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Abstract. Toeplitz operators on strictly pseudo-convex boundaries of com- 
plex domains are defined; they behave like pseudo-differential operators. An 
extension of the Atiyah-Singer formula is proved for elliptic systems of such 
operators. 

Let H 2 be the space of holomorphic functions on the unit disc D c C ,  with 
oo 

square integrable boundary value q~=~a,z" (~]an[2< ~). If f is a continuous 
0 

function on the circle 0D, the Toeplitz operator Tr on H 2 is defined by Tr 
=S(f~o) where S is the orthogonal projector L2(OD)~H 2. It is well known that 
if f is invertible, Ty is a Fredholm operator with index the opposite of the 
winding number: 

Index(Tf)=~it jo f - l  df. 

This result was extended by Venugopalkrishna [23] to the unit ball in •". Here 
we extend the result of Venugopalkrisha to arbitrary strictly pseudoconvex 
domains. We will use a somewhat wider definition of Toeplitz operators; our 
operators are of the form TO: ~o-~SQ(~o) where Q is an arbitrary pseudo- 
differential operator on the boundary c~O of a bounded complex domain O 
(assumed to be strictly pseudo-convex), and S is the orthogonal projector (Szeg6 
projector) L2(O~)-~H2(~Q), the space of L 2 functions on 0~2 which have a 
holomorphic extension in O. These operators seem interesting in themselves; 
they behave essentially in the same way as pseudo-differential operators, and 
will hopefully allow one to apply pseudo-differential techniques to new interest- 
ing situations (cf. [9]). They are described in w 1. 

A Toeplitz operator TQ has a symbol, which is a homogeneous function (or a 
vector bundle homomorphism) on a half line bundle S + c  T* ~O on ~ .  If the 
symbol ~(TQ) is invertible, TQ is a Fredholm operator whose index is given by an 
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extension of Atiyah-Singer index formula. This is described in w 2, and proved in 
w 

In fact we prove index theorems in two situations which cannot quite be 
reduced one to the other. The first (Theorem 1) applies to systems (matrices) of 
Toeplitz operators acting on (H2(0(2))N; for this we need that ~2 be compact 
and strictly pseudo-convex, but (2 itself may be an arbitrary analytic space, with 
singularities so long as these do not meet ~(2(~ u ~2 must be compact, at least if 
dim~ Q = 2). A similar formula for boundaries of strictly pseudo-convex domains 
in ~" was announced by Dynin [-12]. 

Theorem 1 was announced in lectures at the Nordic Summer School of 
Mathematics in Sweden, in July 1975. The proof given there was in spirit very 
close to the proof in this paper, mixing the given operator with the ~b-complex 
so as to reduce to the index formula of Atiyah and Singer for elliptic operators 
on the boundary. However it was technically rather disagreable, and there was 
still a gap in the proof of Theorem 2, so I postponed the publication. 

The second formula (Theorem 2) applies to Toeplitz operators acting on 
holomorphic sections of (distinct) holomorphic vector bundles on Q; in this case 
we require O to be a Stein manifold. As it is, Theorem 2 should contain the 
Atiyah-Singer formula as a special case, taking (2 to be a complex tubular 
neighborhood of an arbitrary compact real analytic manifold (we will only give 
a short indication on this in w 3, and will return to this question elsewhere). 

However, the proof of the index theorems in this paper is not independent of 
the Atiyah-Singer index theorem. Theorem 2 is reduced to Theorem 1 in w 3.b, 
and Theorem 1 is reduced to the Atiyah-Singer theorem (on the boundary 0f2) in 
w 3.a, by means of a construction which related to the embedding constructions 
of w 3.b and of [-2]. The invariance by embedding of the index may be somewhat 
more natural in the complex context of w 3.b than in the pseudo-differential 
context of [2]. On the other hand I have no direct proof in this complex context 
of the "excision property", which is an important property of the index, and is 
very natural and easy to prove in the context of peudo-differential operators. 
The index Theorem 1 and the embedding property can be extended to arbitrary 
contact manifolds; this yields an independent proof of the index theorem, but 
this whole construction is rather closely related to that of [2] anyway and does 
not bring anything essentially new. 

We adopt the usual notations for functions and distributions. All manifolds 
are assumed to be C a> and paracompact. Unless otherwise specified, pseudo- 
differential operators and Fourier integral operators are supposed to be regular 
(or "classical") i.e. in any set of local coordinates the total symbol has an 
asymptotic expansion: 

p(x, ~)~ ~ pm_j(X, r 
j=O 

where Pm-j is C + for 4+0,  homogeneous of degree m-j  with respect to ~ (] is a 
positive (>  O) integer); unless otherwise specified, the degree m is an integer (but 
it could be any complex number). In w 3 we will also use (irregular) pseudo- 
differential operators of type 1 3, i.e. for the total symbol we have locally estimates 
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of the form 

If P, Q are pseudo-differential operators, we write P ~ Q if P -  Q is of degree 
- ~  (i.e. the total symbol is od rapid decrease when ~ ~ oo, or P - Q  has a C ~ 
Schwartz-kernel). The equivalence P ~ Q  still makes sense microlocally, i.e. in 
open cones of the cotangent bundle. 

This article was written during a one year stay at the department of 
Mathematics in Princeton University, and I wish to take the opportunity to 
express my thanks for this invitation. My thanks also go to HSrmander  and 
Anderson, who gave me the opportunity to present a first version of this index 
theorem at the Nordic Summer School of Mathematics in July 1975, and finally 
especially to HSrmander  for his thorough reading of the manuscript and his 
remarks, which helped to improve the presentation. 

w 1. Toeplitz Operators 

a) Definition 

Let W be a (reduced) complex analytic space, and O c  W a relatively compact 
open set with C ~, strictly pseudo-convex boundary dr2. We require that W be 
smooth near 8s we allow singularities inside f2, but for what follows, these can 
always have been blown up by Hironaka's  theorem. A typical example is W= a 
complex cone in C", smooth outside of 0, s = the intersection with the unit ball. We 
suppose f2 defined by an inequality r < 0 ,  where r is a real C ~ function with 
d r + 0  along dr2; the strict pseudo-convexity means that in local coordinates 
z 1 ... zn, we have 

d2r dr 

(or, more intrinsically, (d~r, v/x~} > 0  if v is a holomorphic vector tangent to 
dO, v :~0). 

We will denote by ~ the differential form 

1 
(1.1) ~ = ~  (dr -- ~r)l~O 

(where as usual d = d + 8  is the decomposition of the exterior derivative in 
holomorphic and antiholomorphic parts - also denoted d = d ' +  d"). We further 
denote 

(1.2) S + = t h e  half line bundle generated by ~ in T*df2. 

The fact that the Leviform is nondegenerate reflects in the fact that 7 is a 
contact form (i.e. ~/x (d~)"- ~ vanishes nowhere on dO, if n = dime s so dim~ ds 
= 2 n - 1 ) ,  or equivalently, that  S + is a symplectic submanifold of T*df2. 
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We equip 0f2 with a positive measure with C ~ positive density, so that L 2- 
norms are well defined. We will denote by HS(t?f2) the Sobolev space of 
(generalized) functions with s L 2 derivatives. As usual this is defined by duality 
of s is a negative integer, and by interpolation, or locally by Fourier transfor- 
mation, if s is not an integer. We will also denote by O~(t?f2) the subspace of 
H~(0f2) of functions which extend as holomorphic functions in a neighborhood 
of 00 in O; this is the same as HS(~?)c~Ker ~b, where ~b is the induced Cauchy- 
Riemann system 1. Occasionally we will denote by O~(0~2) the space of C ~ 
solutions of ~b_(these extend as holomorphic functions which are C ~ up to the 
boundary on f2=f2uOO), and by O-~ the space of distribution solutions 
(such a distribution f has a holomorphic extension F near ~?~2, of moderate 
growth along 00;  the fact that f is the boundary value meaning that f is the 
limit of the functions F L . . . .  when e--, + 0 in the distribution sense). If ~?f2 is real 
analytic, we also define O~(0~2), the space of analytic solutions of ~b (these have a 
holomorphic extension in a neighborhood of ~?f2 in W), and O-'~(0~2), the space 
of hyperfunction solutions (these extend as holomorphic functions in ~2, with no 
restriction on the growth near ~?f2). 

