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Abstract

We consider categories of manifolds admitting a functorial lift of their Wu class to integral

cohomology. We show that the existence of a functorial lift allows to construct canonical

quadratic refinements of various pairings defined on the cohomologies of a manifold of dimension

4ℓ ` 2, of its mapping tori and of manifolds bounded by the latter. We also exhibit the

compatibility relations satisfied by these quadratic refinements. This leads in particular to a

new Z2-valued topological invariant for spin manifolds of dimension 4ℓ ` 2 when ℓ “ 0, 2 or

is odd. The motivation for this work comes from the physics of the self-dual field theory in

dimension 6, and we explain the use of our results to the study of global gravitational anomaly

cancellation involving the self-dual field theory.
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1 Introduction and summary

Certain categories of manifolds admit a functorial lift of their Wu class from cohomology with

Z2 coefficients to integral cohomology, typically in terms of characteristic classes. In this paper,

we show that the existence of a functorial lift of the Wu class in degree 2ℓ ` 2 allows to define

canonical quadratic refinements of the pairings LM , LMφ
and LW , defined as follows (Section

2.3).

• Given a manifold M of dimension 4ℓ`2, LM is the Q{Z-valued pairing on H2ℓ`1pM,Zqb

Z2 given by half the cup product pairing modulo 1.

• Given a mapping torus Mφ associated to a diffeomorphism φ of M , LMφ
is the linking

pairing on the torsion cohomology H2ℓ`2
tors pMφ,Zq.

• Given a manifold W bounded by Mφ, let F “ Im
`

H2ℓ`2
free pW,Mφ,Zq Ñ H2ℓ`2

free pW,Zq
˘

and

F ˚ the dual space with respect to the cup product pairing. LW is a certain Q{Z-valued

pairing on F ˚{F (see Section 2.3 for the details).

These quadratic refinements also satisfy interesting compatibility conditions that we spell out.

The main example of a category of manifolds admitting a functorial lift is the category

of spin manifolds, for which the lift is expressed in terms of the Pontryagin classes. For spin

manifolds of dimensions 2, 6, 10 and 8ℓ ` 6, where a certain obstruction to our constructions

vanishes, the Arf invariant of the canonical quadratic refinement of LM provides a Z2-valued

topological invariant. The Arf invariant of the canonical quadratic refinement of LMφ
provides

a generalization of the Rohlin invariant mod 8 to mapping tori of spin manifolds of dimension

8ℓ ` 6. Another example of a category of manifolds admitting a functorial lift of the Wu class,

related to the physics of the M5-brane, is presented in Section 3.1.

The motivation for this work comes from physics, more precisely from the computation of

the global gravitational anomaly of the self-dual field theory [1, 2]. The mathematical context

for this problem is presented in Section 7, where we also explain the use of the results derived

here. The introductions of [1, 2] provide a short overview of the physical context.

Let us summarize our results in more details. From the defining property of the Wu class, an

integral lift ν of the Wu class of degree 2ℓ` 2 on a manifold of dimension 4ℓ` 4 with boundary

3



satisfies the equation

xz Y z, rW, BW sy “ xz Y ν, rW, BW sy mod 2 , (1.1)

where z lies in H2ℓ`2pW, BW,Zq, rW, BW s denotes the fundamental relative homology class

of W and x‚, ‚y is the natural pairing between homology and cohomology. Adding twice an

integral class to an integral lift yields another integral lift. If ν has a functorial expression, for

instance in terms of characteristic classes, then its restriction to the boundary BW is necessarily

given by twice an integral class µ, as the Wu class of degree 2ℓ ` 2 of a manifold of dimension

4ℓ ` 3 vanishes. Extending µ to W allows to define a integral lift λ :“ ν ´ 2µ that is trivial on

the boundary. 2 If an appropriate differential structure is chosen (for instance a Riemannian

metric in the case of spin manifolds), the integral lift can be supplemented by a form lift λ

vanishing on BW , whose de Rahm cohomology class coincides with the de Rahm cohomology

class of λ. The form lift actually allows to define a class in the relative de Rahm cohomology

of W with respect to BW . We call a relative lift the pair formed by an integral lift trivial on

BW and a compatible form lift vanishing on BW (Definition 3.3).

We now sketch how relative lifts of the Wu class can be used to define quadratic refinements

(Definition 2.2).

Manifolds of dimension 4ℓ ` 2 Consider a manifold W whose boundary is of the form

M ˆ S1 for a 4ℓ ` 2-dimensional manifold M . Let LM be half the cup product pairing on

H2ℓ`1pM,Zq modulo 1. LM can be seen as a Q{Z-valued pairing on H2ℓ`1pM,Zq b Z2. A

relative lift pλ, λq P H2ℓ`2pW,M ˆ S1,Zq ˆ Ω2ℓ`2pW q of the Wu class on W can be used to

construct a function

Qpxq “
1

2

ż

W

z ^ pz ´ λq mod 1 . (1.2)

where x P H2ℓ`1pM,Zq, z is a form representative of an integral class z extending x Y t to W ,

and t is the generator of H1pS1,Zq. Q is a quadratic refinement of LM (Proposition 5.4). It is

independent of the choice of bounded manifold W as well as of the various choices involved in

extending cohomological data from M ˆ S1 to W (Proposition 5.2). However Q does depend

on the choice of class µ used to define λ and is not canonical. The ambiguity is parameterized

by the 2-torsion group H2ℓ`2
2´torspM,Zq. 3

2In this paper, we will always assume that such extensions are possible. We show in Appendix A that in the

case of spin manifolds with ℓ “ 0, 2 or ℓ odd, all the relevant obstructions vanish. This includes the cases of spin

manifolds with boundary of dimension 4, 8 and 12, which are the relevant ones for physical applications.
3The idea of considering the function (1.2) on H2ℓ`1pM,Zq associated to a lift of the Wu class goes back to

Witten [3]. His function however does not use a relative lift, and is not a quadratic refinement in the sense of
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As the cup product pairing vanishes identically on the 2-torsion subgroup H2ℓ`1
2´torspM,Zq Ă

H2ℓ`1pM,Zq b Z2, quadratic refinements of LM restrict to characters of H2ℓ`1
2´torspM,Zq and

there is a preferred quadratic refinement Qc that restricts to the trivial character. Qc is the

canonical quadratic refinement of LM that we associate to M . It factors through a quadratic

refinement of the cup product pairing on the free quotient H2ℓ`1
free pM,Zq b Z2.

There is a preferred relative lift pλc, λcq of the Wu class on W (modulo twice a relative

class), related to Qc by (1.2). The construction of pλc, λcq can in fact be generalized to the case

when BW is an arbitrary mapping torus of M (Section 4.3).

The Arf invariant of Qc provides a topological Z2-valued invariant of M . This construction

is of course strongly reminiscent of the Kervaire invariant [4] and its generalizations [5, 6].

Indeed, the generalized Kervaire invariant is the Arf invariant of a quadratic refinement of the

cup product pairing on H2ℓ`1pM,Z2q constructed using the Pontryagin-Thom construction (see

[7] for a review). As we point out in Section 5.3, results of Lee, Miller and Weintraub [8] show

that the two invariants coincide when M is spin of dimension 2 or 10 and H5
torspM,Zq “ 0. It

would be interesting to find out if the two invariants have a closer relation.

Mapping tori of dimension 4ℓ` 3 Recall that the Rohlin invariant of a spin manifold E of

dimension 8ℓ ` 3 is defined as the signature modulo 16 of a manifold W bounded by E. This

invariant is well-defined, because the signature is a cobordism invariant, and is necessarily a

multiple of 16 for closed spin manifolds of dimension 8ℓ ` 4. A consequence of the results of

Brumfiel and Morgan in [9] is that the Rohlin invariant modulo 8 is related to the Arf invariant

of a certain quadratic refinement of the linking pairing on the torsion cohomology H2ℓ`2
tors pE,Zq.

The results of [9] are however more general (Theorem 2.9): given any compact orientable

manifold E of dimension 4ℓ ` 3, they allow to express the signature modulo 8 of a bounded

manifold W in terms of a quadratic refinement of the linking pairing on E and an integral lift

of the Wu class on W .

When E is a mapping torus in our category, the existence of a preferred relative lift pλc, λcq

on W allows to define a canonical quadratic refinement Qc of the linking pairing, whose Arf

invariant is a generalization of the Rohlin invariant modulo 8 (see equation (4.7)). Theorem 2.9

shows that the Arf invariant of Qc has a simple expression in terms of a manifold W bounded

by E, just like the Rohlin invariant modulo 8:

ApQcq “
1

8

ˆ
ż

W

λc ^ λc ´ σW

˙

mod 1 , (1.3)

Definition 2.2, see the discussion in Section 7.2.
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where σW is the signature of the cup product pairing on H2ℓ`2pW,E,Zq.

Compatibility The crucial result for applications to physics is the following. A quadratic

refinement Q of the pairing LM associated to a 4ℓ ` 2-dimensional manifold M induces a

quadratic refinement QQ of the linking pairing of any of its mapping tori (Definition 2.6). We

show that if Q “ Qc, the induced quadratic refinement QQc coincides Qc (Theorem 5.7). In

particular, the Arf invariant of QQc is given by (1.3) (Theorem 4.11).

Applications In [1, 2], we defined certain line bundles with connections over the space of

metrics modulo diffeomorphism M{D of a manifold M of dimension 4ℓ ` 2. These bundles are

pull-backs of theta bundles from the space of complex structures on the intermediate Jacobian,

endowed with connections analogous to the Bismut-Freed connections existing on determinant

bundles of Dirac operators (see Section 7 for more details). In particular, they depend on

a quadratic refinement Q of LM . It has been conjectured in [2] that the holonomy of the

connection along a cycle c in M{D is computed in terms of the associated mapping torus Mc

of M by exp 2πi
8

`

η0 ` ApQQq
˘

, where η0 is a certain limit of the eta invariant of the signature

operator on Mc, and ApQQq is the Arf invariant of the quadratic refinement QQ of the linking

pairing of Mc induced by Q. After using the Atiyah-Patodi-Singer theorem to express the eta

invariant in terms of data on a bounded manifold W , the holonomy formula reads

1

2πi
ln holpcq “

1

8

ż

W

`

λQ ^ λQ ´ L
˘

, (1.4)

where L is the Hirzebruch L-genus. In the physical context, such holonomy formulas are crucial

to check the consistency of low energy effective field theories obtained from theories of quantum

gravity, such as string theory. Our results show that when we pick the quadratic refinement Q

on M to be Qc, the form λQ appearing in (1.4) is precisely λc. As the physically relevant choice

of quadratic refinement should be the canonical one, our result make the holonomy formula

(1.4) concrete. We will explore the physical consequences of this result in other publications.

Relation to the work of Hopkins and Singer Let us mention that many of the structures

we consider in this paper have been described in a more abstract and arguably more elegant

formalism by Hopkins and Singer in [10]. However we have not managed to make this formalism

explicit enough for our purpose, neither have we been able to recast our results in their language.

