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Abstract: Given a degree one normal map and a closed manifold one can
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of the obstruction of the original normal map and invariants of the
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only on the original obstruction and on the de Rham invariant of the
closed manifold. We give an example of the last type where the resulting

product obstruction is non zero.
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INTRODUCTION

The first product formula for degree one normal maps was used by
Sullivan in his analysis of the Hauptvermutung for simply connected
manifolds. He wanted to treat the Kervaire invariant for normal maps
between two dimensional manifolds by high dimensional techniques. To do
this he proved, using a geometric argument, that crossing with ¢P2 pre-
serves the Kervaire invariant. The analogous statement is obvious for
the signature obstruction. This four-fold "geometric periodicity" formed
in fact, one of the cornerstanes for his geometric analysis of the homo-
topy theory of the "universal classifying space" in surgery theory, G/PL.
Wall generalized this to normal maps between nonsimply connected manifolds.
He showed, by a geometric argument, that crossing with GPz preserves the
nonsimply connected surgery obstruction, [15].

The first general product formula is a consequence of the multiplica-

tivity of the signature for closed, oriented manifolds:
I(M X L) = I(M)-I(L).

From this it follows that if f£: M" > N" is a degree one normal map with N

L

simply connected, and if L™ is a closed, oriented, simply connected mani-

fold, n+ ¢ = 0(4), then

(¥) (surgery obstruction of £ x 1, MXL>N X L) =

(surgery obstruction of f) -I(L)

(The surgery obstruction of f x lL is %[I(M X L) - I(NxL)].) (%) is
also valid for n + g = 2(4) where the surgery obstruction in dimension
4k + 2 is the Kervaire invariant [11]. There are essentially taa‘;ypes of
proof of this formula (as well as all other product formulae): a geometric
proof and a homotopy theoretic proof.

The geometric one has its origins in the idea of Rourke and Sullivan
[11] that one can give an a-priori, geometric calculation of the Kervaire

obstruction for a normal map. A-priori means calculating the obstruction
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hefore doing surgery. Geometric means using special cycle representatives
for hemplogy classes to calculate the "extra quadratic information" on the
middle dimensional homology,which in turn algebraically determines the
Wervaire obstruction. In their case, the special cycles are manifolds

wf one half the dimension of the normal map, which are immersed by using
the bundle information of the normal map. The Z/2-quadratic form 'is the
fumber of double points of the immersion. One then proves the product
formula for the Kervaire invariant of f X le M X L~>N XL by using
produst cycles in M x L and examining their double points. Thus the
problem is reduced to that of proving a "local product formula" for the
product of immersed cycles.

The next child in the lineage of geometric product formulae is the

~#aleulation by Sullivan and the author, [9], of the product for normal
maps between Z/k-manifolds. The ideas and techniques follow those of the
fourke«Bullivan closely. The crucial case is odd dimensional. The a-
prlori, geometric information provided in the odd dimensions by the bundle
WAp L8 a set of embedded manifolds equipped with nowhere zero normal
fimlds, Using these one obtains a "quadratic refinement" of the linking
palring on the torsion subgroups. This refinement determines, in a purely
algebraic manner, the surgery obstruction. In a product situation, the |
problem is again reduced to that of proving a "local product formula" (but
this time, for the product of an immersed manifold with an embedded mani-
fold with normal field).

In both these situations one makes use of two fortuitous factaqs
Firmt, all the algebraic information needed is quadratic in nature and
therefore subtle only at the prime 2, whereas it is only at the prime 2
(L., only after ignoring odd multiples) that one can assume that all
vyrles are singular submanifolds. Secondly, the structure theorem for
finltely generated abelian groups allows one to control the effect on

integral homology of surgery.




The main result of this paper is to calculate the surgery obstruction
of the product of a non-simply connected normal map and a closed, simply
connected manifold. If f: M" » N is a degree one normal map with surgery
obstruction g(f) € Ln(nl(ull, and if Lj is a closed, oriented, simply
connected manifold, then g(f x lL) € Ln+£(nltn)) is calculated in terms of
o (f) and homological invariants of L*. The idea is to use the bundle
information, as in the two previous instances, to give quadratic refine-
ments of the linking and intersection pairings (this time over the funda-
mental group) and to use these refinements to furnish an a-priori, geome-
tric calculation of the surgery obstructions. The fact mentioned above
concerning quadratic forms, the prime 2, and representability of homology
classes localized at 2 by manifolds is germane to this discussion, too.
However, the results concerning the effects of surgery on the kernel groups
have no general analogue for nonsimply connected normal maps. This makes
a general a-priori definition of the surgery obstruction difficult. The
problem is avoided by assuming that all the kernel modules have the
abstract properties of abelian groups. On the basis of this assumption,
we give an a-priori, geometric description of the algebraic forms which
determine the surgery obstruction.

While this assumption does not hold in general, any product situation
can be tailored into a product situation in which it is valid. Once we
have the description, we need only prove the "local product formula" which
evaluates the forms on product cycles in M x L in terms of invariants of

its factors. Our results are summarized in the following theoremq§
‘\i.)
Theorem: Let L be a closed, oriented, simply connected manifold, and
let £: M" > N" be a degree one normal map with £/3M: aM + aN a homotopy
equivalence. Denote by I(L‘) the signature of L if g = 0(4), and by
d(L‘J the de Rham invariant if g = 1(4). These are both invariants of the

homology of L together with its Poincare duality pairings. Denote by




——

(£) Vhe aurgery obstruction of £ in L (m, (N)), and by o(f x 1;) the

Wrgery ahabruetion of £ x 1, in L . (n, (N)). Then

0 for g = 2, 3(4)
olf x lLl - o(f) -1(L) for g = 0(4)
@ (o(£)) -d(L) for g = 1(4)

® ! ‘i“{ﬂ, - LR+1{HJ is a natural homomorphism for all k and n

Bp(n) » 0 for all x € L, (n).

© MHesunted in terms of groups instead of elements, this theorem says

4 the homomorphism induced by crossing normal maps with manifolds
w
L (n) e n.!ﬂ__’-l'n-lrj. (n)

#fien
1) w=0 if g =2 or 3(4), and

#) the following diagrams commute

Ly(m @ 0y ———> L ., (v
Id ®» signature l/=
p—
L (n) ez L (m)
Ln.(", ® Qg1 Lniggn (n)
Id 2 de Rham inv. \L: 2\1

Ln(ﬂ) 2 %2 — @ 5 Lol (m) .

This theorem gives a complete formula for the effect on surger'y“

#bstructions of crossing with a simply connected manifold except for th;

faeh that g 18 not known in general. It does show, however, that the |'
#hly possible invariants of the simply connected manifold which can come .
ints play are the signature and the de Rham invariant. If these two

invariante vanish, then the surgery obstruction of the product is zero.
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@ 1is known to be zero (i.e. the de Rham invariant has no effect) in many
cases. But for nl(N) = %, with the generator an orientation reversing

loop (this situation is denoted (%,-)), ¢ induces an isomorphism:
B 1
0 L3(z,-) "——:"'L4(zq—) .

This gives an example in which crossing with an odd dimension manifold
does not annihilate the surgery obstruction. The theorem and the calcula-
tion of ¢ are also valid if we begin with a normal map which is a simple
homotopy equivalence on the boundary and compute the surgery obstructions
in L} (n) .

The first general product formula of this type was announced by
Williamson in [16] for the case of an odd dimensional normal map crossed
with an even dimensional manifold. The result is the same as the one we
obtain in the case (i.e. multiplication by the signature). It seems from
the sketch of the proof given there that Williamson had in mind an
argument similar to ours. Using the idea of crossing with Sl, Shaneson,
[12], extended Williamson's argument to the case of crossing any normal
map with an even dimensional manifold. This gives results only about
surgery obstructions in L, (n) not in L:(n), however.

This paper can be outlined as follows. Chapters I and II show that
the usual analysis of simply connected surgery--using intersection and
linking pairings both to study the effect of low dimensional surgery and
to find the obstruction to doing middle dimensional surgery--remains valid
in the nonsimply connected case, if the kernel modules have the abstract
properties of abelian groups. The remainder of the paper demonstr;gés
that in the product situation the kernel modules have these properties.

It also evaluates the pairings which determine the surgery obstruction.

1
This calculation is a reinterpretation of the connection between the
Kervaire invariant and the signature described in [9], see also [8].
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More eMplicitly, section I.1 sets up the notation (we follow Wall's

ahion, [18)), and recapitulates some of the fundamental theory of [15]
W will use.
f#stion 1.2 introduces the assumption that all the kernel modules
the abstract properties of abelian groups. Normal maps with this
#f kernel modules are called nice, normal maps. We prove that
Ahort exact sequence of the usual universal coefficient theorem is
# in the context of such kernel modules. From that we prove that
# Are non.singular linking and intersection pairings on the kernel
Mles, as in the simply connected case, which capture all of Poincare
liby, These pairings form the basis for the analysis of the effect of
surgery. All is the complete analogue of the simply connected case.
In section I.3, we calculate the effect of low dimensional surgery
# nioe normal map. Here we generalize the theorem in the simply
#bed case that one can do the surgery until the only non zero kernel

lé Ls in the "middle dimension" while keeping track of the kernel

8, their linking and intersection pairings, and p-bases. In the

#dimensional case, we are able to replace a nice, normal map

n'“'l » ¥°™1 up to normal bordism, by £': M' > N such that

0 ign
K, (£') =
Tor'Kn(f) i=n

smueh that the self-linking onTor Kn(f] is unchanged. 1In the even

menmlonal case, we replace f: Mzn » Hzn by £': M' = N such that *“.

0 i#n
K, (£') =
Kn(f)/Tor i=n

¥he intermection pairing on K (f)/Tor is the original one.

In section II.1l we use the analysis in chapter I and the Rourke-

ix




Sullivan immersed cycle idea to give a geometric, a-priori definition of
the surgery obstruction in LG(n) (or L;n{n)} for an even dimensional,
nice, normal map f: M2n > N2n_ The idea is to define the self-intersec-
tion form, bgs ON Kn(fi thus producing a triple (Kn[fJ/Tor,L,uf} before
doing the low dimensional surgery. The element this triple determines in
LG{n] (or L:n(n]] is the wall surgery obstruction for £. To prove this,
we use the results of section I.3 to replace f by an f' with g(f) = g(f')
and Kn(f') = Kn[f}/Tor without disturbing the ) or y-form. The argument
is completed by showing that Wge on Kn{f)/Tor agrees with Wall's , -form
for Kn{f').

In section II.2 we give the a-priori definition of the surgery
obstruction in the odd dimensions. Here our formalism differs from Wall's,

2n<l @201 e find a triple

Associated to a nice normal map, f: M
[Tor Kn_l(f),g,qf]: £ is the non singular linking pairing,
t: Tor Kn_l(f} X Tor Kn_ltf) + Q/Z = 5, and qg is an a-priori, geometri-
cally defined quadratic refinement of . qf is algebraically determined
on the odd torsion by 4. On the two-torsion, we use cycles which are
embedded submanifolds with nowhere zero normal fields coming from the
bundle data. The normal field allows us to push the submanifolds off
themselves to gain the "extra factor of 2" required to define qf. We
then sketch a proof that this triple algebraically determines the Wall
surgery obstruction-~though we do not make use of this in the sequel.

In section II.3 we discuss when the triples defined in II.l and II.2
determine the zero surgery obstruction in Ln(ﬂ) (or L:(n)). For, ?he
even dimensional case (G,)\,,) determines 0 in LG(nJ if and onlyzif
there is a "subkernel"” K ¢ G. (That is a submodule K of G with
AKx K=0, ,/K =0, and Ad(A)K » (G/K)* an isomorphism.) This is just
Wall's condition. For the odd dimensional case, (Tor Kn_l,g,qf} deter-

mines 0 in L2n-1("" if and only if there is a resolution




[ An-l = B se—dwiTar Kn_ltf) —>0 ,
il F,., free p-modules, and a pairing
I: F _, XF _,—>Q®)

" 4 and Qg in an appropriate sense, so that

*
Ad(I): An—l_h’-?n-l

smerphiam,

I.hl’i.l' I1I, we change from non-simply connected surgery theory
#d, elosed, simply connected manifolds. We study algebraic

# of their Poincare duality intersection and linking pairings.
riants interest us: the signature, in the case of symmetric
bion pairings (4k-manifolds), and the de Rham invariant, in the
Shew=pymmetric linking pairings (4k + l-manifolds).

@hApter 1V we give the proof of our product formula. 1In section

2n _ .2n

ghow that if £: M N is a degree one normal map, then

0 for g = 2,3(4)
olf x 14) = o(f)-I(L) for g = 0(4)

0 for g 1(4) 4if d(L) = 0.

We entablish a "local product formula" which evaluates the pairings
#ir quadratic refinements in a product situation. Then, the results

Mpters I and II are applied to this formula in order to prove the
%

v
i >

We oan amsume £ is n-connected and that Kn(f} is a free p-module
& nun=mingular intersection pairing, Aes and a y-form, s The
| modules for £ x lL; are Kn(f} @ Hilbll. The intersection and
iny ymirings are the tensor product of those on H‘(L) with 1£. 1f

0(#), then
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pfle(x ®Y) = uftx)-(y-y} .

If g = 3(4), or if g = 1(4) and g(y,y) = 0, then

qfletx @y =pu.(x) ® 2ly,y).

This leads to the following two results. If g =0 (2) and I{L‘) = 0, then

let K c H (L) /Tor be a subkernel. We can use

/2
Kn(f} ® KCr-Kn(f) 2 I-!M2 (L) /Tor = Knﬂ/ztf x IL}/‘I‘or as a subkernel to
show g(f x LL) = 0. If g = 1(2) and d(L) = 0, then there is a product
. £

resolution for Tor Kﬂ‘*(.l-l]/z{f x IL) (= Kn(f) @ Tor H{.{,-—l)/2 (L*)). This
product resolution admits a pairing into @ @ p which "lifts" the linking
pairing and its quadratic refinement, and is non-singular. This proves
olf x 1L) = 0, There is a slight twist here in that the pairing is not
always the tensor product of ;f with a pairing on a resclution for

Tor H (L) in case ¢ = 1(4). This is a consequence of the fact that

(g-1)/2
t(y,y) is not identically zero in this case. When d(L) = 0 though, g(y,y)

is zero for enough elements y (for at least % of some generating set)

to allow a proof that the pairing is non-singular. By a simple additivity
argument, we go from the above two results to the statement of the main
theorem in the case of an even dimensional normal map crossed with any
closed, orineted, simply connected manifold.

The case of an odd dimensional normal crossed with any closed, orien-
ted, simply connected manifold is dealt with in sections IV.2 and IV.3.

When considering an odd dimensional normal map, we first do surgery \htil

i M2n-]. 5> en-1

£ N is (n-l) connected. Then, we cut out a regular neigh-

borhood, U, of a union of spheres [52-1] which generate Kn_l{f). We can

assume that U is homotopy equivalent to a wedge of spheres and that

£|U: U ~» DZ"'lc.,.N. Let M) be M - U, and let N, be N - D. All the

kernel modules for f: M_ - N, are zero except for

0




O K (Mo, 8M5) —>K__, (M) —> K, (M.)—>0,

#re nll free based p-modules. We let LY be a simply connected mani-
Whuse signature or de Rham invariant is 0, and we form the product

) map of palrs M_ x L ~» Nu X L. This map is not a homotopy equiva-

0
uh the boundary. In terms of either a resolution for

l‘-ll/?lb‘, with its non-singular pairing, or a subkernel in H;/z(hl}’

# n oanonical normal bordism, W, of the normal map on the boundary

Bimple homotopy equivalence. We study the question of doing surgery
NLyW N x L

N we have a normal map which is a homotopy equivalence on the

fry. A study of the kernel modules of this normal map reveals that

#re products of Kn(Mo,a) or Kn—luﬂu) with groups associated to the

¥y of L. The problem is once again reduced to a "local product

"y This time, however, things are complicated somewhat by the

At W is not a product. We show, in the end, that it is always

le to do surgery on this map to make it a homotopy equivalence of

This leaves the "other side”,

2n-1
X

WyUxL—>D L.

