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ON CERTAIN CRINKLY CURVES*
BY
ELIAKIM HASTINGS MOORE

Introduction. — In any field of geometric investigation the curves fall roughly
into two classes, constituted respectively of the curves ordinarily investigated and
of the other curves; these unusual curves are in positive designation the crinkly
curves. -

In this paper we are to investigate by interplaying graphic and analytic
methods (in I) the continuous surface-filling @v-curves : o = ¢(t), y=(t): of
Peano gnd HiLserT and (in II) the continuous tangentless yt-curve : y = (¢):
connected with PEANO’S curve. We define the various curves A~ as point-for-
point limit-curves for n = oo of certain curves K, (n=1,2,38, .. -) 5 these
curves A are broken-line curves derivable each from the preceding by processes
simple and such that the (nodal) extremities of the various n-links of IU persist
as corresponding points and also nodes of the A, 5 thus, the nodes of A are
points of A the set of all these nodes (for all #’s) is on A everywhere dense.
The curves A’ are continuous and approach their point-for-point limit-curve A
uniformly ; A" is accordingly continuous, a conclusion however which is geometri-
cally evident. From the continuity of A and the presence of the set of nodes
the properties of A~ follow in such a way as to appeal vividly to the geometric
imagination. Indeed the y¢-curve from the simplicity of its geometric definition
and from the intuitive clearness of its properties appears to be fit to replace the
classical WEIERSTRASS curve as the standard example of continuous curves hav-
ing no tangents, since, further, we develop closer knowledge of its progressive-
and regressive-tangential properties (1T §§ 8, 11).

The basal notions of this paper were communicated to Chicago colleagues in
February and March, 1899. — Part IT has certain relations of content with the
interesting paper by StTEINITZ, Stetigheit und Differential quotienten, M athe-
matische Annalen, vol. 52, pp. 58-69, May 1899. These relations are
indicated in the foot-note of IT §7.  StEINITZ determines a class of continuous
functions having for no argument a derivative ; he does not broach the question
of progressive and regressive derivatives. — [Jan. 17, 1900. Part 1I has rela-
tions of method, but neither of origin nor of content, with the memoir of

- N
* Presented to the Society, August 25, 1899, at the Columbus meeting. Received for publi-
cation December 18, 1899.
72
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BrODEN: Beitrige zur Theorie der stetigen Functionen einer reellen Verin-
derlichen, Journal fiir Mathematik, vol. 118, pp. 1-60, 1897. As a gen-
eralization of the basal remark of BrRoDEN (I e., p. 1) I notice the theorem that
every continuous curve in 8 dimensions, 6=2,38, . ...0r N,) is the point-for-
point limit-curve for » = oo of a sequence of inscribed broken-line curves
K (n=1,2, .., the sequence of nodes of every A corresponding to a
sequence of increasing values of the parameter-of-continuity of A", the nodes of
every K being nodes of &, and the complete set of nodal arguments being
everywhere dense on the set of all arguments of points of Vg

I

Continuous surface-filling curves.

1. Defining (as usual) as a real continuous plane curve the locus of points
(«¢, y) whose coordinates are single-valued real continuous functions .

w=¢({), y= Y(2)

of the real variable #, Prano,* 1890, by arithmetic + process determined two
functions of this kind for the range 0 =¢ =1 such that the corresponding con-
tinuous curve ' fills the square 0 =2 =1, 0 =y=1. We give below (§ 7) a
geometric determination of Peano’s curve.

2. This interesting phenomenon of continuous éurface-ﬁlling curves HILBERT }
in 1891 made luminous to the geometric imagination in the following way :

For every positive integer n the line 0 =¢=1 is divided into 4" intervals I,
of length 4™ and the square 0 =2 =1, 0=y =1 is divided into 4" squares S,
of length 2. A 1—1 correspondence is effected betwoen the 4" intervals I,
and the 4" squares S, (n =1, 2, 3, ... satisfying the two conditions: (1) to
two adjacent intervals 7, correspond two adjacent squares S5 (2) to the four
intervals 7 ., of an interval 7 correspond the four squares S ., of the corre-
sponding square .. Then to an infinite sequence {Z,} of intervals 7 (n =1,
2, 3, --) in which every interval 7 includes the succeeding interval 7 . cor-
responds such a sequence {.S,} of squares S, (n=1, 2, 3, .. -).  In accord-
ance with the geometric axioms of the continuity of the line and the plane (or, if

* PEANO, Sur une courbe, qui remplil toute une aire plane: Mathematische Annalep, vol,
36, pp. 157-160, 1890.

T The analytic formulas for the Peano functions given by CEsARO (Sur la représentation ana-
ytiques des régions, et des courbes qui les remplissent: (Bulletin des Seiences mathémat-
jques, 2d ser., vol. 21, pp. 257-266, 1897) involve the arithmetic function [u] = E(u).
(Cesiro’s formulas are in error for { =1.)