We note some important differences between the two works:
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• In [10], a lift of the Wu class to a differential cocycle is used. As it was remarked there,

there is no obvious functorial way of constructing such a lift. We only require the existence

of a integral lift and a compatible form lift of the Wu class, which can be chosen in a

functorial way.

• Our definition of quadratic refinements follows Brumfiel and Morgan [9] and differs from

the one used in [10] and commonly found in the physics literature. In particular, Hopkins-

Singer quadratic refinements admit continuous deformations, while Brumfiel-Morgan quadratic

refinements are discrete objects. This rigidity is in fact crucial for our construction of a

topological invariant. When the pairing to be refined is the intersection product on the

middle degree cohomology of a manifold of degree 2ℓ ` 2, the Hopkins-Singer quadratic

refinements are in fact logarithms of semi-characters [11], associated to holomorphic line

bundles on the intermediate Jacobian, while the Brumfiel-Morgan quadratic refinement

are associated to symmetric holomorphic line bundles. See also our discussion in Section

7.2 of the related objects defined by Witten in [3].

• We construct and use relative lifts of the Wu class on manifolds of dimension 4ℓ ` 4 with

boundary. This fact is instrumental in the construction of quadratic refinements satisfying

the definition of Brumfiel-Morgan. No similar condition appears in the main theorem of

[10], although it is required in the construction of Section 5.3 of [10] that the lift restricts

at most to a torsion class on the boundary.

Organization of the paper Section 2 presents the mathematical background and the defi-

nitions. The definition of quadratic refinements and some of their basic properties is found in

Section 2.2. In Section 2.3, we show how quadratic refinements can be associated to manifolds

of dimension 4ℓ ` 2, 4ℓ ` 3 and 4ℓ ` 4, and define certain compatibility conditions between

them. We also review the main result of Brumfiel and Morgan in [9] (Theorem 2.9).

We define integral, form and differential lifts of the Wu class in Section 3.1. The notion of

a functorial lift is defined in Section 3.2 and the construction of the relative lift is presented in

Section 3.3.

In Section 4, we consider mapping tori of manifolds of dimension 4ℓ ` 2. We show how the

existence of a relative lift of the Wu class on manifolds bounded by the mapping torus allows

to define a quadratic refinement of its linking pairing in Section 4.2. We construct a canonical

relative lift in Section 4.3 and study the associated canonical quadratic refinement in Section

4.4. In Section 4.5, we express its Arf invariant in terms of the relative lift and the signature of
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the bounded manifold W , using Theorem 2.9 from Brumfiel and Morgan.

Section 5 is devoted to the construction of the canonical quadratic refinement of LM for a

manifold M of dimension 4ℓ`2. We present in Section 5.1 the general construction of a quadratic

refinement starting from a relative lift of the Wu class on a manifold bounded by the trivial

mapping torus of M . In Section 5.2, we use the canonical relative lift constructed in Section

4.3 to obtain a canonical quadratic refinement. We discuss the associated topological invariant

in Section 5.3. We show in Section 5.4 that the canonical quadratic refinement associated to a

mapping torus of M is induced from the quadratic refinement of LM .

In Section 6, we perform explicit computation for M “ S3 ˆ S3. This example shows that

neither the Arf invariants of mapping tori associated to M nor the relative lift of the Wu class

satisfy special evenness properties, a result of interest for physical applications.

Section 7 presents informally the mathematics underlying the computation of the global

gravitational anomaly of the self-dual field theory. We explain the use of our results and

comment on the relation to the physics literature.

Appendix A contains basic cobordism computations showing that the obstruction to our

constructions of quadratic refinements vanishes for spin manifolds when ℓ “ 0, 2 or ℓ odd.

2 Preliminary notions

2.1 Basics and notations

A good and free reference on the material presented here is [12].

Absolute and relative cohomology Let W be a manifold with boundary BW . Recall that

the absolute cohomology H‚pW,Zq of W is defined as the space of closed cochain4, modulo exact

ones. The relative cohomology H‚pW, BW,Zq is defined similarly, but restricting to cochains

vanishing on BW . If the boundary BW is empty, the two cohomologies agree and what follows

is still valid. We have the following long exact sequence of cohomology groups

... Ñ Hp´1pBW,Zq
δ

Ñ HppW, BW,Zq
j

Ñ HppW,Zq
i

Ñ HppBW,Zq Ñ ... , (2.1)

where j arises by seeing a relative cochain as an absolute one and i is the restriction of an

absolute cochain to the boundary. To construct the image by δ of a cochain on BW , we extend

it in an arbitrary way to W (for instance by zero), and take its differential.

4It will not be necessary for us to pick a specific model for cohomology, but the various cocycles appearing

in the text can for instance be pictured as Čech cocycles.
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We will use the subscript “tors” to denote the torsion subgroup of a cohomology group, and

the subscript “free” to denote the free quotient, e.g. H‚
freepW,Zq :“ H‚pW,Zq{H‚

torspW,Zq. The

free quotient coincides with the de Rahm cohomology of W .

The manifold W has a fundamental relative homology cycle of degree d :“ dimpW q, which

we write rW, BW s. It can be paired with a degree d cocycle v̂:
@

v̂, rW, BW s
D

P Z. 5 In case v̂ is

a relative cocycle, the pairing depends only on the cohomology class v of v̂, in which case we

write
@

v, rW, BW s
D

.

Cup product There is a cup product Y on cochains inducing products on the cohomology

groups. The cup product of two absolute cochains is an absolute cochain, while the cup product

of a relative cochain with any cochain is a relative cochain. The cup product induces a pairing

between HppW, BW,Zq and Hd´ppW,Zq: pu, vq Ñ
@

u Y v, rW, BW s
D

. This pairing induces a

non-degenerate Z-valued pairing between H
p
freepW, BW,Zq and H

d´p
free pW,Zq. Let Ω‚pW q be the

space of R-valued differential forms on W . The cup product on H‚
freepW,Zq coincides with the

product induced from the wedge product on Ω‚pW q.

The cup product allows as well to define a non-degenerate Q{Z-valued “linking” pairing

between H
p
torspW, BW,Zq and H

d´p`1
tors pW,Zq. It is defined as follow. Given cocycles x̂ and ŷ

representing elements x P H
p
torspW, BW,Zq and y P H

d´p`1
tors pW,Zq, there exists an integer k such

that kŷ “ dû, with û a chain of degree 2ℓ ` 1. Define the linking pairing as

LW px, yq “
1

k

@

x̂ Y û, rW, BW s
D

mod 1 , (2.2)

a well-defined pairing on the torsion cohomology.

Differential cohomology 6 Denote by C‚pW,Kq the space of K-valued cochains on W and

Z‚pW,Kq the corresponding cocycles. A differential cochain of degree p on W is an element

of CppW,Zq ˆ Cp´1pW,Rq ˆ ΩppW q. The form component is called the field strength of the

differential cochain. A differential is defined by

dpâ, ĥ, ωq :“ pdâ, ω ´ dĥ ´ â, dωq , (2.3)

where the form ω is realized as a real cochain in the second component. Kerpdq is the space of

differential cocycles. A differential cohomology class is a differential cocycle modulo differentials

5Our notations are as follow. A cohomology class is written v (plain), a differential cohomology class v̌

(check), a differential form v (underline) and a cochain/cocycle v̂ (hat).
6See Section 2 of [13] for a pedagogical introduction to differential cocycles.
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of cocycles with vanishing field strengths. We will write Ȟ‚pW q for differential cohomology of

W . The notion of “reduced” differential cohomology will prove useful.

Definition 2.1. Reduced differential cohomology Ř‚pW q is the additive group of pairs v̌ “
`

apv̌q, ωpv̌q
˘

P HppW,Zq ˆ ΩppW q satisfying rapv̌qsdR “ rωpv̌qsdR in de Rahm cohomology.

2.2 Quadratic refinements

Consider a finite abelian group G (written additively) endowed with a Q{Z-valued bilinear

pairing L.

Definition 2.2. (See for instance [9, 14]) A quadratic refinement is a function Q : G Ñ Q{Z

satisfying the following equations:

Qpg1 ` g2q ´ Qpg1q ´ Qpg2q “ Lpg1, g2q , (2.4)

Qpngq “ n2Qpgq . (2.5)

for g, g1, g2 P G, n P Z.

Remark that this definition of quadratic refinements differs from the one usually found in

the physics literature (and in [10]). Any two quadratic refinements differ by a 1
2
Z{Z-valued

character of G (Theorem 2.2 in [9]).

A subgroup G0 Ă G is called isotropic if L|G0ˆG0
vanishes. From (2.4), we deduce that

the restriction of a quadratic refinement to G0 is linear. Using (2.5) as well, we can deduce

that 2Q|G0
“ 0. Therefore Q|G0

is a 1
2
Z{Z-valued character χ of G0. By extending χ to a

1
2
Z{Z-valued character of G, it is always possible to construct a quadratic refinement Q ´ χ

that vanishes on G0.

The setup described above can be obtained from a free abelian group F of finite rank

endowed with a Z-valued symmetric pairing B. B can be seen as a map b from F to its dual

F ˚ and we have a short exact sequence

0 Ñ F
b

Ñ F ˚ Ñ GB Ñ 0 , (2.6)

where GB is a finite abelian group. B induces a Q-valued pairing B˚ :“ xb´1‚, ‚y on F ˚ which

passes to a well-defined pairing LB : GB ˆ GB Ñ Q{Z. A characteristic element for B is an

element λ P F such that Bpw,wq “ Bpλ,wq mod 2 for all w P F . Given a characteristic element

λ, we can define a quadratic refinement

Qλpw ` F q :“
1

2

`

B˚pw,wq ´ B˚pw, λq
˘

mod 1 (2.7)
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of LB . The set of modulo 2 reductions of characteristic elements is in bijection with the set of

quadratic refinements (Theorem 2.4 [9]7).

A useful quantity associated to a quadratic refinement is the Gauss sum

GausspQq “
ÿ

gPG

exp 2πiQpgq . (2.8)

Suppose that L is degenerate, G0 is the radical and Q|G0
is a non-trivial character. Then the

Gauss sum (2.8) vanishes. Indeed, if x0 P G0 is such that Qpx0q “ 1
2
, then the contributions of

x and x ` x0 cancel in pairs in (2.8). If L is non-degenerate, it can be shown that GausspQq

never vanishes, and that its argument is a multiple of 2π{8. The corresponding element of

ApQq P 1
8
Z{Z is called the Arf invariant of Q. In the case when the quadratic refinement is

obtained from a characteristic element λ, a theorem of van der Blij [15] computes the Gauss

sum of Qλ in terms of λ:

GausspQλq “ |GB |1{2 exp
2πi

8

`

σB ´ Bpλ, λq
˘

, (2.9)

where σB is the signature of B.

