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THE RECIPROCITY FORMULA FOR DEDEKIND SUMS.*
By L. J. MoRDELL.

Let p, g be two positive integers without a common divisor. It is well
known that

(1) g[qw/p] +g[py/q] =(p—1)(¢—1),

where [2z] denotes the integer part of z. There exists another result of this
type discovered by Dedekind in discussing the linear transformation of the
modular function log 5(w), one form of which is

(?) qgw[qz/p] + pgy[py/q] = {(p—1D(@—1DBpg—p—q—1).

Rademacher [2] made a detailed study of this result and has published some
five proofs. One is a joint proof with Whiteman, and the last has only just
appeared. Some of them are arithmetical in character and quite simple.
Another proof has just been given by Rédei [3], and a generalization by
Apostol [1]. T notice, however, an entirely different way of considering the
subject which is no less simple and relates the result to more general and
obvious ones.
Let us consider the sum

(3) S=§ (gz + py)

extended over the integer sets (z,y) or say the lattice points P lying in the
region K defined by

<<y, 0<y<yg, g+ py<py,

and so if O, 4, B are the points (0,0), (p,0), (0, ¢) respectively, K is the
open triangle OAB. We call K’ the open triangle ACB where C is the point
(p,q). We have a 1-1 correspondence between the lattice points P(z,y)
in K and P’(2,4!) in K’ given by

e+a'=p,  y+y=g

Since K and K’ together contain (p—1)(¢—1) lattice points, K
contains exactly $(p —1) (¢ —1) lattice points.

* Received December 5, 1950.
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594 L. J. MORDELL.

It is well known and obvious that the formula (1) states that the
number of lattice points in K + K’ is the sum of those in the open triangles
0AC and OBC.

In (3), we note that

% z =:2:x[q— qz/p] =§(Z7—5”) Lgz/p]

since [q¢ — qz/p] values of y correspond to given z. Hence
-1 g1
S§=qx (p—o)lga/pl +p 2 (4—y) lpy/q]

= pq( ::211 Lgz/p] + (:21 [py/q]) —gqx[qw/p] — gpy [py/q]-
Then from (1) and (2), we have
8 =pe(p—1)(¢g—1)—3pq(p—1)(¢—1) + Hp—D(@—D(p+g+1),

and so
(4) 8 =13pg(p —1)(¢—1) + &%p—D(¢—D(p +q¢+1).

Thus the proof of (2) is reduced to the evaluation of the sum (8) as
given in (4).
We solve now the more general problem of evaluating

(5) T=§f(qw+py)

where f is an arbitrary polynomial and the summation is extended over the
lattice points in K.

Write ¢ = gz + py for lattice points z, y in K so that & is not divisible
by p or ¢ and 0 < £ <pq. Then the numbers pqg — & cannot be represented
in this way. For

if pg—¢&=qX + pY, then pg=gq(z+X) +p(y+7Y),

and so # + X =0(mod p). Then z + X = p and similarly y 4 ¥ = ¢, and
this is clearly impossible. The number of £ is $(p —1) (¢— 1) and so the
¢ and pg— € are (p—1) (¢ —1) in number, and so together they are pre-
cisely the integers X not divisible by p or ¢ in the interval 0 < X < pq.

There is, however, such a representation for the numbers 2pg —&.
Write ¢ = g’ + py’ for lattice points 2/, ¥ in K’ so that pg < & < 2pq.
We have now a 1-1 correspondence between the representation of ¢ and &
given by

dte—=p Y+y=9 E+E=2g
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We prove two fundamental formulae. The first is
¢-1 p-1

(7) ”2_1 Elf(qw—l-py)—zf(ﬁ) + 27 (2pg—9).

The left hand side.consists of two parts corresponding to gz + py < pg,
and to pg < gz + py < 2pq. The first is X, f(£€), and on putting 2 — p — o/,

K

y = q —y’, the second is % f(Rpg—¢&).