The space O~ is usually denoted H 2, but we will keep the notation above 
to avoid confusion with the Sobolev spaces, or with cohomology groups. 

Let S be the orthogonal projector (Szeg/5 projector): L2(012)~ O~ 

(1.3) Definition. Let Q be a pseudo-differential operator of degree m on ~?f2. Then 
the Toeplitz operator To: Ore(Of2) ~ oO(of2) is defined by TQ(q)) =S(Q ~p). 

We will usually identify TQ with the operator SQS, although the second 
factor S is of course superfluous when we restrict to O". 

The definition can be immediately extended to operators on holomorphic 
sections of holomorphic vector bundles E, F defined in a neighborhood of 
=f2uOg2 in W (we equip E and F with C ~ hermitian norms to define the L 2 
norms and the Szeg6 projectors S E, SF). 

If Q is of degree m, TQ is in fact continuous O+~O ~-" for any s~lR (because 
the Szeg6 projector is in fact continuous O~--*O s for any s (cf. [10]). Also 
Toeplitz operators are pseudo-local, i.e. they diminish singular supports, because 
this is true of pseudo-differential operators and of S (cf. [10]). Then one can 
localize, or microlocalize, Toeplitz operators mod. C ~~ operators, as is done for 
pseudo-differential operators. 

b) Microlocal Structure of Toeplitz Operators 

Let (x, y), xelR", y~IR"-1 denote the variable in IR z"- 1, and let (4, q) be the dual 
variable. We identify T* R" with the symplectic cone Z~- c T*IR 2"- 1, defined by 
y = r/= 0. We set 

a Dj=Uy+YjID~I (]=1, . . . , n - l ) .  

i The range of the restriction map OS(~) ~ O +- +(012) is closed, of finite codimension (independent 
of s), so for most of what follows one could replace O+(gf2) by O~+�89 
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Let H o be the Hermi te  opera to r  (cf. [8]): C~(IR ") ~ C~(P,  z" -  1): 

where we have set y 2 =  Zy2, and q3 is the Fourier  t ransform. 
Then  it follows f rom [8, 10] that  we have the following microlocal  de- 

script ion of the Szeg6 projec tor  S 2: for any Zo~Of2, there exists a canonical  m a p  
45 f rom a conic open set U cT*IR2"-I \O to a conic ne ighborhood  V of 
(Zo, c~(Zo))eZ+c T*Of2\O, whose restriction defines a symplectic  i somorph i sm 
Z: s c~ U ~ N + c~ V; there exists an elliptic Four ier  integral ope ra to r  F (defined 
in V, mod.  C ~ operators)  associated with 4~, which t ransforms the left ideal of 
pseudo-diffential  opera tors  generated by the Dj into the left ideal generated by 
the componen t s  of ~b. 

We set 

(1.4) A ~H*F*FH o 

H~FHoA-1/; 

(this is an elliptic positive pseudo-differential  
operator)  

(this is a Four ier  integral opera to r  
with complex  phase  (cf. [19])). 

N o w  for any  pseudo-differential  opera to r  Q on c~2, we have 

(1.6) TQ=SQS~HPH* near z o with P~H*QH~H*TQH. 

P is a pseudo-differential  ope ra to r  on IR" (defined rood. C ~ opera tors  near  
(x0,~0), and regular i.e. its total  symbol  has an asymptot ic  expansion 
P~ ZPm_j(x, 4) where pm_~ is homogeneous  of integral degree m - j ) .  

In  fact the m a p  TQw-,P~H*TeH is onto,  for we have  a(P)=a(Q)o)~, so for 
any P there exists Q such that  P-H*TeH is of degree < d e g P - 1 ,  and by 
successive approx ima t ions  we see that there also exists Q with P~H*ToH. It 
follows immediate ly  tha t  the set of  Toepl i tz  opera tors  is closed under  com- 
posi t ion - i . e .  it is an algebra - and that  TQ---,P~H*QH is an i somorphism:  

(1.7) Scholie. The Toeplitz operators form an algebra of pseudolocal operators. 
This algebra is locally (and mod.  C ~ operators) isomorphic to the algebra of 
pseudo-differential operators in n real variables. 

N o w  any microlocal  construct ion for pseudo-differential  opera tors  may  be 
lifted (locally by  means  of H and Z) to Toepli tz  operators .  In par t icular  we 
define the symbol :  

(1.8) (r,,(TQ)=(~,,(Q)I~+. 

This is multiplicative (am+,,,(TQTQ,)=a,,(TQ)a,,,(TQ,)), and am(TQ)=0 means  that  
TQ is really of  degree < m - 1  (in fact if a , . (Q)=0  on Z +, there exist system A, B 

z In [10] we suppose that ~ is a bounded open set in C", but the only manner in which this used 
is in the Kohn estimates for the ~-Neumann problem, and these still hold with the hypotheses of 
w 1.a. If n>2 one can even relax the compactness assumption on ~, and the bundles E, F only need 
to be defined near c~ ( ~  still must be compect) (cf. [7]). If n =2 however, the assumptions above 
cannot be weakened 
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and Q', of degree < m - I ,  such that Q~AOb+a*B+ Q' near S +, so To--To, ). 
Further we have 

(1.9) ~m+m, l([To, To,l)=~ {ffm(TQ), ~m,(TQ,)}~s 

where { }s+ is the Poisson bracket on 2; +. 
Also if TQ=SQS is a Toeplitz operator, the adjoint is SQ*S=T~.: it is a 

Toeplitz operator with symbol a(TQ)*. 
We may still define Toeplitz operators acting on holomorphic sections 

of holomorphic vector bundles E, F; if TQ is such an operator, am(Te) is a C ~ 
bundle homomorphism between the pull-backs of E and F to S + (it is also 
homogenous of degree m in the fibers of 22+). 

We will say that a Toeplitz operator TQ of degree m is elliptic if c%(Te) is 
invertible. Then TQ has a parametrix, i.e. there exists a Toeplitz operator To, of 
degree - m  (with a(TQ,)=cr(TQ) -1) such that ToTo,~Id, and TQ, TQ,,~Id. It 
follows immediately that T o has an index i.e. Ker T o is of finite rank, and the 
range is closed and of finite codimension. 

For the index theorem, it will be convenient to consider also elliptic 
complexes of Toeplitz operators: let Ej(ro<j<r 0 be holomorphic vector 
bundles on ~ and let 

dro dro + 1 
d: O~O(Of2,E,o)- , O(63(2,Ero+ 1 ) , ... O(OY2, E~I)~O 

be a complex of Toeplitz operators (i.e. the dj are Toeplitz operators, and dj+ld j 
= 0). We say that d is elliptic if its symbol is exact; this is so if and only if d + d* 
is elliptic, as an operator from O(~?f2,@E2j ) t o  O(~3(2,@Ezj+1 ). Then the 
homology is finite dimensional, and there exists a sequence A =(At) of Toeplitz 
operators such that dA+Ad,,~Id (exactly as for elliptic complexes of pseudo- 
differential operators). We may even choose A so that A2=0, dA is the 
orthogonal projector on the range of d, Ad is the orthogonal projector on the 
range of d* (which is then equal to the range of A, or to the orthocomplement of 
Kerd), and I d - d A - A d  is the orthogonal projector on the complement, which 
is isomorphic to the homology (Hodge theory for elliptic complexes of Toeplitz 
operators). Let us finally recall that the Euler characteristic z(d)=Z(-I)J 
�9 dimHi(d) is then equal to the index of d+d* (acting f r o m  OE2j to 

| 1). 

c) Examples 

(1.i1) Let f be a C ~ function on Of 2 (more generally a C ~ bundle homomor- 
phism). Then 7": = S fS  (resp. SFfSE) is a Toeplitz operator with symbol f .  This 
is the natural extension of Toeplitz operators on the circle OD. 