I HILBERT, Ueber die stetige Abbildung einer Linie auf ein Fldchenstiick: Mathematische
Annalen, vol. 38, pp. 459-460, 1891. )
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our geometric phrasings have solely analytic meaning, by a fundamental theorem
concerning the system of real numbers), the sequence {7 } determines a point
T{I} of the line lying on its every interval 7 , and the sequence {/S,} a point
Z{8,} of the square lying on its every square S,. Such points 7" and Z are
set in correspondence.

This correspondence indeed determines for every point 7’ of the line a definite
point Z of the square, and in such a way that as 7’ describes the line Z describes
a continuous curve filling the square. — Proof: (¢) A point 7" of the line which
is the extremity of no interval determines uniquely a sequence {7 } to which it
belongs and hence a point Z belonging to the corresponding sequence {.S}
The same is true for the points 7’= (0), (1). A point 7" which is common to
two adjacent intervals 7, I,” for some definite value of n, n = v, is common
to two adjacent intervals 7, I." for every n=v, and belongs to two sequences
(I}, {I.'}; the corresponding points Z{S.}, Z{.S,} are, however, identical,
since the squares ), .S, are adjacent for every n=w». Thus to every 7" corre-
sponds one Z. () Similarly, every Z of the square belongs to one, two, or four
sequences {.S } and corresponds to one, two, three, or four points 7" of the line.
() This dependence of Z = (x, y) upon 7' = (¢) determines « and y as single
valued functions

1) w=¢(), y=1v9()

of ¢ for the range 0 =¢=1. These functions are continuous, since (by condi-

tion (1)) for every n

@) lo(t) — ()| =227, |[W(t) — ¥ () =2 27

for every pair of arguments ¢,, ¢, of the range 0 =¢=1 such that
3) 6, —t,| =47

The relation (2) indeed shows that ¢(¢) , Yr(¢) are uniformly continuous functions
of ¢ for the range 0 =¢=1.

8. One finds that the fundamental correspondence subject to the conditions
(1) (2) between the 7,, S, (n=1,2,3,-.) involves 8 elements of indetermin-
ation for each successive n introduced, —or 2 elements (after the initial 8), if in
condition (1) the initial and final intervals 7, of the line are counted as adjacent
intervals — and that it becomes uniquely determinate by the stipulation of the
sequences of squares corresponding to the sequences of initial and final intervals.
In particular, HILBERT gives the correspondence determined by the stipulations

) (¢(0), ¥(®) =0, 0), (¢(1), ¥(1)) =@, 0),
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while the figure 1 below is for one of the two determined by the stipulations
®) ¢0)=¢)=2%, F(O0)=y(1)=0.

4. For every particular n to indicate the sequence of the 4" squares S
corresponding to the natural sequence of the 4" intervals 7, , HILBERT draws a
broken line passing from the center of the initial square S, through the centers
of the squares in sequence to the center of the final square S§,.— Let us see how
to use this broken line to obtain a still more vivid geometric picture of these
continuous surfuce-filling curves. 'We prolong the line across the initial and the

F1Gure 1
a b c

1 M |
oo H
= lmhlrhltn
1 1 | 1

I | |
I__I NN I...l

S (—— |

R = lmlmlD
> ININERL! ]

Lines ¢, and ¢, Line 0}, Line C,

final squares. This (completed) broken line C, having in every square S, a seg-
ment of length 27 has the length 2". 'We regard the original line C, as say the
x-side of the original square S, and the lines C, (n =0,1,2, .-.) as derived
each from the preceding by wuniform stretching (doubling) and suitable « break-
ing ” and locating. Then every point

T=T=@®=(© 0)=(x n)
of C, determines a definite point
7= (s ) = (90)> ¥(0))

of C (n=0,1, 2,3, ..., and the sequence {7} of points 7, (n=10, 1,
2, 3, ---) has as limit the point Z of the surface-illing curve C,

Z=(= 9= (90, ¥®)),
¢() = Lig.(), ¥(0) = L.

(6)
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TreOREM.—The continuous surfacefilling curve C is the point.for-point
limit-curve for n = oo of the broken-line continuous curves C, (n=1,2,8, .- )
derived individually from the original line by uniform stretching and suitable
breaking and locating.

I notice further that

) e, — e, (B)=2:27 |y, (1)~

for all integers n , n,, n (=0) and numbers ¢, ¢, (£0, =1) such that

()] =22

ny

= ) = = —n
n=n, n,=n, |t—t] =4,

5. The squares .S, are crossed * by the lines ', C,,, in essentially only two
ways.

FIGURE 2
a b

The lines C,, O, are seen to intersect at and only at corresponding points
T(¢) = T,,.,(t), which, furthermore, are distinct from their respective corre-
sponding points 7, ,,(¢). Thus on no C, is there one point 77(¢) in its limit-
position Z(t).

