page 3. Then every
Z-submodule of R has a representation in the form

I=Ja,b+ cwp]

where a,c € N and b € Z with 0 < b < a. Moreover, a is the smallest natural number
in I and c is the smallest natural number such that b + cwp € I for any b € Z. (Note
that when ¢ = 1, T is called primitive.)

1.57. With reference to Exercise 1.56, prove that I = (a,b+ cwp) is an R-ideal if and only
ifc|a,c’b,and
(ob+c(oc —1))> =D (mod o?ac). (1.31)

(Note that we use the square brackets for Z-modules and the round brackets for
ideals.)
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With reference to Exercise 1.56, prove that the Z-module [a,b + cwp] for a,c € N,
b € Z, is an R-ideal (a,b+ cwp) if and only if ¢ | a, ¢ | b, and (1.31) is satisfied. (Here
a is the smallest natural number in I, called the norm of I, denoted by N(I).)

Let [o,8] = oZ + BZ and [y,8] = ¥Z + 0Z be two Z-modules, with o, 3,v,0 € R,
where R is given in Exercise 1.56. Prove that [o,8] = [v,d] if and only if

(3)=+()

where X € GL(2,Z), which is the general linear group of 2 x 2-matrices with entries
from Z, namely, those 2 x 2-matrices A such that det(A) = %1, also called unimodular
matrices. (Note that, in general, GL(n,Z) is the general linear group of n xn matrices
with entries from Z.)

With reference to Exercise 1.56, prove that if « € R, and I = (a,«) is an R-ideal,
then I = (a,na £ «) for any n € Z.

Let F be a quadratic number field and let P = (p, (b++/AFr)/2) be an O p-ideal where
p € N is prime. Prove that P is a prime O p-ideal.

Verify the multiplication formulas on page 48.

Biography 1.4 Ludwig Stickelberger (1850-1936) was born on May 18, 1850
in the canton of Schaffenhausen, Switzerland as the son of a pastor. In 1867 he
graduated from a gymnasium,® from which he went to study at the University
of Heidelberg. Later he went to the University of Berlin to study under Karl
Weierstrass (1815-1897), achieving his doctorate in 1874. His thesis topic was
on transformations of quadratic forms to a diagonal form. Also, in 1874, he
received his Habilitation from Polytechnicum in Zurich (now ETH Zurich)—see
Footnote 1.1 on page 23. In 1879, he was appointed extraordinary professor in
the Albert Ludwigs University of Freiburg, and was promoted to full professor
in 1919. In 1924 he returned to Basel. Although he had married in 1895, both
his wife and son died in 1918. He died on April 11, 1936, and was buried beside
his wife and son in Freiburg.

His publication output was at best modest, but his contributions may be
characterized as important contributions to linear algebra, and algebraic num-
ber theory, including the theorem that bears his name—see Remark 1.22 on
page 46. He coauthored four published papers with Frobenius, three of them
on elliptic functions. Stickelberger is best known for two papers. The first,
Verallgemeinerung der Kreisteilung, generalizes results of Jacobi, Cauchy, and
Kummer on Gauss and Jacobi sums. He used these results to find annihilators
of class groups of abelian extensions of Q. The other, Uber eine neue Eigen-
schaft der Diskriminante, shows that the Legendre symbol (%) = (=1)"9,
where the number field F' has degree n over Q, and g is the number of prime
ideals in O above p. The latter result implies the quadratic reciprocity law.
The results in both papers have been generalized over the years.

%The Gymnasium in the German education system, is a form of secondary school with
a pronounced emphasis on academic achievement. This is comparable to the British former
grammar school system or with prep schools in the United States.




Chapter 2

Field Extensions

Good old Watson! You are the one fixed point in a changing age.
spoken by Sherlock Holmes in His Last Bow (1917), title story.
Sir Arthur Conan Doyle (1859-1930)
Scottish-born writer of detective fiction

In this chapter we explore in greater detail the notion of an algebraic number field intro-
duced in Definition 1.29 on page 35, via generalizations thereof, which we develop in §2.1.
In particular, this is a foundation for Galois theory, and a generalization of prime decom-
position motivated by our coverage of the quadratic case in §1.7, which we generalize to
arbitrary number fields in §5.1.

2.1 Automorphisms, Fixed Points, and Galois Groups

Given a number field F, it is possible to define an embedding as a ring monomorphism 6 of
F into C—see Definition A.10 on page 327, and the surrounding discussion, for background.
Also, the reader should solve Exercises 2.1-2.6 on pages 62—63 as a precursor, motivator,
and adjunct material to the following.

Definition 2.1 — Fixed Points and Isomorphisms

Let K C K; be two fields and let 6 be an embedding of K into K;. Then a € K is called
a fized point under 6 if 0(a) = a.

Remark 2.1 The name “fixed-point” is appropriate since, in the case where K = K, 6
is an automorphism, so f(a) = a = 01(«a), where 6; is the identity automorphism of K,
namely, 6;(5) = S for all 8 € K. The set of all fixed points has a special designation. The
reader should be familiar with the material surrounding Remark A.4 on page 327 for the
following.

Lemma 2.1 — Fixed Fields
If K is any field, then

F={peK:0(8) =pforall § € Aut(K)}

is a field, called the fized field of Aut(K).

%)
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Proof. We have for any automorphisms 6,7 of K, and any 3,7 € F,
0(B+~) =0(8) £0(y) =7(B) £7(7) =7(B+).
Also,
0(By) = 0(B)0(v) = T(B)T(7) = 7(67)-
Since 6(5) = 7(B), then

03) "t =7(B)"t =7(B7") = 0(87).

Hence, sums, products, and inverses of fixed points are fixed points, so F' is a subfield of
K. O

Lemma 2.2 Distinct embeddings of a field K into a field K; are independent. In other
words, if 6; are distinct embeddings of K into K, and 8; € K for j =1,2,...,n, such that

ZGj(a)ﬁj =0foralla € K

j=1
then51252:-..:ﬂn:0.

Proof. We use induction on n. If n = 1, the result is clear, since §; cannot be the zero map.
Assume that the result holds for all natural numbers k£ < n. If

Z Hj(a)ﬂj =0
Jj=1

for all « € K, and 3; # 0 for some j, then 8; # 0 for all j = 1,2,...,n, by the induction
hypothesis. We may multiply through by 3,1 to get

n—1

On(0) + Y 0;(a)B;8," =0. (2.1)

j=1
Since the 6; are distinct, there exists some v € K such that 61(v) # 0,.(v). Now multiply
(2.1) through by 6,,(v)~! to get

n—1

On ()0 (1) + Y 05(@)0n(7) 18,1 = 0. (2.2)
j=1
Since (2.2) holds for all @ € K, we may replace a by ya therein to get
n—1
On(c) + D 05()0 () 715,185 = 0,
j=1

SO
n—1

On(c0) + D 0;()0;(7)0n ()" B, B; = 0. (2.3)

j=1
Now subtracting (2.3) from (2.1), we get

n—1

> 0;(@)B; By (0;(1)0n(v) " = 1) = 0.

=1

However, 61(7)0,(y)™! — 1 # 0, since 61(7) # 0,(7). This provides a dependency relation
that contradicts the induction hypothesis, so 3; = 0 for all j, and the result is complete. O
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Theorem 2.1 — Degrees Over Fixed Fields

If 64, ..., 0, are distinct isomorphisms of a field K into a field K7, and if F' is the fixed field
of {01,...,0,}, then |K; : F| > n.

Proof. If |Ky : F| = m < n, then let K3 = F(ai,...,q,) and consider the system of
homogeneous equations for i = 1,...,m:

29 a;)zj = 0.

Since m < n, then by Theorem A.23 on page 338, there must exist solutions z; € K, not
all zero, to these equations for j = 1,...,n. Also, for any v € K1, there exist 3; € F' such

that
m
> Bia =7.
j=1

Now, for each i = 1,...,m, we have

1(B:) Y 05(cv)x; = 0.
j=1
Then, since 8; € F, we have 0;(8;) = 0;(8;). Thus,

Z 9j (ﬁlaz)x] =0.
j=1
Hence,

n

= ZZ ﬁzaz Zzgj Bzaz = ZGJ(Z 5iai)xj = Zej(’)/)l'j
i1 j=1 j=1  i=1

j=1i=1 j=1

We have exhibited a nontrivial dependency relationship between the 6;, contradicting
Lemma 2.2. O

Corollary 2.1 If 04,...,0, are distinct automorphisms of a field K, and F is the fized
field of Aut(K), then |K : F| > n.

In Exercise 2.6 on page 63 we introduce the notion of an F-isomorphism of a number field
K. We now generalize this notion.

Definition 2.2 — Fixing Automorphisms

Let K/F be an extension of fields. If  is an automorphism of K such that 6(a) = « for all
«a € F| then 0 is said to fiz F, or to leave F fized, and is called an F-automorphism of K.

Lemma 2.3 — Groups and Fixing Automorphisms

Let K/F be an extension of fields. The set of all F-automorphisms of K forms a group,
denoted by Autg(K).
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Proof. Two F-automorphisms 61,05 of a field K may be composed by defining

0102(8) = 01(02(8))

for each 8 € K. Then this product is also an automorphism of K. Also, if 6(«a) = § for
a given F-automorphism 6 of K, we define §71(3) = « as the mapping that takes 8 to
«, called the inverse of 6, which is also an F-automorphism of K. Thus, for any two F-
automorphisms 0 and 6y of K, 6,65 (3) = B for any § € F, so 6,0, is an F-automorphism
of K. Thus, the set of all F-automorphisms of K forms a multiplicative abelian group. O

Although it is possible for Autp(K) to be infinite, the situation considered in this text for
number fields will always deal with a finite group. Also, in general it is possible for the
fixed field of Autr(K) to be bigger than F, as illustrated by the following.

Example 2.1 Let K = Q(v/2) C R and F = Q. Then Autp(K) = {6}, the identity
group consisting of only 6; which is the identity automorphism that fixes K pointwise. The
reason is that the only possible images of /2 are (3v/2 ¢ K and (V2 ¢ K, where (3 is
a primitive cube root of unity, so both are images in C — R, since 2> — 2 = 0 has roots

x = /2, the only real root, as well as z = (3V/2, (3 \‘752, the only complex roots.

The case where F is the fixed field of Autg(K) is of particular importance. Thus, we now
seek to minimize the bound on the degree given in Theorem 2.1. The following, due to
Artin, essentially generalizes Exercise 2.6 on page 63—see Biography 1.2 on page 24.

Theorem 2.2 — Unique Automorphism Groups
Let K/F be an extension of fields and let G be a finite group of automorphisms of K having
F as its fixed field. Then

|K : F| = |G| = |Autp(K)],

and G = Autp(K).
Proof. Let G = {04,...,0,} with identity automorphism 6;. If |K : F| > n, then there
exist o;j € K for j = 1,...,n + 1 such that the «; are linearly independent over F'. By

Theorem A.23 on page 338, there exists a nontrivial solution for k = 1,...,n 4+ 1 to the
system of equations

n+1
> Ok(aj)z; =0, where 7 € K for j=1,...,n+ 1. (2.4)
j=1

If there is a solution with all z; € F, then 61(o1) = a1 = — Z?i; O (cyj)x;, contradicting

the assumed linear independence. Thus, at least one of the values x; of any given solution
cannot be in F'. Now select a solution set

{z; )04 = {8;}74

in which there is a maximum possible number of nonzero elements, namely let m < n be
the largest natural number such that

Bms1 =+ =Pny1=0

and B, # 0 for any » < m. If m = 1, then since 5101(a;) = 0 and 61(c1) = a1 # 0,
then 5y = 0, a contradiction to the definition of m. Thus, m > 1. Also, without loss of
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generality, we may select 3,, = 1, since we may multiply through by 3! to get another
solution. Hence, for k =1,...,n we have

m m—1

Z Ok () B; = Or(am) + Z Ok ()B; = 0. (2.5)

Without loss of generality, we may assume that 81 ¢ F'. Therefore, there exists 6, such that
0¢(B1) # By for some £ =1,...,n.

Applying 0, to (2.5), we get

m—1
000 (cm) + > 0:0i(c;)00(8;) = 0,
j=1
fori=1,...,n+ 1. Since 6,0; = 0}, for some i = 1,...,n, this equation becomes
m—1
Or(am) + > O(0)00(8;) = 0. (2.6)
j=1

Subtracting (2.6) from (2.5), we achieve
m—1
D Oklay)(B; — 0e(B;)) = 0.
j=1

Since 0y(f1) # 1, this is a solution to (2.4) having less than m nonzero elements, con-
tradicting the minimality of m. We have shown that |K : F| < n, and by Theorem 2.1,
|K : F| > n, so we have equality. Also, if there exists a § € Autr(K) such that 6 ¢ G,
then there are n + 1 distinct automorphisms of K which fix F'. Therefore, by Corollary 2.1,
|K : F| > n+ 1, a contradiction. Thus, Autp(K) = G. O

The following encapsulates what is contained in Theorem 2.2—see Biography 2.1 on page 64.

Definition 2.3 —— Galois Groups

The uniquely determined group in Theorem 2.2 is called the Galois group of the field
extension K/F that is called a Galois extension, and Autz(K) is denoted by Gal(K/F).

The above development is essentially due to Artin. However, we have a parallel development
for the number field case for comparison, and will give a broader overview, in Exercises 2.1—
2.6 on pages 62-63.

The following links the above with the number field case and shows that the group in Defi-
nition 2.3 is the one satisfying the following equivalent conditions. The following also holds
in the case where the fields are finite or are any finite extensions of fields of characteristic
zero—see Exercises 2.12-2.16 on page 64. The result is a preamble to the fundamental
theorem for Galois theory.

Theorem 2.3 — The Galois Group of a Number Field

Let K/F be an extension of number fields. Then the following are equivalent.

(a) The fixed field of G = Autp(K) = Gal(K/F) is F and |G| = |K : F|.
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(b) For any a € K, mq, p(x) has all its roots in K.
(c) K = F(aq,as,...,aq) where a; are roots of some f(z) € Flz].

Proof. If (a) holds, then let

h(z) = H (x —o(a)) € K[z].

oeG

However, the elements of G permute the factors of h(z), so h(x) remains invariant under
the action of G. However, since 0 = 1g € G, a — 1g(a) = 0 is a factor of h(a), namely o is
a root of h(z). Thus, by Theorem 1.23 on page 38, mq, () | h(zx), so all roots of mq, p(x)
are in K. Hence, (a) implies (b).

Assume (b) holds. By Exercise 1.51 on page 43, there is an element v € K such that
K = F(v). Since we are assuming that m, r(z) has all its roots in K, then K is generated
by the roots of m, g(x) since K = F(o(y)) for any o € G. We have shown that (b) implies
(c).

To complete the logical circle, we show that (c) implies (a). (For the proof of this part,
the reader should be quite familiar with Exercise 2.6 on page 63. In particular, be aware
of the distinction between the notion of an F-automorphism and an F-isomorphism. The
former implies the latter, but, as Example 2.1 on page 58 shows, in general the latter does
not necessarily imply the former.) If o is an F-isomorphism of K, then o(«;) = aj where
J,k€{1,2,...,d}, from which it is clear that o(K) = K, so o is an F-automorphism of K,
namely o € Autp(K). By Exercise 2.6, the number of F-automorphisms of K is exactly
|K : F| = d. Suppose that G = Autp(K) fixes 6 € K. Then every element of G is an
F(d)-automorphism of K. By Exercise 2.6 again, the number of F'(§)-automorphisms of K
is exactly |K : F(6)|. Hence, d < |K : F(d)| which forces d = |K : F(0)|, namely ¢ € F.
This shows that F' is the fixed field of G, and

G| = |Aute (K)| = |K : F| = |Gal(K/F)],

which completes the task. O

We conclude this section with the following highlight of Galois theory. See Exercise 2.2 for
the definition of a normal extension.

Theorem 2.4 — Fundamental Theorem of Galois Theory

Let K/F be a Galois extension of number fields with Galois group G = Gal(K/F). If H is
a subgroup of G, then denote the fixed field of H by k(H), and if L is an intermediate field
in K/F, let g(L) = Auty,(K). Then

(a) The mappings g : L — ¢g(L) from intermediate fields to subgroups of G, and k : H —
k(H) from subgroups of G to (intermediate) fixed fields are inverses of one another.
Also,

k(H1) C k(H2) if and only if g(k(H1)) = H1 2 Hs = g(k(H2)),

namely, they are inclusion reversing. Furthermore,
“{E(HQ) : k(H1)| = |H1 ZHQ‘.
(b) K is Galois over any intermediate field L. Also, L is Galois over F if and only if
g(L) = Auty (K) is normal in G. If the latter occurs, then

Gal(K/F)

Gal(L/F) = Gal(K/L)
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Proof. Let L be an intermediate field between K and F, and let o € K. Then mq, () |
M, r(x), all of whose roots are in K by part (b) of Theorem 2.3. Therefore, all roots of
me,(z) are in K, so by part (b) of Theorem 2.3 again, K/L is Galois. By part (a) of
Theorem 2.3, L is the fixed field of g(L) = Auty(K). In other words, k(g(L)) = L. On
the other hand, if H is a subgroup of Gal(K/F), then H = Gal(K/k(H)). In other words,
H = g(k(H)). We have shown that k& and ¢ are bijections and inverses of one another.
Lastly, the inclusion reversal is now clear, so we have (a).

Let L be an intermediate field between K and F, and let o € L. Then mq p(8) = 0
where 5 € K if and only if 3 = 6(«) for some 6 € Gal(K/F). By part (b) of Theorem 2.3
one more time, L/F is Galois if and only if § € Gal(K/F), namely if (L) C L. Now, if
O(L)C L,o € g(L)and o € L, then

0~ ra0(a) = 0710(a) = o,

so 0710 € g(L). We have shown that if L/K is Galois, then g(L) is normal in G. Con-
versely, assume that g(L) is normal in G. If « € K, § € G and o € g(L), then

of(a) = 00~ 1ob(a) = 0(a),

since 100 € g(L). Thus, §(a) is fixed by g(L) so #(a) € L. We have shown that if g(L)
is normal in G, then (L) C L. Hence, L/F is Galois.
Finally, we establish the isomorphism given in (b). Let H = Gal(L/F). Since §(L) C L
for all 0 € Gal(K/F),
0| € Autp(L) = Gal(L/F).

Thus, the restriction mapping 6 — 6|, is a homomorphism of G to H with ker(8|.) = g(L).
Since

P ]
[K LI |g(L)]
then the restriction homomorphism is surjective, so

G
g(L)’

which completes the proof of the fundamental theorem. O

1

H

The following diagram illustrates what Theorem 2.4 asserts.

Diagram 2.1

The mapping g: The mapping k:

Fields Groups Fields Groups
K —— 1 k(1) «— 1
Ul N Ul N
L —— g(I) k(H) «—— H
Ul N Ul N
M —— g(M) E(J) «—— J

Ul al Ul Nl

F— G k(G) «+—— G
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Theorem 2.4 asserts that there is a one-to-one correspondence between the subgroups H of
Gal(K/F) and the intermediate fields L, corresponding elements H and L being such that
L=Fk(H)and H = g(L). This elegant relationship will be used in force in §5.4.

Exercises

2.1. Let « be an algebraic number. Prove that if I = Q(«) is an algebraic number field of
degree d over Q, there exist exactly d embeddings 6; of F into C for j = 1,2,...,d.
Conclude that 6;(o) = o, for j = 1,2,...,d are precisely the roots of the minimal
polynomial mq g(x) of a over Q.

(Hint: See Theorem 1.23 on page 38, Theorem 1.2/ on page 39, and Application A.1
on page 325.)

(The elements 0;(c) are called the conjugates of o, which is a generalization of the
concept for quadratic extensions introduced in Example 1.29 on page 46. Moreover,
the fields Q(c;) are called the conjugate fields of F. Also, o for j = 1,2,...,d
are called the complete set of F-conjugates of a and Q(cy;) for such j are called the
conjugate fields of F'. Thus, the F'-conjugates of o do not depend on the choice of
such that F' = Q(«a). Note that if Q(a;) € R for all F-conjugates of F, then F is
called a totally real field and if Q(a;) € C — R, then F' is called totally complex.)

Ezercises 2.2-2.6 all refer to Exercise 2.1 and are intended to develop the notion of embed-
dings of number fields to complement the topic in this section.

2.2. We define the field polynomial of o over F' to be

d
far (@) = [J(x —0;(a)).

j=1
Establish each of the following.

(a) Let 8 € Q(a) be an algebraic number of degree s over Q. Then d/s =t € N and

fo.r(z) = (mao(x))".

Conclude that ;(3) for j =1,2,...,s are the roots of mg g(x), each repeated ¢
times in the factorization of f(x) € Q[z].

(b) If FF = Q(«) is a number field of degree d over Q and there are exactly s distinct
conjugate fields Q(c;) = F, then d/s =t € N and each distinct field occurs ¢
times.

(Hint: To establish t € N, see (A.2) on page 325. For the balance, employ Theo-
rem 1.23 on page 38 and Definition A.15 on page 331.)

(When s = 1 in part (b) above, the field F is said to be normal over Q. When we
are dealing with a field of characteristic zero or a finite field, then being a Galois
extension is tantamount to being a normal extension—see Definition 2.3 on page 59.
In the more general case, with which we will not be concerned herein, we refer the
reader to [29], where one may also find a proof of the last assertion.)

2.3. Prove that for an algebraic number field F' with o € O, all of the F-conjugates of «
are algebraic integers.

2.4. Prove that if a is in a number field F', then all F'-conjugates of a are equal if and only
if o € Q.
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Prove that if « is in a number field F', then all the F-conjugates of « are distinct if
and only if F' = Q(«).

(Via Ezercise 2.5 and in view of the comments made in Ezercise 2.2, we see that when
all F-conjugates a; of a are distinct, then Q(a) = Q(ay) for all such j, namely F is
Galois over Q. Another way of putting this is that every polynomial f(z) € F[x] which

has a Toot in F' splits completely into linear factors, meaning that F' is a splitting field
for f—see Definition A.17 on page 334.)

Let E/F be an extension of number fields and let § be an embedding of F into C that
fixes F' pointwise, namely §(f) = f for all f € F. Then 6 is called an F-isomorphism
of E. If 0 is an F-isomorphism of F = F(«), then 6(«) is called a conjugate of « over
F. Prove that every embedding of F' in C extends to exactly |E : F'| embeddings of
E in C. Conclude that there are |E : F'| F-isomorphisms of E.

(Hint: Use induction and employ (A.2) on page 325 together with Theorem 1.24 on
page 39.)

(This exercise deals with one of the classic questions in the theory of field extensions,
applied to our number field case. If 6 is an isomorphism of a field F' and F is a field
extension of F', when can 0 be extended to an isomorphism of E? Putting it another
way, when can we find an isomorphism ¢ of E such that ¢|p = 0 9—see the discussion
surrounding the defining notation (A.5) on page 327 for a reminder of restriction
maps and Theorem A.15 on page 334 for extensions of isomorphisms.)

Let a be an algebraic integer and suppose that |Q(«) : Q| = 2. Prove that

Q() = Q(Vd) for some squarefree d € Z.

Find the minimal polynomial of

a=1/-2-3/-5
over Q and determine Gal(K/Q) where K = Q(«). Conclude that

|K:Q|=4.

Let ny # ny be squarefree integers. Prove that

K =Q(vm + vn2) = Q(vnr, Vna),
and determine Gal(K/Q).

For n; € Z be squarefree, distinct, and n; # 1 for j = 1,2. Prove that
|Q(yv/n1 + v/n2) : Q| = 4.

With reference to Exercise 2.1, suppose that F'is a number field with embeddings 6;
such that 6;(F) C R for j = 1,2,...,71. These are called the real embeddings of F.
The remaining embeddings §;(F) C C —R for j =1,2,...,r9, are called the complex
embeddings of F. Show that |F : Q| = r; + 2re. In this case {r1,r2} is called the
signature of F.

Prove that the signature, defined in Exercise 2.11, of Q(3/2) is {r1,72} = {1,1}. Show
that Q(+/2) is not Galois over Q.
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2.14.

2.15.

2.16.
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If F is a field of characteristic p, and n € N, prove that the map given by o : F' +— F
defined by a > oP" is an F, automorphism of F.

Let D; € Dy be integral domains, o € Dy, and let f(z) € Dy[z] with deg(f) > 1.
Establish each of the following.

(a) (z—a)?| f(z)if and only if f(a) =0= f'(a).

(b) If Dy is a field and ged(f(z), f'(x)) = 1, then f has no multiple roots in D.

(¢) If Dy is a field, f(z) is irreducible in D;[x], and Ds contains a root ¢ of f(x),
then f(x) has no multiple roots in Ds if and only if f’(c) # 0.

(d) If deg(f) =mn € N, then f(z) has at most n roots in Ds.

Let F be a finite field with p™ elements. Then F is a splitting field, unique up to
isomorphism, of 27" — z over F,,.

(Hint: Use Erxercises 2.13-2.14.)

Prove that Theorem 2.3 on page 59 holds for fields of characteristic zero and for finite
fields. Also, show that if K/F is a finite extension of finite fields, then K/F is a Galois
extension with Gal(K/F) being cyclic.

(Hint: Use Corollary A.10 on page 834 and the discussion surrounding it, as well as
Theorem A.16 on page 33/ for the first statement. For the second statement, use the
first statement in conjunction with Exercises 2.18-2.15, )

Biography 2.1 Evariste Galois (1811-1832) was born on October 25, 1811
outside Paris in the village of Bourg-la-Reine, where his father was mayor. In
1830, he submitted a paper to the Académie des Sciences. Fourier, who was
secretary of the Académie, took the paper home, died shortly thereafter, and
the paper was lost. This was not the first misfortune, since in the previous
year he had submitted a paper to the Académie through Cauchy, who also
lost that paper. Galois again tried to submit a paper to the Académie, this
time through Poisson, who rejected the paper as incomprehensible. This paper
contained the foundations of what we now call Galois theory. Due to his in-
volvement in the revolution of 1830, Galois was imprisoned. After his release,
he became involved in a pistol duel, allegedly a politically motivated suicide,
and was shot through the intestines. Although he was taken to a hospital,
he died the next morning on May 31, 1832, from peritonitis. He was not yet
twenty-one. For a detailed explanation of his life and “pointless death” see [62],
dedicated to an accounting based on reliable historical documents, rather than
the mythologized and inaccurate descriptions often found in the literature.

After his death, Galois’ papers made their way ultimately into the hands of
Liouville. In September of 1843, Liouville announced to the Académie that he
found Galois’ work to be correct, concise, and deep. Liouville published Galois’
papers in his journal in 1846. Galois’ work, relating the solving of equations by
radicals to the group of the equation, is of fundamental importance, and may
be said to have led to an arithmetical approach to algebra.
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2.2 Norms and Traces

But all things must come to dust eventually. No human being, no system, no age is

impervious to this law; everything beneath the stars will perish; the hardest rock will
be worn away. Nothing endures but words.

—spoken by Tiro, a Roman scribe, in Lustrum,

by Robert Harris—see [26, Page 11]¢

2Although [26] is essentially a work of fiction, Marcus Tullius Tiro actually existed and was a
secretary to the Roman orator and statesman Cicero. Indeed, Tiro wrote the book The Life of Clicero,
which disappeared after the fall of Rome along with most of his literary output. Tiro ostensibly lived
to be over one hundred years old and his (shorthand) method of recording has elements that survive
to this day including the symbol &, for instance. His method, known as Notae Tironianae or more
commonly the Tironian system of shorthand, was taught in Roman schools and enjoyed widespread
use over several centuries.

We introduce some concepts in this section that will be crucial in the development of the
theory of integral bases and discriminants in §2.3. In §2.1, in particular Exercises 2.1-2.6
on pages 62-63, we discussed embeddings of an algebraic number field in C. We now use
this notion to define two fundamental concepts.

Definition 2.4 — Norms and Traces

Let F' be an algebraic number field of degree d over Q, and let 0; for j = 1,2,...d be the
embeddings of F'in C. For each element a € F, set

called the trace of a from F, and set
d
Ne(a) = [ 05(@),
j=1
called the norm of a from F.

The definition of norm and trace was first given by Dedekind in 1871—see Biography 1.3
on page 29. By Exercise 2.17 on page 68, Tr is additive, and Np is multiplicative. We will
substantially generalize Definition 2.4 later—see Definition 5.2 on page 184.

Example 2.2 Let F = Q(v/13), a = 1 ++/13, and 3 = (3 + v/13)/2. The embeddings of

F in C are
0, : V13— V13, and 6, : V13 — —/13,

fixing Q pointwise, namely the Q-isomorphisms of F'. Here,
Nr(a) =01 (a)fz(a) = (1 + \/ﬁ)(l _ \/ﬁ) - 12,
3+\/ﬁ> (3—@) .,

Np(B) = 01(8)02(8) = ( 2 2

Tr(a) = 01 () + 05(a) = (1 +V13) + (1 — V13) = 2,
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and
Te(8) = 02(5) +02(9) = 21 32V _y
Also,
Np(aB) = ((1+\ﬁ) <3+r>>—NF(8+2m)_
8% —4.13 =12 = (-12)(~1) = Np(a)Nr(8),
and

Tr(a+ B) = (( VI3 + (W)):TFC”;@):

5=2+3="Tr(a)+ Tr(B).

Example 2.2 illustrates some general properties of norms and traces.

Theorem 2.5 — Properties of Norms and Traces in Subfields
Let F' be an algebraic number field of degree n over Q, and o € F with |Q(«) : Q| =d. If
o= aq,q,...,aq are all of the conjugates of a over Q, namely the roots of m, r(z), then
-
=3 Z o(a),
and
d n/d
1T = (Ng(a(a))™/".
j=1
Furthermore,

Mao(z) =z — TQ(Q)(O&)CL‘d_l + - & No(a)(@).
Proof. Let the embeddings of Q(«) in C be given by
¢j(e) = a; (1<) <d),
where ¢,(q) = ¢ for all ¢ € Q. Thus, by Definition 2.4 on the previous page,

d

T (a) Za], and N@ a)
j=1

H:]:L

By Exercise 2.6 on page 63, each of the ¢;, for i = 1,2,...,d, extends to exactly n/d
embeddings of F' in C, which we will denote by

OEj)7 for j=1,2,...,n/d.

Therefore,
d n/d

d
ZZQQ) Zgai:gzai»

=1 j=1 =1 1=1
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and

d n/d d n/d
=TT~ T~ (1)

i=1j=1 i=1

Finally, in the expansion of

mqg(z) = H(x - ),

=1

we see that the constant term must be
d
+ H Q = iN@(a) (a),
i=1

whereas the coefficient of %! must be

- Z Q; = _TQ(a) )

This completes the proof. O

Corollary 2.2 If « € F, an algebraic number field, then

Tr(a) € Q, and Nr(a) € Q.

Proof. By Theorem 2.5, we need only show that Ng(a)(a), Tga) () € Q. However, this is
immediate since, by the theorem,

Mag(®) = 2% = Ty (@)z?™" + -+ £ Ng(a)(a) € Q[a],

which secures the result. O

Corollary 2.3 Let « € N, and let m, () be the minimal polynomial of o over Q. Then
a € A if and only if mg g(x) € Z[z]. Furthermore, if o € A, then

Tr(a) € Z, and Np(a) € Z.

Proof. Suppose that m, g(z) € Q[z] where a € A, and « is a root of a monic polynomial
f(z) € Z[z] of least possible degree. Then mqag(z) | f(z) in Q[z] by Theorem 1.23 on
page 38. However, since mq, g(z) is monic, then by Gauss s Lemma A.1 on page 332, we
must have man(x) € Zlz], so f(z) = ma’Q(x). Conversely, if mq g(z) € Z[z], then a € A
by definition.

To prove the final statement we note that by Theorem 2.5,

Ma,g(x) = 2% = Ty(ay(@)z®" + -+ &+ Ny(a)(a),

and by the above m, g(a) € Z when a € A, so the result follows. O

The notions of trace and norm are also linked to the discriminant of a polynomial introduced
in Exercise 2.29 on page 69. The reader will be familiar with the details of the following
from Example 1.29 on page 46.
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Example 2.3 Consider the irreducible quadratic polynomial
f(x) = ax® 4+ bx + c € Q[a],
where a # 0. As mentioned in Example 1.29, the roots of f(z) are given by

—b+ VA , —b—VA
a=————ando = ——,
2a 2a

where A= b? — 4ac is the discriminant of the quadratic field Q(a)) = Q(v/A)—see Theo-
rem 1.27 on page 44 and the discussion surrounding it. Therefore,

-b+VvVA —b—VA
+
2a 2a

Tr(o) = Ty () =a+a' = = —b/a,

and

4a?

2a 2a - = ¢/a.

_ o ,
NF(O‘)_N@(@(a)_O‘a/_( bJM/E)( b ﬂ) b -A

Hence, the minimal polynomial of a over Q is mq o(z) = 2% — Tr(a)z + Np(a).

Exercises
2.17. With reference to Definition 2.4 on page 65, prove that
Tr(a+ B) =Tr(a) + Tr(B), and Nr(af) = Np(a)Nr(B),
for all a,8 € F. Also, prove that for any g € Q,
Tr(qa) = ¢Tr(a), and Np(qa) = ¢*Np(a).
(Thus, in particular, if & = 1, then Tr(q) = ¢, and Np(q) = ¢%.)

2.18. Let n € Z be cubefree (namely p® { n for any prime p). Also, let a = ¢/n, F = Q(«),
and mg o(z) = 2 —n. Find disc(mq @) by employing Exercise 2.31. Furthermore,
set

B=(a®?+a+1)/3, withn==41 (mod 9),

where the =+ signs correspond as given. Find T%(5), Nr(5), and mgg(x). Conclude
that g is an algebraic integer in F.

(Fields of the form Q(¥m) for cube-free n are called pure cubic fields.)
2.19. Let F = Q(v7), and a = (1 ++/7)/2. Find Nr(a), Tr(a), and ma,g(z).
2.20. Prove that there are no elements having norm 3 from Q(+/—1).

2.21. Let F' = Q(y/p) where p = 43 (mod 8) is prime. Show that there is no o € F such
that Np(a) = 2.

2.22. Find the minimal polynomial of v/—2 — 34/—5 over Q.
2.23. Find the minimal polynomial of v/2 + v/3 over Q.

In Exercises 2.24-2.26, we assume that F' = Q((,) for a prime p.
2.24. Prove that Tr((,) = —1, and Np(1 —(,) = p.
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2.25.

2.26.
2.27.
2.28.
2.28.
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Prove that Tp(1 — ¢J) = p, where j € {1,2,...,p - 1}.
(Hint: Use Example 1.5 on page 2.)

Let a be an algebraic integer in F. Prove that Tr(a(1 — () € pZ.
Let g = (1 ++/5)/2 be the golden ratio. Prove that (3 € Q(g + (3).
Prove that g € Q(g + (3).

Let f(z) = #* — 2 and let a = v/2 be a real root of f(x). Prove that F = Q(a,1i) is
the splitting field for f over QQ. See Definition A.17 on page 334.

The remaining exercises allow us a seque into §2.3, where we generalize the notion of a
field discriminant given for quadratic fields in Definition 1.33 on page 46.

2.29.

2.30.

2.31.

If f(x) € Flx] where F C C is a field, deg(f) =d > 1, and

d
fla)=al](z—a),a; € F,
j=1

then the discriminant of f is defined by

dise(f) =a* ' [ (o — )%,

1<i<j<d

where «; for j =1,2,...,d are the roots of f in C.

Prove that for an odd prime p and a primitive p-th root of unity

dise(me,0) =[] (G —¢) = (=) /22,
1<i<j<p-1
(Hint: First prove that: m¢, o(x) = Zf;é 27.)

Find the discriminant of the quadratic polynomial f given in Example 2.3 on the
facing page by applying Exercise 2.29. Also, show that if m’ is the formal derivative,
then

disc(mfl?@(x)) = —NF(mfxy@(a)).

Exercise 2.30 motivates the following more general result. Suppose that o € A and
F = Q(«) is an algebraic number field of degree d over Q, and o = a1, g, ..., a4 are
the conjugates of a over Q. Prove that

d
disc(ma,g) = (=) D2 [ mi, olay) = (~1)" D2 Np(m], (),
j=1

where m’a@ is the formal derivative of m, q.
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2.3 Integral Bases and Discriminants

The mathematician is fascinated with the marvelous beauty of the forms he constructs,
and in their beauty he finds everlasting truth.
James Byrnie Shaw (1866-1948), mathematician/philosopher—see [63]

Given a number field F', we know from Theorem 1.24 on page 39 that there is an algebraic
integer « such that F' = Q(«). Moreover, every 8 € F may be uniquely represented in the

form

B=qo+qa+- - +qgi_1a’t € Qlal,

where d = |F : Q|. In other words, {1,a,c?,...,a? '} is a Q-basis for F. Moreover, since
O is Noetherian by Corollary 1.13 on page 37, then in particular, O is finitely generated
as a Z-module so now we seek a Z-basis for it.

Definition 2.5 — Integral Bases

If O is the ring of integers of a number field F', a basis for O over Z, or simply a Z-basis
for Op, is called an integral basis for Op.

Remark 2.2 By Exercise 2.32 on page 81, an integral basis for O in the sense of Defi-
nition 2.5 is a basis in the sense of Definition A.7 on page 324.

Example 2.4 If F = Q(+/2), then O = Z[/2], by Theorem 1.28 on page 45. Thus,
B = {1,v/2} is an integral basis for F.

Example 2.5 If F = Q(+/13), then by Theorem 1.28
Op = Z[(1 +V13)/2] # Z[V13].

Here o = (1 +/13)/2 is a root of m, g(x) = 2? — x — 3, whereas 8 = /13 is a root of
22 — 13. Thus, although {1, 3} is a basis for F' consisting of algebraic integers, it is not an
integral basis for F. An integral basis for F is {1, a}.

The rings of integers in Examples 2.4-2.5 both have integral bases. Our immediate task is
first to verify that any ring of integers O of an algebraic number field F' has an integral
basis. In order to do this, we first need the following notion. The reader should have famil-
iarity with the basics of matrices and fundamental linear algebra as outlined in Appendix

A.

Definition 2.6 — Discriminant of a Basis

Let F = Q(«) be an algebraic number field with |F : Q| = d. If
B= {a17a2,"';ad}

is a Q-basis for F, and 8; (1 < j < d) are all of the embeddings of F' in C, then the
discriminant of the basis is given by

disc(B) = det(0;(a;))?,

where det denotes the determinant of the matrix with entry 6;(a;) in the i*" row and j
column.



2.3. Integral Bases and Discriminants 71

In particular, if
B={l,a,...,a7 1},

then the determinant of the matrix (6;(a’~!)) is called the Vandermonde determinant and

has value ‘
det(@; (') = [ (o5 — ) (2.7)
1<i<j<d

by Exercise 2.33, where ay = 0x(«) is the k*" conjugate of o for k =1,2,...,d.

Example 2.6 In Example 2.4, B = {1,1/2} is an integral basis for F, and
01 : V2 — V2, and 65 : V2 —V/2,
are the embeddings of F' in C. Thus,

disc(B) = det(0;(a'""))? = det ( th%) 92?5}%) ) B

det( \}5 _1@ )2 = (—2v2)? = 8.

Notice that in Example 2.6, disc(B) = disc(ma.q), where mq o(z) = 22 — 2—see Exer-
cise 2.35 on page 82. This is an illustration of a more general phenomenon given as follows.

Theorem 2.6 — Discriminants of Bases and Minimal Polynomials
Let o € A and suppose that B = {1,a,c?,...,a% '} is a basis for Q(a) over Q. Then

disc(B) = disc(Mma,g),
where mq g(x) is the minimal polynomial of a over Q.

Proof. Let aq, as, ..., aq be the conjugates of « over Q. By (2.7),

disc(B) = H (o — a;)?,

1<i<j<d

and by Exercise 2.29 on page 69, this is equal to disc(mq,q)- O

Now we demonstrate that the discriminants of two bases for a number field form a quotient
that is a square of a nonzero rational number.

Theorem 2.7 — Discriminants of Two Bases

Let By = {a1,aa,...,aq} and Bo = {1, B, - - ., Ba} be two Q-bases for an algebraic number
field F'. Then
disc(By) = D*disc(B,),

where D = det(gqx ;) € Q, D # 0, and the ¢x; € Q are determined by

d
Be = arici, (qri € Q).
i=1

Moreover, D € Z provided that B; is an integral basis and By € Op.
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Proof. Let 6;, (1 < j < d) be the embeddings of F in C. The representations fj =
Z?:l qk,i0i, imply that

d
0;(Br) = Y ar.ifi(ci),

i=1
for each k =1,2,...,d. Hence, we get a matrix equation:

01(B1) 02(B1) -+ 0a(B1)
01(B2) 02(B2) -+ 0a(B2)

0:(82) 0>(Ba) - 0a(Ba)

Q1 Q2 o qid O1(ar) Oa(ar) --- Oaar)
@1 22 - 24 O1(az) Oa(az) --- Oaaz)
qdn Qd2 cc ddd O1(aa) O2(aa) --- Oa(aa)

By taking determinants, and squaring, we get the equation:
disc(By) = D*disc(B,),

with D = det(M), where

11 Q1,2 0 q1d
Q2,1 42,2 " 424
M = . . . )
qd,1 4d2 4dd
as required. O

Example 2.7 Let F = Q(v13), a = (1 + v13)/2, and 8 = v/13. In Example 2.5 on
page 70, we saw that By = {l,a} and By = {1,8} are bases for F, the former being
integral, and the latter not integral, but merely a basis over Q. Since

lemH\/ﬁ,andﬁg:\/ﬁl—)—\/ﬁ

are the embeddings of F' in C, then

2
disc(B,) = det(8;(8"))* = det ( 919(1%> 055%) )

= det ( \/11—3 —\}ﬁ ) = (—2V13)? = 52,

and 61(1) 62(1) )
isc(By) = (a)? = 1 )
disc(By) = det(6;(a’)) det(el(lgm) GQ(HXE>)
1 1y
= det ( 14VI3  1-Vi3 ) = (—V13)? =13,
2 2
Thus,

disc(By) = 2%disc(B1).
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Here
1 0
D—2—det( 1 9 ),
since
Bi=l=qi-aa+qoa=1-1+0-q,
and

1++13
52:[3:V13ZQ2,10¢1+Q2,2062:*1~1+2~T.

We are now in a position to relate the notion of discriminant introduced in Definition 2.6
on page 70 with the notions introduced in §2.2. See Exercise 2.1 on page 62 for a reminder
of terminology and notions surrounding what follows.

Theorem 2.8 — Discriminants as Traces

If B={a1,q9,...,aq4} is a Q-basis for an algebraic number field F' = Q(«a), then
A = disc(B) = det(Tr(a;05)) € Q,
andA # 0. Furthermore, if F' is a totally real field, thenA > 0.

Proof. Since A = disc(B) = det(f;(a;))?, then from the properties of determinants (see
Theorem A.19 on page 336), we get:

d

det(6;(a;))* = det (Z Hk(aiaj)> = det(Tr(ovicj)),

k=1

so A = det(Tr(a;0;)). Therefore, by Corollary 2.2 on page 67,A € Q. It remains to show
that A is nonzero and also positive when F' is totally real.

Let B; = B. By Theorem 1.24 on page 39,
By ={1,a,c?,...,a%1}

is a basis for F over Q. Thus, by Theorem 2.7, disc(By) = D?disc(B1), where D is given in
that theorem. However, by Exercise 2.33 on page 81,

disc(B2) = H (o — a;)?, (2.8)

1<i<j<d

and the «; are distinct so disc(Bg) # 0. Hence, disc(By) # 0.
Since B, is a basis for F' over Q, then by Theorem 2.7,

disc(B;) = d*disc(Bs).

However, by (2.8), disc(B2) is a square. Since disc(B1) # 0, so given that F' is totally real,
all of the «; are real, so disc(B1) > 0. O

Corollary 2.4 If B is a basis for F' over Q with B C Op, then disc(B) € Z.

Proof. This is immediate from Corollary 2.3 on page 67. O
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Example 2.8 Consider Example 2.7 again. F' = Q(1/13) is a totally real field with integral
basis

By = {1, (1 +V13)/2} = {1,a} = {01, a2},

and a non-integral Q-basis

By = {1,V13} = {1, 8} = {51, B2}.
Also, since the matrix

Tr(1)
TFOé

(Tr(aiaj)) = (

then
dise(B1) = det(Tr(a;c5)) det( ? ; ) =

Also, since we have the matrix
_( Tr(1) Tr(B) \ _(2 O
e = (78 2 ) = (0 % )

diSC(Bg) =52 = det(TF(ﬂlﬁj))

then

Corollary 2.5 Let B; = {a1,aa,...,a4} be a Q-basis for an algebraic number field F. If
BQ = {BlaﬂQv"de} g F and

d
51@22%,1‘0@ forqp, € F,and k=1,2,...,d,

i=1
then B is also a basis for F' if and only if det(gx,;) # 0.

Proof. Suppose that det(gx ;) # 0. It suffices to show that the 8 are linearly independent
by Theorem A.4 on page 325. If

d
D wbr=0 (w€F)

then

d d
0= Z’YkZQk,iai = Z%Z’qum
k=1 i=1

i=1 =

Since the a; are linearly independent, then

d
Z Ver,i =0
k=1

Since det(gk,;) # 0, then v, =0 for all k =1,2,...,d.
Conversely, if B, is a basis for F', then by Theorem 2.7 on page 71,

disc(By) = D*disc(B,).
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Hence, by Theorem 2.8 the result follows. O

In Example 2.5 on page 70, we saw that a Q-basis for an algebraic number field F', consisting
of algebraic integers, need not be an integral basis for F'. The problem is that a basis
consisting of algebraic integers may span F' without spanning O as a Z-module. We now
verify that every algebraic number field does indeed have an integral basis, and that the
ring of integers is a free abelian group of rank equal to the degree of the number field over

Q.

Theorem 2.9 — Existence of Integral Bases

Every algebraic number field F' of degree d over Q has an integral basis, and O is a free
abelian group of rank d.

Proof. By Lemma 1.4 on page 38, there is a basis for F' consisting of elements from O p.
This establishes existence of such bases. It remains to show that there exists such a basis
that is a Z-basis for OF.

By Corollary 2.4, the discriminants of such bases are in Z, and by Theorem 2.8, they are
nonzero. Hence, we may choose a basis

Bl :{617ﬁ27"'36d} gDF

for F over Q such that |disc(B)| is a minimum. Assume that By is not a Z-basis for Op.
Therefore, there exists a v € O such that

d
y=Y_ 48 (4 €Q),
j=1

and at least one g; & Z. Without loss of generality, assume that q; € Z. Thus,
a=|ul+r, 0O<r<i)
where | ¢ ] is the floor of ¢;—see Page 8. Set
L‘h 51 quﬁj Q1 51 =rB+ ZQJB]
j=2

The determinant of the matrix:

T 42 4d
0 1 0
A= )
0 0 1
is
det(A) =r #0.
By Corollary 2.5,
BQ = {65527"'75d}

is a basis for F' over Q. Since
disc(By) = r?disc(B1),

then
|disc(B2)| < |disc(B1)],
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contradicting the minimality of the discriminant of B;. Hence, B, is an integral basis for
F'. Therefore, as a Z-module
Op =2ZB1 ® - ® ZLPq,

so O is a free abelian group of rank d (see Equation (A.4) on page 325, and the discussion
preceding it). O

Corollary 2.6 If B C Oy is a Q-basis for F' and disc(B) is squarefree, then B is an integral
basis for F.

Proof. Let B = {f1,...,84}- By Theorem 2.9, there exists an integral basis B; =
{a1,...,aq} for F. By Theorem 2.7 on page 71,

disc(B) = D*disc(B,),

where D = det(qy;), and g ; is given by

d
Be = arici (qri € Q).
=1

Since disc(B) is squarefree, then D = +1. Therefore, (qr;) € GL,(Z). Thus, by Exer-
cise 2.34 on page 81, B is a Z-basis for Op. Thus, B is an integral basis for F. O

Example 2.9 Example 2.5 on page 70 provides an example of a squarefree discriminant
of an integral basis. However, in Example 2.4, B = {1,/2} is an integral basis for Q(v/2),
but disc(B) = 8, so the converse of Corollary 2.6 fails to hold.

Although Example 2.9 shows that the converse of Corollary 2.6 fails to hold, if we have two
integral bases for an algebraic number field, then they must have the same discriminant.

Corollary 2.7 Let B; and Bs be two integral bases for an algebraic number field F'. Then
disc(B1) = disc(Ba2).

Proof. By Theorem 2.7,
disc(By) = D*disc(B1) (2.9)

where D € Z is given in that theorem. Thus,
disc(Bq) } disc(Bs) € Z,

by Corollary 2.4 on page 73. By reversing the roles of B; and Bo, we get
disc(Bs) | disc(By) € Z.

Therefore,

disc(B;) = £disc(Bs).
However, by Equation (2.9), the minus sign is not possible. O
Corollary 2.7 essentially tells us that the discriminant of an integral basis for an algebraic

number field is an invariant of the field, and it has a name. The following generalizes the
notion for the quadratic case given in Definition 1.33 on page 46.
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Definition 2.7 — Discriminant of a Field

Let B be an integral basis for an algebraic number field F'. Then the discriminant of F' is
disc(B), denoted byA .

Application 2.1 — Quadratic Fields

The ring of integers of a quadratic number field F is given by Op = Z[wa ] where

{ (1+vAr)/2 if A=1(mod 4),
War =\ VAR ifA 7 2 1(mod 4)

is called the principal surd. —see Application 1.2 on page 3 and Theorem 1.28 on page 45.
Also,

Do Ap ifA p =1(mod 4),
7Y Dp/4 if A#1(mod 4)

is called the radicand of F'.

Example 2.10 Let F = Q(v/19). By Theorem 1.28, B = {1,+/19} is an integral basis for
F. Thus,

2
Ap = disc(B) = det ( \/1179 —\l/ﬁ ) = (—2V19)2 =76 =4-19 = 4Dp.

Example 2.11 Let F = Q(v/13). Then
B={1,(1+V13)/2}
is an integral basis for F' by Theorem 1.28. Thus,

2
. 1 1

AF:dlSC(B):det< 14413 1\/ﬁ> :13:DF
2 2

Now we provide a generalization of the quadratic version promised in Remark 1.22 on
page 46—see Biography 1.4 on page 54.

Theorem 2.10 — Stickelberger’s Theorem
If F' is an algebraic number field, then

Arp=0,1 (mod 4).

Proof. Let B = {ay,...,a,} be an integral basis for F', where |F' : Q| = n. For each
i=1,2,...,n, let ay, az(?), cee agn) (not to be confused with the powers of «;) be all of the

conjugates of o; over Q. By part (d) of Theorem A.19 on page 336 as

VAR = det(az(-j))
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is essentially the sum of n! terms, each one corresponding to an element of the symmetric

group S,, we may set U(agj)) € S, as the bijection assigning each agj) to an element of S,,.

Therefore, we may refine this sum further in terms of the alternating group A,, as follows.

\/AF:det(an)): Z az(j)— Z af;j):e—q
a'(ocgj))GAn o(agj))éAn
so e,0 € A. By Exercise 2.1 on page 62, we have that, for each embedding 6; of F' in C,

0;(e+0) = e+o, and 0;(eo) = eo so, by Exercise 2.4, e+ 0, eo € Q. Thus, by Corollary 1.11
on page 37, e + 0, e0 € Z. Therefore,

Ap =(e—0)?=(e+0)*—4eo=(e+0)* (mod 4),

thenA g =0, 1(mod 4), as required. O
The above proof was published in 1929 by I. Schur (1875-1941), a student of G. Frobe-
nius—see Biographies 2.3 on page 80 and 2.4 on page 81 .

The next result tells us the effect on the discriminant of a field by the signature given in
Exercise 2.11 on page 63. The following also generalizes the last statement of Theorem 2.8
on page 73. This is a result of Kronecker—see Biography 2.2.

Theorem 2.11 — Signatures and Discriminants

If F' is an algebraic number field with signature {rq, 5}, then the sign of A g is (—=1)"2. In
other words,A > 0 if and only if half the number of complex embeddings is even.

Proof. Let B = {ay,...,an} be an integral basis for F', where
|F: Q| =n.

Since det(al(-j)) € C, we may write it as

det(e?) =a+bv/=1 (a,b€R).

Then det (an )) = a—by/—1 ,where the T denotes the complex conjugate of x. Since complex

conjugation will leave the real rows of the determinant unchanged, and will interchange
the 2ry “non-real” rows in pairs corresponding to the conjugate embeddings, the value of

det (al(-j)) is also (—1)"2(a + by/—1). Therefore,

(=12 (a+bvV/—1) = a — by/—1.

If r5 is even, then comparison of coefficients yields that b = 0, andA r = a? > 0. If 5 is
odd, then a = 0, so
Ap = (bV-1)? = —b* <0,

as required. O

Example 2.12 If F = Q(+/2), there are two complex embeddings, and one real embedding,
namely r; = 1 = ry, as seen in Exercise 2.12. Also, from Exercise 2.18 on page 68, it follows
that

Ap = —27-2% = —108 = (—1)"2108.
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Biography 2.2 Leopold Kronecker (1823-1891) was born on December 7,
1823 in Liegnitz, Prussia (now Legnica, Poland). In 1841, he entered the Uni-
versity of Berlin and achieved a doctorate under Dirichlet’s supervision in 1845.
Then he left for Silesia where he became wealthy in banking and real estate. He
returned to Berlin in 1855 and remained there for the rest of his life. However,
he did not become a professor there until 1883 when his lifelong friend Kummer
retired. Kronecker was known as a finitist, believing that mathematics would
be well-served by consideration of only finite numbers and a finite number of
steps. This naturally brought him into conflict with the likes of Cantor. In
fact, Kronecker was known for his vigorous personal attacks on anyone with
whom he had mathematical disagreements. His contributions were mainly to
algebraic number theory, the theory of algebraic equations, and elliptic func-
tions. Along with Kummer and Dedekind, Kronecker is generally considered to
be the third father of modern algebraic number theory. He died on December
29, 1891 from bronchial illness.

We conclude this section with an observation, which also serves as a caution, concerning
integral bases.

Remark 2.3 In view of Theorem 1.24 on page 39, the reader may be tempted into thinking
that O p = Z[a] where a € A for any number field F'. In other words, one might be lured into
the belief that there is always an integral basis of the form {1,a,c?,...,a?"'}. However,
this is false, as the following illustration demonstrates. For criteria when this does happen
see Exercise 5.48 on page 253.

Example 2.13 The following was first presented in [44]. However, our proof is different and
more detailed for the edification of the reader. Let K = Q(v/—7,v/—14), F = Q(v/—14), and
OF = Z[v/—14]. We seek to establish that there is no 8 € Ok such that O g = Z[3]. First,
we show that there is no oo € O such that Ox = Z[a, v/—14]. By way of contradiction,
suppose there is such an «. Then, in particular,

1+
==

A =i+ 72, where A € O, 71,72 € OF

and

V=14/v =T = V2 = Bra+ By where V2 € Ok, and 1, B2 € Op.
Let 6 be the embedding of K in C given by 6 : /=7 — —v/—7 and 0 : \/—14 +— /—14. In
other words, by Theorem 2.3 on page 59, (#) = Gal(K/F), fixing F pointwise. Therefore,

17
-

A—0(A) =V=T=mv(a—0(a)), (2.10)
0(V2) = —V2 = B16(a) + B2,

0(A) = mb(a)+ 72,

and
V2 - 0(V2) = 2V2 = Bra+ B2 — B10(c) — B2 = Bi(a — O(ar)). (2.11)
Squaring (2.10)—(2.11) and taking norms from F:

72 = Np(71)?’Np(a — 0(a))? and 2° = Np(B81)*Nr(a — 0(a))?.
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It follows from Corollary 2.3 on page 67 that Np(a — 6(«)) = £1 since Np(a — 0(a)) € Z
and divides both 72 and 2°. Thus, Nr(y1) = £7. However, v; = a + by/—14 for some
a,b € 7Z so a® + 14b*> = £7 which is impossible. We have shown that there is no a € O
such that Ox = Z[a,v/—14]. Now if there is a § € Ok such that Ox = Z[5], then by
setting & = 8 — /=14 € O, we get O = Z[a,/—14], which we have just shown to be
impossible.

Biography 2.3 Ferdinand Georg Frobenius (1849-1917) was born on October
26, 1849 in Berlin-Charlottenburg, Prussia (now Germany), the son of a Protes-
tant parson. He began his university studies at Gottingen for one semester,
then returned to Berlin. At the University of Berlin, he was instructed by
the likes of Kronecker, Kummer, and Weierstrass, the latter being his doctoral
supervisor under whom he completed his dissertation in 1870. After some po-
sitions at secondary school level, he was appointed to the University of Berlin
as an extraordinary professor of mathematics in 1874. Note that Frobenius
somehow bypassed the usual requirement for a Habilitation—see Footnote 1.1
on page 23. The consensus is that this breach of usual strictness was due to
Weierstrass’ influence. In 1875, after only a year at Berlin, Frobenius took a
position as ordinary professor at the Eidgendssische Polytechnikum in Ziirich.
Frobenius worked in Ziirich for seventeen years where he married and raised
a family. When Kronecker died in 1891, Weierstrass exerted further influence
to have Frobenius fill the vacant chair at Berlin. For a quarter century, from
1892, Frobenius was the leading influence in Berlin where he died on August
3, 1917. Among his students were Edmund Landau, Robert Remak, and Issai
Schur—see Biography 2.4. It is also noteworthy that Siegel was Frobenius’
student from 1915 until his death.

Frobenius contributed to a vast array of mathematical areas, among them
being analytic functions in series, linear differential equations, linear forms with
integer coefficients, elliptic and Jacobi functions, biquadratic forms, and group
theory, to name a very few. In group theory, he extended Sylow’s theorems from
permutation groups to abstract groups, and provided a proof of the structure
theorem for finitely generated abelian groups. But arguably his most influential
contribution may have been in the area of group characters which he ultimately
linked to representations and essentially gave birth to representation theory of
groups. Indeed, in 1911 Burnside wrote up Frobenius’ character theory in his
book Theory of Groups of Finite Order. Later, in other areas, such as quantum
mechanics and theoretical physics, Frobenius’s group theoretic representations
found new applications.

Remark 2.4 Recall that Theorem 1.24 on page 39 is the primitive element theorem for
algebraic number fields. In other words, any algebraic number field F' is generated over Q
by a primitive element o € N. Therefore, Example 2.13 shows that there cannot ezxist a
Primitive Element Theorem for rings of integers of algebraic number fields. Bases of the
form {1,a,c?,...,a% '} for a € A are called power integral bases, and O = Z[a] is called
monogenic. Hence, not all rings of integers of algebraic number fields have a power integral
basis, namely they are not all monogenic.
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Biography 2.4 Issai Schur (1875-1941) was born on January 10, 1875 in
Mogilyov, in the province of the same name in what was then the Russian
Empire, and is now Belarus. His university education began in Berlin 1894,
where Frobenius was one of his teachers early on and ultimately his doctoral
advisor—see Biography 2.3. By 1901 he had obtained his doctorate on a topic
involving representations of the general linear group over C. His thesis intro-
duced functions that we now call S-functions in honour of Schur’s contribution.
He began his professional life as a lecturer at Berlin University in 1903, and was
ultimately promoted to full professor in Berlin in 1919. He held this position
until ousted by the Nazis in 1935. While at Berlin, he directed students in many
disparate directions including combinatorics, matrix theory, and soluble groups.
Among his doctoral students were both Richard and Alfred Brauer (brothers),
Robert Frucht, Bernard Neumann, Richard Rado, and Helmut Wieland. After
Schur was dismissed from his chair in 1935, he was also pressured to resign
from the Prussian Academy in 1938. The academy had honoured him in 1922
with his election to the august body. In 1939, he left for Palestine, broken by
the stress and humiliation he suffered under persecution by the Nazis. Two
years later, he died in Tel Aviv, Palestine (now Israel).