Clearly for any elliptic Toeplitz operator TQ on sections of holomorphic 
vector bundles, there exists an elliptic Toeplitz operator T A with self adjoint 
symbol (e.g. o'(Ta)=[~[mId) such that a( Te)= a( TA T:) for some C ~ bundle 
homomorphism f. Now the index of an elliptic Toeplitz operator only depends 
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on its symbol (since this determines the operator up to compact perturbations) 
so we have Index (TA)=0, and for the index theorem operators of the form T I 
are enough. We will use this in w (in w we will rather use Toeplitz operators 
of degree 1). 

(1.12) Let P(z,D~) be a differential operator with holomorphic coefficients. 
Then P induces a Toeplitz operator on holomorphic functions, with symbol 

c~,,(TQ)(z,e(z))=a,,(P) (z, ~ Jr). 

This follows from the fact that Toeplitz operators form an algebra, and that for 
any holomorphic vector field X on 5, there exists a C ~ vector field X' defined 
near 0D, tangent to 0Q, and such that X - X '  is antiholomorphic, so that X and 
T x, have the same effect on holomorphic functions. Also we have 

SO 

1 - 1 
= ~  (Or - c~r)l~n = ~ (~rl,m, 

I 1 ?~rl a(X')(z, c~(z)) : i<X', e(z)> = i X, ~ . 

The fact that P(z, Dz) acting on holomorphic functions on D has an index if 

( 1 ~?r)is invertible was noticed by Bony and Schapira in [5]; if ~(P) z,y d e g P > 0 ,  
k / 

this index may be non-trivial, and is given by the theorem of w 2. 

(1.13) For any real s>  - �89  let B= be the orthogonal projector on holomorphic 
functions for the Hilbert norm 

Ifl z Irle=d# 

(where # is any positive measure on ~, with C ~ positive density near 0~). Then if 
f is a C ~~ function on ~, the operator ~o ~ B=(f~o) is a Toeplitz operator with 
symbol f[0(2. This result extends immediately to the case where f is a C + vector 
bundle homorphism. We will use it in w It is proved in the following 
appendix. 

d) Appendix 

Let A be an elliptic positive pseudo-differential operator on 0f2. We define the 
Hilbert space H A a s  the completion of C+(0f2) for the Hilbert norm 

}lfl]Za=(Aflf) = S Af f .  

We then define 0 a = H A ('~ Ker ~b, and the orthogonal projector SA: H A -'* 0 A. 

In the formulas below, all adjoints are taken with respect to U-norms;  hence 
the factor A, which corresponds to taking adjoints with respect to the norm of 
H A" 
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With the notations of w 1.6 for F, H o, A, H, we set 

(1.4) bis AA~H'~F*AFHo~A1/ZH*AHA 1/2 
H A ~ F H o A A  1/2 ~ H A 1 / 2 A A  1/2 

so that, mod. C ~ operators, H A is an isometry from La(IR 0) to oA: 

(1.5) bis Id~H*AH A 

S A ~ H A H * A  

Now for any pseudo-differential operator Q on ~f2, let Te a be the restriction 
to holomorphic functions of SAQ (or SAQS): locally we have 

SAQS~HP'H* 

with 

p'~ H* SaQ H~ A1/2 AA1A1/2 H* AQ H. 

so it follows that T~ is a Toeplitz operator, and since 

a(A1/2AjlA1/2H*AH)=I we have a(T~)=o(TQ)=o(Q)Iz+. 

To investigate the operator Bsf of example (1.13), we will suppose that f2 is 
smooth, and that the measure/~ has a positive C ~ density; but by restricting to 
a neighborhood of ~f2 and replacing = by ~ in the formulas below, we see that 
the results allow singularities inside of f2. We will use the Poisson potential K 
which solves the Dirichlet problem: 

r o ~ A"~o=~*aq~=0, q~l~n=q~o 

(we choose a C ~ hermitian metric on ~ to define the adjoint ~*). This is 
governed by the symbolic calculus of [6]. 

Now for any s> -�89 A=A,=K* Irj2"K is an elliptic positive pseudo-differ- 
ential operator of degree - 2 s - 1  on ~3f2, with symbol 

l [Or~ 2s 
o(As)=(2s)! (21~1) - 2 . -  k~nn! 

where ~nn is the unit exterior normal vector on 0f2; this is seen as follows: first on 

the half space x,. > 0 in IR', and with K defined by 

F'K~o=e .... Ir (F' the partial Fourier transform with respect 
to XI~ . . . ,  Xm_l) 

we have A~p=g(~)~0 with 

g({) = ~ e-2""lr =(2s) ! (2 ]{[)-2~-, 
o 
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The general case follows easily by the technique of [6], the computation 
above giving the principal symbol. (Actually [6] only gives a complete proof 
when 2s is an integer, Ir[ZSK being then a Poisson operator of degree - 2 s  (or 
K* [rl 2~ a trace operator of degree - 2 s - 1 ) ;  but the case where 2s is not an 
integer can be treated in the same manner, with no new difficulty). 

Thus K defines an isometry from H A to  L2c~Ker A", where L2~ is the 

completion of C~176 for the Hilbert n o r m  ilf[Zlrl2Sd#, with inverse 
I? 

A - 1 K  * [rl 2s. So if B S is the orthogonal projector on holomorphic functions in L 2, 
K transforms S A into the restriction of Bs to harmonic functions: 

B~K=KSA, or B~=KSAA-1K*Ir] z~ 

(we have chosen A"=  0" ~3 rather than the usual Laplace operator so that Ker A" 
contains all holomorphic functions). 

Now i f f  is a C Oo function on O, we have 

B~f K ~o = K T~ q9 

with 

Z~ = S A A -  1 K* [rle~fK 

As above, Q=A -1 K* Ir[2*fK is a pseudo-differential operator of degree 0, 
and since we have a(A-1K*Irlg'~K)=I, it follows that a(Q)=fl~Q.  So the 
restriction T~ of SAQ to holomorphic functions is a Toeplitz operator with 
symbol f laf2. The proof above applies with essentially no modification when .f 
is a Coo vector bundle homomorphism. 

For  a description of B S when c~f2 is real analytic, we refer to Kashiwara 1-18]. 

w 2. The Index Formula 

a) Review of K Theory 

We only give here a brief description of what is needed, and refer to [1, 2] for 
further details. 

Let X be a (paracompact) locally compact space, Y c X  a subspace. The 
elements of Kc(X, Y) (the relative group with compact supports) are equivalence 
classes of complexes of vector bundles: 

(2.1) O~Ero a~ Ero+l a , ...Erl__.O 

on X, where the differential d (collection of vector bundle homomorphisms with 
d 2 = 0 )  is exact on Y and outside some compact subset of X. The complex (2.1) 
defines in fact the same element of K,,(X, Y) as the 2-step complex 

d+d* :  ( ~ E 2 ~  (~)E2j+ 1 

We also write Kc(X ) if Y is empty. 
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We set K~(X)=Kc(X x IR), and identify this with the group of homotopy 
classes of maps a: X ~  ~ GL.(ffJ), with a = I d  outside some compact subset - 

n > l  

the element of Kc(X xlR) corresponding to a being defined by the 2-step 
complex 

X xlR x G " - d ~ X  xlR x ~" 

where ~ is any continuous function: X • IR --. L(~") such that ,~(x, t) = a(x) if t is 
large, and fi(x, t) = Id if t is small or x lies outside of a sufficiently large compact 
subset. 

If U is an open subset of X, i the injection U~--~X, there is a canonical 
extension map 

(2.2) i ,=Kc(U)~K, . (X ). 