# normal map into a simply connected manifold and is a homotopy equi-
# on the boundary. If(2n - 1 4 g)is odd, then we can automatically
gery on this normal map relative to its boundary. If(@2n - 1 + jg)is
then the only obstruction is the signature or Kervaire invariant.
Wiify this obstruction with the signature or Kervarie invarian%hbf

* M » L, The latter vanishes by the product formula for these

Lanin,

inh ehapuer V we consider the example of normal maps of manifolds with
#nkal group % and generator orientation reversing. We identify

#) with /2 by the Kervaire invariant along a codimension one sub-
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manifold dual to the generator of me We identify L4 (Z,-) with Z/2 as
follows. Take a codimension one submanifold dual to the generator of "
and make the normal map a homotopy equivalence there. Then cut the map
open along this manifold to obtain a normal map between oriented manifolds
which is a homotopy equivalence on the boundary. Take the signature
obstruction of this and reduce modulo 2. With these descriptions the
connection between the Kervaire invariant and signature of [9] is easily

translated to: gt L3{l,-) » L4{in-} is an isomorphism.
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A PRODUCT FORMULA FOR SURGERY OBSTRUCTIONS

CHAPTER I: Preliminaries

+ Throughout this paper we use the notation and
[18), The purpose of this section is to set up this notation
#oma of the more important results which we rely upon. A

y hogmAl map or, normal map for short, is a diagram

mi

S —
u £
" 1

m“: “nl E————— ('n.t .Nn, ’

bed by (£, )¢ (M,3M) > (N,3N) or by £: M > N. Here M and N
Ma) f is a degree one map of pairs; and f is a bundle map
f. This forces ¢ to be fiber homotopy equivalent to y.. A
A#m between two normal maps is just a2 normal map into N X I
&he two ends is the two given normal maps.
are algebraically defined groups, L;(ﬂ) and L_(n), depending
# #&nd the residue of n modulo 4. If f: M > " is a simple
#qulvalence (or homotopy equivalence) on the boundary, then
Whe surgery obstruction for £, g(f) € L2 (m, (M) (or
tullli}) + This element is the only obstruction to r-placia'g» £
f' whioh is normally bordant to £ relative 3M and which is
hematopy equivalence of pairs (a homotopy equivalence of pairs),

.

§, Purthermore, all elements in L:{f;) (or Ln(“}) are surgery

by the editor May 23, 1977 and, in revised form, Nov. 21, 1977.

“ﬂ'f was partially supported by the Sloan Foundation and NSF grant
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obstructions of a normal map. Thus, to study I.;(n) or Ln(n) it suffices

to study normal maps in dimensions greater than or equal to 5, and con-
versely. Throughout this paper we assume that all our normal maps are of
dimension at least 5. The process of building the normal bordisms from
f to a simple homotopy equivalence, or, in fact, any more highly
connected normal map is surgery.

We denote the integral group ring Z{n) by jA. We equip w with an
orientation homomorphism w: 7 »+ (+ 1), and j with a canonical anti-
involution, a + @, which sends ¢ ng, »> x wig,)n, 9;1. For n = 2k,

L (n) and L>(n) are defined as follows. Form the semi-group under ortho-
gonal direct sum of triples (G,A,u) such that

1) G is a free p-module (with a simple equivalence class of bases

in the case of I';k (m)):
2) At G XG>y is
a) p-linear in the second variable,
») Alx,y) = (-1)" X(y,x), and
c) ad(pr): G » chﬁ (G,p) is an isomorphism (simple isomorphism
in the case of I':k (m)):
3 wr6>Q =p/v - (-1*3J) satisfies
a) ux) + (-1 76 = alx,x) in y,
b) plx+y) -px -puly) = [A(x,¥)] in Q> and

c) pixa) = a(x)a for a € 4.

Loy (n) or L;k (n) is the associated Grothendieck group modulo one relation:
hyperbolic forms are set equal to zero. A triple (G,A,u) is hyperbolic

if there is an isomorphism from it to a direct sum of copies of

0 1
(A ® A with basis (x,y), A = X y px) =pu(y) =0).
(1) 0

In the case of I';k (n) this isomorphism must be a simple isomorphism of I

|



A PRODUCT FORMULA FOR SURGERY OBSTRUCTIONS 3

based p-modules. Wall proves that a triple (G,A,u) determines 0 .in
L2k(n) if and only if it has a subkernel. A subkernel is a free submodule
K c G on which ) and , vanish identically and such that

ad(A) : K > Hom(G/K,p) is an isomorphism. In the case of Lgk(n), K must
be equipped with a basis so that ad()) is a simple isomorphism of based
p-modules. Given such a subkernel, K, (G,A,u) is actually isomorphic to
a hyperbolic form.

A normal map f: M2k > Nzk determines an element in L2k(n1(N)) if
f|aM is a homotopy equivalence, and in Lgk(nl(N)) if f|aM is a simple
homotopy equivalence.

If £ is a normal map, then f_: Hi(M;A) » Hi(N;A) is always onto.
We denote the kernel of f, on Hi by Ki(f). If f|aM is a homotopy equi-
valence, then one can do surgery to make Ki(f) =0 for i #k (i.e.
£ Hi(M;A) -> Hi(NfA) an isomorphism for i # k). Furthermore, one can
make Kk(f) a free p-module. ): Kk(f) X Kk(f) + A is the usual intersec-
tion pairing (over the fundamental group) of middle dimensional cycles.
To define ) (x,y) one takes based, oriented, simply connected cycles,
xk -+ M and Yk > M, representing x and y. By a slight shift of Yk we
can insure that xk and Yk intersect only in isolated points where two
k-simplices meet transversally. Associated to such_a point p is gpgp'
with & = + 1 and gp €m. The & measures the usual compatibility of
orientations when the local orientation at the base point is moved out
along a path in Yk to p, whereas gp is the class of any loop beginning at
the base point traveling in X to p and returning in Y to the base

b

point. Alx,y) = T ¢_ 9 . To define ,, the self-intersection
points of PP
intersection, p

~ \\
form, we use the bundle map f covering £ to immerse a sphere repre-
senting any x € Kk(f), skcﬂs-uzk. Then y, (x) is the self intersection of
this sphere. It is defined by making the immersion have only transvérsal

double points, associating to each double point [.pgp] € Qk’ and addfuéﬁ




4 JOHN W. MORGAN

over the double points. The group elemt.mt gp is defined by starting at
the base point, moving out along the Sk to the double point, switching
sheets, and coming back to the base point along Sk. The 'p measures the
sign of the two oriented, intersecting sheets when the local orientation
at the base point is pushed out to the double point along the second half

of the path.

2 local orientation

base point

If f|3M is a simple homotopy equivalence, then the chain complex
for £, C_ (f), has a geometric basis. Poincare duality is a simple iso-
morphism in this basis. If Ki (f£) = 0 for i # k, and Kk(f) is free, then
Cc,(f) induces a simple equivalence class of basis on l{k(f}, (the one with
the property that choosing cycles representatives for the basis defines
a simple chain homotopy equivalence Kk(f) > C,(f)). With this hasi;‘-bn

l(k(f] , the adjoint of ) is a simple homotopy equivalence

Kk(f) > HomA (Kk (£),A) = Kk[f}*. The class in Loy (n) of the triple
(Kk{f),m,u) is the surgery obstruction of £, if f|3M is a homotopy
equivalence. Equipping lﬁ((f] with its basis and taking the triple in

L:k (n) gives the surgery obstruction, if f|3M is a simple homotopy



A PRODUCT FORMULA FOR SURGERY OBSTRUCTIONS L

equivalence.
For n =2k + 1, Ln(") and L:(n) are defined by considering subkernels

in the standard hyperbolic form. Let Ht denote the hyperbolic form:
1) @ A with basis [el,...,et,fl,...,ft};
k
2) A(ei:ej) =0= A(fi:fj)s k(ei’fj) L Oij, and )'(fi’ej) = (-1) oij:
3) pley) =0=4(£).

Then, an element in Ln(-n) is determined by a subkernel K c Ht, and an
element in L:(n) is determined by a based subkernel in Ht' The algebraic
relations which tell when a subkernel determines the zero element in

L (m or L: (n) are complicated and do not concern us here.

2k-1 N2k+1

determines an element in L, (n) or

A normal map f: M X+l

L;k+1 (n) as follows. We can do surgery until Ki (£) = 0 for i < k. Let
[S]{, ,St] be disjointly embedded k-spheres representing a generating

set for Kk(f) . We can assume that f maps tubular neighborhoods of these
spheres to a fixed disk in N. Cut out the union of the interiors of
these tubes (denoted U) from M, as well as the disk from N. Denote by
Mgk”' iyﬂgkﬂ' the normal map restricted to the complements. The
bundle map T provides trivializations of the normal tubes around the

Xy k

i'se Thus, it gives a homeomorphism 3U == S X Sk, and hence, a

natural geometric p-basis for (£|av) = (f|aM,.) . This basis gives an
X K 0

isomorphism of (!(,((f[wo),),,u) with the hyperbolic triple, Ht' The image
? A ; :

0~ l&+1(f|uo,f|wo) * l(,((f'ano) is a subkernel if f|3M is a homotopy

equivalence, and is a based subkernel if f|w is a simple homotopy A

equivalence. The basis again comes from the geometric basis for C*(fﬂlo) a

This is the subkernel, or based subkernel, whose class in sz +1 () or

' s
sz +1 () is the surgery obstruction o(f).
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Section I.2 - Nice, normal maps. The main restriction on the homology
and cohomology groups of a closed, oriented n-manifold M” is that they

must satisfy Poincare duality:

i H "

w oz — M sy z) :

£ -

This duvality isomorphism can be re-interpreted via the universal coeffi-
cient theorem completely in terms of the homology groups. It says:

1) th.{r:. are non-singular "intersection pairings"

" (H; (M:Z) /Torsion) @ (H _. (M;Z)/Torsion)—> %, and
2)  there are non-singular "linking pairings"

Torsion Hi(H:I) ® Torsion ﬂn-i-lw:n_'}-w .

(Non_singular means, in each case, that the associated adjoints to these
pairings are isomorphisms.)
If £: M° > N" is a degree 1 map between oriented manifolds with
£| aun: wn > aun a homotopy equivalence, then £, : Him:ﬁ »> Hy (N;27)
is onto and we denote by Kj.(ﬂ the kernel of this homomorphism. Likewise
f*; Hi (N:xE) > Him.-ﬂ is injective, and we denote its cokernel by Ki{f) .
Poincare duality holds also for these groups, and again it can be re-
interpreted to say that the groups Ki(f) admit non-singular linking and
intersection pairings. In fact, these pairings play a central role in
the analysis of simply-connected surgery, see [6]. A
In this section, we will develop an analogue of this for the ﬁﬁ;ﬁel
groups of a degree one normal map between non-simply connected manifolds
with coefficients in the group ring of the fundamental group, A = Z{nl] .
The first problem is that of the structure of the underlying kernel
modules, Ki(fm) = Ker f_: Ki (Mzp) = Hi. (N;p). These can have complicated

structure as p-modules. We solve this problem by assuming all kernel
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modules in question have all the abstract, algebraic properties of
finitely generated abelian groups. In particular we assume that K’_(fu),
denoted Ki{f), is isomorphic to F ? A/ﬂliﬂ with m, € z"', and F a finitely
generated free p-module. The torsion subgroup, Tor K;(f), is ? A/ﬂiz\-
The guotient Ki(f:,\)/‘l‘ot Ki (£) is a free p-module. The main result of
this section is that for degree one normal maps with such kernel modules
there are non-singular intersection and linking pairings generalizing

(1) and (2) above. This is proved by establishing the universal coeffi-
cient theorem short exact sequence relating Ki(ﬂ and Kj'[f) « In calcula-
ting obstructions to performing surgery to produce a simple homotopy
equivalence, it is necessary to work with p-based chain complexes. At
the end of this section we discuss chain complex models for the chains

representing the kernel models.

Definition I.2.1: K is a nice p-module if and only if it is isomorphic

to a finite direct sum of copies of ) and copies of ,\/ni A for n, € z'.

One type of nice p-module is PA :}\, for rﬁ a free finitely generated
A-module and A a finitely generated abelian group. The torsion sub-
group of a nice p-module K, denoted Tor K, is the subgroup of x € K such
that n.x = 0 for some n € & - {0}. Tor K is a nice p-module, and K/Tor K

is a finitely generated free p-module.

Definition I.2.2: A normal map f: M" > §" is a nice normal map if s

1) f,: nl(}l) + ul(m is an isomorphism,
2) £|aM: 3M > 3N is a homotopy equivalence, and h

3) Kiif) is a nice p-module for all i.

If £: M" > N” is a normal map satisfying property 1) above, then

there are intersection pairings

K, (£) X K _;(£) —> 4.
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These are defined by taking based, oriented simply connected cycles J(1 and

_1(ﬂ- We make these inter-

sect transversally and count the intersection points in Z{n] exactly
i+l 1

" in ™ representing x ¢ K, (f) and y € K_

as described in section 1. If xi is the boundary of C » then c“’

citl, -1 ;. a based 1—chain in M™ whose boundary is, on the one hand
xi-l'n'i, and on the other 0. This proves that the pairing is well de-
fined, (compare [15), page 45). It satisfies y-x = (-1)° ®-VGESy.

It is Z-bilinear, p-linear in the second variable, and p-anti-linear in

the first variable. Hence, it induces a p-module homomorphism
Ad(e): K, (£)—>Hom (K, (£),4) = K, (£)%.

b & xi(ﬂ and Kn_itﬂ are nice jp-modules, then x.y = 0 if either
x € Tor Ki{ﬂ or y € Tor xn-i (£), since , has no integral torsion. In

this case we consider the intersection pairing as a map
Kj_(ﬂ/‘ror X Kn_itfj/'ror—-—p-a,
and its adjoint as a p-homomorphism
Ad(+) K’_(tl/‘ror—)-nmhlxn_ilﬂ/'ror,al.

When the modules ll:i(:!) are nice, there are linking pairings on the torsion

subgroups:
4: Tor Kitt) X Tor xn_i_l{f]—)-a/! ® A

which, as we shall see, are defined similarly. By a resolution ot_._a nice,

torsion p-module, T, we mean a short exact sequence of free, based

A-modules:
0—> A2 >§r P> >0,

with bases [xl,...,xk] for A and {yl,...,yk] for F and such that
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@(xi-) =ny, for n, € Z'. Such a resolution is equivalent to giving an

isomorphism
T =@ A/ni As
i

Given a resolution

@5 Py
0 —>A, >F, > Tor K, (f) —>0

a chain realization of it is a collection of based cycles [“\.‘;] in ﬁ, the

universal cover of M, representing the image under Py of the basis for

i+l

F, and based chains, ['n:‘:'j } in M with ﬁj =n.Y We identify F, and

33

A, with the free jp-modules on the [i‘j] and [Ej], respectively.

Given resolutions

0Q—A — Pi—>"'1'0r Ki (£) —>0

i
and

p==p An-i " P e Pox Knei-1 (ff—»10

such that the cycles in question are disjoint in M (which is generically
the case), then we can calculate intersections exactly as before to give
homomorphisms Ils ?i X An-i-l -+ A and 12: ni b 4 Fn—i-l + A+ We define

Iz E‘ix?n_i_]_*tloaby
: | =1
I(xiy) = E Il(x’mn-i-l (mY” .

Using the intersection of the (i+l)~chains and (n-i) —chains, we see that

i - .
(*) 16,y) = (DY 2 (10 ), ) -

Thus, I: F, X Fn i * @ @ A induces a pairing

i -i-

t: Tor Ki[ﬂ X Tor xn_i_l—:-—a/z ® A+

This map is p-linear in the second variable and , anti-linear in the

first (as are I, Il’ and I,).

B e L -
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Lemma I.2.2: a) The pairing g: Tor Ki(ﬂ X Tor xn_i_llf} »> A/ @ ) is

independent of the resolutions and chain realizations.
b) Given resolutions and chain realizations for Tor Ki(f) and
Tor Kn-i-l(f)’ i ¥ n-i-1, it is possible by moving the cycles

of dimension (n-i-l) to realize any pairing

It P Xl‘n

i —>Q ® A

-i=1

for which the following hold:

1) I is p-linear in the second variable and p-anti-linear in
the first,

take values in Z @ A, and

2) I|A; xF and I|F; X A

n-i-1 ~-i=-1

3) I induces 4.

The proof is a standard exercise in the theory of chains, and is

left to the reader.