Among Schur’s achievements was his discovery of what we now call the Schur
multiplier. This proved to be well in advance of its time. Indeed, as evidence
of this fact, some forty years later Eilenberg and MacLane defined cohomology
groups, the second of which having coefficients in C — {0} is actually the Schur
multiplier. However, Eilenberg and MacLane were unaware of this fact. Schur
was interested in representation theory of groups, which began with his doctoral
thesis and culminated many years later in his complete description of rational
representations of the general linear group. He also worked on projective rep-
resentations of groups and group characters. In this area he is known for what
we now call Schur’s Lemma that says: If R and S are two finite-dimensional
irreducible representations of a group G and ¢ is linear map from R to S that
commutes with the action of the group, then either ¢ is invertible, or ¢ = 0.

His interests included Galois groups of certain classes of polynomials such as
Hermite polynomials. He also worked in divergent series, function theory, in-
tegral equations, and number theory.

Exercises

2.32. Prove that a Z-basis for O in the sense of Definition 2.5 on page 70 is a basis in the
sense of Definition A.7 on page 324.

2.33. Let R be a commutative ring with identity and let a1, ..., aq € R. Prove that

det(a;'fl): H (0 — ).

1<i<j<d

2.34. Let G be a free abelian group of rank n with basis {g1,...,9,}, and suppose that
A=(a;;) € Myxn(Z). Prove that the elements

n
h¢:Zai7jgj (i:1,2,...,n),
j=1

form a basis for G if and only if A € GL,(Z). (See Definition A.18 on page 337.)
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2.35.
2.36.

2.37.
2.38.

2.39.

2.40.

2.41.

2.42.

2.43.

Yo 2.44.

2. Field Extensions

Using Exercise 2.31 on page 69, find disc(mq,g) when o = v/2.
Let F = Q(v/5) = Q(a). Find Tr(a), Nr(a), and disc(ma.g), where mq o(r) =
x* — 5. Also, show that disc(ma,q) = Nr(m), o(a))
Let F = Q(v/5,(4), and a = v/5. Find Tr(a) and Np(a).
Let B ={l,a,c?,...,a? 1} be a basis for Q(a) over Q. Prove that
disc(B) = disc(mq,0)
where mq g(x) is the minimal polynomial of a over Q.

Let F' be an algebraic number field with Op = Z[a]. Prove thatA p = disc(maq,q)
where mq g is the minimal polynomial of o over Q.

Let R be a Dedekind domain, and let I be an R-ideal with

1= H P,
j=1

for distinct prime R-ideals P;. Prove that
R/ =[] IR/P;1%.
j=1

(Hint: Use Theorem 1.21 on page 32 and exercises in that section.)

If R is a commutative ring, and M is an R-module with N an R-submodule of M,
then N is called a pure submodule of M if NNrM =rN for all r € R. Prove that if
N is a direct summand of M, then N is a pure submodule.

With reference to Exercise 2.41, prove that if Op C O for algebraic number fields
F C K, then OF is a pure Z-submodule of O . Conclude that any integral basis for
F' can be extended to an integral basis for K.

Let F be a number field with basis {81, f2,...,8,} over Q, and let & € Op be of
degree d over Q. Suppose that

n
aﬂizza@jﬁj fori:l,?,...,n.

j=1

Prove that |[Np(a)| = | det(a; ;)|

Let F' be an algebraic number field with o € O, o # 0. Prove that
1Or/(a)| = [Np(a)],

where the vertical bars on the left denote the cardinality of the quotient group, con-
sidered as free abelian groups, and the vertical bars on the right denote the absolute
value of the norm. In particular, this says that if the right-hand side is 1, then as free
abelian groups, Op = ().

(Hint: Show that the quotient of free abelian groups O /{«) is finite by demonstrating
that O and its subgroup («) have the same rank. Then use Exercise 2.43.)

(This exercise is a seque into §2.4, where we extend the notion of norm from elements
to ideals and generalize the notion developed for the quadratic case in §1.7.)
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2.4 Norms of Ideals

The mathematician may be compared to a designer of garments, who is utterly obliv-

ious of the creatures whom his garments may fit. To be sure, his art originated in the

necessity for clothing such creatures, but this was long ago; to this day a shape will

occasionally appear which will fit into the garment as if the garment had been made
for it. Then there is no end of surprise and delight!

from page 142 of The Two Realities in [63]

Tobias Dantzig (1884-1956) Baltic, German, American mathematician

Exercise 2.40 as well as Exercise 2.44 provide a lead-in to the following important notion
which will allow us to refine some developments from earlier in the text and will lead us
naturally to ideal classes and the class group.

Definition 2.8 — Norms of Ideals

Let F be a number field and let I be an (integral) O p-ideal. Then we define the norm of I
to be
N(I) = [Or/I|.

1f 3 is a fractional ideal of O then, by Remark 1.13 on page 26, there is a nonzero integral
Op-ideal I and an element o € O such that

Then the norm of J is given by

where N(I) and N((«a)) are the norms of the integral ideals I and («).

Notice that, via Exercise 2.40, we know that |Op/I| is finite. In fact, if

1=]]27,
Jj=1
via Theorem 1.17 on page 28, then Exercise 2.40 tells us that
N(I) =] 19r/P;1".
j=1
Since we have the prime power

Or /P = p}
by Exercise 2.49 on page 86, then

N(I) = ]]p7".
j=1

Also, by Exercise 2.47, for any nonzero fractional O g-ideals J, 7,

N(IJ) = NO)N(J).
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Example 2.14 Let F = Q(+/10), with the O p-ideals P = (2,1/10), Q = (3,1 + 1/10), and
Q' = (3,1 —+/10). (Recall that O = Z[+/10] by Theorem 1.28 on page 45.) We will show
that P, Q, and Q" are prime O p-ideals, and compute their norms. Notice that by simply
multiplying out the basis elements,

QQ’ = (9,3(1 — V10), 3(1 4+ V10)).
However, 3 =9 — (3(1 — v/10) + 3(1 + v/10)) € Q2/, so (3) € QQ’, and clearly the elements
9,3(1 —v/10), 3(1 + v/10) are in the ideal (3), so
(3) = 00/,

by Theorem 1.30 on page 49. Similarly, P? = (4,21/10, 10). However, 2 = 10 —2-4 € P2, so
(2) € P?, and certainly the elements 4,21/10, 10 are in the ideal (2), so again by Theorem
1.30,

(2) = P2
Hence,
(6) = P?QQ, (2.12)
” N(P?QQ’) = N((6)) = 2% - 3% = 36 = Np(6). (2.13)

Notice that this coincides with the fact given in Exercise 2.44 on page 82 since
19 /(6)] = |9F/{6)] = Nr(6),

where the first quotient is that of a ring modulo an ideal, and the second quotient is as a
free abelian group modulo a cyclic subgroup. We may also calculate |Op/P| by counting
its elements. Although there are other means of doing this, we explore this avenue for its
instructive and illustrative value. First, we observe that P is maximal, for if

u4vvV10 € P = {2a + bV/10 : a,b € Z},
then v € Z is odd and v € Z is arbitrary. Hence, we have the ideal equality,
(P,u +vV10) = Z[V10],
given that u — 1+ /10 € P, so
1=u—14vV10 - (u+vV10) € (P,u + vV10).

By Theorem 1.10 on page 18, P is a prime O p-ideal. Thus, every element of Z[/10] is either
in P or is of the form 1 + a, where o € P, so |Z[V/10]/P| = 2 = N(P). A similar argument
shows that every element of Z[v/10] is either in Q or is of one of the forms 3a+b— 1+ by/10
or 3a +b— 2+ by/10. Therefore,

|Z[v10]/9 = 3 = N(Q) = N(Q') = |Z[v10]/2'|.
Therefore, by Exercise 2.45 on page 86, Q is a prime £ p-ideal. Hence,
N(PQ) =6 = N(PQ'),
from which we could have deduced (2.13).
Observe, as we did in Examples 1.9 and 1.11 on pages 4-5, that
6=(4+10)(4 —V10)=2-3

gives two distinct representations of the element 6 as a product of the irreducible elements
4 ++/10, 4 — /10, 2, and 3. However, there is unique factorization of the ideals as given in
(2.12).
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The following employs Example 2.14 to illustrate Exercise 2.47 on the following page.

Example 2.15 Let I = PQ where P and Q are given in Example 2.14. Via Exercise 2.51,
I=72=(6,2—-10),

with
P'Q" = PQ’ = (6,2 + V10).

Let J and g be fractional £ p-ideals given by

1 1
J:flandgzgll.

2
T e vovo- (39) (38)- (5 (5) -
50 99 = Z[V10] = Op.

The following essentially generalizes Exercise 2.44 on page 82, illustrated in Example 2.14.

Theorem 2.12 — Norms of Ideals and Discriminants

Suppose that F' is a number field, and that I is a nonzero integral O p-ideal. Let B =
{ai,...,a,} be a Z-basis for I. Then

_ disc(B)
N(I)? = A,

Proof. Let By = {B1,...,Bn} be a Z-basis of Op. Then for each i =1,...,n

n

@ =Y 2,8, (2;€D).

j=1
By the same reasoning as in the solution, provided on page 378, of Exercise 2.43,
N(I) = [9/1] = | det(z4,).
By Theorem 2.7 on page 71,
disc(B) = (det(z; ;))*disc(B1) = N(I)*Ar,

as required. O

An immediate consequence, which is essentially Exercise 2.44, is the following.

Corollary 2.8 If I is an integral O p-ideal with o € I, then N(I) = |Np(a)| if and only if
I=(a).

Example 2.16 If F = Q(+/AFr) and a = (a + b\/AFr)/2 € O, then

a2 — bQAF

N((a)) = [Np(a)| =



86

2. Field Extensions

Example 2.17 By Exercise 2.49, N(P) = p/ for f € N, where P is an integral prime O p-
ideal, then norms of prime ideals are not necessarily primes in Z—see Exercise 2.50. The
exact nature of this power f will be settled when we discuss general ideal decomposition in
number fields later in Chapter 5.

Exercises

2.45.

2.46.

2.47.

2.48.

2.49.

2.50.

2.51.
2.52.

2.53.

2.54.

Let F be a number field and I a nonzero O p-ideal. Prove that if N(I) is prime in Z,
then [ is prime in Op.

Let F' be a number field and I, J nonzero integral O p-ideals. Prove that
N(IJ) = N(I)N(J).
Conclude that if an integral ideal I; divides an integral ideal I, then N(I1) | N(I2).

Let F' be a number field and J, J nonzero fractional O g-ideals. Prove that

N(33) = NT)N().

(Note that, unlike the conclusion in Exercise 2.46, we cannot conclude that N(J)
divides N(JJ) in Z. Example 2.15 on the previous page provides a counterexample to
the contrary.)

Let F' be a number field and I a nonzero O p-ideal. Prove that I } (N(I)), namely
that (N(I)) C I.

Let F' be a number field and let P be a nonzero prime O p-ideal. Prove that N(P) =
p™, where PNZ = (p), for some m € N, where m < |F : Q.

Suppose that « € O is a nonzero nonunit element for a number field F. Prove that if
|Nr(a)| = p where p is a prime in Z then « is a prime in O p. Show that the converse
fails to hold.

(Hint: Use Theorems 1.8 on page 16 and 1.30 on page 49 as well as Ezxercises 2.44
on page 82 and 2.45 above in conjunction with Definition 2.8 on page 83.)

(Note that this substantially generalizes Ezercises 1.5 on page 6 and 1.22 on page 14
and, in particular, shows that the assumption of UFD in Fxercise 1.22 is not necessary.
We had to wait until we had the machinery made possible by our developments to this
point before we could provide this result since it is quite difficult with only elementary
techniques.)

Find all ideals in Z[v/10] having norm 6.

Prove that for a Dedekind domain D, and an integral D-ideal I there are only finitely
many integral D-ideals that divide I.

Let F' be a number field and n € N arbitrary but fixed. Prove that there exist only
finitely many integral O p-ideals I with N(I) = n.

Let F' be a number field and let I be an integral O p-ideal. Suppose that n € N is the
smallest positive integer in I. Prove that n | N(I).



Chapter 3

Class Groups

Of all the ruins that of a noble mind is the most deplorable.

spoken by Sherlock Holmes in His Last Bow (1917) from The Dying Detective.
Sir Arthur Conan Doyle (1859-1930)

Scottish-born writer of detective fiction

In this chapter, we begin with the interplay between ideal and form class groups. This
allows for a relatively simple proof of the finiteness of the class number in §3.2 for the
quadratic case. This relatively easy approach is a segue into the general case involving the
geometry of numbers in §3.3. Some of what follows is adapted from [54].

3.1 Binary Quadratic Forms

Lagrange was the first to introduce the theory of quadratic forms—see Biography 3.3 on
page 93. The theory was later expanded by Legendre, and greatly magnified even later by
Gauss—see Biographies 3.1 on page 89 and 3.5 on page 95. An integral binary quadratic
form is given by

f(z,y) = ax® + bxy + cy* with a,b, c € Z. (3.1)

For simplicity, we may suppress the variables, and denote f by (a,b,c¢). The value a is
called the leading coefficient, the value b is called the middle coefficient, and c is called the
last coefficient. If ged(a,b, c) = 1, then we say that f(z,y) is a primitive form.

The aforementioned three great mathematicians looked at the representation problem:
Given a binary quadratic form (3.1), which n € Z are represented by f(z,y)? In other
words, for which n do there exist integers z, y such that f(z,y) = n? If ged(z,y) = 1, then
we say that n is properly represented by f(x,y). For instance, when studying criteria for
the representation of a natural number n as sums of two squares, such as in [53, Section 6.1,
pp. 243-251], a simple answer can be given. When looking at norm-forms z? + ny? = m,
where m,n € Z, such as in [53, Section 7.1, pp. 265-273|, the problem can be given a
relatively simple answer for certain m,n. In general, there is no simple complete answer.
Moreover, an even more general and difficult problem arises, namely when can an integer
be represented by a binary quadratic form from a given set of such forms? The theory of
binary quadratic forms deals with this question via the following notion. In the balance of
our discussion, we use the term form to mean binary quadratic form.

87
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Definition 3.1 — Equivalent Binary Quadratic Forms
Two forms f(z,y) and g(z,y) are said to be equivalent if there exist integers p, q,r, s, such
that

f(z,y) = g(pr + qy, 7z + sy) and ps — qr = £1. (3:2)

For simplicity, we may denote equivalence of f and g by f ~ g. If ps — gr = 1, then f and
g are said to be properly equivalent, and if ps — gr = —1, they are said to be improperly
equivalent. Two forms f and g are said to be in the same equivalence class or simply in the
same class, if f is properly equivalent to g.

Remark 3.1 From Definition 3.1, equivalent forms represent the same integers, and the
same is true for proper representation — see Exercise 3.1 on page 94. Moreover, since

p g\ __ . _
det(r S)-ps qr = %1,

this means that
(p q)eeuzm,
r 8

— see Exercise 1.59 on page 54. Note, as well, that proper equivalence means that ps—qr = 1

SO
<pq>e$@m
T S

the subgroup of GL(2,7Z) with elements having determinant 1. Properly equivalent forms
are said to be related by a unimodular transformation, namely X = px+qy and Y = rx+sy
with ps — qgr = 1. Note as well, by Exercise 3.3 on page 94, proper equivalence of forms is
an equivalence relation.

The notion of proper and improper equivalence is due to Gauss. Lagrange initiated the
idea of equivalence, although he did not use the term. He merely said that one could be
“transformed into another of the same kind,” but did not make the distinction between
the two kinds. Similarly Legendre did not recognize proper equivalence. However, there
is a very nice relationship between proper representation and proper equivalence, since as
Exercise 3.2 shows, the form f(z,y) properly represents n € Z if and only if f(z,y) is
properly equivalent to the form nz? 4 bxy + cy? for some b, c € Z.

Example 3.1 For f(z,y) = 22 + Ty?>, n =29 = 1 +7-22 = f(1,2), f(z,y) is properly
equivalent to g(z,y) = 2922 + 86xy + 64y? since f(z,y) = g(3x — y,—2x + y), where
p=3,qg=—-1,r=-2,5s = 1. With reference to Remark 3.1, X =3z —y, Y = -2z +y
represents a unimodular transformation.

The following notion is central to the discussion and links equivalent forms in another way.

Definition 3.2 — Discriminants of Forms

The discriminant of the form f(z,y) = ax® + bxy + cy? is given by
D =b* — 4ac.

If D > 0, then f is called an indefinite form. If D < 0 and a < 0, then f is called a negative
definite form, and if D < 0 and a > 0, then f is called a positive definite form.
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Remark 3.2 By Exercise 3.7 on page 94, if forms f and g have discriminants D and Dy,
respectively, and f(z,y) = g(px + qy,r7x + sy), then D = (ps — qr)2D;. Thus, equivalent
forms have the same discriminant. However, forms with the same discriminant are not
necessarily equivalent — see Exercise 3.8. Furthermore, if f(z,y) = az? + bzy + cy?, then
by completing the square, we get

daf(z,y) = (2ax + by)* — Dy,

so when D > 0, the form f(x,y) represents both positive and negative integers. This is the
justification for calling such forms “indefinite.” If D < 0 and a < 0, then f(z,y) represents
only negative integers, thus the reason they are called “negative definite,” and if a > 0,
then they represent only positive integers, whence the term “positive definite.” Since we
may change a negative definite form into a positive definite one by changing the signs of
all the coefficients, it is sufficient to consider only positive definite forms when D < 0. We
will, therefore, not consider negative definite forms in any discussion hereafter.

Biography 3.1 Adrien-Marie Legendre (1752-1833) was born on September
18, 1752, in Paris, France. He was educated at the College Mazarin in Paris.
During the half decade 1775-1780, he taught along with Laplace (1749-1827)
at Ecole Militaire. He also took a position at the Académie des Sciences, be-
coming first adjoint in 1783, then associé in 1785, and his work finally resulted
in his election to the Royal Society of London in 1787. In 1793, the Académie
was closed due to the Revolution, but Legendre was able to publish his phe-
nomenally successful book Eléments de Géométrie in 1794, which remained
the leading introductory text in the subject for over a century. In 1795, the
Académie was reopened as the Institut National des Sciences et des Arts and
met in the Louvre until 1806. In 1808, Legendre published his second edi-
tion of Théorie des Nombres, which included Gauss’s proof of the Quadratic
Reciprocity Law. Legendre also published his three-volume work FEzercises
du Calcul Intégral during 1811-1819. Then his three-volume work Traité des
Fonctions Elliptiques was published during the period 1825-1832. Therein he
introduced the name “Fulerian Integrals” for beta and gamma functions. This
work also provided the fundamental analytic tools for mathematical physics,
and today some of these tools bear his name, such as Legendre Functions. In
1824, Legendre had refused to vote for the government’s candidate for the In-
stitute National, and for taking this position his pension was terminated. He
died in poverty on January 10, 1833, in Paris.

Congruence properties of the discriminant of a form may provide us with information on
representation. For instance, Exercise 3.9 tells us that congruence properties modulo 4
determine when an integer may be represented by forms with discriminant D = 0, 1 (mod 4).
Furthermore, this means that we can take the equation D = b? — 4ac and let @ = 1 and
b =0 or 1 according to whether D = 0 or 1(mod 4), so then ¢ = —D/4 or —(D — 1)/4,
respectively. Thus, we get a distinguished form of discriminant D given as follows.

Definition 3.3 — Principal Forms

If D=0,1(mod 4), then (1,0,—D/4) or (1,1, —(D—1)/4), respectively, are called principal
forms of discriminant D.
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Remark 3.3 Via Exercise 3.10 on page 94, we see that if D = —4m, we get the form
f(z,y) = 22 +my?. As we shall see, these forms are particularly important in the historical
development of the representation problem. Indeed, entire books, such as [15] are devoted
to discussing this issue. There is a general notion that allows us to look at canonical forms
for more illumination of the topic. This is given in the following, which is due to Lagrange.

Definition 3.4 — Reduced Forms

A primitive form f(z,y) = ax? + bxy + cy?, of discriminant D, is said to be reduced if the
following hold.

(a) When D < 0 and a > 0,

|b| < a < e, and if either |b] = a or a = ¢, then b > 0. (3.3)

(b) When D > 0,
0<b<+VDand VD —b < 2|a| < VD +b. (3.4)

Note that since f is positive definite in part (a) of Definition 3.4, then by Definition 3.2 on
page 88, both a and ¢ are positive.

With the notion of reduction in hand, we have the following result, which provides us with
a unique canonical representative for equivalence classes of positive definite forms.

Theorem 3.1 — Positive Definite and Reduced Forms

Every positive definite form is properly equivalent to a unique reduced form.

Proof. Let f(z,y) = az?+bxy+cy? be a primitive positive definite form. Let n be the least
positive integer represented by f. By Exercise 3.2, there exist B,C € Z such that f ~ g
properly, where g(X,Y) = nX? + BXY + CY?2. For any integer z, the transformation
X =x—2z2y, Y =y yields

9(X,Y) =na®+ (B — 2nz)zy + (nz® — Bz + O)y*.
If we set z = Ne (£), the nearest integer to B/(2n), then

1 B 1
——<——2<—-,—n<B-2nz<n,and |B —2nz| <n.
2 2n 2

Thus, if we set by = B — 2nz and ¢; = nz? — Bz + C, then
9(X,Y) = na® + bixy + c19°,

where |b1| < n. Thus, f is properly equivalent to g, g is positive definite, and ¢g(0,1) = ¢;.
Therefore, g represents c¢i, which implies ¢; € N, and ¢; > n by the minimality of n. We
have shown that f is properly equivalent to a reduced form. The balance of the result will
follow from the next result.

Claim 3.1 Any two properly equivalent reduced forms must be identical.

Suppose that the form f(z,y) = ax? + bxy + cy? is reduced and properly equivalent to the
reduced form g(z,y) = Az? + Bxy + Cy? via the transformation

9(z,y) = f(px + qy,rz + sy)
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with ps — gr = 1. We may assume without loss of generality that a > A. Also, a straight-
forward calculation shows that

A = ap® + bpr + cr?,

B = 2apq + b(ps + qr) + 2crs, (3.5)
C = aq® + bgs + cs>.

Furthermore, we have
bl <a<e. (3.6)

Using (3.6) we get,
A = ap® + bpr + cr? > ap® — |bpr| + cr? > ap?® — |bpr| + ar® = a(p® + %) — |bpr|.  (3.7)

However, since
p*+r? > 2|pr], (3.8)

then (3.7) is greater than or equal to 2a|pr| — |bpr| > a|pr|, where the latter inequality
follows from (3.6) again. We have shown that

A > alpr|. (3.9)
However, by assumption a > A, so |pr| < 1. If |pr| = 0, then
A= ap2 + bpr+cr2 > ap2 +ar? = a(p2 +r2) > a,

s0 A = a. On the other hand, if |pr| = 1, then by (3.9), A > a, so again we get A = a.

It remains to show that B = b since, once shown, it follows from Exercise 3.7 on page 94
that C = ¢, since B2 — 4AC = b — 4ac.

Suppose that ¢ > C. Then ¢ > a since C > A = a. If |pr| = 1, then by (3.6)—(3.8), using the
fact that cr? > ar?, we deduce A > a, a contradiction. Hence, |pr| = 0. If p = 0, then using
(3.7)—(3.8), we conclude that A > a, so r = 0. Since ps — gr = 1, then ps = 1. Moreover,
since |B| < A = a given that g is reduced, then from (3.6), we get —a < |B| — |b] < a.
However, by (3.5), B = 2apq + b. It follows that ¢ = 0 and B = b.

Lastly, suppose that ¢ < C'. By solving for a,b, ¢ in terms of A, B,C we may reverse the
roles of the variables and argue as above to the same conclusion that B = b. This completes
the proof. O

Remark 3.4 The above says that there is a unique representative for each equivalence
class of positive definite binary quadratic forms. Furthermore, by Exercise 3.11 on page 95,
when D < 0, the number hp of classes of primitive positive definite forms of discriminant
D is finite, and hp is equal to the number of reduced primitive forms of discriminant D.
(Note that we prove hp < oo in general for field discriminants in Theorem 3.7 on page 106.)

The case for indefinite forms is not so straightforward. The uniqueness issue, in particular,
is complicated since we may have many reduced forms equivalent to one another, and the
determination as to which reduced forms are equivalent is more difficult. Yet, we resolve
this issue in Theorem 3.5 on page 101.

We conclude this section with a result due to Landau. This result precisely delineates the
negative discriminants D = —4n for which hp = 1 and the proof is essentially that of
Landau [35].
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Biography 3.2 Edmund Landau (1877-1938) was born in Berlin, Germany
on February 14, 1877. He studied mathematics at the University of Berlin,
where his doctoral thesis, awarded in 1899, was supervised by Frobenius—see
Biography 2.3 on page 80. Landau taught at the University of Berlin for the
decade 1899-1909. In 1909, when he was appointed as ordinary professor at
the University of Gottingen, he had amassed nearly seventy publications. His
appointment at Gottingen was as a successor to Minkowski. Hilbert and Klein
were also colleagues there—see Biography 3.4 on page 94. He became full
professor there until the Nazis forced him out in 1933. On November 19, 1933,
he was given permission to work at Groningen, Netherlands, where he remained
until he retired on February 7, 1934. He returned to Berlin where he died of a
heart attack on February 19, 1938.

Landau’s major contributions were in analytic number theory and the dis-
tribution of primes. For instance, his proof of the prime number theorem,
published in 1903, was much more elementary than those given by Poussin
and Hadamard—see [53, §1.9, pp. 65-72] for a detailed overview. He estab-
lished more than 250 publications in number theory and wrote several books
on number theory, which were influential.

Theorem 3.2 — When h_4,=1forn>0
If n € N, then h_y, =1 if and only if n € {1,2,3,4,7}.

Proof. Suppose that h_4, = 1. f(x,y) = 22 + ny? is clearly reduced since a = 1, b = 0, and
¢ =n > 1 in Definition 3.4 on page 90. The result is clear for n = 1, so we assume that
n > 1.

Case 3.1 n is not a prime power.

There exists a prime p | n such that p||n, for d € N, where || denotes proper division,
also commonly called ezactly divides, namely p? | n, but p@* + n — see [53, Definition
1.3, p. 16] for the general notion. Let a = min(p?,n/p?) and ¢ = max(p?,n/p?). Thus,
ged(a,e) = 1, where 1 < a < ¢, since n is not a prime power. Thus, g(x,y) = az? + cy? is a
reduced form of discriminant —4ac = —4n, so h_4, > 1, given that f(z,y) is also a reduced
form of discriminant D, unequal to g(x,y). This completes Case 3.1.

Case 3.2 n = 2¢ where ¢ € N.

We need to show that h_4, > 1 for £ > 3. If £ = 3, then D = —32 and the form
g(z,y) = 322 + 22y + 3y? is a reduced form of discriminant 22 — 4 -3 -3 = —32 not equal
to f(z,y), so we may assume that £ > 4. Set

glz,y) = 422 + dzy + (2“2 + 1)y2,

which is primitive since ged(4,4,2¢72 4+ 1) = 1, and reduced since 4 < 2°=2 4+ 1. Moreover,
the discriminant is

D=4%2_-4.4.2241)=-16-2"2 = 242 = _4p,
but g # f. This completes Case 3.2.

Case 3.3 n = p* where p > 2 is prime and k € N.
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Suppose that n 4+ 1 is not a prime power. Then, as in Case 3.1, we may write n + 1 = ac,
where 1 < a < ¢ and ged(a,c¢) = 1. Thus,

9(z,y) = az® + 2zy + cy?

is a reduced form of discriminant 22 — 4ac =4 —4(n+1) = —4n, and f # g, 80 h_4, > 1.

Lastly, suppose that n+ 1 = 2¢ where t € N, observing that n+1 = p¥ 4+ 1 is even. If t > 6,
then
g(x,y) = 8% + 6y + (277 + 1)y

is reduced since 8 < 2!73 + 1, and ged(8,6,2!73 + 1) = 1. Also, g has discriminant
D=6"-4-802"%+1)=4-4.2" =4 —4(n+1) = —4n,

and f # g, so h_4y, > 1. For t < 5 we have that ¢t € {1,2,3,4,5} have the corresponding
values
n € {1,3,7,15,31}.

It remains to exclude n = 15, 31.
If n = 15, then n is not a prime power so this violates the hypothesis of Case 3.3. If n = 31,
then the form

g(x,y) = 5x® + day + Ty°
is reduced since b =4 < a =5 < ¢ = 7, and is primitive since ged(a,b,c) = 1. Lastly, the
discriminant is

D=4%>-4.5-7=—4-31.
This completes Case 3.3, and we are done for this direction of the proof.

For
ne{l,2,3,4,7}

we get that h_4, = 1 from Exercise 3.13. O

Biography 3.3 Joseph-Louis Lagrange (1736-1813) was born on January 25,
1736 in Turin, Sardinia-Piedmont (now Italy). Although Lagrange’s primary
interests as a young student were in classical studies, his reading of an essay by
Edmund Halley (1656-1743) on calculus converted him to mathematics. While
still in his teens, Lagrange became a professor at the Royal Artillery School in
Turin in 1755. Lagrange sent Euler some of his work, including methods in the
calculus of variations, then called isoperimetrical problems. This helped Euler
to solve a problem upon which he had been working for years. Ultimately,
Lagrange succeeded Euler as director of mathematics at the Berlin Academy of
Science in 1766. Most of his time at Berlin was spent on celestial mechanics and
the polishing of his masterpiece Mécanique Analytique or Analytical Mechanics,
which was published in Paris in 1788. In this work, he spoke of the science
of mechanics as the geometry of four dimensions, three dimensional physical
space and one time coordinate. This was exploited by Einstein in 1915, when
he developed his general theory of relativity. Lagrange left Berlin in 1787 to
become a member of the Paris Academy of Science where he remained for the
rest of his professional life. When he was fifty-six, he married a young woman,
almost forty years younger than he, the daughter of the astronomer Lemonnier.
She became his devoted companion until his death in the early morning of April
10, 1813 in Paris.
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Exercises

3.1.

3.2.

3.3.

3.4.
3.5.
3.6.

3.7.

3.8.
3.9.

3.10.

Prove that equivalent forms represent the same integers, and the same is true for
proper representation.

Prove that the form f(z,y) properly represents n if and ounly if f(z,y) is properly
equivalent to the form na? + Bxy + Cy? for some B, C € Z.

Prove that proper equivalence of forms is an equivalence relation, namely that the
properties of reflexivity, symmetry, and transitivity are satisfied—see Exercise 1.8 on
page 6.

Biography 3.4 David Hilbert (1862-1943) was born in Konigsberg, Prussia,
which is now Kaliningrad, Russia. He studied at the University of Konigsberg
where he received his doctorate under the supervision of Lindemann. He was
employed at Konigsberg from 1886 to 1895. In 1895, he was appointed to fill
the chair of mathematics at the University of Gottingen, where he remained for
the rest of his life. Hilbert was very eminent in the mathematical world after
1900 and it may be argued that his work was a major influence throughout
the twentieth century. In 1900, at the Paris meeting of the Second Interna-
tional Congress of Mathematicians, he delivered his now-famous lecture The
Problems of Mathematics, which outlined twenty-three problems that continue
to challenge mathematicians today. Among these were Goldbach’s conjecture
and the Riemann hypothesis. Some of the Hilbert problems have been resolved
and some have not, such as the two listed. Hilbert made contributions to many
branches of mathematics including algebraic number theory, the calculus of
variations, functional analysis, integral equations, invariant theory, and math-
ematical physics. Hilbert retired in 1930 at which time the city of Konigsberg
made him an honorary citizen. He died on February 14, 1943 in Gé&ttingen.

Prove that improper equivalence is not an equivalence relation.
Prove that any form equivalent to a primitive form must itself be primitive.

Prove that if f represents n € Z, then there exists a g € N such that n = ¢?n; and f
properly represents n;.

Suppose that f ~ g where f is a form of discriminant D and g is a form of discriminant
Dy, then D = (ps — qr)2D; = Dy where f(x,y) = g(pr + qy,rx + sy).

Provide an example of forms with the same discriminant that are not equivalent.

Let D = 0,1(mod 4) and let n be an integer relatively prime to D. Prove that if n
is properly represented by a primitive form of discriminant D, then D is a quadratic
residue modulo |n|, and if n is even, then D = 1(mod 8). Conversely, if n is odd and
D is a quadratic residue modulo |n|, or n is even and D is a quadratic residue modulo
4|n|, then n € Z is properly represented by a primitive form of discriminant D.

Let n € Z and p > 2 be a prime not dividing n. Prove that p is represented by
a primitive form of discriminant —4n if and only if the Legendre symbol equality
(=n/p) =1 holds.

(Hint: Use Exercise 3.9.)



3.1.

3.11.

3.12.

3.13.
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For a fixed integer D < 0, let hp be the number of classes of primitive positive definite
forms of discriminant D. Prove that hp is finite and is equal to the number of reduced
forms of discriminant D.

Let n € N and p > 2 be prime with p { n. Prove that the Legendre symbol (—n/p) =1
if and only if p is represented by one of the h_4, reduced forms of discriminant —4n.

(Hint: See Exercises 3.10-3.11 and Theorem 3.1 on page 90.)
Prove that if n € {1,2,3,4,7}, then h_4, = 1.

Biography 3.5 Carl Friederich Gauss (1777-1855) is considered to be among
the greatest mathematicians who ever lived. His genius was evident at the
age of three, when he corrected an error in his father’s bookkeeping. Also,
at the age of eight, he astonished his teacher, Biittner, by rapidly adding the
integers from 1 to 100 via the observation that the fifty pairs (j+1,100—j) for
j=0,1,...,49 each sum to 101 for a total of 5050. By the age of fifteen, Gauss
entered Brunswick Collegium Carolinum funded by the Duke of Brunswick
to whom Gauss dedicated his masterpiece Disquisitiones Arithmeticae [20],
published in 1801. In 1795, Gauss entered Gottingen University, and by the age
of twenty achieved his doctorate, which contained the Fundamental Theorem
of Algebra—see Theorem A.18 on page 334. His intimate friend as a student
was Farkas (or Wolfgang) Bolyai (1775-1856). Both had tried to prove Euclid’s
parallel postulate, which is equivalent to the assumption that two converging
lines must intersect. Although Bolyai gave up in frustration, Gauss had some
ideas which, had he developed, would probably have led to his being credited
with the discovery of non-Euclidean geometry, but the honour went to others.
Gauss did publish his classic treatise Disquisitiones circa superficies curvas
in 1827, which may be said to have initiated differential geometry. Gauss
is credited with having invented two physical objects. One is the heliotrope,
which worked by reflecting the sun’s rays using a small telescope and an array
of mirrors. The other, in collaboration with Wilhelm Weber (1804-1891), was
the invention of the first operational telegraph.

He is also credited with computing, from some severely limited data, the orbit
of Ceres Ferdinandea, discovered on January 1, 1801 by Piazzi, an Italian as-
tronomer. Ceres was rediscovered by Zach, an astronomer and friend of Gauss,
in June 1801, upon its reappearance from behind the sun, where Piazzi had
lost his observation, leading to his small amount of data. Ceres was in virtu-
ally the exact position where Gauss had predicted! Although Gauss did not
disclose it at the time, he used his method of least squares approximation to
do the calculation. Indeed, some contend that this calculation is what made
Gauss famous—see the MAA award-winning article [67] by Teets and White-
head. However, in total, Gauss’ accomplishments are too vast to discuss here
in detail.

Gauss was married twice. He married his first wife, Johanna Ostoff on October
9, 1805. She died in 1809 after giving birth to their second son. His second
wife was Johanna’s best friend Minna, whom he married in 1810. She bore
him three children. Gauss remained a professor at Gottingen until the early
morning of February 23, 1855 when he died in his sleep.
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3.2 Forms and Ideals

Happiness is not an ideal of reason but of imagination.
from section two of
Fundamental Principles of the Metaphysics of Ethics (1785)
Immanuel Kant (1724-1804)
German philosopher

We study how to “multiply” forms, which is called “composition of forms” and relate it
to ideal multiplication, which allows us to prove the finiteness of class numbers, for the
quadratic case, in a relatively easy fashion. Also, we intimately link the class group of
forms with that of ideals. The quadratic case is made transparent via binary quadratic
forms, whereas the general case requires Minkowski’s geometry of numbers in §3.3. Therein
we prove the general case of finiteness of the ideal class number, motivated by the quadratic
case—see Biography 3.6 on page 107.

First we need to develop some new notions. The first result allows us to select a canon-
ical form in each equivalence class. For ease of elucidation, we restrict our attention to
discriminants that are field discriminants—see Definition 1.33 on page 46.

Lemma 3.1 — Canonical Forms

Let FF = Q(v/AFr) be a quadratic field of discriminantA g and let m € Z. Then every
proper equivalence class of forms of discriminantA g contains a primitive form with positive
leading coefficient that is relatively prime to m.

Proof. Let f = (a,b,c) € Ca, and set

Pa,m,c = Hp
P
where the product ranges over all distinct primes p such that p ’ a, p ‘ c and p | m. Also

set
Pa,m = Hq
q

where the product ranges over all distinct primes ¢ such that ¢ | a, q | m, but ¢q 1 ¢, set
P = H r
-
where the product ranges over all distinct primes r such that r | c, T ’ m, but r { a, and set
S = H s
S

where the product ranges over all distinct primes s such that s | m but st Py m cPamPem.
Then f represents
aP? . + 0Py PemSm + ¢(PemSm)® = N. (3.10)

Claim 3.2 gcd(N,m) = 1.
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Assume that a prime ¢ | N and ¢ | m. Assume first that ¢ | a. Then
t | Pajm,cPam

by the definition of the latter. If ¢ | P, 1, then by (3.10),
t | cPe 1 Sm.-

However, t { Pe S, S0 t | c. This contradicts the fact that ¢ f P, .. Hence, t{ Py pm, s0
t | Pam,c- It follows from (3.10) that

t | bPam Peyn S

However, we have already shown that ¢ { P, ,, and since ¢ } a, then t{ P, ,,. Also, ¢ ‘ Pom,c
so t 1 S,,, which implies that ¢ | b. We have shown that ¢ | ged(a, b, ¢), contradicting that
f is primitive. Hence, our initial assumption was false, namely, we have shown that ¢ t a.
Therefore,

t | PenSm

by the definition of the latter. However, by (3.10), this implies that ¢ | aP, ,, a contradiction
to what we have already shown. This secures the claim.

By Exercise 3.2 on page 94, Claim 3.2 tells us that f is properly equivalent to the form
g(x,y) = Na? + Bay + Cy?
for some B,C € Z. If N > 0, then we have our result.
If N <0, then by setting xop = Bmf + 1 and yg = —2N{m for some ¢ € Z,
9(w0,y0) = Nxg + Broyo + Cyj
= N(Bml+1)® + B(Bml + 1)(=2Ntm) + C(2Ntm)?
= NB*m*¢*> + 2NBml + N — 2N B*m*(* — 2N B{m+ 4CN*{*m?
= N(1-m??(B?* —4NC)) = N(1 - m?*Ar) = Q,
where @ > 0 if N < 0.

Since f represents
Q= N(1—-m2?Ar)

and @ is relatively prime to m, given that N and 1 — m2¢?Ap are relatively prime to m,
then Exercise 3.2 gives us the complete result.
O

Now we make the connection with ideals.

Theorem 3.3 — Ideals and Composition of Forms

Suppose that O is the ring of integers of a quadratic field of discriminantA g and
fx,y) = aa® + by + cy®

is a primitive form, with a > 0, of discriminantA r = b?> — 4ac. Then

I=(a.(-b+v/Ar)/2)

is an O p-ideal.
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Proof. Since Ap = b® — 4ac, then b*> = Ap (mod 4a), so by Exercise 1.58 on page 54, I is
an O p-ideal. O

Note that in Theorem 3.3, we must exclude the case a < 0 since the norm of an ideal
must be positive. This excludes the negative definite case, but in view of Remark 3.2 on
page 89, there is no loss of generality. Moreover, in the indefinite case, with a < 0, we
may circumvent this via the techniques given in the proof of Theorem 3.5 on page 101. In
particular, see (3.14) on page 103.

Now we examine a means of associating forms in a unique way that allows us to “compose”
them.

Definition 3.5 — United Forms

Two primitive forms f = (a1,b1,¢1) and g = (ag, b2, ¢2) of discriminant D are called united
if gcd(al, as, (bl + bg)/?) =1.

Note that in Definition 3.5, since b3 — 4ajc; = b3 — 4asca, then by and by have the same
parity so (b +b2)/2 € Z.

Theorem 3.4 — United Forms and Uniqueness

If f=(a1,b1,c1) and g = (a2, ba, c2) are united forms of discriminant D, where D is a field
discriminant, then there exists a unique integer bs modulo 2a;as such that

b3 =b; (mod 2a;),j=1,2

and
bg =D (mod 4ajas).

Proof. This is an immediate consequence of the multiplication formulas for quadratic ideals
on page 48. O

Now we are in a position to show how to multiply or compose forms.

Definition 3.6 — Dirichlet Composition3!

Suppose that f = (a1, b1,¢1) and g = (ag, ba, ¢2) are primitive, united forms of discriminant
Ap whereA g is a field discriminant, as = ajas, b3 is the value given in Theorem 3.4, and

2_A
= BT AE

4(13

Then the Dirichlet composition of f and g is the form

fog=G= (a3, bz, c3).

3-1 As a point of interest, there is a recent paper—see [4]—that shows how composition of binary quadratic
forms leads to parametrizations of cubic, quartic, and quintic number fields. These, in turn, are shown to
lead to formulas for counting the number of quartic and quintic number fields of bounded discriminant, as
well as yet-to-be-determined connections with exceptional Lie groups and higher rank division algebras, for
instance.
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Remark 3.5 Note that
(a3, (bs + v AR)/2)

is an-O p-ideal where F' = Q(v/Ar) by the multiplication formulas given on page 48. This
shows the intimate connection between multiplication of quadratic ideals and composition
of forms. Indeed, we need not restrict to field discriminants for this to work. We could
expand the discussion to non-maximal orders in quadratic fields but then the delineation
becomes more complicated, since we must rely on special conditions for invertibility of ideals
and other considerations, all of which are satisfied in the so-called mazimal order Op. See
[49] for the more general approach.

The form G, in Definition 3.6, is a form of discriminant
b3 — dazcs = b3 — daz (b3 — Arp)/(daz) = b3 — b3 + Ap = Ap.

Also it is primitive since if a prime p | ged(as, bs, ¢3), then p | ai or p ’ as. Without loss of
generality suppose it divides a;. Then since p | b3, we must have that p ‘ by since b = by
(mod 2a;) by Theorem 3.4. However, since p | ¢z and b3 — 4agcs = D, then p? | Ap.
However,A r is a field discriminant so p = 2 andA r = 0(mod 4) is the only possibility. By
Definition 1.33 on page 46,A /4 = 2,3(mod 4). IfA /4 = 2(mod 4), then by Theorem

3.4, b3/2 is even since
bs\° _ A
(;) = TF (mod ajaz),

given that 2 ’ a;. However, we have

by \? A
(23) —asey = TF’ (3.11)

so since 2 ‘ ag and 2 ’ cs, then Ap/4 = 0(mod 4), a contradiction. Thus,
Arp/4=3 (mod 4),

so by (3.11), b3/2 is odd. However, (3.11) impliesA g/4 = 1(mod 4), a contradiction. We
have shown that, indeed, G is a primitive form of discriminantA g.

Remark 3.6 The opposite of
f=1(ab,0)

is

f_l = (aa _bu C)v
which is the inverse of f under Dirichlet composition. To see this we note that under the
proper equivalence that sends (z,y) to (—y,z), f~* ~ (¢, b,a), for which ged(a,c,b) = 1.
This allows us to choose a united form in the class of f~! by Definition 3.5, so we may
perform Dirichlet composition to get

b2 — Ap
dac

fofl=G= (ac,b, ) = (ac,b,1).

Moreover, by Exercise 3.19 on page 107,
G~ (1,0,Ar/4) whenA p =0 (mod 4)

and
G~ (1,1,(1 — Ap)/4) whenA p =1 (mod 4).

Thus, G is in the principal class by Corollary 3.1 on page 103.
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We now need to introduce the ideal class group as a vehicle for defining the form class group
since Theorem 3.3 on page 97 gives us the connection.

Definition 3.7 — Equivalence of Ideals

Let Op be the ring of integers of a number field F'. Then two 9 g-ideals I, J are said to
be in the same equivalence class if there exist nonzero «,8 € O such that (a)I = (8)J
denoted by I ~ J.

Remark 3.7 By Theorem 1.26 on page 42 and Exercise 1.42 on page 33, we know that
the set of all fractional O p-ideals forms a multiplicative abelian group. If we denote this
group by Ia, and let Pa, denote the group of principal fractional ideals, then the quotient

group

Ia,
=C
Pa, O OF
is called the class group of O, and
hDF - |CDF|3

is the ordinary or wide class number, which we will show to be finite. (First, we show
finiteness in the (easier) quadratic case below—see Corollary 3.4 on page 106—then develop
the geometry of numbers for the general case—see Theorem 3.11 on page 116.) Also, the
class of an Dp-ideal I is denoted by I. Thus a product of classes IJ = C is the class
belonging to any ideal C' = IJ formed by multiplying representatives I € I and J € J.
The identity element 1 is the principal class, namely all principal ideals («) ~ (1), meaning
() € 1. The existence of inverse classes I71 for any class I is guaranteed by Exercise 1.43
and Theorem 1.26, namely II"™! = 1. The commutative and multiplicative laws are clear,

namely
1J = JI, and I(JK) = (1J)K, for Op-ideals I, J, K.

Also the (integral) prime ideals are the generators of the class group. To see this let J be a
fractional O p-ideal and let o € O be a nonzero element such that af C Op. Then aJ is
an integral O p-ideal and

(aDp) H(ad) =7=[] P},
j=1

where the a; € Z are not necessarily positive and the P; are distinct prime O p-ideals as
determined by Theorem 1.17 on page 28.

Note as well, that the conjugate ideal I’ for I, first mentioned in Remark 1.24 on page 52,
satisfies
I—l —_ I/

—see Exercise 3.20 on page 107. In what follows, we will need to refine this concept a bit in
order to be able to include indefinite binary quadratic forms. We let PXF denote the group
of principal ideals (o) where Np(a) > 0—see Definition 2.4 on page 65. Then we let

AL n

+ T YOF
PAF

known as the narrow ideal class group, or sometimes called the strict ideal class group.
Also,
+ _ |t
hDF - |CDF|a
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is the narrow ideal class number. Clearly, when F' is a complex quadratic field, then Co, =
CBF, since norms are necessarily positive in this case. In the real case we will learn more
as we progress.

Note that in what follows, we use the symbol ~ to denote both equivalence in the ordinary
ideal class group Co. as well as equivalence of forms, but this will not lead to confusion
when taken in context.

We use the symbol ~ to denote strict equivalence in C;SF. In other words, I ~ J in C;SF
when there exist o, € g such that

()1 = (B)J

where Ng(af) > 0. The next result shows that this is tantamount to form equivalence.

Theorem 3.5 — Form and Ideal Class Groups

If Ca, denotes the set of classes of primitive forms of discriminantA r, where F' is a
quadratic field, then Ca . is a group with multiplication given by Dirichlet composition and

C3, = Chp.

Proof. Let f = (a1,b1,c¢1) and g = (ag, be, ¢2), then by Exercises 3.2 and 3.9 on page 94,
g ~ (ah,bh,ch) where ged(ag,ab) = 1. Thus, Dirichlet composition is defined so we may
assume the f and g to be united, without loss of generality. Let F' = (a3, bs, c3) be given
as in Definition 3.6 on page 98. Then we know that via the ideal correspondence given in
Theorem 3.3 on page 97,

(ar, (b = VAp)/2)(as, (bs = VAR)/2) = (a3, (bs — V/AF)/2), (3.12)

via the multiplication formulas on page 48. Thus, by Theorem 3.3 and (3.12), the Dirichlet
composition of f(z,y) and g(x,y) corresponds to the product of the corresponding ideal
classes, which shows that Dirichlet composition induces a well defined binary operation on
Cap.

Note that in what follows, if we have strict equivalence of ideals given by

I=(a,(~b+ VAp)/2) = T = (d, (=0 + VAr)/2), (3.13)

then we may replace I by (aa’)I and J by (a?).J, so we may assume without loss of generality
that @ = a’. Via Theorem 3.3, we may define a mapping from Cj)F to Ca,. as follows

7 (a,(—=b+ /Ap)/2) = f = (a,b,c),
where ¢ = (b> — Ar)/(4a). Moreover, by the above,
T(IJ)=71(I)71(J)

since we have shown that ideal multiplication corresponds to form multiplication. To see
that 7 is well defined, assume that ¢’ > 0 and ¥’ € Z in (3.13). Thus, since there are
0,y € O such that (§)I = (y)J where Ng(d) > 0 then

Np(6/y)N(I) = N(J) = a,
so Nr(§/v) = 1. By Exercise 3.21 on page 107, there is a o € O such that §/vy = o/o’. If

Meo(z) = ur? +vr +w
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is the minimal polynomial of o over Q, then it is for ¢’ as well, so 7(c) = 7(¢’) = (u, v, w).

Hence,
T((6/7)I) = 7((e/a") (1) = 7().

Hence, it suffices to prove that 7(I) = 7(J) when I ~ J. By Exercise 1.59 on page 54, there
exists

X:(p q) € GL(2,7),
T S

such that
(=b+VAp)/2 _x (=0 +VAp)/2
a o a '
Therefore,
(—b/—F\/AF) —b+ VAR
pl\—F ) tewa=—F—
2 2
and

(===)
r\——— | tsa=a,
2a
from which it follows that r =0, s = p =1, and b = ' — 2ga. Hence,
az? +bry + cy? = f(z,y) = g(x — qy,y) = alz — qy)* + V' (z — qy)y + 'v*,

so f and g are properly equivalent, namely they are in the same class in Ca,., so 7 is well
defined. Now we establish the isomorphism.

First we show that 7 is injective. Let

T(av (7b + \/E)/z) =f= (av b, C) ~ T(alv (7b/ + AF)/2) =9= (a’lv blv C,)
in Ca,. Since
(ad')(a, (=b+v/Ap)/2) = (a®)(d', (= +VAr)/2)

as O p-ideals, then we may assume that a = o’ without loss of generality since, if they are
not equal, we may change the preimage to make it so as above. Now since

f(WTFJ) :Ozf(ME’l)
2a 2a

)

then

either

—b+VAp b +Ap or b+ VAr =V —VAp
2a n 2a 2a B 2a ’

given that these are the only two roots of f(z,1) = ax? + bx + ¢ = 0. However, the latter
is impossible by comparing coefficients so the former holds, from which we get that b = ¢/
so ¢ = ¢. Thus, T is injective.

Lastly, we show that 7 is surjective. Let
f(z,y) = az® + bry + cy?
be a primitive form of discriminantA g and let
a=(=b+Ar)/(2a).
Then f(a,1) =0, and ac € Op. Define an O p-ideal as follows. Set
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_ (avaa) if a > 0,
= { (VAp)(a,ac) if a <0 andA g > 0. (3.14)

Therefore, 7(I) = (a, b, ¢) in the first instance is clear. In the second instance, we note that

I~ (a,(=b+ VAF)/2) so
() = (=b+/Ar)/2)) = (a,b,c).

Hence, 7 is surjective and the isomorphism is established. O

Corollary 3.1 The identity element of Ca, is the class containing the principal form
(1,0,—Ap/4) or (1,1,(1 — Ap)/4) forA p = 0,1 (mod 4), respectively.

Proof. Since

(1, V/Ar/2) = (1,0,—Ap/4) or 7(1, (=1 + V/Ap)/2) = (1,1, (1 — Ap)/4)

depending on congruence modulo 4 of A g, and the preimages are the identity elements in
the principal class of C+F, then the images are clearly the identity elements in the principal
class of Ca . O

Remark 3.8 When F is a complex quadratic field, as noted in Remark 3.7 on page 100,
CDF = CgFa

so by Theorem 3.5 on page 101,
OAF = CQF.

However, in the real case, this is not always true. For instance, by Exercise 3.14 on page 106,
in the case whereA p =12, Ca,. # {1} and Co, has order 1. Yet by Theorem 3.5,

+ ~
C}, = Ca,.

Indeed, the case where the field F is real and has a unit of norm —1 or F' is complex, then
by Exercise 3.17 on page 107, Co, = CgF always holds. When F' is real and has no such
unit, for instance as in theA g = 12 case, then by Exercise 3.16,

‘C;SF : CDF| =2

Note as well, by Theorem 3.5,
hSF =hag,

the number of classes of forms of discriminantA . Also by the above discussion, we have
demonstrated the following.

Theorem 3.6 — Class Numbers of Forms and Ideals

IfA f is the discriminant of a quadratic field F', then the class number of the form class
group ha,, as well as that of both the wide ideal class group hgo, and the narrow ideal
class hBF, is related by the following.
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hDF ifA p < 0,
hog A > 0 and there exists a uv € Up
hap =h§, = with Np(u) = —1,
2ho, A p > 0 and there is no u € Up
with NF(U) =—1.

We conclude this section with a verification that ha,. is finite. To do this we first need the
following result.

Lemma 3.2 — A Form of Reduction

IfA p is the discriminant of a quadratic field F', then in each class of Ca, there is a form
f = (a,b,c) such that
b < lal <c].

Proof. Let the form f = (ay,b1,c¢1) be in an arbitrary class of Ca,. We may select an
integer @ such that |a| is the least value from the set of nonzero integers represented by
forms in the class of f. Then there exist p,r € Z such that

a=a1p?+ bipr+ 112, (3.15)

If g = ged(p,r), then a/g? is represented by f, contradicting the minimality of |a| unless
g = 1. Therefore, by the Euclidean algorithm, there exist integers ¢, s such that ps—qr = 1.
Also,

f(pz + qy,rz + sy) = a1(px + qy)* + b1 (px + qy) (rz + sy) + c1(re + sy)* =

(a1p2 + bipr + 017“2)902 + (2pgay + (ps + qr)by + 2rsci)zy + (a1q2 +bigs + 0132)y2 =

az® + Bxy + Cy?,
where the coefficient for 22 comes from (3.15),
B = (2pga; + (ps + qr)by + 2rscy),

and
C = a1¢® + bigs + ¢15°.

Set g(z,y) = ax? + Bay + Cy? and we have f ~ g in Ca,. We may select an integer m
such that

|2am + B| < |al. (3.16)

Thus,
g(z +my,y) = a(z +my)* + Bz + my)y + Cy* =
az® + (2am + B)xy + (am* + Bm + C)y* =

az? + bxy + cy?,

with
b=2am+ B,
and
c=am?®+ Bm + C.

Set

h(z,y) = az? + bry + cy®.
Then, sinceA g = b? — 4ac, given that f ~ g ~ h, then ¢ = 0 implies thatA p = V%, a
contradiction to the fact thatA g is a field discriminant. Hence, since h(0,1) = ¢, then
|c| > |a| by the minimality of |a|. Thus, from (3.16), we have the result. m|
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Corollary 3.2 Any form of discriminantA r is equivalent to a reduced form of the same
discriminant.

Proof. By Theorem 3.1 on page 90, we need only prove the result forA g > 0.
Claim 3.3 We may assume that (a,b, c) satisfies |a| < |¢| with

\/AF72|0,| <b< \/AF.

By Lemma 3.2, we may select a form (a, b, c) such that [b] < |a|] < |¢|]. If VAF —2|a|] >,
then by setting

VA b
m = F-i-ﬂ—i-s )
2c 2c
where
)1 ifex0,
TV 0 ife>0
we get

VAR —2|c] < =b+42em < \/Ap.

We now show that
(a,b,c) ~ (¢, b+ 2cm,a — bm + cm?). (3.17)

Via the map 7 in Theorem 3.5,

T: (a7_b+2AF> — (a,b,c),

and

( b—2cm + VAR
7:le,—m———
’ 2

) — (¢, —b + 2cm, a — bm + em?),

as O p-ideals. However, by Exercise 1.60 on page 54

(Qb—QCWTF) _ (c,b*;/ﬂ) 7

2
SO
b—26m—|—\/AF b—\/AF. b+\/AF
@ 2 2% “7T
B <a b\/Ap) _ <a b+\/AF>

Since 7 is a bijection, we have established (3.17).

If |a — bm + cm?| < |c|, then we repeat the (finite) process, this time on
(¢, =b + 2em, a — bm + em?),

which must terminate in
(A,B,C) ~ (a,b,c)

|A] < |C| and /Af — 2|A| < B < \/Ap.

with

This is Claim 3.3.
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Therefore,
0 < /Ar—b<2a| <2l = 2=V e | <‘\/Ap+b‘

Hence, b > 0, so b* < Ap and |2a|? < 4lac| = Ar — b? < Ap, so 2|a] < VArF < VAR +,
from which it follows that (a, b, ¢) is reduced. a

Theorem 3.7 — ha, < o0
If F' is a quadratic field with discriminantA g, then ha, is finite.

Proof. Note that by Exercise 3.11 on page 95, we need only consider the case whereA p > 0.
By Lemma 3.2 on page 104, for any class of Ca,., there is a form f = (a,b,c) in the class
with

lac| > b* = Ap + 4ac > 4ac,

so ac < 0. Moreover, 4a® < 4lac] = —dac = Ap — b? < Ap. Therefore,

la] < VAFR/2, (3.18)

so by Lemma 3.2,
|b] < VAR/2. (3.19)

Hence, by the bounds in (3.18)—(3.19), there can only be finitely many choices for the values
a and b for a given discriminantA g. Since ¢ = (b* — Ar)/(4a), we have established the
result. a

Corollary 3.3 — Positive Definite Forms and Reduction

WhenA p < 0, then the number of inequivalent positive definite forms with discriminant
Ar is the same as the number of reduced forms.

Proof. See Exercise 3.11. O

Corollary 3.4 — hp, < o0
IfA p is the discriminant of a quadratic field F, then ho, is finite.

Proof. This follows from Theorem 3.6 on page 103 and Theorem 3.7. |

Exercises

3.14. Prove that whenA p = 12 where F' = Q(+/3), then the form f = (—1,0,3) is not
properly equivalent to the form g = (1,0, —3). This shows that Ca, # {1}. Show,
however, that Co, = {1}.

(Hint: See Corollary 1.1 on page 13 and Theorem 1.18 on page 29.)
In Exercises 3.15-3.17, assume that A is the discriminant of a quadratic field F.

3.15. Let F' be a real quadratic field and set

_ { (1,0, —Ap/4) ifA p = 0(mod 4),
“TY (1,1,(1—Ap)/4) A g =1(mod 4).

Prove that @ ~ —a in Ca,, if and only if O has a unit u such that Np(u) = —1.
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3.16.

3.17.

3.18.

3.19.

3.20.

3.21.
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Let F be a real quadratic field. Assume that Op does not have a unit of norm —1.
Prove that |CJDFF : Cop| =2.

(Hint: Use Ezxercise 3.15.)

Prove that CgF = Cy, if F is either a complex quadratic field or F' is a real quadratic
field such that Op has a unit u with Np(u) = —1.