This can be defined as follows: any element ~ K c ( U )  can in fact be defined by a 
2-step complex 

o~ : E---* U x q~ N. 

Then we may define an extension /~ of E to X by pasting E with ( x - A )  x ~N 
outside a compact set A ~ c  U by means of a, and i~ ~ is then defined by the 2- 
step complex ~:/~ ~ X  • q~u with 5=c~ in U, ~=Idc ,  outside U. 

Similarly one defines i~: K~(U)-~K~(X) (an element of K~(U) is repre- 
sented by a continuous function a: U ~ G L , ( ~ ) ,  we have a = I d  outside some 
compact subset of U, and we extend a by Id outside U). 

b) The Koszul Complex and the Bott Isomorphism 

Let N ~ - ~ X  be a complex vector bundle on X. Then Koszul complex is the 
complex k on N: 

(2.3) . . .-~ E ,--. E_,+ I--+...Eo ~O 

with E _ j = A i ~ * N  ' (the pull back of the j-th exterior power of the dual bundle 
N'), and differential d=i(z), the interior product by z at the point zeN.  

Although k is not exact on the zero section, multiplication by k: ~--~k| 
defines a homomorphism/3: K,. ~ K~(N), and it follows from the Bott periodicity 
theorem that this is an isomorphism. Similarly one defines fl: K~(X) ~ ,K~(N). 

Remark. Taking adjoints in (2.3) one gets the complex of vector bundles 

fl: O-~ E'o-~ E'I ~ ..., 

with E~=rc*AJN, N the complex conjugate of N, and with differential d=e(2), 
the exterior multiplication by 2 at the point z e N  - i.w. the exterior complex of 
N. Of course this gives the same map K,.(X)-~ Kc(N ). In w 3 both the Koszul 
complex (w and its adjoint (w will occur, as symbols of complexes of 
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Toeplitz operators. In [2] it is the conjugate complex, i.e. the exterior complex 
of N rather than N, that is used to define the Bott isomorphism K~(X)~  K~(N). 
However, for the index theorem of [-2] the Bott isomorphism is only used when 
N is the complexification of a real vector bundle, hence isomorphic to N, and it 
makes no difference whether N or .~ is used to define the Bott isomorphism. 
(For the index of Toeplitz operators, or for the Riemann-Roch formula, N is not 
always isomorphic to N, and it is the Koszul complex above, or equivalently the 
exterior complex of N, that has to be used.) 

In particular the dimension gives an isomorphism K(point) ~ ~Z, and 
combining this with the Bott periodicity map, we get an isomorphism 

(2.4) Xe-: K , ( C " ) ~  7/ 

(where the positive generator corresponds to the Koszul complex). 

c) Positive Complex Structures 

Let E be a real symplectic vector space, with symplectic form a. We denote by 
{ } the inverse symplectic form on the dual E*: { f , g } = a ( e - l f e - l g )  if e: 
E ~ E* is defined by or(x, y )=  (e  x, y). (One also usually defines Hy = -  c~-if  so 
{fg}  = (Hy, g)). 

We recall that a complex structure on E is an automorphism J~GL(E)  such 
that jz  = _ Id, or equivalently a decomposition q~ | E = E' (~ E", with E" = E' (E' 
= K e r ( J -  i), E"=  Ker(J + i)). A linear form f e ~  | E* is holomorphic if f J  = i f  
(i.e. f vanishes on E"). A complex structure on E is compatible with the 
symplectic structure if a is the imaginary part of a hermitian form (a is "of  type 
(1, 1)'), or equivalently if E' (or E") is isotropic, or {f, g} =0  for any holomorphic 
forms f, g. 

(2.5) Definition. A complex structure is positive (>0) if it is compatible and if 
one of the following equivalent conditions holds: 

(i) Let z I ... z, be a basis of holomorphic forms. Then {zj, Zk} =0  and 1. {2j, Zk} 
1 

is a hermitian ~ 0 matrix. 
i 

(i) bis a = ~  SajkdZ ~/Xd2k, with (ajk) hermitian ~0. 

i - 
(i) ter a=~c~?h, with h a hermitian (or quadratic) >0 form. 

(ii) a = - I m  h, with h a hermitian > 0 form. 
(ii) bis a(Jx, Jy)  =a(x, y) for all x, y, and a(x, J x ) > 0  if x4:0. 

(iii) ter ia(~, v)>0 if v ~ E ' = K e r ( J - i ) c ~ Q E ,  v+O (and a = 0  on E'). 
(We will also say that the symplectic structure is > 0 with respect to the complex 
structure.) 

(2.6) Examples. On E=T*IR  ", with canonical form a=Sd~j /xdx~ (~ being the 
vertical component), we have a canonical complex structure defined by the 



260 L.B. de Monvel 

condition that ~+ix  is holomorphic: T*IR"~IE"; this is ~>0. (On the dual 
bundle TIR", with coordinates (x, y), y being vertical, it is usual to take the dual 
complex structure, for which x + iy is holomorphic). 

On 112", the canonical symplectic (or Kaehler) form 

i - 2 i 
a = ~ ? ~ l z l  =~Z4z jAd2 j  is >>0. 

(2.7) Let Q be any ~>0 quadratic form on E. Then (cf. [8]) there exists a unique 
positive complex structure on E for which Q is hermitian: if we still denote by 
Q(x,y) the associated scalar product, and define A by a(x,y)=Q(Ax,  y), E' is 
spanned by the eigenvectors of A corresponding to eigenvalues with positive 
imaginary parts, and J=A]A[  -1, with ]A[=(A*A)I/2=(-A2) 1/2, the positive 
square root with respect to Q. This depends smoothly on Q. 

Conversely if N is a complex vector space, and h a positive (non-degenerate) 
hermitian form, - I m  h is a ~> 0 symplectic form on N. 

(2.8) If now N is a real symp|ectic vector bundle with a paracompact base X, 
there exists a ~>0 complex structure on N, and this is unique up to homotopy 
equivalence, so the Bott isomorphism fl: Kc(X) ~ , Kc(N ) is well defined. 

d) The Homomorphism i! in K-Theory 

Let X and Y be two almost complex manifolds (i.e. the tangent bundles TX, T Y  
are equipped with complex structures, not necessarily integrable) and i: X ~-~ Y a 
complex embedding. Then the normal tangent bundle N = N x ( Y  ) inherits a 
complex structure. If we compose the Bott periodicity map fl: K ~ ( X ) ~  Kc(N ) 
with the isomorphism of N on a tubular neighborhood U of X in Y (the only 
requirement being that the tangent map on the zero section be compatible with 
the complex structures, since this defines the map N-- ,U up to homotopy 
equivalence) then with the extension map (2.2): K~(U)~K~(Y), we get a canoni- 
cally defined homomorphism 

(2.9) i~: Kc(X)--,Kr 

This is functorial (transitive), i.e. (ij)~ = i~j~ if we have two successive complex 
embeddings i, j. 

If now X and Y are almost symplectic manifolds (i.e. TX,  T Y  are equipped 
with symplectic forms a x, a T, but we do not require dax=O, d a r = 0  ) and 
i: X~--~Y is a symplectic embedding, there is as in (2.9) a canonical homomor- 
phism 

(2.9) bis i~: Kc(X )~Kc( Y )  

defined via the ~>0 complex structures. 
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e) Contact Manifolds and Symplectic Cones 

Let Y be a 2 n - 1  real manifold. An oriented contact  structure on Y is a 
differential form eeeQ'(Y) such that ~o/x (dee) "-1 vanishes nowhere, two forms 
o~, c9' defining the same structure if co '= 2~o with 2 e C  ~, 2 > 0 .  

If  eeeQ'(Y) is a 1-form with no singularities (ee+0 everywhere), it defines a 
half-line bundle S + c T * Y \ O ,  and it is equivalent to say that o) is a contact  
form, or that  22 + is symplectic (as a submanifold of  T* Y). 