Corollary: We have a well-defined linking pairing

t: Tor Ki{ﬂ X Tor xn_i_ltt}———%ﬁ-m ® As
and its adjoint which is a homomorphism
ad(g) s Tor K, (f)—> Hom (Tor K _; ,(£),0/Z 8 4)-

We will show that if £: M" + N” is a nice normal map, then both the
intersection and linking pairings are nonsingular, i.e. their adjoints
are isomorphisms. First, we prove a universal coefficient theot‘;h for
A—chain complexes whose homology is nice. This is the analogue of 'eiio
usual universal coefficient theorem for chain complexes over the integers.
Adding Poincare duality to this result gives a proof of the non-singular-

tiy of the intersection and linking pairings.

Lemma I.2.3: If (C,,3) is a p~chain complex with each C, a free j-module,
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ci =0 for i < 0, and H (c,) a nice p-module for all i, then the modules

of cycles zi c C., and boundaries Bi+ [ C:.L are stably free.

i 1

Proof: The proof goes by induction using the short exact sequences

and

—>z —>H.—>0.
0= Rs | " "

The only point worth mentioning is that if Zi is stably free and

Hi =@ A/niA, n, € Z, then we construct

0—>0 nA—>OA >0 A/ni/\——yo.

We can make @ onto by adding free summands to B, , and Z,- Then,

ker g = ker ¢| is stably free. Hence, so is Bi+1'

Proposition I.2.4 (Universal Coefficient Theorem ): If {C,,3)} is a free

A-chain complex with ci = 0 for i < 0 and with Hi (c,) a nice p-module

for all i, then there is a short exact sequence of p-modules.
0——>-IzlomA (Tor Hi_l,m/z ® A) —> Hl——,»ﬂomA (Hi/Tor,A)——>-0 @

Consequently, H® is a nice A-module, and Tor B is isomdrphic to

I:lomA (Tor Hi_l,Q/Z ® A)-

Proof: The map H > HomA (Hi,A) is given by evaluation of a cocycle'repre-
sentative on a cycle representative. The map HomA (Tor Hi_l,m/z ® A) H
is defined as follows. Let ¢g: Tor H , > Q®/Z @ A is a p-homomorphism.

Define Zi_lg Z, , to be the cycles of finite order in homology. Zii-l is

s A ; . . .
stably free and in fact Zi- o zi_l ® Hi_l/Tor. Since Zi-l is projective,

1

@ can be lifted to give a commutative diagram
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0—>p,—>2!'

N i-—l_—’- Tor H —0

i-1

%l ® ®

0—>-Z g p—>0epr—>QUEeg p—>0

The composition ci 3 BiiL.A is a cocycle whose cohomology class is inde-
pendent of the choice of ; The association g * [gpa] is a p-homomor-
phism ﬂcmA(Tor ni_l,a/rz e A) & Hi.

The sequence

% I ¢

o-—)—HmA (Tor Hi-—l’m ® A)—ka-li —!-Hom‘\ [Bi/'l'or,ﬁ)———)-o

is exact. The proof of this is the same as the proof of the usual univer-
sal coefficient theorem which uses only the fact that the modules of

cycles and boundaries are projective.

Theorem I.2.5: If £: M" » N” is a nice normal map, then

1) Ad(-): Ki(E)/Tor—-—a-ﬁmﬁ(xn_i(f)/'ror,a), and

2) Ad(g): Tor Ki(f)—p—BmA (Tor Kn_i_ltf) »A) are isomorphisms.
(When the adjoint of either the intersection pairing or linking pairing

is an isomorphism we say that the pairing is non-singular.)

Proof: According to [15], p. 25, the chain complex for £, C_(f),

satisfies Poincare duality: n[M]: xn-i(t) 5 xi{f] « Thus we have

0———>—Tor K, (£) - Ki(ﬂ——)-— K, (£)/Tox ——— 0

L‘E lg l%
-1 ‘\"-
0—~Hom (for K _; ,(£),0/E @ A)—>K' (f)—>Hom (K, (£)/Tor,))=—>0

Since Poincare duality between the simplicial chains for some triangula-
tion of M and the cellular cochains on the dual cell decomposition is

given by the intersection matrix between simplices and dual cells, the

above Poincare duality isomorphisms are the same as adjoints to the
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linking and intersection pairings defined on these modules.
Corollary I.2.6: Suppose i ¥ n-i-l. There are resolutions

0 A, -F. > Tor Ki(f)ﬁ-—o

and

> Tor K (£)=—0,

el n-i-1

n-i-1 “n-i-l

and chain realizations of them such that the maps induced by geometric

intersection of chains

I,: F, XA
1 n

1 —>A and 12: Ai X Fn_i_lﬁ"-/\

-i-1l

are non-singular pairings.

Proof: Pick any isomorphism Tor Kn (f) = o A/njl\ and let
J

(£) > 0 be the resolution corresponding

-i-1

bdind, 7 Tasiag ¥ W

to it. There is a natural isomorphism of HomA (A/njA,Q/Z ® A) with A/njl\-

et n=i-1

Thus we have
Tor K, (f) = HomA (Tor Kn_i_l(f) ,/Z @)) = Hom(® Aj/njAj,Q/Z@A) =0 Aj/nj’\j'

Use this isomorphism to induce a resolution for Tor Ki(f) . An algebraic

map lifting the linking pairing, I: Fi X Fn-i-—l > @ ® A can be taken to

be the diagonal matrix under the natural bases
® e 0

n,
1

(=}

:IH
-]
o

The induced pairings I1 and 12 are both given by the identity matrix.
Lemma 2.2 implies that I comes from some chain realizations of .the
resolutions. R i

To calculate surgery obstructions in L: (n) , we must work with based
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A-chain complexes instead of just homology groups. Because of this, we

introduce the notion of a nice p-chain complex.

Definition: A nice p-chain complex is one which is isomorphic to a direct
sum of finitely many complexes of the form (0 + 4, » 0] and
(0> A2 5 > 0) for n € z .

The homology of a nice p-chain complex is a nice p-module. In fact,
there are canonical isomorphisms Tor H; = @ A/nj;\ and Hi/‘ror = @® p for

any nice jp-complex.

Lemma I.2.7: Let (C,,3} be a free p-chain complex with only finitely

many non zero homology modules each of which is nice. For any collec-
tions of isomorphisms Tor Hi (C,) =@ ﬂ/njp, and Hi (c,)/Tor == @ A, there
is a homotopy equivalence of a nice p-complex with C, inducing these
isomorphisms. If C_ is a based p-complex, then all maps of nice
A-complexes realizing a fixed set of isomorphisms have the same

Whitehead torsion.

Proof: The first half of the lemma is straightforward. Given two such
maps realizing the same set of isomorphisms we will find a sequence of
maps connecting them. Each term in the sequence will differ from its
predecessor either by chain homotopy or by adding multiples of one basis
element to another. Thus, all maps in the sequence will have the same
Whitehead torsion. First on the generators corresponding to Tor Hi’

since the maps are the same on homoleogy there is a chain homotopy connect-
ing them. On the generators corresponding to H i/‘ror, the maps giffex by
a torsion element and a homology. Thus by adding multiples of the torsion
generators to the free generators and performing another chain homotopy
we can make the maps agree here. Lastly on the chains which give the

relations in Tor Hi' their boundaries are the same, and hence their i

differences are (i+l) cycles. By adding multiples of the (i+l) torsion
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and free generators and performing a chain homotopy we can make them '

agree here also.

Definition I.2.8: Let (C,,3) be a based, free p-chain complex as above.
A basis for H,(C,)/Tor and an isomorphism Tor H, (C,) = @ "/nj"‘ is called

a based structure for H (C,) if any (and therefore all) maps of a nice

A-complex onto C, realizing these isomorphisms are simple homotopy

equivalences.

Definition I.2.9: Let £: M" » N" be a nice normal map which is a simple
homotopy equivalence on 3. Then, C_(f) has a simple equivalence class
of bases, and hence K, (f) has a based structure. We say that £ is
s-nice if it has a based structure so that
1) the intersection pairings have adjoints which are simple isomor-
phisms, and
2) the linking pairings lift to intersection maps on the resolutions,

Ir P, X P

i nei-1 > @ ® A so that ad(I): A, » Fp is a simple

n-i-1

isomorphism for i ¢ n-i-l.

Note: 1) For any nice normal map, 2.6 implies that there is a nice

A-complex mapping in by a homotopy equivalence so that 1) and 2)
are satisfied.

2) The argument in 2.7 shows that it is always possible to assume
the chains giving the relations in Tor Kn-j. .y are disjoint from

the i-cycles.

Section I.3 - Low dimensional surgery. Let f: l'ln »> Hn be an s-nice normal

map. We prove that we can do surgery to produce a normal bordism from
f to a highly connected normal map while keeping track of the kernel
modules and their based structure. The results of this section are

accumulated in the following theorem.
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Theorem I.3.4: If f: M » N® is an s-nice normal map, then £ is normally
bordant to £': M' + N such that:
l) if n=2s + 1, then Kilf') =0 for i ¥ s, K'(f'} = Tor Ks(f) as a
module with based structure, and the linking pairing on x.(f')
equals that on Tor K'(f) H
2) if n=2s, then K,(£') = 0 for i ¥ s, K_(£') = K_(£)/Tor @ A" ® £

as based p-modules, and the intersection pairing on K’(f'] is

given by
12 0 E
0 o |[(-1)°%1a
* Id *
with Rf the original intersection pairing on KB(f)/Tor.

3) If f is nice instead of s-nice, then 1) and 2) above are true if

the conditions on the based structure are omitted.

Wall proves in general that it is always possible to "concentrate"
the kernel groups in the middle dimensions. The extra result here is the
possibility of keeping trmk_pt the modules and pairings. This will lead
us to a priori definitions of the surgery obstruction for an s-nice or
nice normal map. All the proofs will be given for an s-nice normal map.
Each step is valid for a nice normal map if all references to the based

structure is omitted.

Proposition I.3.1: Let f: M" » N" be an i-connected, s-nice, normal map,
i« [-g'] . We can do surgery to produce a normal bordism G: W 1 » K" x I

from £ to £': M' » N such that f' is a s-nice normal map and

K, (£) #¥i, n-i
K, (f') = Tor K, (£) # =i

0 #=n - 1.
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As always, the equal sign means as modules with based structure.

Proof: Let [xl,...,zr] be the elements in xi(ﬂ which form the basis for
xi(f)/'ror. We realize the X, by disjointly embedded spheres, [si, - .,Si],

by general position. Using the fact that Ky (f) = "z+1“""’ these spheres
i+l
i

vgh = wy|S'. (v means the stable normal bundle of the X.) Such

bound disks D + N. We use these disks to give a trivialization of

trivializations give the embedded spheres trivialized normal bundles.

Let G: w'"'l + N X I be the trace of surgery along these spheres. That is

L gt pitd

Wis M x I y (Dl 5 x Dn-l) where the handles

[D?'l X Dn'i] are added along the spheres.
Denote the cores of the handles union the spheres cross I by

[dl,...,dr} and let d! be the dual (n-i)-disk to d

it

M

We have the short exact sequence of chain groups with O Whitehead

torsion
(*) 0—»-c, (f) —>c, (6) —>~C, (G, f)—>~0,
and the resulting long exact sequence of kernel groups.

oKy (6, £)—2 e K (£)—m K, (G) .-

As a based chain complex C_(G,f) is simple homotopy equivalent to the

chain complex with C - ,\ldl,...,dr) and all other modules equal zero.

i+l
This, then, is also K, (G,f).

Since a(di] = X;, we see from the long exact sequence above that
3 A B

B
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j K, (£) e ¥i
K, (G) =
b‘.‘or K, (£) w =i,

Let C, » C, (f) be a nice p-complex associated to the based structure.
From sequence (*) we see that a nice p—complex for C_(G) is obtained by
deleting the free summands corresponding to Ki(f)/'l‘ot from C,. Thus, the

above isomorphism is as modules with based structure.

We also have the exact sequence for the pair (W,M'):
0—>C,(£') —>cC,(6) —C_(G,£')——0,
and the resulting long exact sequence
voe —K (£') — > K (G)——=K,(g,f') — ... .

c,(G,£') is simple homotopy equivalent to the chain complex concentrated

in dimension (n-i) and with cn - A(di,.. .,d;) + Thus, K, (G,f') is zero

-i
except for * = n - i where it is a(di,...,d;). The map

I(n_i (G) » K i (G,£') is identified with the adjoint of the intersection
map Kn-i(ﬂ * [Ki(ﬂ/'l'or]*. This map is a simple isomorphism, and thus
xn_itf') = 0. The chains of dimension (n-i) in the resolution for

Tor Kn_i_]_(f) can be assumed disjoint from the spheres on which we did
surgery. Thus, they persist to M' to give a chain realization for

Tor Kn-i-l“"}' (This is automatically true for the chain realizations

for Tor K, (f) * <n - i - 1.) Thus

(x,(f) i, n-i
K, (£') --<;'!'or Ri(f) * =i

Lo * =n - i

as modules with bases structure. All the intersection pairings and link-
ing pairings for K,(f') agree with these for K (f). Consequently, f' is

a nice normal map.
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We turn now to the case of surgery to kill a torsion subgroup.

Proposition I.3.2: Let £: M" > N" be an s-nice, normal map which is
i-connected for i < [3-5-]-'] and with Ki(f) = Tor Ki(ﬂ . We can perform
surgery on £ to produce a normal bordism from £ to £' with £' an

s-nice normal map and

(K*(f) for w10l 0 -1 -1
0 for * = i

K (£) = <

Ki(f)eAr for * =i + 1

r
Kn_i_l(f)/'ror ®pA for #=n-i-1,

as modules with based structure.

Proof: There are resolutions for Tor Ki(f) and Tor Kn-i-l(f)
5 bt | £
0 A E, Tor K, (f) —>0,
and
0—>A Pn-i-l F —3>Tor K (£)—>=0
n-i-1 n-i-1 n-i-1

which have chain realizations with chain intersections inducing simple
isomorphisms

I.: A )*.

. ., —>F% and 4 : A—>(F
& n-i-1 i

n-i-1 i n-i-1

We can assume the basis for Fi is realized by disjointly embedded spheres

with trivialized normal bundles {S;‘., ...,Si} > M', as before. Let the

basis for A, be realized by chains (ci"’l,. ..,c:_'u] with acj = ny sjj'. Let

the chain realization for the resolution of Tor K _. ,(f) be chainsi,

- 3
n-i-1

j 3y

o Nn X I be the trace of surgery on these spheres, with

[1};'1] and cycles (2 } with 3Y¥, = n

Let G: W'l
£'s M' > N the result of the surgery. Let the handles added, union the
spheres cross I in M X I, be [dl’”"dr] with their dual handles

TR T B Ly add eomis

From the short exact sequence for the pair (G,f), R
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0 ——>C, (f) —;—c*(a)—»c.{a,ﬂ — >0

and the associated long exact sequence

ve o —>K, (£) —> K, (6) —>K, (6, £) —2>K, , (£) —> ...

we see that
K, (£) wFi, i+ 1
K,(6) = 0 * = i

“1-:-1“’“1 *=3i+1

as modules with bases structures.

The splitting of

0——'—?'1(1.'._1 (!)‘—"'K1+1(G)—>-Ai—i-0

is given by the chain realization for li' Namely, the basis element

.j tai goes to cycle (-cjunjdj) in W.

The long exact sequence for the pair (G,f') is ‘-.

>

“nw —*Kn-i [!']—,—Kn_i ‘G' ") —’”Kn_i-l‘f') —_— Kn_i_llo’ —>0 — e

F T ;

0 A@], .. d0) Xl

Since the cycle representatives which give a basic for Kn_i_ltﬂ/‘ror and
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n-i-1
b
Whay persist to form cycles in Kn_i_ltt') - This gives a map

also the (2 } lie disjoint from the spheres on which we did surgery,

Fa-g g E)/FE @ By R giEe
flalmr The map ,\(di,...,di',) -+ Kn-i-l(f') has image contained in the
image of F_ . .. The map is

-1
ad(1) " o -
s ¢ BT R (5

fagellary: Kn_i_llf')/'l'or ®F . 4K _;,(f') is an isomorphism.