2.3 Quadratic refinements in topology and compatibility conditions

In this section we describe constructions of quadratic refinements associated to manifolds of

dimension 4ℓ ` 2, 4ℓ ` 3 and 4ℓ ` 4, as well as natural compatibility conditions between these

quadratic refinements.

Dimension 4ℓ ` 2 Consider a manifold M of dimension 4ℓ ` 2. Consider the abelian group

GM “ H2ℓ`1pM,Zq b Z2. Endow it with the Q{Z-valued bilinear pairing

LMpx1, x2q :“
1

2
xx1 Y x2, rM sy mod 1 . (2.10)

The cup product on the degree 2ℓ ` 1 cohomology of M is antisymmetric. Because it is valued

in
 

0, 1
2

(

, LM is also symmetric, so it can admit quadratic refinements. The set of all the

quadratic refinements of such half-integral antisymmetric pairings is easy to characterize. Recall

that adding a 1
2
Z{Z-valued character of GM to a quadratic refinement yields another quadratic

refinement. As any character of GM is 1
2
Z{Z-valued, the set of quadratic refinement is a torsor

on the group of characters of GM . We will define a canonical quadratic refinement of LM in

Section 5.
7Characteristic elements are called Wu classes in that paper.
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Dimension 4ℓ ` 3 Given a manifold E of dimension 4ℓ ` 3, we can consider quadratic re-

finements of the linking pairing LE on H2ℓ`2
tors pE,Zq and the associated Arf invariants. In the

case of a spin manifold of dimension 8ℓ ` 3, for a special choice of quadratic refinement, the

Arf invariant coincides with the reduction modulo 8 of the Rohlin invariant, which is defined

as the signature modulo 16 of a manifold bounded by E [8]. In Section 4, we will construct a

canonical quadratic refinement of LE when E is a mapping torus.

Mapping tori Recall that the mapping torus associated to a 4ℓ ` 2 dimensional manifold

M and a diffeomorphism φ of M is the quotient Mφ of M ˆ R by the equivalence relation

px, sq » pφpxq, s ` 1q. Mφ can be seen as a fiber bundle over a circle with fiber M . The

cohomology of Mφ admits a canonical decomposition (cf. the appendix of [2])

HppMφ,Zq » RppMφq ‘ H
p
φpM,Zq . (2.11)

H‚
φpM,Zq denotes the part of the cohomology of M left invariant by the action φ˚ of φ by

pull-backs. RppMφq admits a filtration

H
p´1
φ pM,Zq Ă RppMφq (2.12)

with associated graded H
p´1
φ pM,Zq ‘ T p´1pMφq, where T p´1pMφq is a finite group given by

the quotient of Hp´1pM,Zq{Hp´1
φ pM,Zq by the image of 1 ´ φ˚.

Consider the torsion subgroup

H2ℓ`2
tors pMφ,Zq » R2ℓ`2

tors pMφq ‘ H2ℓ`2
tors,φpM,Zq (2.13)

» H2ℓ`1
tors,φpM,Zq ‘ T 2ℓ`1pMφq ‘ H2ℓ`2

tors,φpM,Zq ,

where the second decomposition is a priori not canonical. The linking pairing LMφ
identifies

the first and third summands as dual of each other. The second decomposition can be made

canonical by identifying T 2ℓ`1pMφq with the subgroup of H2ℓ`2
tors pMφ,Zq that has vanishing

linking pairing with elements in H2ℓ`1
tors,φpM,Zq ‘ H2ℓ`2

tors,φpM,Zq. In turn, using the inclusion

H2ℓ`2
tors pMφ,Zq Ă H2ℓ`2pMφ,Zq, this allows to define a canonical decomposition

H2ℓ`2pMφ,Zq » H2ℓ`1
φ pM,Zq ‘ T 2ℓ`1pMφq ‘ H2ℓ`2

φ pM,Zq . (2.14)

LMφ
induces a non-degenerate pairing LT on T 2ℓ`1pMφq. Let y, y1 P T 2ℓ`1pMφq. Assume

they lift to x, x1 P H2ℓ`1pM,Zq. Suppose y1 has order k, so there exists u1 P H2ℓ`1pM,Zq such

that kx1 “ p1 ´ φ˚qu1. The linking pairing LT can be computed as follows:
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Proposition 2.3. (Proposition 2.1.1 of [8])

LT py, y1q “
1

k

@

x Y u1, rM s
D

mod 1 . (2.15)

Compatibility Pick a quadratic refinement Q of the cup product pairing LM on H2ℓ`1pM,Zqb

Z2 which is φ-invariant, i.e. satisfying Qpφ˚xq “ Qpxq. Consider the following function on

T 2ℓ`1pMφq:

QT pyq “
1

2k

@

x Y u, rM s
D

´ Qpxq mod 1 , (2.16)

where k is the order of y and u satisfies kx “ p1 ´ φ˚qu.

Proposition 2.4. (Proposition 2.2.1 of [8]) QT is well-defined and it is a quadratic refinement

of LT .

We define the following natural compatibility condition.

Definition 2.5. Given a quadratic refinement Q of the pairing LM , a quadratic refinement Q

of the linking pairing of a mapping torus Mφ is said to be compatible with Q if

• Q “ QT on T 2ℓ`1pMφq.

• Q “ Q on H2ℓ`1
2´tors,φpM,Zq, where H2ℓ`1

2´tors,φpM,Zq is seen as a subgroup of H2ℓ`2
tors pMφ,Zq

on the left hand side, and of H2ℓ`1pM,Zq b Z2 on the right hand side.

As H2ℓ`2
2´tors,φpM,Zq Ă H2ℓ`2

2´torspMφ,Zq is isotropic, one can always twist a compatible quadratic

refinement Q with a 1
2
Z{Z-valued character of H2ℓ`2

tors pMφ,Zq to make it vanish on H2ℓ`2
2´tors,φpM,Zq.

This allows us to define a unique quadratic refinement of LMφ
from Q.

Definition 2.6. Let Q be a φ-invariant quadratic refinement of LM and Mφ a mapping torus of

M . The induced quadratic refinement QQ is the unique quadratic refinement of LMφ
vanishing

on H2ℓ`2
2´tors,φpM,Zq Ă H2ℓ`2

tors pMφ,Zq and compatible with Q.

Dimension 4ℓ ` 4 with a boundary Let W be a manifold of dimension 4ℓ ` 4 with a

boundary BW . Let F be the image of H2ℓ`2
free pW, BW,Zq in H2ℓ`2

free pW,Zq. The cup product

pairing on H2ℓ`2
free pW, BW,Zq induces an integral pairing B on F . If z1, z2 P F ,

Bpz1, z2q “
@

z1 Y z2, rW, BW s
D

. (2.17)

Therefore we find ourselves in the situation described in Section 2.2. We can see the pairing B

as a map b from F to its dual F ˚, which is nothing but the kernel of the restriction map from
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H2ℓ`2
free pW,Zq to H2ℓ`2

free pBW,Zq (see [9], Section 3). Now b´1 can be seen as a map from F ˚ into

F bQ, so we can extend B to a not necessarily integral pairing B˚ on F ˚. The latter induces

a pairing LW on F ˚{F after reduction modulo 1. Given z1, z2 P F ˚, we have

LW pz1 ` F, z2 ` F q :“ B˚pz1, z2q “
@

z1 Y b´1z2, rW, BW s
D

mod 1 . (2.18)

We now get an explicit expression for B˚ and LW .

Proposition 2.7. ([9], Lemma 3.4)

LW pz1 ` F, z2 ` F q “ ´LBW py1, y2q , (2.19)

where LBW is the linking pairing on H2ℓ`2
tors pBW,Zq and yi the restriction of zi to BW , i “ 1, 2.

Proof. For i “ 1, 2, let ẑi be a representing cocycle for zi and ŷi be the restrictions of ẑi to BW .

As zi P F ˚, ŷi is torsion. Let k the smallest positive integer such that kŷ2 “ 0. Let ûB be a

cochain on BW such that dûB “ kŷ2. Let û be an extension of ûB to W . Then

1

k
pkẑ2 ´ dûq (2.20)

is a Q-valued relative cocycle on W , and is a representative for b´1z2. We can therefore rewrite:

B˚pz1, z2q “

B

ẑ1 Y ẑ2 ´
1

k
dpẑ1 Y ûq, rW, BW s

F

“
@

ẑ1 Y ẑ2, rW, BW s
D

´
1

k

@

ŷ1 Y ûB, rBW s
D

(2.21)

“
@

ẑ1 Y ẑ2, rW, BW s
D

´ LBW py1, y2q

from the definition of the linking pairing (2.2). But the first term is clearly an integer, so we

obtain (2.19).

Let us now pick a characteristic element λ for B, i.e. an element λ P F such that

@

z Y z, rW, BW s
D

“
@

z Y λ, rW, BW s
D

mod 1 (2.22)

for all z P F . According to the discussion in Section 2.2, we have an associated quadratic

refinement of LW on F ˚{F given by

Qλpz ` F q “
1

2

@

z Y pb´1z ´ λq, rW, BW s
D

mod 1 , (2.23)

for z P F ˚. As was explained in Section 2.2, the Arf invariant of qλ can be expressed in terms

of λ as

ApQλq “
1

8

`

σW ´
@

λ Y λ, rW, BW s
D˘

mod 1 , (2.24)

where σW is the signature of the 4ℓ ` 4 manifold W , i.e. the signature of the bilinear form B.
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Compatibility We now turn to the relations between ApQλq and the Arf invariants of

quadratic refinements associated with BW . The proofs of the claims below can be found in

Section 4 of [9]. Let Q be a quadratic refinements of LBW .

Definition 2.8. A characteristic element λ for B is said to be compatible with Q if for all

z P H2ℓ`2pW,Zq such that z|BW P H2ℓ`2
tors pBW,Zq, we have

Qpz|BW q “ ´Qλpzq . (2.25)

The image of H2ℓ`2
tors pW,Zq in H2ℓ`2

tors pBW,Zq is isotropic, which implies that Q is linear and
1
2
Z{Z-valued on this image. Hence there exists an element b P H2ℓ`2

tors pBW,Zq such that

Qpz|BW q “ LBW pz|BW , bq (2.26)

for all z P H2ℓ`2
tors pW,Zq. Brumfiel and Morgan proved the following theorem:

Theorem 2.9. ([9], Theorem 4.3) If λ is a characteristic element for B compatible with Q,

then ApQλq “ Qpbq ´ ApQq. In other words, using (2.24),

ApQq ´ Qpbq “
1

8

`@

λ Y λ, rW, BW s
D

´ σW
˘

mod 1 . (2.27)

3 Wu classes, functorial lifts and relative lifts

3.1 Wu classes and differential lifts

The Wu class of a manifold W is an element ν2 P H‚pW,Z2q whose degree k component

satisfies ν
pkq
2 Y x “ Sqkpxq, where Sq is the Steenrod square operation on mod 2 cohomology.