Let now 22 be a symplectic cone, i.e. a symplectic manifold which is a 
principal bundle under  the multiplicative group Ill+ of  positive real numbers,  
and whose symplectic form a is homogeneous  of degree 1. We identify I2 with Y 
x IR+ (with Y=Z/ IR~  the basis), and a may  be written in a unique manner  

6 = r d  +dr Aco 

where co, co' are pull backs of  forms on Y. The condit ion d a = rd d + d rA(~o '  
-dee)  then implies a=d(ree)(dco'=O, o)'=dee), so there exists a contact  form ee 
on Y such that a=d(ree), and this is of  course unique. Thus we have an 
equivalence of categories between symplectic cones and oriented contact  ma- 
nifolds. 

Let now Z + be a symplectic cone, Y the basis (which is a contact  manifold). 
We may choose C ~ functions gl ... gN on Y, which define an embedding Y-'*IR N, 
then C ~ functions f l  ...fN on 22+, homogeneous  of degree 1, such that the 
contact  form of 2 + is 

ree=Z fjdgj 

Then the functions ~ j = f j ,  x j = g j  define a symplectic embedding:  
X + ~ T * I R N \ O .  (One may similarly construct  a symplectic embedding 
X--* T*IR u for any symplectic manifold X whose symplectic form is exact.) 

f )  The Index Character 

(2.10) Proposition. There exists a unique manner of assigning to each almost 
symplectic manifold X a homomorphism Zx: Kc(X) ~ Z  in such a way that 

(i) ~((poin0 is the dimension map 
(ii) Zx = Z r ~ i! ,for any symplectic embedding i: X ~ Y 

(iii) Zx depends continuously on the symplectic structure (i.e. it is a homotopy 
invariant ) 3. 

In this statement, we may replace "a lmos t  symplectic" by "a lmost  complex".  

Proof. The condit ions (i) and (ii) determine Zx uniquely if Z = ~"  or  T*IR", with 
its canonical  symplectic (or complex) structure (Zx is then the Bott i somorphism 

3 This map is in fact well known topologically. See for instance M.F. Atiyah and F. Hirzebruch, 
Riemann-Roch theorem for differentiable manifolds, Bull. Amer. Math. Soc. 65, 276-281 (1959) 
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(2.4)), hence also when X can be imbedded symplectically in T*IR", i.e. its 
symplectic form is exact. 

In the general case, T*X inherits a symplectic structure from that of X, 
which is uniquely determined up to homotopy by the condition that it induces 
the given structure on X (identified with the zero section), and the dual structure 
on each fiber. For instance we may choose a connection on T ' X ,  i.e. an 
isomorphism T(T*X)~-H*(T*X)GH*(TX),  the first factor being the vertical 
component of T(T*X), and we define the symplectic form by 

~ l ((u, v), (u', v')) = ~ x ( ~ -  ~ u, ~ -  ~ u') + ~x(V, v') 

where c~: TX--* T*X is the isomorphism defined by ax: ax(V, v')=(ev, v'). 
Now this symplectic form a, is homotopic to the canonical symplectic form 

% of T*X (as cotangent bundle): for instance we may always impose on the 
connection above that the horizontal space FI*(TX) be isotropic for a 0 (in 
general we have ao((U, v), (u', v')) = (u, v') - (u', v) + (fly, v') where /~ is a skew 
symmetric map: FI*(TX)~FI*(T*X), and we define the new horizontal com- 

the set of vectors ( - P v ,  v ) in  the old decomposition). We may then ponent a s  

set for O_<t<_l 

t ~  t g  
a ,=cos  ~-  do+sin  ~-  a 1 

(the matrix ~  aa with respect t~ a~ is A=  (_0c~ - ~ ~  ; )  and we have A 2 = - I d '  

is always of maximal rank). Condition (iii) then determines Xx uniquely. SO O" t 

The existence of Xx then follows immediately from the transitivity of i~. 

(2.11) Definition. The index character Zx of almost symplectic or almost complex 
manifolds is the homomorphism Zx: Kc(X)~ Z defined by proposition (2.10). 

The index character Z~ of oriented contact manifolds is the homomorphism Z~ 
=Z~+ o ~?: K~(Y) ~ Z, where 2;+ ~- Y x IR + is the associated symplectic cone, and 
0: K ~ ( Y ) ~  K~(2; +) the canonical isomorphism. 

g) The Index Theorem 

1 
Let g2, 0f2 be as in w 1.a (whose notations we keep). Then e = ~  (0r-~r)k, ~ is a 

contact form on Og2, for which the associated cone is 2; +. Let TQ be an N x N 
elliptic matrix of (scalar) Toeplitz operators on 0f2, with symbol q = ~r(TQ). Then 
q o e is invertible on 0f2, and defines an element [q]'eKl(0f2). 

Theorem 1. Notations being as above, we have Index (TQ)= Z~a([q]'). 

Let now E and F be holomorphic vector bundles on ~, and let TQ be an 
elliptic Toeplitz operator from E to F, with symbol q = a(TQ). Then q o e is a C ~ 
vector bundle isomorphism Eioe~Flo ~, so it defines an element [q]eK(g2, c?f2) 
=K~(~). 
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Theorem 2. We suppose that ~2 is a (smooth) Stein manifold. Then, notations being 
as above, we have Index (TQ) = 7~a([ql). 

Naturally, these formulas can also be written in terms of cohomology; for 
this we refer to [31. In particular the formula of Theorem 2 becomes 

Index (TQ) = Za([q]) = (ch [q] Y(~), [~21) 

where r(f~) is the Todd class of ~ (for its complex structure), and ch[q I the 
Chern character. 

If (~ is an open set in C", the Todd class vanishes and the formula of 
Theorem 1 reduces to 

( n - l ) !  ~dq) z ' -  (cf. [12, 13, 173) Index(T~ (2n-1) ! (2 i~)"  ea f Tr(q-  

where 112" has its usual orientation and 0~2 is oriented as a boundary. 

h) Appendix 

For the sake of completeness, and although this will implicitly follow from w 3, 
we check here that the formulas of Theorem 1 and 2 agree when they both 
apply: we have a canonical map c3: KI(~?Q)~K(fL c~f2) =K,.(s and must check 
Z0a = Xa o ~?. 

Notations being as in w 1.a let 4~ be an isomorphism of 22+ on a tubular 
neighborhood U of ~?~, so that 2; + points outwards (this condition determines q~ 
uniquely up to homotopy equivalence). Then cO is the composition of the 
canonical isomorphism K1(OQ)--~K,(Z+), of the push forward ~b,, and of the 
extension map Kc(U ) ~ Kr We then have to prove that the pull back of the 
complex structure on U to 22 + is homotopic to a positive structure, and it is 
enough to check this on the 1st order jet of cb along c~f2. 

As in w 1.a, we suppose ~ defined by r<0 .  We may suppose that r is strictly 
pseudo-convex near ~f2, and then equip a neighborhood (U) of ~?(2 with the 

positive symplectic (Kaehler) form % = i ~ r = d  (~r -~r )  . Let ~nn be the 

J ~ is tangent to ?~f2. outward unit normal vector of 0~, so 0n 

We have c~ = (c~r- (?r)10a , and may obviously suppose 4~(z, c~(z)) = z. Then at 

least the restriction of cb to the section c~(0f2) of Z + agrees with the symplectic 

forms, and since a r (~--- ,J2-]>0,  we only have to check a,+ > , 

where p -~-- is the radial vector p v - = Z ~ j  in local coordinates on ~?Q). 
~p cp 

Now this sign condition only depends on the 2nd order jet of 0f2 at any given 
point; we may always choose local coordinates in which c~f2 has a contact of 
order > 2  with the unit sphere z2= 1 of C", and since the result is true for the 
unit sphere, it is true in general. 
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If f2 is the unit ball in C", we choose r=�89 so 

- 1 1 i 
i~c3r=~d (~ii (2 .dz - z .d2) )=~ Zdz~/xd2~ 

is the canonical symplectic form of r and is homogeneous of degree 2; then 

the map q~: z,~(2~z-zc~2)lo~ ~-,t2z from Z+ to r is symplectic, since it 

transforms the canonical 1-form of Z+ (i.e. the identity map: S+--* T*Of2) into 

1 (2 dz-z .d2)) .  
4i 

w 3. P r o o f  o f  the Index T h e o r e m  

a) Proof of Theorem 1 

Let ~2, c~2 be as in w 1.a, and let Q be an N x N matrix of pseudo-differential 
operators on 0(2, elliptic on Z +. Then the Toeplitz operator T o has an index, 
which only depends on the symbol a(TQ)=a(Q)lz+. As was remarked in w 1.c, we 
may suppose that Q is of degree 1 (since any Toeplitz operator with symbol 
1411d has index 0). We may also modify a(Q) arbitrarily outside X +, and we will 
suppose a(Q)= [~{Id on Z -  = - S + .  