6. No simple modification of these approximation curves C, which preserves
their essential relations to the correspondence between the 7 and the .S, and
their derivation each from the preceding by uniform stretching and which more-
over introduces on every C, in its every S, at least one point 77(¢) in its limit-
position suggests itself. ~However without essential change we may replace
HILBERT’S basal integer 2 by any odd integer (> 1) and then find a corre-
spondence between the w™ intervals 7 and the w* squares S (n=1,2,8,...)
such that the broken lines €, (may be chosen to) cross the squares .S, on diag-
onals and that then the extremities of these diagonals are points 77, in final posi-
tion. The curves C'(») so obtained are exactly PEaNO’s surface-filling curves.

* For the particular case of 4 3, the lines C, are closed and enclose surfaces of area 2—1—4—n
(n=1, 2, 3, ), so that the limit for n =0 of the area of the surface enclosed by C, is 2-1,
while the point-for-point closed limit-curve C fills the whole unit-square.— The lines C, are
symmetrical with respect to the lines 26— 1=0, 2y—1=0.
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7. Geometric determination of Peano’s curve C'*) (with figures for the C ®).
® is an odd integer > 1. We stretch the original line 0 =¢=1 uniformly in
the ratio +/2: 1 and locate it as C“) or say C, in the diagonal joining the ver-
tices (x, y) = (0, 0), (1, 1) of the initial square S,. Without changing the
extremities of €' we uniformly stretch it in the ratio w:1 and break and locate
it as O, (figure 3) traversing on their diagonals the w® squares S, of S, in such

FI1GURE 3
a b

va

INA

AN
’
N
l
N
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N
VAR
N
N

AN
N
N
N
/N
N

AN

S INENIN

. 3 . (3
Line ¢ Line C,”
1 2

wise that the S| of every vertical column are traversed sequentially. Then
a similar treatment of these diagonals of the w? S changes | into C,. And
S0 on. —

It is convenient to term the diagonals of the (', links (or n-links) and their
extremities nodes (or n-nodes). The line €', lies completely on the next line
C' 1, but the only points 7(f) = 7 (¢) are the nodes and the middle points
of the links of the C .

8. In notations analogous to those of $§2, 4 one has first the general rela-
tions:

O o(t) — ¢t) =207, |Y(t) — Y1) =2 0,
(2) p(t) — ¢, @ =2-07",  [P(t) — ¥, ()| =2 07,
@) Ispn‘(tl) - ‘/"nz(tz)l =207, ]‘lf,,,,l(tl) — \[f”z(tz)’ =20

for all integers n,, n,, n (= 0) and numbers ¢, ¢, (=0, =1) such that
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n, n,=Zn, [t, — t| S w™™;
) ¢ =L 0, ¥O=L¥0 (0=t=1).

The uniform continuity of ¢(¢), yx(¢) for 0=¢=1 is implied by (1).
One has next the relations connected with ¢ = ¢(¢) = Yr(t) = 0:

(5) 0 4nll) = 0 0%), PO =V0H)  O=i=e),
(6) 0 g(t) = ¢(@¥), () = Y(o) CETENN
(7) w-6,(6) = ¥ (1), b)) = gfon)  @=t=e,
®) w-¢(t) = Y1), ¥(0) = g() (0=t=0-,

where » is any integer =0. The relations (7, 8) are derivable from the formulas
of §§9, 10 and also from the geometrical considerations of IT § 5.
One has further the relations connected with ¢ = ¢(f) = y(¢) = 4 :

9) G+ +e3—u)y=1, vE+u)+PvF—u=1 (u=i),

10) e@F +u)+oeE—uwy=1, VYE+uw)+¥vE—w)=1 (u=}),

w{p (G +u)—3 = —1‘131 (G + o®u) — 3

(11) (ol b0 =4} = )Q_IW( T (Ju] = 4a-1),
o (Y (I +u) =3} =(=1) 2 (¥, + o’u) — 1}
w{e(F + u) — % =---1‘(i;*1 (3 + o) — %

(12) {eG +u) — 3} = ( )w_1{<f( + @) — %} (el = o,

o {YEF +u)— 1} =(— 1)7'9*{1#(% + o) — 1}

where n is any integer =0. These geometrically evident relations are easily
derivable from the formulas of §§9, 10.

9. The C, has ™ 4+ 1 n-nodes (z

t=t,,, where

(13) tn B k(,)—z" ’ xﬂ = Spn (tn I.) I yn T 11’71 (tﬂ k)
(k=0,1, 2, -, o™).