The components ν
pkq
2 for k ą d{2 all vanish. If the dimension d of W is even, νpd{2q

2 satisfies

x Y ν
pd{2q
2 “ x Y x for x P Hd{2pW,Z2q. From now on, the Wu class of a manifold will always

be understood as the component ν
pd{2q
2 .

We have the long exact sequence

... Ñ Hd{2pW,Zq
¨2
Ñ Hd{2pW,Zq

mod 2
Ñ Hd{2pW,Z2q

β
Ñ Hd{2`1pW,Zq

¨2
Ñ ... (3.1)

where β is the Bockstein map. This sequence implies the existence of a filtration

H
d{2
torspW,Zq bZ2 Ă Hd{2pW,Zq b Z2 Ă Hd{2pW,Z2q , (3.2)

so we have a non-canonical decomposition

Hd{2pW,Z2q “ H
d{2
torspW,Zq b Z2 ‘ Hd{2pW,Zqfree bZ2 ‘ H

d{2`1
tors pW,Zq b Z2 . (3.3)
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The cup product on H2ℓ`2pW,Z2q induces a non-degenerate pairing. The restriction of the

cup product pairing on H
d{2
freepW,ZqbZ2 is non-degenerate, while its restriction on H

d{2
torspW,Zqb

Z2 and H
d{2`1
tors pW,Zq bZ2 is zero. It identifies H

d{2`1
tors pW,Zq bZ2 as the dual of Hd{2

torspW,Zq b

Z2. The cup products on Hd{2pW,Zq and Hd{2pW,Z2q are compatible, in the sense that the

reduction modulo 2 of the first gives the restriction of the second on the first two summands of

(3.3).

Definition 3.1. An integral lift ν of the Wu class ν2 is an element ν P H2ℓ`2pW,Zq such that

ν “ ν2 modulo 2.

A form lift of the Wu class is a closed form ν P Ω2ℓ`2pW q whose de Rahm cohomology class

coincides with the de Rahm cohomology class of an integral lift.

A differential lift ν̌ of the Wu class is an element of Řd{2pW q such that apν̌q is an integral

lift.

Remarks Clearly, such lifts are possible only if the Wu class has no component in the third

summand of (3.3) or equivalently if βpν2q “ 0.

From the definition of reduced differential cohomology classes, we deduce that the field

strength of a differential lift is a form lift.

Pick an integral lift ν and a class z P H2ℓ`2pW,Zq. We have

xz Y z, rW sy “ xz Y ν, rW sy mod 2 . (3.4)

Pick a form lift ν and a closed form z P Ω2ℓ`2pW q. We have
ż

W

z ^ z “

ż

W

z ^ ν mod 2 . (3.5)

3.2 Functorial lifts

Definition 3.2. A category of manifolds admits a functorial lift of the Wu class if there is a

functorial way of associating a differential lift of the degree 2ℓ ` 2 Wu class to manifolds of

dimension 4ℓ ` 3 and to manifolds of dimension 4ℓ ` 4 with boundaries.

A “functorial way” means here that if ν̌X is the differential lift associated to a manifold X

and if there is a morphism φ : A Ñ B, then ν̌A “ φ˚pν̌Bq. In particular, the differential lifts are

compatible under the operation of restriction to the boundary of a 4ℓ`4 dimensional manifold.

The typical case is when a category of manifolds admits an expression for an integral lift of

the Wu class to integral cohomology in terms of characteristic classes. By considering a refined
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category where the manifolds are equipped with an appropriate differential structure, one can

arrange so that the characteristic classes admit canonical form representatives modulo torsion.

Both combine into a differential lift of the Wu class which is functorial.

Example 3.1. Spin manifolds admit a lift ν of the Wu class in integral cohomology in terms

of Pontryagin classes (see the appendix E of [10]). For instance in degree 4, ν “ ´p1{2,

where p1 is the first Pontryagin class. A Riemannian metric allows to construct canonical

form representatives for the Pontryagin classes using its curvature. Riemannian spin manifolds

therefore form a category admitting functorial lifts of the Wu classes in degree 2ℓ ` 2 for each

ℓ. Obviously, the functorial lifts vanish in degrees different from 0 modulo 4.

Example 3.2. The M5-brane provides another category of manifolds admitting a functorial

lift of their Wu class. These are orientable manifolds W endowed with a real orientable vector

bundle N . We require that N is of dimension 5, that its Euler class vanishes, that its second

Stiefel-Whitney class satisfies w2pNq “ w2pW q, and that it is endowed with a choice of Thom

class. Together with morphisms preserving all the structures we just described, the set of such

manifolds forms a category. The Thom class determines a global angular form g on 4-sphere

bundle associated to N . Denote the push-forward map associated to the 4-sphere bundle by π˚.

As shown in Section 5 of [16], π˚pg Y gq ´ p1{2 is an integral lift of the Wu class of degree 4. By

considering manifolds equipped with a Riemannian metric on the 4-sphere bundle associated

to N , we obtain a functorial lift of the Wu class of degree 4. This case will be studied further

in the context of the global gravitational anomaly of the M5-brane in future work.

3.3 Relative lifts

Definition 3.3. A relative lift of the Wu class of degree 2ℓ ` 2 on a manifold W of dimension

4ℓ`4 with boundary is a differential lift λ̌ “ pλ, λq such that λ is trivial when restricted to BW ,

and λ vanishes on BW .

Remark 3.4. λ :“ ωpλ̌q is a form vanishing on the boundary with integral periods. It defines

an element of the relative de Rahm cohomology H2ℓ`2
free pW, BW,Zq. λ does not quite define an

element of H2ℓ`2pW, BW,Zq, but only an element in the image of the map from H2ℓ`2pW, BW,Zq

to H2ℓ`2pW,Zq, which can have a non-trivial kernel (see the exact sequence (2.1)).

We now show how functorial lifts allow to construct relative lifts. Consider a category of

manifolds admitting a functorial lift ν̌ of the Wu class ν2 of degree 2ℓ` 2. Consider a manifold

E of dimension 4ℓ ` 3 in this category. On E, ν2 always vanishes, so ν̌ can be expressed as
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ν̌ “ 2µ̌, for µ̌ P Ř2ℓ`2
Z

pEq. Now consider a manifold W of dimension 4ℓ ` 4 bounded by E and

on which µ̌ extends. (See below for a discussion of the possible obstructions.) We still write µ̌

for the reduced differential cohomology class extending µ̌ on W . We can define the following

relative lift of the Wu class:

λ̌ :“ ν̌ ´ 2µ̌ (3.6)

Remark that there are two choices required to define λ̌. First, apµ̌q is only defined up to the

addition of a 2-torsion class on E. Second, we have to make a choice of extension of µ̌ on W .

In the construction above, there are two possible obstructions. It may not be possible to

find a manifold W bounded by E, and even if W exists, it may not be possible to extend µ̌.

These obstructions have to be studied case by case. In the case of spin manifolds, the first

obstruction is described by the spin bordism group Ω
spin
4ℓ`3pptq, while the second one is given by

Ω
spin
4ℓ`3pKpZ, 2ℓ`2qq. In appendix A, we show that the first obstruction vanishes for ℓ “ 0, 2 and

ℓ odd. We also show that the second one always vanishes. Only in these cases our construction

of the relative Wu class can be carried out for all manifolds. We do not know yet how to

compute the obstruction relevant to Example 3.2.

4 A canonical quadratic refinement for mapping tori

In this section, we consider a mapping torus Mφ of a manifold M of dimension 4ℓ ` 2. We

first define quadratic refinements of the linking pairing on the torsion cohomology of degree

2ℓ ` 2 associated to arbitrary relative lifts of the Wu class. Then we show how to construct a

canonical relative lift, yielding a canonical quadratic refinement Qc.

4.1 A basic construction

The following construction will appear many times in what follows. Let E be a manifold of

dimension 4ℓ ` 3, endowed with a cohomology class y P H2ℓ`2pE,Zq and a reduced differential

cohomology class µ̌ satisfying 2µ̌ “ ν̌, for ν̌ the functorial lift of the Wu class.

Let W be a 4ℓ`4 manifold with boundary, endowed with a cohomology class z P H2ℓ`2pW,Zq

and with reduced differential cohomology classes µ̌W and λ̌.

Definition 4.1. We say rW, z, µ̌W , λ̌s is a bordism trivialization of the data rE, y, µ̌s if

• W admits E as its boundary,

• z restricts to y on E,
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• µ̌W restricts to µ̌ on E,

• λ̌ “ ν̌ ´ 2µ̌W , where ν̌ denotes here the functorial lift of the Wu class on W .

We will often write λ for ωpλ̌q.

4.2 Quadratic refinements from relative lifts

Let LMφ
be the linking pairing on H2ℓ`2

tors pMφ,Zq. Let µ̌ be a reduced differential cohomology

class satisfying 2µ̌ “ ν̌. Pick a torsion class y P H2ℓ`2
tors pMφ,Zq, let rWφ, z, µ̌, λ̌s a bordism

trivialization of rMφ, y, µ̌s, where by we wrote µ̌ both for the reduced differential cohomology

class on M1 and its extension to W . Define λ :“ apλ̌q. Recall the bilinear form B˚ described

in (2.21). To ease the notation, we will write z and λ as well for the elements in H2ℓ`2
free pW,Zq

defined by the corresponding integral classes. Consider the following function

Qpyq “ ´
1

2

`

B˚pz, zq ´ B˚pz, λq
˘

mod 1 . (4.1)

Proposition 4.2. Q is independent of the choice of bordism trivialization.

Proof. Let us assume that we have two bordism trivializations rW1, z1, µ̌1, λ̌1s and rW2, z2, µ̌2, λ̌2s.

Denote by B˚
1 and B˚

2 the respective bilinear pairings on W1 and W2 and by Q1 and Q2 the

quadratic refinements obtained from (4.1).

Let W̄2 be W2 with its orientation reversed. We can glue W1 and W̄2 along their common

boundary Mφ into a closed 4ℓ`4-dimensional manifold W endowed with a class y and a reduced

differential cohomology class µ̌. Consider the Mayer-Vietoris sequence

... Ñ H2ℓ`2pW,Zq
r

Ñ H2ℓ`2pW1,Zq ‘ H2ℓ`2pW̄2,Zq
∆
Ñ H2ℓ`2pMφ,Zq Ñ ... (4.2)

where r is the restriction map. If pu1, u2q and pu1
1, u

1
2q restrict to torsion elements on Mφ and

belong to the image of r, with preimage u and u1, we deduce from (2.21) that

B˚
1 pu1, u

1
1q ´ B˚

2 pu2, u
1
2q “ Bpu, u1q , (4.3)

where the minus sign comes from the orientation reversal on W2. Therefore,

Q1pyq ´ Q2pyq “ ´
1

2

`

Bpz, zq ´ Bpz, λq
˘

mod 1 . (4.4)

As λ̌ “ ν̌ ` 2µ̌, λ differs from rapνqsdR by twice an integral class, so is a lift of the Wu class of

W in de Rahm cohomology. This ensures that (4.4) is equal to 0 modulo 1.
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Remark 4.3. It is crucial in the argument above that the same reduced character µ̌ on M1 is

used in the construction of λ1 and λ2. Indeed, if λ1 and λ2 are constructed from two different

characters µ̌1 and µ̌2, with apµ̌1q differing from apµ̌2q by a 2-torsion class on M1, nothing

ensures that λ differs from ωpν̌q by twice an integral class and (4.4) does not necessarily vanish.