Let ~b denote the induced Cauchy-Riemann complex. This is a complex of 
first order differential operators: 

O~ C~(Of2, A~ E '') a~ , C~(t?f2, A1E,,) ~ ~ ... C~(~[2, A,-1E,,)~O 

where E" is the dual of the sub-vector bundle of C |  T0f2 spanned by anti- 
holomorphic vectors tangent to 0f2, or equivalently the quotient E" 
=~2|  T*Of2/F' where F' is spanned by all differentials of type 1, 0: ~floo (with 
f~C*((2)). There is a natural projection ~---~" from T*#f2 to E", and the 
symbol of ~b is 

a(~b) = ie(~"), the exterior multiplication by i~". 

~b is elliptic except on Z + ~ S - ,  and we see that o(~b) is the dual of the Koszul 
complex for the symplectic embedding Z + ~-~T* ~[2 (the fact that it corresponds 
to a >>0 complex str, ucture follows from the fact that the Levi form is >>0). We 
have chosen Q with a(Q)= [~[Id on Z -  = - Z  +, so although ~b is not elliptic on 
Z - ,  the element [a(Q)|162 ) defined by the elliptic complex 
a(Q)| is precisely i![a(To)], where [a(To) ] is the element of 
K~(Z +) -~ Kt  (~3f2) defined by a(TQ) 4. 

* Let (E', d') and (E", d") be two complexes of vector bundles: 

O~E'~o a' ~E,o+l_~a" ...E, ~0 
0-~ E;,o ,~= ,  <,o+,  - , ~  ... E ;  - ,  0. 

The product complex (E,d) is defined as usual by Ej= @ E'p| d=d'|174 ''. We 

denote it for short by d'| d". Here in particular a(Q)| a(Ob) is the complex defined by 

E~=~N|174 '', dj= \a(Q)| - Id | )/ 
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We will show that T e has the same index as any complex of pseudo- 
differential operators on 0f2 with symbol cr(Q)| Theorem l will then 
follow from the index formula of Atiyah and Singer [1]. 

Let us recall (cf. [81) that the homology of ~b is of finite rank, except in 
degree 0, n - 1 ,  and that there exists an operator A, which is in fact a pseudo- 
differential operator of type �89 and degree - �89  such that 

(3.1) ~b A is the orthogonal projector on the range of ~b, 

A ~b is the orthogonal projector on the range of c~', 

n - - I  

Id-~bA-A~b=S= @ Sj is the orthogonal projector on the homology, iden- 
0 

tiffed with Ker(~b+ ~ '  ). Then the Sj are of finite rank if j4:0, n - 1 ;  So=S is the 
Szeg6 projector, and S,_ ~ is analoguous to the Szeg6 projector, but supported 
by Z- .  

(3.2) Lemma. There exists a system Qo of pseudo-differential operators of degree 
n - - 1  

1, acting on sections of CN| '', such that a(Qo)=a(Q)| and Qo~b 
=gbOo. o 

Proof Let Q1 be any pseudo-differential system with symbol a (Q) |  (respect- 
ing the graduation @ C  N | We set 

J 

Qo=SQ1S+ AQI~b +~bAQI~bA 

(for short we write S, A, ~b instead of Id~:NQS, etc .... ). Qo is a pseudo- 
differential operator of degree 0 and type �89 It commutes with c~ b since we have 
~o if= ~b ~b A = A C~ b ~3 b = 0, and ~bA 0 b = ~b, hence 

~bQo=~bAQl~b, and also 

Qo Ob = ~b A Q 1 c~bA Ob = ~b A Q 1 ~b" 

On the other hand the symbol a(Q1 ) = a(Q)|  Id commutes with the symbols 
of ~b, ~ and ObA (rather Id~:~,| etc .... ). Since S and ~bA are both 
pseudo-differential operators of degree 0 and type �89 their commutators with Q~ 
are of degree <�89 also [Ql,~b] is of degree <1 so A[QI,~b] is of degree <�89 
Now we have ~=~2 and ~bA=(~bA)2 SO S2+A~b+(~bA)Z=Id, hence 

Qo-Q1 =SQaS+ AQI~3b +C~bAQI~bA -SZQx -A~bQ1 --(~bA)2Q1 

= S [ Q , ,  S] + A[Q1, ~3 +~bA[QI, ~bA] 

and it follows that Qo-Qt is of degree N�89 and a(Qo)=a(QO=a(Q)| as 
required (the part of Q0 which is really of type �89 is in fact of degree <�89 and 
does not contribute to the index). 

Now Q0 is a homomorphism of complexes, and the double complex it 
defines is elliptic with symbol a(Q)| a(~). Its Euler characteristic is the alter- 
nating sum of the indices of the restrictions of Qo to the homology of ~b: 

Index(Qo | ~b) = Z ( -  1) ~ Index(SjQoSj). 
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If j4=0, n - l ,  S~ is of finite rank so Index(S~QoS)=O. S,_~QoS,_ ~ behaves 
exactly as a Toeplitz operator, except that it is supported by _r-, and since its 
symbol I~] Idl~- is self adjoint, its index is 0. Finally there just remains SoQoSo, 
which is a Toeplitz operator with same symbol hence same index as TQ. 

b) Embedding in a Complex Vector Bundle 

Let W be a complex Stein manifold, and ~ c  W an open subset as in w 1.a. We 
suppose Q defined by an inequality r<0 ,  where r is strictly plurisubharmonic 
near ~ = Q w 0 ~  (i.e. iO~r>O near ~). Let N ~ , W be a holomorphic vector 
bundle, and let ]lnlt 2 be a hermitian norm on N which is plurisubharmonic as a 
function on the total space of N (such a norm exists - at least above a 
neighborhood of ~ because N is a direct factor of a trivial bundle near ~ since 

W is Stein). Finally let ~ c N be defined by the inequality r + 1  hi n]l 2< 0 (e > 0): it 

is relatively compact, and 0~ is strictly pseudo-convex; taking e small will make 
arbitrarily close to the zero section. We denote by ~+ the analogue of _r+ for 

D. 
Let E and F be two holomorphic vector bundles on W, and f :  E--* F a C ~ 

bundle-homomorphism. We denote by T: the corresponding Toeplitz operator 
(as was remarked in w 1.c, it is enough to consider operators of this form for the 
index theorem). We denote by/~, P and f : /~ -~  F the pull backs on N. 

Let k be the Konzul complex of N: 

k" O--*E_q=AqlV'~ . . . E _ j = A J N ' ~  . . . E o ~ O  

where N" is the pull back of the dual bundle of N, q the dimension of its fibers. 
The differential is i(z), the interior product by z at the point zeN.  Then k e 
= Id~ | k, k v = Idp | k are the Koszul complexes of E and F. The corresponding 
Toeplitz operators on ~) actually form a complex - i.e. T,z ) T,=~ = 0 because i(z) is 
holomorphic, so Ti(~) Tim = S i(z)S i(z)S = S( i(z)) 2 S = O. 