22 Y, With the mn-nodal arguments

‘We have
(14) eat) = (1), () = P¥(?)
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for n-nodal arguments ¢, and further

—n

— —n —
(15> wn 2o wn kT sn k @y Y M1 yn E T @

(k=0,1, ", o**—1),

where the ¢, 5 , are signs to be determined. We write £ in the scale of w:

nk

i=2n

(16) k= {(llaz(lg e aZn—l azn} p— Zai‘uh—-i’

: i=1
where the «, are integers 0 =@, < w. For n =1 we have at once
(17) = (_1)@2 v e = (_ 1>a' ’

and so, for the general », in view of the sequential derivation of the C . from
the ' (m=1,2, ..., n—1),

l=n l=n

lzl:aﬂ ;aﬂ_l
(18) A S = (_ 1)_ y Tk = (_]')_ °

Setting for any ¢ (0=¢=1)
(19) t=1t ,+71,=ko™ 41,

2n

where 0 =1t = ™", we have

(20) e =9 )+e,0G@), YO =vE,,)+7,¥(E),

(21) Spn(t) =¢ (tn k) + en k Tna)n ’ ‘\Irn(t) = ‘\P (tn Ir) + D ke T”(I)" *
10. Avrithmetic-analytic determination of Peano’s curve O, —For t =1

The arguments ¢, 0 =¢ < 1, are written uniquely in the scale of w,

(23) t= { ° a1a2 T a2n—1a2n o } =;(li(()_i ’

where -the @, are integers 0 =, < w and where in no case is ultimately every

a, o — 1. For the 1-nodes with ¢t = { . a,a0} = {.a,a,} one has directly
(24) e({ @}y = =g, = (0 +H1=(=1)0}) 07,

(25> ‘\P({ * alaz}) = yl 13 = y] {alaz} = %—{1 - (—1 )rz] } + (_ 1)“1 “2(0_1 ’

formulas in accord with §9 (15, 16, 18). Setting
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. ;Zla2l l;a2l—l
(26)  e(O)=70=1, ¢(t)=(=1D7 , 7,(6)=(=1)
(n=1, 2, 3, )
and using several formulas of §§ 8, 9, 10, one has
(27) ¢(f) = Z_Oﬁp({ gy }) - €(8) 07
) : (0W=t-1)

(28) O = T 1)) 1007

11. A continuous representation of the tray (t=0) upon the wy-quadrant
(®=0, y=0).—For a simple extension of Peano’s curve (' over the first
wy-quadrant corresponding to the extension of the interval ¢ = 0 ... 1 over the
positive ¢t-ray, wherein we take the relations (6) of § 8 as permanent, we have as

definitions for ¢(t), ¥ (f) (¢ > 1)

(29) ¢(t) = o'g(w1), Y(t) = oY(o™>t)

where e is an (any) integer such that @*=¢. We thus have the desired single-
valued continuous functions ¢(t), y(¢) for t=0.— The functions @.(t) s (1)
are likewise extended. The relations (1-4, 5-8) of §8 and (29) of §11 hold
permanently for all ¢, ¢, ¢,, ¢=0.—One readily follows these extensions

graphically.  For instance, to the interval 0 =¢=w* corresponds the square
I=w=0, 0=y=o’.

12,4 continuous representation of the complete tline upon the complete wy-
plane. — Taking the relations (12) of § 8 as permanent we have as definitions for
et + ), Y&+ ) (U] > 1)

(o=l
) — b= (=1) * @(g(i+ o) — 1),

(w—1)e

Y(E +u)—d=(—1) 2 oY@ + o ¥u) — L)

(30)

where e is an (any) integer such that w*=u|. We thus have the desired
single-valued continuous functions ¢(z), y(f) for all real values of the argu-
ment ¢ To the interval of length w* and center ¢ = § corresponds the wy-
square of side «° and center (v, y) = (¥, %).—The functions ¢.(t) s Y (t)
are likewise extended. The relations (1-4, 9-12) of § 8 and (30) of § 12 hold

permanently for all ¢, ¢, ¢

s €
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II

Continuous curves having no tangents.

1. The surface-filling «y-curves ¢
w=¢(t), y=v()

of PEANO and of HILBERT give rise (as stated by each of them) to continuous
xt-, yt-curves X, ¥

v=¢(), y=v()
having no tangents. — We shall consider the curves X, ¥ associated with

Peano’s curve C) (I §§ 7-10), on the basis however of direct geometric
definitions.