Breef of Claim: The chain intersection map between the {Yj) and the

#pheres on which we do surgery defines ad(I): Aia” !‘:. If we cut out
floks around the intersections of the Yy with the spheres, then the ¥,
provides a homology in M' from njzj to ad(I) (l!'j]).
We have now shown : (
Kq (£) afi,i+l, n-4i-=-1
-J 0 * =i
K (£') =
K:i.+1(ﬂ ® A e=3i+1
\-Kn_i_l (£)/Tor @ F, _; ; *=n-i-1

These isomorphisms are all obviously isomorphisms of modules with based
-1

#tructure except in dimension n - i - 1. Since "dun-i-l) T !'z > an—i-l

s a simple isomorphism, it is also true in this dimension. Under the

#plittings given above Aget K (£%) % Kn_i_ltf') + A is given by the

i+l
matrix

o s'“
lf i 0 3

0 ' 2 okl .

where af is the original pairing for £. This is proved by looking at

the cycle representatives we have given for the various classes. All

other intersection and linking pairings are unchanged (except of course
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for g: Tor Kitf) X Tor Kn-i-l(ﬂ + @/Z @ p). Thus f' is an s-nice normal |
map.

This argument also calculates the effect of surgery to kill
Tor !Cn_l(t} for £: uzn > szn. Since the answer is a little different,

we state it as a separate proposition.

Proposition I.3.3: Let f: M°" > N°® be an s-nice, normal map which is
(n-1) connected and with Tor lcn_ltt) = xn_llf) . We can do surgery to
produce a normal bordism for £ to f' such that f£f' is s-nice and
0 «#n
K, (£') =

K (£)/Tor @ A" @ A" *=n

as based jp-modules. The intersection pairing on Kn(t') is given by the

matrix
lt 0 3
o 0 -1
n
ntl=
w (~1) |- i

Proof: This is proved by the argument used in 3.2. The difference is

that both A and l'n are added to lcn(f ')+ The cycle representatives

n-1
allow us to calculate the matrix of intersections.

Note that the first Ar factor, the one corresponding to rn, is
generated by cycles lying geometrically in M. In M, they are torsion
cycles. Thus, they have zero intersection with any class in M' ‘}iiqh is
homologous in W to a class lying in M.

Summing up, we have shown the following.

Theorem I.3.4: If f: M" + 8" is an s-nice, normal map, then we can per-
form surgery to produce a normal bordism from f to £': M'" » N" such

that
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if n= 28 + 1, then Kitf') =0 for i ¥ s, l(‘(t‘) = Tor lt.(ﬂ as

modules with bases structure, and the linking pairing on 1:. (£')

wo ' b) if n = 2s, then xitf'} =0 for i # s, Ks(f', =

lt'(.‘.)/‘l'or ® ,\r @ Ar as based modules, and the intersection

with In a simple isomorphism.

A £ 0 *

(1] 0 =I
n

. D™ | .

c) 1I1f £: M™ + N" is a nice, normal map, then a) and b) are true

after omitting the reference to based structures.




24 JOHN W. MORGAN

CHAPTER II: An A-priori Definition of the Sur Obstruction

Section II.l - Case I - The even dimensions. Now we turn to the problem

of calculating the surgery obstruction of a nice, or s-nice, normal map
before we actually do the surgery to make it highly connected. We will
find (G,\,u) satisfying the properties to define an element in I";n(“)
associated to an s-nice, normal map f: n2n > l!zn. This triple will be
geometrically defined without assuming that £ is highly connected. By
doing surgery, we show that this triple determines the usual Wall surgery
obstruction, g(f) € L;n(“} . Deleting the parts of the discussion dealing
with the based structure, produces a triple (G,\,u) associated to a nice
normal map and proves that it gives the Wall surgery in I.Zn(rr} . Let

f2 u2n -+ "211 be an s-nice surgery problem, covered by the bundle map

£ u > g.

Our first guess for the free ), module G is xn(ﬂ/‘ror. It is
equipped with a basis and already has a pairing )\: ll:n(f)/'ror x Kn(f]/‘ror
+ A which satisfies

1) A is , linear in the second variable,

2) ) is non-singular, and

3 A,y = (<1)"N(y,%).

Ad()) is a simple isomorphism. To enhance lxntf)/ror.al so that it
defines an element in Lgn(n} a "y form" is required, y: Kn(ﬂ/‘!'or.* Qn
= p/(v - (-1)™ §). The y-form comes from the geometric ul!-i.ntaruatign
number for any element in l{n(f), using the Rourke-Sullivan idea of
immersed cycles. For the prototype of this argument see [11].

If Vnd'"ﬂ-uzn is a based immersion of a simply connected manifold

i
(i.e. V actually immerses in ﬁ2n and the projects down), then there is

a self-intersection number for this immersion, as described in section 1.
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It is an invariant of the regular homotopy class of the immersion.

The self intersection gt Kn{fl -+ Qn is defined by using the bundle
map T to pick out a regular homotopy class of immersed submanifolds
representing x € Kn[f). First, we note that it is sufficient to define
uftrx] for r odd. This follows because

1) as an abelian group Qn has no odd torsion, and

2) pglrx) = rzuf(x) for r € Z.

For some odd integer r, rx € Kn(fl =H (ﬁ,ﬁ) is represented by a

n+l
relative bordism element

v M,
=t
L1 %

v,
see [3].

Given such a (V,W,p,4) representing rx, then the bundle
vy = ¥*(g) reduces to an n-dimensional bundle over " (since W is
homotopy equivalent to an n-complex). Any such reduction induces by
restriction a reduction of v - ‘P"ﬁ" But an n-dimensional reduction of
this bundle is equivalent to an immersion of vnv—rﬁ, [5], homotopic to g-.

Define nt(rx) to be the self-intersection of V'¢> M for any immersion

obtained from a reduction of Yy - ().

Proposition II.l.l: .,.!{rx) is well defined independent of all the choices
above. “f(rx) is divisible by rz in Q (and thus uniquely divisible by
2 1 X
r" since r is odd). Define gf‘X) = r2 “flrx). Then y .z Knlfj > Qn,}
satisfies

1) uglx-a) =3 (x)a for a ey,

2) pglxty) =p (x) +u.(y) + alx,y) inQ , and

3 ugx) 4+ (DY ) = al,x) in p.

Rroof: By I.3.4 we can do surgery on f to make K; (f) = 0 for i."n-l.
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This does not change Kn(f) or the intersection form on xn(f)/‘ro:. If r«x
is represented by (V,W,p,¢), we can do the low dimensional surgery away
from the image of V" » M°". All geometric information required to define
p (rx) is unchanged, and j (rx) calculated before surgery equals y (rx)
calculated after surgery. Thus, it suffices to prove II.l.1 for normal
maps which are (n-2) connected. Since (X,Y) = H_(X,Y) for

#* < (connectivity of (X,¥) + 3), for a (n-2) connected normal map all

X € Kn (f) are represented by (V,W,p,y) as above and any two representa-

tives (V,W,p,y) and (V',W',p',4') are bordant by some
i O (SRIECE - SO
% x id
umz—'——y'ﬁ b4 ¢

Let cn be a reduction of vy = o* (vﬂ) induced by the first representative.
Extend this to a reduction of v, - g*(vy) to an n-dimensional bundle e
This is possible since H,(T,V) = 0 for # > n. En|v' gives a reduction

of vgr = Q'*(vﬂ] to E'n.

Claim II.1.2: If we use ;n to immerse V in M and E'n to immerse V'

in M, then the self-intersections of Vv and V' in M agree.

Proofs (' gives an immersion of T into M x I connecting these two
immersions of V and V'. T*T is a l-manifold whose boundary, on the
one hand, is 0 and, on the other, is (self-intersection of V) - (self-

intersection of V'). *-.

3
Claim IX.1.3: Using E'n as above to immerse V' gives the same self-inter-

section as using any reduction induced from a reduction of Vg = v'* ().

Proof: (See, for example, [11], and [9] chapter 5.)

We have V' @ ¥ bounding W' Y5> N and w*¥> ¥, (W* = Ty - W) and two
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immersions of V'>M induced from bundle reductions of g - v'*(g) and 1;{
vy = v"*(g), respectively. The induced reductions over V' clearly agree

as (n+l) reductions since V' is an n-complex. Thus together they define
n+l

a reduction of Vi " (¢' U #")*(e) to an (n+l) bundle q

w! vl wll

The difference of the two bundle reductions over V o is an element in

(v",F"] where F" is the fiber of BSO(n) - BSO. y (F") = 0 for i < n and

2 n is even
n, (%) =
%/2 n is odd.
Thus
Zz n is even
(v, F" =
z/2 n is odd.

*
>

It is easy to identify the difference of the two n-dimensional reductions

as the obstruction to a section (a section mod 2 if n is odd) of the

n+l 1

(n+1) -dimension bundle 7 over W. The bundle 1]n+ is an oriented
bundle over an oriented (n+l)-manifold. If (n+l) is odd, it has a section.

Thus, the two reductions agree in this case. If (n+l) is even, then the
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difference of two reductions as an element in Z/2 is um_]_h]“"'l) . A
result of Atiyah, [1], says that the Thom space of the bundle (\.L - )
over a closed, oriented manifold L is Spanier-Whitehead dual to the
Thom space of y over L. This implies that “n-l-l("l. -y) = vml{*)' see

(9]. In our case, then w__ () = “ml("w'uu' - (4" v e")*)

= vm_l((g' U #")*). Since g, being the image bundle for a degree one

normal map, is fiber homotopy equivalent to “uzn (see [2]) the Wu rela-
tions imply Vosl (“NZ") = 0 (see [l7]). This proves that the two reduc-
tions agree and, hence, give the same value for gg(!’.

If the normal map £ is highly connected, then ug(") is defined for
all x. The argument given on page 46 of [l5] proves that in this case
it satisfies 1), 2), and 3) of II.1l.1. In the case of a non-highly
connected normal map f, ,.ftxx) is well defined geometrically for some r.
In addition, if we make the map highly connected then the y -form is
unchanged. Hence, “t(xx) is diversible in Qn by rz, since it is unchanged
by surgery and is equal to rzl,. (x) after surgery. If we define
uf(x} = -]-‘-2-“!{:::) in the non-highly connected case, then this y-form
agrees u:th the geometrically defined one after we make the map highly

connected. Consequently it satisfies II.1.1,1), 2), and 3).

Note: In the end we have a definition of bg before doing surgery. We

only need to do surgery to show that it is well defined and satisfies 1),

2), and 3).
If we partition the elements of y = n, (N) into [91,9;1], (t;), (8]
where g, # 9;1, g - t;x and w(t,) = (-1)", and s, = s;]' and .

Htﬂil = I-l)ml, thenQ =« & Z o Z o Z/2%.
{911 () {sil

Mex) =) [ag 9 + (0 Migng 57t ]+ ) a e
9 &5
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p (x) =Z Agi-gi +z Ati-ti +Z €Sy
g. t, y
& 1 8

where 6 = 0 or 1. Thus, the only new algebraic information contained in
u (x) is the Z/2 coefficients of those elements which are their own

i on the orientation of N. All the

inverses and which act by (-1)n+
coefficients, [y except the coefficient of the identity element are
determined by intersection data in the universal cover. The coefficient
of the identity is the only one that requires the immersion idea.

Now we wish to use II.l.l to define et Kn(f)/Tor - Qn which,
together with the intersection pairing, will define an element in L:(n)-
Unfortunately, g may not vanish on Tor Kn(f). In fact, there are simply
connected examples where it does not. However, if uflTor Kn(f) is O,
then by II.1.1, it does indeed define a map bet Kn(F)/Tot > Qn'

For the kernel groups encountered in proving the product formula,

g will vanish on the torsion. We make the following

Assumption: . vanishes on Tor Kn(f).

Thus we now have an a priori surgery obstruction assigned to f,

o(f) € LG

(m) .

Theorem II.1l.4: a) If f£: m2n > N2n is an s-nice normal map, then it

is normally cobordant to f£': M' > N such that f' is s-nice and
1) K,(f') =0 for #* # n,

2) Kn(f') = Kn(f)/Tor as based modules, and ®.

3) the geometrically defined )\ and , forms for £' and £ agree.
If £ is a nice normal map, then the above is true after ignoring the

bases.

2n B

Proof: We use I.3.4 to replace f: M N0 by £': M' > N such‘ﬁh‘gf"‘3‘

1) £' is s-nice,
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2) K (£') =0 for i#n, and

3) Kn(f'} = Kn{ﬂ/'ror ® 5"- ® ﬁr as based p-modules.
The first ar factor in Rntf'} is generated by cycles lying geometrically
in M and representing torsion classes in H,(M;p). Since the y-form is

geometrically defined, and bge take the same value on these cycles.

o
By our assumption, b vanishes on them. Hence, so does Bger

The intersection form on Kn(t'] is given by the matrix

if 0 *

0 0 —-In
n+l=

* (=1) In "

with I a simple isomorphism. According to [15], theorem 5.2, spheres
representing a basis for the first A -factor can be disjointly embedded
with trivial normal bundles. The same analysis as in I.3.1 shows that
the result of performing surgery on these classes is to produce an s-nice
normal map £* : M" + N with

1) I(i(t"} =0 for Lip¥n

2) Kntt"] = Kn(ﬂ/‘!'or as based modules,

3) the intersection forms on Kn(f‘} and Kn(ﬂ/‘ror are egual, and

4) “f.-“f'

Note: We have a choice for the cycles representing the second Ar factor.

They are of the form A d, where [A;, ...,A:} are chains giving _:

1 UMY

basis for .\n_ in the resolution 0 ~» An- +> rn + Tor xn_ltf) -+ 0. By

1 1 -1
choosing the A:i. correctly, we can make this factor a subkernel of the

hr @ nr also. Then we could do surgery on it. Low dimensional surgery
followed by this would give a normal bordism, W, from £ to £" as above

with K (W,£) 3 K, (£) an isomorphism.

2“..

Theorem II.l.5: If f£f: M Hzn is an s-nice normal map, then the triple
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{Kn(f)/'ror,‘,\,pf} determines the Wall surgery obstruction of £ in

AR is a nice normal map, then the triple

L;n("" 1f £: 2P > N

[Kn{f)/‘ror,L,u}, where Kn(f)/‘ror has no distinguished basis, determines

the surgery obstruction of f in LG(n) .

Proof: Assume that Ky (£) = 0 for i ¥ n, and that Kn{.ﬂ is free. Our )
pairing and Wall's agree by definition.
Wall defines his j -form by using immersed spheres and taking their

self-intersections. The immersions of the spheres come from a triviali-

zation of their stable normal bundles. These trivialization are provided
by the fact th;t the spheres bound disks, DM]' > Hzn. This procedure is
just an example of our general procedure and hence defines the same
u~-form. Wall defines the basis for Kn(f') by using the bases chain
complex C_(£"). Our definition of the basis of Kn(f"] is that is comes
from the bases of a nice p-chain complex simple homotopy equivalent to
c,(f). Hence, the bases are simple equivalent. This shows that for (n-1)

connected normal maps Wall's triple and our triple agree. Applying

II.1.4 gives a proof of the theorem.

Note: 1If e does not vanish on Tor xn(f] , then it is still possible to

give an a-priori description of the surgery obstruction. One uses

Kn[ﬂ, A, and , on all of xntf) to produce a triple which defines

o(f) in x.;n(f.) or in L, (n).

Section II.2 - Case II - The odd dimensions. In this section we give

>

an a priori definition of the surgery obstruction of an (s-) nice normal
map between odd dimensional manifolds. Just as the case of even dimen-

sional manifolds is a generalization of the work of [1l] on the Kervaire

i
invariant, the odd dimensional case is a generalization of the work of

sections 5 and 6 of [9] on odd dimensional normal maps between
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Z/n-manifolds.

The form . used in the even dimensions is replaced in this case
by a quadratic refinement, > of the middle dimensional linking pairing.
It is defined similarly to the ;-form. The extra information again comes
from the bundle map. This time it produces classes of (n-1) dimensional
reductions of the stable normal bundles of (n-1) manifolds mapping into
the domain, M2""1 such reductions are equivalent to embeddings of the
(n-1) -mani folds together with nowhere zero normal fields. It is these
normal fields which allow us to push the (n-1)-manifolds off themselv.is
and again an extra factor of 2 in the value of linking pairings (e.g.
£(x,x) is well defined in @/2% not §/Z using the normal field). This
extra factor of 2 is recorded in the quadratic refinement of linking qg-

Again the fact that the new information, e, is quadratic in nature
and thus delicate only on the two torsion is important. We will again
present the argument only for s-nice normal maps. Deleting all refer-
ences to the based structure transforms this argument into one valid
for nice, normal maps.

2n-1

Let f: M +> 8" 1o an s-nice, normal map. By section I.2,

there is a pairing
43 Tor xn-l‘ﬂ X Tor Kn__llf]——b-m ® A
It has the following properties.

a) It is p-linear in the second variable.