(3.3) Proposition. There exists a complex T o of Toeplitz operators on (2, with 
symbol f | k, and this has the same index as Tf if Tf is elliptic. ~ 

Since the element I f  |  0(2) is precisely (by definition) the image by 
i~ of [ f ] ~ K ( Q ,  ?~), Theorem 2 on ~ will follow from Theorem 2 on ~. 

To prove the proposition, we first need to examine the complex 6f Toeplitz 
operators corresponding to the Koszul complex a little more closely. Let 
Xo~Of2cN, and let z~, ..., zq be a basis of linear forms on N near x 0. 

(3.4) Lemma. The matrix l{2j, Zk}~+ (1 <j, k<-_q) is >>0. 

Proof  of the Lemma: We may choose holomorphic functions z~+ t ... z, on N 
(defined in a neighborhood of Xo) so that za ... z, are local coordinates near Xo, 

and so that ~ is transversal to Of) at x o. We will prove that the matrix 
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1. {2~, Zk}~+ (1 <j, k < n - 1 )  is ~0 .  Fo r  this we notice that there exists a basis of  

ho lomorph ic  vectors  Z~ ... Z ,_~ tangent  to d~, with symbols  (~ ... ( ,_x,  such 
1 

that  Zi(Zk)=~ {~, Z~}T.e, ~ = 6~k (the Kronecke r  symbol)  

e.g. ~ ~z~ c~zj \~z , ]  ~3z-~' where p=r+l-ltn]l 

So we have  

{Zj, Zk}={Z~,2k}={(j ,~k}={~j,2k}=O on 2~ + 

(where the Poisson brackets  are taken on T* 00), and  

(3.5) c 1 {~j, ~k} is a hermit ian  >> 0 matr ix  on 2~ + 5 

Our  assert ion now is that  we have (1 {2j, Zk}~ + )=(Ckj)_~ SO it is elliptic, >>0, 
of  degree - 1. \ t  / 

To  prove  this, we notice that  2~ + is defined by the equat ions ~ j = ( ~ = 0  (/ 
= 1  ... n - l ) ,  so for any functions Jl g on T*0f) ,  we have {f,g}~+ = { f ' , g ' } l ~ + ,  
where f = f '  and g = g '  on z~ +, and the 1st order jets of  f ' ,  g' a long 2~ + are 
de te rmined  by the condit ion that  they c o m m u t e  with the ~ ,  ~j. 

In par t icular  we have ~ {2~, Zk}~+ = {7}, Z~}I~+, with 

z~ = zk + 1:bkl ~t, 

where the bktl~+ are de termined by the condit ion 

1 
~{(j,Z'k}l$+=6jk--ff, bklClj=O i.e. (bkt)=(Ckl) -1 o n  2 +. 

N o w  f rom ~ {~, Zk} = 6jk follows 1 {~,  Zk) = -- 6j~, SO 
�9 i 

1 - - -  r 

{ZJ' Zk}2+ = i  {ZJ+ z~bJl~t' Zk + ~bkl~l} ~+ 

= r)jk + bkj-- ~ bjl C,,,~bk, . = bk~ = (Cih)- 1 >> O. 
l,m 

This proves  the assert ion above,  and the lemma.  

5 This matrix is ,~0 on -r- = -Z+  (cf. also [10] to check the signs). An easy way to remember the 

sign rule is that we have ~r([A*,A])=l-{~,a}>>-O. _ if A is hypoelliptic, and on Z+ it is ~b which is 
hypoelliptic and ~b which is not 
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It follows now from Lemma (3.4) and from [8] that the complex of Toeplitz 
operators defined by the Koszul complex (or rather its adjoint) behaves microlo- 
cally exactly as ~b (except for the fact that in the microlocal model as described 
in w 1.b, the dimensions n and n - 1  should be replaced by the complex 
dimensions of O and of the fibers of N respectively); the same holds for the 
complexes k E and k v. In particular there exist Toeplitz operators AE, A r which 
do for kr, k r the same as A for 3b in w (these are not quite Toeplitz 
operators in the sense of Definition 1.3, but are of the form SQS with Q of type �89 
and degree �89 

d~AE+AEdE=Id-HE, deAr+AFdF=Id-HF 

where HE, H r are the orthogonal projectors on the homology of kE, k f. Now the 
construction of w 3.a can be exactly reproduced - namely we first choose a 
Toeplitz operator To, ( f rom/~ |  r') with symbol f |  and replace To, by 

TQ.o= Hr TQ, HE + drTQ,A~ + AFdr TQ, AEdE 

which is a Toeplitz operator of symbol f |  which commutes with the 
differentials dEd t (as in w 3.a it is really of type t 3, but the part of type �89 is of 
degree < - � 89  and does not contribute to the index). 

Then TQo defines a double complex T o with symbol f | k, whose index is the 
alternating sum of the indices of the restrictions of TQo to the homology groups 
of de, d r. Here in fact the picture is a little simpler than in w 3.a because the 
Koszul complex k~k r only have homology in degree 0, and this is isomorphic to 
the space of holomorphic sections of E or F on f2. In fact let us choose on 0~ 
the measure d~ defined by 

~_~o(x,n)d~(x,n)=~ Ir[-~d#(x) ~ q~(x,n)da~(n) 
0-O Y2 ~pherc 

where d# is the given measure on O (with C ~ positive density) and for each 
xef2, da~ is the canonical (rotation invariant) measure on the sphere of radius 

of the fiber of N at x, so that the resulting measure d~ has a smooth 
positive density on ~?O. Then the ranges of the orthogonat projectors HE, H v on 
the homology of k E, k F consist exactly of the sections which are constant along 
the fibers, and we have 

Index T a = Index H r Tell  E = Index H r f H  E. 

Now we may still interpret the ranges of H E, H r as sitting inside the space of 
sections of E or F on O; the norm is not the L2-norm on ?O, but rather 

2q--1 
Hcp[12= f_[~ol2d~=cqe 2 I [~~ 

with c q = ( q _ l ) ! ,  the volume of the unit sphere in ~q . Thus H r f H  e is not 

quite the Toeplitz operator T~=Sr fS  E, but it follows from w 1.c, example (1.13) 
and appendix that it is still a Toeplitz operator with symbol f, so it has the same 
index as Tj.. This ends the proof. 
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c) Embedding in IIY' 

Let W be a Stein manifold, and f2, c~g2 as above. We may embed W in a 
numeric space IIY. Let N be the normal tangent bundle of this embedding: the 
exact sequence 

O ~  TW--* W • ~ " =  TII2"Iw--* N--*O 

is split, since W is a Stein manifold. So we may realize N as a holomorphic 
subbundle of W x IIY, transversal to TW. Now the map (x, n ) eNw- , x+nOlY  has 
an invertible derivative on W (identified with the zero section), so it defines an 
isomorphism of a neighborhood of W in N to a neighborhood of W in ~"  
(complex tubular neighborhood). We may then identify O with its image in 112" (if 
it is sufficiently close to the zero section, i.e. if the number e in its definition is 
small). Now if E, F are holomorphic vector bundles on ~2, and f :  E - + F  a C ~ 
bundle homomorphism,  invertible on c3f2, and if i is the inclusion f2 r i~[f] 
is as we have remarked the element of Kc(~ ) defined by f |  So Theorem 2 
will follow if we prove it for open sets in I12". 

d) End of Proof 

Let finally f2 c 112" be bounded, with strictly pseudo-convex boundary ~(2; let E 
and F be holomorphic vector bundles defined in a neighborhood of ~, and 
f:  E---*F a ~2 ~ homomorphism,  invertible on ~?f2. Since ~ has Stein neigh- 
borhoods, there exists a holomorphic vector bundle F -L such that F ( ~ F  • is 
trivial (isomorphic to O x ~N). We may replace f by f O I d v ~  (this obviously 
does not change the index of TI, nor the index character), so we are reduced to 
the case where F = O x C N is trivial. In this case E extends to the whole of 112" as 
a topological bundle (e.g. we can paste it with (112"-.. (2)x 112 ~ by means of f on 
~f2), so it is trivial as a topological bundle, as any bundle on 112". Then it follows 
from Grauert ' s  Theorem [14] that E is also trivial as a holomorphic bundle on 
~, so Theorem 2 follows from Theorem 1. This ends the proof. 