2. We have at once Y defined as the point-for-point limit curve for n = oo
of the sequence of (broken-line) curves ¥(*) (n =0, 1, 2, -..)

y= \P1z(t)
connected with the respective curves O .
8. Geometric determination of the curves ¥ (with figures for the ¥ ©®):
w is an odd integer > 1. In the ty-plane we have the fundamental rectangle

B, (0=t=1, 0=y=1) of dimensions 1 x 1. We subdivide this into «°
rectangles R, of dimensions @™ x ™, and further into ® rectangles L, of

Ficure 4
a b

. 3 . 3
Line ¥, ) Line YZ( )

dimensions o™ x @™, and in general into * rectangles /2, of dimensions
o™ x 0" (n=0,1,2,...). A diagonal of a 2, makes with the z-axis an
angle whose tangent, the slope of the diagonal, is + " or — w".

Trans. Amer. Math. Soc. 6.



82 E. H. MOORE: ON CERTAIN CRINKLY CURVES [January

The unit-segment 0 =¢=1 of the t-axis is uniformly stretched and located
with the designation ¥, as the diagonal (0, 0) (1, 1) of £, Without change
of extremities ¥, is uniformly stretched, broken, and located as ¥'(*) or ¥,
(figure 4) traversing on their diagonals certain «® rectangles 2, ; these w?
R, are one from every vertical column of w R2,, and such that ¥, preserves its
direction through every node not on the boundaries y =0, y =1of 2Z,. A
similar treatment of the w? links of the broken line ¥, diagonals of the ®
rectangles 72, yields the broken line ¥, composed of «* links diagonals of cer-
tain ' ,. And so on.

The point (¢, y) = (¢,, 0) of the t-axis by this process determines for every
integer n a point V, = (¢, y) = (to, \[rn(to)> . One has

@ W, (t) — ¥, (8)| =2 0™
for all integers n,, n,, 7 (=0) and numbers ¢, ¢, (=0, = 1) such that
n=n, n,=n, 6, —t,| =™

The sequence { V,} of points ¥V, (n =0, 1, 2, -..) has for n = oo the limit-
point V= (t, \[r(t)) ,

@) V=LV, ¥0=L¥%0.

One verifies either geometrically or analytically the (notationally implied) rela-
tions of the curves and the functions * here introduced with those of part I. In
particular, the point V() of ¥, lies on an n-link of slope 7,(¢)- ", where, if
t={-aa,---a.---} (1§10),

l=n

2
) n,0) = (=1~

Only the node-points, ¢ = {.«a, --- (L,_,,LO} = {.a,--+ a,}, lie on two links; of

these two links the one with slope 7 (¢)- @" is the right link; the left link has
the slope == 7 (¢) - ©" according as @, =0.

4. Geometric determination of the curve X (@) (with figures for the X ®)).—
This determination is sufficiently indicated by the graphs of figure 5, the line

* One notes the formula

D(t) = (— 1) (ot — E(ot)) + 3 (1 —(—1)"") (0=t=1),

where for real arguments . E(w) denotes the largest integer not greater than u.
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X{» being the diagonal of the fundamental square. ~The functions ¢ (¢),
) (n=10,1, 2, -+ +) are introduced with obvious meanings.

Ficure 5
a b
Line X, Line X,
5. We have
) @ Puni(t) = ¢,(%), @ ¢(t) = p(w%) (0=t=0m),
(5) O Vi) = ¥ (00), oY= Y@t (==,

The curves ¥, , ¥ lie within the rectangle 0, 0) (@, 0) (0™, 1) (0, 1)
just as do the curves X , X within the rectangle (0, 0) (1, 0) (1, 1) (0, 1).
Hence

(6) Foalt) = g, (01) s (D) = glo) (0=r=0m).

Similarly the curves X, X lie within the rectangle (0, 0) (07", 0) (07" @™
(0, @™) just as do the curves Y, ¥ within the rectangle 0,01,0@1,1
(0, 1), and so

M @ ¢,(0) = ¥,(0), @ ¢(t) = () (0=t=em.

Further from considerations of central symmetry in rectangles with center at
(3> %) one has the relations (9-12) of I §8, of which we need (10):

(8) p0+¢l—0=1, YO +¥(1—H=1  ©=i=1.

6. The complete curves X, ¥ ; the continuous Junctions ¢(t) , Y(t) of the
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unrestricted real argument t.— We have as definitions of ¢(t), ¥(¢) for t >1,
t<0:

9 o(t) = ore(0t), Y(t) = oP(0™7) (t>1
where ¢ is an (any) integer such that 0*=¢,
(10) o) = —g(— 1), YE)= — (=1 (t<0).

Similar definitions for the ¢ (¢), v, (¢) being given, the relations 1, 2, 4,5, 6,
7, 9, 10, hold for all values of ¢, ¢, ¢t,, e. One easily follows geometrically
these extended curves as limit-curves. [These curves X, ¥ yield a curve ('
representing the complete ¢-line continuously upon the first and third wxy-quad-

rants. Cf. I§11.]