/

11.2.0.< 2 t(xy) = (=) "y, ", .

c) Ad(g): Tor Kn_ltt) - BomA (Tor xn-l (f),2/Z @ A) is an

isomorphism.
Furthermore, there is an exact sequence

0——=A Jyrn_l——a—!'or K 1 (£)——>0

n-1




where A

n-1

e B i B o e i

A PRODUCT FORMULA FOR SURGERY OBSTRUCTIONS 1 P

and F. are based p-modules and in these bases g is the

diagonal matrix

nl 0
= E » ni € X - [0].
0 n
r
n - n-1 n-1 :
To see that g(x,y) = (-1) g(y,x) let vx and vy be based, simply

connected,

n.'l.vx T be

disjoint cycles in M representing x and y. Let

and nzvy = acy for based simply connected chains Cy and cy.

0

n-1
a(cx-cyi = nlvx-cy + (=1) n, C!x -VY

n-1 -
=n, vx-cy + (-1) nztvy-cx} .

1
0= n, x'CY + (=1)

n-1 1 -
nltvy-cx)

106,y + (<114 (y,x) mod z.

The surgery obstruction is determined by Tor Kn_l{f) s 4, and the "quadra-

tic refinement" of g, Qe K 4 (£) » /2 g Qn' The map de satisfies

a)

b)
: 2 1 15 P

c)

d)

There

Qe (x +y) = q.(x) +qgly) + 2(x,y) in @/Ze Q.
ap(x) + (-7 (x)7 = £(x,%) in @/Z @ A-
qg(x-a) = ag (x)a for a € 5.

qf(x) has a representative a € @ @ A such that a = (-ﬁﬂ:&.
3

is a map g: Q_ ~ A defined by p(la]) = a + (-1)"G. 1t induces

amap 1 ® p: A/Z @ Qn + @/Z ® pA. II.2.1 b) means that

If we

) = p(x,x). 1% i

"l f
partition the elements of n = ﬂlml into [gi,gi | {ti."]“"-“ ¥
1 =1

i n -1 . I
[31] where 9 # 9, » t = t’i and w(ti) = (-1), and 8, =8, and ¢ P |
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ws,) = (-1)™1 then

=1
2 (x,x) -Z U,gi-gi + {-1)%(91_);91-91 ) + Z sti-ti +Z 8y "Wy

g
9 Sy o

where ,(,gi and j,ti
q(x) such that g(x,x) = q(x)+ (-1)" q(x)” implies that all the s, are 0.
i

are in @/% and Esiis in %Z/2<> Q/Z. The existence of

Using properties II.2.l1 a)-d) for q; we see that
1) + Yy t
q .

i

qflx) = z {qgi-gi + (-1)"w(gi)-qgi-9;
93

where 2qgi = zgi, and thi = .{,ti in @/ 1In Qn ® O/%Z,

-1 |
%, 9% * (-1)™(gy)q, +g7 = 24y 19y = 4g +9;. Thus

i i
qf(x] = [z zqi-qi +Z qti'ti.] where 2c1‘:i = Lti,
9 £

and the new information in q(x) is the division of L by 2 in ®/Z. This
i

is always possible in exactly two ways. Tor Kn_ltf] =T, & T 44 where

'1'2 is the nice submodule of elements of order a power of 2, and Todd is

the nice submodule of elements of odd order.

Lemma II.2.2: Any quadratic refinement, 4, on '1'2 satisfying II.2.1 a)-d)

above has a unique extension to q on all of Tor Kn_ltf} still satisfying

11.2.1.

Proof: If rx = 0 for r € , then 0 = q(rx) = rzq(x). Hence, 1£‘x € Todd’
the g(x) is of odd order in ®/Z @ A. In @/Z there is a unique way to
divide an element of odd order by 2 so that the result is also of odd

order. Thus qt (x) must be this unique ""21'- L
: -

This proves that for x € Todd' q(x) can have at most one value,

(x,x) " which is of odd order.
i

“%'- L(x,x)". It is easy to show that this indeed gives a form 9044 satis-

fying II.2.1 a)-d). For an arbitrary x € Tor xn_l (f) we write
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= %y + X.ad and define g(x) = qz(xzj i qoﬁ{xodd)' Since ‘(xz'xou,.,ww

this is the unique extension of a, satisfying II.2.1.

On '.l'2 de is not determined by II.2.1 and the linking pairing, t. If

x € T,, then there is a relative bordism element representing x,

2’
i » O
=¢_ 1
"Z: L] - N

where ¢ is a based map and ¢ [V] = x. This follows since xn-}.(ﬂ

= En(i,i), and nntﬁ,ﬁ) -+ Hnﬁ,ﬁ) is onto two torsion. Given such a repre-
sentative for x, we will define qf(x). Take any (n-1)-dimensional reduc-
tion of vy - (). Restrict it to given an (n-1) reduction of

v = o* (“ﬁ') . This is equivalent to an embedding v%:-ﬂ and a nowhere zero
normal field ¢ of v(p), [5]. We can assume that the projection of V
into M is an embedding with normal field. Let V. be the "pushed off"
copy of V along the field ¢ in M. Since g,[V] = x, some multiple

of V bounds a chain CV in M, acv = r+V. Let
4, (x) =3=(C_+V) in @/ZT 80
£ 2r'v ¢ n'

Theorem II.2.3: a) qf{x) defined is independent of all the choices made.
Qg: Tor Kn_ltt) » (/2 o on satisfies II.2.1 a)-d).
b) Furthermore, we can do surgery on f: i L T produce
an s-nice normal map f£': M' + N with Kilf') =0 for i ¥ n - 1, and
K _,(f') =Tor K, (f) as modules with based structure, in ‘Buch
a way that the 4 and g forms are unchanged.

c¢) If f is a nice normal map, then so is f' and a) and b) are true,

after omitting all references to the based structure.

N |

Rroof: D) and c) follow immediately from II.2.6 and the fact that all low
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dimensional surgeries can be done in the complement of the geometric data
which define § and Qg (The spheres on which we do surgery to kill

K 1 (£) /Tor do not by general position miss the chains of dimension n
used to calculate ¢ and dg- But, the argument in I.2.7 shows that we

can assume this by choosing our chains correctly.)

Suppose that we have done surgery until £: HZn—l > N2n-1 satisfies

b). Ifx € Kn_l(f), then any two representatives for x, {vn'l,wn,m,')

nl

and (Vn'-ll,w ;0',4') are bordant by some

n—————i—+ﬁx1

T
1 l?xl
g

bty Wix1 .

2n=-

Given V") embedded in M*™~! with a normal field, ¢, extend this to

an immersion of T" in M X I with normal field. Restricting to the other
L
boundary component of T gives an embedding Vn"l ‘,_’_uzn A with normal

field, ¢'.

Claim II.2.4: If we use these two embedded manifolds Ve<»M and V'epM
with normal fields, ¢ and ', as above to calculate qf(x), then they

give the same value.

Proof:

MxI

Let rV' = 3C,, and rV = aC .

1 1 5 1
* — ~ - Ut - — i — .
(*) 2r(cv' U xT VY -Cv) ‘.'I'.‘. = r CV' V.. o va +2TT .
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Here 'r-'r. is the geometric self-intersection of T and T.. Since
is the image of a closed cycle in M X I and since the intersection of
closed cycles in M x I is zero, the left hand side of (*) is 0 in @ ® 4.
Thus we have

i ' il .. 1
0 = 35 Cys'Vie =25 SV, + 3 7T, in@ @ A-

'r-'r. = s5(T) + (-1) s(T) where s(T) is the geometric self-intersection of

T. 8(T) is an element in Qn and is defined exactly as self-intersection
of closed, immersed manifolds. For this, it is important that the boundary
of T be embedded. InQ , s(T) = (-1)® 5(T). Hence in Q. TT = 2s().

Thus %T-T.is 0 in@/E @ Qn. This proves that

Oul

2r ©

Lo
v,-v.', e CV-V‘ in WZ e Q.

1— L] 1'— .
2r cv"vg' =2r S v. in W% @ Q-

@laim II.2.5: Using any normal field for V' induced from a bundle reduc-
tion of v, - ¢'#f and using the normal field ¢' for V' as above give the

same value for q £ (x) .

REQOf: Let W' = -T _y -W and y": W" > M be ¢ U ¢4. Then, ¢' is induced
from a reduction of Vg = ¢"*f over W". We compare the difference of these
two normal fields. For n even, the fields are homotopic. For n odd,

their difference is an integer which, reduced modulo 2, is
(M Ogegae = (07 U M), W U W'Dy,
A# in II.1l.4 this is equal to 3
(vol#' U #™) 7%, W'y W)Y,

which, in turn, is 0 since g is fiber homotopy equivalent to vHZn-l'

Thus, our two fields used in defining qf[x} differ by an even integer. But

' the value of Qe (x) in /% » Q depends only on the homotopy class of the
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normal field modulo 2. This proves qf(x) is well defined. It is easily
seen to satisfy II.2.1 a) and c) on all of T. The proof of II.2.5 is

completed using the following proposition.

2n-1 with normal field ¢

Proposition I1.2.6: If V' ' is embedded in M
induced from bundle data covering a normal map (as in the definition of ‘

qf(xn, and n,V = aC, then

1
c.v = (-1)"cov .
L ] L]

Proof: We can assume that all n, sheets of C come into V from the

direction -¢, and that, except at its boundary C is transverse to V.

Letc'-cunl!whar- E is V X I embedded along +g. a(c.J-nv..

1 1
We shift c. transverse to V (keeping ac. fixed) by moving the n, copies
of V in the (n-1) dimensional bundle perpendicular to ¢ in v, ., (" -

n-1

We see that c.-v - C-V' + nlx(c). Since ¢ extends to a bundle over some

W" with V = aﬁn, X(cn-]') = 0, and thus C.-V = C-V'. Now shift c‘ trans-

verse to C without moving ac. or 3C. We have "..

0=3(cCc) =rcv - (-1)"rv.v
[ ] [ [
=r(cv - (-1)"C W)
¢ €

=rc.v - (1) Cv).
[ [ ]

Thus,
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cv = (-1)%Ccv .
] [ ]

Property II.2.1 d) follows immediately since g f(:u) = [';'-n— C-V.] in
1

(a/z) @ Q . Also

) T—— 1 N — 1
qtlx} + (-1) qf(x) = EI{CV-V'-& (-1) cv-v.) = ;_;(zcv-v.)

1
= E'q CV‘V. = g(x,x).

This gives II.2.1 b) and completes the proof of II1.2.5.

Though the relation between the triples (Tor Kn-l(ﬂ""qf} and Wall's
surgery obstruction groups is not required in the sequel ,we include a

sketch of the following.

Theorem II.2.7: a) (Tor xn_ltt),;,qf) determines the Wall surgery
|
obstruction in (n) if £ is nice; ,
L!n-]. |
b) If f is s-nice, then (Tor Kn-ltf)“"q!} together with the free, '
based resolution of Tor K il (£f), determines the Wall surgery
obstruction in I-;n_ltn) . i

(See [15] page 56 for the definition of the odd Wall groups.)

Sketch of Proof: Let a,- ..,a‘ be a natural generating set for Tor Kn_ltt}

with n, = order ai.

Step I: a{uijj, “ij € A such that

n ———
1) njuij = (=1) niu'ji
1 N
2} .;;i— aij - l(ai’.'j) ‘\'t_“
1
d) E o = qflai) in @/Z @ Qn.

Step II: Let By ™ a(el,...,cs,tl,...,f‘) equipped with the intersection
and self-intersections of the (-1) -l symmetric hyperbolic form. For any’

collection of {uij] as in step I, define Kc H_ , to be the based dlbso

1
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space with basis

&
{nlel +Zulj£j,...,n‘ex +Za£j£j}'
jol j=1

Ke>H is a based subkernel. For any choice of [oij] as in step I,

n-1
the class K determines in I‘gn-l (n) is the surgery obstruction of f£.
The main point in the proof of this is to show any set of [uij} as in
step I is realized as the chain intersection matrix for a set of embedded
spheres with trivial normal bundles [82_1, ...,s';'l} and chains c: with

e, = niS';-l. See proposition II.3.3 for a proof of this.

Section II.3 - Forms representing the trivial obstruction. 1In sections
II.1 and II.2 we gave geometrically defined algebraic pairings associated

to a surgery problem f: M" - l“, and showed that these pairings algebrai-
cally determined the surgery obstruction o(f) € I‘f:("l (N)). In this sec-
tion, we examine which algebraic pairings determine the 0 element in Lﬁ(n} <
We find necessary and sufficient algebraic conditions in general for a
pairing to define the zero element. Since our algebraic pairings for n
even agree with those Wall uses to define Li(rrl. we use his conditions

for this case.

IX.3.1: Even dimensional case, n = 2k: Let (G,\,u) be as in section 4.
It determines 0 in n:k (n) if and only if there is a based submodule K c G

such that

1) A|KkxK=0,

2) u|K=0, and

3) Ad()\): K~ mﬂ (6/K,p) is a simple isomorphism.
If G is not based, then (G,)\,u) determines zero in LG(n) if and only if
there is a free subspace K G such that 1), 2), and 3) (with "simple"

deleted) hold.
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Such a subspace, K, is called a subkernel for (G,A,u). For a proof
that the existence of such a K ¢ G is necessary and sufficient for (G,x,“)
tobe 0 in sz(n) (or L;k(")) see [15], page 47.

In the odd dimensional case our formalism is different from Wall's.
We develop a necessary and sufficient algebraic condition on the linking
pairing and its quadratic refinement for doing surgery on a nice (or
s-nice) normal map to produce a homotopy equivalence (or simple homotopy
equivalence). We prove that the condition is sufficient by actually doing
the surgery, not by making an algebraic connection with Wall's formalism.

As with the analysis of surgery on torsion classes outside the
middle dimension, here also the analysis is made in terms of a based

A-resolution for Tor Kn_l(f)

el >Tor Kn_l(f)———’-o.

We study the chain intersection pairing which induces a map

It P, XF —>0@ @A

which resolvesg the linking pairing and its quadratic refinement on
Tor Kn-l(f)' The key property to be able to do surgery is that
I'An_l X Fn-l > Z ® A be non-singular. In the case of linking between
different modules we found that it was always possible to pick resolutions
so that the chain intersection map is non-singular. In the case of self-
linking, this is not always possible, and the inability to do it is the

obstruction to performing surgery on a odd dimensional, nice, normal map
.

*

to produce a homotopy equivalence. 3

The first step is to find out what properties the chain intersection
map has, and then to show that any algebraic map with these properties can
be realized as the intersection pairing of an appropriate set of chains
and cycles. Finally, we show that surgery is possible when

I: Ay 3 X Fho1 > A is non-singular.
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Let £: M2 1 5 ¥°™! be an s-nice normal map with
41 Tor xn_ltfl X Tor K, (f) » @/Z @ ), the intersection pairing and
dgt Tor Kn_]_( f) > a/x @ Qn the gquadratic refinement. Let
o»a 8 % Tor x _(f) + 0 be the based p-resolution of Tor K__, (f).

If £ is a nice, normal map pick any resolution for Tor Kn_l(t) « In |

either case the matrix for p is
n, ] 0
L . . n, € l+.
0 . n.

Suppose in addition, that our normal map is (n-1) connected. Then, we can
find a chain realization of the resolution such that each element in Fn-l
is represented by an embedded submanifold equipped with normal field

n-1
n-lH @ 18z
n-chain with correct boundary; a € An_ll-—-r c:. We denote by Z' the copy of

z €F ) , and each element of hn-l is represented by an

Z pushed off along the normal field ¢,. Let a = 3 (Nz,) and define
I(z,,2,) = 2(c_-2})
1’72 a2

This, of course, is the unigque extension of the chain intersection map

an_l x ?n_l—-—A to a ) - map rn-l x rn_l—-—)-ﬂ ® A
Proposition II.3.2:
.
1) I is p-linear in the second variable and p-anti-linear in the
first,
2) I(x,y) = (-1)"1(y,x)",
3) I|sA  XF > ZeAAe A,
4) I induces the linking pairing on Tor Kn_ltf) in that I(x,y)

is a representative for g(p(x),p(y)), and
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5) I induces q, on Tor K _,(f) in that 7 I(x,x) in@ @  is a

representative for gq £ (p(x)).

Rroof: 1), 3), 4), and 5) follow immediately from the definitions, 2) is

a consequence of II.2.6.

We also need a converse to this which tells us that all such algebraic
pairings are realized by the intersections of appropriate chains and
gycles. This converse is the analogue of lemma I.2.2 in the middle
dimension.