Let us notice that it follows from the index formula that the index of 
Toeplitz operators satisfies the following "excision" property (cf. also [11]: if 
Q c Y2' are two open sets in 112" (or in some analytic manifold W), f '  a C | 
homomorphism between two holomorphic vector bundles on ~' ,  f its restriction 
to ~, and if f '  is invertible on ~ ' \  O, then T I and Tf, have the same index. A 
direct proof of  this would greatly simplify the proof  of Theorem 1 (or Theo- 
rem 2) for open sets in q;", since we can always choose O' be to a large ball, in 
which case we have K(~?', ~?~2')= Z so to prove the index theorem, it is enough to 
check for one operator, for instance the complex of Toeplitz operators as- 
sociated to the Koszul complex of a point of f2', whose index is 1 (this is 
essentially the proof of  1-23]). 

In general K(f2, ~O) may be much larger than •; for example if ~2 is the open 
set defined by •(]Zj[ 2 -  1) 2 <•2 in t12", t?~2 is C + and strictly pseudo convex if ~ is 
small, and K(O, 3 0 ) - - Z 2 " - ' ;  so the index theorem does not reduce to the fact 
that the index of the Koszul complex of a point is 1. 
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3.  F i n a l  R e m a r k s  

Let us notice that both Theorem 1 and Theorem 2 allow parameters 2eA. The 
index should then be interpreted as an element of K ( A )  as in [4]. Theorem 1 
also allows the action of a compact group G, the index being interpreted as an 
element of K o ( . ) = R ( G ) ,  the ring of finite virtual representations of G, as in [2]; 
it is likely that the same is true for Theorem 2: the first three steps in the proof 
(w 3.a, b, c) allow such a group action (this is obvious for the first two steps, and 
for the third one may always embed a neighborhood of t? in a finite G-vector 
space, equivariantly, then construct an equivariant tubular neighborhood); I do 
not know if Grauert 's Theorem allows a compact group action. 

Theorem 1 is of a quite stable nature. In it f~ may have singularities (so long 
as these do not meet ~O); 00  must be compact but if n=  dime ~2 > 2, f2 itself 
needs not to be compact (cf. [7]) (if n =2,  this restriction is necessary otherwise 
the Szeg5 projector might not be well behaved). In fact the only structure which 
really matters for the index theorem is the contact structure of 00;  we will show 
elsewhere that on any compact oriented contact manifold X there exists a 
projector S x which has the same microlocal behaviour as the Szeg6 projector; 
the operators S x Q S  x (with Q a pseudo-differential operator) operating on the 
range of S x are then analogues of Toeplitz operators, and the index of elliptic 
systems of such operators is still given by Theorem 1 (with essentially the same 
proof as in w 3.a). 

For Theorem 2, the present proof requires that ~ be contained in a Stein 
manifold (i.e. a closed, smooth, complex submanifold of 112"). It is quite likely 
that it still holds when O has no singularities (it certainly does when ~?f2 is empty 
- in this case the index formula reduces to the Riemann-Roch theorem, which 
follows from the Atiyah-Singer index formula - cf. [3]). Further desirable 
extensions should include the case where (2 has singularities, and where the 
holomorphic bundles E and F are replaced by coherent sheaves. However as it 
is, Theorem 2 should already contain the Atiyah-Singer index formula. We give 
a brief indication here, and propose to come back elsewhere with more details to 
this question: 

Let X be a compact real analytic manifold, and P(x,  D) an elliptic differential 
operator with analytic coefficients, acting from the sections of E to those of F, 
where E, F are two real analytic vector bundles on X (any C ~ elliptic operator 
is homotopic to such an operator). Let X be a complexification of X, and let B~ 
be the tubular neighborhood defined by d(z, X ) < e  (for some hermitian metric 
on J?). If e is small enough, OB~ is compact and strictly pseudo convex, and E, F, 
P(x, Dx), Ker P and Ker P * =  Coker P extend analytically to a neighborhood of 
B,. As we have seen in w 1.c, the extension of P to O(~B~) is a Toeplitz operator 

with symbol p(z, v), where p = a(P), and v 1 = _  Or. If we take for defining function r 
1 l 

= -  (d(z, x) 2 - e2), we have in local coordinates z = x + i y = (z 1 . . . . .  z,) 

d(z, X )  2 = Zajky jyk ,  
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with ajk = ajk(X, y)real analytic, a =(ajk ) ~>0. SO 

dr = 2 (ay. dy + O(yZ)) (a = (ajk)) 
E 

Or = 1 (ay. dz + O(yZ)) 
t~  

and since ay. dylen~ = O(y2), we finally get 

v= - (a~Ye ) .dx +O(~)=~.dx  +O(~). 

Thus p(z, v) is very close - hence homotopic - to p(x, ~) with x the projection of 

z on X, r = - a - y  (notice the sign). 

It follows immediately that T e is an elliptic Toeplitz operator, and that the 
index characters of P on X and of its Toeplitz extension T e are the same; the 
analytic indices are also equal since the kernel and cokernel do not change if ~ is 
small. 

A similar proof can be given for analytic pseudo-differential operators. 
A second method of proof is the following (this will be described in more 

details elsewhere); beginning with the approximation of v above, it is not hard 
to prove that there actually exists a contact isomorphism X from S* X to #B~, 
where S*X is the cosphere bundle of X (close to the map (x,~)~--~x-ier ([~b 
=1)). With this we may construct a Fourier integral operator 
~ :  C~(X)~O~(OB~) such that o,ug*~-,~Id, Yg)~'*,,~S, and that the singular 
support of ~ o  (for any distribution q~ on X) is the image by Z of the wavefront 
set of q~). ~ is then an approximate square root of the Szegi5 kernel, as in (1.4) 
(1.5), and it can be used to transport pseudo-differential operators on X into 
Toeplitz operators on 0B~; we then get the index theorem for systems (matrices) 
of pseudo-differential operators as a consequence of Theorem 1. (At this point, 
the reduction of the general case to Theorem2 by this method is not quite 
complete for one still needs to show that for the analogue aeg~ of o~r for a vector 
bundle E there is a canonical choice with index 0; that such a choice exists is 
plausible since the index formulas are identical). 

e) Appendix 

As a by product of w 3.b, we get the following microlocal model for Ob (or rather 
the adjoint complex) in the setting of Toeplitz operators: 12 is the unit ball in 
C " ( N = 2 n - 1 ) ,  and the adjoint of ~b is microlocally equivalent to the Koszul 
complex of ~ "=~ N,  whose differential is the interior product by (z l, ..., z,) on 
Ar This is elliptic, except when z~ . . . .  z ,=0 .  Using the Poincar6-Cartan 
formula 

di(z) + i(z)d = 69(z), 
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" 0 
the Lie derivative of z = ~ z j - - ,  it is easy and elementary to describe the 

1 ?zj  

a~, j Z ~ parametrix the inverse of O(z) is given by og=Za~ , j z~dz j~ - - - , S  [gl+lJ[ d z j  I 

where we have written d z j  =dzg 1/x .. .  A dzik , 1 <=i 1 < ...  ik<=n , and the coefficients 
a~,j are functions of zn+ 1 . . . . .  z N - except in degree 0 where we must omit the 

constant term (lc~l+lJJ=O)). Finally in this setting, the analogue of the Szeg6 
r 

projector (orthogonal projector on the homology) is the projector on functions 
independent of z 1 . . . . .  z , :  f w-~ f ( O ,  . . . ,  O, z .+ 1 . . . . .  zN). 
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