7. THEOREM.—The continuous curve ¥ has at no point V" a tangent; the
continuous function y = Y(¢) has for no argument ¢ = ¢, a derivative.— Instead
of this* we consider the closer theorem of §8. We desire results comparable
(cf. § 11) with those of WEIERSTRASS for his continuous function without deriva-
tive.

8. THEOREM.t—The continuous curve ¥~ with the equation

=¥

has the following properties:

* The proof of this theorem is very immediate. — Setting

P(t) —¥(u)

t—u

s(t, u)=
we have for three arguments ¢, <t<(t, s(¢, t,) intermediate in value between s(¢, t,) and
8(t, 1,). This remark, apparent geometrically or from the formula

s(ty, t))=;; 1 s(t, 11)‘} f——~ s(ty, 6),

t
due to THOMAE (DU Bois REYMOND, Mathematische Annalen, vol. 16, p. 121), shows that
if 9(¢) hasa derivative ¥/(¢) then v/(¢) is the limit necessarily existent of s(t;, f,) on the set
t, <t<f for t1 =t, z_t — In our case one finds easily in every vicinity of (every) ¢ nodal
values tl, t (t1 <t<t ) such that s(tl , { ,) is numerically as large as may be wished and
others ¢, ¢ (1'1 < t<t,) such that s(t1 , Z) is zero or of opposite sign from s(t, {,), so that
indeed 1,!/’(1) exists for no ¢.

This proof is suggested by that of STEINITZ (loc. cit., p. 65) — Indeed our function '(t) or

P(t; 0) is (for 0 =t=1) exact]y Steinitz’s function f(¢; d, - -+, d, -+, du2) (1. c., p. 64)
where S=0ynwir=(—1)%"" (g, h=1, 2, ---, ). It falls under the class of functions
f(t; .-+, 6,) recognized by STEINITZ (1. ¢., p. 67, 3 6) as having for no { a finite derivative,

but not under his class of functions having for no ¢ a finite or definitely infinite derivative (1. c.,
%7). However if in defining this latter class (1. c., p. 68) one stipulates merely that every An
shall be either of opposite sign from the correspondmg A1, or zero one has a wider class possessing
the desired property and including our functions ¥(t ; »).— The functions f(t; d,, ---, Jdn) may
easily be studied by the graphical methods of this paper.

t The parallel analytic statements as to the function (¢) are omitted.
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(a) ¥ has at no point 7~ a progressive or a regressive non-vertical tangent ;

(B) ¥ has at no point 7 both a progressive and a regressive vertical tangent ;

(v) ¥ has at and only at certain points ¥ = V(¢) vertical progressive or
regressive tangents :— the parameter ¢ of such a point V' (¢) being written in the
scale of w

t=+w™t, t,={aa,---a, a, -} (c ano(gi; );n:eger)’
there is no integer v such that for {=v ¢, is permanently @ — 1 or permanently
0, but there is an integer u such that for j=w either (v,) a,., is permanently
® —1 and a, not permanently ® —1, or (v,) @, , is permanently 0 and a,
not permanently 0, and further x, denoting the (largest) number (=0) of the
digits a,, (m =j+ 1, j + 2, ...) immediately succeeding a,; and in value in
the respective cases @ — 1, 0, the relation

L(j_/’bj)=+°°

j==

holds ; then, 7(¢) having the meaning 7,(¢,), i. e.,
l=u

2 a,
()= (-1~

Y has at V(f) a vertical tangent of slope 7(¢)- oo, which is (7y,) progressive or
regressive, (v,) regressive or progressive, according as ¢ is positive or negative.

(6) The points V(¢) of the curve ¥ separate into five sets: the sets of points
at which ¥~ has (3)) neither a progressive nor a regressive tangent; (§,, &,) no
regressive but a progressive tangent of slope + oo, — 0 ; (§,, 8,) no progres-
sive but a regressive tangent of slope + o, — 0. Each of these sets is every.
where dense on the curve 7.

The property (3) follows from (a, 8, v) immediately. At the point V(%)
the directed secant V(¢) V(t,) of the curve ¥ has the slope s(t, t,)

(11) s(t, t)= Y(t) =@

t, —t

In case’on the set ¢, > ¢ the slope s(¢, t,) (of the progressive secant) has for
¢, = t a limit either finite or definitely infinite (4 00, — 0 ),

(12) Ls(t, 6)=¥/(0),

then this limit -/ (¢) is the slope of the progressive tangent at V{(¢). The
similar limit y'(¢) (if existent) of the slope of the regressive secant from V{¢)
is the slope of the regressive tangent at V7{¢).
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The curve ¥ is odd, yo( —t) = — Y(t); the regressive (progressive) secants
at V(¢) (¢=0) have the same slopes as corresponding progressive (regressive)
secants at V(—¢t) (— t=0).