2n-1 , 427-1 1o an (n-1) connected, s-nice,

l‘gggsition II.3.3: Let f: M
normal map with Rn_liﬁ = Tor Kn_llﬂ and with pairings ¢ and L and

3
resolution 0 » An- > ’n-:. Tor xn_llﬂ -+ 0 as before. We call

1
[sl,...,zr] the basis for Foa and suppose [n].‘l""'“x‘r] is the basis

for A _,+ For any pairing I: Fooq X2 + @ ® A satisfying II.3.1, 1) -

1
5) there are disjointly embedded spheres with trivialized normal bundles

n-1

coming from the bundle map covering f

{srii-lc_,_ l‘211—].] ‘f

and manifolds ] 1221 guch that |

a) (s} = oz, |
b) nisi = 3C; in M, and

c) if we denote 8; the "push off" of 8‘

of the trivialization of its normal bundle, then (]

L} 5. I
1— «8S'" = . .
n, ci sj I('x"j) in Q@& A - |

along the first normal field

Proof: Find disjointly embedded spheres (S ;"1,...,3;"1; with trivial
normal bundle representing ['j"”"r] with “151 = |c: +« We have two

pairings

(]
I,I': Pn_l x rn_l—--ﬂ ® A
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satisfying II.3.2. I is the one we want, and I' is the one produced by
the spheres we have. We will modify the spheres until I = I'. By condi-

tions 1 and 2, it suffices to have
I'(zi,zj) = I(zi,zj) for. v e

By 4, I(zi,zj) - I‘(zi,zj) € Z@® A Moving Sj through an isotopy which
intersects Si transversally in +g € 5, and misses all other sk’ and adjoin-
ing nj copies of the track of this isotopy to cj changes I'(zi,zj) by

+g and leaves all other I'(zk,zl) unchanged (except I'(zj,zi)). By a
sequence of these changes we can make I(zi,zj) = I'(zi,zj) for i < j.

M2n-1

Changing the embedding s;‘lc+ with normal field 'j by a regular

homotopy with normal field extending .j and with self intersection @ in
M1 g changes %T'cj°sj by a + (-1)" &.

By condition S? of II.3.1 we know that % I(zi,zi) = % I'(zi,zi) in
Q/2Z ® Qn' A straightforward, algebraic calculation shows that if an
element, a € @ @ A satisfies %'a =0in@/Z@® A and a = (-1)" &, then i
a=a4+ (-1)" & for some o € A+ Applying this to I(z;,z,) - I'(z;,2;), :
one shows that by varying the embedding of S?_l by a regular homotopy we

= .
can make I(zi,zi) b S (zi,zi).

The change in the chain realization required to make I' = I was done

entirely by homotopies of chains. Thus, if the original chain realization

induced a simply homotopy equivalence with C_(f), then the new chain

realization does also.
.

2n-1 g N2n-1 -

Theorem II.3.4: Let £: M be an s-nice (nice) normal map.

If Tor Kn_l(f) admits a resolution 0 - An-l »> Fn-l - Tor Kn-l(f) - 0 with

a pairing I: Fn X Fn-l > @ @ A satisfying II.3.2 and with

-1

I|: A X F < A non-singular, then f is normally bordant to a simple

n-1 n-1

homotopy equivalence (homotopy equivalence).
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Pxoof: We can assume that f is (n-1) connected and that xn_ltﬂ

2n-1

= Tor K__,(£). Embed disjoint spheres s‘i"’L»u which represent the

n n n-1
banis (‘1"”"'1;] for F . There are chains C;, in M with 3C; = n.5. .

n-1
i

. Denote by s;_ a copy of si. pushed off along the first vector in the

he normal bundle of each S is trivialized by the bundle data covering

trivialization of the normal bundle. By II.3.3 we can choose the embedded
#pheres so that ci-65 = I(nizi,zj).

2n-1 n"l} A and

Let G: W . N % I be the trace of surgery along the {8i

f'y M' = N be the "other end" of W. From the exact sequence of the pair

(0,f) we find that

K, (6) =

(this is an isomorphism of based p-modules.) The cycles in W represent-

Ahg the basis for Knto) are (-c1 U nldl,...,-ct v ntdt where dj is the

handle added along S;'J'.
0 *¢¥n
K, (G,£') =
P;_l * = n.

(Again, this is an isomorphism of based modules.) The long exact sequence
of the pair (G,f') is

i
0—>K_(£')—>K_(6)—>K_(G,£')—=K__ (£')—>=0

=l 3 l:

A
Al O Naa N
Qladm: i, K (6) » X (G,£') is -ad(1). inid

Rrgof of claim: The map Kn{G) »> !(n(o,t'} is the adjoint of the inte
tion map Kn(G) X Kn(a,f) + A+ The element a, € A , is repre

-01 1] ni'di' and ‘j € Fp.] is represented by dj v 8'_.;_1 X I
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intersection ai-zj = -ci-si = -I(ni,zj) .

Since ad(I|) is a simple isomorphism, f£' is a simple homotopy
equivalence.

Based torsion jp-modules come equipped with a simple equivalence class
of short free resolutions and thus we can view a based torsion module as
the homology of a based chain complex. Consequently it makes sense to
say that a short exact sequence of based torsion p-modules has trivial

Whitehead torsion.

2n-1 - n=1

Theorem II.3.5: Suppose f: M 82 is an s-nice (nice) normal map.
If there is a nice submodule T<>Tor Kn_l(f) on which s and d¢ vanish

identically and so that

— *
T——i-r'.l'or Rl'l-].(f) '“i;'—"b"l'

is a short exact sequence with trivial Whitehead torsion, then it is
possible to do surgery on £ to make it a simple homotopy equivalence
(homotopy equivalence). We call such a submodule T< Tor Kn_l(f) a

subkernel .

Proof: Wocanassmt.hntxi(t) =0 for i ¥ n - 1 and that

Kn_ltf) = Tor {Kn_l(ﬂ). Let A+ F + T be the based free resolution for T.
rind inside w27t disjointly imbedded spheres [s;"]‘} representing the
basis for F. Representing the basis for A there are chains c‘; with

ac;_‘ = nis;"l. As before we can arrange that c';-s.;' =0 Vi,j. This is
because 4|T X T = 0 and qtl'.!' = 0. Now do surgery on these spheres; \ip‘t

G: Hzn-n X I be the trace and £': M' + N be the "other end".

Claim: 0 *¥n-1,n
K, (G) = T «=n -1 as based j modules.
A * = n

Proof: The exact sequence of the pair (G,f) is
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K (£)—>K_ (6)—>K (G,f)—>K _, (f)—>K_, (6)—>0

’ oo

F——>Tor K__, ()

Claim; 0 «#n - 1,n
K (£') = A* s« =n =1 as based pj-modules .
A * =n

Proof: The exact sequence for (G,f') is

0—>K (£')—>K (G)—>K (G,£')—>K _, (£')—>K ,(G)—>=0

" )

—F% T*

But the intersection A X F + ) is identically 0. Thus K (£f') = A and

Rn_lt.’.') sits in an exact sequence

o—rr*—r-xn_-l (£*)—>Th——>0,

@ uzn-l

I the generating set for T* is represented by disjointly

embedded spheres of dimension (n-l), [si}. We can choose the spheres so

" n 2n-1 n n-1 _ .
that nisi bounds a chain ci in M with ci'c:l ‘:I.j' The spheres s1

sit naturally in M' and C}-(neighborhood C,-S,) is a homology in M' from
nisi to the basis for F*. This proves that xn_l(f') = A*, The inter-

section pairing l(n_]_(:lf') x xn(t') + A is the natural non-singular one

A* X A—>). : .
3

Surgery on the basis for A* = K, (f') produces a normal bordism from

f' to a simple homotopy equivalence, (see I.3.4).

S ——
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CHAPTER III: The Index and the de Rham Invariant

In this chapter we study the homology of closed, oriented simply
connected manifolds. In the spirit of the previous sections, we concen-
trate on that part of the homology which is paired with itself by Poincare I

duality, i.e. uku.zk)/'ror and Tor nku.z“l)

. We analyse these self-
pairings algebraically and find two invariants of interest--the index in
the case of symmetric intersection and the de Rham invariant in the case
of skew-symmetric linking. Both these invariants are classical, and the
index, in particular, has been much studied. In the case of linking

pairings we also discuss chain realizations for the pairings.

Theorem III.l: If k is odd, then the intersection pairing

H (I.zk)/'ror £ nk(l.zk)/'rox + % is skew-symmetric and non-singular over Z.

Algebraically it is isomorphic to a direct sum of (Ze Z, (_g 3)}.

Proof: That the pairing is skew symmetric and non-singular is classical.
The algebraic classification of such pairings is straightforward, see
[9l.

2
If k is even denote Hkll.zk)/'ror by P (L l't) . The pairing

F (L) o F, (L)—>Z

is symmetric and non-singular. Let r be the rank of Pk(L}, and let d
be the rank of a maximal subspace K< Fk (L) on which the pairing vanishes.

The number d is independent of the maximal subspace chosen, and the

pairing (F,.) decomposes as
(A,*) ®» (B,")

where (A,:) =®(X o =, (?_ :)} and (B,-) is + definite. The signature of
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(F,*) is defined to be + rk B depending on where B is + definite. The !

signature is an additive invariant under orthogonal direct sum, see [7].

heorem III.2: If k is even, then the signature of sz is zero if and
Theorem

only if there is a subspace ch-rk (I-Zk} satisfying
1) +|K @ K vanishes, and
2) ad(+): K-> (rku.)/x)- is an isomorphism.

The signature of the pairing is called the index of L, I(L).

Theorem III.3: If 2k + 1 = 3(4), then the linking pairing

2k+1

26ty o mor B (L

4: Tor nk(L ) —a/%

is non-singular and symmetric. Thus it admits a "resolution". That is

there is a free abelian group F, an epimorphism F 3 Tor ﬂku.zk'u) , and a
I

symmetric pairing F @ F + @ such that

1) I|(ker n) @ F takes values in Z, |

2) 1(x,y) = g(n(x),n(y)) modulo Z, and |

3) Ad(I) induces an isomorphism Ker p + F* = Hom(F,X) .

f

Proof: Given any free abelian group mapping onto Tor Bk(szH'] there is

a pairing satisfying 1) and 2). The crucial property is 3). That such a

resolution exists follows from [14], theorem 6.

Theorem III.4: If 2k + 1 = 1(4), then the linking pairing
Tor nk(L) @ Tor nk(L) + @/Z is non-singular and skew-symmetric. This
only means g(x,x) is of order 2. 1In fact g(x,x) = (v (“L”x) € WZ‘c Q/Z.

Tor 1&(1.) is isomorphic to A @ A ® ¢%/2 where ¢ = 0 or 1. The pa.i.ring is

on &/n ® ¥I/n, and (%) on Z /2. i |

* ‘

a direct sum of pairings

ﬂ‘l—' o

Proof: All this follows from the standard algebraic classification of

skew-symmetric linking pairings, see [8]. The reason ¢ modulo zf.f-ﬁ"

30T

that is needed is that
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(%2,3)) o (H2,3)) = %2 & %2,

W= N

o™

The element ¢ € /2 is the de Rham Invariant of the pairing and of the

manifold L%, 1t is denoted 4(L).

On the chain level 4 has the following consequence. If d(L) =0,

then there are cycles [z:,. ..,z: ] and chains {Ck+1,.. «5C k'n'] with
r 1 2r
ey . s,
R P ar
=
3) the cycles [zi] induce an isomorphism @ z/nil-r Tor ﬂk(l}), and
i=1

4) there are pushed off copies of zi,zi' with the chain intersection

matrix given by

1
B'I-'
o

o

o
o

Both the de Rham invariant and the index are bordism invariants. If

0w L hen the kernel of (H,, (M) /Tor > H,, (W)/Tor) provides a

subspace K with (<) |K @ K = 0, and Ad(+,): K + [H, (4)/Tor + K)]*ian

4k+1

isomorphism. This implies I(M) = 0. The de Rham invariant of L%l ig

measured by the characteristic class

(Vg) ST vy, (L)) € 2T

th 2k =
where v, is the 2k~ Wu class, see (9], (<v,,, (2] 1>=2(2;], [2;]) ez /22).

There is also a direct Poincaré
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duality proof that the de Rham invariant of a boundary is 0. The de

Rham invariant is multiplicative with respect to the index:

d(L) -1(M) t=l, me= 0(4)
at xM™ = < 1(L)-d(M) £ =0, ma 1(4)
0 otherwise

There is a S5-manifold of de Rham invariant 1. Let c: CPz - d:Pz be

complex conjugation. Then M° = ap? x 1/((X,0) ~ (c(X),1)] has

HyM%) =Z/2. Thus dM’) = 1. M° is not simply connected (m, = %, but
we can do a one dimensional surgery to replace lls by a simply connected
manifold X°. X° is diffeomorphic to SU(3)/S0(3) and has de Rham

invariant 1.

¢P2 is the simplest example of a manifold of index 1.
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CHAPTER IV: The Product Formula

Section IV.l - Even dimensional normal maps. We are now in a position to

apply the analysis in chapter I through III to prove our produce formulae.
Given a normal map f: Hn -+ Hn with £ |aM a simple homotopy equivalence (or

homotopy equivalence), and a closed, oriented simply connected manifold

L‘, we can form a new normal map
£x 1M xut—s " x 1t

s
The surgery obstruction of £ X LL,gtf x lL) 3 Ln+.l. (nllm) is easily seen to
depend only on the obstruction g(f) € Lfl(nl (N)) and the class of L in
oriented bordism, nl. Furthermore, go(f X :LL} is additive in both of these
factors. Thus, this process of crossing with a closed, simply connected

manifold induces homomorphisms

Lym @ a,—*—>1L_ (m
and "

s S
Lmea, —*>L_ (n.

By a product formula, we mean an explicit formula for ¢ and .'.

Theorem IV.l.1l: a) If 4 = 2(4) or 3(4), then y: Ln(“) ® n‘ - LM“{")
and o°: L (n) ® 0, > Ly, (n) are 0.
b) 4if g = 0(4), then there is a natural periodicity identification
b

s s
of I.n(n) with I'n-u(", and Ln(n) with Ln_u{n), see [15]. .

With these identifications both w and «® are multiplication by

3

the index of L . Thus, for instance

.
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8 TL

(w) *

5 )
I-n(nl ® 04"—'—'*‘1-

ll@l

Lom 8 Z——>1

=R

—

(m)

B0

commutes

c¢) If ¢ = 1(4) then there are maps

ot Lym—=L__, (n)

and |
o2 I.f‘ {—>= I-iﬂ () - ’

Both im ¢ and im q,' consist of element of order ¢ 2. |

L) o o (£ M > N)) -d(L) ’

w(lf: M+ N] @

4141

o [(£: M > N] @ L) = % ([£: M » N])-d (D).

Thus we see that the only invariants of a simply connected, closed !
manifold which appear in the product formulae are the index and the de |
Rham invariant. Both of these are algebraic invariants associated to the
dual pairings on the homology in the middle dimension.

In this section we prove this formula if we start with an even
dimensional surgery problem and cross it with aliy closed, simply connected
manifold. In the next two sections we deal with odd dimensional surgery

problems cross any closed, simply connected manifold.

We begin with a normal map (E,bt)z mzn,v") > (an,g] . We do
surgery on (f,bf) until Ki(f) =0 for i ¥ n and xntf) =G a free j\- |
module (with a simple equivalence class of bases if f|aM is a .1.912"- a
homotopy equivalence). G has a non-singular intersection pairing
At 6 XG> p (Tn fact if f£|3M is a simple homotopy equivalence. , then

ad(A): G » Bouﬂ (G,7) is a simple isomorphism,) and a self intersection .

form . The triple (G,j,s) satisfies II.1.l a)-f) and the element i """
| wepliol-
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determines in LG("l (N)) (or (Lgn(nl))) is the Wall surgery obstruction

of (f£,b We denote this element g(f). For simplicity, we deal only

f) 3
with the case when f|aM is a simple homotopy equivalence, and we are
calculating the surgery obstruction of the product in Li (n) . The obvious
deletions of references to based structures is all that is required in the
other case.

Cross with LY. By this we mean form the normal map

By X dvg

v X vy, .