(Hint: Use Ezxercise 3.15.)

Let F be a number field and let ho, be the (wide) class number of F'. Prove that if
I is an integral O p-ideal, then I"r ~ 1.

(Hint: By Theorem 3.7, |ho | < 00.)

Prove the assertion made in Remark 3.6 on page 99 that (ac,b,1) ~ (1,0, Ap/4) when
Ap =0(mod 4) and (ac,b,1) ~ (1,1,(1 — Ap)/4) whenA = 1(mod 4).

(Hint: When Ap = 0(mod 4), in Definition 3.1 on page 88, select p = b/2, q = 1,
r=—1, and s = 0, and when Ap = 1(mod 4) select p = —(1+b)/2, ¢q=-1,r=1
and s =0.)

Prove that I' =171 in Co,.

(Hint: Use The Multiplication formulas on page 48.)

Let v be a unit in Op such that Np(u) = 1. Prove that there exists an a € Op such
that o = ua’, where o’ is the algebraic conjugate of a.

(This exercise represents the quadratic analogue of Hilbert’s Theorem 90—see Biog-
raphy 3.4 on page 94.)

In §3.8, we will be looking at the work of Minkowski in the geometry of numbers, which
opens the door to establishing Dirichlet’s celebrated unit theorem.

Biography 3.6 Hermann Minkowski (1864-1909) was born on June 22, 1864
in Alexotas of what was then the Russian empire, but is now Kaunas, Lithuania.
He studied at the Universities of Berlin, then Konigsberg where he received his
doctorate in 1885. Yet, even before this, in 1883, both he and Henry Smith
were jointly awarded the Grand Prize by the Academy of Sciences (Paris) for
the solution of the problem of representations of an integer as a sum of five
squares. Eisenstein knew of a formula for such representations in 1847, but
never provided a proof.

Minkowski taught at Bonn, Konigsberg, and Ziirich, but in 1902, Hilbert cre-
ated a chair for him at Gottingen where Minkowski stayed for the rest of his
life. He pioneered the area we now call the geometry of numbers. This led to
work on convex bodies and to packing problems. Furthermore, his geometric
insights paved the way for modern functional analysis. At age 44, he died
from a ruptured appendix on January 12, 1909 in Gottingen. Posthumously, in

1910, his most original work, begun in 1890, was first published as Geometrie
der Zahlen.

Minkowski’s main interests were in pure mathematics, especially continued
fractions and quadratic forms. However, he is also known for having laid some
groundwork for Einstein’s relativity theory by thinking of space and time as
linked together in a four-dimensional space-time continuum, from which he
determined how to treat electrodynamics from a four-dimensional perspective.
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3.3 Geometry of Numbers and the Ideal Class Group

The human heart likes a little disorder in its geometry.
from chapter 26 of Captain Corelli’s Mandolin (1994)
Louis de Berniéres (1954-)
British novelist and short-story writer

In this section, we introduce Minkowski’s geometry of numbers in order to prove Dirichlet’s
celebrated unit theorem, which we use to establish the finiteness of the ideal class number.
In §3.2 we used the notion of forms to deduce this finiteness in the quadratic case—see
Biographies 3.6 on the previous page and 3.9 on page 121. The reader must be familiar
with vector spaces and related notions in Appendix A.

Definition 3.8 — Lattices and Parallelotopes
Let #1,45,..., 4, € R" m,n € N;m < n be R-linearly independent vectors. If

L:{EGR"%:Z%@- for some z; € Z} = Z[l4, ..., ln],

J=1

then L is called a lattice of dimension m in R”. When m = n, L is called a full lattice. In
other words, a full lattice L is a free abelian group of rank n having a Z-basis that is also
an R-basis for R™. Furthermore, the set

n
P=(> rilj:ir; €RO<r;<lforj=12...,n
j=1

is called the fundamental parallelotope, or fundamental parallelepiped, or fundamental do-
main of L. An invariant—see Remark 3.9 below—of P is

V(P) = [det(£;)],

called the volume of P, and also called the discriminant of L, denoted by D(L).

Remark 3.9 In Definition 3.8, the term invariant, when applied to P means that, irre-
spective of which basis we choose for L, the volume of P remains the same. It is an easy
exercise for the reader to verify that the determinant remains the same under change of
basis using Exercise 2.34 on page 81. For the reader with a knowledge of measure theory,
or Lebesgue measure in R™, the volume of a so-called measurable set S C R" is called the
measure of S. This measure can be shown to be the absolute value of the determinant of the
matrix with rows ¢; for j = 1,2,...,n for any basis {{;} of S. Thus, the Lebesgue measure
of S is called the volume of S.

Example 3.2 Z" is a full lattice in R™ for any n € N. In other words, a free abelian group
of rank n in R is a full lattice. Hence, O is a full lattice in R™, where |F : Q| = n. Also,
note that any lattice of dimension m € N is full in R™.
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We will now show that lattices as subsets of R™ are characterized by the following prop-

erty. First, we remind the reader that if s = (s1,s2,...,5,) € R”, then |s| <r means that
1/2
S 82 <12, since |s| = (Z?:l s?) , 50 |s;| < r for each such j.

Definition 3.9 — Discrete Sets
Suppose that S C R, n € N, r € RT, the positive reals, and

S, ={seR":|s|<r}

is the sphere or ball in R™, with radius r, centered at the origin. Then S is called discrete
if

SN, | < oo,
for all r € RT.
Theorem 3.8 — Lattices Are Discrete
Let L CR™ L # @. Then L is a lattice if and only if L is a discrete, additive subgroup of

R™.
Proof. Let L be a lattice of dimension n, namely a full lattice in R™. If
L=0W717&® - -&L,7Z,

{¢1,...,£,} is an R-basis for R™. Thus, any o € R™ can be written in the form
O[:ZT'J[]' (’I’j GR)
j=1

If « € LNS, for any r € R, then each r; € Z and |r;| < r for each j = 1,2,...,n. Hence,
there exist only finitely many points in L N §,.. In other words, L is discrete.

Conversely, assume that L is a discrete, additive subgroup of R™. We use induction on n.
For n = 1, let {¢} be a basis for R, namely R* = R/. Since 8, N L is finite for all r € RT,
there exists a smallest positive value r; such that r1¢ € L. Therefore, Zr;¢ C L. Since any

S
T1

s € R may be written as s = { J r1 4 s17r1, for some real number s; with 0 < s7 < 1,

S

then any s¢ € L may be written in the form sf = nrif 4+ syrif, with n = LHJ € Z, and

0 < s1 < 1. Therefore, by the minimality of 71, we must have that s; = 0, so L = Z[r1/].
This establishes the induction step. Assume the induction hypothesis, namely that any
discrete subgroup of R* for k < n is a lattice, so we may assume that L C R™ is discrete
and L ¢ R* for any k < n. Hence, we may choose a basis {/1,...,¢,} of R" with ;e L
for each j =1,2,...,n. Set

V=R[l,...,0,_1].

By the induction hypothesis,
Ly=LnNnV

is a lattice of dimension n—1. Let {81, ..., S,—1} be a basis for Ly . Therefore, any element
~v € L may be written as

n—1
v = ZT]',B]' + by, (rj €R).
j=1
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By the discreteness of L, there exist only finitely many such v with all r; bounded. Thus,
we may choose one with 7, > 0, and minimal with respect to |r;| < 1 for all j # n. Let 3,
denote this choice. Thus,

R =R[3i, ..., 5]
Then for any 6 € L,

5= t;B; (t; €R).
j=1

Let N N
o=0-) |t;18; = siB;
j=1 j=1

Therefore, 0 < s; < 1 for all j = 1,...,n. By the minimality of r,, we must have s,, = 0.
Hence, 0 € Ly, so d € Ly @ Zf,. This gives us in total that

LCLy®Zp, CL.
Therefore, L = Ly & Z3,, is a lattice. O

We also need other fundamental notions from geometry.

Remark 3.10 In what follows, we use the fact that the volume of every bounded convex
set exists, called Blanschke’s theorem.

Definition 3.10 — Bounded, Convex, and Symmetric Sets

A set S in R™ is said to be convex if, whenever s,t € S, the point
As+(1-=MNteS

for all A € R such that 0 < A < 1. In other words, S is convex if it satisfies the property
that, for all s,t € S, the line segment joining s and ¢ is also in S. The volume of a convex
set S is given by the multiple integral

V(S)z/s---/da:ldmy--da:n

A set S in R™ is said to be bounded if there exists a sufficiently large r € R such that |s| < r
for all s € S. Another way of looking at this geometrically is that S is bounded if it can fit
into a sphere with center at the origin of R™ and radius r.

carried out over the set S.

A set S in R"™ is symmetric, sometimes called centrally symmetric, provided that, for each
s €S, we have —s € S.

Remark 3.11 By Remark 3.10, the integral in Definition 3.10 always exists for convex
sets.

Example 3.3 Clearly, ellipses and squares are convex in R2, but a crescent shape, for
instance, is not. Also, an n-dimensional cube

S={s=(s1,...,8p) ER": =1 <s; <1lforj=1,2,...,n}
is a bounded, symmetric convex set, as is an n-dimensional unit sphere

{seR":|s| <1}.
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Before proceeding to the main result, we need a technical lemma.

Lemma 3.3 — Translates and Volume

Let S C R” be a bounded set and let L be an n-dimensional lattice. If the translates of S
by L, given by
S,={s+z:s5€85},

for a given z € L, are pairwise disjoint, namely
S.NSy =2,
for each y, z € L with y # z, then
V(S) <V(P)

where P is a fundamental parallelotope of L.

Proof. Since P is a fundamental parallelotope of L, we have the following description of S
as a disjoint union:
S=Uer(SNP-_,),

where P_, = {z — z: € P}, so it follows that

V(S)=> V(SnP_,).

z€L

Since the translate of the set SN P_, by the vector z is S, NP, then
VSNnP_,)=V(S.NnP). (3.20)

Therefore,

V(S) =) V(S.nP).

z€L

If the translates S, are pairwise disjoint, then so are S, N P. Since S, NP C P, then
Equation (3.20) tells us that

Y V(S.nP) < V(P),

z€L
so the result is proved. O

Now we are in a position to state the central result of this section.

Theorem 3.9 — Minkowski’s Convex Body Theorem

Suppose that L is a lattice of dimension n, and let V(P) be the volume of a fundamental
parallelotope P of L. If S is a symmetric, convex set in R™ with volume V'(S) such that

V(S) > 2"V (P),
there exists an z € SN L such that  # 0.

Proof. 1t suffices to prove the result for a bounded set S. To see this, we observe that when
S is unbounded, we may restrict attention to the intersection of S with an n-dimensional
sphere, centered at the origin, having a sufficiently large radius. Let

T=15={s/2:s€ S}

2
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Then

If the translates T, = %S + z were pairwise disjoint, then by Lemma 3.3 on the preceding
page, V(P) > V(T), a contradiction. Therefore, there must exist two distinct elements
s,t € L such that

(3S—s)N(ES—1t) # 2.

Let z,y € S such that %m —s= %y —t. Thent—s= %y — %l‘ Since S is symmetric, then
—x € S, and since S is convex, then 3y + 3(—z) € S. Hence, t —s € SN L, and t — s # 0,
as required. O

Remark 3.12 Some background to the language used above is in order. The term convex
body refers to a nonempty, convex bounded and closed subset S of R™. The topological
term “closed” means that every accumulation point of a sequence of elements in S must
also be in S. This is tantamount to saying that S is closed in the topological space R™,
with its natural topology. However, we do not need to concern ourselves here with this,
since it is possible to state and prove the result without such topological considerations. It
can also be shown that if S is “compact,” namely every “cover” (a union of sets containing
S) contains a finite cover, then it suffices to assume that V(S) > 2"V (P).

In order to prove the next result, we need a geometric interpretation of algebraic numbers
in a canonical way. This is based upon the signature of a field given in Exercise 2.11 on
page 63.

Definition 3.11 — Canonical Embedding of Number Fields

Let {ri,r2} be the signature of a number field F. Suppose that 6;(F) CRforj=1,...,m
are the real embeddings of F'in C, and 6;(F) € R for j =7y +1,...,71 + 2 are half of the
complex embeddings of F' in C, chosen such that exactly one §; is taken from each complex

conjugate pair 65, 0; of such embeddings. Then for each a € F', define
Op : F—R? xCm?

by
@F(a) = (91(04)7 ey Oy (04)7 9T1+1(a)7 N, (a)>

Remark 3.13 With reference to Definition 3.11,0 g is a Q-algebra monomorphism by
Exercise 3.29 on page 121. Moreover, we may say more about® g as follows.

R™ x C™ may be identified with R™, where n =r; 4+ 2ry = |F : Q|, since each complex
component 6;(«) for j=r;+1,...,71 +re may be replaced by a pair of components
R(8,(c)),3(0;(a)) where R(z) and I(x) are the real and complex coefficients of

r = R(x) + I(x)v/—1 € C.

Hence,® p may also be considered as an injection into the real vector space R™. We will
have significantly more to say about this later.

We now provide an application of Minkowski’s Convex Body Theorem to the relationship
between discriminants and norms of algebraic integers, which will prove to be highly valuable
later in the text as well.
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Theorem 3.10 — Applications to Norms and Discriminants

Let {r1,r2} be the signature of a number field F, with |F : Q| = n = r1 + 2rq, and let M
be a free abelian group (Z-module) of finite index in O, namely |Op : M| =m € N. Then
there exists a nonzero o« € M such that

4\"
|INp(a)] < (w) nIn~"+/|Ap|m.

Proof. Let B € R*, and define a set:

1

72
Sp(ri,r2) = (01, ap,, Br, o, Bry) ER™ X C2 2 Y oy +2) |8 < B
j=1

=1

Clearly Sp is bounded and symmetric. We now verify that it is convex. Let a,b € R with
a>0,b<1anda+b=1. Suppose that

(ala"'7a7”1761a" '757"2)7(’71’"'77’1"17617"'a(srz) S SB(T‘l,TQ)-
We now show that
(aay +by1,.. . 000, + by, a0 + 001, .. a6, + bdy,) € Sp(ri,ra).

We have

1 T2 T1 T1 T2 T2
D lacy + by +2) a6 <D alagl+ D> byl +2) alBi[+2> blg;| <
j=1 Jj=1 j=1 Jj=1 Jj=1 J=1

T1 72 71 72
al > o[ +2) 181 | +b | D Il +2> 16;] | <aB+bB = (a+b)B=B,
j=1 j=1 j=1 j=1

so Sp(r1,re) is convex.

Claim 3.4 . Bn
V(Sp(ri,re)) =2 (E)

2) nl’

We use a double induction on ryand r9. For r; = 1 and ro = 0, we are looking at the length
of the line segment [—B, B] in R, so in this case,

E) B

V(Sp(1,0)) = 2B = 2" (2

nl’

If r; = 0 and ro = 1, we are (essentially) looking at the disc of radius B/2 in R? (since
R? = C). Thus, in this case,

_ 20 om (T\"2 B"
V(Sp(0,1)) = 7B /4 = 2™ (5) =
This completes the induction step. The induction hypothesis that we assume is

k Bn
V(Sp(m,k)) =2™ (g) g for any m < ry, and any k < ro.
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First, we calculate V(Sp(r1 4+ 1,72)). In this case, Sp(r1 + 1,72) is defined by the relations

T )
lof + ) "l +2) 18] < B with a € R, (3.21)

j=1 j=1
and |a| < B since B # 0. Therefore, using the induction hypothesis,

B 2T1 T\ "2 B ri42r
V(Sp(ri+1,r2)) = /_B V(SBfla\(Tl,W))da = m (5) /_B(B — ) da =

r1+1 r B ri+1 r B
= (Z) 2/ (B— )2 da = 2 (f) 2/ a2y,
(7"1 +2T2)' 2 0 (Tl +27“2)' 2 0

after a simple change of variables and this equals,

2r1+1 T\ T2 Br1+2r2+1 41 T\ T2 Bn
B U S (7> iy
(T1+27“2)! (2) r1+2ro+1 2 n!

To complete the claim, we now calculate Vg(S(r1,72 + 1)). In this case, S(ri,r2 + 1) is
given by

T1 T2
> lagl+2) 18] +218] < B,
j=1 j=1

where § = x + yv/—1 € C. Thus, in a similar fashion to the above, using the induction
hypothesis, we have

271 T\ T2
V S s 1 - @ (7) // B—-2 2 2 T’1+2’r‘2d d ’
B8+ 1)) (r1 4 2r2)! \ 2 z2+y2<B2/4( >+ e

and after a change of variables we get that the latter equals

9T T2 B/2 27
/ / W) T2 dudw =
(7‘1 —+ 2T2
T\ "2 27 B/2
2" (—) e B—2 r1+2r2 dw.
2 (1"1 + 2’[”2)! / ( W) waw

Letting 2w = 2z and using integration by parts, we deduce
Brit2ra+2
4(’["1 + 27”2 + 1)(’/’1 + 27‘2 + 2) '

B/2
/ (B — 2w)" 22 pdw =
0

Hence,
T\ r2+1 B +2ra+2
Vi(S(r1, 75 + 1)) = 27 (f) i
B(S(r,r2+1)) 2 (r1 4 2ry + 2)!
and Claim 3.4 is proved.

Let € be arbitrarily chosen in R*, and define B > 0 by
4\ "
B"(e) = B" = () nlmy/|Ap| + €. (3.22)
T
Then by Claim 3.4,

V(Sg) =2" (g)2 5 = 2" F 72 /| A i > (272my/|AR[)2". (3.23)

We have one more result to establish that will allow us to invoke Minkowski’s Convex Body
Theorem via (3.23).
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Claim 3.5 V(Op(M)) =2""2m /|Ap]

Since® g injects O into R™ in a natural way—see Remark 3.13 on page 112—then® g (Op)
is a full lattice in R™. If {ay,...,a,} is an integral basis for F', then the Op(«;) are R-
linearly independent vectors in R™. Let 6; for j =1,2,...,n be the embeddings of F' in C,
and let ¢; denote the vector,

(01 (i), - -, Ory (), R(Or, 11 (i), S(Ory41()), - R(Op, 4y (), S(Ory 47 (i)
Then with the ¢; as row vectors,
V(Or(Or)) = det(t;) = (2v=1)7" det(0;(a;)) = 27| det(6; ()| = 27" /|AF],
since for any y € C,
R(y) = (y +7)/2, and S(y) = (y = 7)/(2V~1).

Now Claim 3.5 follows by induction on m.

By Claim 3.5, there exists a nonzero o = «(€) in M such that® p(a) € Sp. Thus, since

1 r1+72
INe(@)] = [T 105 T 185,
j=1 j=ri+1

then by the Arithmetic-Geometric Mean Inequality given on page 339,

n

9 r14r2 B
[N (o ZW I+ >l <—

)
nn
j=ri+1

where the last inequality is from Equation (3.21). Therefore, by (3.22),
4\ n! €
™ n n

Note that if € is in the interval (0, 1), there are only finitely many possibilities for o = a(e).
Hence, there exists an ag € M such that Equation (3.24) holds for all positive e. Thus,

4\" n!
Neao) < (2) " Zm A7

as required. O

Theorem 3.10 will be applied below to the problem of proving the finiteness of the cardinality
of the class group. Thus, we restate it as follows, in terms of ideals, which we may invoke
directly for convenience.

Corollary 3.5 Let F be a number field with |F : Q| =n = ry + 2ry, where {r1,r2} is the
signature of F'. Then for any integral O p-deal I, there exists a nonzero o € I such that

INp(a)] < (i) i :—i\/mF\N(I). (3.25)

For what ensues, the reader is reminded of Definition 3.7 and Remark 3.7 on page 100.
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Theorem 3.11 — Finiteness of the Ideal Class Group
If F' is a number field, then hy, = [Cog| < 0.

Proof. Via Remark 1.13 on page 26 and Definition 3.7, every ideal class H of fractional O p-
ideals H contains an integral O p-ideal I. Also, there exists an integral ideal J € I"1 € Cp,.
so IJ ~ 1. By Corollary 3.5, there exists a nonzero o € J such that

Vel < (2) B VIBAN)

Since J ‘ (o), we may set H = aJ ™!, so H ~ I and via Corollary 2.8 on page 85,

By Exercise 2.53 on page 86, there are only finitely many integral ideals with a given norm,
so there are only finitely many choices for J. Given that I = J = H, then there are only
finitely many choices for the classes H, namely |Co,| < . o

Immediately from the proof of Theorem 3.11, we have the following important fact.

Corollary 3.6 If F'is a number field whereA g is the discriminant of F' and |F: Q| = n
with signature {r1, 72}, then every ideal class in Co, contains a nonzero integral ideal T

such that
4 n!

N(I) < () L] (3.26)

T nn

The right-hand side of (3.26) is a distinguished quantity.

Definition 3.12 — The Minkowski Bound
If F' is a number field, the quantity

4\ n!
ur= () eV

is called the Minkowski bound, where Ap is the discriminant of F and |F : Q| = n with
signature {ry,r2}.

Remark 3.14 Corollary 3.6 tells us that every ideal class in Cp, has a nonzero integral
ideal with norm less than Mp. We can say more. Since N(I) > 1 for any integral ideal,
then by Corollary 3.6,

T 219 n2n

Z A 3.27
4) (n!)? ( )
which is Minkowski’s lower discriminant bound. Moreover, if n > 1, namely for F' # Q,
|Ap| > 1. We can say more as follows.

INTER

Corollary 3.7 For any number field F' with |F : Q| = n,

Ap| > (E)z (f)n@m)—l.
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Proof. By Stirling’s Formula—see Equation (A.7) on page 339—

n B efa/(12n)+n

n! 2mn

for some « € R is located in the interval (0,1). Using (3.27), and the fact that

= 1
a/(12n) 1/12 — | =12/11
e <e < J;O <12j) /11,

we get

s> () (5) = ()7 f> :

0" (1 = () ()

where the last inequality follows from the fact that

(=)

since m/4 < 1.

Corollary 3.8 For a number field F' with discriminantA g,

lim min {|A =
Jm a8} =

117

(3.28)

Proof. Since (me?)/4 > 5, then ((me?)/4)™ > n, so by Corollary 3.7 we have the result. O
This fact places us in a position to present the following classical result due to Hermite,

who published the result in Crelle’s Journal in 1857.

on January 14, 1901 in Paris, France.

Theorem 3.12 — Hermite’s Theorem on Discriminants

There are only finitely many number fields having a given discriminant d € Z.

Biography 3.7 Charles Hermite (1822-1901) was born on December 24, 1822
in Dieuze, Lorraine, France. He was educated at Ecole Polytechnique, where
he later taught. He is perhaps best known for his proof, published in Comptes
Rendus de I’Académie des Sciences in 1873, that e is a transcendental num-
ber. Using similar ideas to those of Hermite, C.L.F. Lindemann (1852-1939)
produced a proof appearing in a paper entitled “Uber die Zahl 7,” published
in Mathematische Annalen in 1882, that w is also transcendental. (Linde-
mann is also known for having published two invalid “proofs” of FLT in 1901
and 1907.) A number of other mathematical entities bear Hermite’s name:
Hermitian matrices, Hermite polynomials, Hermite differential equations, and
Hermite’s formula of interpolation. On the human side, Hermite was a friend
and supporter of Georg Cantor, when the latter was suffering his many nervous
breakdowns. Also, Poincaré was Hermite’s best known student. Hermite died
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Proof. By Equation (3.28), for a given d € Z, there exists a dy € N such that if n > dy,

then )
11 me?\" _1

Therefore, if |F : Q| > dy, then |Ar| > |d|. Hence, it suffices to prove that for an arbitrarily
chosen but fixed n, d € N, there exist only finitely many number fields F' such that |Ap| < |d|
and |F' : Q| = n. By Remark 3.14 on page 116, the result is true for |d| = 1. Assume that
d > 1. Then the case r1 = 1 and ro = 0 is impossible. If 71 = 0 and r, = 1, then n = 2,
so F = Q(v/D) for some squarefree D < 0. By Definition 1.33 on page 46,A p = 4D or
Ap = D, so there is at most one quadratic field withA p = —d. We may now assume that
r =11+ 12 > 1. The balance of the proof is devoted to proving the existence of a primitive
element for F' that comes from a finite set. In other words, we now establish the existence
of an § € F such that F = Q(6) with § in a fixed finite set depending only on d. To this
end, we define the following sets, broken down into two cases.

Case 3.4 r1 #0
Define the set 87 in R™ by
{(ala cee aar135?”1+177r1+1’ .. -aﬂr’%“) : |O¢1| <Vd+ ]-7 |al| <1

fori=2,3,...... ,1"1,andﬁj2+’yj2<1forj:r1+1,...,r}.

We now show that 8; is convex. Let a,b € R with a > 0, b <1, and a + b = 1. Suppose
that

(Q1y e ey @y Byt Y1y o s Bry Ve )s (015« o o3 Oy Pryb1s Oy t1y -« -5 Pry O ) € 81
For j =2,3,...,71, we have
lac; +b6;| < alaj| + 0|6 <a+b=1,
lacy + 61| < alan| +bl61| < aVd+1+bVd+1=(a+b)Vd+1=Vd+1,
and for j=r; +1,...,7,
a(B; +77) +b(p; +07) <a+b=1.
Hence, 8, is convex.
Case 3.5 r1 =0
Define the set 83 in R™ by
{(B1, 71, By ) 1Bu] < 1, Ima| < Vd+1,87 +77 <1forj=2,3,...,r}.

By a similar argument to that given in Case 3.4, 85 is convex.

By integrating over products of intervals and discs, we get
V(81) = 2" 7"Vd + 1, and V(83) = 2n™ " 1d + 1.

Thus,
V(&)  2nwVd+1 s

> >
2" \/|AF| 27 4/|AF|
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and

V(S:)  2nm VA1

= >orm2ml s )

VIARL VAR

(since 1o # 0 in Case 3.5, given that r; = 0). To see that this is sufficient to invoke
Minkowski’s Convex Body Theorem, we note that, for j = 1,2, we need

V(8;) > 2"V(O(OF)).
However, from Claim 3.5 on page 115, V(©(OF)) = 27"2/|AF|, so
V(81) =2"n"Vd+ 1 > 272\ /|Ap| = 2"V(O(DF)),

and

V(8s) = 2072 A+ 1 > 22\ /[Ap] = 2V(O(Op)).

Hence, we have the existence of a nonzero §; € ©(Op) N8§;, for j = 1,2. Let ¢ be one of

them. Since i

mso(x) =Yz’ € Zlx]

j=0

with |z;| < Cq, for j =1,2,...,k € N, where Cy is a constant depending only on d, there
can only be finitely many such §. It remains to show that F' = Q(J). In Case 3.4, 7 is the
only conjugate of ¢ lying outside the unit sphere, since |[Np(d)| < 1, otherwise, and that
is impossible. Similarly, in Case 3.5, 81 + v1v/—1, and 81 — y1v/—1, with v, # 0, are the
only conjugates of d outside the unit sphere. We have shown that in Cases 3.4-3.5, there
exist conjugates of § distinct from the other conjugates. In other words, & has n distinct
conjugates. Hence, F' = Q(9). O

Biography 3.8 Laszlo Rédei (1900-1980) was born on November 15, 1900
near Budapest, Hungary. After graduating, he became a secondary-school
teacher until he was appointed professor at the University of Szeged in 1940.
He remained there until he moved to Budapest in 1967. He did classical work on
4-invariants of class groups of quadratic fields, as well as explicit construction of
Hilbert 2-class fields of quadratic fields, and Euclidean algorithms in quadratic
fields. Later, his interests moved mainly into group theory, but he also dabbled
in combinatorics and graph theory. He died on November 21, 1980.

Exercises

3.22. Show that Minkowski’s Convex Body Theorem cannot be strengthened in the sense
that the factor 2™ cannot be replaced by a smaller one.

3.23. Let M be a lattice of dimension n containing the lattice L of dimension n, with
|M : L| = d € N as Z-modules. Suppose that {aq,...,an} is a basis for M and
{B1,.-.,Pn} is a basis for L such that for i =1,...,n,

n
Bi=Y zja; (25 €L).
j=1

Prove that |M : L| = | det(z; ;)|.
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3.24.

3.25.

3.26.

3.27.

3. Class Groups

Let G be a free abelian group of rank n, and let H be a subgroup of G. Prove that
G/H is finite if and only if the rank of H is n. Conclude that a subgroup H of a
lattice L that has finite index in L must also be a lattice.

For j =1,2,...,n €N, let
Fi(z1,...,xn) =71,;T1 +TojTa + -+ + Ty jTpn, with r; ; € Rfor i =1,2,...,n,

called a linear form, and let L be a lattice of dimension n with discriminant D(L).
Prove that if ¢; € Rt for j = 1,2,...,n satisfies the condition

C1C2 " Cp = | det(rl}j)"D(L)v

where det(r; ;) # 0, then there exists a nonzero point (21,22, ...,2,) of L such that
|F1(x17w27 e 7:En)| S C1
and
|Fj(x1, T2,...,2n)| <c¢j for j =2,3,...,n.

(Hint: Use Minkowski’s convex body theorem.)
(The result in this exercise is known as Minkowski’s Linearformensatz or Theorem

on linear forms.)

Suppose that € R. Prove that for any m € N, there exists a p/q € Q with ged(p, q) =
1 such that 0 < ¢ < m and

r—=l<—.
q am

p‘ 1
(Hint: Use Erxercise 3.25.)

(The result in this exercise has implications for the theory of continued fractions and
solutions of Pell’s equation in elementary number theory—see [53, Theorem 5.8, p.
218].)

Let k,n,m; € Nfor j =1,2,...,k <nand Fi(P),..., Fi(P) € Z be functions defined
for points P in the lattice Z™. Suppose that for each j =1,2,... k,

Fj(z) = Fj(y) (mod m;)

implies that
Fi(x —y) =0 (mod m,).

Also, suppose that S is a symmetric, convex set in R™ such that
k
j=1

Prove that there exists a nonzero point P € S NZ™ and
F;(P)=0 (mod m,;),
forj=1,... k.

(Hint: Use Erzercise 3.25.)
(This result was proved by L. Rédei in 1950.)
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3.28.

3.29.
3.30.

3.31.

3.32.
3.33.

3.34.
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Let p be a prime not dividing m € Z. Prove that there exist integers x; for j = 1,2
such that |z;| < /p, and
29 =mz; (mod p).

(Hint: Use Exercise 3.27.)
(This result is Thue’s Theorem. See [53, Theorem 1.23, p. 44] for an elementary-
number-theoretic proof, and see [53, Biography 1.12, p. 45] for data on Axzel Thue.)

Prove that © given in Definition 3.11 is a Q-algebra monomorphism.

Let k,n,t,m; € Nfor j =1,2,...,k < n such that H?:l m; < t*. Prove that for
each system of linear forms Fj(z1,...,x,), there exist y; € Z, not all zero, such that
;| < 4/ amd

Fj(z1,...,2,) =0 (mod m;),

forj=1,...,k.

Biography 3.9 Johan Peter Gustav Lejeune Dirichlet (1805-1859) was born
on February 13, 1805 in Diiren, that is now in Germany but was then in
the French Empire. He taught at the University of Breslau (now Wroclaw
in Poland) in 1827. Then he taught at the University of Berlin from 1828 to
1855. He was appointed to the Berlin Academy in 1831. In 1855, Dirichlet
succeeded Gauss at Gottingen. However, in the summer of 1858, he suffered a
heart attack while at a conference in Switzerland. He returned to Gottingen
where his illness was compounded by his wife’s death from a stroke. He died
there on May 5.

Dirichlet made contributions to the proof of Fermat’s last theorem in 1825.
In 1837, his result on primes in arithmetic progression was published—see
[64, Theorem 7.7, p. 258] for a self-contained proof. In 1838, his work on
the formula for the class number of quadratic forms appeared. In 1839, he
began an investigation of equilibrium of systems and potential theory. This
led him to what we now call Dirichlet’s problem on harmonic functions with
given boundary conditions. In 1863, his work, Vorlesungen tiber Zahlentheorie,
contained his celebrated work on ideals and units in algebraic number theory,
which is a central topic of this section.

Suppose that F' is a number field and I is an integral Op-ideal. Prove that there
exists a number field K = F(a) with o € A such that aOg = IOk.

(Hint: Use Exercise 3.18 on page 107 and Theorem 1.17 on page 28.)
With reference to Exercise 3.31, prove that Op(a) N F = I.

With reference to Exercises 3.31-3.32, prove that the following holds. Let v € A and
Ok the ring of integers of any number field K. If

Ok (y) =9kl

then v = ua for some unit u € A. (Ezercises 3.31-3.33 show that there is always an
extension ring of integers of Op in which any given ideal I becomes principal as an
“extended ideal” Ok (7). See Corollary 5.21, and Remark 5.8 on page 240 for related
notions.)

Let F be a real quadratic field with Ng(ea,) = 1. Suppose that I is an O p-ideal
with I2 = () for some o € O where Np(a) < 0. Prove that I £ 1.
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3.4 Units in Number Rings

That low man seeks a little thing to do,
Sees it and does it;

This high man, with a great thing to pursue,
Dies ere he knows it.

That low man goes on adding one to one,
His hundred’s soon hit:

This high man, aiming at a million,

Misses an unit.

from 1.113 of A Grammarian’s Funeral (1855)
Robert Browning (1812-1869)

English poet

husband of Elizabeth Barrett Browning

In §3.5, we will establish the celebrated Dirichlet unit theorem. We set the stage in this
section by establishing results on the finite component of the unit group, namely the group
of roots of unity. Of fundamental importance is the ring of integers of a cyclotomic field.
This will become even more transparent later when we establish the Kronecker-Weber The-
orem. First however, we need the following crucial result on a compositum of fields due to
Hilbert—see Biography 3.4 on page 94. The reader should therefore be familiar with the
discussion surrounding Application A.1 on page 325.

Theorem 3.13 — Compositum of Rings of Integers
Suppose that F; are number fields with number rings O, and discriminantsA , for j = 1,2
with ged(Ap,, Ap,) =1, and

K=FF,

is the compositum of F; and F5. Then
Ok =9rOr
(where Op, Op, consists of all sums 27:1 a;B; forn e N, aj € Op,, and §; € Op,.)

Proof. Since Op Op, is the smallest subring of K containing both Op and Op,, then
O OF, C Ok. Thus, it remains to show that O C O Op,. If

Bj = {ng% ce ’ﬁr(zj;)h

is an integral basis for F}, then the set consisting of all ni;ny products ﬁi(l)ﬂj(?) is a basis
for K over Q by Exercise 3.36 on page 129. Therefore, 8 € Dk may be represented in the

form
niy mno

=" qi;8"8%,
i=1j=1
with ¢; ; € Q. It suffices to show that ¢; ; € Z for each such 7, j. By Exercise 2.6 on page 63,
we may let 0 for k = 1,2,...,n1 be the embeddings of K in C that fix F5 pointwise. Thus,

for each such k,
ny no

0x(B) = Z Z qi,jek(ﬁi(l))ﬁj(?)'

i=1 j=1
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Set
n2
T = Zqz',jﬁj(-2)7
j=1
for i =1,2,...,n1. Therefore, we have the ny equations
ni 1
0k(8) = > w:0,(8"),
i=1
for k =1,2,...,n2. We use Cramer’s rule, Theorem A.21 on page 337 to solve for the x;
as follows. )
z; = 2/ det(0;(8M)).
Set

yi = det(6;(8;"))-
Then y;, z; € A, and y? = Ap,. Thus,

xiAFI = Z;Yi € A.

Therefore,

ng
zilbp = 4 AR LY € ANFy = Op,.

j=1

However, B, is an integral basis for Fh, so ¢; jAr, € Z for each ¢,j. In other words,
¢i,j = M4 ;/n;;, where m; ;,n;; € Z with n, ; | Ap,. A similar argument shows that

N4, 5 ’ Ap,. Hence, n;; ’ ged(Ap,AR,) =1, so g¢i,j € Z for all such 7,j and we have the
result. O
Theorem 3.14 — The Ring of Integers of a Cyclotomic Field

If F = Q(¢,) where n € N, then Op = Z[(,].
Proof. We may assume that n > 3, since the result trivially holds for n = 1, 2.
Claim 3.6 Ap | n®™),

By Theorem 1.25 on page 40, 2™ — 1 = ®,(z)g(x) for some g(x) € Z[z], so we may
differentiate both sides to get

na" ! = @) (2)g(x) + B (2)g(2)’ (3.29)

For z = (,, (3.29) yields
nGr = ' (Ca)g(Cn),

so by taking norms of both sides,
£ = Np(nGy ™) = Np(®7,(6a))Nr(9(Ga)).
By Definition 2.7 on page 77, Exercise 2.31 on page 69 and Theorems 2.6-2.7 on page 71,

Ap | Np(®),(Cn)),

so we have claim 3.6.

Now we establish the theorem for a prime power. Suppose that n = p® for a prime p.
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Claim 3.7 If 8 € Op, then

o)
8= Z AJ aj,
=1 °F

where aj = (1 — ()7, and z; € Z withA F | Z7.

If g = Zfipla) g;o; with g; € Q, then for any i € N with 1 <17 < ¢(p®), form

d
0;(8) = Z%’aj(ai),

where 6; is an embedding of F'in C for 1 < j < ¢(p*). By Cramer’s rule,

qj = z;/ det(8;(a;)),

where z; € A is determined in Theorem A.21, and det?(#;(a;)) =A g. Therefore, z? =

¢;Ar € ANQ = Z, by Corollary 1.11 on page 37. Hence,A p | 27, which yields Claim 3.7.
Claim 3.8 If n = p°, then Z[(e] = OF.

Since (pa = 1—(1—C(pa), then Z[1—(pa] = Z[(pa], so it suffices to show that Op = Z[1 —(pa].
By Claim 3.6, |Ap| is a power of p. If 8 € Op but 8 & Z[1 — (pa], then by Claim 3.7, we
may assume that
ow)
B = Z Loy, for some d with 1 < d < ¢(p*),
j=d

where pt zq. By Exercise 3.35 on page 129, Np(1 — (pa) = p. Thus,

ILA-G) _ Ne(1—Ge) _ P co
(1= Gpu)?0™) (1= Gpu )P0 — (1= G)?) =71
since for each natural number j relatively prime to p, we have
1- ¢l
€ Or.
1 —(pa
Therefore,
p
S DF,
(1 - Cp“)d
which implies that
o(P*) o(p*)
Bp 2j=d %Y1 zd
= = + 2505 —d—1 EDF.
oG~ (-G7 1-g * 2 5%

In turn, this implies that

2 8p #(p”)
— = — i Z Zj0—g—1 € DF.
1 Cp”‘ (1 Cp“) j=d+1
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Thus, by Exercise 2.17 on page 68, and Exercise 3.35,
Ne(1— — N — d(p*)
F( Cp“) p | F(zd) Zq s

SO p | 24, a contradiction, which establishes Claim 3.8.
Let

b
— a;j
n=1]r,
j=1

be the canonical prime factorization of n. Then for Fj = Q(( <), we have ged(Ap,, Ap,) =

1, for any ¢ # k with 1 < £,k < b, by Claim 3.6. We need one more result to finish the
proof.

Claim 3.9 If Fy, = Q({par ) and Fp = Q(pac ) for k # ¢, then Op, Op, = Op, p,.
By Theorem 3.13 on page 122,

ZlGpee por] = Z[Gype, Gy ] = Z[Ce | Z[Cyer ] = O R, OF, = Oy p-
Hence, by induction using Claim 3.9,

DF = Z[Cn]a

as required. O

The following is a stronger result than Claim 3.6 on page 123 in the case of a prime power.

Corollary 3.9 — Discriminants of Prime-Power Cyclotomic Fields
If F = Q(pa) # Q where p is prime, thenA p = (—1)¢(pa)/2ppa71(“(p_l)_l).

Proof. By Exercise 1.54 on page 43, we have

Therefore, by taking derivatives,

a—1

pla?" = pt e B (2) + (P — 1) (2).

Thus,

1

i am
P = (T = D@ (Ge). (3.30)
We observe that since Cﬁ: ~!is a primitive p®-th root of unity, we may invoke Exercise 3.35

on page 129 to get, NF(g)’:,il —1) = (=1)%®")pr" " Hence, by taking norms of both sides
of Equation (3.30), we get

prow”) — (,1)¢(p“’)pp"’_lNF(q>;a (Cpa))- (3.31)

However, by Exercise 2.39 on page 82, and Exercise 2.31 on page 69,
Np(q);,a (Cpa)) = (_1)¢(p“)(¢>(p“)*1)/2AF - (_1)¢(p“)/2AF.
Thus, via Equation (3.31), we get
1 1

Ap = (71)¢>(p“)/2pa¢(p"')*p“‘ - (71)¢(p“’)/2pp“_ (a(p—1)-1)

)
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which is the result. O

We will provide the complete generalization of Corollary 3.9 to the determination of the
discriminant of Q(¢,) for any n € N when we have the tools to do so in Theorem 5.14 on
page 216.

Before establishing the main result on roots of unity for this section, we need the following
result due to Kronecker—see Biography 2.2 on page 79. We we will substantially generalize
the following later when we have developed the tools to do so—see Corollary 5.4 on page 200.

Theorem 3.15 — Division of Field Discriminants in Towers
If Q C F C K is an extension of number fields thenA g ‘ Ag.

Proof. By Exercise 2.42 on page 82, any integral basis for K contains an integral basis for F'.
Let {a1,...,a4,Q441,-..,a,} be an integral basis for K where the first d elements provide
an integral basis for F. From Exercise 2.6 on page 63, we know that |F : Q| = djn = |K : Q|.
Also, from that exercise we may arrange the embeddings 6;, (1 < j < n) of K in C in the

following manner. Let 6;(c;) = az(j), and set (o) = agj) for j = 1,2,...,d. Also,
ensure that, for each i = 1,2...,n, we have arranged that 0;(c;) = 0x(c;), whenever j = k

(mod d). This yields the following.
AK = det(ﬁj(ai))z =

2
N RN CL IO C RN IS ()
N N O N P BN 2

det | ) o @ 00 NGO
d+1 d+1 d+1 d+1
all oDl R ol

and by subtracting the j* column from the (kd + j)!* column for j = 1,2,...,d, and
k=1,2,...,n/d — 1, this equals,

agl)...a(ld) 0---0 0
W (@ ' ' '
all . al 0---0 0 B
det [ () o @ _ o m _ @ | =7Ar
Qg1 Cgi1 Ogq Qg1 Cgip — Qgqq
IR C RN Yo BN C RS R Al _ ol

where v € Ok. However, v = Ag/Ar € Q, so by Corollary 1.11 on page 37, v € Z, as
required. O
In Definition 1.3 on page 2, we first met the notion of a primitive root of unity. Now we look
at the group generated by them. Henceforth, for a number field F'; we denote the subgroup
of tly,. consisting of roots of unity by Rp.

Theorem 3.16 — The Group of Roots of Unity

If F' is a number field, then every finite subgroup G of the multiplicative group of nonzero
elements of F' consists of roots of unity, and is cyclic. In particular, Rp is a finite cyclic
group. Moreover, |Rp| is an even divisor of 2Ap.
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Proof. Suppose that |G| = n. It follows from Theorem A.3 on page 321, that there exists
an element o € G such that a has order n and g™ =1 for each 5 € G. By Theorem A.18
on page 334, ™ — 1 has at most n roots in C, so G has order at most n. Since a has order
n and a,a?; ..., " = 1 are all distinct then G = («), the cyclic group of order n generated
by a. In particular, Rp is a finite cyclic group.

Given that {—1,1} C Rp, then 2 ’ n = |Rp|. If n =pi'ps*---pp* is the canonical prime
factorization of n in Z and since Q(sz/y) C F, then by Corollary 3.9 on page 125, and
Theorem 3.15, ’

% ay (py—1)—1
pfj (aj(p;—1) )|AF~

Therefore,
E o a1
7 (aj(pi—1)-1)
[ e o,
i=1

If p; > 2, then
a7'—1

p;’ (aj(p; —1) = 1) > aj,
and if p; = 2, then
a;—1
p;’ (aj(pj—1)—1) > a; -1,
from which the result follows. O
Now we establish a result that will allow the determination of the group of roots of unity in
terms of their absolute value. Recall that the absolute value of v = a + by/—1 € C is given
by |v| = Va? + b? = /77, where ¥ = a — by/—1 is the complex conjugate of 7. Sometimes
|v] is called the modulus of .
Theorem 3.17 — Bounds on Absolute Values

Suppose that F' is a number field with embeddings 0; for j =1,2,...,d = |F : Q| in C, and
r € R with > 0. Then there exist only finitely many o € Op such that |0;(a)| < r for all

j=12,...,d.
Proof. Let
d\ , d\ d
M = max « dr, P B [
2 J
and set
d—1 ‘
F = f(x):szrszxjGZ[x]:|zj|§M
§=0

Then |F] < co. Set
8={a€F: f(a) =0 for some f(x) € F}.

Then |8] < oo, as well. If o € F with |0;(a)] <7 for all j =1,2,...,d, then
[s;(01(a), ..., Ba(e))] < M,

for all j =1,2,...,d, where the s; are the elementary symmetric functions given in Defini-
tion A.16 on page 333. Since o € Op, then s;(01(a),...,04(a)) € Z by Corollaries 1.11 on
page 37 and A.9 on page 334. Therefore,

d
[I@—05(e)) €7,
j=1
which implies that a € 8. The result follows. O

The following result is due to Kronecker.
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Corollary 3.10 o € Rp if and only if |§;(a)| =1forall j =1,...,d.

Proof. If & € R, then 6,(a) € Rp, since §;(a)™ = 1 for some n € N. Thus, |6,(a)|" =1,
so |6,(a)| = 1.

Conversely, by Theorem 3.17, there exist only finitely many « € Op such that |6,(a)| = 1.
Since o € O satisfies |[a*| = 1 for all k € N, then it follows that o = o for some k < /.
Thus, of =% = 1, which implies that o € Ry, as required. O

We conclude this section with a determination of R for a prime cyclotomic field F'.

Theorem 3.18 — Roots of Unity in Prime Cyclotomic Fields
Let F' = Q((p) for p > 2 prime. Then

Rp = <_1> X <CP>7

as a multiplicative group, and every element u € iy, may be written as u = w([j where
weRNUy, and k € Z.

Proof. By Theorem 3.14 on page 123, O p = Z[(p]. Clearly, (—1)x((,) € Rp. If the inclusion
is proper, there is a (,, € Rp with n { 2p. In particular, it must contain either (,, = (44 where

q # p is prime or ¢, = (,2. However, (4 & Q((p), since otherwise (4 € {1,(,.. .,Cg’l},
which is not possible. Since the degree of Q((,2) over Q is p(p — 1), then the latter cannot
hold either. Thus, Rp = (—1) x ((,), as required. Moreover, since there are no more
complex units in gy, then the last statement of the theorem must hold. O

Example 3.4 Let F' = Q((,) for a prime p > 2, and set

_1=G
b

u

so its complex conjugate is

-7 G-
N N )
Both are units in O by Exercise 3.37. Thus,

 (1=g\ (1-¢7 B
e (1=8) (i) e

un = (ngl_j)/2u)2.

= = C;*ju.

so if 7 is odd, then

Hence,

-G\ (16’
v = eRNUy .. 3.32
<1<.p> <1—Cp1 O ( )
The distinguished units v in Equation (3.32) are called cyclotomic units, about which we
will learn more later in the text.
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Remark 3.15 A result due to Hilbert, which he proved in 1897, says that the numbers

(10-6") (-a )]/ [0-6) (-67))™

where r is a primitive root modulo p and k=0,1,...,(p — 3)/2, provide a system of in-
dependent units in o, for F = Z[(,]—see Biography 3.4 on page 94. As this chapter
progresses, we will learn substantially more about the role of units.

The above shows that even for the relatively simple fields considered, there is somewhat of
a difficulty in describing the structure of the units. For the general case, we will need to
introduce some geometry to tackle the problem. We do this in §3.5.

Exercises

3.35. Let p be a prime, and a € N. Prove that Np(1 — (pa) = p, where (pa is a primitive
p®-th root of unity.

3.36. Suppose that F; = Q(«;) are number fields, with |F; : Q| = n; for j = 1,2. Prove
that
|K : Q| § ning,

where
K = FiF> =Q(o, a2).

Also, show that if
ged([F1: Q| [F2 : Qf) =1,

then
|K : Q‘ = nina.

Is the converse true?

3.37. Let p be a prime, n = p® for some a € N, and F = Q((,). Suppose that j € N such
that ged(j, p) = 1. Prove that

3.38. Let o € OF be prime, where F = Q(¢,,) for n € N. Suppose that

ol (G =G
for some a,b € Z. Prove that (¢ = ¢}.

3.39. Let n > 2 be an integer, and set F' = Q((,). We know that ¢, € il ,.. Prove that
Nr(¢,) = 1.
3.40. Let n € N with n > 1. Prove that

II a-¢)=n

1<j<n—1
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3.5 Dirichlet’s Unit Theorem

Ezxperience is the name every one gives to their mistakes.
from act 3 of Lady Windermere’s Fan (1892)
Oscar Wilde (1854-1900)
Anglo-Irish dramatist and poet

In this section, the primary goal is to establish Dirichlet’s Unit Theorem, which gives, in an
abstract fashion, a complete description of the group of units iy, of Op for any number
field F'.

First, we need a variant of Definition 3.11 on page 112.

Definition 3.13 — Logarithmic Representations and Spaces

Let F be a number field with signature {ry, 72}, where |F : Q| = n = r1 + 2rq, and note
that (R*)™ x (C*)™ is the multiplicative group in R™ x C"2 consisting of those elements
with all co-ordinates nonzero. Define the map

T (R X (CF)2 s RTHT2,

by
W1y eey Qg Qg 1y e e Oy ) = (I (@1)y ooy by (g )y e vy Ly (i),
where
[(Oé)— 1Oge(|aj|) iflgjgrla
I log, (Jagl?) i+ 1 <5 <747
Let the map

Lp: Frs R

be given via the composition of functions
Lp=VoOp,
where® g is given in Definition 3.11. Then for any « € F,

Lr(a) = (log(01(a)]), ..., log, (|6r, (a)]), log, (|0r, +1(a)[?), .., log, (|6r, ()[*)).

L is called the logarithmic representation, or logarithmic map of F, and R™ "2 is called
the logarithmic space.

By Exercise 3.41 on page 136, the logarithmic representation £p of Definition 3.13 is a
homomorphism of the multiplicative group F* of nonzero elements of F' to the additive
group of the logarithmic space R™*72. In fact, this is the reason for introducing logarithms
in the first place, namely to link this section with the preceding one in the sense that the
group iy . is multiplicative, whereas Minkowski’s Convex Body Theorem applies to lattices,
which are additive. Hence, we now have a method that maps from one scenario to the other
via L. If we consider the restriction of L to Uy ,., we begin to get the picture.
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Lemma 3.4 — The Kernel and Image of L
If F is a number field with signature {ry,rs}, then
ker(LF) = :RF,
and Lp (8o, ) is a lattice in R™*72 having dimension less than 71 + ro.

Proof. Since L (o) = 0if and only if |6,(a)| = 1 for all j =1, ..., 7, then by Corollary 3.10
on page 128, 6;(a) € Rp for all such j. Hence, ker(Lr) = Rp. Let r = ri 4+ 1o for
convenience. Then for a € Uy ., since

n 1 r1i+T2
+1 = Np(e) = [[05(@) = [[05(@) [[ 6i(@)8;(a)=
j=1 j=1 j=ri+1
1 r1+72
[T T 15
j=1 j=ri+1
then i,
> Li(a) =log,(|Np(a)|) = log(1) =0,
j=1
SO
1 r1+re
Lr(o.) C{(z1,..,z) ER™ D a;+2 > a;=0},32
j=1 j=ri+1

which has dimension r — 1. To prove that Lp(y,.) is a lattice, we invoke Theorem 3.8 on
page 109. By definition, it is an additive subgroup, so we need only prove that it is discrete.

Let a € $lg .. Then |Lp(a)| < r. For n € N, set
Sp={a€clp, :6(a) <nforall j=1,2,...,7},
called a cube with side n centered at the origin. Since for each j =1,...,7,
(65 ()] < log.(|1Lr(a)]) <m,

then [0;(a)] < e™ for 1 < j < 7y, and |0;(a)*> < €" for r1 +1 < j < r. Hence, §,, has
only finitely many points. However, ©(8,,) is an injection of §,, into the r — 1-dimensional
hyperplane. Thus, Lr(ieo,.) is a lattice. O
The next step toward the unit theorem is to establish that £z (e ,.) is actually of dimension
r — 1 rather than just contained in a hyperplane of that dimension.

Definition 3.14 — Norms of Elements in Logarithmic Space

If F' is a number field with signature {ry,r2}, and £ € R™ x C™ with £ = (¢1,..., 4 4r,),
then the norm of ¢ is given by

1 r1+72
Ne@) =114 1] 161>
j=1 j=ri+l

3-2This set is an example of a hyperplane. In topological language, an osculating hyperplane of a convex
set S C R"™ is a hyperplane that has a point of its boundary in common with S, but is disjoint from the
interior of S. Recall that the boundary of a set S is defined to be the intersection of the closure of S with
the closure of its complement, whereas the interior of S is the set of all points s € S for which there exists a
disc with center s, contained in S. A fundamental result concerning osculating hyperplanes is the following.
If S is a convex set in R”, and P is a point on its boundary, there exists at least one osculating hyperplane
of S containing P.
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The term norm in Definition 3.14 is appropriate and in keeping with the notion of norm
given in Definition 2.4—see (3.33) on page 132. In preparation for the following, the reader
is reminded of linear transformations and their matrices as given in Definition A.20 on
page 338.

Lemma 3.5 — Linear Transformations and Norms

Suppose that F is a number field with signature {r1,72}, and let £ € R™ x C™. Let the
map

MR xC™? = R™ x C™,
be defined by Ay(z) = fx. Then Ay is a linear transformation and det(\;) = Ng(¥).

Proof. Choose the canonical basis for R™ x C", namely {v;} for j =1,2...,n =1y + 21
where v; = (0,...0,1,0...0), where the 1 is in the j' place for j = 1,2,...,71, and
v; = (0,...0,1++/=1,0...0) with the 1 + /=1 in the j** place for j = r1 +1,...,71 +72.
Thus, if

= (Zla"wgm—i-rz) - (613"'7£T1ﬂm7’1+1 + N 1V 717" s My + Ny V 71)7

then the matrix of A, is given by the almost diagonal matrix,

{0 0o - 0
0o ¢ 0 .- 0
0 lr, 0
0 My 41 —Npy 41 0 ;
0 - N4l M1 0
o .- Mpy,  —Npy
0 nTz m7‘2
whose determinant is given by
r14rs T1 ri+ra
Hﬁ II i+ =116 11 6P =nNe),
j=1 Jj=ri+1 Jj=1 j=ri+1
as required. O

Now we are in a position to establish the dimension of £ (g ,.).

Theorem 3.19 — The Dimension of L (o)

If Fis a number field with signature {rq,r2}, then Lp(Hp,) is a lattice of dimension
ri4+1r9 —1in R1+72,

Proof. By Exercise 3.41 on page 136 and Definition 2.4 on page 65, for each o € F,
Np(©(a)) = Np(a) = [] 05 ( H 0;( H ;) T 10;()>. (3.33)
j=1 j=ri+1 j=ri+1

Therefore, for any o € Op, Op(a) € Lp(Up,) if and only if |[Np(Op(«))] = 1. Thus,
for any £ € R™ x C™ with |[Np(©p(a))| = 1, we must have |det(A¢)] = 1, by Lemma
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3.5. Hence, the lattices® p(Op) and A(Op(OF)), with |det(A¢)] = 1, have the same
fundamental parallelotopes with the same volume, namely

V(O(Or)) = (V(A(B(OF)))) =27 V|AF],

by Claim 3.5 on page 115.
Let ¢; € RT for 1 < j < rq + 19, and set

8§ = {(61,...,€T1+7~2) eR™ xC™: ‘€J| <¢j for 1 <7<y |€j‘2 <¢j for ry <j<nr +T2}.
By the same reasoning as that given in the proof of Theorem 3.12 in Case 3.5 on page 118,

we deduce
r1+72

v(s)y=2ma" [] o-
j=1

Now the object is to use Minkowski’s Convex Body Theorem to get certain required points
in Ag(0r(OF)). To be able to invoke Minkowski’s Theorem, we need

V(8) > 27272 \/[Ap| = 2"V (A (Or(DF))). (3.34)

To achieve this, we can assume that the ¢; were chosen such that (3.34) holds, with
| det(As)] = 1. Therefore, there exists a nonzero a € O p such that A(Op(a)) € 8. Then,
for £ = (l1,.... 00 41y),

)\g(@F(O&)) = (91 (a)glv s 707"1+7“2 (a)érl-‘rm)z
with
10;()l;| < ¢; for 1 < j <y, and |0;(a)l;]? < ¢ for ry < j <7y +7a. (3.35)

Since | det(A¢)| = 1, then by (3.33)

1 r1+r2 r1+72
INe(@)] = [T10;(@)] T 105 < [T -
j=1 j=ri+1 Jj=1

By Theorem 3.17 on page 127, there exist only finitely many a € O g such that for all &,

r1+r2

e < T e
j=1

Let {f1,..., 0k} be the set formed by . Then o must be an associate of one of the f3;’s since
the norms are the same for o and one of the 3;’s. Let a = u;3; for some t = 1,...,k, where
up € L[DF. Also, in view of (335), |93(Oz)€]‘ = |01(u1)€ﬂj(ﬂt)| < ¢y, for each j =1,...,rq,
and |9j(a)£j|2 = \Gj(ul)ﬁﬂj(ﬂt)F < ¢y, fOI‘j =ri+1,...r1 +1rs.

Let aj = mini<¢<{|0;(B:)|}. Thus, |0;(uw1)]- 4| < ¢j/a; (1 <3 <ry), and [0;(u1)]-
16l < \/ci/a; (r1 <j <ri+ry). Now we place a further restriction upon ¢ (other than
|det(A\¢)| = 1), namely we assume that for some B € RT,

1
6] = Frrmt
and |[{;| =B (2 <j < +ry). Hence,
Br1+r2—1c C ]
01 ()| < ——,  |oi(wm)] < = (2<j<m),

aq ajB
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and

ot
10;(ur)| < XL (1 <j<ri+ra).
Ba]‘

We may also assume that B is selected to be sufficiently large so that [6;(u1)| < 1 for all
j # 1. Therefore, [;(0;(u1)) <0 forall j =2,...,r1 +72. Also, |[Np(u1)| =1, so by (3.33)
on page 132,

r1+re

Z (0 (u1)) =0, (3.36)

SO
r1+re
91 Ul Z [ > 0.
Continuing in the above fashion, we can manufacture units ug, us, . .., Ur, 4r,—1 € o ., such
that
(0 (u) < 0 it # j, (3.37)
and
ritra—1
)>0foralli=1,...,r; +re—1, (3.38)

=1
where (3.38) follows from the fact that

<.

r1+T2

Z 0( =log,(|Np(a)]) =0, and b, 4, (6;(u;)) < O,

with the first equality stemming from (3.33).

Now we introduce a map that reduces the dimension by one. This will put us within striking
distance of the main result. Let P : R™*72 s R™1+72~1 he given by the projection,

P(gl, . ;‘€T1+T2) — (gl, e ;‘€T1+r271)~
Claim 3.10 The vectors P(Lp(u;)) for 1 <4 <1y + 79 — 1 are R-linearly independent.