The curve I has the property y(¢) = o°y,(w=*¢) (§ 6) and hence the relation

(18) s(t, t) =0 s(0™%t, 0%t

between the slopes of the corresponding progressive or regressive secants at
V(t), V(e=>t) where t=1, 0= *t=1.
But further the property yr(¢) + Y(1 —¢)=1 yields the relation

(14) s(ty, t)=s1—1t,1—1¢) (0<Tt<C1)

between the slopes of the regressive secants at V{(¢) (0 < < 1) and those of the
corresponding progressive secants at V(1 — ¢).

We see then easily that the theorem follows from that part of it relating to
progressive tangents at points V(¢) (0=t <1).

9. The proof * of the theorem (§ 8) as to progressive tangents to the curve ¥
at points V(t) (0=t <1).—The argument ¢ (0 =¢ < 1) written in the scale
of o (1§10),

(15) t={‘alaz"’a2n—1a2n"'}’

is modal, if ultimately every a, is zero; otherwise it is say ordinary. The
points V7(¢) of the curve ¥ are correspondingly nodes or ordinary points.
The theorem for nodes. — The (general) node V(t)

t={.aqa--a,_ a,} (@zm—1azm) %= (00)

appears as a node on the broken line ¥, ; on ¥ (n > m) the progressive link
at V(¢t), a progressive secant of ¥, has the slope s(t, ¢ + 0=") = 7 (¢) - @"
(§8) while the secant-slope s(¢, ¢ + 2ww=*)= 0. Thus, at no node has the
curve X a progressive tangent.

The theorem for ordinary points. — The (general) ordinary point V(¢) has the
argument ¢,

t= {‘alaz"'azm—lazm"'}’

where there is no positive integer v such that either for every i (¢ > v) @, = 0
or for every i(i >v) a,= o — 1. We consider separately certain two supple-
mentary classes of ordinary points.

(Class A). There is no integer » such that for everyj (j=w)a, ;=0 —1,

1

* The reader is requested to have in vision the graphs suggested by the analytic phrasings of
the text.
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that is, there is an infinite sequencej , j,, ---, j,, --- of increasing positive
integfers J, such that a, , has one of the values 0, 1, ..., o — 2.— We say
that a point V(¢) of ¥~ corresponds to the n-link of ¥, on which its correspond-
ing point ¥ (¢) lies. An ordinary point corresponds thus to a definite n-link
for every n. Then for every [ our point V(¢) corresponds to one of the
Jlinks progressively sequent to the node V(t):

t=1{.aa,--- a%_l() .

These » links are the diagonals of  rectangles &, and together form the di-
agonal of a rectangle R of dimensions ®-©~% X ®-®™:; the nodal extremities
of this diagonal are V'(¢), V(¢,); the next o, -links form the diagonal of a
rectangle R of the same dimensions; its nodal extremities are V'(¢,), V(¢)').
Here we have

o=t a0, () = Y +alea = (1),
0=t oo, Y= V(). W= .
Setting

=t = 6007, W) — (1) = 600,
where 6,, 8/ are certain two numbers such that
0<6 <1, 0=0,=1,
we find for the progressive secant-slopes s(t, t;), s(t, t;") the values
s(t, t) =700, /0, st,t')=— il — 0)/(1+86).

These slopes to two certain points in every progressive vicinity of , V' (¢) are of
opposite sign (or one may vanish); further their difference taken numerically
increases indefinitely with /. Thus, at no ordinary point of class A has the
curve Y a progressive tangent.

(Class B). There is an integer u such that for every j (j=u) a, = —1.
We have in this case (necessarily) an infinite sequence j,, j,, -+, j,, --- of
increasing integers embracing of the integers j > w all and only those for which
ay=® —1. Forevery j(j> u) we denote by u, the (largest) number (= 0) of
the digits a,, (m=j + 1, j+ 2, j + 8, ...) which immediately succeed a,, and
are each @ — 15 thus p, =j, ., —j,— 1. For the j's (j=wu) the point V(t) cor-
responds to j-links of progressive slopes 7(¢)o’ = 7, ()’ all of the same sign
n,(¢). By consideration of the slopes to certain points in every progressive
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vicinity of V(?) we find on the sequence { #;} @ mnecessary condition that the
curve ¥ have at V(¢) a progressive tangent (necessarily vertical of slope
7,(t)- o ), and then we prove that this condition is sufficient.

We set and have

n=1,1), t=1{.a0a, - a'zl.l_lazjl} (a5, =0 —2),
l= b+ 0¥, (1) = (1) + o,

=4 o, V() = V(E) + o0,

=l ot — 0, ) =¥ (),

t,=1t+ 0,0 Vw7, V(&) = P(t) + 0o~ ow,

where 6,, 0 are certain two numbers such that
0<0, <1, o' =0,=1.