Therefore, Q does depend on µ̌.

Proposition 4.4. Q is a quadratic refinement of LMφ
.

Proof. Seen as a function of z, ´Q is obviously a quadratic refinement of the pairing LB (see

(2.7) and Section 2.2). But we showed in Proposition 2.7 that given two classes z and z1 on

W restricting to torsion classes y and y1 on M̂ , LBpz, z1q “ ´L
M̂

py, y1q mod 1, proving the

proposition.

4.3 The canonical relative lift

According to (2.14), the cohomology in degree 2ℓ`2 of Mφ admits the canonical decomposition

H2ℓ`2pMφ,Zq » H2ℓ`1
φ pM,Zq ‘ T 2ℓ`1pMφq ‘ H2ℓ`2

φ pM,Zq . (4.5)

Consider first the component T 2ℓ`1pMφq. As the integral lift of the Wu class apν̌q is even,

it has no component on the 2-torsion subgroup T 2ℓ`1
2´torspMφq. We can choose µ̌ so that apµ̌q

has no component on T 2ℓ`1
2´torspMφq. We obtain a quadratic refinement Q from µ̌ using (4.1).

We now evaluate Q on the subspace H2ℓ`1
2´tors,φpM,Zq and H2ℓ`2

2´tors,φpM,Zq of H2ℓ`2
tors pMφ,Zq. As

these subspaces are isotropic, Q restricts to characters χ1 and χ2. As they are dual to each

other with respect to the linking pairing, χ1 determines a class u1 P H2ℓ`2
2´tors,φpM,Zq and χ2

determines a class u2 P H2ℓ`1
2´tors,φpM,Zq:

χipyq “ LMφ
py, uiq . (4.6)

We define µ̌c such that 2µ̌c “ ν̌ and apµ̌cq “ apµ̌q ` u1 ` u2. As the 2-torsion component of

apµ̌q is completely fixed this provides a canonical choice for µ̌. We write λ̌c for the associated

relative lift of the Wu class.

4.4 The canonical quadratic refinement

Using the canonical relative lift in (4.1), we obtain a canonical quadratic refinement Qc:

Qcpyq “ ´
1

2

`

B˚pz, zq ´ B˚pz, λcq
˘

mod 1 , (4.7)

where λc is a shorthand for apλ̌cq.
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Proposition 4.5. Qc vanishes on H2ℓ`1
2´tors,φpM,Zq and on H2ℓ`2

2´tors,φpM,Zq, seen as subspaces

of H2ℓ`2
tors pMφ,Zq.

Proof. Pick a class y P H2ℓ`2
tors pMφ,Zq and a bordism trivialization rWφ, z, µ̌

c, λ̌cs of rMφ, y, µ̌
cs.

We choose it so that u1 and u2 extend to classes v1 and v2 on W . As explained at the end of

Appendix A, this is always possible provided two cohomology classes can be extended, what is

necessary for the existence of a bordism trivialization, and assumed throughout this paper.

From (4.1), we have

Qcpyq “ Qpyq `
1

2
B˚py, 2v1 ` 2v2q (4.8)

“ Qpyq ´ LMφ
py, u1 ` u2q , (4.9)

where we used (2.21). Clearly, if y belong to the subgroups H2ℓ`1
2´tors,φpM,Zq or H2ℓ`2

2´tors,φpM,Zq,

the definition of the classes u1 and u2 imply that Qcpyq “ 0.

4.5 A canonical quadratic refinement for manifolds bounded by mapping

tori

Let Mφ be a 4ℓ` 3 dimensional mapping torus and let rW, z, µ̌c, λ̌cs be a bordism trivialization

of rMφ, y, µ̌
cs. Write λc :“ apλ̌cq. Recall that we called F the image of H2ℓ`2

free pW,Mφ,Zq in

H2ℓ`2
free pW,Zq, and F ˚ the kernel of the restriction map from H2ℓ`2

free pW,Zq to H2ℓ`2
free pMφ,Zq. As

shown in Section 2.3, λc allows to define a quadratic refinement of the pairing LW on F ˚{F by

Qcpzq “
1

2

`

B˚pz, zq ´ B˚pz, λcq
˘

mod 1 . (4.10)

The following lemma is obvious from the definitions.

Lemma 4.6. Qc is compatible with Qc in the sense of Definition 2.8.

Write again λc :“ ωpλ̌cq. The following result is easily derived, but crucial for applications

to the self-dual field theory.

Theorem 4.7.

ApQcq “
1

8

ˆ
ż

W

λc ^ λc ´ σW

˙

mod 1 . (4.11)

Proof. The element b P H2ℓ`2
tors pBW,Zq defined in (2.26) vanishes, because Qcpzq obviously van-

ishes for z a torsion class. (4.11) is then an immediate consequence of Theorem 2.9.

As was explained in the introduction, ApQcq “ ´ApQcq provides a generalization of the

Rohlin invariant modulo 8 to mapping tori of dimension 4ℓ ` 3 in our category.
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5 A canonical quadratic refinement in dimension 4ℓ ` 2

In this section, given a 4ℓ ` 2-dimensional manifold M and a functorial lift of the Wu class, we

construct a canonical quadratic refinement of the pairing LM on H2ℓ`1pM,Zq b Z2.

5.1 Preliminary definition

Pick a class x P H2ℓ`1pM,Zq and construct the manifold M1 :“ M ˆ S1 endowed with x Y t,

t being the class generating H1pS1,Zq. Following Section 3.3, pick µ̌ satisfying ν̌ “ 2µ̌ on M1

and let rW, z, µ̌, λ̌s be a bordism trivialization of rM1, x Y t, µ̌s. Let z be a representative in

Ω2ℓ`2pW q for the image of z in H2ℓ`2
free pW,Zq.

Consider the following function on H2ℓ`1pM,Zq:

Qpxq “
1

2

ż

W

z ^ pz ´ λq mod 1 . (5.1)

Remark 5.1. Although there are obvious similarities with the definition in (4.1), remark that

x Y t is not necessarily torsion. (4.1) would not make sense for a class z restricting to a non-

torsion form on M1.

The following proposition shows that Q is well-defined.

Proposition 5.2. Q depends neither on the choice of bordism trivialization rW, z, µ̌, λ̌s nor on

the choice of form lift z, and therefore yields a well-defined function on H2ℓ`1pM,Zq.

Proof. Assume that we have two bordism trivializations rW1, z1, µ̌1, λ̌1s and rW2, z2, µ̌2, λ̌2s

with corresponding forms z1, λ1 on W1 and z2, λ2 on W2. On M1, we have z2 ´ z1 “ du. We

construct a manifold W3 » M1 ˆ r0, 1s endowed with the form z3 “ z1 ` dpp3s2 ´ 2s3quq, where

s parameterizes r0, 1s. z3 coincides with z1 on M1 ˆ t0u and with z2 on M1 ˆ t1u. Using that

both z1 and z2 are of the form x^ t, one can check that z3 ^ z3 “ 0. We can now glue W1 and

W2 to W3 to obtain a manifold W132 with a form z132.

We also get a form λ132 by extending λ1 and λ2 by 0 on W3. From the construction of the

form λ in Section 3.3 and the functoriality of ν̌, we see that the de Rham cohomology class

rλ132sdR differs from rωpν̌qsdR by twice an integral class. Therefore λ132 is a form lift of the Wu

class and satisfies (3.5).

Denote by Qipxq, i “ 1, 2 the value of Qpxq computed from the two bordism trivializations.

We have

Q1pxq ´ Q2pxq “
1

2

@

z132 Y pz132 ´ λ132q, rW132s
D

, (5.2)
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where we used the fact that the contribution of the right hand side from W3 vanishes. (5.2)

vanishes modulo 1 because of the property of the form lift (3.5). Q1pxq and Q2pxq therefore

coincide.

Remark 5.3. Again, just like Q, Q does depend on the choice for µ̌.

Proposition 5.4. Q, as defined in equation (5.1), is a quadratic refinement of the pairing LM

on H2ℓ`1pM,Z2q b Z2.

Proof. From the definition of LM in (2.10), we have to check that given u, v P H2ℓ`1pM,Zq,

Qpu ` vq ´ Qpuq ´ Qpvq “
1

2
xu Y v, rM sy mod 1 . (5.3)

Let P be a trinion (a three-holed sphere), with boundary components C1, C2 and C3. We give

C3 an orientation opposite to the orientation of C1 and C2, relative to the orientation of P .

Let also W3 “ M ˆ P . We endow the three boundary components M ˆ Ci of W3 respectively

with the classes uY t, v Y t and pu` vq Y t. Applying again the construction of Section 3.3, we

obtain a relative lift λ P Ω2ℓ`2pW3q.

In order to be able to write explicit formulas, it is useful to picture the trinion as a 2-simplex

tpx, yq Ă R

2|0 ď x ď y ď 1u whose three vertices p0, 0q, p0, 1q and p1, 1q have been identified

[17]. This allows to write very easily an extension of the boundary classes to the interior of W3.

Let u and v be form representatives of the de Rahm cohomology classes of u and v. Write

z “ dx ^ u ` dy ^ v . (5.4)

The left-hand side of (5.3) is given by

1

2

ż

W3

z ^ pz ´ λq . (5.5)

As P is an orientable manifold, its first Stiefel-Whitney class, which coincides with its degree

1 Wu class, vanishes. As the Wu class of degree 2ℓ ` 2 of M vanishes for dimensional reasons,

this implies from the Cartan formula (see appendix E of [10]) that the degree 2ℓ ` 2 Wu class

of W3 vanishes. Hence both rωpν̌qsdR and rλsdR can be expressed as twice integral classes. So

modulo 1, we can drop the term involving λ in (5.3).

We can then compute

1

2

ż

W3

z ^ z “ ´

ż

P

dx ^ dy ¨ xu Y v, rM sy “
1

2
xu Y v, rM sy mod 1 , (5.6)

which proves the proposition.
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5.2 The canonical quadratic refinement

The canonical relative lift λ̌c constructed in section 4.3 provides a canonical form lift λc “ ωpλ̌cq.

Using the same notation as in (5.1), we define:

Qcpxq “
1

2

ż

W

z ^ pz ´ λcq mod 1 . (5.7)

Propositions 5.2 and the unicity of the canonical relative lift λ̌c imply that Qc is canonically

defined from the functorial lift ν̌ of the Wu class.