Let M = (m; ;) € M, x», be the matrix given by m; ; = P(Lp(u;)), and n =11 + 72 — 1 for
convenience. Hence, m; ; < 0 if ¢ # j, and

> mij>0foralli=1,...,n. (3.39)

j=1
We will have the result if M is nonsingular. Assume that it is not. Then there exist r; € R,
not all zero, such that

merj =0foralli=1,...,n

j=1
Let ng € N with ng < n such that |r,,| > |r;| for all j =1,...,n, and assume that r,, > 0
(since we may otherwise replace all 7; by —r;). Thus, by (3.39),

0= TnoMng,ne + E : Mg, 575 2 TngMing,ng + E Mng,j | Tng > 0,
Jj#no Jj#no

a contradiction that establishes Claim 3.10, and hence the entire result. O
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Theorem 3.20 — Dirichlet’s Unit Theorem
Suppose that F' is a number field with signature {r1, 72}, and let m = |Rp|. Then

Uop ZZRLX - X L x (G 2 (ur) X {uz) X -+ X (trypry-1) X Gy
—_—
ri+ro—1 copies

where (¢, is a primitive m!* root of unity. Any such system of units ujfor j=1,...,m +
ro — 1 is called a fundamental system of units.

Proof. By Theorem 3.19 on page 132, there exist units u; for j = 1,...,r + 72 — 1 such
that L7 (o, ) has Lr(u;) as a Z-basis. Thus, for any u € iy, there exist unique z; € Z
such that

ri4reo—1
Lrw) = > zLe(u).
j=1
Therefore,
r1+r2—1
Lr|u H uw % | =0.
j=1

To complete the proof, we need to show that if Lp(v) = 0 for v € Uy, then v € Rp.
However, this is Lemma 3.4 on page 131. O

Application 3.1 —Units in Real Quadratic Fields

A simple application of Theorem 3.20 is to a real quadratic field. Since r; = 2, and 79 =0
for F = Q(vAF), Yo, = (u1) x (—1), namely there exists a smallest unit u; > 1 such
that for any v € HUp,., u = Luf for some a € Z. We denote u; by €a, and call this
the fundamental unit of Q(v/Ar). The uniqueness is given by Dirichlet’s Theorem
and our insistence that the unit be bigger than 1 as a generator. SinceA g > 0, then

Rr = (-1) = ().

Example 3.5 If F' = Q(v/Ap) forA p < 0, then 71 = 0, and 79 = 1, s0 g, = Rp as
given by Theorem 1.29 on page 47.

Based upon fundamental systems of units, we now show that determinants of logarithmic
representations do not vary. This will allow for the definition of another invariant of a
number field F'.

Theorem 3.21 — Determinants of Logarithmic Maps

Suppose that F'is a number field with signature {rq,r2}, and {u;}, {v;} fori =1,2,...,m+
ro — 1 are systems of fundamental units. Then |det(Lp(u;))| = |det(Lp(v;))|, where
(Lr(u;)) is a matrix with entries log,.(]0;(u;)]), and (Lr(v;)) is a matrix with entries
log,. (|6, (v;)]), where 6; are the embeddings of F in C.

Proof. Set r = r1 + ro — 1, and assume that |Rp| = m. By Dirichlet’s Unit Theorem, we
may write, for each i =1,...,r,

I
Vv = Cﬁ; H U?i’j (b“ ai,j S Z),
j=1

and

-
. di;

u; = (o ij 7 (e, dij € Z).
j=1
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By uniqueness of representation of units, (d; ;)™ = (a; ;), so det((a; ;)(d; ;)) = 1. Hence,
| det(a; ;)| = | det(d; ;)| Since

T

0;(vi) = 60;(Cho) [T 05 (un)®or,

k=1

then log,(|0;(v;)]) = log(10;(C)I) + hy @ik log (10 (ur)]) = 375 _; aixlog.(10;(ur)]),
where the last equality follows from Corollary 3.10 on page 128. Hence,

| det(log, (|6;(vi)])| = | det(log(|6;(wi)]))],

so |det(Lr(v;))| = | det(Lp(u;)|, which is what we sought. a

Based upon Theorem 3.21, we may now define an invariant of F'.

Definition 3.15 — Regulators

Let {u1,...,Up, +r,—1} be a fundamental system of units of a number field F' having sig-
nature {ry,r2}. Then the regulator of F is given by

tp = | det(Lp(u;))))- (3.40)

Computation of the regulator, given in Equation (3.40), of a number field is difficult, since
we must know in advance a fundamental system of units. However, for real quadratic fields,
knowledge of the fundamental unit is sufficient and tables of such units exist (for instance,
see [49, Appendix B, pp. 287-312]).

Example 3.6 If F = Q(v/5), then r; = 2, and ro = 0. Since the fundamental unit is

e5 = (1 +/5)/2, then
tp = log, 5 .

Exercises

3.41. Prove that the logarithmic representation £ of Definition 3.13 is a homomorphism

of the the multiplicative group F* of nonzero elements of F' to the additive group of
Rritr2,

3.42. Let F be a number field. Prove that ker(Lp) = Rp.

3.43. Let F be a real quadratic number field withA g = 5(mod 8), and fundamental unit
eanr = (T+UVAFR)/2, where T,U € Z. Let G be the subgroup of Z[\/A | consisting
of the positive units. Prove that G = (ea,.) if and only if T and U are both even.

3.44. With reference to Exercise 3.43, prove that G = (¢} ) if T and U are odd.

(This is related to a problem of FEisenstein, namely the determination of criteria
for the solvability of the Diophantine equation |x* — Apy?| =4 with ged(w,y) =1
for m,y € Z. There is an underlying interplay between the two rings Z[v/Ar], and
Z|(1 +/Ar)/2] that helps to explain the phenomenon. Solution of the aforemen-
tioned Diophantine equation, for Ap =5(mod 8), is equivalent to ea, & Z[V/AFr].
See [49, Exercises 2.1.14-2.1.16, pp. 59-61]. Also, see Example 1.32 on page 52.)
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Biography 3.10 Ferdinand Gotthold Max Eisenstein (1823-1852) was born
on April 16, 1823 in Berlin, Germany. From an early age he suffered from
ill health. While still young, he travelled with his parents to Wales and Ire-
land where he met W.R. Hamilton, who acquainted Eisenstein with the work
of Abel. This inspired Eisenstein to study mathematics further, and he en-
rolled at the University of Berlin upon his return to Germany. Subsequently
he produced many papers, twenty-five of which were published in Crelle’s Jour-
nal where Abel had published his pioneering work. Among his achievements
was the introduction of generalized Jacobi sums to obtain a proof of the law
of biquadratic reciprocity. Gauss had such respect for him that he is pur-
ported to have said that there were only three epoch-making mathematicians:
Archimedes, Newton, and Eisenstein. However, due to his ill health, Eisenstein
was not allowed to fulfill this assessment. Humboldt had collected money for
Eisenstein to travel to Sicily to improve his health. However, he died before he
could go there. His death occurred, at the age of twenty-nine, from pulmonary
tuberculosis on October 11, 1852

If F is a quadratic number field and I* ~ 1 in Co,, then I is called an ambiguous class
in Cop. If I = (a,(b+ VAF)/2) is an integral Op-ideal, then I' = (a, (b — \/Ap)/2) is
the conjugate ideal of I, which we introduced for prime quadratic ideals in Remark 1.24 on
page 52 and illustrated further in Example 2.15 on page 85. Thus, via Ezxercise 3.20 on
page 107, an ambiguous class of Coy. is a class I in which I ~ I'. Indeed, for an ambiguous
class, I =171, If I = I, then I is called an ambiguous O p-ideal. For a prime p € Z, the
mazimum elementary abelian p-subgroup of Co,. is denoted by Co, p, if |Co, p| =7, the
r is called the p-rank of Co. —see Definition A.3 on page 320. We let hy, , denote the
order of Co . p.

Ezercises 3.45-3.54 below are devoted to studying these ideal classes, and in particular to
establishing Gauss’ result on the 2 rank of O p—FExercises 8.48 and 3.5/. Thus, in these
exercises, we are assuming that F is a quadratic number field with discriminant Ap.

3.45. Suppose that eitherA p < 0 orA g > 0 and Np(ea,) = —1. Prove that every class
of Cp,, 2 has an ambiguous ideal in it.

(Hint: Use Exercise 3.21 on page 107.)

3.46. LetA p < 0 be the discriminant of a quadratic field F' over Q, and let wa . be defined
as in Application 2.1 on page 77. Suppose that I = (a,b+wa ) is an integral O p-ideal
with a > 1, b > 0, and Np(b+ wa,) < Np(wa,)?. Prove that I ~ 1 if and only if
a = NF(b:EwAF).

3.47. Suppose that I is an integral O p-ideal in a quadratic field FF = Q(v/Ap). Prove that
N(I) | Ap if and only if I = I'.

3.48. Suppose that eitherA p < 0 orA p > 0 and Np(ea,) = —1 and thatA g is divisible
by N distinct primes. Prove that hg, o = 2V~1
(Hint: Use Exercises 3.45-3.46.)

3.49. Assume thatA p > 0 and Np(ea,.) = 1. Then by Exercise 3.21, ea,. = a/a’ for some

a € Op. Prove that the only primitive ambiguous O p-ideals are (a), v/Dp, O, and
(av/Dp), where D is the radicand of F' defined in Application 2.1 on page 77.

3.50. Suppose that a € I where I is an O p-ideal with N(I) = |Np(a)|. Prove that I = ().
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3.51. If I is a primitive integral O p-ideal, prove that (N(I)) = II’.

3.52. Assume thatA r has only one prime divisor, namelyA r = ¢ = 1(mod 4) is prime or
Ap = 8. Prove that Np(ea,) = —1.

(Hint: Use Ezxercises 3.21 on page 107 and 3.47.)

3.53. Using Exercise 3.52, prove that for any prime p = 1 (mod 4), there exist z,y € Z such
that 22 — py? = —1.

3.54. Assume thatA g > 0 and Np(ea,) = 1. Prove that ho, o = 2V 2.
(Hint: Use Ezxercises 3.49-8.52.)

Let F be a quadratic number field. An Op-ideal I = [N(I),a] is called reduced if it
is primitive and there does not exist an element v € I such that both |y| < N(I) and
|v'| < N(I). Ezercises 3.55-3.61 are in reference to reduction in quadratic number fields.

3.55. Prove that ifA g > 0, then [ is reduced if and only if there is an element § € I such
that I = [N(I),5], B> N(I),and —N(I) < ' <0.

(Note that when Ap < 0, then this means that there is no v € I such that |y| < N(I)
where |y|> = 4y = Ng(v). The notion of reduction comes from the theory of binary
quadratic forms—see Definition 3.4 on page 90.)

3.56. Prove that if N(I) < \/|Ap|/2, then I is reduced.

3.57. Prove that if T is reduced, then N(I) < v/Ap, when F is real, and N(I) < \/|Ar|/3
when F' is complex.

3.58. Let I be a primitive, ambiguous O p-ideal, whereA g > 0. Prove that if N(I) < VAp,
then either T is reduced, orA g = 0(mod 4), and I divides the ideal (/Ap/4).

3.59. Let I be a primitive, ambiguous O g-ideal, whereA g > 0. Prove that there exists a
reduced ambiguous ideal J such that J ~ I.

3.60. Let I be a reduced ambiguous O p-ideal, such that I # (1), andA g > 0. If 4 | Ar,
then also assume that

[ # (2, b+ \/AF/4) , where b= Ar/2 (mod 2).
Prove that either N(I) or N(I)/2 is a nontrivial factor of the radicand D of F.

(This exercise underlies the fact that the so-called Continued Fraction Algorithm can
be used as a method for factoring—see [49].)

3.61. Suppose that F' is a real quadratic field. Let I be a primitive principal O g-ideal,
such that ged(N(I), D) = 1, and N(I) = n? for some n € N. Prove that there is an
O p-ideal J such that T = J2.

Remark 3.16 Note that in Exercises 3.43-3.44, and 3.52-3.53, we are essentially dealing
with the solutions of Pell’s equation 2> — Dy? = 41. Euler misattributed a method of
solving this equation to John Pell (1611-1685), whence its name. However, another English
mathematician, William Brouncker (1601-1665) actually found the method. Lagrange was
the first to prove that the positive Pell equation always has infinitely many solutions—see
Biography 3.3 on page 93. The above exercises show that the Pell equation is actually
about the fundamental unit of a quadratic field. Often, in an elementary number theory
course, continued fractions are employed to solve the equation—see [53, §5.3, pp. 232-239]
for instance.



Chapter 4

Applications: Equations and
Sieves

If we could find the answer to that [why it is that we and the universe exist], it would
be the ultimate triumph of human reason—for then we would know the mind of God.
from A Brief History of Time (1988).

Stephen Hawking (1942-)

English theoretical physicist

This chapter is devoted to looking at how we may apply the first three chapters to the
solutions of Diophantine equations and to factoring via the number field sieve and Pollard’s
sieve.

4.1 Prime Power Representation

We have looked at representation problems, without calling them such, in Example 2.16 on
page 85 for instance. Also, emanating from Theorem 1.30 on page 49, we may expand our
understanding by employing it as follows, some of which is adapted from [54].

Recall that by Corollary 3.4 on page 106, we know that ho, < oco. Also, recall from
Application 3.1 on page 135 the definition of ea . as the fundamental unit of a real quadratic
field.

Theorem 4.1 — Prime Representation and hy,.

Let F be a quadratic field with discriminantA g and (wide) class number hgo,. Suppose
that p > 2 is a prime such that gcd(Ap,p) = 1 andA g is a quadratic residue modulo p.
Then the following hold.

(a) If eitherA p < 0 orA p > 0 and Np(ea,) = —1, then there exist relatively prime
integers a, b such that
a’? — Arpb? ifA 7 = 1(mod 8),
plhor = { a? — SLb? ifA p =0(mod 4),
a? +ab+ (1 — Ap)b? ifA p=5(mod 8).

(b) A p > 0 and Np(ea, ) = 1, then there exist relatively prime integers a, b such that

139
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+(a? — Apb?) if p=1(mod &)\
phDF = { :|:(CL2 — %bQ) if F= O(mod 4&
+(a®+ab+1(1—Ap)b?) if A=5(mod 8).

Proof. By Theorem 1.30, since p > 2, then if (Ar/p) = 1, we have (p) = P1P, where P;
are distinct prime O g-ideals for j = 1,2. Thus,

hop phop
(p"or) = (p)tor = PYIFPLTF ~ (1),

since (PthF ~ (1) for j = 1,2 by Exercise 3.18 on page 107. Hence, TP?DF is a principal

ideal for j = 1,2. Let
phor _ (u—i—v\/AF)
= — =
2

where u = v(mod 2), ifA p = 1(mod 4), and u is even ifA p = 0(mod 4). Then via the
proof of Theorem 1.30 we know that P> must be the conjugate of P, namely

hop u—vvVAfp
:})2 == # .

Hence,

u? — Apv?
(por) = (4 i )

so there exists an « € U such that

2 2
phDF :a(uZlAFU)_

However,
Aphor
a=—""_cq.

u? — Apov?

But, by Corollary 1.12 on page 37, O NQ = Z, so a € Uz = {£1}. Thus,
4phor = +(u? — Apv?). (4.1)

Claim 4.1 IfA p =0(mod 4), then ged(u/2,v) =1, and ifA p = 1(mod 4), ged(u,v) =1
or 2.

IfA g = 1(mod 4), let ¢ > 2 be a prime such that ¢ | ged(u,v). Then there exist integers
x,y such that u = gz and v = qy, where x = y(mod 2). Therefore, by (4.1), ¢> ’ 4phor
but ¢ > 2 so ¢ = p. Hence,

Pror _ () <w+y2\/ﬂ> _ 3.9, <x+y2m> ’

1

which forces Pq ‘ ??DF, contradicting that P; and Py are distinct Op-ideals. We have
shown that ged(u,v) = 2¢ for some integer ¢ > 0. It follows from (4.1) that 4° | 4 so ¢ =0
or c=1.

IfA r = 0(mod 4), and ¢ is a prime such that ¢ ‘ ged(u/2,v), then there exist integers x,y
such that u = 2¢qz and v = qy, so

p"or = £((q2)* — (Ap/4)(ay)?)
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which forces p = ¢ and this leads to a contradiction as above. This is Claim 4.1.
IfA r < 0 then the plus sign holds in (4.1), since u?> — Apv? > 0. WhenA r > 0 and there

exists an « € Up with Np(a) = —1, we may multiply by
Ne(a) = N(r+ sV/Ap) =r? — Aps® = —1
to get
—(u? = Apv?) = (1% = Aps?)(u? — Apv?) = (ru+ Apsv)? — Ap(rv + su)?

To complete the proof, we need only show how the a,b may be selected to satisfy parts
(a)—(b) of our theorem.

WhenA r = 1(mod 4), then by (4.1), if u and v are odd, 4p"®r = 0(mod 8), contradicting
that p > 2. Thus, by Claim 4.1, ged(u,v) = 2 so we select « = u/2 and b = v/2. If
Ap = 0(mod 4), then by Claim 4.1, we may select a = u/2 and b = v. Lastly, whenA p =5
(mod 8), since u = v (mod 2), set v = b+2a and b = v where a,b € Z. Then (4.1) becomes,

+4p"or = u? — Apv? = (b +2a)* — Apb® = 4a® 4 dab + (1 — Ap)b?,
SO 1
phor = +(a® + ab + Z(l — Ap)b?),

which secures our result. O

Remark 4.1 As a counterfoil to Theorem 4.1 on page 139, we note that, by Exercise 3.9
on page 94, ifA  is not a quadratic residue modulo a prime p > 2, then there is no binary
quadratic form that represents p* for any positive integer k. Hence, there cannot exist
integers (a, b, ¢) such that p* = ax? + bxy + cy? for any integers x,y.

Theorem 4.1 has certain value when ho, = 1. In particular, we have the following results,
the first of which is a special case of Theorem A.27 on page 343.

Corollary 4.1 Let p be a prime. Then there exist relatively prime integers a, b such that
p=a’+b*ifandonlyif p=2or p=1 (mod 4).
Proof. By Theorems 3.2 on page 92 and 3.6 on page 103, forA p = —4,
hog = hyy= = 1.

Thus, by Theorem 4.1, if (Ar/p) = 1, namely p = 1(mod 4), then p = a® + b? for a,b € N.
Since 2 = 12 + 12, then we have one direction. Conversely, if p = a? + b, and p > 2, then
by Exercise 3.9 on page 94, (—4/p) = (—1/p) = 1, which implies that p = 1(mod 4). O

Corollary 4.2 Let p be a prime. Then there exist relatively prime integers a, b such that
p=a?+42b% if and only if p=2or p=1,3 (mod 8).
Proof. First, we know that (—8/p) = (—2/p) = 1 if and only if p = 1,3(mod 8). By
Theorems 3.2 and 3.6, forA p = —8,
hog = by =1 = 1.

Therefore, by Theorem 4.1, if (—8/p) = 1, p = a® + 2b? for a,b € N. Also, 2 = 0% +2-12.
Conversely, if
p=a®+2b% and p > 2,

then by Exercise 3.9, (—8/p) = (—2/p) = 1. 0
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Corollary 4.3 Let p be a prime. Then there exist relatively prime integers a, b such that
p=a’+ab+b*ifand onlyif p=3orp=1 (mod 3).

Proof. From Exercise 4.1, (—3/p) = 1 if and only if p = 1(mod 3). By Corollaries 1.1-1.2
on page 13, Theorem 1.28 on page 45, and Theorem 3.6 on page 103, we have that

haja+v=s)/2 = 1.
Thus, by Theorem 4.1, if (Ar/p) = (=3/p) = 1, then
p = a® + ab + b? for some integers a, b.

Also 3 = 12 +1-1+ 12, Conversely, by Exercise 3.9, if p > 3 and p = a® + ab + b2, then
(=3/p)=1. o

Corollary 4.4 Let p be a prime. Then there exist relatively prime integers a, b such that
p=a?+7b? if and only if p = 7 or

p=1,9,11,15,23,25 (mod 28).
Proof. By Exercise 4.2, (—7/p) = 1 if and only if
p=1,9,11,15,23,25 (mod 28).
Also, as in the proof of Corollary 4.3, forA p = —7,
hoe = hyapy=m)/2 = h-7=1.
Therefore, by Theorem 4.1, if (=7/p) =1, p = a® + 7b? for a,b € N. Also, 7 =02+ 7-12.

Conversely, if
p=a?+7b% and p # 7,

then by Exercise 3.9, (=7/p) = 1. O

Exercises

4.1. Prove that (—3/p) =1 for a prime p > 3 if and only if p = 1 (mod 3).
(Hint: You may use (A.11) on page 342.)

4.2. Prove that (—7/p) = 1 for an odd prime p if and only if p = 1,9, 11, 15, 23, 25 (mod 28).

In Exercises 4.3—4.6, use the techniques of Corollary 4.3 to solve the representation prob-
lems.

4.3. Prove that a prime p is representable in the form
p = a® + ab+ 3b? for relatively prime a,b € Z
if and only if

p=1lorp=1,3,59,1521,23 25 27,31 (mod 44).
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4.4. Prove that a prime p is representable in the form

4.5.

4.6.

4.7.

4.8.

p = a® + ab + 5b? for relatively prime a,b € N
if and only if p = 19 or

p=1,5,7,9,11,17,23,25, 35,39, 43, 45,47, 49, 55,61, 63,73 (mod 76).

Prove that a prime p is representable in the form
p = a® + ab+ 11b? for relatively prime a,b € Z
if and only if p = 43 or
p=1,9,11,13,15,17,21, 23, 25, 31, 35,41, 47,49, 53, 57,59, 67, 79, 81,

83,87,95,97,99, 101, 103,107,109, 111, 117, 121, 127, 133,
135,139, 143, 145, 153, 165, 167,169 (mod 172).

Prove that a prime p is representable in the form
p = a® + ab+ 17b? for relatively prime a,b € Z
if and only if p = 67 or
p=1,9,15,17,19,21, 23, 25,29, 33, 35, 37, 39, 47,49, 55,59, 65, 71, 73, 77, 81,

83,89,91,93,103, 107, 121, 123,127, 129, 131, 135, 143, 149, 151, 153, 155,
157,159,163, 167, 169, 171, 173, 181, 183, 189, 193, 199, 205, 207, 211, 215,
217,223,225, 227, 237, 241, 255, 257, 261, 263,265 (mod 268).

From Corollaries 1.1-1.2 on page 13, Theorem 1.28 on page 45, and Theorem 3.6 on
page 103,we know that ho, = hZ[(Hm)/Q] = 1. Thus, Theorem 4.1 on page 139
informs us that odd primes p with (Ar/p) = (—163/p) = 1 satisfy that p = a® + ab+
41b? for some relatively prime integers a,b. Show that for b = 1, a? 4 a + 41 is indeed
prime for a =0,1,...,39.

(This is related to a result of Rabinowitsch [60], which states that for negative Ap,
with Ar = 1(mod 4), we have that ho, = 1 if and only if *> +x + (1 — Ap)/4 is
prime for x = 0,1,...,[|AFp|/4 — 1|. The reader may now go to Exercises 4.3-4.6
and verify this fact for those values as well.)

(See Biography 4.1 on the next page.)

Related to the Rabinowitsch result in Exercise 4.7 is the following, known as the
Rabinowitsch—Mollin-Williams criterion for real quadratic fields—see [46]. If F is a
real quadratic field with discriminantA r = 1(mod 4), then |22 + 2 + (1 — Ap)/4]
is 1 or prime for all x = 1,2,..., | (VA — 1)/2] if and only if hp, = 1 and either
Ap =17 orA g = n? +r = 5(mod 8) where r €{+ 4,1}-see [50, Theorem 6.5.13, p.
352]. Verify this primality for the values

Ap € {17,21,29,37,53,77,101,173, 197, 293, 437, 677}.

(See Biography 4.2 on the following page.)
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4.9. Tt is known that forA p = =20, hp, = 2 and P = (2,14++/-5) is an ideal representing
the nonprincipal class. Use the identification given in the proof of Theorem 3.5 on
page 101 to prove the following, where p # 5 is an odd prime.

(a) p = a® + 5b% if and only if p = 1,9 (mod 20).
(b) p = 2a? + 2ab + 3b? if and only if p = 3,7 (mod 20).

Biography 4.1 The following was taken from a most interesting article about
G. Rabinowitsch by Mordell [55]. Mordell writes: “In 1923, I attended a meet-
ing of the American Mathematical Society held at Vassar College in New York
State. Someone called Rainich from the University of Michigan at Ann Arbor,
gave a talk upon the class number of quadratic fields, a subject in which I was
very much interested. I noticed that he made no reference to a rather pretty
paper written by Rabinowitz from Odessa and published in Crelle’s Journal.
I commented upon this. He blushed and stammered and said, “I am Rabi-
nowitz.” He had moved to the U.S.A. and changed his name.... The spelling of
Rabinowitsch in this book coincides with that which appears in Crelle [60].

Biography 4.2 Hugh Cowie Williams was born in London, Ontario, Canada
on July 23, 1943. He graduated with a doctorate in computer science from the
University of Waterloo in 1969. Since that time, his research interests have been
in using computational techniques to solve problems in number theory, and in
particular, those with applications to cryptography. He held a Chair under
Alberta Informatics Circle of Research Excellence (iCORE) at the University
of Calgary (U of C) until 2009. He oversaw the Centre for Information Security
and Cryptography (CISaC), a multi-disciplinary research centre at the U of C
devoted to research and development towards providing security and privacy
in information communication systems. There are also more than two dozen
graduate students and post doctoral fellows being trained at the centre. The
iCORE Chair is in algorithmic number theory and cryptography (ICANTC),
which is the main funder of CISaC. The initial funding from iCORE was $3
million dollars for the first five years and this has been renewed for another five
years. In conjunction with this iCORE Chair, Professor Williams had set up
a research team in pure and applied cryptography to investigate the high-end
theoretical foundations of communications security. Previous to the iCORE
chair, Professor Williams was Associate Dean of Science for Research and De-
velopment at the University of Manitoba, as well as, Adjunct Professor for the
Department of Combinatorics and Optimization at the University of Waterloo.
He has an extensive research and leadership background and a strong interna-
tional reputation for his work in cryptography and number theory. CISaC and
ICANTC were acronyms coined by this author, who initiated the application
for the Chair, and is currently a member of the academic staff of CISaC, as
well as professor at the U of C’s mathematics department. This author and
Professor Williams have coauthored more than two dozen papers in number
theory, and computational mathematics, over the past quarter century.
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4.2 Bachet’s Equation

No enemy is worse than bad advice.
Sophocles (c. 496-406 B.C.)
Greek dramatist

In this section we look at unique factorization in certain quadratic domains to find solutions
of certain Bachet equations, those of the form

v =2+ k (4.2)
where k € Z—see Biography 4.3 on page 147.

Theorem 4.2 — General Solutions of Bachet’s Equation

Let F = Q(Vk) be a complex quadratic field with radicand k& < —1 such that & # 1(mod 4),
and hgo, # 0(mod 3). Then there are no solutions of (4.2) in integers x,y except in the
following cases: there exists an integer u such that

(k,z,y) = (1 — 3u?,4u® F 1, e u(3 F 8u?)),
where the + signs correspond to the F signs and € = £1 is allowed in either case.
Proof. Suppose that for k as given in the hypothesis, (4.2) has a solution.
Claim 4.2 ged(z,2k) = 1.
Given that y? = 0,1 (mod 4), and k = 2,3 (mod 4), then
P =y*—k=1,2,3 (mod 4).

However, 22 = 2(mod 4) is not possible. Hence,  is odd. Now let p be a prime such that
P ’ ged(x, 2k), where p > 2 since z is odd. Since k is a radicand, it is squarefree, so

pllk = y* —2°. (4-3)

However, p | = so p | y, which implies that p? | (y? — 2%), a contradiction to (4.3), that
establishes the claim.

By Claim 4.2, there exist integers 7, s such that
ra + 2ks = 1. (4.4)

Claim 4.3 The Op-ideals (y + V&) and (y — Vk) are relatively prime.

If the claim does not hold, then there is a prime Op-ideal P dividing both of the given
ideals by Theorem 1.19 on page 30. Therefore, by Corollary 1.7 on page 27, y + VD € P.
Therefore, 2vk =y +VEk — (y — VE) € P, so

2Wk-VEk =2k e P. (4.5)

Given that
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then by Corollary 1.7 again, since (x)3 C P, then P | (r)3. However, since P is prime
P | (z), and once more by Corollary 1.7, we conclude that

x e P (4.6)

Now we invoke (4.4)-(4.6) to get that both ra and 2ks are in P so 1 = ra 4+ 2ks € P, a
contradiction that establishes the claim.

By Theorem 1.26 on page 42, O is a Dedekind domain, so by Claim 4.4 and Exercise 4.10,
there exists an integral O p-ideal J such that (y + \/E) = J3. In other words, J° ~ 1, but
ho. # 0(mod 3), so by Exercise 4.11, J ~ 1. Thus, by Theorem 1.28 on page 45, there
exist u,v € Z such that J = (u + vvk). Hence,

(y+ V) = (w+oVE) = ([u+oVEP).
By Exercise 1.28 on page 19, there is a unit w in O g such that
y+ VE = wlu+vVk)?, (4.7

where we observe that since k # 1 (mod 4), then 2 does not split in Q(v/k)—see Remark 1.24
on page 52. Also, by Theorem 1.29 on page 47, w = +1. Now we conjugate (4.7) to get

Yy — \/Ezw(u—v\/g)g. (4.8)

B =y — k= (g~ VE)(y + VF) = 0w+ oVR) (u - oVE) = (0 — 07k,

Therefore,

r=u® — v’k (4.9)
Now by adding (4.7)—(4.8), we get
2y =w [(u +ovVE)® + (u— v\/E)‘j} = 2w(u® + 3uv’k), (4.10)
and by subtracting (4.8) from (4.7), we get
Wk =w [(u +ovVk)? — (u— v\/%)?’} = 20Vk(3u?v + v°k). (4.11)
Hence, from (4.10)—(4.11), we get, respectively, that
y = w(u® + 3uv’k) (4.12)
and
1 = w(3u?v + v3k) = wo(3u® + v?k). (4.13)

From (4.13), we get that v = £w, so from (4.9), (4.12)—(4.13), we have,
r=u®—k,y=w(?®+3uk), and 1 = £(3u* + k).

It follows that k = +1 — 3u?, 2 = 4u? F 1, and y = ¢(3u F 8u?), where ¢ = +1 is allowed in
either case. Therefore, the two cases are encapsulated in the following

(k,z,y) = (£1 — 3u? 4u® F 1, u(3 F 8u?))
and
23+ k= (du® F1)° £1 - 3u® = 640’ F 48u* + 9u® = (cu(3 F 8u?))? = 4,

as required. O

As special cases, we get the following two celebrated results—see Biographies 4.4 and 4.5
on page 148.
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Bachet’s Equation

Application 4.1 —Euler’s Solution of Bachet’s Equation
The only solutions with z,y € Z of (4.2) for k = —2 are x = 3 and y = £5.

Application 4.2 —Fermat’s Solution of Bachet’s Equation
The only solutions with z,y € Z of (4.2) for k = —4 are

(z,y) € {(5,£11),(2,4+2)}.
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Remark 4.2 Note that in Theorem 4.2, u is odd when k = 1 — 3u? and u is even when
k = —1—3u? by the hypothesis that & # 1 (mod 4), and the fact that & is a radicand, which
precludes that k£ = 0(mod 4)—see Application 2.1 on page 77.

See Exercises 4.13—4.14 for more illustrations. Also, see Exercise 4.15 for results similar
to Theorem 4.2 on page 145 for the case where k > 0.

Biography 4.3 Claude Gasper Bachet de Méziriac (1581-1638) was born in
Bourg-en-Bresse in Savoy that was a region variously allied with France, Italy,
or Spain. In his early years, he was educated by the Jesuits. Indeed, after both
his parents died when he was only six, the Jesuit Order took care of him in a
house belonging to the duchy of Savoy. Later, he studied with the Jesuits in
Lyon, France, and Milan, Italy. He also spent time in Paris and Rome. His
principal income was generated by his luxurious estate at Bourg-en-Bresse. In
1620, he married and had seven children. By the 1630s, he developed a sequence
of health problems including rheumatism and gout. He died on February 26,
1638.

Bachet’s contribution to mathematics was as a writer of books on mathematical
puzzles, which were seminal in that later books on recreational mathematics
were modeled after his. In 1612, for instance, he published Problémes plaisans
et delectables qui se font par les nombres, the last edition published in 1959!
His puzzles were largely arithmetical, such as number systems other than base
10. Also, he was fond of card tricks, magic square problems, watch-dial puzzles
depending on numbering schemes, and what we would call today think-of-a-
number problems. As noted in this section, he also contributed to number
theory, being perhaps best known for his Latin translation of Diophantus’s
Greek book Arithmetica, in which Fermat wrote his now famous Last Theorem
marginal notes—see Biography 4.5 on the next page.

Exercises

4.10. Suppose that I, J are nonzero integral R-ideals where R is a Dedekind domain with
I and J relatively prime—see Definition 1.26 on page 29. Prove that if K is an
R-ideal and n € N such that IJ = K", then there exist R-ideals J, J such that

4.11.

I=7"J=]J" and K =17].
(Hint: use Theorem 1.17 on page 28.)

Let O be the ring of integers of an algebraic number field F' with class number
ho,. Prove that if I is an integral O p-ideal such that I™ ~ 1 for some n € N with

ged(hop,n) =1, then I ~ 1.
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4.12.

4.13.

4.14.

4.15.

4. Applications: Equations and Sieves

Show that the only rational integer solutions of 32> = 23 — 1 are x = 1 and y = 0 using
unique factorization in Z[i].

Suppose that p is a prime of the form p = u? + 13v? for some u,v € N. Find all
solutions to 32 = p*>™ — 13, for m € N if any exist.

(Note that 13 is the smallest value of |k| of the form |k| = 1+ 3u? such that the
hypothesis of Theorem 4.2 is satisfied. Also, by =13 = 2.)

Find all solutions of y? = % — 193 if they exist.

(With reference to Ezercise 4.183, the next smallest |k| of the form |k| = 1 + 3u? such
that the hypothesis of Theorem 4.2 is satisfied is |k| = 193. Also, hy /=153 = 4.)

Suppose that k£ € N is a radicand of a real quadratic field F = Q(\/E) and k £ 1
(mod 4), such that ho, # 0(mod 3), with F' having fundamental unit e,—see Appli-
cation 3.1 on page 135. Let € = ¢, if &4 has norm 1, and ¢ = £% otherwise, and set
¢ = T + UvVk. Prove that (4.2) on page 145 has no solutions if k¥ = 4(mod 9) and
U =0(mod 9).

(Hint: Assume there is a solution (x,y) to (4.2). Then you may assume that y+'k =
w(u 4+ vVE)? for a unit w € Op and some u,v € Z, since the argument is the same
as in the proof of Theorem 4.2.)

(Note that more results for k > 0 of this nature, which typically involve congruences
on T and U, may be found, for instance, in Mordell’s classic text [56] on Diophantine
equations.)

Biography 4.4 Leonard Euler (1707-1783) was a Swiss mathematician who
studied under Jean Bernoulli (1667-1748)—see Biography 4.7 on page 161.
Euler was extremely prolific. In his lifetime, he is estimated to have written
over eight hundred pages a year. He published over five hundred papers during
his lifetime, and another three hundred and fifty have appeared posthumously.
It took almost fifty years for the Imperial Academy to finish publication of his
works after his death. Euler had spent the years 1727-1741 and 1766-1783 at
the Imperial Academy in St. Petersburg under the invitation of Peter the Great.
Euler lost the sight in his right eye in 1735, and he was totally blind for the last
seventeen years of his life. Nevertheless, his phenomenal memory (having the
entire Aeneid committed to memory for example) made the difference, and so
his mathematical output remained high. In fact, about half of his works were
written in those last seventeen years. He died on September 18, 1783.

Biography 4.5 Pierre de Fermat was not a professional mathematician, and
published none of his discoveries. In fact, he was a lawyer. However, he did
correspond with other mathematicians such as Pascal, de Bessy, and Mersenne.
It is from this correspondence that we know about much of his work. Moreover,
Fermat’s son found his copy of Bachet’s translation of Diophantus’ Arithmetica,
in which he had written margin notes—see Biography 4.3 on the preceding page.
These were published by his son, so we now have a further record of Fermat’s
work.
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4.3 The Fermat Equation

All animals are equal but some animals are more equal than others.
from chapter 10 of Animal Farm (1945)
George Orwell (Eric Blair) (1903-1950)
English novelist

In this section, we look at Fermat’s Last Theorem (FLT), and its related prime Fermat
equation

P +yP + 2P = 0. (4.14)
Tt suffices to solve (4.14) in order to solve the general Fermat equation z™ 4 3™ = z" for
n € N. As is now well-known, FLT was solved by Andrew Wiles—see [54, Theorem 10.4,
p. 365] for a proof that is given in one paragraph at the end of the book.
We begin with the anchor case where p = 3, provided by Gauss—see Biography 3.5 on
page 95—then move to the larger picture provided by Kummer—see Biography 4.9 on
page 164. The following result employs not only the unique factorization in a quadratic
domain Z[{3] (where (3 is a primitive cube root of unity) but also Fermat’s method of
infinite descent. This method involves assuming the existence, in natural numbers, of a
solution to a given problem and constructing new solutions using smaller natural numbers;
and then from the new ones other solutions using still smaller natural numbers, and so on.
Since this process cannot go on indefinitely for natural numbers, then the initial assumption
must have been false.

Theorem 4.3 — Gauss’s Proof of FLT for p =3
There are no solutions of
o’ + 82 +4°=0
for nonzero a, 8,y € O = Z[(3], where F' = Q(¢3). In particular, there are no solutions to

23 4y = 25,

in nonzero rational integers z, v, 2.
Proof. We assume that there are nonzero «, 8,y € O such that
A48+ 43 =0,
and achieve a contradiction. Without loss of generality, we may assume that

ged(a,B) = ged(ay) = ged(B,7) =1,
—see Exercise 1.17 on page 6 and Remark 1.8 on page 13. Let

3—v-3

2 )
—see Example 1.4 on page 2. Then Np(\) = A\ = 3, where N = (3 + /=3)/2 is the
algebraic conjugate of A. Therefore, by Corollaries 1.1-1.2 on page 13 and Exercise 1.22 on
page 14, A is prime in D p. We will achieve the desired contradiction by an infinite descent
argument. This is not done directly, but rather we get a contradiction to the equation
a3 + B3 + X3"p? = 0. Thus, we first show that the latter equation holds. We require two
claims. Note that congruence of elements follows the development in §1.5 on ideals, namely
0 = w(mod v) means v | (0 —w) in Op—see Remark 1.17 on page 32, as well as Exercises
4.25-4.32 on pages 163-164 for further developments.

A=1-(=
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Claim 4.4 If A0 € Op, then § = £1 (mod A).

Let 6 = a + b3, where a,b € Z. Then § = u + v\, where u,v € Z. If Au, then § = 0
(mod M), a contradiction, so A t u. Since A|3, then 3 1 u, so u = £1(mod 3) in Z. Thus,
there is a t € Z such that

0==£143t+ v

But A|3, so there exists a o € Op such that

0 =21+toA+vA==£1+ A(to +v).
In other words, § = £1 (mod A), which is Claim 4.4.
Claim 4.5 If A\{§ € Op, then §° = 1 (mod A\*).

By Claim 4.4, we may assume that § = 1 (mod \) since the other case is similar. Therefore,
6 =1+ Ao for some o0 € Op. Thus,

F=1=(-1)0-G)0-G) =M +1-G)Ao+1-¢) =
Aa(Ao +A) (Ao + A1+ (3)) = No(o + 1) (0 — (3), (4.15)

where the last equality follows from the fact that Z?:o (g = 0, given in Example 1.5 on
page 2. Since
G=1=(G+1(G—1)=(G+1\
then (2 = 1(mod \), so since § = 1(mod \), then by (4.15),
0= -DA3=0c(c+1)(0—G)=0(c+1)(c —1) (mod ).

Hence,
63 =1 (mod \%),

and we have Claim 4.5.

Claim 4.6 )\ | afy.

Suppose that At afy. Then by Claim 4.5,
0=a’+3+73=x1+£141 (mod \?),

from which it follows that \* | 1or A | 3. The former is impossible since A is prime, and
the second is impossible since

3=(1-¢)(1—¢3) =1 —¢)*(1+¢G) = N (1+ (),

and 1 + (3 is a unit, so not divisible by A2. This contradiction establishes Claim 4.6.

By Claim 4.6, we may assume without loss of generality that A | ~v. However, by the gecd
condition assumed at the outset of the proof, A f @, and At 8. Let n € N be the highest
power of A\ dividing «. In other words, assume that

v = A"p, for some p € Op with A1 p.

Thus, we have
o+ B+ Np3 = 0. (4.16)
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We now use Fermat’s method of infinite descent to complete the proof. First we establish
that n > 1. If n = 1, then by Claim 4.4,

NP =+ =+1+1 (mod \).
The signs on the right cannot be the same since A { 2. Therefore,
~2p? =0 (mod \),

forcing A ‘ p, a contradiction that shows n > 1. Given the above, the following claim, once
proved, will yield the full result by descent.

Claim 4.7 If Equation (4.16) holds for n > 1, then it holds for n — 1.

Let )

_ 5C3+017 and 7 — (5+a)(3'

A A

Observe that X, Y, Z € Op by Corollary 1.1 on page 13, Equation (4.16), and the fact that

¢3 = 1(mod ). Also, by Example 1.5, Z?:o (3=0,
X+1Y+Z=0, (4.17)

Bt ads
X= A

Y

and

53 + b _\n 3 .
XYZ = )\3 = A P = )‘3 8 (7p)3 )

so A*73 | XY Z, but A3 + XY Z, since A { p. Also, since
B=-GX+EY, and a=GZ - X,
then by the ged condition assumed at the outset of the proof, we have
ged(X,Y) = ged(X, Z) = ged(Y, Z) = 1.

Hence, each of X, Y, and Z is an associate of a cube in O . Also, we may assume without
loss of generality that 373 ‘ Z. By unique factorization in Op, we may let X = u, &3,
Y = wuon?, and Z = ugA3"3u3 for some &, n,v € Op, and u; € Uy, for j = 1,2,3.
Therefore, from (4.17),

€ 4 ugn® +us A3 =0, (4.18)

where u; = uy 'uj_o for j = 4,5. Therefore, £ 4+ uyn® = 0(mod \*). By Claim 4.5
€ =41 (mod \*), and n® = £1 (mod \*).

Hence,
+1+uy =0 (mod \?).

Since the only choices for uy are £1, £(3, and £(3, then the only values that satisfy the last
congruence are uy = +1, since A> { (£1 £ (3), and A3 { (&1 4 ¢3). If ug = 1, then Equation
(4.18) provides a validation of Claim 4.7. If uy = —1, then replacing n by —n provides a
validation of the claim. This completes the proof. O

Theorem 4.3 is the lynchpin case for the next result. The following uses factorization in
prime cyclotomic fields F' = Q((p), where ¢, is a primitive p-th root of unity for a prime
p > 2 when p1{ ho ., in which case p is called a regular prime. The proof is due to Kummer
and is an application of techniques we have learned thus far.

In the following, we note that for historical reasons and for convenience, FLT is usually bro-
ken down into two cases. Case I is that p 1 xyz and Case II is that p|zyz—see Theorem 5.22
on page 240.
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Theorem 4.4 — Kummer’s Proof of FLT for Regular Primes—Case 1

Let p be an odd prime such that p { hp, for F = Q({,). Then if p { zyz, the Fermat
equation (4.14) on page 149 has no integer solution zyz # 0.

Proof. Assume that (4.14) has a solution z,y,z € Z with xyz # 0. We may assume that
x,y, z € Z are pairwise relatively prime, and we may write (4.14) as the ideal equation

p—1

[+ ¢y = (2). (4.19)

§=0

Claim 4.8 (z + (gy) and (x + C;fy) are relatively prime for 0 < j#k <p—1.

Let P be a prime O g-ideal dividing both of the above ideals. Therefore, P divides
(@ +Gy) — (@ +Gy) =y (1=

By Exercise 3.37 on page 129, A =1 —(, and 1 — C{,"k are associates for j # k, and by
Exercise 3.39, C;f is a unit, so P ‘ (yA). By primality, P | (y) or P ’ M. EP ‘ (y), then
P | (2) from (4.19). Since ged(y, z) = 1, there exist u,v € Z such that uy + vz = 1. Since
y,z € P, then 1 € P, a contradiction. Hence, P ’ (M\). By Exercise 2.24 on page 68 and

Corollary 2.8 on page 85,
N((A) = Nr(A) =p.

Thus, by Exercise 2.45 on page 86, ()) is a prime O p-ideal. Therefore, P = (X), so (A) | (2).
By Exercise 2.46, Np(A) | Np(z). However, by Corollary 1.17 on page 41, Np(z) = 2P~
sop=Ng(A) ’ z, contradicting the hypothesis. This completes Claim 4.8.

By Claim 4.8 and Theorem 1.17 on page 28,

('T + pr) = Ipa

for some O p-ideal I. Since p t ho ., then by Exercise 4.11 on page 147, I ~ 1. Hence, there
exists an o € O such that

z + Cpy = wmal,
where u; € Uy ,. By Theorem 3.18 on page 128, u; = wC]’; for some k € Z and w € RNy ..

Therefore,
T+ Cpy = w(;fap. (4.20)

By Exercise 4.32 on page 164 there exists a z; € Z such that o = 21 (mod ())). By taking

norms on the latter, we get
p—1

aPl — 20 = H(a —(Jz1).

3=0
Since (p = 1(mod (A)), then for each j =0,1,...,p—1,

a— (gzl =a—2z (mod (V).

Hence,
al =28 (mod (M\)P),

so (4.20) becomes
T+ (Y = wzf(;f (mod (A)P).
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However, (p) = (A\)P~! by Exercise 4.19 on page 162, so
@+ Gy = w2 ¢, (mod (p)).

Since ¢ is a unit, then

G (@ + Gy) = waf (mod (p)). (4.21)
By taking complex conjugates in (4.21), we get
Gla+Gy) =wd (mod (p)). (4.22)
Subtracting (4.22) from (4.21), we get
G e+ G Py =G =Gy =0 (mod (p)). (4.23)

Claim 4.9 2k = 1(mod p).

Ifp | k, then C;f =1, so (4.23) becomes

0=y(G G )=y (G~ D=y (G~ DG +1) =y¢ " A(G +1) (mod (p)).
However, by Exercise 4.20, 14 ¢, € 4o ,., so
yA=0 (mod (p)).

Also, by Exercise 4.19,
() = (NP,
and p > 3, so A | y. Taking norms on the latter and using Exercise 2.46 again, we get that

P ’ y, contradicting the hypothesis. Therefore, k¥ # 0(mod p). By (4.23) there exists an
a1 € O such that

arp=ax( " +yC T —alh -yt (4.24)
By Exercise 4.21, k # 1 (mod p). Since k # 0,1 (mod p), then

Thitk Ya-rx LT Y,k
a] = — + = — (== . 4.25
1 pCp pCp pCp P D ( )

By Theorem 3.14 on page 123,
{LCIM ceey C]Zy)il}

is a Z-basis of Op. Thus, if all exponents —k, 1 — k, k and k — 1 are incongruent modulo
p, then z/p € Z, contradicting the hypothesis. Thus, two of the aforementioned exponents
are congruent modulo p. The only possibility remaining after excluding k¥ = 0,1 (mod p) is

2k=1 (mod p).

This establishes Claim 4.9.
Hence, (4.24) becomes

a1ply =z +yGp — a2 —yCF T = (z - y)A.
By taking norms and applying Exercise 2.46 one more time, we get p ‘ (z — y), namely

z=y (mod p).
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Thus, by (4.14)
y =z (mod p)

as well. Therefore, since p 1 x,
= 2P + yP + 2P =327 (mod p).

Thus, p = 3, which was eliminated in Theorem 4.3, so we have completed the proof. O

Now that we have completed Kummer’s verification of Case I of FLT for regular primes,
we turn our attention to irregular primes namely those primes p such that p ‘ ho,. We are
interested in the number of them. Kummer stated that there are infinitely many regular
primes. In [66], published in 1964, Siegel made this more precise by conjecturing that
approximately e~1/2 of all primes are regular, namely in the asymptotic sense using natural
density, about 60.75% of primes are regular. However, at the time of the writing of this book,
this still has not been proved. That there are infinitely many irregular primes is known,
proved by K.L. Jensen in 1915, and this is the focus of our next result. The mechanism for so
doing requires an equivalent definition of an irregular prime necessitating the introduction
of more celebrated numbers.

First, we need to introduce the following, which first appeared in the posthumous work Ars
Conjectandi by Jacob (Jacques) Bernoulli in 1713—see Biography 4.7 on page 161. Also,
the reader should be familiar with the background on the basics concerning series—see
Appendix B.

Definition 4.1 — Bernoulli Numbers

In the Taylor series, for a complex variable x,

T >, BaJ
F(‘r):ex_lzz J'l ’
=0 7

the coefficients B; are called the Bernoulli numbers.

Example 4.1 Using the recursion formula given in Exercise 4.16 on page 161, we calculate
the first few Bernoulli numbers:

n 0] 1 2 [3] 4 [5] 6 |[7] 8 [9] 10
By | 1| -1/2|1/6|0|—1/30 |0 |1/42 |0 | —1/30 | 0 | 5/66

n | 11 12 13| 14 | 15 16 17 18 19
B, | 0 | —691/2730 | 0 | 7/6 | O | —3617/510 | O | 43867/798 | 0

Example 4.1 suggests that Bg,+1 = 0 for all n € N and this is indeed the case—see
Exercise 4.23 on page 162.

Suppose that z, s are complex variables and set

F(s,z) = ;e_ - = ;Bn(x)%, for |s| < 2r. (4.26)
Then by comparing coefficients of z in
oo Sn s oo Sn (oo} -Sj
Z)Bn(x)m = F(s,x) = F(s)e™ = Z}Bnm ijﬁ,
n= n= 7=0

we get the following.
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Definition 4.2 — Bernoulli Polynomials
For z € C,
B, (x) = Z (n) Bjx"™,
=0 M

called the n-th Bernoulli polynomial.

Example 4.2 Using the recursion formula in Exercise 4.16 again, we calculate the first few
Bernoulli polynomials:

1 1
By(x) =1,Bi(z) =z — 5, Ba(x) = 2 =z + ,

2 6
3 1
Bs(z) =2 — —x =z(x—1) z=3)
By(x) = o* — 223 + 2 — L
30°
5 5 1
Bs(z) = 2° — 51:4 + gx?’ — 5
Bg(z) = % — 32° + ot 1x2+i.
2 2 42

The following is Kummer’s notion of a regular prime which is equivalent to the one given
on page 154. Recall that a rational number ¢ = a/b is written in lowest terms when
ged(a,b) = 1.

Definition 4.3 — Bernoulli Numbers, Regular, and Irregular Primes

An odd prime number p is said to be a regular prime if p does not divide the numerator of
any of the Bernoulli numbers B,, when B,, is written in lowest terms for n = 2,4,6,...,p—3.

We need the following result by Jacob Bernoulli on sums of n-th powers and Bernoulli
polynomials.

Lemma 4.1 — Bernoulli Numbers, Polynomials, and Sums of Powers

For every nonnegative n € Z and k € N,

k—1 n
_ n B7l+1(k) - B7l+1 _ 1 n+1 n+1—j
Sn(k)—Zj = o D ) Bjk .
j=1 7=0
Proof. Since F(s,z) — F(s,x — 1) = se*@~1) then
Bny1(z) = Bpyi(z — 1)
=(x—-1)". 4.2
o (@-1) (a.27)
Adding (4.27) for x = 1,2, ...k, we get the result. O

In order to obtain a crucial result on Bernoulli numbers, which is the final lead-up to proving
the infinitude of irregular primes, we need to establish a realtionship between Bernoulli
numbers and the Riemann zeta function

¢(s) = ijs for s € C with R(s) > 1,

Jj=1
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where R(s) = a is the real part of s = a + by/—1 for a,b € R—see [53, §1.9, pp. 65-72] as
well as the development in Appendix B on pages 352-354. This was established by Euler
as follows.

Theorem 4.5 — Bernoulli Numbers and the Riemann Zeta Function
For k € N,
(271_)219
2k) = ——|Ba|.

Proof. First we note that by putting = 0 in Equation (4.26) and adding s/2 to both sides,
we get (where coth denotes the hyperbolic cotangent):

s fef+1 s s > 52k

s = 2 coth (7) =N By 4.28

2 (es—1> 2 g kZ:O 2k 2k)! (4.28)
observing that B; = —1/2 is the only nonzero, odd-indexed Bernoulli number. Then by

setting s = 2ix in (4.28), we get

22k 2k

mcota:—l—&-z B2k ),

(4.29)

recalling that e = cosx + isinx, so cosz = (€™ + e~%)/2 and sinx = (e®® — e~%)/(24).
Secondly, from the known infinite product expansion for the sine function

sin(z) = x H ( n2ﬂ2> (4.30)

—see Application B.2 on page 354—we take the logarithmic derivative of (4.30) to achieve,

0 2
x
n=1
To proceed, we need the following.
Claim 4.10 For z € C,
2 B 2k
22 —n2n2 Z n2k 2k’
k=1
We have
2k o0 o . N oo ok
3 s =1 Yt =1 2 (%)
k=1 k=0 k=0

However, by Theorem B.4 on page 347 this equals

-\ N
1— lim ((7) ) Yo 1 _

xT
N—oo (M)*Q 1
T

which is Claim 4.10.
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Now by plugging the result of Claim 4.10 into (4.31), and equating the result with (4.29),

we get
1+Z ng _1_2212n2k7r2k’
" 21,2k O 2k :k Oko 1 2k
(71)“13%2(27; . Zl e = Z n% = TR,

Since (—1)**1 By, > 0, then this implies the desired result,

T 2k
|32k% — ¢(2h).

Corollary 4.5 For n € N,

lim Bon| _
n—ooo | 2n |
Proof. By Theorem 4.5,
2(2n)!
Boy,| > ——,
| Ban| > (27)2n
given that ((2n) > 1. Since (2n)! > (2n/e)?", by Stirling’s formula given in (A.7) on page
339, then
2n
|B2n| > 2 (ﬁ) s
e
and the result follows. O

We are now ready for a key result in our pursuit to establish the infinitude of irregular
primes. For convenience, we introduce the following notion.

Definition 4.4 — p-Integers and Rational Congruences

If g € Q, and p € Z is a prime, then ¢ = a/b for a,b € Z written in lowest terms is called a
p-integer provided that p 1 b. For any n € N, a congruence

@1 = ¢2 (mod n) with g1,92 € Q

means that ¢ — g2, written in lowest terms, is a rational number with numerator divisible
by n.

Remark 4.3 The term p-integer comes from the notion of a p-adic integer, which we
will not study per se in this text since we are concentrating on a global approach—see [54,
Chapter 6] for an introduction to p-adic analysis.

The reader can easily verify that for any rational number ¢; with denominator prime to n,
there exists a unique rational integer ro with 0 < ro < n — 1 such that

g1 =712 (mod n).

The following result was proved independently by T. Clausen and C. von Staudt. Clausen
was described by Gauss as a man of “outstanding talents.” The following was communicated
to Gauss by von Staudt, who published a proof in 1840. Just prior to this, Clausen had
published a statement of the result—see Biographies 4.6 on page 159 and 4.8 on page 162.
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Theorem 4.6 — von Staudt—Clausen
Let p be a prime and n € N even. If (p — 1) { n, then B,, is a p-integer. If (p — 1) ’ n, then
pB,, is a p-integer, and

pB, = -1 (mod p).

Proof. We use induction on n. Since By = 1/6, then the denominator of By is not divisible
by p unless p = 2,3. If p = 3, then pBy = 1/2 is a p-integer, and pB,, = 1/2 = —1(mod 3).
If p = 2, then pBy = 1/3 is a p-integer, and pBs = 1/3 = —1(mod 2). This is the induction
step. Now we use the fact given in Lemma 4.1 on page 155, for our case, namely

(k+D&Mﬁ§:(aij kt1=j,

=0

Therefore,
k—

k+1 ,
pBy = Sk(p ( M ) " pB;, (4.32)
]:O

,_.

where pBj for j < k is a p-integer. Consider
1 k+1\ 4_;
, 4.33
k—%]( j )1) (4.33)
which is divisible by p = 2, given that j < k, since k + 1 is odd. If p > 2, then write (4.33)
as
1 k+1 ke k=1 (G+1) 4
Eri\k+1—j I P TR
where the last equality follows, via (4.33), from the symmetry property in Pascal’s triangle,

(kiﬁij) = (kjl)—see [53, Exercise 1.15, p. 14]. We have that

| (k+1-)), (4.34)

where

“lk+1—3 “k+1—5 k+1—4§ k+1—3
=Y [P« A S B
V4

l ‘ - _ -
p = P p—1 2

with the second equality following from Theorem B.4 on page 347. Therefore,

P
(k+1—j)
is a p-integer, so from (4.32) and (4.34),
k—j
p
———— =0 (mod p).
vty med?)
Hence, pBj, is a p-integer, so
pBy = Si(p) (mod p). (4.35)

Also, if (p—1) | k, then z* = 1(mod p), for 1 < x < p — 1. Therefore,

p—1 p—1
Se(p) =Y 2" = 1=p—1 (mod p),
r=1 z=1



4.3. The Fermat Equation 159

Sk(p) = —1 (mod p) if (p—1) | k. (4.36)

On the other hand, if (p — 1) t k, then let g be a primitive root modulo p. Thus,

p-! p=2 (p—1)k

_ k_ o _ 9 -1
Sk(p) = Zl‘ = Z!J =T aC1 (mod p),

z=1 £=0
where the last equality comes from Theorem B.4 again. Therefore, since g?~! = 1 (mod p)
and g* # 1 (mod p), then

Se(p) =0 (mod p) if (p—1) t k. (4.37)

Comparing (4.35) and (4.37), we see that pBy = 0(mod p) when (p — 1) { k, so By is a
p-integer. Similarly, comparing (4.35) and (4.36), we get that pBy = —1(mod p), when
(p—1) |k O

Biography 4.6 Carl Georg Christian von Staudt (1798-1867) was born in
the Imperial Free City of Rothenburg (now Rothenburg ob der Tauber, Ger-
many) on January 24, 1798. He attended Gauss’s alma mater, Gottingen, from
1818 to 1822, the year in which he received his doctorate in astronomy from
Erlangen, Bavaria (now Germany). In 1827, he became Professor of Mathemat-
ics at the Polytechnic School at Nuremburg, and in 1835 at the University of
Erlangen. One of his feats was the demonstration of how to construct a regular
polygon of seventeen sides (a 17-gon) using only compasses. Then he turned
his attention to Jacob Bernoulli’s numbers described above. However, he is
principally known for his work in geometry. In 1847, he published Geometrie
der Lage, which was on projective geometry. His work showed that projective
geometry did not need to have reference to magnitude or number. He died on
June 1, 1867 in Erlangen.

Corollary 4.6 If p > 2 is prime and n € N is even with n < p — 1, then
pB,, = S,(p) (mod p?).

Proof. In the proof of Theorem 4.6, if n < p — 1, then p — 1 does not divide any k < n.
Therefore, all By for k < n are p-integers. Hence, every term on the right-hand side of
(4.32) is divisible by p?. O

The last result required for putting together the machinery necessary to establish the in-
finitude of irregular primes is due to Kummer.