We prove next that

®)  SHE) =S 1eX) =S X)) =S 1E) + Sira—9).
X=1 X=1 X=1 K K

The left hand side of this is X f(Y) extended over the numbers ¥ in
0 <Y < pg—1 and not divisible by p or q. These numbers ¥ can be
written as & or pg — £ since the numbers ¥ in 0 < ¥ < pg — 1 which cannot
be represented by ¢ are given by pg— ¢ This gives (8).
The two equations (7), (8) determine 2 f(€) for any polynomial f(£).
Take f(&) = &2, then (7) becomes
g-1 p-1

> X (qw+py)2=§éz + §(2m_§)2

y=1 =1
and so

1 (q—Dp(p—1)Rp—1) + $p*(p—1)q(¢—1)(Rqg—1)
+ 3p*¢*(p—1)(g—1)
=2 %sz—‘ipq% £+ Rp*¢*(p—1)(¢—1),

since K contains 4(p —1) (¢ —1) lattice points.
Hence

(9)  F@—DE—DRp—1) +{p(p—1)(¢—1)(Rg—1)
—3pg(p — 1)(g—1) =2/(pg) Se—43¢
Next (8) becomes

pg-1

2 X2 —¢? EXz—p 2X2 %&H—%(pq—é)z
or
tpg(pg—1) (pg —1) —3¢*p(p—1) (Rp —1)
—§p°q(q—1) (¢ —1)
=2%éz—%q§£+%p2q2(p—1)(q—1)~
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This becomes

(10) F(pg—1) (pg—1) —sg(p—1) (Rp—1) —Ep(¢—1) (2g—1)
—3pg(p—1)(¢—1)
=2/(pq) §$2—2§S-
These two equations (9), (10) determine X & X €% and give the result (4).
Thus (9) is kX
a1 #(p—D(@—1)(—8pg—p—q) =2/(pg) Z&—434
and (10) is

(1R) F(p—1)(¢g—1)(—pg+1) =2/(pq) % 52—2%5

In fact the left hand side of (10) vanishes when p =1 or ¢ =1, so we
can write it as $(p—1)(¢—1) (apg + b(p + ¢) +7¢), Where a, b, ¢ are
constants.

Equating terms in p%¢% p + ¢, 1, clearly

1 ¢
PR

|0

a_
6
and so a——1, c—1, b—0.
Hence from (11), (12)
a3) 2Se— 34— 1) (— 1) (pa+p+a+1)
(14) ¥/ (pg) 2€=1%(p—1(—1Gprtp+a+2).

The result (13) is the required result (4).
It is also clear that on taking f(&) =& in (7), (8), the equations
determine 3 &2, 3 &1 when we know the values of 3¢, 0 < r < 2n —2.
K K K

If,‘however, in (7) we replace the function f(¢) by f(¢§¢—pq) and
subtract from (8), we have

(15) X () —ZF(é—p9)
K K

g-1 p-1

—S1@ —E1e0 —E 10— Bitw+w—r0.
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Write in the usual notation for the Bernouillian polynomial B,(z),

(16) tete/ (¢t —1) = 3 B (o) t"/n,
so that
to'o — 3, (Bu(e 4 1) — Ba(2))t/nl,  Bu(w+1) —Ba(z) — na™ .

If we take f(X) = B,(1 4+ X/(pg)) in (15), we have the explicit formula
for D &t This takes the shape
I3

1367 = Bu(p) — 7" Ba(@) — Ba(p) + (p0)™Bu(1)

q-1 p-1

— 2 X2 Bu(z/p+9/9),

y=1 o=1

on noting that

p-1

3 Bu(@ + 1/p) = Bu(p2) /1"
(as remarked to me by Professor Rademacher).

We can also find an explicit formula for

prHignt % Bu(z/p +1v/9)

as a polynomial in p and ¢q. One of a different type has been given by
Apostol for odd n by using in a different way lattice points in a triangle.

As well known, B, (X) = (—1)"B,(1— X), from (16). Hence when n
is even, we have at once from (8),

23 Bu(a/p + 4/9) = 3 Ba(X/pg) — S Bu(X/p) — S Bu(X/9).
K X=1 X=1 X=1
To find the result for all n, write (15) as
17y X2f(&/pq) —Zf(é/pg—1)
K K
=S X ) — S 1 X p) — S5 (X)) — S SHEX/p+ ¥/g—1).
X=1 X=1 X=1 Y=1 X=1

Write By(X) = b,X"* 4 by X** 4 - - 4+ b,. Take
f(X—1) = (bu/{n 4+ 1})Bua(X) + - - - + (bo/1) B1(X).
Then
f(¢/pq) —f(&/pq —1) = by/{n + 1} (Buin(¢/pq + 1) — Bua (£/p9))
+ = 0a(E/pg)" 4 baa (§/p0) " 4+ - = Bu(é/pq)-
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Since we can put ¢ = gz + py, the result is given by (17) on summing for
X ete.

UNIVERSITY OF PENNSYLVANIA.
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