Proposition 5.5. The restriction of Qc to H2ℓ`1
tors pM,Zq b Z2 vanishes.

Proof. Remark that if x P H2ℓ`1
tors pM,Zq, y :“ x Y t P H2ℓ`1

tors pM,Zq Ă H2ℓ`2
tors pM1,Zq. In this

case,

Qcpxq “
1

2

ż

W

z ^ pz ´ λcq “
1

2

`

B˚pz, zq ´ B˚pz, λq
˘

“ ´Qcpyq mod 1 . (5.8)

We deduce from Proposition 4.5 that Qcpxq vanishes on H2ℓ`1
tors pM,Zq b Z2.

5.3 A topological invariant

The functorial lift of the Wu class ν̌ generally depends on a differential structure on the manifold

M . In the case of spin manifolds (Example 3.1 in Section 3.2), this structure is a Riemannian

metric on M . As quadratic refinements do not admit continuous deformation, and as the space

of Riemannian metric is simply connected (it is in fact contractible [18]), Qc is a topological

invariant in this case. Any explicit expression for Qc depends however on a choice of basis of

H2ℓ`1pM,Zq bZ2, which cannot be made canonically. Practically, we can obtain a computable

topological invariant from its Arf invariant, as the latter is invariant under changes of bases.

As we saw in Section 2.2, when a quadratic refinement is non-trivial on the radical of the

pairing it refines, its Gauss sum vanishes and the Arf invariant cannot be defined. In the

case treated in this section, this happens when χ is a non-trivial character (For essentially the

same reason, the partition function of the self-dual field is identically zero in this case [16].)

However Qc vanishes on H2ℓ`1
tors pM,Zq b Z2 and factors through a quadratic refinement of the

non-degenerate cup product pairing on H2ℓ`1
free pM,Zq bZ2. In consequence, its Gauss sum does

not vanish and it has a well-defined Arf invariant.

As Qc is valued in 1
2
Z{Z, ApQcq is valued in 1

2
Z{Z as well. Therefore we have built a Z2

valued topological invariant associated to spin manifolds of dimension 4ℓ ` 2. Because of the

potential obstruction to constructing the bounded manifold W , this construction can be carried

out for all manifolds only when ℓ “ 0, 2 or ℓ is odd (see the Appendix).
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A natural quadratic refinement QB of the cup product pairing on H2ℓ`1pM,Z2q has been

defined by Brown using the Pontryagin-Thom construction. The generalized Kervaire invariant

is defined as the Arf invariant of QB [6]. In the case when M is a spin manifold of dimension

8ℓ ` 2 such that M ˆ S1 is a spin boundary and H2ℓ`1pM,Zq is torsion-free, results from Lee,

Miller and Weintraub ([8], Sections 5 and 6) show that Brown’s quadratic refinement coincides

with (5.1) with λ “ 0. It would be very interesting to know their relation in more general cases.

Remark that when H2ℓ`1pM,Zq has 2-torsion, the domains of the two quadratic refinements

are different.

For other categories of manifolds admitting a functorial lift of the Wu class, the canonical

quadratic refinement defines a local system over the space of differential structures required to

define the functorial lift. If the local system is trival, for instance when the space of differential

structures is simply connected, the Arf invariant of the canonical quadratic refinement provides

a topological invariant.

5.4 Compatibility

Now we show that the quadratic refinement Qc is compatible with Qc, in the sense of Definition

2.5. To this end, we need a preliminary lemma.

Pick a class yφ P H2ℓ`2pMφ,Zq that pulls back to a class x Y t P H2ℓ`2
cpt pM ˆR,Zq under

the quotient map M ˆ R Ñ Mφ, with x P H2ℓ`1pM,Zq. Let µ̌c
φ be the reduced differential

cohomology class constructed in Section 4.3. Let rWφ, z, µ̌
c
φ, λ̌

c
φs a bordism trivialization of

rMφ, yφ, µ̌
c
φs. Let ẑφ be a cocycle representing the class zφ, and λ̂c

φ a relative cocycle satisfying

rλ̂c
φsdR “ rωpλ̌c

φqsdR as relative de Rahm cohomology classes.

Repeat the construction of the previous paragraph with the identity diffeomorphism φ “ 1.

Lemma 5.6.

1

2

@

ẑφ Y pẑφ ´ λ̂c
φq, rWφ,Mφs

D

“
1

2

@

ẑ1 Y pẑ1 ´ λ̂c
1q, rW1,M1s

D

mod 1 . (5.9)

In other words, the left-hand side is independent from φ modulo 1.

Proof. The main idea of the proof (loosely inspired by the proof of proposition 5.4.1 in [8]), is to

choose the cocycles ẑφ and ẑ1 so that their support on the boundary is a tubular neighborhood

of a fiber of Mφ and M1, and to compute both sides in a neighborhood of the support of ẑφ

and ẑ1.

Let us first remark that the left-hand side of (5.9) cannot depend on the choice of cocycle

representative ẑφ, by an argument completely analogous to the proof of Proposition 5.2. Let
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t̂ be a “bump cocycle” representing t and supported on an interval I Ă S1. If x̂ is a cocycle

representative for x, then ẑφ can be chosen such that ẑφ|Mφ
is represented by x̂ Y t̂. ẑ1 can be

taken as well to be such that ẑ1|M1
is equal to x̂ Y t̂. Pick also cocycle representatives µ̂c

1 and

µ̂c
φ of apµ̌c

1q and apµ̌c
φq.

Let T1 and Tφ be tubular neighborhoods of the supports of ẑ1 and ẑφ. T1XM1 is homeomor-

phic to Tφ X Mφ and we can assume that this homeomorphism maps ẑφ|TφXMφ
to ẑ1|T1XM1

, as

well as µ̂c
φ to µ̂c

1. Inverting the orientation of T1, we can glue T1 and Tφ along their boundaries

T1 X M1 and Tφ X Mφ to obtain a (non-compact) manifold T . ẑφ and ẑ1 combine to form

a compactly supported cocycle ẑ in T . Similarly, µ̂c
1 and µ̂c

φ combine into a non-compactly

supported cocycle µ̂c. Writing ν̌ for the functorial lift of the Wu class on T , we can define a

(non-compactly supported) cocycle λ̂c “ apν̌q´2µ̂c. λ̂c is a cocycle representative of an integral

lift of the Wu class.

The difference between the left-hand side and the right-hand side of (5.9) is computed by

1

2

@

ẑ Y pẑ ´ λ̂cq, rT s
D

(5.10)

This pairing is well-defined, because ẑ is compactly supported. Moreover, it is an integer,

because λ̂c is cocycle representative of an integral lift of the Wu class. We deduce that modulo

1, the two sides of (5.9) coincide.

Theorem 5.7. Qc is compatible with Qc, in the sense of Definition 2.5.

Proof. Let yφ P T 2ℓ`1pMφq Ă H2ℓ`2
tors pMφ,Zq of order k and assume that yφ comes from a

class x P H2ℓ`1pM,Zq satisfying kx “ p1 ´ φ˚qv. Let y1 “ x Y t P H2ℓ`2pM ˆ S1,Zq. Let

rWφ, zφ, µ̌
c
φ, λ̌

c
φs be a bordism trivialization of rMφ, yφ, µ̌

c
φs and rW1, z1, µ̌

c
1, λ̌

c
1s be a bordism

trivialization of rM1, y1, µ̌
c
1s. We have

Qcpyφq “ ´
1

2

`

B˚pzφ, zφq ´ B˚pzφ, λ
c
φq
˘

“ ´
1

2

ˆ

@

ẑφ Y pẑφ ´ λ̂c
φq, rWφ, BWφs

D

´
1

k

@

ŷφ Y ûB, rMφs
D

˙

“ ´
1

2

ˆ

@

ẑ1 Y pẑ1 ´ λ̂c
1q, rW1, BW1s

D

´
1

k

@

x Y v, rM s
D

˙

(5.11)

“ ´ Qcpxq `
1

2k

@

x Y u, rM s
D

“ QT pyφq

where all the equalities are understood modulo 1. To go from the first line to the second, we

just used the expression (2.21) for B˚, with ûB a cocycle satisfying kŷφ “ dûB. On the third
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line, we expressed the first term in terms of data on the trivial mapping torus using Lemma

5.6, and used the equality proved in Lemma 5.9 below. On the fourth line we used (5.7) on the

first term, and finally used the definition (2.16) of QT on the last line.

Moreover, Qc vanishes on H2ℓ`1
φ pM,Zq Ă H2ℓ`2pMφ,Zq. Therefore it satisfies Definition

(2.5).

As we chose λ̌c so that Qc vanishes on H2ℓ`2
φ pM,Zq Ă H2ℓ`2pMφ,Zq, the following corollary

is immediate.

Corollary 5.8. Qc coincides with the quadratic refinement QQc of LMφ
induced by Qc in the

sense of Definition 2.6.

The following lemma is necessary to complete the proof of Theorem 5.7.

Lemma 5.9. Using the same notations as in the proof of Theorem 5.7, we have

@

ŷφ Y ûB, rMφs
D

“
@

x Y v, rM s
D

. (5.12)

Proof. We will construct explicitly the cocycle ûB. Given cocycles representatives x̂ and v̂, the

relation satisfied by x and v implies that there exists r̂ P C2ℓ`1pMq such that

dr̂ “ kx̂ ´ p1 ´ φ˚qv̂ . (5.13)

Let t̂ be a bump cocycle representing the pull back t of the generator of H1pS1,Zq, supported on

an interval I. Let Rα be the transformation of the mapping torus corresponding to a rotation

of an angle α of the base. R˚
α deforms continuously φ˚v̂ Y t̂ to v̂ Y t̂ when α runs from 0 to

2π. p1 ´ φ˚qv̂ Y t̂ is therefore trivial in cohomology. This means that there exists a cochain ŝ

satisfying

dŝ “ p1 ´ φ˚qv̂ Y t̂ . (5.14)

Therefore we obtain a cochain ûB “ r̂ Y t̂ ` ŝ such that dûB “ kŷφ.

If I is an interval disjoint from the support of t̂, ŝ|MˆI “ v̂. Let t̂1 be a cocycle generating

H1pS1,Zq having support in I. To compute
@

ŷφ Y ûB, rMφs
D

, we represent ŷφ by the cocycle

x̂ Y t̂1 and we obtain (5.12).

6 An example

We take M “ S3 ˆ S3, a product of three-spheres. M is spin and admits an integral lift given

by minus half the first Pontryagin class ν “ ´p1{2. A Riemannian metric on M provides a
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functorial lift. We have H3pM,Zq “ Z

2. The two generators v1 and v2 are the top classes on

one sphere extended as constants on the other. They form a Darboux basis. As shown in the

appendix of [1], any element of Spp2,Zq acting on H3pM,Zq can be realized as the pull-back

action of a diffeomorphism of M .