Theorem 4.7 — Kummer’s Congruence

If p is a prime and n € N is even with (p — 1) t n, then B, /n is a p-integer, and

Bn,+p—1 Bn

n+p—1_n (mod p).

In this case, we say that the values B,, /n have period length p—1 modulo p when (p—1) 1 n.
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Proof. Let g be a primitive root modulo p with 1 < g < p, and set

gz x = Bn(g" —1)
F(z)= — = —" 4.

(z) e9r —1 e —1 n; n! o (4.38)
where the last equality comes from Definition 4.1 on page 154. We may also write, via
Theorem B.4 on page 347 and the Binomial Theorem,

F(z) = xZaj(e”“' — 1), (4.39)
=0

where each a; is a p-integer, by (4.38). Also, since the (e” —1)7 are each linear combinations
of the expressions:
b=y (4.40)
2
£=0

and since k*?~! = k* (mod p) by Fermat’s Little Theorem, then (4.39) becomes, via (4.40),
F(x) —xib—"m” (4.41)
B = n!” 7 '

where the b,, are p-integers. Comparing coefficients of 2™ in (4.38) and (4.41), we get

Bn(gn - 1) _ bnfl
nl (n— 1)’

SO

Since (p — 1) 1 n, then g™ # 1(mod p), so the values g™ — 1 have period length p — 1 by
Fermat’s Little Theorem. Also, since the b,, are p-integers, then B,,/n are p-integers, and
have period length p — 1, when (p — 1) t n. o

Theorem 4.8 — Infinitude of Irregular Primes

There exist infinitely many irregular primes.

Proof. Let p1,po,--- ,p, be irregular primes for r € N. It suffices to prove the existence of
an irregular prime p # p; for any j =1,2,...,7. Let

r

nst(pj —1)=0 (mod 2),

j=1

where s € N may be chosen sufficiently large so that |B,/n| > 1, by Corollary 4.5 on
page 157. Let p be a prime dividing the numerator of B, /n, in lowest terms. If (p — 1) { n,
then by Theorem 4.6, p divides the denominator of B, a contradiction. Hence, (p — 1) 1 n,
and p 12 H;lej. Suppose that n = ¢(p — 1) + ¢, where 2 < ¢t < p — 3. By Theorem 4.7 on
the preceding page,

B B,
Tt = # (mod p).
Since B,/n = 0(mod p), then B;/t = 0(mod p). By Definition 4.3 on page 155, p is

irregular, and we are done. O
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One conclusion from the results of this section and the relatively recent proof of FLT using
elliptic curves is that the manifold attempts to prove it are far more valuable and far-
reaching than the relevance of FLT itself. In fact, it may be said that the very existence
of algebraic number theory itself is due to the deep and fertile ideas generated by such
attempts to prove FLT.

Biography 4.7 Jacob Bernoulli (1654-1705) was born on December 27, 1654
in Basel, Switzerland. He was one of ten children of Nicolaus and Margaretha
Bernoulli. His brother Johann (1667-1748) was the tenth child of the union,
and the two brothers had an influence on each other’s mathematical develop-
ment. Jacob was the first to explore the realms of mathematics, and being the
pioneer in the family in this regard, he had no tradition to follow as did his
brothers after him. In 1681, Bernoulli travelled to the Netherlands where he
met the mathematician Hudde, then to England where he met with Boyle and
Hooke. This began a correspondence with numerous mathematicians that con-
tinued over several years. In 1683, he returned to Switzerland to teach at the
University in Basel. He studied the work of leading mathematicians there and
cultivated an increasing love of mathematics. Jacob’s first seriously important
work was in his 1685 publications on logic, algebra, and probability. In 1689,
he published significant work on infinite series and on his law of large numbers.
The latter is a mathematical interpretation of probability as relative frequency.
This means that if an experiment is carried out for a large number of trials,
then the relative frequency with which an event occurs equals the probability
of the event. By 1704, Jacob had published five works on infinite series con-
taining such fundamental results such as that Z(;il 1/j diverges—see Exercise
4.17. Although Jacob thought he had discovered the latter, it had been already
discovered by Mengoli some four decades earlier. In 1690, Jacob published an
important result in the history of mathematics by solving a differential equa-
tion using, in modern terms, separation of variables. This was the first time
that the term integral was employed with its proper meaning for integration.
In 1692, he investigated curves, including the logarithmic spiral, and in 1694,
conceived of what we now call the lemniscate of Bernoulli. By 1696, he had
solved what we now call the Bernoulli equation: y' = p(x)y + q(x)y™. Eight
years after his death, the Ars Conjectandi was published in 1713, a book in
which the Bernoulli numbers first appear—see Definition 4.1 on page 154. In
the book, they appear in his discussion of exponential series. Jacob held his
chair at Basel until his death on August 16, 1705, when it was filled by his
brother Johann. Jacob was always enthralled with the logarithmic spiral men-
tioned above. Indeed, he requested that it be carved on his tombstone with
the (Latin) inscription I shall arise the same though changed.

Exercises
4.16. Prove the following recursion formula for Bernoulli numbers for n € N,
n—1 .
Z n B — 1 ifn= 1,
i) 0 ifn>1,
i=0
where (?) is the binomial coefficient.

(Hint: Use the fact that e® = f—,)
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4.17.

4.18.

4.19.

4.20.

4.21.
4.22.

4.23.

4.24.

4. Applications: Equations and Sieves

Prove that 372 (1/4) diverges.
(Hint: Assume Z;‘;l(l/j) =d € R and reach a contradiction.)

Prove that, from Definition 4.2 on page 155,

B.(1) { 1/2 ifn=1,

B, ifn>1.

(Hint: Use Erxercise 4.16.)

Biography 4.8 Thomas Clausen (1801-1885) was born in Snogebaek, Den-
mark on January 16, 1801. Clausen took care of the livestock of a local priest,
who in turn taught Latin, Greek, and astronomy to him. Clausen became an
assistant at the Altona Observatory in 1824, then later he went to the Opti-
cal Institute in Munich. His lack of any significant duties there left him with
ample time to study mathematics and astronomy. However, his suffering from
a degree of mental illness caused him to leave Munich and return to Altona.
For the next two years he engaged in what many consider to be the best re-
search of his life. In 1842, he was appointed to the observatory in Dorpat (now
Tartu), Estonia. Then two years after that, he received his Ph.D. under the
supervision of F.W. Bessel (1784-1846). In 1866, he was appointed director
of the Dorpat Observatory, a post which he held until his retirement in 1872.
During his lifetime he published more than one-hundred and fifty papers in the
areas of mathematics, astronomy, and geophysics. Among his achievements
was the factoring of the sixth Fermat number® in 1854 (see [71, p. 99] for a
discussion of Clausen’s factoring method). He also found a new method for
factoring numbers in general. He died on May 23, 1885 in Dorpat.)

9Recall that a Fermat number is one of the form F,, = 22" + 1 for any n € N.

Let p > 2 be prime, and set A = 1 — (,,, where (, is a primitive p" root of unity.
Prove that the following ideal equation holds

Let p > 2 be prime, and let ¢, be a primitive p'" root of unity. Prove that 1+ € Yoy,
where F' = Q(¢p).

Show that k& #Z 1(mod p) in Claim 4.9 on page 153 of the proof of Theorem 4.4.

Establish the following derivative formula for Bernoulli polynomials,
B j1(z) = (n+ 1) By (2).

(Hint: Replace the x by x + 1 in Equation (4.27) on page 155 and differentiate with
respect to x.)

Prove that the Bernoulli numbers B,, = 0 for n > 1 an odd integer. (Hint: Use
Definition 4.1 on page 154.)

Compute the Bernoulli numbers B,, for even n where 8 < n < 24.
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4.25.

Note:
4.26.

4.27.

4.28.

4.29.

4.30.
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Let F be a number field and I a nonzero Op-ideal. In Remark 1.17 on page 32 we
talked about congruence modulo an ideal, which we further develop here. If o, € I,
we say that a and [ are congruent modulo I if a — g € I, denoted by

a=p0 (modI).

We call all those o € O which are congruent to each other a residue class modulo 1.
Prove that the number of residue classes is equal to N(I).

The balance of the exercises in this section are in reference to Ezxercise 4.25.

Let R be a Dedekind domain. Prove that if ged(«, I) = 1, then for any 8 € R, there
is a 7 € R, uniquely determined modulo 7, such that

ay=p4 (mod I).

Furthermore, prove that this congruence is solvable for some v € Op if and only if

ged(a, ) | (B).

In view of Exercise 4.26, two elements of O that are congruent modulo I have the
same gcd with 1. Hence, this is an invariant of the class, since it is a property of the
whole residue class. We denote the number of residue classes relatively prime to I, by
the symbol ®(I). Let I,.J be relatively prime O p-ideals. Prove that

20 =V ] (1 5757).

|1

where the product runs over all distinct prime divisors of I. Conclude, in particular
that if I, J are relatively prime O g-ideals, then

(1) = B(1)®(J).

Suppose that I = H;Zl 9’?'77 where the P; are distinct O p-ideals. Prove that

T

(1) =N [] (1 - 1\7(1%)) .

j=1
Note that when F = Q, then ® is the ordinary FEuler totient function ¢.

Let aj € Opforj =1...,d, and let P be a prime O p-ideal. Prove that the polynomial
congruence

f(x) :xd+a1xd_1 + - F g1+ ag =0 (mod :P)

has at most d solutions z € Op that are incongruent modulo P, or else f(a) = 0
(mod P) for all @« € Op. (We also allow the case where deg(f) = 0, in which case
f(z) = ap = 0(mod P) means that ag € P.)

Prove that the residue classes modulo I, relatively prime to I, form an abelian group
under the multiplication given by (a + I)(b+ I) = ab+ I. Prove that this group has
order ®(I). In particular, show that if I is a prime O p-ideal, then the group is cyclic.
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4.31. Suppose that I is a nonzero O p-ideal and a € O is relatively prime to I. Prove that
a®® =1 (mod I),
called Euler’s Theorem for Ideals. Conclude that if I = P is a prime 9 p-ideal, then
NP1 =1 (mod P),
called Fermat’s Little Theorem for Ideals.

4.32. Let P be a nonzero prime 9 p-ideal, and let o € O . Prove that there exists a z € Z
such that a = z (mod P) if and only if o = a(mod P), where (p) = PN Z.

Biography 4.9 Eduard Kummer (1810-1893) was born on January 29, 1810
in Sorau, Brandenburg, Prussia (now Germany). He entered the University of
Halle in 1828. By 1833, he was appointed to a teaching post at the Gymnasium
in Liegniz which he held for 10 years. In 1836, he published an important paper
in Crelle’s Journal on hypergeometric series, which led to his correspondence
with Jacobi and Dirichlet, who were impressed with his talent. Indeed, upon
Dirichlet’s recommendation, Kummer was elected to the Berlin academy in
1839, and was Secretary of the Mathematics Section of the Academy from
1863 to 1878. In 1842, with the support of Dirichlet and Jacobi, Kummer was
appointed to a full professorship at the University of Breslau, now Wroclaw,
in Poland. In 1843, Kummer was aware that his attempts to prove Fermat’s
Last Theorem were flawed due to the lack of unique factorization in general.
He introduced his “ideal numbers” that was the basis for the concept of an
ideal, thus allowing the development of ring theory, and a substantial amount
of abstract algebra later on. In 1855, Dirichlet left Berlin to succeed Gauss
at Gottingen, and recommended to Berlin that they offer the vacant chair to
Kummer, which they did. In 1857, the Paris Academy of Sciences awarded
Kummer the Grand Prize for his work. In 1863, the Royal Society of London
elected him as a Fellow. He died in Berlin on May 14, 1893.

Although Kummer may be best known for his failed attempt to prove FLT and
the mathematics that derived from it, there are some not-so-well-known results
that bear his name. For instance, in 1864 he published the discovery, now called
the Kummer surface, that is a fourth order surface, based upon the singular
surface of the quadratic line complex. This surface has sixteen isolated conical
double points and sixteen singular tangent planes. This discovery emanated
from his algebraic approach to geometric problems involving ray systems that
had been studied by Sir William Rowan Hamilton (1805-1865).
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4.4 Factoring

The thing which is the most outstanding and chiefly to be desired by all healthy and
good and well-off persons, is leisure with honour.

from chapter 98 of Pro Sestio

Cicero (Marcus Tullius Cicero) (106-43 B.C.)
Roman orator and statesman

—see the quotation on page 65.

The problem of factoring rational integers has taken on significant importance in the modern
era. To a great extent, this is due to the increased need for security in the transmission of
sensitive data such as military or banking communications. The theory that is behind all of
this is called cryptography, the study of methods for sending messages in secret, namely in
enciphered or disquised form to a recipient who has the knowledge to remove the disguise or
decipher it. The RSA cryptosystem, for instance, is based upon the presumed difficulty of
factoring—see [51] for details on RSA and other cryptosystems. (Think of a cryptosystem,
also called a cipher, as a method for enciphering and deciphering.) Herein we will be
concerned with the applications of algebraic number theory to such important problems as
factoring, but not to the cryptographic descriptions themselves, which may be found in an
introductory text on cryptography such as [51].

It is somewhat surprising that long-standing problems such as Fermat’s Last Theorem have
fallen to the sword of mathematical intellect, yet we still cannot do something as seemingly
simple as that of factoring a 200-digit integer in reasonable computational time. However,
this is the case. Factoring is intrinsically difficult. However, even this latter statement
has only historical validation in the sense that a plethora of mathematicians and computer
scientists have worked diligently to try to get efficient algorithms for factoring and, for all
the work done, we have not advanced very far. However, there is no proof that verifies the
intractability of factoring.

In this section, we will look at two closely allied factoring algorithms. We first look at some
elementary facts about factoring that will historically lead into our algorithms that are the
feature of this section.

® The Integer Factoring Problem—(IFP)
Given n € N, find primes p; for j =1,2,...,7 € Nwith p; <ps <--- <p, and e; € N for

7 =1,2,...,r, such that
.
w10t
j=1

A simpler problem than the IFP is the notion of splitting of n € N, which means the finding
of factors r,s € N such that 1 < r < s such that n = rs. In order to solve the IFP for any
integer, one merely splits n, then splits n/r and s if they are both composite, and so on
until we have a complete factorization.

Trial Division: The oldest method of splitting n is t¢rial division, by which we mean
dividing n by all primes up to \/n. For n < 108, or within that neighbourhood, this is
not an unreasonable method in our computer-savvy world. However, for larger integers, we
need more elaborate methods.

Fermat Factoring: If we have an n € N such that

22 =4? (mod n) with z Z+ y (mod n) for some z,y € Z, (4.42)
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then n is necessarily composite since ged(x — y,n) provides a nontrivial factor of n. This
idea was known to Fermat who, in 1643, developed a method of factoring based upon the
following observation.

If n = rs is an odd natural number with 1 < r < y/n, then
n=a?—b? where a = (r +s)/2 and b= (s — r)/2.
Thus, in order to find a factor of n, we need only look at values = = y2 — n for

y= VAl + L Vi) +2,....(n—1)/2

until a perfect square is found. This is called Fermat’s difference of squares method.

Euler’s Factoring Method: This method applies only to integers of the form

n=x2—|—ay2 :z2+au)2,
where x # z and y # w. In other words, n can be written in two distinct ways in this
special form for a given nonzero value of a € Z. Then

(zw)? = (n — ay®)w? = —ay*w? = (22 — n)y? = (2y)*> (mod n),

from which we may have a factor of n, namely, provided that zw £+ zy(mod n). In this
case, the (nontrivial) factors of n are given by ged(zw £ yz,n).

The Euler method essentially is predicated on the congruence (4.42), but unlike the Fermat
method, not all integers have even one representation in the form n = z2 + ay?.

Legendre’s Factoring Method: This method is a precursor to what we know today as
continued fraction methods for factorization—see [51]. Legendre reasoned in the following
fashion. Instead of looking at congruences of the form (4.42), he looked at those of the form

22 = £py® (mod n) for primes p, (4.43)

since a solution to (4.43) implies that +p is a quadratic residue of all prime factors of n.
For instance, if the residue is 2, then all prime factors of n are congruent to +1 (mod 8)
(since it is a fact from elementary number theory that 2 is a quadratic residue modulo p
if and only if p = +1 (mod 8)—see (A.10) on page 342). Therefore, he would have halved
the search for factors of n. Legendre applied this method for various values of p, thereby
essentially constructing a quadratic sieve by getting many residues modulo n. (A sieve
may be regarded as any process whereby we find numbers via searching up to a prescribed
bound and eliminating candidates as we proceed until only the desired solution set remains.
A [general] quadratic sieve is one in which about half of the possible numbers being sieved
are removed from consideration, a technique used for hundreds of years as a scheme for
eliminating impossible cases from consideration.) This allowed him to eliminate potential
prime divisors that sit in various linear sequences, as with the residue 2 example above.
He realized that if he could achieve enough of these, he could eliminate primes up to /n,
thereby effectively developing a test for primality.

The linchpin of Legendre’s method is the continued fraction expansion of y/n, since he was
simply finding small residues modulo n. Legendre was essentially building a sieve on the
prime factors of n, which did not let him predict, for a given prime p, a different residue to
yield a square. This meant that if he found a solution to z? = py? (mod n), he could not
predict a solution, w? = pz? (mod n), distinct from the former. If he had been able to do
this, he would have been able to combine them as

(zw)? = (pzy)* (mod n)
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and have a factor of n provided that xw #=+ pzy(mod n) since we are back to congruence
(4.42).

In the 1920s, one individual expanded the idea, described above, of attempting to match
the primes to create a square. We now look at his important influence.

Kraitchik’s Factoring Method: Maurice Kraitchik determined that it would suffice to
find a multiple of n as a difference of squares in attempting to factor it—see Biography 4.10
on page 173. For this purpose, he chose a polynomial of the form, kn = ax? & by?, for
some integer k, which allowed him to gain control over finding two distinct residues at a
given prime to form a square, which Legendre could not do. In other words, Kraitchik
used quadratic polynomials to get the residues, then multiplied them to get squares (not a
square times a small number). Kraitchik developed this method over a period of more than
three decades, a method later exploited by D.H. Lehmer and R.E. Powers—see [37]). They
employed Kraitchik’s technique but obtained their residues as Legendre had done.

In the early 1980s, Carl Pomerance was able to fine tune the parameters in Kraitchik’s
method described above—see [59]. We describe that process below but first need some
notions used therein to be defined.

An important role in factorization is played by the following notion, which we will need as
part of the algorithm to be described.

Definition 4.5 — Smooth Integers

A rational integer z is said to be smooth with respect to y € Z, or simply y-smooth, if all
prime factors of z are less than or equal to y.

Remark 4.4 The term factor base means the choice of a suitable set of rational primes
over which we may factor a set of integers. Also, if F = {p1,p2,...,pr} is a factor base,
then from knowledge about the distribution of smooth integers close to \/n, the optimal k
is known to be one that is chosen to be

k=~ \/exp( log(n)loglog(n)). (4.44)
Now we are ready to describe the sieve.

Application 4.3 — The Quadratic Sieve (QS) Algorithm

(1) Choose a factor base F = {p1,p2,...,pr}, where the p; are primes for j =1,2,...,k €
N.
(2) For each nonnegative integer j, let t = +j. Compute

ye=(lvn] +)* —n

until £ + 2 such values are found that are pg-smooth. For each such ¢,

k
ye =+ i (4.45)
=1

and we form the binary k£ + 1-tuple,

Dt = (U07t7v1,t7 U27t7 s 7’Uk,t)7

where v; ¢ is the least nonnegative residue of a; ; modulo 2 for 1 <4 < k, v, = 0 if
Yt > 0, and Vo,t = 1if Yy < 0.
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(3) Obtain a subset 8 of the values of ¢ found in step (2) such that for each i = 0,1,2,... k,

va =0 (mod 2). (4.46)
tes
In this case,
2* = [zt =[[we =v* (modn),
tes tes

where z; = [\/n]| + ¢, so ged(x + y,n) provides a nontrivial factor of n if x £+ y
(mod n).

In step (2), we have that y; = 27 (mod n). Thus, if a prime p | y; = 27 —n, we have 27 =n

(mod p). Thus, we must exclude from the factor base any primes p for which there is no
solution x € Z to the congruence z? = n(mod p). In other words, we exclude from the

factor base any primes p for which n is not a quadratic residue modulo p.

Example 4.3 Let n = 60377. From Equation (4.44) on page 167, k = 13, so we choose
the first thirteen primes for which n is a quadratic residue. They comprise our factor base
F=1{2,7,11,23,29,31,37,41,53,59,61,67,71}. In the table below, we see, by inspection,
that a subset 8 of the values of ¢ such that ), , v;; = 0(mod 2) for each i =0,1,2,...,13
is § = {—1,—-3,—6,—22}. (Note that |\/n] = 245 in this case.) Thus,

H x? = 2447 - 242% . 2397 - 2232 = 508852 = 2? (mod 60377),
tes

and
[Ty =20 72-11" 297 37° = 25408 = y* (mod 60377).
tes

By computing both of the values,
ged(z — y,n) = ged (50885 — 25408, 60377) = 349

and
ged(x 4+ y,n) = ged((50885 + 25408, 60377) = 173,

we get that n = 60377 = 173 - 349.

t Ty Yt 13
1 [ 244 —297 (1,0,0,0,0,0,0,0,0,0,0,0,0,0)
3 22| —72-37 | (1,0,0,0,0,0,0,1,0,0,0,0,0,0)
3 (248 72-23 | (0,0,0,0,1,0,0,0,0,0,0,0,0,0)
—4 [ 241 ] —2%-7-41 | (1,1,1,0,0,0,0,0,1,0,0,0,0,0)
1 249 2°.7.29 | (0,1,1,0,0,1,0,0,0,0,0,0,0,0)
—6 [ 239 | —25-11-37 | (1,1,0,1,0,0,0,1,0,0,0,0,0,0)
6 |251| 20-41 | (0,0,0,0,0,0,0,0,1,0,0,0,0,0)
7 252 53 - 59 (0,0,0,0,0,0,0,0,0,1,1,0,0,0)
10 [ 235 | —2°-7.23 | (1,1,1,0,1,0,0,0,0,0,0,0,0,0)
11 256 7-11-67 (0,0,1,1,0,0,0,0,0,0,0,0,1,0)
16 [ 229 | —2°-31 | (1,0,0,0,0,0,1,0,0,0,0,0,0,0)
16 [261] 2°-112 | (0,0,0,0,0,0,0,0,0,0,0,0,0,0)
—20 [ 225 | =25-23-53 | (1,1,0,0,1,0,0,0,0,1,0,0,0,0)
22 [223| —2°.11° | (L,1,0,1,0,0,0,0,0,0,0,0,0,0)
9 [ 267 | 2°-11-31 | (0,1,0,1,0,0,1,0,0,0,0,0,0,0)
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Some elementary linear algebra underlies the solution to a factorization problem using the
QS as depicted in Example 4.3. By ensuring that there are k + 2 vectors vy in a k + 1-
dimensional vector space IE"2€+17 we guarantee that there is a linear dependence relation
among the v,. In other words, we ensure the existence of the set 8 in step (3) of the algorithm
such that congruence (4.46) holds. There is no guarantee that x Z+ y(mod n), but there
are usually several dependency relations among the v;, so there is a high probability that
at least one of them will yield an (z,y) pair such that  #4 y(mod n). The problem, of
course, is that for “large” smoothness bounds B, we need a lot of congruences before we
may be able to get these dependency relations.

The first successful implementation of the QS in which a serious number was factored
occurred in 1983 when J. Gerver [21] factored a 47-digit number. Then, in 1984, the
authors of [16] factored a 71-digit number.

The QS has been employed using an approach called factoring by electronic mail. This is a
term used by Lenstra and Manasse in [40] to mean the distribution of the Quadratic Sieve
operations to hundreds of physically separated computers all over the world, and in 1988
they used this approach to factor a 106-digit number. Indeed, it is this parallel computing
that picks up the time.

In 1994, the authors of [2] factored the RSA-129 number?! by using the electronic mail
factoring technique with over 1600 computers and more than 600 researchers around the
globe. The unit of time measurement for factoring is called a mips year, which is defined
as being tantamount to the computational power of a computer rated at one million in-
structions per second (mips) and used for one year, which is equivalent to approximately
3 - 10'3 instructions. For instance, factoring the RSA-129 challenge number required 5000
mips years, and in 1989 the aforementioned factorization of the 106-digit number needed
140 mips years.

Now we are ready to present an algorithm that is closely tied to the QS, and is also a
precursor for the number field sieve presented in §4.5. This algorithm involves factoring
using certain cubic integers, namely the integers from

O = Z[Y72) = 23]
(since /=2 = —+/2, which is the ring of integers of
F=Q(V-2)=Q(V2),

by Exercise 4.33 on page 173). In this section, we will show how we may employ these cubic
integers in Z[v/—2] to factor integers in Z. Some of what follows is adapted from [54].

We begin with a motivating example.
Example 4.4 We look at how to factor the fifth Fermat number
Fy=2%241.
For convenience, set o = /—2. First, notice that
2Fs = 2® + 2, where z = 21,

and that
Np(z — o) = 23 4+ 2, with z — o € Zla].

4-1ntegers with n digits that are a product of two primes of approximately the same size are denoted by
RSA-n, called an RSA challenge number.
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In fact, by Exercise 4.35 on page 173, any 8 = a + ba + ca? has norm
Nr(B) = a® — 2b% + 4¢® + 6abe. (4.47)

By Exercise 4.34, there is a prime § € Z[«] such that 8 ’ (z — «), so by Exercise 2.46 on
page 86,
Np(ﬂ) ‘ NF(.%‘ — Oé) = $3 + 2.

Hence, we may be able to find a nontrivial factorization of Fj5 via norms of certain elements
of Z[a]. We do this as follows.

Consider elements of the form a+ ba € Z[a], for convenience, and sieve over values of a and
b, testing for
ged(Np(a 4+ ba), Fs) = ged(a® — 20, Fy) > 1.

For convenience, we let a run over the values 1,2,...,100, and b run over the values b =
1,2,...20. Formal reasons for this approach will be given later. We fix each value of a, and
let b run over its range of values. The runs for 1 < a <15 and 1 < b < 20 yield

ged(a® — 20°, F5) = 1.
However, at a = 16, b = 5, we get
ged(16® — 2 - 5% Fy) = 641.

In fact,
F5 =641 -6700417.

We may factor 16 + 5« as follows.
16 4+ 5a = (1 + a)(—1 + a)(a)(—9 + 2a — o?),
where 1 + « is a unit with norm —1; —1 + « has norm —3; o has norm —2; and
B=-9+2a—a?
has norm —641. This accounts for
163 —2-5°=2-3.641,

and shows that g is the predicted prime divisor of z — «, which gives us the nontrivial factor
of F5 .

The method in Example 4.4 works well largely because of the small value of F5. However,
it may not be feasible for larger values to check all of the gcd conditions over a much larger
range. The following method of Pollard, which he introduced in 1991 in [58], uses the above
notions of factorizations in Z[a] to factor F7, which was first accomplished in 1970.

As in the above case, suppose that n € N with

2n =m> + 2.

For instance,
2F, =m> +2

where m = 2%3. Pollard’s idea to factor n = Fy involves B-smooth numbers of the form
a + bm, for some suitable B that will be the number of primes in a prescribed set defined
in the algorithm below. Also, a 4+ ba will be B-smooth meaning that its norm is B-smooth
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in the sense of Definition 4.5 on page 167. Thus, if we get a factorization of a + ba in
Z[a], we also get a corresponding factorization of a + bm modulo F7. To see this, one must
understand a notion that we will generalize when we discuss the number field sieve in §4.5.
We let

Y Za) — Z/nZ

be a ring homomorphism such that ¥ (a) = m. Thus, in Z/nZ,
23 = -2 = —(1+1), where 1 is the identity of Z/nZ.
Hence, 1 is that unique map which is defined element-wise by the following.

2

2
) szaj = szmj € Z/nZ, where z; € Z.
7=0 3=0

The role of this map v in attempting to factor a number n is given by the following.

Suppose that we have a set 8§ of polynomials

2
g(x) = zal € L]
=0

such that
[9(e) =5
g€es

where § € Z[a], and
[T g(m) =2,
geS

where y € Z. Then if ¢(8) = € Z, we have 22 = ()2 = ¥(8?) = ¢ (ngsg(a)) =
ngs g(m) = y? (mod n). In other words, this method finds a pair of integers z, y such that

2~y =(x—y)(r+y)=0 (mod n),

so we may have a nontrivial factor of n by looking at ged(x — y, n).

We now describe the algorithm, but give a simplified version of it, since this is meant
to be a simple introduction to the ideas behind the number field sieve. We use a very
small value of n as an example for the sake of simplicity, namely n = 23329. Note that
2n = 363 4+ 2 = m3 + 2. We will also make suitable references in the algorithm in terms of
how Pollard factored n = F5.

Application 4.4 — Pollard’s Algorithm

Step 1: Compute a factor base.

In the case of cubic integers in Z[a] = Z[/—2], we take for n = 23329 only the first eleven
primes as the factor base, those up to and including 41 (or for n = F7, Pollard chose the
first five hundred rational primes) as FB;, the first part of the factor base, and for the
second part, FBs, we take those primes of Z[a] with norms +p, where p € FB;. (The
reasons behind the choice of the number of primes in FB; are largely empirical.) Also, we
include the units —1,1+4 «, and 1/(1 4+ a) = —1+ a — a? in FB,. Here, we have discarded
the Z[a]-primes of norm p? or p3, since these cannot divide our n, given that they cannot
divide the a + ba, with the assumptions we are making.
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Step 2: Run the sieve.

In this instance, the sieve involves finding numbers a+bm that are composed of some primes
from FB;. For n = 23329, we sieve over values of a from —5 to 5 and values of b from 1 to
10 (or for n = F7, Pollard chose values of a from —4800 to 4800, and values of b from 1 to
2000). Save only coprime pairs (a, b).

Step 3: Look for smooth values of the norm, and obtain factorizations of a+ bx and a+ ba.

Here, smooth values of the norm means that N = Ng(a+ ba) = a® — 2b? is not divisible by
any primes bigger than those in FB;. For those (a,b) pairs, factor a + bm by trial division,
and eliminate unsuccessful trials. Factor a + ba by computing the norm Ng(a + ba)) and
using trial division. When a prime p is found, then divide out a Z[«a]-prime of norm +p
from a + ba. This will involve getting primes in the factorization of the form a + ba + ca?
where ¢ # 0. Units may also come into play in the factorizations, and a table of values of
(1 + )’ is kept for such purposes with j = —2,--- .2 for n = 23329 (or for Fy, one should
choose to keep a record of units for j = —8,—7,...,8). Some data extracted for the run on
n = 23329 is given as follows.

a+ ba + ca? N factorization of a + bo + ca?
54+« 3-41 (—1+ a)(—=1—2a —2a?)
4+ 10c —24.112 | —(3+2a)%a*(—~1+ a — a?)?
-1+« -3 -1+«
Table 4.1 o, _on2 | —a1 —1—2a — 202
3+ 2« 11 3+ 2«
« -2 «
—14+a—a? —1 unit
a+ bm + em? factorization of a + bm + cm?
5+m 41
44 10m 22.7.13
—14+m 5-7
Table 4.2, o _om? ~5-13-41
3+ 2m 352
m 22.32
—1+m—m? —-13-97

Step 4: Complete the factorization.

By selecting —1 times the first four rows in the third column of Table 4.1, we get a square
in Z[a:
B2 =(=1+a)*(~1—-2a—2a%2%3 +20)%* (-1 +a — a?)?, (4.48)

and correspondingly, since 32 is also —1 times the first four rows in the first column of Table
4.1, we get:
B2 =(5+a)(—4—10a)(—1+ a)(~1 - 2a — 2a2). (4.49)

Then we get a square in Z from Table 4.2 by applying ¢ to (4.49):
Y(B) = (5+m)(—4 —10m) (=1 +m)(—1 — 2m — 2m?) = 22 . 5% . 72 . 132 . 412 = ¢%.
Also, by applying 9 to 8 via (4.48), we get:

Y(B) = (=1 +m)(=1 —2m — 2m?)(3 + 2m)m?(—1 +m — m?) = 9348 (mod 23329),
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so by setting x = (), we have
2 = 2(8) = $(8) =4? (mod n).

Since
y=2-5-7-13-41 = 13981 (mod 23329),

then y — z = 4633 (mod 23329). However, ged(4633,23329) = 41. In fact 23329 = 41 - 569.

Pollard used the algorithm in a similar fashion to find integers X and Y for the more serious
factorization ged(X — Y, Fr) = 59649589127497217. Hence, we have a factorization of F
as follows.

F7 =59649589127497217 - 5704689200685129054721.

Essentially, the ideas for factoring using cubic integers above is akin to the notion of the
strategy used in the QS method. There, we try to generate sufficiently many smooth
quadratic residues of n close to 4/n. In the cubic case, we try to factor numbers that are
close to perfect cubes. In §4.5, we will extend these ideas to show how Fy was factored
using the number field sieve, and Z[v/2].

Exercises
4.33. Prove that Z[/—2] is the ring of integers of Q({/—2).
4.34. Prove that every nonzero ideal in a Dedekind domain R must contain a prime element.
4.35. Prove that (4.47) holds in Example 4.4.
4.36. Use Pollard’s method to factor Fg.

In Exercises 4.37-4.39, use the gcd method described before Pollard’s method to find an odd
factor of the given integer.

4.37. 577 — 1.
4.38. 79 4 1. (Hint: Use Z[/=T].)

4.39. 3239 — 1. (Hint: Use Z[V/3].)
Factor each of the integers in Exercises 4.40—4.43 using the QS method.

4.40. n = 3191491.

4.41. n = 12358397.
4.42. n = 42723991.
4.43. n = 74299271.

Biography 4.10 Maurice Borisovich Kraitchik (1882-1957) obtained his
Ph.D. from the University of Brussels in 1923. He worked as an engineer
in Brussels and later as a Director at the Mathematical Sciences section of the
Mathematical Institute for Advanced Studies there. From 1941-1946, he was
Associate Professor at the New School for Social Research in New York. In
1946, he returned to Belgium, where he died on August 19, 1957. His work
over thirty-five years on factoring methods stands tall today because he devised
and used a variety of practical techniques that are found today in computer
methods such as the QS method. He is also the author of the popular book
Mathematical Recreations [34].
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4.5 The Number Field Sieve

When fortune is lavish of her favours, beware of adversity; events do mot always
succeed each other in one train of fortunes.

Cato the elder (Marcus Porcius Cato) (234 B.C.—149 B.C.)

Roman statesman, orator, and writer

In §4.4 we provided a motivator for the sieve in this section via Pollard’s algorithm, which
we showed to be linked to the QS. Some of what follows is adapted from [54].

In 1988, John Pollard circulated a manuscript that contained the outline of a new algorithm
for factoring integers, which we studied in §4.4. In 1990, the first practical version of
Pollard’s algorithm was given in [39], published in 1993, the authors of which dubbed it
the number field sieve. Pollard had been motivated by a discrete logarithm algorithm given
in 1986, by the authors of [13], which employed quadratic fields. Pollard looked at the
more general scenario by outlining an idea for factoring certain large integers using number
fields. The special numbers that he considered are those large composite natural numbers
that are “close” to being powers, namely those n € N of the form n = r* — s for small
natural numbers r and |s|, and a possibly much larger natural number ¢. Examples of such
numbers, which the number field sieve had some successes factoring, may be found in tables
of numbers of the form

n=r'+1, called Cunningham numbers.

H(gwever, the most noteworthy success was factorization of the ninth Fermat number Fy =
22" +1 = 251241 (having 155 decimal digits), by the Lenstra brothers, Manasse and Pollard
in 1990, the publication of which appeared in 1993—see [41].

To review some of the history preceding the number field sieve, we observe the following.
Prior to 1970, a 25-digit integer was considered difficult to factor. In 1970, the power of the
continued fraction method raised this to 50 digits—see [53, §5.4, pp. 240-242]. Once the
algorithm was up and running in 1970, legions of 20- to 45-digit numbers were factored that
could not be factored before. The first major success was the factorization of the seventh
Fermat number

Fr=922 41=2128 11

a 39-digit number, which we described via Pollard’s method in §4.4. By the mid 1980s, the
quadratic sieve algorithm was felling 100-digit numbers. With the dawn of the number field
sieve, 150-digit integers were now being tackled. The number field sieve is considered to
be asymptotically faster than any known algorithm for the special class of integers of the
above special form to which it applies. Furthermore, the number field sieve can be made to
work for arbitrary integers. For details, see [7], where the authors refer to the number field
sieve for the special number n = r* — s as the special number field sicve. The more general
sieve has come to be known as the general number field sieve.

Much older than any of the aforementioned ideas for factoring is that attributed to Fermat,
namely the writing of n as a difference of two squares. However, this idea was enhanced
by Maurice Kraitchik in the 1920s, both approaches we also reviewed in §4.4. To further
describe Kraitchik’s influence, we review it from a slightly different perspective here. He
reasoned it might suffice to find a multiple of n as a difference of squares, namely,

? =y* (mod n), (4.50)



4.5. The Number Field Sieve 175

so that one of z—y or x4y could be divisible by a factor of n. We say could here since we fail
to get a nontrivial factor of n when x = £y (mod n). However, it can be shown that if n is
divisible by at least two distinct odd primes, then for at least half of the pairs « (modulo n),
and y (modulo n), satisfying (4.50) with ged(x,y) = 1, we will have 1 < ged(z —y,n) < n.

This classical idea of Kraitchik had seeds in the work of Gauss, but Kraitchik introduced it
into a new century in the pre-dawn of the computer age. This idea is currently exploited
by many algorithms via construction of these (z,y)-pairs. For instance, the QS algorithm
uses it. More recently, the number field sieve exploits the idea. To see how this is done, we
give a brief overview of the methodology of the number field sieve. This will motivate the
formal description of the algorithm.

For n = rt — s we wish to choose a number field of degree d over Q. The following choice for

d is made for reasons (which we will not discuss here), which make it the optimal selection,
at least theoretically. (The interested reader may consult [39, Sections 6.2-6.3, pp. 31-32]
for the complexity analysis and reasoning behind these choices.) Set

m1 1/3
g (BHol))logn) (4.51)
2loglogn
Now select k& € N, which is minimal with respect to kd > t. Therefore, r*? = spkd—t
(mod n). Set
m =" and ¢ = srFi7t, (4.52)
Then m? = ¢(mod n). Set
f(z) =2 —c,

and let a € C be a root of f. Then this leads to a choice of a number field, namely
F = Q(«). Although the number field sieve can be made to work when Z[a] is not a
UFD, the assumption that it is a UFD simplifies matters greatly in the exposition of the
algorithm, so we will make this assumption. Note that once made, this assumption implies

that Op = Z[a]. See [39] for a description of the modifications necessary when it is not a
UFD.

Now the question of the irreducibility of f arises. If f is reducible over Z, we are indeed
lucky, since then f(z) = g(z)h(x), with g(z),h(zx) € Z[z], where 0 < deg(g) < deg(f).
Therefore, f(m) =n = g(m)h(m) is a nontrivial factorization of n, and we are done. Use of
the number field sieve is unnecessary. However, the probability is high that f is irreducible
since most primitive polynomials over Z are irreducible. Hence, for the description of the
number field sieve, we may assume that f is irreducible over Z.

Since f(m) = 0(mod n), we may define the natural homomorphism,
Y Za) — Z/nZ,

given by
a—m e ZL/nk.

Then

A = 7
P E ajol | = g a;m’.
J J

Now define a set 8 consisting of pairs of relatively prime integers (a,b), satisfying the
following two conditions:
H (a+bm)=c? (ce€), (4.53)
(a,b)es



176 4. Applications: Equations and Sieves

and

I (a+ba)=5 (8eza). (4.54)

(a,b)e8

Thus, (82) = 2, so ¥(8?%) = ¢?(mod n). In other words, since ¥ (%) = 1(3)?, then if we
set ¥(B) = h € Z, h? = c? (mod n). This takes us back to Kraitchik’s original idea, and we
may have a nontrivial factor of n, namely ged(h £ ¢,n) (provided that h Z=+ ¢(mod n)).
The above overview of the number field sieve methodology is actually a special case of an
algebraic idea, which is described as follows. Let R be a ring with homomorphism

¢: R Z/nZ x Z/nZ,

together with an algorithm for computing nonzero diagonal elements (z,z) for x € Z/nZ.
Then the goal is to multiplicatively combine these elements to obtain squares in R whose
square roots have an image under ¢ not lying in (z, &) for nonzero x € Z/nZ. The number
field sieve is the special case

R =17 x Z[a], with $(=,5) = (2.4 (5)).

Before setting down the details of the formal number field sieve algorithm, we discuss the
crucial role played by smoothness introduced in Definition 4.5 on page 167. Recall that a
smooth number is one with only “small” prime factors. In particular, n € N is B-smooth
for B € RT, if n has no prime factor bigger than B. Smooth numbers satisfy the triad of
properties:

(1) They are fairly numerous (albeit sparse).
(2) They enjoy a simple multiplicative structure.

(3) They play an essential role in discrete logarithm algorithms.
If F = Q(«) is a number field, then by definition
an algebraic number a + ba € Z[a] is B-smooth if |Ng(a + ba)| is B-smooth.

Hence, a + ba is B-smooth if and only if all primes dividing |[Ng(a + ba)| are less than B.
Thus, the idea behind the number field sieve is to look for small relatively prime numbers
a and b such that both a + ab and a + mb are smooth. Since 1(a + ab) = a + mb, then
each pair provides a congruence modulo n between two products. Sufficiently many of these
congruences can then be used to find solutions to h? = ¢? (mod n), which may lead to a
factorization of n.

The above overview leaves open the demanding questions as to how we choose the degree
d, the integer m, and how the set of relatively prime integers a,b such that Equations
(4.53)—(4.54) can be found. These questions may now be answered in the following formal
description of the algorithm.

Application 4.5 — The Number Field Sieve Algorithm

Step 1—Selection of a Factor Base and Smoothness Bound

There is a consensus that smoothness bounds are best chosen empirically. However, there
are theoretical reasons for choosing such bounds as

B = exp((2/3)*/3(logn)'/3(loglog n)*/?),
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which is considered to be optimal since it is based upon the choice for d as above. See [39,
Section 6.3, p. 32| for details. Furthermore, the reasons for this being called a smoothness
bound will unfold in the sequel.

Define a set 8§ = 8; U 82 U 83, where the component sets 8, are given as follows. 8, = {p €
Z : p is prime and p < B},

8y ={u;:j=1,2,...,7r +ry — 1, where u; is a generator of Uy, }.

(Here {r1,r2} is the signature of F', and the generators u; are the generators of the infinite
cyclic groups given by Dirichlet’s Unit Theorem that we presented as Theorem 3.20 on
page 135.) Also,

83 ={8 =a+ba € Zla] : INp(B)| = p < By where p is prime},
where By is chosen empirically. Now we set the factor base as
F={a; =v¢(j) €Z/nZ: j € 8}.

Also, we may assume ged(aj,n) = 1 for all j € 8, since otherwise we have a factorization of
n and the algorithm terminates.

Step 2—Collecting Relations and Finding Dependencies

We wish to collect relations (4.53)—(4.54) such that they occur simultaneously, thereby
yielding a potential factor of n. One searches for relatively prime pairs (a,b) with b > 0
satisfying the following two conditions.

(i) |a + bm| is B-smooth except for at most one additional prime factor p;, with B <
p1 < Bi, where B is empirically determined.

(ii) a + ba is Bg-smooth except for at most one additional prime 8 € Z[a] such that
|Np(B)| = pe with By < ps < Bs, where Bs is empirically chosen.

The prime p; in (i) is called the large prime, and the prime ps in (ii) is called the large
prime norm. Pairs (a,b) for which p; and ps do not exist (namely when we set py = pa = 1)
are called full relations, and are called partial relations otherwise. In the sequel, we will
only describe the full relations since, although the partial relations are more complicated,
they lead to relations among the factor base elements in a fashion completely similar to the
ones for full relations. For details on partial relations, see [41, Section 5].

First, we show how to achieve relations in Equation (4.53), the “easy” part (relatively
speaking). (This is called the rational part, whereas relations in Equation (4.54) are called
the algebraic part.) Then we show how to put the two together. To do this, we need the
following notion from linear algebra.

Every n € N has an exponent vector v(n) defined by n = Hjoil p;j, where p; is the j
prime, only finitely many of the v; are nonzero, and

v(n) = (v1,v2,...) = (v;)724

with an infinite string of zeros after the last significant place. We observe that n is a square
if and only if each v; is even. Hence, for our purposes, the v; give too much information.
Thus, to simplify our task, we reduce each v; modulo 2. Henceforth, then v; means v,
reduced modulo 2. We modify the notion of the exponent vector further for our purposes
by letting By = w(B), where m(B) is the number of primes no bigger than B. Then, with
po=-1,a+bm= Hf:lo p;-)j is the factorization of a 4+ bm. Set

v(a+bm) = (T, ..., U5,),
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for each pair (a,b) with a + ba € 83. The choice of B allows us to make the assumption
that |83| > By + 1. Therefore, the vectors in v(a + bm) for pairs (a,b) with a + ba € 83
exceed the dimension of the Fy-vector space F2' ™. In other words, we have more than
Bi + 1 vectors in a By + 1-dimensional vector space. Therefore, there exist nontrivial linear
dependence relations between vectors. This implies the existence of a subset T of 83 such
that

Z v(a+bm)=0eFI

a+bacT

SO

H (a+bm) =2 (2€2).

a+bacT
This solves Equation (4.53).

Now we turn to the algebraic relations in Equation (4.54). We may calculate the norm
of a + ba by setting = a and y = b in the homogeneous polynomial (—y)¢f(—xz/y) =
2?4 — ¢(—y)?, with f(z) = 2% — ¢. Therefore, Nr(a + ba) = (=b)?f(—ab™ ') = a? — c¢(—b)?.
Let

R,={reZ:0<r<p-1,and f(r) =0 (mod p)}.

Then for ged(a,b) = 1, we have Np(a 4+ ba) = 0(mod p) if and only if a = —br (mod p),
and this r is unique. Observe that by the relative primality of a and b, the multiplicative
inverse b~! of b modulo p is defined since, for b = 0(mod p), there are no nonzero pairs
(a,b) with Np(a + ba) = 0(mod p).

The above shows that there is a one-to-one correspondence between those § € Z[a] with
|Np(B)| = p, a prime and pairs (p, ) with r € R,,. Note that the kernel of the natural map
Y Zla) — Z/pZ is ker(v) = (a + ba), the cyclic subgroup of Z[«] generated by a + ba. It
follows that |Z[a] : (a + ba)| = |Np(a + ba)| = p, so Z[a]/{a + ba) is a field.

This corresponds to saying that the Z[a]-ideal P = (a+ba) is a principal, first-degree prime
Z[a)-ideal, namely one for which Np(P) = p' = p. Hence, Z[a]/P = F,, the finite field of p
elements.

The above tells us that in Step 1 of the number field sieve algorithm, the set 83 essentially
consists of the first-degree prime Z[a]-ideals of norm Ng(P) < By. These are the smooth,
degree one, prime O g-ideals, namely those ideals whose prime norms are Bs-smooth.

In part (ii) of Step 2 of the algorithm on page 177, the additional prime element 5 € Z[q]
such that |[Ng(8)| = p2 with By < pa < Bj corresponds to the prime Op-ideal Py called
the large prime ideal. Moreover, Py corresponds to the pair (ps, ¢c(mod p3)), where ¢ € Z is
such that a = —be(mod ps), thereby enabling us to distinguish between prime ideals of the
same norm. If the large prime in Step 2 does not occur, we write Py = (1). Now, since

la+bm| =[] »™,

PES1

and

la + ba| = H u' H 5%, (4.55)

u€ES2 s€ES83
for nonnegative t,,vs € Z, and since (a + bm) = 1(a + ba), then

II v =TT v™ IT v(s)™,

p681 UGSQ 8653
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in Z/nZ. Therefore, we achieve a relationship among the elements of the factor base ¥, as

follows
IT ¢ IT v()*> = T ©@)* (mod n). (4.56)
u€S, SES3 PES1

Furthermore, we may translate (4.55) ideal-theoretically into the ideal product

la + ba| = H u'e H S (4.57)

uUES Pe8s

where P ranges over all of the first-degree prime Z[a]-ideals of norm less than Bg, and 7
is a generator of P.

Thus, (4.56) gives rise to the identity

H U(p) = H ()t H W(mp)P.

PES, UESo PESs3

If |85] > #(B), then by applying Gaussian elimination for instance, we can find z(a,b) €
{0, 1} such that simultaneously

2
H (a+ ba)z(a’b) = (( H u“‘) <H s”)) ,
a+ba€S3 UES2 s€83

2

H (a + bm)=(@b) = H P’ )

a+ba€S8s PES,

and

hold. From this a factorization of n may be gleaned, by Kraitchik’s method.

Practically speaking, the number field sieve tasks consist of sieving all pairs (a, b) for b =
b1,bs ..., by, for short (overlapping) intervals [by,be], with |a| less than some given bound.
All relations, full and partial, are gathered in this way until sufficiently many have been
collected.

The big prize garnered by the number field sieve was the factorization of Fy, the ninth
Fermat number, as described in [41]. In 1903, A.E. Western found the prime factor
2424833 = 37 - 26 + 1 of Fy. Then in 1967, Brillhart determined that Fy/2424833 (having
148 decimal digits) is composite by showing that it fails to satisfy Fermat’s Little Theorem.
Thus, the authors of [41] chose

n = Fy/2424833 = (2% 4 1) /2424833,

Then they exploited the above algorithm as follows. If we choose d as in Equation (4.51)
on page 175, we get that d = 5. The authors of [41] then observed that since 2°'? = —1

(mod n), then for h = 2295 we get h® = 2102° = 2. (2512)2 = 2(mod n). This allowed them
to choose the map v : Z[V/2] + Z/nZ, given by 9 : ¥/2 + 2295, Here Z[/2] is a UFD.
Then they chose m and ¢ as in Equation (4.52), namely since r = 2, s = —1, and t = 512,
then the minimal k with 5k = dk >t = 512 is k = 103, and m = 2103, s0 ¢ = —8 = 25103
(mod n). This gives rise to f(x) = 2° + 8 with root o = —\‘7537 and Z[a] C Z[¥/2]. Observe
that 8Fy = 251% + 8 = (2103)5 +8. Thus, ¥(a) =m = 2103 = 2615 = _ (2205)3 (mod n).
Notice that 2193 is small in relation to n, and is in fact closer to /n. Since

Y(a+ba) = a+ 2% € Z/nZ,
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we are in a position to form relations as described in the above algorithm. Indeed, the
authors of [41] actually worked only in the subring Z[a] to find their relations. The sets
they chose from Step 1 are 81 = {p € Z : p < 1295377},

5 5 =2 = J——}
Sy ={-1,-1+V2,-14+ V2 - V2" +V27},
for units uy = —1, up = —1 + \55, and us = —1+ \5/52 - \5@3 + \5/547 and
83 ={B € Zla]: |Nr(B)| = p < 1294973, p a prime}.

The authors began sieving in mid-February of 1990 on approximately thirty-five worksta-
tions at Bellcore. On the morning of June 15, 1990 the first of the dependency relations
that they achieved turned out to give rise to a trivial factorization! However, an hour
later their second dependency relation gave way to a 49-digit factor. This and the 99-digit
cofactor were determined by A. Odlyzko to be primes, on that same day. They achieved:
Fy = g7 - quo - qoo, where g; is a prime with j decimal digits as follows: g7 = 2424833,

qa9 = 7455602825647884208337395736200454918783366342657,
and ggg = 741640062627530801524787141901937474059940781097519
023905821316144415759504705008092818711693940737.

Fermat numbers have an important and rich history, which is intertwined with the very
history of factoring itself. Euler was able to factor F5. In 1880, Landry used an idea
attributable to Fermat to factor Fgz. As noted above, F7 was factored by Pollard. Brent
and Pollard used a version of Pollard’s rho-method to factor Fy (see [53, pp. 206-208] for
a detailed description with examples of the rho-method). As we have shown above, Fy was
factored by the number field sieve. Lenstra’s elliptic curve method was used by Brent to
factor Fip and Fj;—see [52, pp. 522-524]. Several other Fermat numbers are known to
have certain small prime factors, and the smallest Fermat number for which there is no
known factor is Fp4. On March 27, 2010 Michael Vang found the sixth known factor of
Fip: 17353230210429594579133099699123162989482444520899 - 215 + 1. On March 26, 2010
David Bessell found the factor of Fe: 3853959202444067657533632211 - 224 + 1. No factor
of the 1262612-digit Fbo was previously known. On February 3, 2010 Tapio Rajala found
the factor of Fyu: 1784180997819127957596374417642156545110881094717 - 216 + 1. For
updates on prime factors of Fermat numbers, see the website:

http://www.prothsearch.net /fermat.html.

Exercises

4.44. Let n,d € N and m = |n'/?|, with n > 24 Write n to base m via integers ¢j €

{0,1,...,m—1} for j =1,2,...,d, namely

d
n= chmj =co4+cym+ -+ cgim® T+ cgm?.
3=0
Prove that ¢y = 1, and ¢4—1 < d. (The polynomial
f@)=z+caz" "+ F
is the polynomial used in the general number field sieve. See [7].)

4.45. Use the number field sieve to find two prime factors of 21%3 + 3.
4.46. Use the number field sieve to find a prime factor of 2488 4 1.
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Chapter 5

Ideal Decomposition in Number
Fields

At his best, man is the noblest of all animals; separated from law and justice he is the
worst.

Aristotle (384-322 B.C.)
Greek philosopher

This chapter builds upon the ideas developed for quadratic fields in Theorem 1.30 on
page 49 and the discussion surrounding it. We extend the notions and definitions given
in Remark 1.24 on page 52 to arbitrary number fields and link this with the Galois theory
developed in §2.1.

5.1 Inertia, Ramification, and Splitting of Prime Ideals

If K/F is an extension of number fields, namely |K : F| < oo, and |F' : Q| < oo, we call K a
relative extension of F. If F = Q, then K is called an absolute extension. Our main interest
continues to be the number rings, so we now look at the interplay among the ideals of O p
and those of D k. We remind the reader of the notation for the class group and discussion
surrounding it in Remark 3.7 on page 100. Since Op C Ok, we may consider the map

LK/F * IAF — IAK,

given by
LK/FZJ'—):]DK, (5.1)

where JO g is the smallest fractional Og-ideal containing J. This consists of all sums
Z?zl a;fj withn € N, o; € J, and 8; € Ok for j = 1,2,...,n. This is also called the
fractional ideal generated by J in O k. It follows from Theorem 1.17 on page 28, that

j=1

where the P; are distinct, prime O g-ideals, and e; € Z are nonzero, and possibly negative
for j =1,2,...,r. By Exercise 5.1 on page 194,

IOk NF =17,

181
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and by Exercise 5.2, g/ is a group monomorphism that induces a mapping® !
ZK/F : CDF — CQK, (52)

given by
ZK/FZ:[’—) H:Pj]

j=1

Remark 5.1 We are mainly interested in the case where J is a prime O p-ideal and its
decomposition in extension fields, since the prime ideals are the generators of the class group
as demonstated in Remark 3.7.

Definition 5.1 — Ramification, Inertia, and Decomposition Numbers

Let K/F be an extension of number fields, and let p be a prime O p-ideal with

g
pDK:Hin.", ejGN

j=1

where the P; are distinct, prime Ok-ideals. We say that the prime O g-ideals P; lie over
p, or are above p. Also, p is said to lie under the P;.

The number ¢; is called the ramification index of P; in Ok, denoted by
er/r(Pj)-

Also, P; is said to be ramified in O if ex/r(P;) > 1, and p is also said to be ramified in
O as well. Furthermore, p is said to be unramified in O provided that ex/p(P;) = 1 for
each j =1,2,...,¢g. The number g is called the decomposition number of p in O g, denoted
by

9r /7 (p).
The degree |Ox /P; : Op/p| is called the inertial degree, or relative degree, of P; in O,
denoted by

fr/r(Pj).
The fields O /P; and Op/p are called the residue class fields or simply residue fields at
P; and p, respectively. Thus, fr/r(P;) is the degree of the extension of these finite fields.

A useful fact that we will need in what follows is the next result using the above notions.

Lemma 5.1 Let K/F be an extension of number fields and let P be a prime O g-ideal,
then there exists exactly one Op-ideal p lying below P.

Proof. Since 1 € PN Op, then PN Op is an Op-ideal with Op # PN Op, and PN Op is
nonzero since N/ p(a) € PN Op for all a € P. Also, given that PN Op C P, then this
induces an embedding

w : DF/(TQDF) HDK/?,

5-1The term induces here may be interpreted as “gives rise to,” which means that the mapping in (5.1)
gives rise to the well-defined mapping in (5.2) by moving to quotient groups.
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and since D /P is a field by Theorems 1.11 on page 18 and 1.26 on page 42, then as a
subring embedded in it, Or/(P N Or) must be an integral domain by Theorem 1.9 on
page 17, so PN O is a prime O p-ideal. Since

LK/F(TODF) = (TODF)DK CPOKNOK =P,

then P lies over P N Op. If p is another prime O p-ideal below P, then p € PN Op, so
p =PNOp, by Condition B of Definition 1.23 on page 25. O

Example 5.1 Let us consider the ideals in Example 2.14 on page 84. We have the O =
Z[V10]-ideal (2)Z[v/10] = P? where P = (2,1/10), so the prime ideal (2) in Op = Z is
ramified in O . Since

(3)0k = (3,1+V10)(3,1 — V10) = PP,

then the ramification indices of P and P’ are 1, so 3 is unramified in O g . Its decomposition
number is 2. Lastly, (7)Ox = P a prime Og-ideal since |Og /P : Op/(7)| = 2, its inertial
degree in K.

There is an easier way to determine the relative degrees of primes in extensions via poly-
nomials in certain circumstances by way of Exercise 5.4.

Example 5.2 Let K = Q(¥/2) = Q(a) and F = Q. Then by Exercise 4.33 on page 173,
Ok = Z[V/2]. For p =7, we have that

2% =2 = magq(z)

is irreducible modulo 7. Therefore, (7)Ox = P, where P is an Og-prime ideal with
ex/p(P) =1=gg/r(7) and fr/p(P) =3, so 7 is inert in K by Exercise 5.4.
If p = 29, then

23 — 2= (x4 3)(2? 4+ 262 — 20) (mod 29),

where x2 + 262 — 20 is irreducible modulo 29 so by Exercise 5.4,
(29)53[{ = ?1?2,

where the fr/p(P1) = 1, and fx/r(P2) =2, ex/r(P1) = ex/p(P2) = 1, and gx/p(29) = 2.
Thus, 29 is unramified in Og.
If p = 31, then
23 —2=(x—4)(x —T7)(xr+11) (mod 31),
so by Exercise 5.4,
(31)D g = P1PyPs,

where ex/p(Pj) = fr/p(P;) =1 for j =1,2,3, and gx/r(31) = 3, so 31 is completely split
in DK.

Some properties of ramification and inertia are given in the following. In the sequel, a
tower of number fields FF C K C L means that F', K, and L are number fields, with L an
extension of K, and K an extension of F.