‘We have then

s(t, t)) =m0t (14 0,0™") | (1 + 01“’_%’_1) ,
8(ty ¢ )= w0, /(1 — o+ 91(0_2"1';_1) .

From the form of s(t, ¢,') one sees that if’ the curve ¥ has at the ordinary
point V (¢) of class B a progressive tangent its slope is 1 00 = 1) o,
and from the form of s(¢, ¢/'") that the u, have the property
(16) L —w) =+,

J==©
since j — u, = j, — p, for all j’s for which j, =j <j,, .
- Conversely, the curve ¥ has at the ordinary point V (t) of class B a pro-
gressive tangent of slope n,(t)-00 = 7-00 if the infinite sequence {p} deter-
mined by t has the property (16). We take the general argument ¢’ where
t <t <t+ o in the form

t'={. ylty - ay, -

2m—1"2m
and have for a certain integer /(¢') or say I (j,> u, I > 1)
a; = a,, aZjL>a'2jl (i==1, 2, ..., 2;—1),

so that indeed in terms of the earlier notation ¢, (with respect however to this
particular /)
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=1t + 60— @y — Do, Pt =(t) + 0'n(w — y — Do,

where 8, 6’ are certain two numbers depending each on ¢ and ¢’ such that
P g

We have then
s(t, t) = no?—r {6, + 0'(w — ty, — Dywii} /{00~ 7" 4 00 — a,, — 1)},
and further, since ,=w™", §,>0, =0, /=0, and by hypothesis
- LG —w) =+,
we have the desired conclusion

Ls@, &) =n o =1,t) .

t=t

The conclusions thus reached as to progressive tangents to the curve 1~ at
points V{(¢) (0 =¢ < 1) are those affirmed by the theorem of § 8. Hence that
theorem is now fully proved.

10. Z%he curve X.— By the use of the relation ¢(¢) = wY(wt) (§ 5) one
easily translates the theorem of § 8 concerning the curve } into an analogous
one concerning the curve X.

11. Comparison of tangential-properties of the curve ¥ and the Weierstrass
curve W.— WEIERSTRASS first exhibited (Cf. Crelle’s Journal, vol. 79, p.
29, 1875; Abhandlungen aus der Functionenlehre, p. 97) a continuous func-
tion of the real variable having no derivative, viz.

Jt) = i: b" cos (a'tm),

where « is an odd integer, b is a positive number less than 1, and ab is greater
than 1 4+ 7. He proved that the yt-curve W, y = f{(¢), has in the imme-
diate vicinity of every point secants progressive and regressive of slope numer-
ically as large as one will and of opposite signs. The curve W has then at no
point a tangent and at no point a progressive or a regressive non-vertical tan-
gent. So far as I know it has not been determined that at no point or at what
points the curve W has (1) a progressive vertical tangent, (2) a regressive vert-
ical tangent, (3) a progressive vertical and a regressive vertical tangent of oppo-



90 E. H. MOORE: ON CERTAIN CRINKLY CURVES

site slope (cusp with vertical tangent). — We have thus in these regards a closer
knowledge of our curve ¥, and this is true in comparison also with the other
continuous tangentless curves which have been exhibited.

12. The curve Y has within every interval for every given positive number
G points of arguments ¢, ¢, t, (t, <t < t,) such that s(¢, ¢), s(¢, ¢,) are of
opposite sign and numerically larger than @, for example, three successive nodes
of ¥, the n and the nodes being properly chosen (§3). Hence,* within every
interval for every constant C finite or definitely infinite a point V(¢) exists such
that in every vicinity of ¥/(¢) the slopes s(¢, ¢)) are dense at C.

13. We inquire whether there exists a zt-curve of the equation z = x(¢),
where x(¢) is a single-valued continuous function of the real variable ¢, such
that in every vicinity of every point (z, ¢) of the curve both the progressive
and the regressive slopes s(¢, ¢,) are dense at 4 oo and at — oo . Vo such curve
exists, since on every interval i every continuous function x(¢) assumes for some
value ¢ = ¢’ of the interval a maximum value and then at the point (2/, ¢') of
the curve z = x(t) the secant-slopes s(¢, ¢,) to points (z,, ¢,) of argument ¢, of
the interval ¢, if progressive, are all negative or zero, and, if regressive, are
all positive or zero.

THE UNIVERSITY OF CHICAGO.

* By an obvious generalization of a theorem due to KiNTG (Cf. p. 12 of the memoir, Uber stetige
" Functionen, die innerhalb jedes Intervalls extreme Werte besitzen, Monatshefte fiir Mathematik
und Physik, vol. 1, pp. 7-12, 1890).