Let us compute the quadratic refinement Qc. Using our Darboux basis, a useful parameter-

ization of the quadratic refinements of LM is given by a vector η P 1
2
H3pM,Zq{H3pM,Zq:

Qcpx “ x1 ` x2q “
1

2
LMpx1, x2q ` LM pη, xq mod 1 , (6.1)

where we decomposed x into its components x1 and x2 on the Darboux basis. To determine

Qc, it is sufficient to determine its value on v1 and v2. We consider the trivial mapping torus

M̂ “ M ˆ S1 and endow it with the class v1 Y t. We can take W “ S3 ˆ B4 ˆ S1, where

B4 is a four dimensional ball filling the three-sphere along which v1 is a constant 0-cocycle.

v1 Y t extends to a class z in H4pW,Zq by extending the constant 0-cocycle on the three-sphere

to the four-ball. It is clear that z Y z “ 0. As the tangent bundle of W is trivial, we have

ν “ ´p1{2 “ 0. From (5.7), we deduce that Qcpv1q “ 0. A symmetric argument implies that

Qcpv2q “ 0. Qc is therefore the quadratic refinement corresponding to η “ p0, 0q. The topolog-

ical invariant ApQcq is equal to zero.

Remark 6.1. As was explained in Section 5.3, the canonical quadratic refinement Qc is a

topological invariant of the manifold M . One might therefore have thought that it should be

invariant under the full group of diffeomorphisms D of M . But in view of the example above,

this is manifestly not true. Indeed, as we already remarked, the mapping class group of S3 ˆS3

is Spp2,Zq, and its action on quadratic refinements is affine (see for instance equation (4.9) in

[1]). It leaves η “ p1, 1q invariant but permutes the three other quadratic refinements.

The reason for the lack of invariance is the following. To define the quadratic refinement, we

used one manifold Wx bounded by the trivial mapping torus of M for each x P H2ℓ`2
free pM,ZqbZ2.

Denote by Dx the subgroup of D consisting of diffeomorphisms of M that can be realized as

restrictions of diffeomorphisms of Wx. The quadratic refinement is invariant under DQ :“
Ş

xDx, but not necessarily under D. Of course if some other choice of family tWxu leads to a

different group D1
Q Ă D, the quadratic refinement will be invariant under the minimal subgroup

of D containing both DQ and D1
Q, but there is no reason why this should be all of D.

Let us now turn to a non-trivial mapping torus. Consider a diffeomorphism φ inducing a T 2

transformation of Spp2,Zq on H3pM,Zq, that is x Ñ x`2 xxYv1, rM sy v1. This transformation
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preserves the quadratic refinement Qc. A diffeomorphism φ realizing this transformation maps

the first three-sphere in S3 ˆ S3 to a sphere in the same homotopy class. Let Mφ be the

corresponding mapping torus. By filling the first three-sphere with a four-ball B4, we obtain

an 8-dimensional manifold Wφ bounded by Mφ. H4pWφ, M̂φ,Zq is one dimensional, generated

by the top class vB4
of B4. We have vB4

Y vB4
“ 0 so σWφ

“ 0.

On the other hand, the Arf invariant of the quadratic refinement Qc on the torsion coho-

mology of Mφ depends only on the action of φ on the cohomology of M , here the element

T 2 P Spp2,Zq. See Section 3.4 of [2] for details about how to compute it. Table 1 in this paper

shows that ApQcq “ 1{8 mod 1. Using (4.11), we conclude that
ż

W

λc ^ λc “ 1 mod 8 . (6.2)

This result should have some importance in the context of anomaly cancellation in six

dimensional quantum field theories, because it shows that neither ApQcq nor
ş

W
λc ^ λc have

special evenness properties.

7 Application to the global anomaly formula

Our motivation to study quadratic refinements comes from a formula for the global gravitational

anomaly of the self-dual field theory derived recently in [1, 2]. We refer the reader to the

introductions of these two papers for a background on gravitational anomalies and their interest

for the study of quantum gravity theories, such as string or M-theory. In this section, we present

the mathematical framework underlying this global anomaly formula and explain the use of the

results above, especially of Theorem 4.11. This section is purely motivational and we do not

attempt to be completely rigorous.

7.1 Line bundle over the space of metrics modulo diffeomorphisms

Let M be the space of Riemannian metrics on a 4ℓ` 2-dimensional compact oriented manifold

M . Let D the group of diffeomorphisms leaving fixed a point and its tangent space. Given a

quadratic refinement Q of the pairing LM on H2ℓ`1pM,Zq b Z2, let DQ be the subgroup of

D leaving Q fixed. The quotient M{DQ is a smooth infinite dimensional manifold. There is

a fiber bundle E :“ pM ˆ Mq{DQ with fiber M over M{DQ. Each fiber is equipped with the

Riemannian metric given by the projection map. Remark that any loop c on M{DQ defines a

mapping torus M̂c :“ E |c of M .
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In [1], we studied the anomaly bundle of the self-dual field, which is the line bundle over

M{DQ of which the partition function of the self-dual field is a section. We describe it next as

briefly as possible (see [1] for details). Consider the Dirac operator D coupled to chiral spinors

on M . D can be seen as d ` d:, where d: is the codifferential ´ ˚ d˚, restricted to the space

of self-dual forms. 8 The index theory for families of Dirac operators associates to D and E a

line bundle D over M{DQ, the determinant bundle of the family of Dirac operators. D comes

equipped with a natural connection, the Bismut-Freed connection [19, 20].

Another way of constructing line bundles over M{DQ is as follow. The Hodge star operator

associated to a given Riemannian metric on M defines a complex structure on the symplectic

space H2ℓ`1pM,Rq. Therefore, we get a map from M to the Siegel upper half-space C param-

eterizing the complex structures of H2ℓ`1pM,Rq. Quotienting by the action of DQ on both

sides, we get a map from M{DQ to C{ΓQ, where ΓQ is a subgroup of Spp2b2ℓ`1pMq,Zq, with bn

the nth Betti number. Line bundles on the modular variety C{ΓQ can therefore be pulled back

to M{DQ. We call K the pull back of the determinant of the Hodge bundle over M{DQ, and

we have K » D´1 as topological bundles. Associated to the quadratic refinement Q is a theta

function on H2ℓ`1pM,Rq ˆ C, restricting to a “theta constant” on C. The theta constant is the

pull-back of the section of a non-trivial line bundle over C{ΓQ, the theta bundle CQ. Define

the flat bundle FQ :“ pCQq2 b K ´1. The square of the anomaly bundle AQ, as a bundle with

connection, is

pAQq2 “ D b FQ . (7.1)

The anomaly bundle itself is topologically isomorphic to CQ, and equipped with the connection

making (7.1) an equality of bundles with connections. An explicit expression for the connection

form was derived in [21].

The problem of determining the global gravitational anomaly of the self-dual field theory

amounts to computing the holonomies of the connection on AQ along loops in M{DQ. In [2],

we showed, although not completely rigorously, that it can be done as follows. Let c be a loop

in M{DQ. Restricting E to c, we get a mapping torus Mc. As we saw, the quadratic refinement

Q defines a quadratic refinement QQ of the linking pairing LMc on H2ℓ`2
tors pMc,Zq. Let W be a

manifold bounded by Mc and let λQ be a relative lift of the Wu class compatible with QQ in

the sense of Definition 2.8. Then the holonomy of the connection along c is given by

1

2πi
ln holAQ

pcq “
1

8

ż

W

`

λQ ^ λQ ´ L
˘

, (7.2)

8We define the space of self-dual forms to be the image of the action of 1 ´ ip˚ on Ω
ppMq, p ď 2ℓ ` 1.
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where L denotes the Hirzebruch L-genus of W . In (7.2), the second term is metric-dependent.

We take a limit on the metric on Mc such that the length of the base circle goes to infinity, and

a compatible metric on W .

Main result for physical applications The problem when trying to use (7.2) is that λQ

is not explicit. The main insight we gain from the mathematical considerations of the previous

sections (Theorem 4.11 and Corollary 5.8), is that if we are considering a family of manifolds

admitting a functorial lift of their Wu class, and if Q “ Qc, as defined in (5.7), then λQ “ λc.

In dimension 2 and 10, λc can be taken to vanish. This allowed to check the cancellation

of global gravitational anomalies in “cohomological” type IIB supergravity [2]. In dimension 6,

λc cannot vanish. The results in this paper provide a construction for this class, which should

prove crucial in order to check anomaly cancellation in six dimensional supergravities and in

the world-volume theories of the five-branes.

Let us also remark that the requirement we made in [2] that the torsion cohomology of W

should restrict trivially on Mc is not necessary in case Q “ Qc. The aim of this restriction was

to ensure that the element b P H2ℓ`2
tors pBW,Zq defined in (2.26) vanishes. But as noted in the

proof of Theorem 4.11, b vanishes automatically for Q “ Qc.

7.2 Relation to the original construction

The partition function of the self-dual field theory involves a theta function, whose characteristic

needs to be specified. More invariantly, we need to specify a holomorphic line bundle over the

intermediate Jacobian J “ H2ℓ`1pM,Rq{H2ℓ`1
free pM,Zq whose first Chern class coincides with

the pairing
ş

M
‚ ^ ‚ P

Ź2
`

H2ℓ`1pM,Rq
˘˚

»
Ź2 T ˚pJ q. Symmetric line bundles are invariant

under the antipodal map of the torus J . They are in bijection with quadratic refinements of the

pairing LM on H2ℓ`1
free pM,Zq bZ2. In the previous sections, we made the choice of a symmetric

line bundle on J by choosing a quadratic refinement Q. This was also the approach adopted

in [22, 1, 2].

However, the case of the M5-brane [3, 17, 23] is more subtle. First, the holomorphic line

bundle has to be defined on the shifted intermediate Jacobian Jν . Recall that a shifted differ-

ential cocycle is a differential cochain Č such that dČ “ p0, ν̂{2, 0q, where ν̂ is the real cocycle

associated to the form lift ν. Jν can be pictured as the set of shifted differential cohomology

classes of form Č0 ` p0, x̂, 0q, with Č0 “ p0, 0,´ν{2q. Second, the line bundle should depend

continuously on the Riemannian metric of M [23]. This continuous dependence on the metric

was also present in the original proposal for the line bundle on Jν associated to the five-brane
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[3]. In this section, we compare the choice of line bundle in this reference to our canonical

choice.