184 5. Ideal Decomposition in Number Fields

Theorem 5.1 — Transitivity of Ramification and Inertial Degrees
Let FF C K C L be a tower of number fields, and let Q be a prime O -ideal above the prime
O i-ideal P. Then
er/k(Qer/r(P) =er,r(Q),
and

fL/K(Q)fK/F(T) = fL/F<Q>'

Proof. The transitivity of the inertial degrees follows directly from Definition 5.1. To see
this, let p be the prime O p-ideal below P. Then

fLig(Qfk/p(P)=19L/2: Ok /PO /P : Or/p| =
19L/Q: Or/p|l = fr/r(Q).
Also, since p C P C Q, then
eL/F(Q) = eL/K(Q)eK/F(fP).
Od

The reader may now recall Theorem 1.30 on page 49, the quadratic case, which we will use
in the following illustration—see also Remark 1.24 on page 52.

Example 5.3 Let L = Q(v/—1,v/10), K = Q(v/10), and F = Q. Then by Theorem 1.30,
we have for p = 5 that
PDL = :P%P%a

where Py and P, are prime Op-ideals with er/x(P1) = er/x(P2) = 1, and eg/p(p1) =
ex/r(p2) = 2, where P; N O = p; for j = 1,2. Thus,
er/r(P5) = er/x(Pilex/r(p;) = 2.

Also, if p = 3, then by Theorem 1.30, p is completely split in K and is inert in Q(v/—1).
Therefore, 30, = Q1Q,, where Q; for j = 1,2 are prime Op-ideals, and fr,/x(Q;) = 2 for
J=1,2, while fx/r(q;) =1 where Q; N O = q;. Hence, for j = 1,2,

Jryr(Q5) = fo/x () fx/r(a;) = 2.

We will now develop tools that will allow us to refine our knowledge of the ramification,
inertial, and decomposition numbers, especially as we tie them into the theory developed
in the preceding chapters. First, we extend the notion of trace and norm.

Definition 5.2 — Relative Norms and Traces of Elements

Let K/F be an extension of number fields with |K : F| = n, and let 6; for j = 1,2,...,n
be all of the F-isomorphisms of K—see Exercise 2.6 on page 63. Let a € K and set

Niyr(e) =[] 05(e),
j=1
called the relative norm of a in K/F. Also, set

Tyyr(a) =) 0;(a),

Jj=1

called the relative trace of « in K/F. Observe that when F' = Q, then these notions coincide
with those given in Definition 2.4 on page 65, and in this case, we call N g the absolute
norm and Ty q the absolute trace.
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Example 5.4 Let K = Q(v/—1,v/3), and F = Q(+/3). Then
Nic/r(5+v=1) = (5 + vV=1)(5 = V=1) = 26,

and

Nijo(5+ V=1) = NZ 5(5+ vV=1) = 26 = 676.
Also,

Tr/r(5+V-1)=(5+vV-1)+ (5—v-1) =10,
and

Example 5.4 motivates the following, which uses the ideas developed in Exercise 2.6.

Theorem 5.2 — Properties of Relative Norms and Traces
If F C K C L is a tower of number fields, then for o € L the following hold.

(&) Npjr(a)=Ng/r(Np/r(a)), and Np/p(a) € F.
(b) TL/F(a):TK/F(TL/K(Q)),and TL/F(Oé) eF.
(¢) If|L: F(a)| =r, then
Npjp(a) = (Np)/r(@)"s and Ty jp(a) = 7(Tr)r(a))-

Proof. (a) Let 0; for j =1,2,...,n=|L: K| be all of the K-isomorphisms of L and let 1/,
for k=1,2,...,m = |K : F| be all of the F-isomorphisms of K. Then

Ni/p(Npyk (o H H 0;(a)) = H H¢k(9j(a)) = Np/r(a),

k=1j=1

since the ¥0; are all distinct and comprise the F-isomorphisms of L. Observe as well that
if 91 is the identity embedding of K, then 6,|x = ¢; for all j = 1,2,...,n, and that ¢,
extends to n embeddings of L into C for each k =1,2,...,m

(b) The property for the trace is proved in a similar fashion to that of (a), employing
additivity instead of multiplicativity.

(c) These formulas are proved in the same fashion as that given in the proof of Theorem 2.5
on page 66. O

Example 5.5 Let L = Q(v/5,v/—1), K = Q(v/—1), and F = Q. If « = v/5 + /—1, then
Ni/p(Npji (@) = Ngyp((V5 4+ V=1)(=V5 + v/=1)) = Nk, p(—6) = 36 =
(V5 +V=1)(—V5+ V=1)(vV5 — V=1)(=V5 — V=1) = Ny ().

Also,
Tx/r(TL k(o)) =

Tiepe (V5 + V1) + (—V5 + V) = Tieyp(2V/ 1) = 2V T~ 201 = 0 =
(VB 4+ VD) + (<V5+ VD) + (VB = VD) o+ (—V5 = V1) = T (o).

If 3 =3+ +/—1, then
Nir(B) = (Nk/r(B))* = 10% = 100,
and
Ty r(B) =2Tk/p(B) =26 =12.
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The following makes use of Lemma 5.1 on page 182 to introduce a new notion.

Definition 5.3 — Relative Norms of Ideals

Let K/F be an extension of number fields, and let P be a prime O i-ideal above the unique
prime D p-ideal p = PN Op. Set

NK/F(fP) _ pr/F(gJ),

and extend to J € Ia,, via

where

as a product of distinct prime powers in O and P; NOp = p;. When F = Q,
NF/A() = (N (),

the principal ideal in Z generated by N(J) as given in Definition 2.8 on page 83. We call
NK/Q the absolute norm.

Definition 5.3 tells us, in particular, that N%/F(J) is an O p-ideal for any O g-ideal J. The
reader may develop further properties of the relative norm of ideals by solving Exercises
5.3-5.6.

Example 5.6 Let K = Q(v/—3,v5), F = Q(v/5), and p = 11. Then pOx = PPy,
where P; for j = 1,2 are distinct prime Og-ideals, and ex,p(P;) = 1, fx;p(P;) = 2 by
Theorem 1.30 on page 49, and Theorem 5.1 on page 184. Hence,

NK/F(:PJ') = p?, where p; = ij NOFp.

Also,
NR/C(P;) = (11)?,

since p; NZ = (11).

What is hidden in the development thus far is the relationship between |K : F| and the
ramification and inertial degrees.

Theorem 5.3 — Field Degrees, Ramification, and Inertia
Let K/F be an extension of number fields. Suppose that p is a prime O p-ideal and
PO = P Pea,

where the P; are distinct prime O g-ideals, and g = gx/r(p). Then for e; = ex/p(P;), and
fi = Ix/r(P)),

g
Y oeifi=IK:F|.
j=1
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Proof. The embedding of O into Ok induces an embedding of the field D g /p into the
ring Ok /pO k. We now show that the dimension of the ring as a vector space over the field
is indeed |K : F| = n, and that this is also the required sum.

Claim 5.1 |[Og /P : Op/pl = ¢;f;.
By Exercise 2.40 on page 82, we have
Ok [P} : Ok /Pj| = e;.
Therefore,
1Ok /P : Or/pl =[Ok [P} : Ok /Pi||OK/Pj: Or/pl = ¢;fj,

which establishes Claim 5.1.
By Claim 5.1 and Exercise 2.40,

g
Ok /pOK : Op/pOr| = eif;. (5.3)
j=1

It remains to show that this dimension is also n. First, we show that it is at most n. We
do this by demonstrating that any n + 1 elements of O /pO k are linearly dependent over
Op/pOp. Let a; for j =1,2,...,n+1 be elements of O and let @; be the corresponding
elements of O /pOp. Since the o are linearly dependent over F', then they are linearly
dependent over O by Lemma 1.4 on page 38. Therefore, there exist 5; € Op not all zero

such that
n+1

Z B = 0. (5.4)

j=1
Claim 5.2 Thereexistsay € F—Op withv(81,...,8nt+1) C Op, but (51, ..., Bnt+1)  p.

By Exercise 1.38 on page 33, there is a non-zero O g-ideal I such that I(81, ..., Bns1) = (a)
for some o € Op. Thus, I(51,...,08nh+1) € ap, since otherwise o € ap implies 1 € p. Let
B € I such that 5(f51,..., Bn+1) € p. Then by setting v = 5/, we get the claim.

By Claim 5.2, reducing (5.4) modulo p yields a nontrivial relation among the ¢;. In other
words, not all §jare zero modulo p, so the o are linearly dependent over O /pO . Hence,
we have shown that

‘DK/]JDK : DF/pDF| <n.
We conclude by establishing the full equality.

Let p NZ = (p), and let p; for & = 1,2,...,9p/0(p) = g1 be all of the prime O p-ideals
above p. Now we show that n = n, = |Ok /prOk : Op/pi| for each k =1,2,...,g;.

Claim 5.3 371, er/q(p;) fr/ap;) = [F : Q.

We have .
1
NF/Q(]JDF) _ H(p)ep/@(Pj)fF/Q(Pj) _ (p)ziil eF/Q(pj)fF/Q(pj),

Jj=1

and by Corollary 2.8 on page 85, this equals

195/(p)] = (Nr(p)) = (p)F 2.
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Since NF/Q(pOr) = N(p) = (|Or : (p)|) = (Nr(p)) by Definition 5.3 on page 186, this
establishes Claim 5.3.

Therefore, since pOp = [[7L, pZF/@(pk) then using (5.3),
g1

NER(pOg) = H(NK/Q(kaK er/o(Pk) H NF/Qp, ) rwer/aler) =
k=1

g1
H(p)nkeF/Q(pk)fF/Q(Pk) _ (p)Zilzl nkeF/@(pk)fF/Q(Pk)’

k=1

by Claim 5.1 and Exercise 5.6 on page 195. However, by the same reasoning as in Claim

5.3,
NK/Q(pDK) _ (p)Zle ex/o(Pi) fr/o(Ps) _ (p)\K:Q\.

Therefore,
g1

K :Q =Y nkersopr) fryolbe),
k=1
SO

n|F: Q| = HZGF/Q (pr) fr/a(Pr) ZWF/Q (pr) frya(pr) =

k=1 k=1

g
aneF/Q(pk)fF/Q(pk) =|K:Q|=n|F:Q|

k=1

Thus, ngy = n for each k = 1,...,¢91. In particular, for p; = p, the equality holds. This
completes the proof. O

In view of Theorem 5.3, we may extend the notions given in Definition 5.1 as follows.

Definition 5.4 — Inert, Completely Split, and Totally Ramified
Let K/F be an extension of number fields, and let p be a prime O p-ideal with

g
POk =[P, ¢ €N

j=1
where the P; are distinct, prime O g-ideals. Then p is said to be completely ramified, or
totally ramified in O g whenever
ej = ex/p(Pj) = |K : F| for some j = 1,2,.
so fr/r(Pj) =1 = gg/r(P;). pis said to split completely, or to be completely split in O
if
9=9k/r(p) =|K: F|,

so ex/p(Py) =1= fr/p(Py). If frp(P;) =|K : F|for j=1,2,...,g, then p is said to be
inert®>? in O, so ex/r(P;) =1=gx/r(P;)

5:21t is a common and accepted abuse of language in the literature to say that p ramifies, splits or is inert
in K, rather than Og.
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Example 5.7 Consider the situation given in Example 5.2 on page 183. For p = 29,
(29)O 5 = (29)Z[V/2] = P, Py,
for prime O g-ideals Py, and Po, where e /o(P;) = 1for j = 1,2, fx/o(P1) = 1, fr/o(P2) =
2, and ¢(29) = 2. Thus,
g
Q(V2): Q= |K:F|= e;fy=1-1+1-2=3,
j=1

The reader is reminded of the definition of normal extension given in Exercise 2.2 on page 62.
For such extensions, Theorem 5.3 on page 186 is given as follows.

Theorem 5.4 — Normal Extensions, Ramification, and Inertia

Let K/F be a normal extension of number fields, and let p be a prime O p-ideal with
g
pDK = H T;jv
j=1
where g = g /p(p) and e; = ex/p(P;). Then
ex/p(Pi) = ex/p(Pe) = ex/p(p), and fr/p(P;) = fr/r(Pr) = fr/r(p)
for all 5,k € {1,2,...,g}. Thus,

ex/r(P)fr/r(P)9r/p(p) =n=|K : F|.

Proof. The last assertion will follow as an immediate consequence of the initial results via
Theorem 5.3.

If we can show that for each P; and P, for any j,k € {1,2,...,g}, there exists an F-
isomorphism 6 of K such that 6(P;) = Px,53 then the initial assertions follow. To see this,
suppose that 8(P;) = Py. Then

g
POk =0(pOk) = H

then e; = e, by uniqueness of factorization of ideals. Also,

fe =19k/Pr: Or/p| = [Dk/0(P1) : Or/pl =[Ok /P1: OFp/p| =

Hence, it remains to show that the P; are conjugates over F'.

Let 6 be any F-isomorphism of K. Since P"* = (a) for some o € O, then a € Py since
P, is prime. Since

Niyr(a H ) € P,

where 6; for j =1,2,...,n are all of the F—1somorphlsms of K, then

Nk r(a)Ok CpOk,

5-3When this occurs, we say that the P; are conjugates over F'. The reader may easily verify that o(®;) is
a prime O y-ideal, so 6(?;)NO p=p forcing 6(?;)=?;, for some reN—see Exercise 2.40 on page 82.
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s0 POk | Ni/r(a)Ok, which in turn implies that P | (Ng,p()) for all k € {1,2,...,n}.
Thus, for some ¢ € {1,2,...,n}, O¢(a) € Pi. Therefore,

00(P1)"% = 04()D e C Py,

from which it follows that ,(P1) = P}, since both P; and P;, are primes. Hence, the P; are
all conjugates over F. |

The action of the F-isomorphisms of K on the prime O -ideals established in the above
proof has a name. We also say that the F-isomorphisms of K transitively permute the P;,
or act transitively on them. Thus, we have the following immediate consequence.

Corollary 5.1 If K/F is a normal extension of number fields, then the F-isomorphisms of
K transitively permute the prime £ g-ideals above a fixed prime ideal p in O p.

Example 5.8 Let p* > 2 where p is a rational prime and k € N. Set K = Q(¢pr) and let
A=1—(yr. Then (A) = MOk is a principal O g-ideal, and is prime since

by Corollary 2.8 on page 85 and Exercise 3.35 on page 129. Furthermore, since p = ®,x(1) =
11 j(l — C; +), where the product ranges over all natural numbers j < p* relatively prime to

p, and by Exercise 3.35, we get p = uA\®®") where u € O is a unit. Thus,
PO = ()\DK)QS(pk),
so since K/Q is normal, we get
ex/o(p) = ¢(p*) = |K : Q|, and fr/o(p) =1 = gx/o(p)-

We give an interpretation of the relative norm of an ideal that is similar to the relative
norm of an element. We will employ the Galois theory developed in §2.1.

Theorem 5.5 — Ideal Norms as Conjugates

Let K/F be an extension of number fields, and let L be the minimal normal extension of
F containing K. Set H = Gal(L/F)/Gal(L/K).>* Then for J € Ia,,,

NEE@OL = ] 00901).
0cH
In particular, if K/F' is a normal extension, then
NE¥E@Or = I 60).
9€Gal(K/F)

Proof. By Exercise 5.3 on page 194, it suffices to prove the result for J = P, a prime O g-
ideal. Let p = PN Op. First we prove the result for K/F a normal extension, namely
K = L. By Theorem 5.4 on the preceding page,

PO = (P1Py--- ng)efy

5-4The reader is cautioned that the set H is not, in general, a group.
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where P =Py, e = ex/p(p), f = fx/r(p), and g = gx/p(p). Since the F-isomorphisms of
K transitively permute the P;, for j =1,2,...,g, and since
efg=n=|K:F|
then for each such j there are ef of these isomorphisms that send P; to P;. Therefore,
g
[To="TI o@=]1%=6ox)! =N @0k
6cH 0€Gal(K/F) j=1

This completes the proof for the case where K = L.
In the general case, if 0,0, ' € H, then 6,(PO1) = 02(POr). Therefore,

|L:K|
(H a(mL)) = J] 0@9L) =N (POL)0,,
0cH 0cGal(L/F)

by the above case, and by Exercises 5.6-5.7, this equals,
) |L:K|
NK/F(NL/K(:J)DL))DL _ NK/F(?)\L.K\DL _ (NK/F(T)DL) ’
and the desired result follows. O

Corollary 5.2 Assuming the hypothesis of Theorem 5.5, let J = («) € Pa,. Then
NE/E(J) € Pa, is the principal fractional O p-ideal generated by Ny, ().

Proof. From Theorem 5.5, we get

N¥F@)0L =[] 0099L) = ] 0(aOr) = Npjx()Or.

0cH 0cH

Therefore, by Exercise 5.1,
N¥IF () = N¥/F(0)0, N K = Ngjp(a)Or N K = Ngp(a)Ok,

which is the required result. O

Example 5.9 Let K = Q(4/2), which is not normal over Q as observed above. However,
L = Q((3, ¥/2) is normal over Q, where (3 is a primitive cube root of unity. In fact, it
is the minimal normal extension of Q containing K. The embeddings of L into C are
{1, (917 92, 9%, 9192, 9%92} where:

01: V2 (32, and 6; : Gz > (3,

92:C3'—>C§1,and92:\3/§|—> \3/5
As shown in Example 5.7 on page 189, we have the O -ideal

(29)91{ = ?1?2,

with fr,o(P1) = 1 = egyq(P;) for j = 1,2, and fg,(P2) = 2. Also, 29 is inert in
Q(¢3) = Q(+/—3) by Theorem 1.30 on page 49. Therefore, by Theorem 5.1 on page 184,

(29)01 = 919503,
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where the Q; for j = 1,2, 3 are O p-ideals with

fL/K(Ql) = 2, and fL/K(Q]) = eL/K(Qj) = 1, fOI‘j = 2,3

Also, here
H = Gal(L/Q)/Gal(L/K) = (8:) = {1,0,,0}}.

where 6 is the image of #; under the natural map that takes Gal(L/Q) to the set H. Thus,
again by Theorem 5.1,

al(Ql) = le gl(Qz) = Qg, and ?1(93) =

Hence,

w

N®/%((29)0 k)01, = N¥/2(P,P5)0 H (9,0,05) = 930303,

Notice that by Definition 5.3 on page 186,
NE/Q((29)0 ) = NK/Q(PPy) = NK/Q(P ) NK/Q(Py) =
(29) 7/ (29)FrereT2) = (29) - (29) = (29)°,
which coincides with the new characterization of relative norms for ideals, since
NE/Q((29)01)O 1 = 29°0; = (2,2,03)°.
If we consider the norm from L, then as in the proof of Theorem 5.5, we get,

NL/Q((QQ)DL)DL = H 0(919293) =
0€Gal(L/Q)

(H 9(919293)> = (Q,0,95)°.

0cH

Observe that, since L/Q is normal, then ey ,q(29) = 1, f1,0(29) = 2, and g1,/¢(29) = 3.
Again, by our original Definition 5.3 on page 186, we get

3

3
N'/9(0,0,05) = [T N*/%(Q)) = [ (29
j=1 j=1

so we achieve, as above, that

NE/2((29)0,)9 1 = 2999, = (2,0:03)°.

Yet another way to see this is to use Exercise 5.6 on page 195 and Definition 5.3 to get,

3
N'/9(0,0,04) = N¥/¢(N/K(Q,0,05)) = N¥/2 | T N*/5(9))
j=1

NK/Q (T{L/K(Ql)TgL/K(Q2):P§L/K(QS)) _ NK/QCP%CPQTQ) _ NK/Q(:])%:])S) —

(29)2f1</@(9’1)(29)2f1</@(9’2) (29)2 1(29)2 -2 (29)

All of the above methods are instructive, but the easiest is to look at Corollary 5.2, from
which we get that N%/Q((29)Ox), respectively, NX/2((29)9), is the principal Z-ideal
generated by Nk /g(29) = 293, respectively, Np,o(29) = 296
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Corollary 5.2 allows us to achieve yet another characterization for the norm of ideals.

Theorem 5.6 — Norms of Ideals Generated by Norms of Elements

Let K/F be an extension of number fields. If J € Ia,., then NX/F(J) is the smallest ideal
of Ia, which contains all norms Ng,r(a) where a ranges over all elements of J.

Proof. By Corollary 5.2, Nk p(a) € NE/F () for all @ € J. It remains to show that the
N/ r(a) generate NX/F (7). First, we assume that J is an integral O g-ideal.

Claim 5.4 There exist o, € J with (a) + (8) =7J.
Suppose that H is an O g-ideal relatively prime to J = H?Zl p?j, and let

) a; aj+1
&%} G]Jj —pj .

Also, by Exercise 1.38 on page 33, there is an 9 g-ideal I; such that aQx = JI; for some
a € Og. Then by Theorem 1.21 on page 32, there is a solution y = S to the system of
congruences

y=a; (mod p?ﬁl) for j=1,2,...,n,

and y=1 (mod I1H).
Therefore, S € J and we may set SO g = JI; where I is an O -ideal with
Ib+ 11 Hl =9 C L+ 14,
so I + Ir = Ok. Hence,
aOr + O =3 + I =3I + I3) =7,

which secures the claim.

By Claim 5.4, N¥/F(I}) and N®/F(I;) must be relatively prime since I; and I, are rela-
tively prime implying that N5/F(I,)Ox and NX/F(I,)O are relatively prime. Also,

NE/F (D) = NE/F(@YNE/F (1)),

and
NE/F(BOg) = NE/F () NE/F(1).

Thus, NX/F (1) = NX/F(aJ7'O k) and NE/F(I,) = NE/F(BI71D ) are relatively prime.
Hence,

NEIF (D) + NF/F(BO k) = NF/F@)(NF/F (1) + NF/F (1)) = NF/F(9),

and this completes the proof for the integral case.

If J is any fractional O k-ideal, then J = v~ 1J for some v € Ok and some integral O x-ideal
J by Remark 1.13 on page 26. However,

Ni/p(y)yv ' =6 € Dk,

since ~y | Ng/p(7). Thus,
J=0J(69) 'Ok = Ho™ !,

where H = 0JO is an integral O g-ideal and

0':5’)/: NK/F(’Y) GDF.
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By Exercise 5.3 and the proof for the integral case, the fractional ideal generated by all of
the elements Nk, p(c) for o € J is

o~ ICFINKIF (1) — NK/F(o=1) = NK/F(9),
as required. .

Example 5.10 In Example 5.8, with K = Q((,+) and F' = Q, we have the principal prime
Di-ideal AO = (X), and

NEIE(A\DK) = (p) = (Ng/r(N)).

Example 5.11 In Example 5.9, K = Q(V/2), F = Q, and
N¥/%((29)D k) = (29)° = (N /0(29))-

In the next section, we will look at another ideal-theoretic concept called the different, which
will allow us to say much more about prime decomposition in number fields, especially
cyclotomic and pure extensions such as those illustrations given in our closing examples for
this section.

Exercises
5.1. Let K/F be an extension of number fields, and let J € Ia, . Prove that
IOk NF=1.
Also, show that if 1,J € Ia,. with IOg = JOk, then J = J.
(Hint: Use Ezercises 3.31-3.32 on page 121.)

5.2. Prove that the mapping tx/p given in (5.1) is a group monomorphism that induces
the map given in (5.2).

(Hint: Use Ezxercise 5.1.)
5.3. Let K/F be an extension of number fields, and let J,J € Ia,.. Prove that

NK/F(:DNK/F(H) _ NK/F(JQ)

5.4. Let K/F be an extension of number fields and assume that O = Op[a] for some
a € Ok. Let p be a prime Op-ideal, and let i, p(x) be the polynomial determined
from the minimal polynomial m,, r(z) by reducing its coefficients modulo p. Suppose
further that

g
Mop(2) = [[9:(@)7, ¢ €N
j=1

where the g;(z) are distinct irreducible polynomials over the field Op/p = Or. Prove
that

g
pDK = H ﬂ)jj7
j=1
where the P; are distinct prime O k-ideals such that fx/r(P;) = degg-(g;). Further-

more, show that for each j =1,2,...,¢,

Pj=pOk +9j(a)Ok.
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(Hint: Use Theorem A.5 on page 328 and Theorem 1.21 on page 32.)

(This phenomenon does not always occur, as shown by Example 2.13 on page 79. In
other words, Oy need not necessarily be of the form Ok = Opla].)

Let I and J be nonzero ideals in a Dedekind domain R with quotient field F. Prove
that if I # R, there exists a v € F' such that vJ C R, but vJ < I.

(Hint: Use Ezercise 1.38 on page 33.)

Let FF C K C L be a tower of number fields. Prove that if J € Ia,, then

NL/F(j) _ NK/F(NL/K(j))

Let K/F be an extension of number fields, and let J € Ia,.. Prove that
N®/E(g) =77,

where n = |K : F|.

(Hint: Use Ezercise 5.3 and Theorem 5.3 on page 186.)

Let K/F be an extension of number fields. Show that there exists a number field L
that is a normal extension of F' containing K.

(Hint: Use Theorem 1.24 on page 39.)

Let f(x) € Z]x] be nonconstant. Prove that there exist infinitely many rational primes
p such that f(z) = 0(mod p), for some z € Z.

(Hint: Use Theorem A.7 on page 330.)

Let K/F be an extension of number fields. Prove that there are infinitely many prime
9 p-ideals that are completely split in O .

(Hint: Use Theorem 1.24 on page 39.)

Prove that there are no inert primes in Q({a) for any n € N with n > 2.
(Hint: Use Exercise 5.4 and Theorem 1.30 on page 49)
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5.2 The Different and Discriminant

Nothing is so strong as gentleness and nothing is so gentle as real strength.
Ralph W. Sockman (1889-1970)
Senior pastor of the United Methodist Christ Church in New York City

In this section we will develop tools that will allow us to generalize the notion of the
discriminant of a number field, and prove more powerful results than those achieved thus
far. First, we need the following.

Definition 5.5 — The Dual/Codifferent
Let K/F be an extension of number fields, and let J € Ia,.. Then

J={BeK:Tx/r(8I) COr}

is called the dual or codifferent of J over F', where T, (8) C O means Tk, r(Ba) € Op
for all « € J.

Lemma 5.2 — The Dual is Fractional
If K/F is an extension of number fields with J € Ia,., then J* € Ia, .

Proof. Let a1, € 3%, and 1, B2 € Ok. Then
Tr)r((Bra1 + B202)T) € Tr/p(B19) + Tr/r(B29) € OF,

so J* is an D g-module. Since J € Ia,., then by Definition 1.24 on page 26, there exists a
nonzero 3 € Ok such that 8] C Ok. By Definition 5.5, all such 8 are in J*, which must
therefore be nonzero.

Claim 5.5 There exists a 8* € Ok such that
BT C Ok.

Let 81, B2, ..., Bn be a basis for K over F' with 3; € Ok for j = 1,2,...,n, which is allowed
by Exercise 2.42 on page 82. Let f € JN Ok be nonzero, and set

B* = Ni/r(B) det(Tk/r(BiB;))-
Let n
’Y:ZaijEj* (ajEF),
j=1

be arbitrarily chosen. Then

Tx/r(Ni/r(B)VBi) € OF,
since Nk, r(8)B; € Ok. However, for each i = 1,2,...,n,

Tk/r(Ni/r(B)YBi) = Ni/rp(B)Tk)r(vBi) = Ni/r(B) Z%TK/F(ﬁiﬁj)-
j=1

Hence, for each such 1, j,

ajNg/p(B) det(Tk,r(BiB;)) € OF,
so *v € O k. This establishes Claim 5.5, from which it follows that J* € Ia . o
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Lemma 5.3 — Properties of the Dual

Let K/F be an extension of number fields, and let J € Ia, . Then each of the following
holds.

(a) J9* =O%.
(b) If I is an integral O g-ideal, then (I*)~! is an integral O g-ideal.
(¢) IfJ€ln, and J C J, then I* D J*.

Proof. Let a € J*. Then Ty /p(aJ) € OF, so Tk p(aJOk) € Ox. Therefore, aJ C O%. In
other words, a € I7'9% . We have shown that

J* C I 0%
By reversing the argument, we get that

IO C 7%
Hence, we have J* = J710%, so

99* = 937710% = O,
which is (a). In particular, if 7 C Ok, then O C I'*. Therefore,
(I = Op ()L C (1) ! = Ok,
which is (b).
For (c) assume that J C J. Then for any g € J*,
Tk r(BI) €Tk r(BI) C OF.

Hence, 8 € J*, so J* D J*. O

By Lemma 5.2, if J € I, then J* € Ia,.. In particular, by part (b) Lemma 5.3, if I is an
integral O g-ideal, then (I*)~! is an integral O g-ideal. In any case, (J*)~! is a special kind
of ideal.

Definition 5.6 — The Different

Let K/F be an extension of number fields and let J € Ia,. Then the ideal (J*)7! € Ia,
is called the different of J over F, denoted by D, p(J). If I = O, then Dy p(J) is called
the different of the extension K/F, denoted by D /.

We now employ the Galois theory developed in §2.1.

Lemma 5.4 — Properties of the Different

Let F C K C L be an extension of number fields. Then each of the following holds.
1. IfJe IAK7 then DK/F(J) = JDK/F
2. Dryr =Dr/kDik/F-

3. If K/F is normal, then for any o € Gal(K/F), D}, = Dg/p. In other words, Dy /p
is fixed, also called invariant under the action of the Galois group. The notations
0(Dr/r) and DY, for the action of o are used interchangeably.
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4. 1 € In, and J € In,, then Ty/p(d) C 7 if and only if § C IDL) .

Proof. For part 1, we use part (a) of Lemma 5.3 on the previous page to get, (J9*)~% =
(95) ", 5o

(T =) TH©OR) T =3(0%)
namely ®K/F(j) = TDK/F
For part 2, we observe that o € DZ}K if and only if 77,k () € O by Definition 5.5 on
page 196. In turn the latter is equivalent to

DieypTr/(@) € Dy, (5.5)
by part (c) of Lemma 5.3. Also, (5.5) holds if and only if
TK/F(fD;(}FTL/K(OZ)) = TK/F(TL/K(QD;(}F)) = TL/F(OlfD;(}F) - DF, (56)

by part (b) of Theorem 5.2 on page 185. Lastly, (5.6) is equivalent to saying that a@l_(}l, C
@Z}F. We have shown that a € DZ}K if and only if o € DK/FQZ}F, namely DZ}K =
@K/FDZ}F In other WOI‘dS7 ®L/F = ‘DL/K.DK/F

For part 3, let § € O%, and o € Gal(K/F). Then since Tx,p(6OKk) € OF, we have
Tk/r(B°OK) = TK/F(/BD}‘(A) =Tg/r(BOK) C OF.

Therefore, O%.7 C O% for all o € Gal(K/F). Similarly, D}}Uﬁl C 9%, so O3 C O1.°.
Hence, 9%, = O%7, namely ‘D‘]’(/F =Dg/p-
Finally, for part 4, Tx,r(d) C J if and only if I 'Tk/p(J) = Tk/p(I7J) C Op, which in

turn holds if and only if 771J C D;(I/p namely when J C jD}}p

O

We now are able to generalize the notion given in Definition 2.7 on page 77.

Definition 5.7 — Discriminant of a Relative Extension

Let K/F be an extension of number fields. Then the discriminant of K/F is NX/F(Dy p),
denoted byA g/ p. In particular,A kg = ( &) is called the absolute discriminant of K.

The reader should now go to Exercise 5.17 on page 212 for an explicit example of the above.
An important property of relative discriminants is given as follows.

Lemma 5.5 — Relative Discriminants in Towers
If F C K C L is a tower of number fields, thenA 1/p = AL?}];‘NK/F(AL/K).

Proof. From part 2 of Lemma 5.4, we have
App=N"E(Dy xDr/p) = NV (Dy g )NHF(Dge ),

where the last equality comes from Exercise 5.3 on page 194. By Exercises 5.6-5.7 the latter
equals,

NIENPE (D i) )N (NH(Dies ) = N/ (A ) NP (DG
_ NK/F(AL/K)NK/F(DK/F)\L:K\ _ NK/F<AL/K)AII§}IF(I7
as required. O

The next result verifies that the absolute discriminant coincides with the notion given in
Definition 2.7 as an ideal generator.
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Theorem 5.7 — Dual Basis, Different, and Discriminant
Let F be an algebraic number field, and let J € Ia,. with Z-basis B = {1, ag,...,a,} and

set B* = {af,a3,...,a;} with af € F defined by
Trglaia}) = 0,4,
where 6; ; = 0 if i # j and §; ; = 1 if i = .55 Then the set B* is an integral basis for J*,
called a dual basis. Furthermore,
NT(Dpsq(9)) = NF/C(0)|Ap|.
In particular,
NF/%(Dyyq) = |Apl.
In other words, as ideals,

Arg = (L)

Proof. Let A be the matrix with entries (Tp/g(a;c;)). From Theorem 2.8 on page 73, we
know that det(A) # 0. Thus, A is invertible, so AA~! = I,,. The diagonal of this identity

matrix consists of elements o, = 1, where the

from Theorem A.22 on page 338. Also, the off-diagonal elements of the identity matrix
give us that a;aj = 0, with the o} € F similarly determined by Theorem A.22. Hence,
Trjglajaj) = 1 and Trg(aa)) = 0 for @ # j. This establishes the existence of the
elements in B*, and so secures the validity of the first assertion.

Let B € F. Then by the definition of the o}, there exist ¢; € Q such that 8 = 2?21 q;05.
Also, for any « € J, there exist z; € Z such that o =) ;" | z;;. Thus,

Trj(apB) = Z Z qjzics,
i=1 j=1

so Tr/g(aB) C Z exactly when q; € Z for j = 1,2,...,n, so B* is an integral basis for J*.

For the assertion on norms, we first assume that J = Op. By the above, OF = D;}Q has

dual basis consisting of the aj. Let m € N such that
ma; =m; € O, (5.7)

which is allowed by Lemma 1.4 on page 38. Let J = mDF/@_1 C Op. Then by Corollary 2.8
on page 85,

NFIU(D)q)* = NF(@Gm™")? = NT/%(3)2Npg(m) =2 = NT/2(3)*m=2",
and by Theorem 2.12 on page 85, this equals
disc ({m?,m3,...,m:}) Ap~tm=2 = disc ({o, a3, ..., a5 }) Ap~ !,

where the last equality follows from (5.7).

55The s, ; is called the Kronecker delta.

(2%
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To complete the proof, we observe that the following matrix equation holds,

(Tryg(aiag)) = (0;(a:))(0;(a))",

where 61,05, ...,0, are the Q-isomorphisms of F. Hence by the Kronecker delta symbol,
this is the identity matrix, so

disc(al,..., o) =disc  (aq,...,an) = Ap~ L
We have shown that N¥/Q(Dp/q)? = Ap?, so
NF/(Dsq) = |Agl.
By part 1 of Lemma 5.4 on page 197, if J € Ia,., then
N¥/(Dpsq(9)) = NF/9(IDp/q) = NF/UO)NT/U(Dpyg) = NT/2(3)|AF),
as required. 0O

Corollary 5.3 Suppose that L is a number field with squarefree discriminant A, . If Q C
K C L is a tower of number fields, then K =Q or K = L.

Proof. By Remark 3.14 on page 116, if K # Q, there is a prime p | Ag. By Lemma 5.5 on
page 198, and Theorem 5.7 on the previous page,

) =5 Apjg = (&),

contradicting the squarefreeness, so L = K. ]

Corollary 5.4 If Q C K C L is a tower of number fields, then
AKIL:K‘ | AL'

Proof. By Lemma 5.5,

AK/QIL:KI ‘ AL/
which secures the result. m|
The reader will observe that Corollary 5.4 generalizes Kronecker’s result given in Theo-
rem 3.15 on page 126.

The following result, which was known to Euler in a different form, is another tool in our
quest to establish a fundamental result in the theory of the different that, in turn, will allow
us to establish important results in ramification theory in §5.3.

Theorem 5.8 — Generators for the Dual of a Primitive Extension
Let K/F be an extension of number fields, with K = F(a) where o € Ok, and set
|K : F| = n. Then

Orlo]
m;,F(a)
where m’m r is the formal derivative of mq, p. In other words, Op[a]* is generated as an
9 p-module by the elements

DF[Q]* =

)

ol /ml, p() for j =0,1,2,...,n— 1.
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Also,

ol
T — = | =0foralj=0,1,2,...,n—2, 5.8
K/F <m;,F(a)> or all j n (5.8)

and
an—l
T — | =1. 5.9
RE (m/a,F(a)> (5.9)

Proof. Let o, for j = 1,2,...,n, be the conjugates of o over F', where oy = a——see Ex-
ercise 2.1 on page 62. By applying the Lagrange interpolation formula—see Theorem A.26
on page 342—we get

n n oo

_ ma,F(x) B ma’F({E) a?
1—Zm/ (@) (z — a;) _Z 7 (a)zxk-i'l’ (5.10)

m
i=1 o, i=1 o, F k=0

where the last equality comes from Theorem B.4 on page 347. Also, if
Mo r (@) = 2"+ Y apa™
k=1
then

1 1 = ak
_— = —_— 5.11
ma,F(x) rn + kZ:l xn—i—k ( )

By comparing (5.10)—(5.11), we get (5.8)—(5.9), which also says that

T AR S
e mix,F(a) © P

o fml, p(a) € Drla]".

SO

In other words,

It remains to establish the reverse inclusion. Let y € Opla]*.

Since the elements aj/m’a’F(a) for 7 =0,1,2,...,n— 1 form a basis for K over F, we may
write

n—1 O{j
Yy = E Qj ———F—~ -
=0 ma,F(a)
Therefore,

my, p(a)

)

n—1 .
a-]
Tk/r(y) = E a;jTk/F () = Qp_1,
j=0

by (5.8)—(5.9) established above. Since y € Opla]*, then a,—1 € Op. Now let

n—1

ma’p(;v) ="+ Z bkl'k, with b, € OF, (512)
k=0
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since a € Ok. Thus,

n—1 N
OéJ+1 a™
Tk r(ya) = ajTg/p| ———— | =tn2+an 1 Tx/p | /7|,
/ Z: 7RI, p(a) T\ i (@)

s

and from (5.12), this equals

n anfk
Ap—2 — ap—1 bTk/r | ——F— = Gp—2 — Qn_1b1.
s (St (52555 L

)

Since a,_2 — ap_1b1 € Op, then a,_o € Opr. Continuing in this fashion, we see that all
a; € Op, soy € Op[a], which completes the reverse inclusion, and hence the entire proof.0

Now we turn to a concept that will help to explain the term different.

Definition 5.8 — Different of an Element
Let K/F be an extension of number fields with K = F(«a) for a € O k. The different of o
is m;, p(a), denoted by

or/r(a).

The reason for the name “different” in Definition 5.8 is that m;, p(a) # 0 exactly when
a is different from all of its conjugates over F. In other words, o # 0;(c) for all F-
isomorphisms 6; of K that are not the identity embedding, namely when « is a primitive
element over F. Now it is important to compare O% with Op[a]*. We know that O% C
Or[a]* = Or[a]/m}, p(a), since for any 3 € D%, we must have Tk /r(BOr[a]) C OF, given
that Opla] C Ok for @ € Ok. Now we look at the reverse inclusion from the following
perspective.

Definition 5.9 — The Conductor

Let K/F be an extension of number fields, and let R be a subring of Ok such that O C R.
Let fr 56 be the greatest common divisor of the O x-ideals contained in R. We call fr the
conductor of R in Ok.

Lemma 5.6 — Conductor Characterization

Let K/F be an extension of number fields, and let R be a subring of O g such that O C R.
Then

frR={8€ K:BR*CO%},
and fg is an D k-ideal contained in R. In particular, if R = Op[a] for some « € Ok, then
fo = my, p(@)O% = 0k r(a)O%
is the conductor of Op[a] in Ok and is the largest O k-ideal contained in O p[a].

Proof. Set
I={8eK:pBR" C Ok}

For B €I, v € Ok, we have
VBR" C vO¥ € Ok

5-6The letter f is used here since the origin is in the German language, where the term for conductor is
Fiihrer.
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Therefore, I is an 9% -module. (Observe that if R # Ok, then R* is an Op-module, but
not an O g-module.) Also, R* C D%, so

Tg/p(IR") C Tk p(O%) € OF.

Therefore, R* C I*, so I C R C Ok. This shows that I is an Og-ideal contained in R.
Consequently, the O k-ideal fg divides I.

Suppose that J is an O-ideal in R and 8 € R*, namely Tk, p(BR) € Op. Then
Tr/r(BIOK) C Tr/r(BR) C OF.

Therefore, §J C 9%, which implies that J C I. Thus, I divides all Og-ideals in R, so
I'| fr. Hence,
I= fR g Ra

as required.
Now if R = O o], then by the above and the fact that O C Op[a]*, we get,

M, p (@) D% € my p(2)Oplal” = Opla] € Ok,

where the equality comes from Theorem 5.8 on page 200. Thus, m], r(a)O% is an O k-ideal
contained in f,. Also, from the proof of Theorem 5.8,

o, F

Therefore, O p[a]/my, p(a) C O, but fo € Or[a] by the first part of the proof, so

fa/ma, p (@) € O

In other words, fo C my, p(a)O%. Hence,

fo = ma, p(0) Ok,

which is the first required equality. For the second one, we first note that since O C
Orlal*, and Opla] C O%, then

{8 € Orla] : BOK C Or[a]} C fa-
Conversely, from the first proved equality, and the fact that
Mg p()O% € mg, p(a)Orla]” = Op[al,

from Theorem 5.8, then for any 8 € f, = m, p(a)O% we get that § € Opla] and O K C

[

Orla]. Hence, fo C{S € Or[a] : BOKk C Orla]}, so we have the full equality.

Lastly, fo is the largest O g-ideal contained in Op[a] by the above and Remark 1.15 on
page 31. O

The reader is now encouraged to solve Exercise 5.18 as an explicit example of the above.

The following links our previous notion of different to the above.

Theorem 5.9 — Generation by Differents of Elements

Let K/F be an extension of number fields. Then Dy, p is the Ox-ideal generated by the
dk/r(a), where o runs over the elements of O.
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Proof. By Lemma 5.6 on page 202, éx/p(a) € D p for all a € Of. In fact, from that
lemma we have:

6K/F(a)9;( = faDK/F~
Now we show that it suffices to find an « € Ok such that P 1§, for all prime O g-ideals P.
If such an « exists, then the ideal ZaeDK fa generated by Uyeo  fo must equal O g . Hence,

DK/F = DK/FDK = DK/F ( Z fa) = Z DK/F(SK/F(OZ)DTK =

a€D K a€OK
Y kp(@)O%(0%) 7 = Y x/p(@)Ok,
a€D K a€O K

which shows that Dy is generated by the dx, p(a). Hence, it remains to show that such
an a exists.

Let P be a prime O g-ideal, and let p be the prime O g-ideal lying below it. Furthermore,
suppose that pOx = P¢J, where e € N and P 1 7.

Claim 5.6 There exists an a € J, with a € P, such that its residue class, @, modulo
P is a generator of the multiplicative group of nonzero elements of the field Oy /P—see
Exercise 4.25 on page 163.

Let 3 € Ok with 8 € P. Then j is a generator of the multiplicative group of nonzero
elements of the field O /P. By Exercise 4.31 on page 164,

NP =8 (mod P).
If BN = B (mod P?), then let v € P, with v & P2. Then
B+y=p (modP)and (8+7)VP =N (mod P?),
by the Binomial Theorem—see Corollary A.11 on page 341. Therefore,
B+7)"P) =B+~ (mod P) and (847N # B+ (mod P?).

Since J and P are relatively prime, then O = P2 + 7, so S+ v = B1 + a where 3; € P?
and a € J. Thus,

a=0+v—-p0 =0 (mod P),

so @ is a generator of the multiplicative group of nonzero elements of the field O /P, and
a ¢ P. This completes Claim 5.6.

Claim 5.7 Let n € N and suppose that S is a system of n representatives of O modulo
P, with 1 € S and let w € P, w & P2. Then

Zajwj:ajESforj:O,l,...,n—l ,

is a system of representatives of O g modulo P".
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We use induction on n. If n = 1, then S = T, so we have the induction step. Assume, for
the induction hypothesis that the result holds for n — 1. Let ¢1,t2 € T with t; = b; 4+ ws;
for j = 1,2. if t; —ty € P, then (by — ba) € P — (s1 — s2)w C P. Thus, by = by and
(s1 — s2)w € P™. Therefore, there exists an O g-ideal J such that

Ok (51— s9)w =P
Also, since P? { (w) = wO, there is an O k-ideal I, not divisible by P such that
DKW =PI.

Thus,

PrJ = 9O k(51— s2)w = Ok(s1 — s2)PI,
SO

:Pn_l ’ DK(Sl — 82).

Therefore, s; — s, € P*~!. By induction hypothesis, s; = s, so t; = t3. We have
shown that for any t1,to € T, with ¢; — t2 € P", we get t; = t5. Hence, T has N(P)"
different representatives of Ok modulo P". By Exercise 4.25 on page 163, T is a system of
representatives of Ok modulo P. This is Claim 5.7.

Claim 5.8 For any n € N and any B € Ok, there exists a unique v € Opla] such that
B=~ (modP").

Let w = o) —a. Observe that by the same argument as used above on 54+, we get that
w ¢ P2. Thus, by Claim 5.7, for any 8 € Og, there exists a unique Z?;Ol ajw’ € OF|al
with a; € S such that 8 —~ € P". This is Claim 5.8.

Finally, we now show that P 1 f,.

Let 8 € Oxmy, p(a) NOp. Then SO = p?J, where a is a nonzero integer and the prime
p below P does not divide the O p-ideal J. Consider

SO = (o1) and pehr = (02).

Therefore, 01 = 0903 where a3 € J"7. Also, o3 ¢ p since p®*#+1 § (51). We now demon-
strate that Ox(030"F) C Op[a]. By Claim 5.8, for any given p € O, there exists a
v € Or|a] such that p — vy € P F . Since

posat = (p —7)ozat + oz,
and yo30%"F € Op[a], then it suffices to show that (p — v)o3a®F € Orlal. Since (02) =
p®"7r  then

DK(p* ’y)dggggKaahF DKdlﬂJeahFDKOLahF

ahF —
DKpahF - g)eahpjahp

OKr(p—v)osa

C OB C Oplal,

where the penultimate inclusion comes from the fact that o € J, and the final inclusion
arises from the fact that m;, p(a)Ox C O r[a] by Exercise 5.12 on page 211. Having shown
that the ideal Ok (03a%"F) C Op[al, then it follows from Lemma 5.6 on page 202 that
O (0309"F) C §,. Since o3 € p, then o3 ¢ P. Thus, since a € P, we get by primality that
o3a%"F ¢ P Hence, fo, P, namely P 1 f,, which is the entire result. |

From the proof of Theorem 5.9 emerge two immediate consequences.
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Corollary 5.5 If K/F is an extension of number fields, then for all prime O g-ideals P
there exists an a € Ok such that P 1 f,.

Corollary 5.6 — Dedekind, 1881

Let K/F be an extension of number fields, and let P be a prime O k-ideal. Suppose that J
is an O g-ideal not divisible by P. Then there exists an o € J such that for all 8 € O and
any n € N, there exists an element v € Op[a] with

=~ (mod P").

Our next goal is to establish what may be considered as the main result in the theory of
the different, namely the link between the different and ramification. We will prove that
the primes that ramify in an extension K/F of number fields are precisely those primes
that divide the different, and therefore that there are only finitely many of them. There
are many methods in the literature for achieving such a task. One of them involves an idea
put forth by Weil in 1943—see Biography 5.1 on page 211. He observed that the different
is intimately linked to the notion of abstract differentiation in commutative rings.

Definition 5.10 — Derivations

Let R be a commutative ring with identity and let M be an R-module. A homomorphism
0 from R into M is called a derivation of R on M provided that, for all o, € R,

d(af) = ad(B) + po(w). (5.13)
If T is a subring of R such that a derivation 0 of R on M satisfies
O(a)=0forall a €T,

then 9 is called a derivation of R on M that is trivial on T. In the case where M is
a commutative ring, a derivation 9 is deemed to be essential if there exists an element
v € 9(R) such that +y is not a zero divisor.

Remark 5.2 Observe that since 0 is a homomorphism of additive abelian groups, then in
addition to (5.13), we have that

da+ B) =0a) +0(8),

for all a,8 € R. Also, note that (5.13) is the analogue of the standard product formula for
derivatives in elementary calculus.

The reader may now solve Exercises 5.14-5.16 on page 212.

Theorem 5.10 — Differents and Derivations

Let K/F be an extension of number fields. Then Dy, p is the least common multiple of all
9 g-ideals J for which there exists an essential derivation

DZDKHDK/:]

that is trivial on OF.



5.2. The Different and Discriminant 207

Proof. We first show that it suffices to prove the result for J = P™ where n € N and P is
a prime Og-ideal. Let J = H?:l Tjj, where the P; are prime O g-ideals, and a; € N for
j=1,2,...,n. Suppose that

0: DK — DK/j

is an essential derivation of O into O/ ‘.P;”, which is trivial on Op. Then
0;: O — DK/fP?j

defined for each 8 € Ok by _
v;(8) =0(B) (mod P})

is also an essential derivation of Ok into O/ fP?j that is trivial on Op. Conversely, if
0, is an essential derivation of Ok into DK/T?j that is trivial on O, then the n-tuple
0= (91,...,0,) acting on

Ok /1= [[ O/,
j=1

via Theorem 1.21 on page 32, the Chinese Remainder Theorem, induces a derivation d" of
Ok into Dk /T that is trivial on Op. It remains to show that ?’ is essential. Suppose that
the n-tuple (B1,...,8,) € Ok is such that 9;(5;) is not a zero divisor in DK/iP?j. By
Theorem 1.21, again, we may choose § € Ok such that

B=p; (mod P’)

for each j = 1,2,...,n. Therefore, 0'(8) is not a zero divisor in O /J.

Our remaining task is to prove that an essential derivation of Ok into O g /P™ exists if and
only if P" | D p. If 0 is such a derivation, then by Corollaries 5.5-5.6, we may select an
a € Ok such that P11, and for any n € N and any § € Ok we have

B=g(a) (mod P
for some g(a) € Op[a]. For such a congruence, we get from Exercise 5.15 that
2(B) = 0(g(@)) = ¢'()o(),

where the last equality follows from the very definition of a derivation, with ¢’ being the
derivative of g. If d(a) is a zero divisor, then d(8) is a zero divisor for all 8 € Ok,
contradicting the choice of 9. Thus, 9(«) is not a zero divisor, so

0=12(0) = d(ma,r(a)) = mg p(@)0().

Therefore,

my, p(a) =0 (mod P").
By Lemma 5.6 on page 202,

m/a,F(a)D;( = faDK/F7
but P4 ., so P" ‘ Dk/p-
Conversely, assume that P" | Dkyr, and select a € Ok such that P 1 f,. Let § € fo with
B ¢ P. By Lemma 5.6 again, every v € O may be written as

7=M,
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where g(z) € Op|z]. Since 8 € fo, € Op[a], by Lemma 5.6 one more time, then g = h(a) €
Orla). Since f ¢ P, then § has a multiplicative inverse o € Ok modulo P, namely

Bo =1 (mod P"). (5.14)
Define for each v = g(a)/8 € Ok,
2(7) = (g'(a)h(a) — g(a)h'(a))o? (mod P"). (5.15)
Claim 5.9 0 is an essential derivation of Ok into Oy /P"™ which is trivial on Op.
If v = g;(a)/p for j = 1,2 are two expressions for v € O, then
g1(a) — g2(a) =0,
so there exists a k(x) € Op[z] such that
91(z) = g2(x) = ma,p(x)k(z).
Therefore,
g1(@) = ga(a) = mg, p(@)k' (o) =0 (mod P"),
where the congruence comes from Theorem 5.9 on page 203, since
j)n | ®K/F | m;7F(Q)DK.

This shows that (5.15) is well-defined.
If we consider the product

~—

(a

<

— = B1fe = gléa) g2éa),

=

then 81 = og1 (@) and B3 = oga(a). Therefore,

—~

B10(B2) + B20(81) = og1(a) [g5(a)h(r) — ga(@)h(a)] 0
+og2(a) [g1(a)h(a) — gi(a)l (a)] 0
=0’ ([91()ga(a) + g1 (@)g2(a)] h(a) = 291(@)g2(a)l(a))  (mod P™). (5.16)

Since
g1()g2(a) = Bg(a) = g(a)h(a),
then for some ¢(z) € Op[z],
91(x)g2(x) = g(x)h(x) + ma,r(2)l(z).

By differentiating the latter, evaluating at x = a, and looking at it modulo P™, we achieve,

91()g3(a) + g1 ()g2(a) = g'()h(a) + g()h'(a) (mod P). (5.17)
Hence, by comparing (5.16)—(5.17) and using (5.14), we get

B10(Bz) + B20(B1) = 0* (¢ (a)h(a) — g(a)h'(a)) (mod P"),

SO

B10(B2) + B20(B1) = 2(B12)-
Thus, 0 is a derivation, and it clearly is trivial on Op. Since d(«) is the identity of O /P™,
then 0 is essential.
This completes the proof.>” |
We are now in a position to establish the following main result.

570bserve that (5.15) is the analogue of the quotient rule in elementary calculus.
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Theorem 5.11 — Fundamental Theorem of the Different

Let K/F be an extension of number fields, P a prime O g-ideal with p the prime O p-ideal
below it, and set e = ex/p(P). Then

P Dy
Furthermore, if ged(e, N¥/2(p)) = 1, then
Te f DK/F

Proof. Let pO = P°I, where p = PN Op, P11, and e = ex/p(P). If B € PI, there must
exist an n € N sufficiently large such that

B e PP C POk,

where p = p N Z. By Exercise 5.8 on page 195, there exists a normal extension L of F
containing K. Thus, if 0; for j = 1,2,...,d = |L : F| are all of the F-isomorphisms of L
into C, then for each such 7, 6;(8") € O. Hence,

T r(B") € POLNOF = p.
Thus, by the Binomial Theorem,
TL/F(ﬁpn) - TL/K(ﬁ)pn €p.

Hence, Ty, (B) € p, s0

Therefore, by part 4 of Lemma 5.4 on page 197,

PI C pD;{I/F.

In other words,

Hence, Dg/p C Pe=1. namely
Pt ’ Dr/r,

as required for the first statement.

Now we establish the second statement. By Theorem 5.10, it suffices to prove that every
derivation 9 of Ok into Ok /P, which is trivial on O, satisfies that 9(53) is a zero divisor
for all § € Dk such that 9(8) # 0.

We break this into three cases.
Case 5.1 € P —P?
Let o € p — p2. Then there exist 7,0 € O — P such that a = 3%y/c, so
oa = (%.
Therefore, since a € O, and 9(8¢) = 0, then
0 =0(8%) = B0(7) +70(8°) = 10(8°) = vep'0(8),

where the last equality is from Exercise 5.15. Since p{e, v & P, and ¢! & P¢, then d(3)
is a zero divisor. This completes case 5.1.
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Case 5.2 g € P" forn > 2.

We may assume that n < e, since otherwise 9(3) = 0. Also, we may assume that 3 & P~ 1.
Thus, there is a p € P—P? and v,0 € O — P such that 8 = p"y/c. Therefore, by Exercise
5.15,

(B) =0(p"y) =(p") + p"0(y) = ynp" 10 (p) + p"0(7),
and the right-hand side is an element of P" /P, so the left-hand side is also such an element.
However,

(o) = o0(B) + po(0),
and Bo(o) € P*/P¢, so oo(B) € P/Pe. Consequently, (60(8))¢~" € P, so since o ¢ P,
then d(3) is a zero divisor in Ok /P¢. This is Case 5.2.
Case 5.3 g ¢ P.
By Exercise 4.31 on page 164,
e~ =1 (mod P),

so there exists an o € P such that

BNKP) =1 =1 4 q.
By Exercise 5.15,

o(BN/2 L) = (Nijo(P) — 1N =20(p),
and we also have that
(ke =) = o(1 + a) = d(a),

where ?(a) € P is a zero divisor, since Ba = S(fNxe(P)=1) = gNke(®) — 3 ¢ P. Given
that (Ngg(P) — 1)8Vx/eP)=2 & P then 0(B) is a zero divisor. This completes Case 5.3,
and so the entire result. a

The following consequences of Theorem 5.11 are the promised links between the different
and ramification.

Corollary 5.7 If P is a prime Og-ideal, then P ramifies in K/F if and only if P | Dk/F-
Consequently, there are only finitely many ramified primes in K/F'.

Proof. The first assertion is immediate from Theorem 5.11. That there are only finitely
many follows from the first assertion via Exercise 2.52 on page 86. m|

Corollary 5.8 A prime O p-ideal p ramifies in K if and only if p ‘ Ag/p-

Proof. If
p|Ax/r= NEIF(Dyp),

then P|p for some prime O k-ideal dividing D, p. By Corollary 5.7, P must ramify in K/F,
whence, p ramifies in K. Conversely, if p ramifies in K, there exists a prime O ideal P
above p which ramifies in K/F. By Corollary 5.7, P | D/, s0

p | pr/F(fP) — NK/F(‘P) } NK/F(gK/F) = AK/Fv

which follows from Exercise 2.46 on page 86. O

The interpretation of Theorem 5.11 on the preceding page will be expanded in §5.3 when
we introduce ramified and unramified field extensions.
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Biography 5.1 André Weil, pronounced vay, (1906-1998) was born on May
6, 1906 in Paris, France. As he said in his autobiography, The Apprenticeship
of a Mathematician, he was passionately addicted to mathematics by the age
of ten. He was also interested in languages, as evidenced by his having read
the Bhagavad Gita in its original Sanskrit at the age of sixteen. After graduat-
ing from the Ecole Normal in Paris, he eventually made his way to Gottingen,
where he studied under Hadamard. His doctoral thesis contained a proof of the
Mordell-Weil Theorem, namely that the group of rational points on an elliptic
curve over Q is a finitely generated abelian group. His first position was at Ali-
garh Muslim University, India (1930-1932), then the University of Strasbourg,
France (1933-1940), where he became involved with the controversial Bourbaki
project, which attempted to give a unified description of mathematics. The
name Nicholas Bourbaki was that of a citizen of the imaginary state of Pol-
davia, which arose from a spoof lecture given in 1923. Weil tried to avoid the
draft, which earned him six months in prison. It was during this imprisonment
that he created the Riemann hypothesis—see Hypothesis B.1 on page 354. In
order to be released from prison, he agreed to join the French army. Then he
came to the United States to teach at Haverford College in Pennsylvania. He
also held positions at Sao Paulo University, Brazil (1945-1947), the University
of Chicago (1947-1958), and thereafter at the Institute for Advanced Study at
Princeton. In 1947 at Chicago, he began a study, which eventually led him to a
proof of the Riemann hypothesis for algebraic curves. He went on to formulate
a series of conjectures that won him the Kyoto prize in 1994 from the Inamori
Foundation of Kyoto, Japan. His conjectures provided the principles for mod-
ern algebraic geometry. His honours include an honorary membership in the
London Mathematical Society in 1959, and election as a Fellow of the Royal
Society of London in 1966. However, in his own official biography he lists his
only honour as Member, Poldevian Academy of Science and Letters. He is also
known for having said In the future, as in the past, the great ideas must be the
simplifying ideas, as well as God exists since mathematics is consistent, and the
devil exists since we cannot prove it. This is evidence of his being known for
his poignant phrasing and whimsical individuality, as well as for the depth of
his intellect. He died on August 6, 1998 in Princeton, and is survived by two
daughters, and three grandchildren. His wife Eveline died in 1986.

Exercises

5.12. Let K/F be an extension of number fields, and let & € Ok such that K = F(a).

5.13.

5.14.