Soe

Y gt

M x L

We denote this normal map by £ X ]'L Restricted to 3(M X L) = agM X L, it
is a simple homotopy equivalence. The first step in evaluating ¢(f X 1L)
is to calculate the kernel modules and their pairings.
I: K. (Ex 1) =K (f) @ H (L) as p-module with based structure.
i L n z i-n
(This follows from the Kinneth theorem, since Kn(f) is free.)
II: The intersection pairings Kn+i(f X 1L)/'1'or X Kn+,¢—i(f X lL)/‘I'or
-+ A are equal to Af ® ‘L* Here, *L, represents the usual inter-

section pairing in L.

III: The linking pairings, g: Tor Kn+i(f X 1L) X Tor Kn+z-i-1(f X 1L)

> (@/2) ® A are equal to ) ¢ ® 4 Here 4 is the usual linking
pairing in L with values in Q/Z .

III follows by taking product cycle and chain representsions. \For

i;‘,c-i-lleto-rai-vl? *TorHi(L)»Oand 3

i

0> A . -+ Tor Hn-i-l (L) - 0 be integral resolutions. We can

n-i-1 b l'?n--:i.-l o
assume that the chain intersection maps Ai ® Fn—i-l—_l’z and
®n—i-
An-i-l ® Fi—nu‘»-z are non-singular. The tensor product of Kn(f) with

these resolutions are resolutions for Tor K, (f X lL) . From III it

follows that the tensor product pairings ;.f ® 95 and *f ® ®Onoi-1 lift the
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linking pairings. These are obviously simple isomorphisms. This together
with I and II proves that £ X ]1‘ is an s-nice normal map.
We now begin the calculation of g(f X 1L) . It is divided into the

case 4 1is even and the case |y is odd.

Subcase: [t is even, g = 2k.

IV.1.2: Since f X ]1 is s-nice, we need only calculate 1”11 and "'Ele

on Kn(f] 2 Hkﬂ.}/‘ror. We have seen that the intersection form is ;t ® «p-

Claim: The ,-form for f X 1 vanishes on Kntf} ® Tor H.k{L) and on the

quotient Kn(f) 2 Hk{I.)/Tor it is determined by
gfle(x ®Y) =pug(x)(yy).

Proof: The proof consists of a local product formula. Given
X®Y € Kn(f) ® Hk“") , we represent x by an immersed sphere s"4»M with

trivial normal bundle (the normal bundle reductions comes from a reduction

of (v a3y = ¥*£) for some §: Dn+1 + N). We take this immersion to have

only transversal double points. We represent some odd multiple of y by
a manifold Y » 12X, By the Whitney trick, we embed Y<<» 12X, (1f k = 1,

then L = S2 and there is no 31' If k = 2, the L is bordant to

_-|_-(¢P2 I | cpz) and a generating set of H, is represented by embedded two
spheres.) s x Yk is then immersed in M X L representing x @ y (or some
odd multiple). This is an "appropriate immersion"” up to regular homotopy

for calculaing y(x @ y) since the bundle reduction comes from one over

n+l L

D X ¥, We must shift this immersion within its regular homotop}'c}au

until it has only transverse double points. As it sits now, above each

2k

double point of §'0-»M, there is a double copy of Y' in L°". Shift one of

these copies transverse to the other in the sz factor. We get
H 97T
% (v(¥=> L)) points above each double point of s". since x(v(¥Y<>L)) = Y.¥,

we see that . . (X ®y) =y (x)+(yy).
L
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If k e 1(2), or k = 0(2) and I(szj = 0, then there is in Hk(L)/I'or
a self-annihilating subspace K with M(-L)s K » [(l-l.k (L) /Tor) /K]* an
isomorphism. By the product formulae for afle and "fxlh' we see that

they both vanish on Kn(f) ® K ""‘Kn-t-k(f X ]I.) . Also,

MﬂﬂhhkﬁﬂQk—ﬂﬂxﬂﬁxlﬂﬁﬁﬂnx"

is identified with the isomorphism
Ad(Ag) ® Ad(*)): K (f) ® K—>K (£)* @ [(H_(L)/Tor)/K]*.

Applying II.3.1 shows that the surgery obstruction for f X 11. is zero in

S
Lon+2x
2%

If I(L) # 0, then L™ =~ l\(ﬂz Mo oeX GPZIJ has 0 index where a = I(L).
22
k/2 times
Thus the surgery obstruction g(f x 1

(n) .

L-a(@p3x...xgp?)) = O °F

o(f x 1) = ao(f x1 Thus to complete the proof of the

ap2x. . .xap?) *
product formula for

-
s s
Lon(m ® 0y —"—>Ly oy (M),

it suffices to show that the surgery obstruction of f x 1 equals that

ap2
of f. This is just Wall's periodicity calculation. Since H, (C!Pz] =7

and the intersection pairing is given by the matrix (1), the above calcu-
lations of the ) and | forms for f x 1gp2 show that they are identical

to the 3 and ,, forms for f. Hence, the obstructions are the same.

Subcase ¢ = 2k + 1l: Here we must calculate g and qfle on i"‘ %

Tor Kn-l-k(f X J'L) = Kn[f) ® Tor H‘ (L) . We have already seen that
tix @ y,x" ® ¥y') = A (x,x") ® £ly,y") in p ® Q/Z. Since we know ¢, it
suffices to calculate qfxl on elenents of the form x @ y € Kn(f} )
L
Tor Hl(L). This is our second local product formula.

If x € Kn[f), then ['Af(x,x)le N is divisible by 2. To see this
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let y € 5, be any element which projects to uftx} in Qn. Then
Aux) =+ (DG dn A In 0 D 0GX)] = [w] + [(-1)"5) = 2[a].
iot [% xf(x,x)l denote any element in Qn with the property that

ﬂl% '.\f_(x,x)] = [;f(x,x)]. If f is a rational number then

15 2:,%] 8% € Q /% is independent of our choice of [F Ag(x,x)].

For if 2a = 2b = [A(x,x)] in Qn then

(a@r/s) - (begr/s) =(a~-Db) gx/s=2(a -Db) @ r/2s = 0.
Proposition IV.1.2: If x @ y is an odd torsion element, then

(3 2060] @ 0y,y)] in Q. . 8 W/Eif 4w 3(4)

q,_xLL(x 2y =

0 in Q . 1@ ®/Zif 4 = 1(4).
!
Note: If 4 = 3(4), then Qm-k-i-l = Qn, and by the above discussion |
[; Ag(x,%)] @ £(y,y) is well defined. '

Proof: This calculation is purely algebraic. Recall that 9 (x » y) is
L I||

the unique element in Qn-l-k+]. ® @/Z which ”
1) is of odd order and |

2) satisfies thlL(x ®y + (-1)””“1

1L(x oY) =txey,xey).
As we have seen ((x @ y,x @ ¥) = 11(::,3) ® tly,y). If g = 1(4), then
L(y,y) is of order 1 or 2. When y is odd torsion it must be 0. Thus
t(x®y, x@y) = 0. Consequently qfle(x ®y) = 0 when t = 1(4) and vy

is odd torsion.
ntk+1l

If 2k + 1 & 3(4), then 1f(x,x) = (-1)
n+k+1[l

1f(x,x)'. Thus |

- 3
.[l AeGox)] @ tly,y) + (-1) Ag(,x)” @ £ly,y) = A 6,x) @ sly,y) = .
“fxl xe y,x®Y). Prom the note following II.l1l.3 on the structure of

A (x, x), one checks that [2 f_(x,::)] ® tly,y) is of odd order when g(y,y) is.

Proposition IV.1l.3: If x @ y is of order a power of 2, then |
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% Ae(x,x)] @ 2(y,¥)) €Q .. ® Q/Z if 2k+l = 3(4)

n+k+
qfle(x ®y =

pelx) ® £(y,y) € Q@ %/2 =0 1® H2+Q 1® VZ

n+k+ n+k+

if 2k+l = 1(4).

Note: Qn ® Z/2 = Qn+k+1 ® Z/2 by definition. Since Z/2<>Q/Z we have a

map Qnaz/2<-'+0 1@@/%.

ntk+

Proof: 1In this case, the calculation is geometric and more delicate. We
may assume, however, that x is represented by an immersed sphere

st M2n with trivial normal bundle, and that y is represented by an
embedded manifold j: Yer L2**! with ry = aw**}. Ppick (arbitrarily) a
nowhere zero normal field ¢ for Y in L. This gives a normal field

for s" X f‘d** “Zn X L2k+1

+ This normal field comes from the product
bundle reduction ¢" X ¢ of the normal bundle of s"x ¥ inM x L. (Here
¢ 4is the perpendicular to the normal field ¢ of Y in L.) Conse-
quently, it is a correct normal field to calculate qulg‘ ® y). Unfor-
tunately, s™ x Yk is not embedded in M X L. Our first step is to change
this immersion by a regular homotopy (carrying along the normal field)

until it is embedded. Near each double point of s™>M we have two sheets

P + and P_ intersecting transversally in a point d.

Above the double point there is a double copy of the manifold Yk Push
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iy

the copy of Yk above P_'_ up the normal field ¢, 2 units at d and damp

out the push above the rest of P_'_

Doing this near each double point produces an embedding of
s x \r"r?n X L with normal field. We can extend the embedding g to a
map g: 8" x W+ M X L.

We must intersect this with g': 8" x Y » M X L where g' is the
result of a small push along the normal field ¢ from g. First push
s" X W in the M direction along a normal field y for S M. (Recall
that y(s'™> M) is trivial.) During this shift p x W moves through

I XWI XL top'XxXW. I

A\
Consequently, the boundary of s™ x W does not intersect g‘(s" X ¥) during
the shift, and thus the intersection number (s” x W)-g'(s" x ¥) is

unchanged. Near each double point, d, there are two points p]' and p2

in M where the end points of . intersect the original immersion sTn,

i i e S



60 JOHN W. MORGAN

The only places where s™ X W can intersect g' (Sn X Y) are in the copies

of L above pl and pz. Above pl we have

with intersection W+Y'., Above p2 we have

original Y'
¥

and intersection W.Y' + r(x(ck)) where ck is the subbundle of

2k+1

-(YkC—>L ) normal to g¢. Let 9 be the element of ) associated to




1
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the double point d when we order the sheets so that P, is first and p_
is second. The intersection associated to pl is gd-{w-t') € A, and the !
intersection associated to pz is (-1)“ Ed-[w-Y' +r x(;k)] +« The total

intersection is

(9q + (1)) W-x") + (-1)"Gzrx ()

double points
d

and hence

®) gy xen = Y gD, (YY) + 31 "G (0))
double points
d

in Q) ixe) © VE

Case A: 2k + 1 = 3(4).

Here k is odd and hence x(ck]-o, and Q -Qn' Thus if a € ,,

n+k+1
then [a] ® /s = (-1)"[d) @ r/s in Q kel © @/X. Hence

I x @) = D TR U AR Y
double points
d
=) [Beg* (D5 Zwex)
double points
d

=0 ) Hgg+ (01 e sy

double points
d

= 13 A, (3] 8 £y, N\,

ase B: 2k + 1 = 1(4).
Here k is even. In Q k1 [a g r/s] = -[(-1)“6 ® r/s]. In this |

case (*) becomes

RN RE T |
!
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qmm(" oy =1 Z 1%, & 7 x(c -
double points
a

Since %x(ck) is of order 2 in Q/Z, this sum is equal to

0™ 50 8 2 (M

double points
d

= pnglx) o%x(ck)eo 12%2=Q o %2.

nk+

To complete the proof of 8.3 we must show that -;-'x{;k} = g(y,y) € @/Z% when

k is even. But -;-" x(ck) is (wk(ck),[fk]) - J.lYkl): and we

M vy,
have already seen that via Spanier-Whitehead duality the latter is
(vk(\px},['!‘k]) = t(y,y) € %2<>Q/Z. This completes our local product
formula.

We are now in a position to analyse the guestion of existence of a

resolution for § and qfxlx' as required by IV.3.5. First assume

£t =2k + 1= 3(4). Then, by III1.3, there is a resolution
0—A —F —Tor H_(L)—>0

and a symmetric pairing I: 'k 2 Pk + @ lifting the linking pairing on
Tor lik'(x.) such that I|: Ak e Pk + Z is non-singular. We have a

resolution

0—>K (f) @ A, —> K (f) @ F,—> Tor K_, (£ x 1, )—=0.

N

Claim: The pairing A @ I: (K (f) @ F) x (K (f) @ F,) » A & Q satisfies

I11.3.2, 1)-5) and
ad( ® I|): K, (£) @ A —(K (£) ® F)*
is a simple isomorphism.

Proof: That ) @ I| satisfies II.3.2 follows immediately from the previous
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calculation for 4 and Qg X ln. That it is non-singular is obvious, .

This proves IV.l.l in the case t = 3(4).

2k+1

1f ;-4k+lnndd(l’.“)-0,ht!'c.‘!‘oxl!zk(n ) be a subgroup on

which the linking pairing vanishes and with the following sequence being
exact

2k+1
*
T—>Tor nzku. lT-r .

The nice submodule xn(f) ® Tc,Tor BMZk (¢ ]I) is a subkernel. This
follows from IV.1l.2 and IV.l.3. Theorem II.3.5 implies that g(f x 1!.) = 0.
Let x5 be the simply connected manifold of de Rham invariant 1 as

in chapter 3. Define g: L;(ﬂ] + Ia:“_l(n) (or gz L (n) > L __,(n)) by

crossing any normal map with x5. If d(L‘kﬂ') = 1, then
L'=sL = x5 x ‘(ch HeveX d.’le, has de Rham invariant equal to 0. Thus
k=1

olf x ln,) = 0. Hence g(f X 1L) = qg(f x 1 5 ). The latter

X x(apzx...mzl
obstruction is equal by periodicity to g(f x 1 5} which is g (o(£)).
X

This proves that in general o(f x 1 , ..) = g(o(£)) -d(L).
L

Segtion IV.2 - 0dd dimensional normal maps cross even dimensional mani-
folds. In this section we prove theorem IV.1l.1l in the case

22

2n-1 , 201y » 124, we cannot arrange that f has only one non-

(£: M
zero kernel group. Instead we follow Wall and divide £ into two normal

maps with boundary each with only one non-zero kernel group. We do

surgery on one of the pieces cross L until the map here is a simply

homotopy equivalence of pairs. Then we consider the other piece cr:;iy, L

and do surgery on it relative to what we have already done on its

boundary. |
If £: u2n-1 -+ uZn-l is a degree one normal map with f£|3M a simple
homotopy equivalence, then we can do surgery on f so that K, (f) = 0

for # < n - 2, Let {xl,...,xsl € xn-l(ﬂ be a generating set. Represent |
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:-]E:—rll with trivialized

normal bundles. (The normal bundles are trivialized by the bundle data

n-1
L x

these classes by disjointly embedded spheres S

£
covering f.) Let || s x D" be a tubular neighborhood of these
iwm]l
2n-1 4 n-1 n
spheres and let U = D T i & $;7" x D" as in the diagram below
i=]1

2n-1 2n-1

We can assume £: U~ D", and that £| (M-U): M - U > N - D Let

M - U be no and N - D’n']‘ b.'u’o. The fact that 3aU has the structure of
L

¢ s:'l x 8"! tells us that K,(£]aV) is 0 for * ¥ n - 1 and that
ie=]
L

{Kn_ltf| 3U),A,u) is isomorphic to the hyperbolic form @ ,\{ei,fi), with
i=1

x(eij‘j] - k(filzj) - o’ l(eilfj) - ‘ij; m u(ai) -].l(fi] - 0- 'I‘he

element e, is the class of Si x [(pt) and f:l. is the class of the dual

sphere. The kernel sequence for the pair (Ho,all) is trivial except for

We can assume that xnmo,au) is free. It provides a based subkernel in
the hyperbolic form xn-lhu) . The class of this subkernel determines the
surgery obstruction of £ in L;n_llnl(li)l. see [15] page 56. We denote

the above sequence of free based kernel groups A

»
3

o—r-xn—“)- xa—a-xa—-—o.

A
The pairing K XKy > A is non-singular. (In fact the adjoint of ) is
a simple isomorphism.)
Our method of proof is to assume that the index of L is 0 and

then do surgery on £ X lL: Ho X L+ N x L to produce a simple homotopy

]
equivalence of pairs.
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simple homotopy equivalence

e 7

My X L QL Ny X L e

fle

After having done this we will have to do surgery on W y U X L » Dzn.lx L

relative to its boundary. Since this is a normal map between simply
connected odd dimensional manifolds, we can perform the surgery and re-
place the map by a homotopy equivalence.