The data of the relevant holomorphic line bundle over A is contained in the set of holonomies

along linear paths in Jν . In [3], the holonomy along a path of shifted differential cocycles

Čxpsq :“ Č0 ` p0, sx̂, 0q, where x̂ a real cocycle corresponding to an element of H2ℓ`1
free pM,Zq,

was defined as

holWpČxq “
1

8

ż

W

pν ` 2zq2 ´ ν2 “
1

2

ż

W

z ^ pν ` zq mod 1 , (7.3)

where W is again a manifold bounded by the trivial mapping torus M ˆ S1 and z is a form

extending x ^ ds. Using the relation λc “ ν ´ 2µc, we get

holWpČxq “
1

2

ż

W

z ^ pz ` λcq `

ż

W

z ^ µc mod 1 . (7.4)

The first term is Qcpxq, pulled back to the shifted Jacobian by the linear map sending Č0 to

p0, 0, 0q. The second term depends on the Riemannian metric on BW , because neither z nor

µc vanish on the boundary. Hence it depends on a choice of Riemannian metric on M . The

holonomy formula (7.2) will be studied in this more complex case in future work.
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A Some results in cobordism theory

Spin manifolds admits functorial integral lifts of the Wu class and form an important class of

examples where the formalism developed in the main body of this paper can be applied. The

latter however requires that manifolds of dimension 4ℓ ` 3 endowed with two classes of degree

2ℓ ` 2 can always be seen as boundaries of manifolds on which the two classes extend. In this

appendix, we show that this is the case for ℓ “ 0, 2 and ℓ odd, and that the obstruction is non-

vanishing for other values of ℓ. Let us recall that as far as physical applications are concerned,

only the cases ℓ “ 0, 1 and 2 are of interest.
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A.1 Background material about spectra9

Recall that a spectrum K is a sequence of (pointed) CW complexes Kn together with maps

ΣKn Ñ Kn`1. The homotopy groups of a spectrum are defined by πipKq “ limÑ πi`npKnq.

For our purpose, a map between of degree m between a spectrum K and a spectrum L is a

sequence of maps Kn Ñ Ln´m commuting with the suspension maps defining the two spectra.

This sequence of maps only needs to be defined starting from an arbitrary positive integer N .

Considering suitable equivalence classes of these maps, the set of spectra forms a category. It

is also possible to define a smash product ^ on this category.

Given any CW complex X, we can construct the corresponding suspension spectrum Σ8X,

by defining pΣ8Xqn “ ΣnX. In particular, we have the sphere spectrum S, for which Sn is the

sphere of dimension n.

The interest of spectra is that they are naturally associated to generalized (co)homology

theories. Given a spectrum K, we can define a reduced generalized homology theory

K̃npXq “ rS,K ^ Xsn

where r , sn denotes homotopy classes of maps of degree n. With this definition, X can be

either an ordinary CW complex or a spectrum. If X is a CW complex, it can be interchanged

with its suspension spectrum Σ8X in the formula above.

The integral homology spectrum HZ is the spectrum having pHZqn “ KpZ, nq.

A.2 Spin cobordism group of a point

It is useful to think about our extension problem in a sequential way. The first potential

obstruction arises when trying to promote a spin manifold of dimension 4ℓ` 3 to the boundary

of a spin manifold of dimension 4ℓ ` 4. The obstruction is given by the degree 4ℓ ` 3 spin

bordism group of a point Ω
spin
4ℓ`3 :“ Ω

spin
4ℓ`3pptq, classifying bordism classes of maps of manifolds

of dimension 4ℓ`3 to a point. Ω
spin
‚ is a generalized homology, with spectrum MSpin. MSpinn

can be seen as the Thom space of the universal bundle of dimension n over the classifying space

BSpin.

Lemma A.1. Ω
spin
4ℓ`3 vanishes for ℓ “ 0, 2 and for ℓ odd.

Proof. This is a straightforward consequence of Theorem 2.2 in [25]. Indeed, there is a system

of generators for π‚pMSpinq » Ω
spin
‚ , which can be described as follows. Given a sequence of

9Details can be found in the book [24].
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integers J “ pj1, ..., jkq such that k ě 0 and ji ą 1, define npJq “
řk

i“0 ji. Define also ppnq to

be equal to 1 for positive n if n “ 0, 1, 2, 4 mod 8 and zero else, i.e. ppnq is the rank of KOnpptq

over Z2. In addition to generators in degree 0 mod 8, for each J , there are ppd ´ sq generators

in degree d, where the shift s is equal to 4npJq if npJq is even, and to 4npJq ´ 2 if npJq is odd.

It is clear that the shift s is always equal either to 0 modulo 8 or to 2 modulo 8. From the

definition of p, we see that odd degree generators are present only in degree 1 or 3 modulo 8.

As a result, Ωspin
4ℓ`3 always vanishes for ℓ odd. Inspection of low degree cases show in addition

that it vanishes for ℓ “ 0 and 2.

A.3 Extending a single cohomology class

We now go one step further in the extension problem and try to extend a single class of degree

2ℓ ` 1 from the manifold of dimension 4ℓ ` 3 to the bounded manifold. General arguments10

show that the reduced spin bordism classes of maps to a pointed space X are given by the

stable homotopy groups of MSpin ^ Σ8X:

Ω̃spin
n

`

Xq :“ rS,MSpin ^ Σ8Xsn . (A.1)

“Reduced” is used here in the sense of reduced homology: the full set of bordism classes of maps

is given by Ω
spin
n pXq “ Ω̃

spin
n pXq ‘ Ω

spin
n pptq.

Recall that an integral cohomology class of degree 2ℓ ` 2 on a manifold M̂ can be classified

by a homotopy class of maps in rM̂,KpZ, 2ℓ ` 2qs. Therefore bordism classes of manifolds of

dimension 4ℓ ` 3 endowed with a class of degree 2ℓ ` 1 are classified by

Ω̃
spin
4ℓ`3

`

KpZ, 2ℓ ` 2q
˘

:“ rS,MSpin ^ Σ8KpZ, 2ℓ ` 2qs4ℓ`3 , (A.2)

provided Ω
spin
4ℓ`3pptq “ 0.

Lemma A.2. Ω̃
spin
4ℓ`3

`

KpZ, 2ℓ ` 2q
˘

“ 0

Proof. This proof follows the arguments in Section 2 of [27]. By definition, pΣ8KpZ, 2ℓ`2qqn “

ΣnKpZ, 2ℓ ` 2q. There is a map of spectra

Σ8KpZ, 2ℓ ` 2q Ñ Σ2ℓ`2HZ (A.3)

induced by the homotopy equivalences ΣnKpZ, 2ℓ ` 2q » KpZ, 2ℓ ` 2 ` nq. As Σ2ℓ`2HZ is

2ℓ`1-connected, the map (A.3) induces, via Freudenthal’s theorem, an 4ℓ`4-equivalence. This

10See for instance [26] for a particularly clear presentation.
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implies that we have an isomorphism

Ω
spin
4ℓ`3pKpZ, 2ℓ ` 2qq :“ rS,MSpin ^ Σ8KpZ, 2ℓ ` 2qs4ℓ`3

»
”

S,MSpin ^ Σ2ℓ`2HZ
ı

4ℓ`3

» rS,MSpin ^ HZs2ℓ`1 (A.4)

» rS,HZ^ MSpins2ℓ`1

“ H2ℓ`1pMSpin,Zq ,

using the commutativity of the smash product. By the Thom isomorphism, H2ℓ`1pMSpin,Zq »

H2ℓ`1pBSpin,Zq. To compute the homology of BSpin, we use the following facts.

• The pull back map π˚ induced from the fibration BSpin Ñ BSO is an isomorphism on

cohomology with value in a ring containing 1{2, and surjective on cohomology with Z2

coefficients (pages 290-292 of [28]).

• All the torsion in H‚pBSO,Zq has order 2 [29]. The previous fact implies that all the

torsion in H‚pBSpin,Zq has order 2 as well.

• The stable cohomology with Z coefficients of BSO has no torsion in even degrees [29].

Consider now the following commutative square for p odd.

HppBSO,Z2q

π˚

��

δ
// Hp`1pBSO,Zq

π˚

��

HppBSpin,Z2q
δ

// Hp`1pBSpin,Zq

. (A.5)

As Hp`1pBSO,Zq is torsion-free, the top δ map vanishes. This implies that Hp`1pBSpin,Zq

has no torsion of order two, hence no torsion at all. Using the universal coefficient theorem,

this implies that HppBSpin,Zq for odd p is torsion free, hence vanishes.

A.4 Extending a pair of cohomology classes

We now consider the problem of extending a pair of cohomology classes of degree 2ℓ` 2, which

is the extension property we use several times in our arguments. Clearly, pair of such classes are

classified by homotopy classes of maps in rM̂ ,KpZ, 2ℓ`2qˆKpZ, 2ℓ`2qs provided Ω
spin
n pptq “ 0.

Given two CW complexes A and B, the direct product AˆB can be reexpressed in terms of the

smash product as A` ^ B`, where A` denotes the disjoint union of A and a point. Moreover,
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for any generalized homology theory, E, we have ẼpA`q “ EpAq “ ẼpAq ‘ Epptq, where as

before, Ẽ denotes the reduced cohomology.

Using these facts, it is easy to see that provided Ω
spin
4ℓ`3pptq and Ω

spin
4ℓ`3pKpZ, 2ℓ ` 2qq both

vanish, the vanishing of Ωspin
4ℓ`3pKpZ, 2ℓ ` 2q ˆ KpZ, 2ℓ ` 2qq is equivalent to the vanishing of

Ω
spin
4ℓ`3pKpZ, 2ℓ ` 2q ^ KpZ, 2ℓ ` 2qq.

But πnpKpZ, 2ℓ ` 2q ^ KpZ, 2ℓ ` 2qq vanishes for n ă 4ℓ ` 4, so

Ω
spin
4ℓ`3pKpZ, 2ℓ ` 2q ^ KpZ, 2ℓ ` 2qq :“

“

S,MSpin ^ Σ8KpZ, 2ℓ ` 2q ^ Σ8KpZ, 2ℓ ` 2q
‰

4ℓ`3
“ 0 . (A.6)

Combining the above with Lemmas A.1 and A.2, we have:

Proposition A.3. For ℓ odd or ℓ “ 0, 2, given a spin manifold M̂ of dimension 4ℓ ` 3 and

two cohomology classes of degree 2ℓ` 2, it is always possible to find a spin manifold W bounded

by M̂ on which both classes extend. For ℓ even different from 0 or 2, the extension is possible

provided M̂ is a boundary.

Let us remark that equation (A.6) generalizes to

“

S,X ^ Σ8KpZ, 2ℓ ` 2q ^ Σ8KpZ, 2ℓ ` 2q
‰

4ℓ`3
“ 0 . (A.7)

for any spectrum X associated to a generalized homology theory. This implies that for any

category of manifold admitting an integral lift of the Wu class of degree 2ℓ ` 2, if it is possible

to solve the first two extension problems (i.e. find a bounded manifold, and extend a single

class of degree 2ℓ` 2), it is always possible to solve the third one (i.e. extend a pair of classes).

Moreover, the same reasoning shows that the obstruction to extending a higher number of

classes vanish as well. This fact is used in the proof of Proposition 5.5, where we need to extend

three classes.
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