Prove that m'a’F(oz)DK C Orplal.
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Let K/F be an extension of number fields, and let o« € O such that K = F(«). Prove
that (D% )" = Oxm,, p(a) if and only if O = Orla]. (Hint: Use the Lagrange

Interpolation Formula in Appendiz A.)

Let K/F be an extension of fields. Show that the set of all derivations of F' in K
form a vector space over K. For two given such derivations 01, 02, define the bracket

operation,
[01,02] = 0201 — 0102.

Show that the bracket operation is a derivation of F' into K. Furthermore, for any

three such derivations 9; for j = 1,2, 3, establish the Jacobi identity:
[[01,02], 03] + [[02, 03], 01] + [[03,01], 2] = 0.
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5.15.

5.16.

5.17.
5.18.
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(Hint: In the process of verification, establish and use the fact that the bracket opera-
tion is anticommutative, namely that [01,02] = —[02,01].) (The resulting vector space
with the bracket operation forms a nonassociative algebra, called a Lie Algebra, over

K, and the bracket operation is called a Lie Product, or commutator product.)

Let S be a commutative ring with identity and R a subring, and 0 a derivation of R

into S. Prove that for all n € N and o € R,

o(a™) = na""to(a).

Let K/F be an extension of number fields, and let P be a prime O g-ideal. Suppose

that for a given n € N,

O
a.DKl—)W

is a derivation of Ok into O /P™. Prove that d(a) = 0 for all o € P F1.
Let F = Q(v/10), and I = (2,/10). Find I*, Dp/o(J), Dr/g, I* 7" andA g q.

With reference to Exercise 5.17, find §, /5.

Biography 5.2 Marius Sophus Lie (1842-1899) was born on December 17,
1842 in Nordfjordeid, Norway. Ludwig Sylow (1832-1918) was one of Lie’s
teachers at the University of Christiana (which became Oslo in 1925), from
which he graduated in 1865. In 1869, Lie went to Berlin where he met Felix
Klein (1849-1925). This began a collaborative effort that resulted in several
joint publications. Among the consequences of this work is Klein’s characteriza-
tion of geometry involving properties invariant under group actions, which was
established in 1872. As a result of the Franco-German war of 1870, both Lie and
Klein left France. Lie planned to go to Italy, but was arrested as a German spy,
with the unfortunate assumption being made that his mathematical notes were
coded messages. Only after the intervention of Gaston Darboux (1842-1917),
a leading French geometer at the time, did Lie get released. Lie then returned
to Christiana, and obtained his doctorate there. He began an investigation
of differential equations in an attempt to find an analogue of Galois theory.
Ultimately, he was led to a structure that we now call a Lie algebra. He aban-
doned the study of partial differential equations in favour of his new structure.
In 1900, Elie Cartan (1869-1951) published the classification of semisimple Lie
algebras. However, Wilhelm Killing (1847-1923) had independently introduced
Lie algebras with a different purpose since his interest was non-Euclidean ge-
ometry. Lie collaborated for about a decade with Friedrich Engel (1861-1941).
Their joint publication in 1893, Theorie der Tansformationgruppen appeared
in three volumes, and perhaps best represents Lie’s major work on continuous
groups of transformations. Engel was sent by Klein to study under Lie. Engel
became Lie’s assistant in 1892 when Lie succeeded Klein for his chair at Leipzig.
In 1898, Lie returned to Kristiana, the intermediate name taken by Christiana
before it became Oslo. There he took a chair that had been specially created
for him. However, he died shortly thereafter on February 18, 1899.
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5.3 Ramification

FEverything is what it is, and not another thing.

Joseph Butler (1692-1752)
English bishop and theologian

In this section we look at the following concept in extensions of number fields employing
the notions presented in §5.2

Definition 5.11 — Ramified and Unramified Extensions

If K/F is an extension of number fields such that there does not exist a prime O g-ideal,
which is ramified in K/F, then the extension is said to be unramified.5>® At the other end
of the spectrum are those extensions for which there exists a prime O g-ideal P with

eK/F(:P> = ‘K . F‘,

in which case the extension is called totally ramified, fully ramified, or purely ramified at P.
If P is a ramified prime O g-ideal with

PNZ=(p), and p1ex/r(P),

then P is said to be tamely ramified in K/F. An extension K/F is said to be tamely
ramified, provided that all ramified primes in K/F are tamely ramified. Thus, in particular,
unramified extensions are tamely ramified. When p divides e/ p(P), then P is called wildly
ramified, and the extension is called wildly ramified at P.

Corollary 5.9 If K/Q is an unramified extension, then K = Q.

Proof. By Remark 3.14 on page 116, if K # Q, then |[Ag/g| > 1. Therefore, there must
exist a ramified prime in K/Q, by Corollary 5.8 on page 210. O

Remark 5.3 In view of Definition 5.11, the Fundamental Theorem of the Different, The-
orem 5.11 on page 209, says that any tamely ramified prime O -ideal P in K/F' satisfies
the property that

Ppe—1 | DK/F» but TETQK/F, where e = eK/F(fP).

Hence, if K/F is normal, then p™ { Ag/p, where p = PN F, and n = |K : F|—see
Exercise 5.20 on page 219. Later, we will see that the converse is also true, namely, that a
normal extension for whichA g, is not divisible by the nt* power of a prime O p-ideal p
must be tamely ramified at p—see Exercise 5.46 on page 253.

Now we look at ramification in composita of number fields—see Application A.1 on page 325
and the discussion surrounding it.

5-8This includes the so-called infinite primes, namely the embeddings of F' into C. This is the term used
in class-field theory—see Theorem 5.21 on page 239. In an arbitrary extension K/F of number fields, a real
embedding of F' into C that extends to a complex embedding of K into C is said to ramify—see Exercise 2.11
on page 63. Thus, these infinite “primes” that ramify must be excluded as well. We explore and develop
the notion of these infinite primes in Exercise 5.24 on page 220. The primes that are not infinite are called
the finite primes.
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Theorem 5.12 — Ramification in a Compositum of Number Fields

Let the number fields K; for j = 1,2 be extensions of the number field F', and let L = K; Ky
be the compositum of K; and K3 over F. Then a prime Op-ideal p dividesA ,p if and
only if it dividesA g /rAg,/F-

Proof. By Lemma 5.5 on page 198, any prime divisor ofA g, /pAf, /p is a divisor of A  /p.
Conversely, assume that the prime Op-ideal p dividesA 1/p, and p { Ak, ,p. Thus, there
exists a prime O-ideal P such that P | Dpr/r and P lies over p. Since

Dr/r=Dr/k, Dk yF,

by part 2 of Lemma 5.4 on page 197, then P { Dy, /pOf,. Thus, P | Dr/K,- Select a € O,
such that Ko = F(«). Then, by Theorem 1.23 on page 38,

ma7F(x) - ma»Kl (iL’)f(ZL'),

for some f(x) € K1[z]. Therefore,

m;,F(a) = m/a,Kl (a) f(a).

This implies that

Mg, p() € my, g, ()Ok.

However, by Theorem 5.9 on page 203,

Moy, 1, (@) € Dk,

and since P | DKk, then

Dr/x, €P.
Therefore, m’Ol’K1 (o) € P, so mg, p(a) € P. Hence, by Theorem 5.9 again Dy, /r C P, so
P ‘ Dk, r, as required. O

Corollary 5.10 If K;/F is unramified for j = 1,2, then K;K5/F is unramified.

Proof. This is immediate from Theorem 5.12, and Corollary 5.8 on page 210. a

Corollary 5.11 Let FF C K C L be a tower of number fields, where L is the smallest
extension field of F' containing K such that L is normal over F. Suppose that p is a
nonzero prime Op-ideal. ThenA p,p andA g/ have the same prime divisors, so p is
unramified in L/F' if and only if p is unramified in K/F'.

Proof. Let §; for j =1,2,...,n be all of the embeddings of K into C. Then
L=K"K% ... K,

the compositum of all the embeddings. The result now follows from Theorem 5.12, and
Lemma 5.5. O

Remark 5.4 The above results set the stage for later when we develop the so-called Hilbert
class field, which is the maximal, unramified, normal extension of a given number field such
that the Galois group is abelian. This Galois group will be shown to be isomorphic to the
class group of the base field via the celebrated Frobenius automorphism. The Hilbert class
field is called the maximal abelian unramified extension of the base field. There is much
power yet to be developed.
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We continue with further results on composita of number fields and their discriminants.

Theorem 5.13 — Discriminants and Degrees of Composita
Let K; for j = 1,2 be number fields with

ng(AK1 ’ AK2) = ]-a
and
|Kj . Q| = nj.

Then each of the following holds, where L = K7 K> is their compositum.

(a) |L:Q|=nins.

(b) Op =9k Ok,, and if {aq,...,an, } and {B,..., s, } are integral bases of K; and

K, respectively, then {a;8;} for 1 <i <nq, 1 <j < ng is an integral basis for L.
(c) Ap=ARAL,.
Proof. (a) We have
|L : Q| = |L : K2| . ‘KQ : Q| = |L : K2|n2.

If |L : Q| < ning, then |L : K3| < ny. Let K = Q(a). Then mq, k, () | mag(x). If F is the
subfield of K, generated by the coefficients of mq, g, (), then F' # Q. Since F' C Ks, then
Ap | Ak,, by Theorem 3.15 on page 126. Since the coefficients of mq, k, (x) are elementary
symmetric functions—see Definition A.16 on page 333—of the roots of mg, k,(x), then
Ma, K, (z) € Ni[z], where Ny is the smallest Galois extension of Q containing K;. Therefore,
F C Ny, so as aboveA g | Ap,. Let p | Apr be a prime. Then p | Ap, and p | Ag,, SO
P ’ Ak, , by Corollary 5.11, contradicting the hypothesis that gecd(A1,Ag) = 1. This is (a).

(b) Since O i, O, is the smallest subring of O, containing both Ok, and Ok, , then {a;5;}
for 1 <i<ny, 1< j<ng,isa Zbasis for Dg, Ok,. Therefore,

disc ({a;3;}) = det(0:0,(arBe))?, (5.18)

where the o; are the Q-isomorphisms of K and the §; are the Q-isomorphisms of K. The
determinant in (5.18) is the Kronecker product

det(o: ()" x det(0;(82)°™ = A2 AT

—see Definition A.21 on page 339. Thus, by the very definition of a field discriminant given
in Definition 2.7 on page 77, {a;;} is an integral basis for L.

(¢) By Lemma 5.5 on page 198,
L:K 1 _AM 1
Apjg = A‘Kl/é‘NK 'YUAL K,) = AKi/@NK "YUAL Ky,

and similarly
Apjg = AR oN* /(AL K,).

Hence,A 72 andA %! both divideA ;, and since ged(Ak,, Ak,) = 1, then

no ni
AR AR | AL

Since disc ({as3}) = A} A, by part (b), thenA | = AR AR O
The following application of Theorem 5.13 fulfills the promise made at the top of page 126.
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Theorem 5.14 — Discriminants of Cyclotomic Fields

Let n € N, n > 2 and set K = Q((,), where (, is a primitive n** root of unity. If
n= H;:1 p?j for distinct primes p; and a; € N, then

Ag = H Ag =
C ‘l] T n j —
: ) H] 1pf( )/ (p;—1)"

Proof. We use induction on r. Corollary 3.9 on page 125 establishes the induction step
r =1, so we assume the induction hypothesis, that the result holds for r — 1, where r > 1.
Thus, by Corollary 3.9, and the induction hypothesis,

ged(Aq(c, ), Aa(ge)) =1

where n’ = n/p%r. Therefore, by part (b) of Theorem 5.13,

”/P ) ¢(pr #(n
AK—HA =4q AQ(Cm)

However, by the induction hypothesis,

A¢(pa,) (— )¢(n Yo (P ) (r— 1)/2( ) (n")p(pir) B (-1 )aﬁ(n)(rfl)/?( " o(n)
QCnr) — -1 ar - r—1 ¢(n)/(pj—1 )
HJ 'p §¢(n )/ (pi—1))p(pr") HJ 1]0]( )/ (pj—1)

and by Corollary 3.9, (or the induction hypothesis),

AB) (_1)(45([)‘;")/2)¢(n’)pgr¢(Prr)¢(n) _ (_1)43(n)/2p<rzr¢(n)
Q¢yar) — (p(pr7)/(pr—1))¢(n') ¢(n)/(pr—1)
Dr DPr
Hence, by multiplying the last two expressions together, we get the final result. a

Corollary 5.12 A rational prime ¢ is ramified in Q(¢,) if and only if ¢

Proof. This follows from Theorem 5.14 via Corollary 5.8 on page 210. m|

We conclude this section with a result on prime decomposition, without ramification, in a
cyclotomic extension.

Theorem 5.15 — Prime Factorization in Cyclotomic Extensions

Let K be a number field, and n € N. Set L = K((,), where (, is a primitive n** root of
unity. Suppose that p is a prime O g-ideal with n ¢ p, and

frsa(p) = ex/olp) = 1.
If f € N is the smallest value such that p/ = 1(mod n), where (p) = p N Z, then
pOL =P Py,
where the P; are distinct prime Op-ideals with fr,x(P;) = f for each j = 1,2,...,n and

fog=IL: K|
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Proof. The extension L/K is normal since any K-isomorphism 6 of L satisfies (L) = L.
Hence, we need only show that fr/x(p) = f, since once this fact is proved, the remaining
facts fall into place as an immediate consequence of Theorem 5.4 on page 189. To see that
p is unramified in L/K, use Corollaries 5.10 on page 214 and 5.12 on the preceding page.

Claim 5.10 If f¢, is the conductor of Ok[(y] in Op, then f¢, | nOp.

First, we have that
e —1=me, x(2)g(r),

for some g(x) € Ok|[z]. Therefore, by taking derivatives and setting x = (,, we get

ngmlil = 5L/K(Cn)9(cn)-

Since ("1 € Up, , then
61/k(Cn)OL | nOL.

Thus, ¢, f nOr, by Lemma 5.6 on page 202, which secures Claim 5.10.
By Claim 5.10, and by part (a) of Exercise 5.19 on page 219,

Therefore, since n ¢ p, then p + NE/K(f, ). This allows us to invoke Exercise 5.23 on
page 219. Hence, for each v € Oy, there exists a polynomial k(x) € Ok[z] such that

Y = k(Cn) (mod pOyp).

Thus, by the Binomial Theorem—see Corollary A.11 on page 341—
f § f
YN = k(GNP = R(CYT) = K(G) (mod pOy),

where we are using Definition 2.8 on page 83 for the norm exponents. Thus,

AN =5 (mod P)),
for each j = 1,2,...,g. By Exercises 4.30-4.31 on pages 163-164, the exponent m given by,

() = NEIO(P;) = N/ /e

is the smallest one such that
Y™ =7 (mod P;),

for all v € O and a given j = 1,2,...,g. Therefore, fr x(p) < f. If
NL/Q@P)/e/® £1 (mod n), (5.19)
then ¢t/ <" # (, is a primitive n'? root of unity, and
:;L/K(p) o gn c fP]

Hence, we have the basis discriminant containment:

disc ({1, (..., (2} € Py

Thus,
disc ({1,¢pn, ..., (2™} € P NZ = (p),
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where the prime p does not divide n. Since

disc ({1, Cn, -, Gh ™)) = Do(en)

by Definition 2.7 on page 77, and Theorem 3.14 on page 123, then this contradicts Corol-
lary 5.12 on page 216. Hence, the assumption (5.19) was incorrect, so

N(P;)/t/x® =1 (mod n),
and f < fr,k(p), by the minimality of the choice of f. Hence, f = fr /x(p). |

Corollary 5.13 Let K = Q((,) for n € N with n > 2. Suppose that p is a rational prime,
with n = p®n/, where a is a nonnegative integer, p t n’/, and f is the least natural number
such that p/ = 1(mod n’), then

PO K :Tl"'?gv

where
ex/q(p) = o(p*) = 1, fg=¢(n'),
and all P; distinct prime O x-ideals with

fr0(®j) = f = fx/o)-

Proof. If n = n/, namely when ¢ = 0, then the result is an immediate consequence of
Theorem 5.15 on page 216. If a € N, then let F' = Q((,/). Therefore,

[F': Q| = ¢(n), and |K : Q| = ¢(n),

S0
K F| = ¢(n)/p(n) = ¢(p") = |Q(Gpe) : QI
via Corollary 1.17 on page 41. By Theorem 5.15,

POF =p1-Pg

for distinct prime O p-ideals p;, j =1,..., 9, and g = ¢(n’)/f. Moreover,

pPOr = (P1--P)¢ (5.20)
for some m, e € N. However, by Theorem 5.4 on page 189,

me fi/q(P;) = |K : Q = ¢(n).

Since p is not ramified in F/Q, then e | |K : F| = ¢(p*). By Example 5.8 on page 190,

p = u(l = G0,
where u € Uzj¢ ., S0 using (5.20), we get

PO = (1— Cpa)cb(p“)gK =(P1---Pm)C,

but e | é(p), so e = ¢(p) is forced. Since m > g, given that each p; could decompose
further in K/F, it remains to show that m < g. Since

me(p®) fi/o(P;) = ¢(n) = ¢(p*)(n’),
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then
mfro(P;) = o(n'),

but we also have that

fg= ¢(n/)» and fK/Q(Tj) = fK/F(:Pj)f

Hence, mfx/r(P;) = g, so g > m, thereby completing the proof. O
In §5.4 we marry the Galois theory developed in §2.1 with the results developed thus far in
this chapter to further develop the theory of decomposition of ideals in number fields.

Exercises

5.19. Let K/F be an extension of number fields, and let I, J be O k-ideals. Establish each
of the following.

(a) If I CJ, then NX/F(I) C NK/F(]).
(b) If I and NK/F(J)Of are relatively prime, then N¥/¥(I) and N¥/F(J) are
relatively prime O p-ideals.

(Hint: Use Corollary 1.7 on page 27.)

5.20. Let K/F be a normal extension of number fields, and let p be a prime O p-ideal that
is tamely ramified in K. Prove that
Pt Ak,
where n = |K : F|.

(Hint: Use Theorem 5.5 on page 190, Theorem 5.11 on page 209, and part 3 of
Lemma 5.4 on page 197.)

5.21. Let K;/F for j = 1,2 be an extension of number fields, and let L = K7 K3 be their
compositum. Prove that
Drk, | Dk, yrOL.

(Hint: Use Theorem 5.9 on page 203.)

5.22. Let K;/F for j = 1,2 be an extension of number fields, and let L = K;7Kj3 be their
compositum. Prove that
Ky /F |L:K |
N 2/ (AL/Kz) ’AKI/;,
and

L:K.
NSTF(AL i) | A‘}(2/;"

(Hint: Use Ezxercise 5.21 in conjunction with Exercise 5.6 on page 195.)

5.23. Let L/K be an extension of number fields with L = K («) for some o € Op,. Suppose
that p is a prime O g-ideal such that

bt NEK ().
Prove that for any v € Oy, there exists a k(x) € O[] such that

v = k() (mod pOyp).

(Hint: Use Theorem 1.21 on page 32.)
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In the next exercise, we develop the notion of an infinite prime first mentioned in Foot-
note 5.8 on page 213. To do so we make use of valuation theory a complete overview of
which may be found in [54, Chapter 6].

First of all, an absolute value on a field F is a function |- | : F — R satisfying each of the
following.

(a) |x| > 0 for all z € F and |z| = 0 if and only if x = 0.
(b) |z-y| = |z|- |y| for all z,y € F.
(¢) |z +y| <|z|+ |yl for all z,y € F. (Triangle inequality)
If the triangle inequality can be replaced by the condition
|z + y| < max{|z|,|y|} for all x,y € F, (5.21)

then the absolute value is said to be a non-Archimedean valuation, and otherwise it is called
an Archimidean valuation.

Two valuations |x| and |z|1 are said to be equivalent if |x| < 1 holds if and only if |x|; <
1, which is an equivalence relation—see Exercise 1.8 on page 6. An equivalence class of
valuations on a field F' is called a prime of F', denoted by p, with the valuation in p denoted
by |- |p and its value at x denoted by |z|,. An equivalence class of Archimedean valuations
1s called an infinite prime of F' and an equivalence class of non-Archimedean valuations is
called o finite prime of F.

If p is an infinite prime of F and 0 : F — C is an embedding of F into C such that |0(z)]
is in p and 0 is a compler embedding, then p is called a complex prime, and if 0 is a real
embedding, then it is called a real prime—see Exercise 2.11 on page 63 for the definitions
of real and complex embeddings.

If K/F is an extension of number fields then extensions of p to primes of K are described
as follows. By Exercise 2.6 on page 63, 0 extends to exactly g = |K : F| F-isomorphisms
B, -+, By of K, which are infinite primes of K and that are the extensions of p. To be
consistent with the finite case we write

p="P1- By

5.24. Let K/F be an extension of number fields and p be an infinite prime of F with
Bi,- -+, By the primes of K that extend p. Let the ramification number e; = eg /¢ ()
equal 2 if p is real and *B; is complex and e; = 1 otherwise. Set f; = Fx/p(P;) =1 in
all cases. Prove that

g9
i=1

In the remaining exercises, we provide applications of the above-defined valuations.

5.25. If F'is a field and «,8 € F with |a| < |3| for a non-Archimedian valuation | - |, prove
that |a+ 8| = |5].

(This says that, with respect to | - |, every triangle is isosceles.)
5.26. Suppose that F' is a field with a non-Archimedean valuation | - |. Prove that the

valuation of F' can be extended to the polynomial ring F[z]| by defining the absolute
value of f(x) =ag+ a1z + - a,z™ to be |f| = max{|agl,...,|an|}
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5.4 Galois Theory and Decomposition

Trivial personalities decomposing in the eternity of print.
Virginia Woolf (1882-1941)
English novelist

We begin with an illustration of a Galois extension as a motivator for an important concept.

Example 5.12 Let K = Q((35) and F = Q(¢5). Then K/Q is a Galois extension, and
H = (o) given by
o:CG—=CGando: (s G

is a subgroup of Gal(K/Q) with fixed field Q(¢s). Notice that any rational prime p = 1
(mod 5) is completely split in Q({5) by Corollary 5.13 on page 218.

Example 5.12 motivates the following.

Definition 5.12 — Decomposition Groups and Fields

Let K/F be a Galois extension of number fields with Galois group Gal(K/F'), and let P be
a prime O g-ideal. Then

Dp(K/F)={0c € Gal(K/F) : P° =P}
is called the decomposition group of P in K/F. The fixed field of Dy (K/F),
Zp(K/F)={B e K:p° =pforalocecDyp(K/F)},

is called the decomposition field of P in K/F. When Gal(K/F) is abelian, then the decom-
position group and the decomposition field depend only on p = PN Op, so in this case, we

denote them by
Dy (K/F) and Z,(K/F),

and call them the decomposition group of p, and the decomposition field of p in K/F. When
Gal(K/F) is abelian, we say that K/F is an abelian extension.

We begin with a fundamental result on decomposition groups.

Lemma 5.7 — Conjugacy of Decomposition Groups

Let K/F be a Galois extension of number fields, and let P be a prime O g-ideal. Then for
all o € Gal(K/F),
0 ' Dp(K/F)o = Dys (K/F).

Proof. Let 7 € Dp(K/F) and o € Gal(K/F). Then
(P)7 T =TT = P,
Therefore, 070 € Dpo (K/F). Hence,

o ' Dp(K/F)o C Dypo (K/F).
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It remains to verify the reverse inclusion. If v € Dypo (K/F), then
P77 = P which implies that Pporet — P,
Thus, oyo~! € Dp(K/F). In other words, v € 0 1Dy (K/F)o, so
Dypo (K/F) C o *Dyp(K/F)o,
as required. O

Example 5.13 In Example 5.12 on the preceding page, the decomposition group of any
rational prime p = 31 (mod 35) in the abelian extension Q({35)/Q is

Dp(@((ss)/@) = Gal(Q(¢35)/Q(¢s)),

and the decomposition field of p is

Zp(Q(C35)/Q) = Q(Cs)-

Remark 5.5 Lemma 5.7 on the previous page shows that if K/F is a Galois extension of
number fields, and P is a prime O g-ideal, then for any o € Gal(K/F),

o 1 Dp(K/F)o = Dypo (K/F).

This is the group-theoretic analogue of the fact established for prime ideals, Corollary 5.1
on page 190, namely that the prime O g-ideals are transitively permuted by the elements
of Gal(K/F). In other words, if p is a prime O p-ideal with

g
pDK = H ?;j7
j=1

then the decomposition groups Dy, (K/F) for 1 < j < g are transitively permuted by the
elements of Gal(K/F). In the case where K is an abelian extension of F', then

Dy, (K/F) = Dy, (K/F) = Dy(K/F),

for all natural numbers j,k < g. In other words, in the abelian case, the decomposition
groups are all the same, thereby justifying the penultimate remark made in Definition 5.12
on the previous page for the use of the notations D,(K/F) and Z,(K/F).

The decomposition field is aptly named, as shown by the following.

Theorem 5.16 — Splitting in the Decomposition Field

Let K/F be a Galois extension of number fields, and let P be a prime O g-ideal with
PNOpr =p. Then for Z = Zp(K/F),

|K : Z| = |Dp(K/F)| = ex/r(p) fr/r(p),

and if PNOz = Py, then
fZ/F(fPZ) = €Z/F(3)Z) =1
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Proof. By Theorem 2.4 on page 60,
(Gal(K/F) : Dy(K/F)| = | 25 (K/F) : F|.

By Lemma 5.7, each right coset Dy (K/F)o of Dp(K/F) via o € Gal(K/F) sends P to P°.
In other words, if v € Dyp(K/F)o, then

PT =P = PO,

for all 7 € Dyp(K/F). Therefore, Dp(K/F)o = Dp(K/F)1 for o7 € Gal(K/F) implies
that Dp(K/F) = Dyp(K/F)r0~L, so P — P™ . In other words, P* = P7. Therefore,
we have established a one-to-one correspondence between the right coset Dyp(K/F)o in
Gal(K/F) and the primes P?. By Corollary 5.1, these primes are transitively permuted by
the o € Gal(K/F), so there must exist gx/r(p) of them. Hence,

|Zp(K/F) : F| = gr/p(p)-
Thus, by Theorem 5.4 on page 189,
|Dyp(K/F)| = ex/r(®)fr/r(p)-

Now we verify the last statement in the theorem. Let Z = Zg(K/F), and Pz = PN Z. By
Theorem 2.4, K/Z is a normal extension. Therefore,

Gal(K/2) = Dy(K/F),
so P7 =P for all 0 € Gal(K/F). By Theorem 5.4, gi/z(Pz) = 1, and
\K:Z| =ex)z(Pz) fr/z(Pz)- (5.22)

Also,
|K : F| = ex/r(P) fr/r(P)gx/r(P), (5.23)

and we have already shown that
|Z : F| = gk/r(p)- (5.24)
Hence, putting (5.22)—(5.24) together, we get

ex/r(P)fr/r(P)9r/r(p) = ex/z(Pz) fr)z(Pz)gk/r(p),

S0
ex/r(P)fr/r(p) = ex/z(Pz) fr)z(Pz). (5.25)
However, by Theorem 5.1 on page 184,
ex/r() = ex/z(Pz)ez/r(Pz), (5.26)
and
Tr/p(p) = fx)z(P2)fz/r(Pz). (5.27)

By comparing (5.25)—(5.27), we get
ez/p(Pz) =1= fz,r(Pz),

as required. O
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Corollary 5.14 If K/F is a Galois extension of number fields, and P is a prime O g-ideal
with PN Op = p, then

|Z3(K/F) : F| = gr/r(p)-
Furthermore, if Dp(K/F) is a normal subgroup of Gal(K/F'), then p is completely split in
Zyp(K/F).

Proof. From the proof of Theorem 5.16, we have the first statement. By Theorem 2.4, if
Dp(K/F) is normal in Gal(K/F), then Z/F is a normal extension where Z = Zp(K/F),
so by Theorem 5.16,

f2/p(Pz) = fz/p(p) =1=ez/r(Pz) =ez/r(p),
where P, = PN Z. Therefore,
9z/r(P) =12 : F| = gr/r(p),
namely p is completely split in Z. |

Example 5.14 If we let L = Q((3, v/2), and F = Q, then Gal(K/F) = S3, the symmetric
group on three letters—see Definition A.1 on page 320. In Example 5.9 on page 191 we
demonstrated that p = 29 splits into two primes

PO = P1Ps

where K = Q(e@), with fK/(Q)(j)l) =1= eK/Q(j)j) for ] = 172, and fK/Q((PQ) = 2. AlSO,
fr/x(Q1) = 2, where Q; is the prime O r-ideal over P;. Thus,

ZQ1(L/Q) = K7

which is not normal over QQ, as demonstrated in Exercise 2.12 on page 63. Similarly, the
decomposition fields for Q; and Qg are, respectively,

Q(¢3V/2) and Q(¢3V2).
In none of these (isomorphic) fields is 29 completely split, since
1Za, (L/Q)| = 3 = gk /r(29),

but fr/q(P;) <2 for j =1,2. This shows that the normality assumption in Corollary 5.14
is indeed necessary.

There exists another important subgroup of the Galois group from the perspective of de-
composition. The reader unfamiliar with residue classes modulo an ideal should review
Exercises 4.30—4.32 on pages 163—-164 before proceeding.

Definition 5.13 — The Inertia Group and Inertia Field
Let K/F be a Galois extension of number fields, and let P be a prime O g-ideal. Then
Tp(K/F)={oc € Gal(K/F):a° =a (mod P) for all & € Ok}
is called the inertia group of P in K/F, and its fixed field,
Tp(K/F)={pe K :57 =0 forall o0 € Tp(K/F)},
is called the inertia field of P in K/F.5°

59The T is used for inertia subgroup since it comes from the German Trdgheitskorper, and, similarly,
Z for the decomposition field comes from Zerlegungskdrper. These were the terms used by Hilbert in
his Zahlbericht, where the theory was published for the first time. However, there is a certain consensus
that Dedekind knew about the decomposition and inertia subfields, as shown by his papers, which were
unpublished at the time that Hilbert wrote down his ramification theory.
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Lemma 5.8 — Inertia and Conjugacy

Let K/F be a Galois extenion of number fields, and let P be a prime O p-ideal. Then, for
all 0 € Gal(K/F),
o 'T9(K/F)o = Tps (K/F).

Proof. If 7 € Tp(K/F) and 0 € Gal(K/F), then for a € K,
oro (@) —a=o07(c" ) — oo (a) = o(t(c7 ) — o a)) € o (P),
so 0Tp(K/F)o~! C T, (K/F). By the same reasoning,
0 ' To9)(K/F)o C Tp(K/F),
so we also have the reverse inclusion. O

The following gives a value to the order of the inertia group.

Theorem 5.17 — Index of the Inertia Group

Let K/F be a Galois extension of number fields, and let P be a prime O g-ideal with
PNOp =p. Then Tp(K/F) is a normal subgroup of Dy (K/F'), and

|Gal(K/F) : Tp(K/F)| = fx/r(p)gr/r(p)-

Also, for T = Tp(K/F'), and Py = PN Or, we have that fr,r(P) =1, epp(Pr) =1, and
ex/r(P) = ex/r(p).

Proof. Let O /P = Kp and Op/p = F,. Define a mapping
Y : Dp(K/F) — Gal(Kyp/Fy),

by
Y(o) =7,

where 7(a) = a, with @ being the residue class of o in O /P. Thus, 7 € Gal(Kp/Fy),
and ¢ is a homomorphism. By the definition of Tp(K/F), we get that ker(¢) = Tp(K/F),
so by Theorem A.5 on page 328,

Dyp(K/F)/Tp(K/F) = Gal(Kyp/Fy),

and Tp(K/F) is a normal subgroup of Dy (K/F)—see also Lemma 5.7 on page 221. Since
Theorem 5.16 on page 222 gives us that |Dp(K/F)| = ex/r(P)fx/r(P), and by Defini-
tion 5.1 on page 182, |Kyp : Fy| = fx,/p(P), then

[Tp(K/F)| = ex/r(p),

|Gal(K/F) : Tp(K/F)| = fx/r(®)gx/r(p),

which is the first result. Next, we show that fr,7(P) = 1. Let Tp, = Or/Pr. By the
definition of inertial degree, we need only show that

‘K(p : Tg)T| =1. (528)
To show this, we demonstrate that if 5 € Ky, then

f(l‘) - (‘T - ﬂ)e €Ty, [l‘],
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where e = |Tp(K/F)| = |K : Tp(K/F)|. Once shown, then every element of Gal(Kp/T9p.,.)
sends 8 to a root of f(x), namely S itself, so Gal(Kp/Tp, ) is trivial and (5.28) holds.
Let o € K9. Then
g(z) = H (x —a’%) € Orlx].
o€Tp(K/F)

By reducing coefficients modulo P, we get that g(z) € Koplz], so by the definition of
Tp(K/F), g(x) € Tp,[z], and a® =@ so

and we have verified (5.28) as required.

Now we show that ep/p(Pr) = 1. Since we have shown above that
T2 F| = |Gal(K/F) : Tp(K/F)| = fr/r(P)gx/r(p),

then eT/F(:PT) = 1, and since fK/T({J)) = 1, then GK/F(:P) = eK/F(p) ]
Maintaining the notation and assumptions of Theorem 5.17, we have the following conse-
quence.

Corollary 5.15 For any Galois extension K/F, we have

Tp(K/F)| = ex/r(p),

and if Dp(K/F) is a normal subgroup of Gal(K/F'), then each of the gx/p(p) prime O z-

ideals is inert in 7" where Z = Zp(K/F), and each prime Pr-ideal is an e!* power in
K.

Proof. From the proof of Theorem 5.17, |Tp(K/F)| = ex/p(P). By Corollary 5.14 on
page 224, there exist g = gx/p(P) prime Z = Zp(K/F)-ideals above p. Hence, there exists
exactly one prime O g-ideal above each of the g prime 9 z-ideals. Thus, the inertial degrees
of each of the g prime Z-ideals in T is the same. To prove that each prime 9 z-ideal is
inert in T, it suffices to prove that each is unramified in 7. However, from Theorem 5.17,
er/r(Pr) =ez/r(Pz) = 1. The result now follows from Theorem 5.4 on page 189. Hence,
in consideration of the above results, PrOx = P¢, where e = ex/p(p). o

In the following, an intermediate field in the extension K/F means an extension field of F'
contained in K.

Corollary 5.16 — Intermediate Fields as Decomposition and Inertia Fields
Let K/F be a Galois extension of number fields, and let P be a prime O g-ideal. Then

(a) If L is an intermediate field, then ZL is the decomposition field of P in K/L.
(b) If L is an intermediate field, then LT is the inertia field of P in K/L.

Proof. (a) Let Iy = Opz/P1 where P1 = PN Oy, Fr = O /Py where Py = PN Oy,
F3 = Dz/j)g where P53 = PN Oy, and Fy, = DLmz/ﬂ)4 where Py, = PN Ornz. Then
Gal(Fy/F») may be embedded into Gal(F3/Fy) via restriction of automorphisms. However,

Gal(F3/Fy) = |F3: Fu| = fz/0n2z(P3) = 1,

by definition, so frz/(P1) = 1. Furthermore, Py cannot split any further by Theorems
5.16-5.17. Hence, LZ is the decomposition field of Py, in K/L.

(b) This is proved in a similar fashion to that given part (a), by comparing the Galois
groups of LT/L and T/(LNT). O
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Corollary 5.17 Let K/F be a Galois extension of number fields, and let P be a prime
O -ideal. Then each of the following hold.

(a) Zp(K/F) is the smallest intermediate field L such that P is the only prime O g-ideal
lying over P, =PNOy.

(b) The field Zp(K/F) is the largest intermediate field L such that
er/r(Pr) = fr/r(Pr) =1.
(¢) The field Tp(K/F) is the largest intermediate field L such that
er/r(Pr) =1.
(d) The field Tp(K/F) is the smallest intermediate field L such that
ex/n(P) = K : L.
Proof. (a) Suppose that P is the only prime Og-ideal lying over Pr. Since Gal(K/L)

transitively permutes the prime O g-ideals above P by Corollary 5.1 on page 190, then
Gal(K/L) is forced to be in Dp(K/F). Thus, by Theorem 2.4 on page 60,

which establishes (a).
(b) If
er/r(Pr) = for(Pr) =1,

then by Theorem 5.1 on page 184,

ex/r(P) =ex,L(Pler r(Pr),

and
Tr/p(P) = fr/L(P)fr/r(Pr).
Therefore,
ex/r(P) =ex L (P) and fr/p(p) = fr/L(P).
Thus, for Z = Zp(K/F), by Theorem 5.16 on page 222,

BK/F(?)fK/F(?) =|K:Z|

Also,

|K : ZL| = ex/0(P) fr/n(P),
since the decomposition field of Py, in K/L is ZL, by part (a) of Corollary 5.16. Thus,
Z =Z7L,so L C Z, which is (b).
(c) Iferp(Pr) = 1, and T = Tp(K/F), then by part (b) of Corollary 5.16, LT is the
inertia field of P in K /L. Thus,

Hence, T = LT, so L C T, which verifies (c).
(d) If Py, is totally ramified in K, then by part (b) of Corollary 5.16,

Therefore, LT = L so T' C L, which completes the entire result. O
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Corollary 5.18 Let K/F be a Galois extension of number fields, and let P be a prime
Og-ideal with PNOp = p. Then if Dp(K/F) is normal in Gal(K/F'), p is completely split
in an intermediate field L if and only if L C Zyp(K/F).

Proof. 1f p is completely split in L/K, then ey, p(Pr) = fr/p(Pr) = 1, where P, = PNO.
Therefore, by part (b) of Corollary 5.17, L C Z»(K/F). Conversely, by Corollary 5.14 on
page 224, p is completely split in Zp(K/F), so a fortiori it is completely split in L. O

Diagram 5.1 — Inertia, Ramification, and Decomposition

Let K/F be a Galois extension of number fields, and let P be a prime Og-ideal. Then
the following illustrates the theory developed above. In what follows, Kp = Ok /P, T =
T(})(K/F), Pr=PNT, Tp, = DT/fPT, Z = Z(})(K/F), Py, =PnNZ, ZTZ = Dz/fpz,
p=PNF, and F, = Op/p.

Primes Groups Fields Degrees Residue Fields

P K Ky
Tp(K/F) } ex/r(P)
Pr Al T Ty,
Dy (K/F) } fi/r(P)
Pz N Z Zp,
Gal(K/F) } 957 (P)
b F £y

The above diagram is augmented by the following one that motivates an important concept.

Diagram 5.2 — Residue Class Fields and Their Global Counterparts

Let K/F be a Galois extension of number fields, and let P be a prime O g-ideal with
Ky = Ok /P. Every element of Gal(K/F) restricts to an automorphism of O . Thus, if
o € Dyp(K/F), there is an induced mapping ¢ : Ox — Ko with ker(¢)) = P. Therefore,
each o € Dp(K/F) induces an automorphism & of Ky in a fashion such that the following
diagram commutes.?1°

DK%DK

o b

K?L)KUD

Also 7 fixes the finite field Or/p = F, where p = PN Op. Hence, & € Gal(Kp/F}), so this
yields a mapping

p:Dp(K/F) — Gal(Kyp/F),
which is a group homomorphism since products in Dy (K/F) correspond to products in
Gal(Kp/F,). Also ker(p) = Tp(K/F), so Tp(K/F) is a normal subgroup of Dy (K/F)—see
Exercise 5.43 on page 253 for a generalization of this fact. This tells us that the quotient

5-10We remind the reader that a commutative diagram, in this case, means that we have the equality of
composite maps yoo=50.
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group Do (K/F)/Tp(K/F) is embedded in Gal(Kp/F,). A fundamental fact, which is
buried in the proof of Theorem 5.17 on page 225, is that p is an epimorphism, so

Do(K/F)/To(K/F) = Gal(Ks /).

From Exercise 2.16 on page 64, the Galois group Gal(Kp/F,) is cyclic of order fr,p(P). If
P is unramified in K/F, then by the aforementioned proof,

() = Gal(Kp/F,) = Dp(K/F),

and there is a unique op € Dyp(K/F) such that op — 5. The generator of the decom-
position group in this case is a very distinguished element, which is named as follows—see
Biography 2.3 on page 80.

Definition 5.14 — The Frobenius Automorphism

If K/F is a Galois extension of number fields, and P is a prime O g-ideal unramified in
K/F with PN Op = p, then Dp(K/F) is cyclic and has generator:

(%)

called the Frobenius automorphism of P in K/F, given by

(KéF> (a) =™ (mod P).

When Gal(K/F) is abelian, then the Frobenius automorphism depends only on p and we
write

where as usual pO [ is the product of the prime £ g-ideals lying over p. In the abelian case,

(KT/F) is also called the Artin symbol—see Remark 5.7 on page 239.

Definition 5.14 allows us to state one final consequence of Theorem 5.17.

Corollary 5.19 Let K/F be a Galois extension of number fields, with P a prime O k-
ideal. If P is unramified in K/F, then Dp(K/F) is cyclic of order fx,p(p) generated by
the Frobenius automorphism of P in K/F. In particular, P is completely split in K if and

only if (KT<F> =1

Application 5.1 —The Frobenius Automorphism on Cyclotomic Galois Groups

Let ¢, for n € N be a primitive n” root of unity, and set K = Q((,). We now apply the
Frobenius automorphism to show that Gal(K/Q) is isomorphic to (Z/nZ)*, the multiplica-
tive group of nonzero elements of Z/nZ.

Any o € Gal(K/Q) is determined by its action on (,, namely (7 = ("<, where n, € Z is
uniquely determined modulo n. Also, this action is independent of the choice of (, since o
acting on any primitive nt" root of unity raises it to the power n,, given that all roots of
unity are powers of ¢,,. Thus, if 0,7 € Gal(K/Q), then

G = CT7 = ()T = G
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Thus, nyn,; = Ny (mod n). In other words, the mapping defined by
o € Gal(K/Q) — ny, € Z/nZ",

is a homomorphism. Since each ¢ uniquely determines n,, then this map is a monomor-
phism. It remains to show that it is an epimorphism. Let p f n be a rational prime.
Therefore, the Frobenius automorphism

(59

is well-defined since p is unramified in K. If P is any prime O g-ideal over p, then this
automorphism is given by
a™r =aP (mod P). (5.29)

From Exercise 1.54 on page 43 it follows that if f(z) = 2™ — 1, then

11— =rn,

k

where the product runs over all nonnegative k < n — 1 with p { k. Since f'(¢?) = n¢hn ),
then [, (¢2 — ¢F) € P. Hence, a™» = aP (mod P) represents the residue class of p modulo
n. In other words, the mapping o — n, is an isomorphism of Gal(K/F') onto Z/nZ*.

We now illustrate how the Frobenius automorphism can be used to prove Gauss’s quadratic
reciprocity law.

Application 5.2 — The Quadratic Reciprocity Law via Frobenius

Let K = Q((,) where p > 2 is prime and (, is a primitive p'* root of unity. Set p* =
(—1)®»=1/2p. Then by Exercise 5.35 on page 232, Q(v/p*) = F is a quadratic subfield of
K. In fact, it is the unique quadratic subfield of K, since Gal(K/Q) is cyclic of order p— 1,
given that it is generated by o where o((,) = ¢y with g being a primitive root modulo p.
By Application 5.1 on the preceding page, Gal(F'/Q) corresponds to the subgroup Iy of
nonzero elements of the field of p elements, IF,. Hence, if ¢ # p is any odd prime, and

(59)--

is the Artin automorphism of ¢ in K/Q, then its restriction to F,

e ()] - (9)

q
is the identity on F' precisely when o : ¢, — (I, where ¢ is a square in Fy. Otherwise, it
is the nontrivial automorphism, with ¢ being a nonsquare in Fy. Thus, by considering the
natural identifications:
., Gal(K/Q)

~ Gal(K/F)

3)-()

F

Gal(F/Q) = {+1},

we get
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by the very definition of the Legendre symbol. From another perspective, since F' = Q(/p%),
then ¢ splits in F' if and only if
(F/@> _1
p )

(29)-
q
=)-()

By comparing (5.30)-(5.31), we get
(B-()-G) ()
()=
(5)- o= (3).

which is Gauss’s Quadratic Reciprocity Law.

and ¢ is inert exactly when

so for odd ¢, we get

However,

SO

Application 5.2 also suggests how a rational prime splits in a cyclotomic field.

Application 5.3 — Frobenius and Splitting in Cyclotomic Fields

Suppose that n € N, n > 1, and without loss of generality n # 2 (mod 4), since K = Q(¢,) =
Q(¢2n) for n odd by Corollary 1.17 on page 41. Then by Application 5.1 on page 229,

G = Gal(K/Q) = (Z/nZ)".

- (52)

is defined for p { n, and depends only on p since G is abelian. Thus, a’? = o (mod pO k),
for all & € Ok = Z[(,], by Corollary 5.13 on page 218. Hence, p is completely split in K
if and only if p = 1(mod n), which is tantamount to saying that o, = 1, namely a = o?
(mod pO ) for all « € O x—see Exercises 4.31-4.32 on page 164.

Thus,

Exercises

5.27. Let F, the finite field of ¢ = p/ elements for some prime p. A map y from [y to the
multiplicative group of roots of unity in C* such that

x(ab) = x(a)x(b) for all a,b € F}

is called a (multiplicative) character on F3.51" If x(a) = 1 for all a € F}, then y is
called the trivial character on Fy, denoted by e. It is convenient to extend the domain
of definition from F; to F, by setting x(0) = 1 if x = ¢, and x(0) = 0 if x # ¢. The
order of x is the least m € N such that x™ = e. Establish each of the following.

5-11Notice that the Legendre symbol (%) is an example of a character on Fj, by considering (%) as a coset
of a modulo p—see Exercise 5.33.
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(a) x(1)=1.

(b) x(a)? ! =1forallac Fy.

(¢) x(a™') = x(a)~" = x(a) for all a € F};, where x(a) is the complex conjugate of
(

Exercises 5.28-5.32 will be with reference to characters as defined in Ezxercise 5.27.

5.28. Let x be a character on F,. Prove that

q—1 .
N ) 0 ifxFe
ZX(]){(] if xy=e.
7=0

5.29. Prove that the characters on Fj form a multiplicative group, denoted by €h(Fy),

via the definition of multiplication and inverses given by xA(a) = x(a)A(a), and
X '(a) = (x(a))!, for a € F} and characters x and A.

5.30. Prove that Qb(]FqX), given in Exercise 5.29, is cyclic of order ¢ — 1 and that if a € F}
with a # 1, there exists a character x on [, such that x(a) # 1.

Henceforth, if x is a character on Wy, then x is said to be of order m, where n | q—1,
provided that n is the smallest such value for which x™ = e.

5.31. Suppose that a € F; with a # 1. Prove that

Z x(a) = 0.

XECH(F)

5.32. Suppose that a € F}, and n € Nwith ¢ =1 (mod n) such that " = a has no solution
for any x € F;. Prove that there exists a character x on F, of order n such that

x(a) # 1.

5.33. For an odd prime p, let (%) denote the Legendre symbol with (%) = 0 for convenience,

and for k € Z, set
p—1 .
Gk)=>" (J) G,
i=0 \P

called a quadratic Gauss sum. Prove that

6= (%) 6w,

p

p—

5.34. With reference to Exercise 5.33, prove that G%(1) = (—I)Tlp.
5.35. Let p > 2 be a prime, and set p* = (—1)P~1/2p. Prove that>'? Q (v/p*) C Q(p)-

5.36. Let p # ¢ be rational primes with p odd, and let d be a fixed divisor of p — 1. Prove
that ¢ = 2% (mod p) is solvable for some = € Z if and only if ¢ is completely split in
the unique subfield of Q((,) having degree d over Q. (Observe that Gauss’s Quadratic
Reciprocity Law follows from this, the case where d = 2—see also Application 5.2 on
page 230.)

5-121n Chapter 5, we will generalize this result considerably with a proof of the celebrated Kronecker-Weber
Theorem (see Theorem 5.23 on page 244).
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5.5 Kummer Extensions and Class-Field Theory

I don’t like people who have never fallen or stumbled. Their virtue is lifeless and it
isn’t of much value. Life hasn’t revealed its beauty to them.

From Part 2, Chapter 13, Section 12 of Doctor Zhivago (1958)

Boris Pasternak (1890-1960)

Russian novelist and poet

In this section, we commence with another type of extension distinct from the quadratic
and cyclotomic extensions considered in §5.4, which will lead us into class-field theory that
is an aspect of “higher algebraic number theory.”

Definition 5.15 — Kummer Extensions

Let F be a number field containing a primitive n** root of unity for a given fixed n € N,

and set f(z) = 2™ — « for a given o € F. Then K = F({/a) is called a Kummer extension
of F, where {/a is a root of f(x).

Lemma 5.9 — Kummer Extensions are Cyclic

If K = F({/a) is a Kummer extension of F, then K is a normal extension of F' and
Gal(K/F) is cyclic of order n.

Proof. Let ej = ¢J for j = 1,2,...,n be all of the n'" roots of unity in F, where ¢, is a
primitive nth root of unity. If ¢ is an F-isomorphism of K, then

o: Yare;Ya€F,

for some j = 1,2,...,n, which is another root of ™ — . Thus, K/F is a normal extension.
If o), 00 € Gal(K/F), are given by o;({/a) = ¢; ¥/ for j = k£, then

oroe(Va) = o V) = epee Va = eger, Va = oo (Va),

so Gal(K/F) is abelian. Select 0 € Gal(K/F), such that o : {/a — ¢ {/a, where ¢; is
a primitive nth root of unity. Then ¢™ = 1 but ¢™ # 1 for any natural number m < n,
because €7* # 1 for any such m, so o generates Gal(K/F'). In other words, Gal(K/F) is
cyclic of order n. O

Theorem 5.18 — Decomposition in Kummer Extensions

Let K/F be a Kummer extension of degree n with K = F(f) such that f" =a € Op. If p
is a prime O p-ideal such that na € p and g is the maximal divisor of n such that

29 =a (mod p),

has a solution in x € O, then

POk =P1 Py,
for distinct prime O g-ideals P;, 1 < j < g, and

fg= |K : F|7
where f is the minimal exponent such that

B =a (mod p).
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Proof. Let F, denote the field Op/p, and let T denote the image of x in F, under the
natural map from Op.

Claim 5.11 If f € N is the smallest exponent such that

Bf:aer,

then m(z) = 2/ — @ is irreducible over F,.

Since Bn € Fy,thenn > f. If n = fg+r whereg € Nand 0 < r < f, then@” = a7l e F,,
so r = 0, by the minimality of f. Thus, f | n. Since a primitive n-th root of unity, ¢, € Fy,

then (i// = ¢; € F,. Also,
—a= H z — BCY).

If g(x) properly divides (z/ —@) for some g(z) € F,[], then g(0) = Bk’y € Fy,, where y € F,
and k < f. Hence, by the minimality of f, we must have that k = f, a contradiction. This
establishes Claim 5.11.

Let K9 denote the field O /P where P is a prime O g-ideal over p. Since a root of m(x)
generates the field extension Ky /F, then

fr/p(P) = fr/p(p) = |Kp : Fy| = f,

where the penultimate equality comes from Claim 5.1 in the Proof of Theorem 5.3 on page
187, and the last equality comes from the fact that

Ky = Fyle] = Fo(8),

1

which is a result of (A.3) on page 325. Hence,
Ky : Fy| = deng(m) =/
Since na ¢ p, then p is unramified in K. Thus, by Theorem 5.4 on page 189,
g=|K:Fl|/f.

Since f is the minimal divisor of n such that

z/ =4 (mod p),
has a solution z € O, then g is the maximal divisor of n such that

29 =f (mod p)

has a solution in O g, so
pDK — ‘:]31...“]3577
and this secures the proof. O

A special case of Theorem 5.18 is worth isolating, especially in view of the fact that this
will be one of the stepping stones in concluding Kummer’s proof of FLT for regular primes,
which we will see in Theorem 5.22 on page 240.
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Corollary 5.20 Suppose that p is a rational prime and F' is a number field containing a
primitive pt* root of unity. Then if o is not a p*" power of an element of Op, 2P — a is
irreducible over F and Gal(K/F) is cyclic of order p. In the latter case, one of the following
two events occurs for any prime £ g-ideal q, where pa ¢ q.

(a) The congruence
2’ =a (mod q) (5.32)

has a solution, in which case gx/r(q) = p, and fx,r(q) = 1 = ex,/r(q), namely q is
completely split in K.

(b) The congruence (5.32) has no solution, in which case fx,r(q) = p, and gx/p(q) =
1 = ex/r(q), namely q is inert in K.

We need the following result for the ensuing development.

Lemma 5.10 Let K = F(/a), where a € O is not a p'" power in O, ¢, € F, and p is
a rational prime. Then any prime 9 p-ideal q satisfies exactly one of the properties

(a) ex/r(q) =1= fr/r(q) and gx,r(q) = p, in which case q is completely split in K.
(b) 9rx/r(q) =1=eg,/r(q) and fx,/r(q) = p, in which case q is inert in K.
(¢) frxyr(q) =1=gx/r(q) and ex/r(q) = p, in which case q is totally ramified in K.

Proof. This is immediate from Theorem 5.4 on page 189 and Lemma 5.9 on page 233 . O

Remark 5.6 The case where pa € q in Corollary 5.20 deserves to be settled as well since
it has fundamental consequences for the aforementioned proof by Kummer. The following
observation will assist the reader with the next result. If o € q, then aOp = q"I, where
n € N and [ is an Op-ideal not divisible by q. In this case, we may assume without
loss of generality that p { n. To see this, assume p ‘ n, let v € q with 42 ¢ q, and set
a1 = a(y~"/P)P. Then a root of 2P — ; generates the same field extension K/F, since a
root (1 of the latter equation satisfies 37 = oy = a(y~™/P)P. Therefore, #; € F(f3), where
BP = « and conversely 8 € F(51). Notice, as well, that once this translation is made, then
the exact power of q dividing «; is equal to n — (n/p)p = 0, so ged(aOp,q) = 1.

Theorem 5.19 — Kummer p-Extensions

Suppose that p is a rational prime and F is a number field containing a primitive p** root
of unity. Set K = F(B) where 87 = o € F, and « is not the p!* power of an element of
Op. If pa € q, where q is a prime O p-ideal, then one of the following occurs.

(a) If o € q, then aOp = q"I, where n € N, and I is an Op-ideal with q t I. If p { n,
then q ramifies in K, namely ex/r(q) = p, and fx,p(q) =1 = gx/r(q).

(b) Ifa ¢ q,butp € q, namely qNZ = (p), then Op(1—(,) = q"J where J is an O p-ideal
not divisible by q and n € N, and one of the following occurs.

(i) The congruence
P =a (mod q"PT1) (5.33)

has a solution = € Op, in which case q is completely split in K. Conversely, if q
is completely split in K, then congruence (5.33) has such a solution.
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(ii) The congruence (5.33) has no solution in O, but the congruence
2P =« (mod q™P) (5.34)

has a solution z € O, in which case q is inert in K.
(iii) The congruence (5.34) has no solution in O, in which case ¢ is totally ramified
in K.

Proof. We begin with an observation, the proof of which is similar to the demonstration
given in Remark 5.6 on the preceding page.

Claim 5.12 We may assume without loss of generality that

q ] aOp, but > faOp.

Let v € q, and v ¢ q2. Since ged(p,n) = 1, there exist r,s € Z such that rp + sn = 1. Let
a1 = a®4"™. Then a root of 2P — ; generates the same field extension K/F. To see this,
we observe that if

B = an = ay" = By = (8",
then
B =By ¢k e F(B),

for some nonnegative integer k. Conversely,
Oé? — asn,ym"p — a(asn—l),ym”p — a(a—rp),ynrp — Oé(a—l,yn)rp-
Therefore,
a=af(ay™ "),
so o € F(f1), as above. Hence, F(8) = F(B1) as asserted.

From the choice of v, the exact power of q dividing «1Or = a*OpyPOF is TP = q.
Hence, aOr = ql, where q 1 I. This is Claim 5.12.

Let
Q = ged(q9k, BOK).
Then
QP = ged(qPO g, D k) = qO k-
By Theorem 5.4 on page 189, Q is a prime ideal so q is totally ramified in K. This completes
the proof of (a).
To establish part (i) of (b), we first assume that g is completely split in K, so let

qDK:Ql"'pr

where the Q; are distinct prime Og-ideals. Thus, fx,p(Q;) = 1 = ex/p(Q;) for j =
1,2,...,p. Therefore, Q7' NOF # q™~! for m € N, since if we have that Q7 | (qOx)™ 1t =
q" 'Ok, then ex/p(Q;) > 1, a contradiction.

Claim 5.13 Q7" NOp = q™ for any m € N.
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We use induction on m. If m = 1, then the result holds by Lemma 5.1 on page 182. Assume
the induction hypothesis, that the result holds for m — 1. Then

q" C Q;-nﬂDF - an—l NOp = qmil,

with Q7" N Op # q™~ . Thus, Q7" N Op = ¢™, which is Claim 5.13.

By Claim 5.13, O /q"?*! is a subring of DK/Q?”H. However, since q is completely split

in K, then [Ox/Q; : Op/q| = fr/r(q) =1, 50 [Op/q Pt = \DK/Q?’)H\, by Exercise 2.40
on page 82. Therefore, there exists a v € O such that

B=~ (mod Q)

namely
Q7| (v = B)Dx
Thus,
NK/F(Ql)np+1 ‘ NK/F(’Y_B)DK-
However,
Ng/p(x—p) =a? — ¥ = a¥ —a,
SO

qnp+1 ‘ (VP _ a),

which means that

2 =a (mod ¢q"PTh),

has a solution x = v € Op.

Conversely, let (5.33) have a solution x = v € Op. Select u € ¢~™ with u ¢ ¢~ "1, so that
Opuq™ = I is an O p-ideal. We have that v = u(y — ) is a root of (v — uy)? + uPa.

Claim 5.14 (z — uy)? —uPa € Op|z].

Since gq™(P—1 | Op(1—¢,)P~! by hypothesis, then for all j € N such that j < p—1, we have

nip—1)—nj >0, so
(oo

(=P + e = S (<1 (2)uivtar s —wr(or -,

Jj=0

Since

and Y? — a € q" L, then uP (7 — ) € q since u € q~™. This completes Claim 5.14.
By Claim 5.14, v € Ok, and so are the other roots, u(y — Cg_lﬁ) for j =0,1,...,p—1. Set

Q; = ged(q9x, u(y — ' B)Ok).
Then Q; # Ok for 0 < j # k < p — 1 since
a| N9/ 0D1) = (37 ).

Also,
4Ok = Q1---Qp,
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since every element of H?zl Q; is a sum of elements of the form

p
Hogm u(y = 71B) = o+ TuP (77 — ) € 4Dk,

where 05,0 € Ok and 75,7 € Og. Thus, Q; N Op = q for each such j and each Qj is
distinct by Theorem 5.4 on page 189. This completes the proof of part (i) of (b).

If (5.34) has a solution z = v € Op, then as in the proof of part (i), v = u(y — 8) € Ok
with minimal polynomial
iy (o) = (@ — wn)P — wPa,
and
Sxc/r(v) = My p(v) = p(uB)P,

with ged(dx/p(v), Q) = 1 for any prime Og-ideal Q dividing q. Thus, by Theorem 5.9 on
page 203 and Corollary 5.7 on page 210, q is unramified in K. By part (i), and Lemma 5.10
on page 235, g must be inert in K. This secures part (ii).

For part (iii), assume that (5.34) on page 236 is unsolvable in O, and let £ be the largest
exponent such that 2P = a(mod q°) is solvable in Or. By Exercise 4.31 on page 164, we
must have that ¢ € N.

Claim 5.15 p 1t/

Suppose that v € O such that for some natural number ¢ < n — 1, we have a solution
~v € O to the congruence
v? =a (mod ¢**).

Suppose further that A € O such that A’ = 0(mod q*), but AP # 0(mod q**!). Then for
any w € Op,
(7 + Mw)P =P + \PwP (mod qPT).

However, since wP ranges over all residue classes modulo g, we may chose w such that
a=(y+w)? (mod q7*),

a contradiction to the hypothesis. However, since £ < np, then p t £. This completes Claim
5.15.

By Claim 5.15, we may select natural numbers ¢,7 < n—1 such that £ =tp+r. Let u € g~
with v & q~'*1, and set v = u(y — 3), which is a root of (x — uy)? — uPa. By a similar
argument to the above, v € Ok and q" is the exact power of q dividing

Ng/p(v) = uf (77 — ).

t

Thus,
ng<qDK, ’UDK)

is an O g-ideal distinct from D g and qO k. Hence, gDk is not a prime O g-ideal, and by
part (i), g9 is not completely split in K. By Lemma 5.10, ¢ must be totally ramified in
K. ]

A direct consequence of Corollary 5.20 and Theorem 5.19 on page 235 is the following
important unramified extensions result.
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Theorem 5.20 — Unramified Kummer Extensions

Let F be a number field, a,(, € F such that « is not a p'* power in F, p a rational prime
such that K = F({/«), and ged(aQp, pOr) = 1. Then Dy /p = Op = (1) if and only if
both of the following hold:%-13

(a) aOp = I? for some Op-ideal I, and
(b) There exists a v € O such that

Y=a (mod (1-¢)?OF).

Remark 5.7 The cyclic unramified extensions described by Theorem 5.20 play an impor-
tant role in Kummer’s proof of Fermat’s Last Theorem for regular primes in the second
case. In fact, this is a beginning of an introduction to an aspect class-field theory. We will
not develop the tools to discuss this area in depth, but we will describe some fundamental
aspects, since they pertain to our completion of Kummer’s aforementioned proof.

Recall from Definition 5.14 on page 229, when K/F is an unramified Galois extension of
number fields, then the Frobenius automorphism (KT@) is defined for any prime O g-ideal
P. Thus, for any unramified Galois extension of number fields K/F, we may define the
Artin map

d)K/F : IAK — Gal(K/F)

st =TT (52"

j=1

via

where I € Ia, with I = H;=1 (P?j for distinct O p-ideals P;.5% The Artin map may be

shown to be an epimorphism, so
Ing [ ker(¢k p) = Gal(K/F).
In fact, a fundamental result of class-field theory says more.

Theorem 5.21 — Fundamental Theorem of Class-Field Theory
If F is a number field and K () is the maximal unramified 315 abelian extension of F, called
the Hilbert Class Field, then
Cal(KW/F) = Cp,
via
¢K(1)/F : IAK(U —> Gal(K(l)/F)
Furthermore, since K(!) contains every abelian unramified extension of F, then for a tower

FCKCK®,
K : F| | ho, = K" : F).

5-13Note that there is no ramification at the infinite primes for odd primes p since F is totally complex in
that case.

5.14The Artin map may be defined for more general extensions, which may be ramified, by excluding a set
of ramified primes, a necessarily finite set by Corollary 5.7 on page 210. However, for our purposes herein,
we need only look at the special case of unramified extensions. Also, note that from Theorem 5.20, if K/F
is an abelian unramified extension, then the Artin map depends only on the ideal class of a given ideal I.

5-15Tn this context “unramified” also excludes those infinite primes that ramify (see Footnote 5.8 on
page 213).
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Proof. See [33]. |

An immediate and important consequence of this result from class-field theory is the fol-
lowing, which the reader should compare with Exercise 3.33 on page 121.

Corollary 5.21 A prime O p-ideal p splits completely in K1) if and only if p is a principal
ideal.

Remark 5.8 Corollary 5.21 tells us that the Hilbert class field K1) of F is characterized by
the fact that the primes that split completely in K1) are precisely the principal prime O p-
ideals. Note that in Theorem 5.21 on the preceding page, the association of the Galois group
Gal(K(W /F) with Cp,. explains why K() is called a class field. Moreover, the theorem
shows that there is a one-to-one correspondence between unramified abelian extensions K of
F and subgroups H of the class group Cop. Furthermore, if the extension K/F corresponds
to the subgroup H C Cg,,, then the Artin map induces an isomorphism

Co, /H = Gal(K/F).

This last comment may be taken to be class-field theory for unramified abelian extensions.
This illustrates the central theme of class-field theory, namely that the unramified extensions
of a given number field F are classified in terms of the subgroups of the ideal class group
Cop. In other words, the class of unramified extensions are classified in terms of data
intrinsic to F'.

In the special case established in Theorem 5.20 on the previous page, we see that p ‘
ho . This is enough to prove a crucial result that will allow us to complete Kummer’s
aforementioned proof. The reader is encouraged to solve Exercise 5.39 on page 243, which
is related to the following lemma. Recall, as cited on page 151, that p is regular if p t ho .
where F' = Q((p)-

Lemma 5.11 — Kummer’s Lemma
Let p be a regular prime, and let F' = Q((,). If u € Uy, such that

u=z (mod pOr)
for some z € Z, then u = v? where v € g,

Proof. Let K = F({/u), where {/u is a real root of 2P — u. If u is not the p‘*-power of an
element of 4y ., then K/F is a nontrivial Kummer extension. Since

pDF = (1 - Cp)p71

by Example 5.8 on page 190, then by Exercise 4.32 on page 164 the hypothesis of Theorem
5.20 is satisfied, namely K/F is an unramified extension. Therefore, by Theorem 5.21,
P | ho ., a contradiction to the regularity of p. [;b-16

Theorem 5.22 — Kummer’s Proof of FLT Case II for Regular Primes

If p is an odd regular prime, then (4.14) on page 149 has no solutions in rational integers
x,y, z with p | xyz.

5.16Without the use of Theorem 5.21, the proof of Kummer’s lemma is long, and relatively difficult by
comparison since it involves Kummer’s use of p-adic numbers. For instance, see [5, pp. 367-377]. By
employing the elegant Theorem 5.21, even without proving it, we get an insight into the power of class-field
theory, and it allows us to complete Kummer’s proof of FLT for regular primes with less difficulty.
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Proof. Clearly, we may assume without loss of generality that ged(x,y,2) = 1, s0p | 2
and p { 2y may also be assumed without loss of generality. Set z = p*z; with k € N, and
ged(z1,p) = 1. If F = Q((p), then by Example 5.8

pOp = (1 - Cp)p_1u7
where u € Uy ,.. Thus, (4.14) becomes
2P 4+ yP + uPF(1 — ()PP =0, (5.35)

where n = k(p — 1) € N. To prove the theorem, it will suffice (a fortiori) to prove that
(5.35) cannot hold when z,y, z1 € Op with x,y, 21 relatively prime to 1 — (.

We use proof by contradiction. Assume that (5.35) is solvable for some such x,y, 21 € Op,
and let n € N be the smallest value for which it holds. Rewriting (5.35) as an ideal equation

we get,
p—1
[+ ¢y =prmar, (5.36)

j=0
where p is the prime Op-ideal (1 — (,), and J is an Op-ideal. Although long, the proof
amounts to essentially a descent argument where we contradict the minimality of n by
showing that (5.36) holds for n — 1.
Since n € N, then for j > 0 4
Pl @+ ¢y
However, _ _
c+Qy=z+CGy—G—¢ .
Therefore, since p ’ (1- Cg_k), then p | (z 4+ ¢Jy) for all nonnegative j < p — 1. Also, we
cannot have that '
z+Qy=x+y (mod p?),

for j # k, since in that case we get
Gu(l=¢™") =0 (mod p?),

which cannot hold since gcd((ﬁy, p) = 1, given that p { y, and by Exercise 3.37 on page 129,
1 —(g_k and 1—(, are associates. Hence, x+§£y are pairwise incongruent modulo p2. Thus,
(z+ ng)(l — (p)~ ! are pairwise incongruent modulo p for 0 < j < p — 1. By Exercise 4.25
on page 163, these values provide a complete residue system modulo p. Therefore, for some
nonnegative j < p —1,

(+¢Gy)(1—¢) ™' =0 (mod p).

Thus, for only this value j do we have
z+ ¢y =0 (mod p?).

Since we may replace y by C;fy for any nonnegative k < p — 1 in (5.35), we may assume at
this stage, without loss of generality, that we have already chosen

r+y=0 (mod p?) andx—i—(ﬁyzo (modp),withpQT(x—l—g}Zy) for1<j<p-1,

so the left side of (5.36) is divisible by at least p?P~!p? = pP*1. This implies that n > 2.
Our assumption is that ged(z,y,p) = 1, so p { ged(x,y) = g, the ged of the two O p-ideals
(z) and (y). Therefore,
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where I; is an Op-ideal for 0 < j <p—1, and
(z+y) =pr" Vg,
Claim 5.16 ged(I;, ;) =1for 0<j#k<p-—1.

Let q | ged(I;, I) for a prime O p-ideal q with j # k. Thus, if

paq | ged(z + CJy, x + y),
then
paq | ged(z(1 = ¢57), Gyl — ¢77).
Thus,
99 | ged(@,y),
contradicting the definition of g. This completes the proof of Claim 5.16.
By Claim 5.16, we may write (5.36) as

p—1
op [[ 1 =7,
j=0

where I; = Jj’-) for some O p-ideal J; | J with 0 < 5 < p — 1. Hence,

(x +y) = pr" g, (5.37)
and '
(x+¢y) =pgJ] for 1 <j<p-—1. (5.38)

From (5.37), we get
(z + y)p*(p(nfl)Jrl)JO*p =g,

Substituting this into (5.38), we get
(+ Q"™ = (x4 9)(J;J5 ) (5-39)

Since p = (1—¢,) is a principal prime O p-ideal, then (J; Jy 1P is principal. By invoking the
regularity of p and using Exercise 4.11 on page 147, we must have that J;J; !is principal.
Therefore, for 1 < j < p— 1, we may set

Jidot = (a;/B;),

where o, 8; € Op. Since ged(J;,p) = 1 = ged(Jo,p), we may assume that ged(oj,p) =
1 = ged(B),p). Thus, from (5.38)—(5.39),

(& + @)L = )" = (@ +y)(ay/8;) u;, (5.40)

where u; € o ,,. Since (z + ¢y)(1+¢p) — (2 + (y) = (p(= +y), we may multiply this by
(1 — )P~ and use (5.40) with j = 1,2 to get,

aq

@i (5

) w6 -+ (5 = - G
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Multiplying through by (8182)?/[ui(x + y)(1 + ()], we get,
p_ U2 P _ Cp 1 — ¢ )p(n=1) P
(c152) w(+G) (a2f1) o+ Cp)( Cp) (B1B2)".
By letting a = a182 € Op, v = —us/[u1(1 4+ (p)] € Yo, = a2f1 € Op, v = 152, and
v1 = G/[ur (14 ()] € o, we achieve,
af +vfBP = vy (1 — )P AP, (5.41)
We now proceed to show that this contradicts the minimality of n, which will complete the
proof.
Above we showed that n > 2, so p(n — 1) > p. Therefore,
aP +vBP =0 (mod pP). (5.42)
Since p 1 8 by assumption, then 8 has a multiplicative inverse $; modulo pP, namely 88; = 1
(mod pP). Multiplying through (5.42) by % and rewriting, we get,
0= (~Bra)’ (mod p¥).
From Exercises 4.31-4.32 on page 164,
—fra =z (mod p),
where z € Z, so
(~B1a)" = 2 (mod pP).
In other words,
v=2zP (mod pP).
By Lemma 5.11 on page 240, there exists a w € iy, such that v = w”. Hence, via the
above congruence, (5.41) becomes

of + (wh)” = i (1= )"V,
which contradicts the minimality of n, and establishes the full result proved by Kummer.O

This concludes this section, and in conjunction with previous sections, establishes a num-
ber of powerful results that will allow us to establish the fundamental theorem of abelian
extensions, the Kronecker-Weber Theorem in §5.6.

Exercises

5.37. Let K;/F for j = 1,2 be extensions of number fields, and let p be a prime O p-ideal.
Prove that if p is unramified in K; for j = 1,2, then p is unramified in K;K5. In
particular, show that if p is completely split in K for j = 1,2, then p is completely
split in K7 Ks.

5.38. Let F//Q be an abelian extension of number fields. In the next section, the Kronecker-
Weber Theorem will verify that

F C Q(¢y) for some f € N.
The smallest such f is called the conductor of F. Prove that if the conductor is odd
and squarefree, then F//Q is tamely ramified.

5.39. Let p > 2 be prime F' = Q((p), and A = 1 — (. Prove that for any v € Op, there
exists a z € Z such that
P =2z (mod IP).
Conclude that
AP =z (mod p).
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5.6 The Kronecker-Weber Theorem

All the people we used to know.
They’re an illusion to me now.
Some are mathematicians.
Some are carpenter’s wives.

From Tangled Up in Blue (1974)
Bob Dylan (1941-)
American singer and songwriter

This section is devoted to a proof of the Fundamental Theorem of Abelian Extensions, also
known as the following.>!”

Theorem 5.23 — The Kronecker—Weber Theorem

If F' is a number field, which is an abelian extension of QQ, there exists a natural number n
such that FF C Q(¢,). Moreover, n can be chosen in such a way that n andA g have the
same prime factors.

We establish Theorem 5.23 via a sequence of lemmas. We begin by showing that it suffices
to restrict our attention to the case of prime-power degree.

Lemma 5.12 If Theorem 5.23 holds for abelian extensions of prime power degree over Q,
then it holds for any abelian extension of Q.

Proof. First we show that every number field F' abelian over Q is a compositum of abelian
extensions of prime power degree over Q. By Theorem A.1 on page 321,

Gal(F/Q) = [] &,
j=1

a;j

where G is an abelian group of order |G;| = p;

for distinct primes p;, a; € N, and

|F: Q| = |Gal(F/Q)| = [ p}’

=1

Let F; for i =1,2,...,r be the fixed field of Hj# G, the product ranging over all j # 7 for
1<j <r. Thus, [F;: Q| = |Gal(F/Q)/[];,; Gjl = |Gi| = pj*, by Theorem 2.4 on page 60.
Therefore, by Exercise 3.36 on page 129, the compositum has degree

HFiIQ‘ZHP?j =|F:Ql.
i=1 j=1

Since [[i_, F; C F, then F =[[,_, F;.

5-171f we had developed the full force of class-field theory herein, then one could “easily” prove this funda-
mental theorem. For instance see [15, Theorem 8.8, p. 163]. However, even therein, where the main results
of class-field theory are stated but not proved, it is admitted that “the general theorems of class-field theory
are complicated to state.” Thus, there is some price to pay in attaining the result no matter what the route
happens to be since it is a relatively difficult theorem from any perspective.
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Now assuming that Theorem 5.23 holds for all such F;, then F; C Q({,,) for some n; € N.
Let £ = lcm(ny,na,...,n,). Then

F=]]F CQn:nsr---Sn,) S QC),

i=1

and the result is proved in view of Theorem 5.13 on page 215. O

The next lemma is a Galois-theoretic result required for the subsequent lemma.

Lemma 5.13 Let K;/F be Galois extensions of number fields for j = 1,2. Then each of
the following holds.

(a) KiK5/K, is a Galois extension and

Gal(KlKg/Kg) = Gal(Kl/Kl n KQ)

(b) The extension K1 K>/K;NK> is Galois, and we have the isomorphism of Galois groups,
Gal(K1 Ko /K1 N Ks) = Gal(K;/K; N Ky) x Gal(K3/K;y N K»). In particular, if
KlﬂKg :F, then

Gal(KlKg/F) = Gal(Kl/F) X Gal(KQ/F)

(¢) If K;/F for j = 1,2 are abelian extensions of number fields, then K;K5/F is also
abelian.

Proof. (a) By Exercise 2.6 on page 63 there exist |K; K : K3| embeddings of Ky K> into C
that fix Ko pointwise. If o is such an extension, then

U(KlKg) = O'(Kl)O'(KQ) = U(Kl)KQ g KlKg.
Hence, K1 K5/ K5 is Galois. Consider the mapping
"LZJ : Gal(KlKg/Kg) — Gal(Kl/Kl n KQ),

given by o — 0o|k,, the restriction to K;. By Exercise 2.6 this is an epimorphism. It
remains to show that ker(¢) = 1. If /(o) = 1, then o fixes K; pointwise, but ¢ already
fixes K5 pointwise by definition, so o fixes K; K5 pointwise. In other words, o = 1, so
ker(¢)) = 1, and

Gal(KlKg/Kz) = Gal(Kl/Kl N KQ)

(b) By the same reasoning as in the proof of part (a), K1 Ko/K; N Ky is Galois. Also, by
Theorem 2.4 on page 60, K; /K7 N K5 is Galois for j = 1,2. Consider the mapping

p: Gal(KlKg/Kl n KQ) — Gal(Kl/Kl n Kg) X Gal(Kz/Kl N KQ)
given by
pro— (O—|K170‘K2)7

the restrictions to Ky and K5 respectively, which is an epimorphism by Exercise 2.6. We
need to verify that ker(p) = 1. If p(o) = (1,1), then o fixes both K; andK> pointwise, so
o =1, as required.
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(c) By part (b),
Gal(KlKg/Kl N KQ) = Gal(Kl/Kl N KQ) X Gal(Kg/Kl n K2) = Gl X GQ.

Since G C Gal(K,;/F) for j = 1,2, both of which are abelian, then G; is abelian for
Jj=1,2,s0 Gal(K1Ky/K; N K») is abelian. However, by Exercise 2.6, K1 K5/ F is Galois,
and the F-automorphisms of K7 N Ky extend to |K1Ks : K1 N Ks| embeddings of K Ky
into C, so Gal(K;K,/F) is abelian. m|

Lemma 5.14 If F/Q is an abelian extension with |F : Q| andA g both being powers of a
prime p, then F C (@(C}’j) for some k € N.

Proof. We split the proof into the odd and even cases.
Case 5.4 p > 2

Let
K = Q(¢ym+1), where |[F : Q| = p™.

By Application 5.1 on page 229, Gal(K/Q) is cyclic of order ¢(p™*!). Let H be a subgroup
of it of order p — 1, and let L be the fixed field of H.

Claim 5.17 |FL: Q] is a power of p.

Since |H| = p—1, then L/Q is a cyclic extension withA ; a power of p given thatA , ’ Ag.
Thus, FL is an abelian extension of Q by part (¢) of Lemma 5.13 on the preceding page.
Also,

|FL:Q|=|FL:L|-|L:Q|=|F:FnL|-|L:Q],

which is a power of p, where the last equality comes from part (a) of Lemma 5.13.

Claim 5.18 Apj, is a power of p.

Suppose that ¢ f Apr. Then by Exercise 5.37 on page 243, either ¢ is ramified in L/Q or ¢

is ramified in F//Q. Therefore, either ¢ ’ A; org ‘ Ap. However,A | ’ A@(Cpmﬂ)’ which is

a power of p, andA  is a power of p by hypothesis, so ¢ = p. This establishes Claim 5.18.

In view of Claims 5.17-5.18, we may invoke Exercise 5.41 on page 253 to get that Gal(FL/Q)
is cyclic of prime power order. Since, by part (b) of Lemma 5.13,

Gal(FL/LNF) = Gal(F/LNF) x Gal(L/L N F),

then by Exercise 5.40, either Gal(F/LNF) =1 or Gal(L/LNF) = 1. If the former occurs,
then FF = LNF, so F C L, and in the latter case, L = LN F, so L C F. However,
|F: Q| =|L:Q|, so F = L, which implies that ' C Q({,m+1), thereby establishing Case
5.4.

Case 5.5 p=2

Claim 5.19 For any m € N, there exists a totally real field K such that |K : Q| = 2™ with
A =2" and K C Q((ym+2) for some n € N.

Let L = Q({om+2) and set K = LNR. Since m+2 > 3, then v/—1 =4 € L, so for atbi € L,
we must have 2a,2b € K. Therefore, a,b € K and L = K(i). Hence, |L : K| = 2, so
|K : Q| =2™. Ifgq | Ak for a prime ¢, then ¢ ramifies in K, so ¢ ramifies in L. Thus,
q | Ak, which is a power of 2, so ¢ = 2. Thus,A g = 2™ for some n € N. This completes
Claim 5.19.
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Claim 5.20 For a given m € N, the field K in Claim 5.19 is unique.
K is the maximal real subfield of Q(({ym+2). If Ky # K is another such field, then
KK, : Q| >2mT2,

Therefore, KK; = Q((am+2), contradicting the fact that KK; is real. This establishes
Claim 5.20.

Since F' and Q(%) are abelian extensions of @, then F'(i) is an abelian extension with degree
a power of 2 over Q, by part (c) of Lemma 5.13. Let

K =F(i)NR.

Then K is a real extension of Q,
|K:Q|=2°

for some s € N, andA g is also a power of 2. By Claims 5.19-5.20, K C Q({3s+2). Since
F(i) = K(a+ bi) for some a,b € R, then given that a — bi € F'(i), we must have ¢ € K and
bi € F(i). Thus, b*> € K, so a + bi is a root of

22 — 2ax 4 a® + b* € K[z].
Hence, |F (i) : F| = 2. Therefore,
FCF(i) = K(i) € Q(Ce+2,1) € Q(¢r),

for some r € N, which establishes the full result. O

Before proceeding, we need the following important concepts, which are related to Defini-
tion 5.13 on page 224.

Definition 5.16 — Ramification Groups and Ramification Fields

Let K/F be a Galois extension of number fields, and let P be a prime O g-ideal. For each
nonnegative integer j define:

V;={0€Tp(K/F):a’ =a (mod P*!) for all a € Ok},

called the j'" ramification group of P in K/F. The fixed field Vg(,j)(K/F) is called the j!"
ramification field.518 (Note that Tp(K/F) = Vo and V" (K/F) = Tp(K/F).)

We now establish some properties of the concepts in Definition 5.16 since they are needed
in the sequel.

Lemma 5.15
(a) V; is a normal subgroup of Tp(K/F).
(b) Tp(K/F)=V92OViD---.

(¢) There exists an m € N such that V,,, = 1.

5.18The letter V is used for the ramification fields given that the derivation is from the German Verzwei-
gungskorper—see Footnote 5.9 on page 224. The ramification groups were first defined by Hilbert in
1894—see Biography 3.4 on page 94.
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d) If K% denotes the multiplicative group of nonzero elements of the field Kp = Ok /P,
P
there exists a natural group isomorphism of Tp(K/F)/V; into K3.

(e) Tp(K/F)/V; is a cyclic group with order not divisible by p where p = P N Z.

f) For j > 0, the groups V;_1/V; are elementary abelian p-groups. In other words, they
J J
are finite dimensional vector spaces over F,,.

(g) V; is a p-group, and T. 9(31)([( /F) is the maximal tamely ramified extension at P con-
tained in K.

(h) Suppose that Dp(K/F) is abelian, and set ¢ = |F,| = N¥/%(p), where F, = Or/p.
Then 7971 € V; for all 7 € Tp(K/F) and

T (K/F)/ V]| (¢ - 1).

Proof. (a) If 0 € Tp(K/F), then P° = P, so (PI+1)? = Pi+L Thus, o has the action

o(@) = o(a),
where the T denotes the image of x € O in O /P/+! under the natural mapping
1/) : DK — DK/ij+1.

Therefore, o € V; if and only if o is the identity mapping on O /P!, Since ker(y)) =V,
then by Theorem A.5 on page 328, V; is a normal subgroup of Tp(K/F).

(b) We have that V1 CV; for j = 0,1,... since a = a(mod P/*2) implies that a® = «
(mod PI+1).
(c) If o0 € N52,V;, then o(a) — a € N2, PIHL. Therefore, o(a) = o for all @ € O. Hence,

N2V, = 1. However, T3(K/F) is a finite group, so there must exist an m € N such that
Vi = 1.

(d) Let DK/? = Kop.

Claim 5.21 For a fixed v € P — P?, and any o € Tp(K/F), there exists a, € O such
that for
77 = apy (mod P?),

where a, is uniquely determined modulo P.

Let vOx = PI, where P 4 I. Then by Theorem 1.21 on page 32, there exists a solution to
the system of congruences
r =1+ (mod P?),

z=0 (mod I).
Let a, = 2y~!. Then o, is uniquely determined modulo P and
asy =z =17 (mod P?).
This completes the proof of Claim 5.21.

Claim 5.22 For any 0,7 € Tp(K/F), 0pr = aga, (mod P).



5.6 The Kronecker-Weber Theorem 249

We have

TAT —

(1) = (@07)” = aZ7" = afary (mod 92).

oT —

QorY =7
Since v € P — P2, then by multiplying through the congruence
Qory = Loy (mod P?)
by 7! we get,
Qor = ooy (mod P).

However, af = a, (mod P) for all 7 € Tp(K/F'). This yields Claim 5.22.

Define a map:
p:Tp(K/F)— K},

by
P10 = Qg.

By Claims 5.21-5.22, p is a well-defined homomorphism of groups. Since a, = 1 if and only
if 77 = v (mod P?), by Claim 5.21, then a, = 1 holds if and only if o € V1, so V1 = ker(p).
This completes the proof of (d).

(e) If e; = |img(p)|, then p t ey since
€1 } |K;;|:pe—1

for some e € N. Also, since img(p) is a subgroup of K, then by Theorem A.8 on page 331,
Tp(K/F)/V; is a cyclic group, and by the above has order prime to p. This is (e).

(f) This part proceeds in much the same fashion as the solution to (d), except that we work
on the additive group K$ of Kp. Let v € P — P? be fixed. Then +7 € P/ — Pi*+! for any
JjeN

Claim 5.23 For any o € V;_1, there exists a, € O such that
77 =5+ apy? (mod PITY),

Set vOx = P/I where P { I. By the Chinese Remainder Theorem for ideals cited above,
there exists a solution to the congruences

r=7" (mod P*) and x =0 (mod I).
Select ay = (x — )y ~7. Then
agy =x—y=9" —7 (mod PIH).

Thus, ‘ ‘
77 =5+ apy? (mod PITL),

which is Claim 5.23.
Claim 5.24 For all 0,7 € V,_1, aor = s + 7 (mod P).
We have that
oy =7 == () = (vt any) =y =T +apyT -y

=7+ay +a;(77) =7 =7 (ar + a7y’ "7Y) (mod P
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Thus, multiplying through by v~/ we get
Oor = ar + a7’ "Y (mod P).

Since o, = a, (mod P) for all 7 € V;_; € Vg and +/("~Y = 1(mod P) given that 177 = ~J
(mod P), then Claim 5.24 follows.

Define a map
p1a : Vj,1 — K$,

by

o0 — O,

which is a well-defined additive group homomorphism independent of the choice of a by
Claims 5.23-5.24, and ker(p;) = V;. Hence, V;_1/V; is a direct sum of cyclic groups of
order p, since K;‘ is such a sum, so V,;_1/V; is an elementary abelian p-group, thereby
securing (f).
(g) By parts (b)—(c) above,

Vo2 Vi 2:-- 2V, =1,

for some m € N. Also, Vo/V; is a cyclic group, and V;_1/V; is an elementary abelian
p-group by parts (e)—(f) just proved, so V; is a p-group. Hence, Tj(,l)(K/F) is the maximal
tamely ramified extension at P contained in K, which is (g).

(h) Let 0 € Dp(K/F) be the element such that its image in Gal(Kp/F}) is the Frobenius

automorphism. Then for each 7 € Tp(K/F'), we have from Claim 5.21 in the proof of part
(d) that

o 1o

gl = (Vao1)" = (77 ag-1)7 = (aryag)

- O 0. TO _ O.0_ O —_ o 2
=alv%al? =alv’al s = ala,yal -, (mod P7).

o

‘We have shown that

o ToO —

AL~ aZa,ad 1y (mod P?). (5.43)
Claim 5.25 a,a7_, = 1(mod P?).

‘We have
77 = apy (mod P?), (5.44)

and
0_71

77 =a,-1y (mod P?). (5.45)
Putting together (5.44)—(5.45), we get

—1 —1 -1

(ag-1)70 = (77 Y ), =977 ap = (Yas)y” =777 =1 (mod P?),

as required to complete Claim 5.25.

By Claim 5.25 and (5.43) and the fact that o is the element such that its image in
Gal(Kyp/F,) is the Frobenius automorphism,

oTo

0% =a%y =aly (mod P?). (5.46)
However, 47 = a,v (mod P?), AT = a2~ (mod P?), and so on. Thus, by induction

7™ =aly (mod P?). (5.47)
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q

Combining (5.46)—(5.47), we get 777 = ~™" (mod P?). Thus, 777 7 * = ~(mod P?).
We have shown that oo~ 1779 € V;. When Dy (K/F) is abelian, then

(oro tr~ )7t =77t c vy,

for all 7 € Tp(K/F). Since Tp(K/F)/V; is cyclic and 7¢71V; = Vy, then
[T (K/F)/ Vil | (¢ 1),

which is (h) so we are done. O

Lemma 5.16 Let F' be an abelian number field over Q with |F : Q] = n. Then for every
prime p | Ap, with p { n, there exists an abelian number field K over Q such that |K : Q| | n,
F C K({p), and p{ Ag. Furthermore, any prime divisor ofA g is a prime divisor of A p.

Proof. We break this into two cases.
Case 5.6 p ’ Ap,ptn,and , € F.

Since p { n, then by Theorem 5.4 on page 189, p { er/q(p). By part (g) of Lemma 5.15 on

page 247, |F : Vp(l)(F/Q)\ is a power of p, but |F : Vp(l)(F/Q)| | n, so F = Vp(l)(F/Q),

where p is a prime O p-ideal over p. By part (h) of Lemma 5.15, |T,(F/Q)/V1| | (p — 1),

but since F' = Vp(l)(F/Q), then |T,(F/Q)| ’ (p—1). However, by Theorem 5.1 on page 184,
er/(P) = er/a(e,) (P)ea,) /P NZ[G)-

Since |Q(¢p) : Q| = p — 1, by Corollary 1.17 on page 41, then ep/q(c,)(p) = 1.

Claim 5.26 K =T,(F/Q) satisfies the conditions of the lemma.

Since Gal(F/Q) is abelian, then K/Q is an abelian extension with |K : Q| | n. Also,

Tp(K/Q(Gp)) = T, (F/Q) N Gal(K/Q(Cp))-

By a similar argument to the above, the first ramification field of p in F/Q((,) is

VO (F/Q(G)) = F.

Therefore, |F : K(()| = ep(F/Q((p)) = 1, so F = K((). Since K = T,(K/Q), then
p1 Ak by Corollary 5.8 on page 210. Furthermore, if ¢ # p is a prime with ¢ | Ak, then ¢
ramifies in K/Q, and so must ramify in F/Q. Hence, ¢ ’ Ar, which completes Claim 5.26,
and so Case 5.6.

Case 5.7 p | Ap,ptn,and (, ¢ F.

Let L = FNQ({). Then by part (b) of Lemma 5.13 on page 245, Gal(F(¢,)/L) =
Gal(F/L) x Gal(Q(¢p)/L). Thus,

[F(Cp) : LI - |L: QI = |F(Gp) : Q = [F: L - |Q(¢p) < L] - [L = Qf,
and this last value equals both
[F: L Q(Gp) : QI = [F = L] - (p— 1), (5.48)

and

[F Q- Q(G) : Ll = n - |Q(Gp) = L. (5.49)
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From (5.48)—(5.49),

|F(Gp) : QI = [F: L[- (p—1), (5.50)
and

|F(Cp) : QI =n-1Q(¢) : L. (5.51)

Thus, by multiplying (5.50)—(5.51), we get |F((p) : Q2 = |F: L|-(p—1)-n-|Q(() : L]
Therefore, since part (a) of Lemma 5.13 tells us that [F((,) : F| = |Q(¢p) : L|, we have
[F(Cp) = Q- |L: Q> = (p—1) - n. Hence,

[F(G): Q|| n-(p—1). (5.52)

Since p ramifies in F, then p ramifies in F'((;)/Q. Therefore, p ’ Ap(,)- From (5.52), this
yields that p { [F(¢,) : Q|. Let P be a prime O p(¢,)-ideal over p. Now we apply Case 5.6 to
F((p). Let K =Tp(F((p)/Q) € F(Gp). Then |F((p) : K| = ep(F(¢p)/Q) =p — 1. Also,

[F(Cp) : QI = [F(¢p) : K[ [K:Q[ = (p—1)-[K: Q.

Thus, by (5.52), |K : Q| | n. Since p is unramified in K/Q, then pt Ag. Also, if g # p is a
prime such that ¢ f A, then ¢ ramifies in K/Q, so also in F({,)/Q. By Exercise 5.37 on
page 243, ¢ must be ramified in F/Q or in Q(¢,)/Q. Since g # p, then by Corollary 3.9 on
page 125, ¢ ramifies in F/Q, so ¢ ‘ Ar, and we have completed the entire proof. O

Lastly, we have the following concluding lemma.

Lemma 5.17 If Theorem 5.23 holds for abelian number fields whose degree and discrimi-
nant are a power of a given prime p, then it holds for arbitrary abelian extensions of degree
a power of p.

Proof. Let |F : Q| = p™. If ¢ # p is a prime dividingA g, then by Lemma 5.16, there
exists an abelian extension K/Q such that FF € K(¢,), |K : Q| | |[F : Q|, ¢ f Ag, and if
r is a prime dividingA g, then r|Apr. Hence,A g has fewer distinct prime divisors than
Ap. Suppose thatA g is not a power of p. Then we repeat the above argument on K
and get another field K; withA g, having fewer distinct prime factors thanA g, while K
satisfies the properties of Lemma 5.16. Since there exist only finitely many such primes
by Corollary 5.7 on page 210, we terminate this process after a finite number, r + 1, of
iterations. Therefore, for integers s = 0,1,...,r, we have abelian extensions Ks/Q such
that |K, : Q| is a power of p, and K,, C K,((s,), for some s; € N, and K, C Q(¢,) for
some r € N, with the last containment coming from Lemma 5.14 on page 246. Hence,

FQK(CS())’ KgKl(Csl); Kl gKQ(CSg)?"'7KTQQ(<Sr)’

Therefore, F' C Q(Csy, Csys---»Cs,) € Q(Cn), where n is the lem of the orders of the ¢, for
17=0,1,...,7. O
Theorem 5.23 is now an immediate consequence of Lemmas 5.12-5.17. The proof of the
Kronecker-Weber Theorem places us at the doorstep of class-field theory, at which we
have already had a peek via Theorem 5.21 on page 239. The celebrated Kronecker-Weber
Theorem was first stated by Kronecker in 1856, and first proved by H. Weber in 1886—see
Biographies 4.9 on page 164 and 5.4 on page 254. Numerous proofs have been given since
then. Among them are one given by Hilbert in 1896, one by F. Mertens in 1906, and
another by Weber himself in 1907. A proof was given by the late Hans Zassenhaus in
1969. More recently a proof was given by Greenberg in 1974—see [23]-[24]. Although the
proof of the latter is deemed to be “elementary,” once all the facts cited therein are proved,
the proof turns out to be longer than the once presented here and essentially the same
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sequence of lemmas is employed, so the reader is now provided with a relatively complete
and straightforward introduction to the theorem.

Exercises

5.40.

5.41.

5.42.

5.43.

5.44.

5.45.

5.46.

5.47.

5.48.

Let G be a cyclic group of order p™ where n € N and p is prime. Prove that if
G =2 G1 x Gy where G are cyclic groups of order p™ for j = 1,2, then either m; =0
or mg = 0.

Prove that any number field F' abelian over Q with both degree over Q and discriminant
a power of an odd prime must be a cyclic extension of Q.

Let G be a finite abelian p-group, where p is prime, and let |G| = p™, for m € N.
Establish the following two facts.

(a) For any subgroup H of G of order p™ with n € N, there exists a subgroup of G
of order p” for n < r < m containing H.

(b) If G has only one subgroup of order p™~! then G is cyclic.

Let K/F be a Galois extension of number fields, and let P be a prime O g-ideal. Prove
that all ramification groups V; for j > 0 are normal subgroups of Dy (K/F).

(Hint: See Lemma 5.15 on page 247.)

Let K/F be a Galois extension of number fields, and let Py, Pa, ..., P, be the prime
O -ideals ramified in K/F (possibly the empty set—see Remark 5.8 on page 240).
Suppose that H is the subgroup of Gal(K/F') generated by the inertia groups Ty, (K/F)
for j = 1,2,...,n, and let L be the fixed field of H. Prove that L is the maximal
subfield of K that is unramified over F. In particular, conclude that if F = Q,
then Gal(K/F) = H is generated by the inertia groups. (This result is called the
Monodromy Theorem for algebraic number fields.)

Suppose that K/F is a Galois extension of number fields with P a prime O g-ideal.
Let V; for j =0,1,2,...,m — 1 be all of the nontrivial ramification groups of K/F
with different D g/ p. Prove that if P ‘ Di/r, but P4 Dy, then

,_.

m—
(Vi =1).
7=0

(This equation is called Hilbert’s formula.)

Let K/F be a Galois extension of number fields of degree n, and let P be a prime
Ox-ideal with e = eg,p(P). Prove that P is tamely ramified in K/F' if and only if
P¢{ Dk p. Conclude that P is tamely ramified in K/F" if and only if p" { Ax/p where
p=PNOp. (Note that this establishes the promised converse of the result discussed
in Remark 5.3 on page 213.)

Let K/F be an extension of number fields. Prove that Tx/p(Ok) = Op if and only
if there is no prime O p-ideal p that divides D /p.

Suppose that G is a multiplicative group of order n and R is a ring. Let R[G] denote
the additive abelian group

ZR R+ “+R.

9ed n coples
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5.49.

5.50.
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Thus, R[G] consists of the formal sums Z;‘Zl rg;9; for g, € R and g; € G, with the
sum ranging over all of the n elements g; of G. Addition is defined by

ng]gj + Zsh 95 = Z Tg; + 59,)95;
j=1

with possibly some zero coefficients to ensure that any two of these formal sums range

over the same indices g; for j = 1,2,...,n. Also, multiplication is defined by
m n m n
(Sraa) (St ] =350
i=1 j=1 i=1 j=1

Then with these operations R[G] is called the group ring of G over R. Let K/F
be a Galois extension of number fields with G = Gal(K/F) and R = Op. Suppose
further that R[G] = Og. Prove that Tk, p(Ok) = R. In particular, when F' = Q,
we think of O and K as Z[G]-modules by the action (3, r49)z = >, re9(x) for
x € K. Use this to conclude that a Galois extension K/Q has a normal mtegral basis,
namely a basis consisting of conjugates of a single integer, if and only if Z[G] & Ok
as Z|G)-modules—see Remark 2.3 on page 79.

Let K/F be a Galois extension of number fields such that Op[G] =2 Ok where G =
Gal(K/F') (see Exercise 5.48). Prove that there does not exist any prime O p-ideal
p such that p" | A/ where n = |G|. Conclude that if Ox = O5[G] as an O p[G]-
module, then K/F is tamely ramified. (This result was first proved by A. Speiser in
1916.)

Biography 5.3 Andreas Speiser (1885-1970) was born on October 6, 1885.
He studied at Gottingen from 1904 to 1909 as a student of Minkowski. His
dissertation was on binary quadratic forms over general algebraic number
fields. He wrote a book on group theory entitled Die Theorie der Gruppen
von endlicher Ordnung, which was published in 1923. Several new editions
came out, with the last one in 1980. He is also known for his editing of several
collected works including, and especially, that of Euler. He died on December
10, 1970.

With reference to Exercises 5.48-5.49, prove that a quadratic extension K of Q with
Ak /g even cannot have a normal integral basis.

Biography 5.4 Heinrich Martin Weber (1842-1913) was born on May 5,
1842 in Heidelberg, Germany. He was a student of Dedekind, and worked
principally in algebra and number theory. His best-known work is his three-
volume Lehrbuch der Algebra, which was published in 1895. This text became
a standard, and influenced an entire generation of mathematicians to bring
group theory into the twentieth century as a major branch of mathematics in
its own right. Weber’s proof of Theorem 5.23 on page 244 is known to have
gaps (see the introduction to [27]). He died on May 17, 1913 in Strasbourg,
Germany (now part of France).




5.7. An Application—Primality Testing 255

5.7 An Application—Primality Testing

La derniér chose qu’on trouve en faisant un ouvrage, est de savoir celle qu’il faut
mettre la premiére.
The last thing one knows in constructing a work is what to put first.
From Section I, no. 19 of Pensés (1670), ed. I. Brunschvieg (1909)
Blaise Pascal (1623-1662)
French mathematician, physicist, and moralist

In this last section of chapter five, we look at an application of the contents to primality
testing. By a primality test, we mean an algorithm that determines whether a given n € N
is prime. In this section, we look at a primality test described by Lenstra in [42]. This
algorithm relies upon arithmetic in abelian extensions of @, and certain residue symbols.
Hence, this may be viewed as an introduction to Chapter 6, as well as an application of the
results of this chapter, including the Artin symbol and the Kronecker-Weber Theorem—see
Definition 5.14 on page 229 and Theorem 5.23 on page 244.

The genesis of primality testing may be said to originate two hundred years before Christ
with the Sieve of Eratosthenes—see [53, p. 32]. There is also the observation attributed to
Fibonacci that a composite n € N has a prime divisor less than y/n. Another classical test
given by Wilson’s Theorem says that

n € N is prime if and only if n | [(n — 1)! + 1].

However, each of these three tests is highly inefficient. In other words, there is no known

way to compute
(n=1)!+1 (mod n),

for instance, in reasonable time for large values of n. Gauss computed large tables of
primes, which provided enough data for him to conjecture the Prime Number Theorem—see
Theorem A.28 on page 343. Gauss himself recognized the importance of factoring and
primality testing, citing these being among the most important problems in arithmetic—see
§4.4 for an overview of factoring. In the twentieth century, the pioneering work of D.H.
Lehmer produced a school of thought in computational number theory that led to an array
of very clever ideas for factoring and primality testing—see Biography 5.5 on page 259.

There are numerous primality tests both classical and recent. There is the Elliptic curve
test, which the reader will find in [54], the Lucas-Lehmer test, Pepin’s test, and Pocklington’s
Theorem, the details, for the latter three, which the reader will find in [53]. See also [71]
for a detailed history of primality testing.

The test to be described in this section is based upon the following obvious result.

Theorem 5.24 Criterion for Primality

If n € N with n > 1, then n is prime if and only if every divisor 7 of n is a power of n.

Of course, in practice, primality tests do not directly check that divisors of n are powers of
n. However, this is done for images of r and n in certain groups G. Given a number n € N
to be tested, we proceed as follows. Set

§={reN:r|n}



256 5. Ideal Decomposition in Number Fields

There are three stages in primality testing algorithms based upon Theorem 5.24 on the
previous page. They are described as follows.

Stage 1. This stage consists of finding a group G and a natural map o from 8 to G with
the property that o(rir2) = o(r1)o(re) whenever r1,r2 € 8. For instance, G = (Z/sZ)* for
some s € Z such that ged(s,n) =1 and o(r) =7, where 7 is the least positive residue of r
modulo s, will suffice.

In the tests described below, G will always be Gal(K/Q) for some finite abelian extension
K of Q such that ged(Ag,n) = 1. By the Kronecker-Weber Theorem, there is an s € N
such that K C Q({s) with ged(s,n) = 1. Let 0 € Gal(Q(¢s)/Q) defined by 0(¢s) = ¢
for a given r € 8. Then define o(r) = 0|x. Observe that o(rirs) = o(r1)o(re). Also, by
Corollary 5.8 on page 210, r is unramified in K for any prime divisor r of n. Thus, if r is

. . . K/Q
prime we may view o(r) as the Artin symbol (T)

For any r € 8, we define
K" ={aec K:a’" =a},

and observe that if r is prime, then
K" = 7,(K/Q)

see Definition 5.12 on page 221.

Stage 2. This stage consists of showing that o(r) is a power of o(n) for any r | n, and we
clearly may restrict our attention to prime divisors of n. In practice, this stage consists of
putting n through a number of pseudoprimality tests—such as the Miller-Selfridge-Rabin
test—[53, p. 119]— satisfying the properties:

(a) Tt is known that n passes the tests if n is prime.

(b) If n passes the tests, then we may conclude that o(r) is in the subgroup of G generated
by o(n) for all divisors r of n.

In the tests described below, this stage will consist of looking for a ring homomorphism,
YO pom = L[N,

with (1) = 1. To show that the finding of such a homomorphism will do the job described
above for stage 2, we first show that when n is prime that such a homomorphism exists.
Then we show that indeed its existence implies that o(r) is in the subgroup of G generated
by o(n) for all divisors r of n.

Given that n is prime, o(n) is the Frobenius automorphism, or Artin symbol which generates
the decomposition group of n in K/Q. Therefore, by part (b) of Corollary 5.17 on page 227,
the decomposition field of n in K/Q,

K™ = 7,(K/Q),

is the largest subfield of K in which n splits completely. Therefore, there exists a prime
O co(my-ideal p above n such that

O oty [P = L/NL =T,
is the residue class field, so we have the existence of a ring homomorphism

P DKa(m — Z/TLZ
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—see Definition 5.1 on page 182 and Diagram 5.2 on page 228. However, if such a 9 exists,
this does not ensure that n is prime. The methods for finding such a v wusually detect
a composite number, for example by finding an integer a such that a” # a(mod n)—see
Exercise 4.31 on page 164. However, there exist composite integers such as n = 561 =
31117 for which a™ = a(mod n) for all integers a—see Exercise 5.51 on page 260.

Suppose now that we have found such a % in stage 2 (and we assume that we can do so in
computationally feasible time).519 Let r be a prime divisor of n, and let

p:Z/nZ — Z/rZ

be the canonical map. Form po ) : Ok — Z/rZ, which is a ring homomorphism. Thus,
the kernel of p o is an ideal R in O o), and since

Do) /R =D gom /ker(pop) =img(pory) =Z/rZ,
then R is prime. Since R is of degree one, then
K" C Z,(K/Q).

Thus, K7™ is fixed by o(n), and Z,(K/Q) is fixed by o(r). Thus, by Theorem 5.21 on
page 239, (o(r)) C (o(n)), as desired. Thus, we have shown that the existence of such a v
guarantees that (b) above holds.

Stage 3. Use the information in Stages 1-2 to finish the primality test. In other words,
the information will verify that n is prime or it will determine that it is composite.

The following is an application of the above primality test.

Example 5.15 Let n € N be given, and let s be the largest divisor of n — 1 for which we
know a complete factorization. If K = Q(({s), then by Application 5.1 on page 229,

Gal(K/Q) = (Z/sZ)*,

where o(r) € Gal(K/Q) corresponds to 7, with T denoting the residue class of r in (Z/sZ)*.
Since n = 1(mod s), then

K7™ =K, Ok =Z[G), and me, z () = @4(a).

If a € Z such that
a® =1 (mod n),

and
ged(a®?—1,n) =1

for all primes ¢ ’ s, then the residue class of the s** cyclotomic polynomial at ¢ modulo n

vanishes, namely
bi(a)=0

in Z/nZ. Given such a value a, we get a ring homomorphism ¢ : Ogom) — Z/nZ by
mapping (s to a. Observe that (¢ — a® = 1 in Z/nZ. Thus, by the discussion of stage
2 above, (o(r)) C (o(n)). Therefore, r = 1(mod s) for all r | n. Hence, if s > /i, it is
certain that n is prime. This is known as Pocklington’s Theorem see [53, Theorem 2.25, p.
123].

519The term computationally feasible or computationally easy means in reasonable computational time.
On the other hand, problems that are computationally infeasible, or computationally impossible are those
for which there (theoretically) exists a unique answer, but we cannot find it even if we devoted every scintilla
of time and resources available. However, it should be stressed here that there is no proved example of a
computationally infeasible problem.
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A simple illustration of Example 5.15 on the previous page, is to test the fourth Fermat
number
Fy=2%+1=n

for primality. Let s = 216, K = Q((,), and select a = 3. Then
at=3"=1 (mod n), and a*/? = 32" #Z1 (mod n).
Hence, by Pocklington’s Theorem, F} is prime.

The main application of Lenstra’s primality test is described as follows.

Let s € N such that ged(s,n) = 1, where the complete factorization of s is assumed to be
known. Let ¢ be the order of n modulo s. In other words, ¢ € N is the smallest value such
that

n'=1 (mod s).

Thus, t is the order of n in (Z/sZ)*. For computational purposes, we assume that ¢ is
relatively small. Let K = Q((), so

Gal(K/Q) = (Z/sZ)*
as above. By Corollary 5.13 on page 218,

K : K°™| =t
and
t—1 _
me ko (z) = H(:E - ()
3=0

It follows from Example 1.22 on page 19 that O .o is generated as a ring by the coefficients
of M o (z). Thus, to find a ring homomorphism

’(/) : DK(T(n) — Z/’FLZ,

it suffices to find a ring extension R of Z/nZ and a homomorphism

¥ Z[Gs] = R,

mapping the coefficients of M, o (2) inside Z/nZ. Suppose that we have such a ring.
To find z/;, it suffices to find

w(CS) =a€R

such that a® =1, a®/9 — 1 € R* for all primes ¢ ’ s, and

t—1

H(xfa”j) € n%[z]

§=0
If such an element a has been found, there exists a ring homomorphism
YO pom > L[N,
so from Stage 2, it follows that every r | n is congruent to a power of n modulo s.

If we assume that s > y/n, then it suffices to try the least residues nd modulo s for j =
0,1,2,...,t — 1 as possible divisors of n.%20

To illustrate the above, we show that the following classical result is a special case of our
test.

5:20Tn [42] it is concluded that the expected running time of the algorithm is less than (logn)closloslogn
where c is some effectively computable constant.
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Application 5.4 — Lucas—Lehmer Test for Mersenne Primes
Let n = 2" —1 with m € N, m > 2. Set e; =4 and e; 1 = €7 —2if j > 1. Then n is prime
if and only if e,,—1 = 0(mod n).

To show that this test is a special case of our algorithm, we let s = 2™*! and ¢t = 2. The

interesting case occurs when m is odd (since the case for m even is easy). Define a ring
o (Z/nD)]
(22 — 2z — 1)

where v/2 means
2(m+1/2 (mod n) € Z/nZ.

Let 9 : Z[(s] + R, as above and set ¢(x) = a. Set b= /2 —a = —a~', which is “the other”
zero of 22 — \/2z—. in R. By a simple induction argument
o+ = e; (mod n), (5.53)

for j € N. If n is prime, then R is a field in which a and b are conjugate, so a’™ = b by the
theory of finite fields—see §2.1. Hence,

om

a? =a"" =ba= -1,
so from (5.53), we get, em_1 = a2 +02"  =a¥" 442" =0(mod n). Conversely,
if €,,_1 = 0(mod n), then " = —1(mod n), so a® = a®" = 1(mod n). Thus, a*/2—1 =
—2 € R*. From a” =a*" ' = —a~' = b(mod n), we get

(x—a)(x—a")=(z—a)(x—b) (mod n),

and 7
- —b) =2 —V2r—-1€ —[z].
(x —a)(z—b) =2> — V2 — [z]
Hence, these conditions guarantee that there exists a ring homomorphism

DKo‘(n) — Z/nZ,

via Stage 1, and that every divisor of n is congruent to 1 or n modulo s. Hence, for s > n,
we get that n is prime.

The test in this section can be used with that given in [1]. The reader is encouraged to solve
Exercise 5.52 which opens the door to understanding the concepts used in [1], which also
employs Artin symbols. Furthermore, the solution of Exercise 5.52 generalizes the notion
of a quadratic Gauss sum given in Exercise 5.33 on page 232, and prepares the reader for
Chapter 6 where we look at Reciprocity laws and residue symbols in general.

Biography 5.5 Derrick Henry Lehmer (1905-1991) was born on February 23,
1905 in Berkeley, California. He got his first degree from the University of
California there in 1927. Then he achieved his Sc.M. from Brown University
in 1929. Perhaps the best insight into his contributions may be seen in his col-
lected works [36]. He was truly a pioneering giant in the world of computational
number theory, and was widely respected in the mathematical community. He
was also known for his valued sense of humour, as attested by John Selfridge
in the forward to the aforementioned collected works, as well as by one of
Lehmer’s students, Ron Graham. In particular, Selfridge concludes with an
apt description of Lehmer’s contributions saying that he “has shown us this
beauty with the sure hand of a master.” He died on May 22, 1991.
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Exercises

5.51.

5.52.

5.53.

5.54.

Prove that 2°' = x (mod 561) for all x € N.

(The value 561 is the smallest Carmichael number, which is a composite integer n € N
such that ™! = 1(mod n) for all a € N such that ged(a,n) = 1. They are also known
as absolute pseudoprimes. We have occasion to use this in text—see page 257.)

Let ¢ = p™ where p is prime and n € N. If x is a character on F; and a € Fy, then
& L Ty ey (@a)
T
Galx) = ZX(x)Cp[FQ/Fp )

=0

is called the Gauss sum on Fy belonging to the character x. (Recall that the trace

of an element Tg /¢, () = Z;L;OI o’ | the sum of its conjugates over the base field,
which is essentially the same as that given in Definitions 2.4 on page 65 and 5.2 on
page 184 for number fields.)

Prove that for any « € F; and any character x on Fy,
Ga(x) = x(a™H)G()
where G(x) = G1(x). Conclude in particular that

Gu(e) = 0.
Prove that if o, z,y € Fy, then

1 Z Cgpq/wp(a(ﬂ?*y)) _ 5my
a€cl,
where 0, , is the Kronecker delta—see Theorem 5.7 on page 199 and Exercise 5.52.
Suppose that y # € in Exercise 5.52. Establish the following generalization of Exer-
cise 5.34 on page 232:
Ga ()| = V-

In particular, conclude that for any a € Fy, we have

Ga(X)Galx™") = x(-1)q.

(Hint: Use Ezercise 5.53.)



Chapter 6

Reciprocity Laws

Laws are like cobwebs, which catch small flies, but let wasps and hornets break through.
from A critical essay upon the faculties of the mind (1709)

Jonathan Swift (1667-1745)

Anglo-Irish poet and satirist

It may be said that the story of reciprocity laws is intimately linked with the history
of algebraic number theory itself. Indeed, the historical evolution and generalization of
the quadratic reciprocity law to residue symbols in algebraic number fields, essentially
from Gauss to Artin, uses the techniques of algebraic number theory as an indispensable
tool. Hence, understanding reciprocity laws is an integral part of algebraic number theory.
Thus, we have left this topic to the concluding chapter, albeit we have already had a solid
introduction via Definition 5.14 on page 229, Applications 5.1-5.3 on pages 229-231, and
Exercise 5.36 on page 232, as well as the applications in §5.7. Furthermore, we motivated
this chapter with the generalization of the quadratic Gauss sum given in Exercise 5.52.
Since we have already dealt with the quadratic reciprocity law, as mentioned above, we
begin with the next level up.

6.1 Cubic Reciprocity

Reciprocity laws arise from the following question. Given a fixed n € N, for which primes
p, is there a solution = € Z to the congruence

n —

2" =a (mod p),

where a € Z is known? More generally, we have the following.

Definition 6.1 — Power Residues

If m,n € N and a € Z with ged(a,m) = 1, then we say that a is an nth

modulo m provided that

power residue

2" =a (mod m) (6.1)
is solvable for some z € Z.
For instance, when n = 2, the residues are called quadratic residues, when n = 3 they are

called cubic residues, when n = 4, they are called quartic residues, also called biquadratic
residues, when n = 5 quintic residues, when n = 6, sextic residues, and so on.

261
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When n = 2 and m is a prime, we get Gauss’s Quadratic Reciprocity Law discussed in
the preamble to this section on page 261. In this section, we study n = 3, called cubic
reciprocity, predicted by Gauss. FEisenstein gave the first published proof of the Cubic
Reciprocity Law in 1844—see Biography 3.10 on page 137. In this section, we will provide
one of Eisenstein’s proofs of this law.%! First we need the following preliminary result,
which is based upon ideal congruences introduced and explored in Exercises 4.25-4.32 on
pages 163-164 with which the reader should be familiar at this juncture.

Remark 6.1 Note that by Corollaries 1.1 on page 13 and 1.6 on page 21, Z[(5] is a PID,
equivalently a UFD by Theorem 1.18 on page 29. Thus, in what follows, the congruences
modulo a prime element 7 of Z[(3] may be interpreted as congruences modulo the principal
prime ideal (7).

Proposition 6.1 — Cubic Congruences

Suppose that F = Q({3) and 7 is a prime element of Op. If @« € Op = Z[(3] where
Np(m) # 3 and 7 1 a, then there exists a unique nonnegative integer n < 2 such that

oWNr(m=1/3 = ¢n (mod 7).

Proof. Since
2

aNF(W)*l 1= H(Q(NF(”T)*U/B _ Cé)’ (62)
=0

then given 7 { o, we must have that 7 divides one of the factors on the right side of (6.2). If
7 divides two of these factors, then 7 divides the difference of them. The possible differences
are +(1 — (3), (1 — ¢3), and +(3(1 — ¢3), and by Exercises 2.24 on page 68 and 3.37 on
page 129, the absolute value of the norms of any of these elements is 3. Therefore, by
Exercise 2.46 on page 86, via Remark 6.1, Np(7) ’ 3, a contradiction since Np(m) # 1,3.0

Proposition 6.1 provides the evidence that the following is well-defined.

Definition 6.2 — Cubic Residue Symbol
Suppose that F' = Q(¢3) and 7 is a prime element of Op with Ng(7) # 3. If « € O, then

(£)5 is defined by
(g) =0ifrw ‘ a,
/3

(%)3 = ifrta,

where n is the unique integer determined by the congruence in Proposition 6.1.

and

If 8 € OF is a nonzero, nonunit element, and

m
s=11m:
j=1

6.1 Jacobi had already worked out the laws in 1836 and written them down in notes for lectures given at
Konigsberg in late 1836 and early 1837. In 1846, Jacobi even went so far as to write in a footnote of a paper,
which was a republished version of an 1837 paper, that Eisenstein had gotten the proof from Jacobi’s notes.
Eisenstein responded in a paper published in Crelle’s Journal in 1847 that he had neither seen Jacobi’s
lecture notes, nor was he aware of the proofs in them. See [12] for more historical details. Two proofs,
essentially those of Eisenstein and Jacobi, can be found in [32].
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where 7; are prime elements of O p with Np(7;) # 3 for j =1,2,...,m, then (%)3 is defined
by
o [«
(ﬂ);g ]];[1 (773'>3.
If p € Yy, then set

for all nonzero o € O, and

For the following, the reader is reminded of the introduction of Gauss sums and related
characters in Exercises 5.27-5.34 on pages 231-232.

Remark 6.2 Suppose that F' = Q((3), o, € Op, 7 is a prime element of Op, and (£);
is the cubic residue symbol. Then immediately from Definition 6.2,

(<) = (@), (5).

and if & = B(mod =), then

Therefore (£); is a cubic character on the field Z[(3]/(w) of Np(w) elements, namely

XS)(a) = (£)3 is a multiplicative character of order 3 on the finite field Fy . (x).

By Exercise 6.2 on page 275, (£); = 1 if and only if a is a cubic residue modulo 7.
By Exercise 6.5, every nonzero element of Z[(3] has six associates. Thus, to refine our
development of the cubic reciprocity law, we need the following notion.

Definition 6.3 — Primary Cubic Int