This will prove that when I(I-z") = 0 then olf x ]I) = 0. The com-
plete product formula, g(f X 11') = g(f) -I(L), then follows easily from
this and the fact that o(f x 1 2nl = 5(f). To prove the product formula

ap
in Lh (n) simply delete all reference to the based structure.

Proposition IV.2.1l: Suppose f: sz - sz is an s-nice normal map and
ut Tor Km(ﬂ - Q.I vanishes. Then given a subkernel S c xn(f)/‘ror there is
a normal bordism F: W > Q x I from £ to a simple homotopy equivalence

with

1) K,(W) and K, (W,3) nice, based j-modules,
2) K,(W,P) = 0 for » » m + 2,
3) K,0W,P > K, ,(P) a based isomorphism for « g m, and with

4) Kn-c-l.("‘” -a* Kan) a based isomorphism onto S c xn(P)/'l'or: \.'

3

Proof: The low dimensional surgery as described in 1.3 produces a bordism: d
from £ to f£' with K (£') = K (£)/Tor ® p" ® A" . Surgery along a e
for S c Kn(ﬂ/‘ror and a basis for the second A: factor as dncribtld- n
note following II.l.4 then produce the required normal boufdim fro

A

a simple homotopy equivalence.
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il it degree one normal map which is a simple

24

Let f: M

homotopy equivalence on 3M. Let L be a closed simply connected manifold

whose signature is 0. We will prove that o(f X lL) = 0. First do surgery

on f wuntil K,(f) = 0 for i ¢ n ~ 2. Now split f into 2 problems

f: M > N_ and f: U ~> Dzn-l as described at the beginning of this section.

0 0
The analysis of IV.l applies to £|§U X lLs aUzn'z X 1.2‘c > szn-z X Lzl.

It tells us that this is an s-nice normal map with Ki((flaU) X lL) =

K. @ H (L) . The linking and intersection pairings on these kernel

.
groups are the tensor product of the pairings on HL(L) with the inter-

i-n+l

section pairing on K _. The quadratic form vanishes on

]
24 X
Tor Kn+‘_1(f|aU X lL). Let BLC—DH‘(L )/Tor be a subkernel for the inter-

section form. K_ ® sL is a subkernel of Kn (£]aU X 1L)/'ror. Let

] + 4 -1
F &
w24 5 4?1 5 124 1 be the normal bordism of £[aU x 1, to a simple
homotopy equivalence as in IV.2.1. Form V = MO X EX I U WXI>
‘ collar
on 3aU X L

(NOXL) % . Ts

I
W W
SR S
M, XL I
I
Mo X L

NO X L

x2n+2z-1+ NO X L,

o X LU W). The map ¢ restricted to aX is a simple homotopy

This is a normal bordism from £ X lL to a normal map g:
X=M

equivalence. We have the exact sequence of the pair (MO XLy w,Mo\x L).
eoe—>K, (W,3U X L)-—->1<*(M°>< L)—»>K, (g)—>K, (W,3U X L)—»x*_l(mo X L),

This implies that

Ky ® H, (L) *<n+ g -2
K,(9) =
KA ® H*_n+1(L) *>n+ g+ 1.
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On these modules the intersection and linking pairings are the tensor
product of \: KR X Ky > p with the pairings on H, (L). Also near the

middle dimension we have short exact sequences

U——>K &

“ (L —>K (9 —>K, ® 5—>0

H,c,+1

0—>K, ® Hz(L)/S—' K (Q—K; @ 33-1(1‘)_>'°

n+g-1

In both cases the submodule KA ® H, (L) is represented by product cycles
in MO X L. Both sequences are split. Cycles representing

KR ® S c sz(f;) and KR ® H‘_I(L) & sz_l(g) are of the form

XXZyPc >M XLUW

0

where X is a relative cycle in (Mo,aU); Z is acycle in L; and P is

a relative cycle in W whose boundary is 3X X Z

X X 2

From these descriptions it follows easily that g is an s-nice normal

map. Hence g(g) € LS (g) to-

2n+2 4-1 (my

gether with its linking pairing and quadratic refinement. We have a

(N)) is determined by Tor Kn-l-z-l

short exact sequence

* —_— —_— —_— i
(*) 0 KA ® Tor H (L) Tor K s l(g) . IS‘ ® Tor H l(L) 0.
L L L A

®

The linking pairing and quadratic refinement vanish on l(A ® Tor HL(L) .j

The reason is that a @ t € KA ® Tor H‘ (Lz“) is represented by a product

24

e represents o and Yic,1L

cycle inM X LcM XLyw. IfS "<»M

0 0 (1]
represents t, then S“':L X YC—>M0 X L represents a ® t. Any normal field
24

for Y‘ in L is an appropriate normal field to calculate g(a ® t) since

it will extend over D" X Y. (Such a normal field exists since Y‘-Y‘ = 0,)
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With these choices it is clear that g(a @ t) = 0. Thus the exact segquence

(*) is of the form

T —> Tor K =

g1 @) — T

with g|T = 0. Theorem 6.5 implies that ¢(g) = 0.

We do surgery on g relative to g[a{ﬂo X L y W) tomake g a
simple homotopy equivalence of pairs.

As we remarked earlier surgery on the "other side" relative to its
boundary, W y U x L + pa L o L, is always possible. In the end we have

constructed a normal bordism for £ x 1L= MXL-=>NXL to a simple homo~-

topy equivalence. Consquently, g(f X 1 ,) = 0 if 124 = o.
L

Section IV.3 - 0dd dimensional normal map cross odd dimensional manifolds.

In this section we consider the last case of the product formula. We

2441 2n-1 > Lz;-l-l 2 N2n-1 ¥ II2;,+1.I

show that if d(L ) =0 then g(f x lL: M

= 0. The general formula as claimed in IV.l.l then follows easily by
additivity. As in section IV.2 we do surgery in £: M2" L » ¥l neqn
xi(f) = 0 for i < n - 1, then we split £ into f: Ilo -> uo and

£: U+ 0?1, pirst we show that if a(2f*!

) = 0, then we can assume
that Tor H‘(L) has a subkernel. This then provides a subkernel for

f|aU x L.

Lemma IV.3.1: Let r24*!

be a closed oriented manifold.
a) If 24+ 1= 1(4) and d(L) = 0, then there is a subgroup ' &.,'
T c Tor H‘ (L) on which the linking pairing vanishes and so tﬁat

the following sequence is exact.

*
'r-—i-;-'ror H‘(L}—?r .

b) If 24+ 1= 3(4), then L is bordant to a manifold L' so that

there is a subgroup T c Tor H‘{L') as in a).
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is a short exact sequence

3

Q—> A—>F —> Tor HS(I..)—}O

W

and a symmetric pairing

I: Fe@ F—@

- Which refines the linking pairing. In addition I: A @ F > Z is non-sin-
~ gular. We use the matrix I: A @ A » Z to build a plumbing diagram of 2-
spheres. The resulting 4 dimensional manifold, W, has a boundary aW with

H, (3W)=Tor H (L) and with the negative linking pairing. Take 3WxTF and do

two dimensional surgery to make it simply connected. (Here 4r +3 =20 +1.)

28+1

Call the result X . Let L' =X #L. Since X bounds, L and L' are

bordant. The linking pairings on Tor H£(L'} has a decomposition

(Tor H‘(I-'l.x} = (Tor \H-‘(I-)..c) @ (Tor EL(I-),-H-

The diagonal copy of Tor H N (L") préwides the required subspace T. Since

Thus for calculating sur-

Ll) L
' 2441
gery obstructions we can always assume that if 4(L

L and L' uehordantglfxll'} = g(f x 1
) = 0, then such

T c Tor Hl(L) exist.

Let f: nZn-l > Nzn_l is a degree 1 normal map. As in section IV.2,

we do surgery on £ to make Kilf) =0 for i ¢ n - 2, and let

fos H:n-l »> No, £| : U~ D2n-1 be as before. We will do surgery on

€] x 1.0 3 x (2441 (2n-l 2441

"

to make this normal map a simple homotopy equivalence (assuming

2441

a(L ) = 0){ This surgery will be well adapted to this subkernel. To

prove such surgery is possible requires some analysis of immersions of

m-dimensional Z/k-manifolds in 2m-1 dimensional manifolds.

2m~-1 & RZIM-J.

Let f: P be an s-nice degree 1 normal map and let

: a) follows immediately from III.4. In case b) we know that there
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%: vp -+ g be the bundle map covering f. Suppose T c Tor Km-l (£) is a
subkernel with generating set {tl,...,tr] with the order of £, being n, .
There are relative E/ni-bordilm elements G(T,‘f:’l) 2 (P,R), representing

those £ whose order is a power of 2.

Lemma IV.3.2: The bundle data can be used to immerse x‘; into P so that

X, n (xi - ‘xi) is empty.

Proof: Reduce Vey, " @*f to an (n-l) plane bundle over gf:. This induces
i

an embedding ax';'llr—- p™ 1 Lith a normal field ¢. Arrange that the n,

sheets of X come off §X, along ~-¢. Let ij'_ be a copy of ox, pushed off

i
1
along +¢. Since q([axi]] = 0, we have H;(axi-xi) =0 in ®/Z @ Om.

Thus we can deform ‘xi be a regular homotopy (which intersects exi} to

change §X!:X, to 0. (See II.3.3.) Now we extend the embedding of 8X, to

i &
2m=1

an immersion of X: into P + To do this consider ii’ which is Y, cut

i

open along a!i, and ii. which is xi cut open along axi. The boundary of
n

e - = i

Y., aY,, is X, §Y, . We have a reduction of y - p*t to an (m-1)

i i i i Y;

n
plane bundle over #; “’:I.' To extend the embedding of gxir_,P to an

immersion of X,, we must extend this bundle reduction over all of fi.

g2 a
i

The obstructions to doing this lie in H*(¥,, || &Y, 7 m,(SO(N)/50(n-1))).
=1

1f ¥ and X are connected and simply connected (as we can and do assume),

then all these cohomology groups vanish.

The resulting immersion of :8: in P*™ ! has o algebraic intersec-

tions with ax,.:. Thus be deforming it we can make axi nx, = g. If we

2m~1

have such an immersion x:“‘-'P with (X; — Bxi) nex, = £ then the ’

self-intersection of the immersion is a union of circles whose preimages

in Xi miss gxi. There are two types of circles--those whose preimages

are two circles and those whose preimage is one circle. We call compo-

nents of the second type doubly covered circles of self-intersection. Any

2m-1

such circle must be of order two in "y (P ) and its effect on the
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orientation must be (-l)m'l.

Define “(xi) to be the sum, in Qm, of the classes determined by the
doubly covered circles of self-intersection. Notice that each circle

represents an element of order 2 in Qm'

Theorem IV.3.3: a) If n, is even then u(xi) depends only on
[xi] € Kh(f;(!/ni)[nl(R)]), not on the particular immersion
chosen. We can deform xi to remove all the doubly covered
circles of self-intersection if “(xi) = 0.
b). .. If n, }s odd and we have an immersed IVniqmanifold xi as above
then we can deform xi by regular homotopy to remove all the

double covered circles of self-intersection.

Proof: First suppose for n, either even or odd we have made “(xi) = 0.
This means that the doubly covered circles of self-intersection {Si}:_l
can be paired up (81’32)’(53’84)"'°’(St-l’st) so that the two circles
in each pair represent the same element in nl(P). The following con-
struction allows us to cancel each of these pairs. Pick points

Pyi_y € SZi-l and Pyj € s2i' Order the two sheets near each of these
points and connect pZi-l to p2i by an arc on each sheet, A and B.

The loop A*B-l bounds a 2 disk in P since S,, , and S, represent the

same element in "I(P)' Pushing a neighborhood of B across the disk pllt%
" 2 | $

#

A i % .
changes the self-intersection by replacing SZi-l and SZi by a .+ngi;ﬁ,k@

circle of self-intersection whose preimage in X is two circles. £ i
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There is another description of | which is useful in proving a)
and b). Consider the immersion of x1 in P as an immersion into

P X {0})c>P X I. InP X I deform X, by a regular homotopy relative to

d
axi until it is in general position. Take its geometric self-intersection

in the usual sense in Qm. This is also “(xi)' The point is that circles
of self-intersection whose preimages are two circles can be pulled apart
in P X I by simply shifting the map in the I factor near one of the com-
ponents of the preimage. For doubly covered circles this process does
not work, and in fact when we put the immersion in general position we are
left with one point of self-intersection for each doubly covered circle.
The element in Qm associated to such a point is the group element repre-
sented by the original circle in m (P).

Suppose a € Km(fr(IVni)[nl(R)]) for n; even, and suppose

2m-1

XVt p and Z“L¢*P2m-1 are l/ni bordism elements representing a. We

2m-1 , p3m=l 0 nake f(m-1) connected. This will not

do surgery on f: P
change |, (X) or ,(2), but in the new manifold X and Z become bordant.
Let Wﬂﬁl > sz-l X I be the bordism between them. Consider this hogﬂ%sm
as one in P°™ 1 x 1 x I whose Bochstein 8W. is forced to lie in P X [oi

X I. The argument in the proof of proposition II.l.l shows that we can
immerse W into P X I X I connecting the immersions of X and Z in P X I.
8W Dbecomes an immersed bordism in P X {0} X I connecting

8X < >P x {0} x {0} with §2<—>»P x (0} x {1). The difference

T ,‘*;‘
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$2'.Z - §X'.X = a + (-1)"a where a € Q, is the self-intersection of
gwi in P X I. Since both terms on the left are 0 it follows that
a+ (-1)"G = 0. Now we are in a position to compare j (X) and ,(Z). We

break the argument into 2 cases.
I: If gW is embedded in P x (0} x I, then , (X) = ,(2).

Proof: The self-intersection of W is a one manifold whose boundary is
the self-intersection of 2 in P X I minus the self-intersection of X

inP X I. Thus p(2) -,(X) = 0.
II. aW = §X x I immersed in P X (0} x I. Then y(2) =, (X) +n§,.(m.

Proof: In light of case I, ,(2) agrees with the self-intersection of the

following mani fold

,Z2—k copies of W

P x [-1,0] P x [0,1])

Clearly, this self-intersection is p(X) + ni“ (awW) .

Since , (§W) must be of order 2 in Q , if n, is even the pX) =

i

w(2). This proves IV.3.3, a. If is odd, then ; (2) =, (X) + p(sW).

.’
To complete the proof of IV.3.3,b, it suffices to show that given a nice

immersion X %+P"L tnat there is a regular homotopy of it to another

2m-1 5o that the restriction of the regular>

homotopy to §X given an immersion 8X X Ia‘rrzm-l X I with self-inter-

nice immersion of X into P

section any prescribed a € (::0.I with the property that a + (-I)Nu = 0. To
do this we take a regular homotopy of §X X 1o9p%™ L o 1 with seif-
intersection the preassigned a € Qm' By homotopy extension, we extend '

this to a regular homotopy of X . If a + (-1)"G = 0 in ,, then the new
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immersion will have the property that §X'.X = 0. Thus there is a further
deformation of it relative to §X which produces an immersion with
X n (X — X)) = g.

The next proposition is the key one of doing the correct type of

surgery in f| aU X aD x L2],+1.

Proposition IV.3.4: Let f: sz-l -+ sz-l be an s-nice normal map. Sup-

pose that T c Tor Km__l(f) is a subkernel with natural generating set
{tl'""t:}' Suppose further that for each t, whose order is even we
have a nice immersion f:ﬂh-vzm'l with ¢X, representing t, and u(xi) = 0.
Then there is a normal bordism F: W+ R x I from F to a simple homotopy
equivalence such that:

1) K,(W) and K, (W,P) are based, nice j-modules,

2) K,(W,P) =0 for « pm + 1,

3) K,(W,P) 1 K*-l (P) is a based isomorphism for » < m - 1, and

4) Km{ﬁ,P) ] Km-l (P) is a simple isomorphism onto Km_liP)/‘ror ®T.

Proof: By I1.3.5 we can produce a normal bordism V+ R X I from f to

£': P' + R satisfying 1), 2), and 3) above. In addition K (V,P) 3 K.1(®

el
is a simple isomorphism onto Km-l (P)/Tor. The kernel groups K, (f') all
vanish except for Km_lit') which is isomorphic to Tor xm-l(ﬂ‘ To com-
plete the proposition we must construct a normal bordism from £' to a
simple homotopy equivalence, G: V' + R x I so that K, (V',P') is 0 for all
« ¥ m, and Km(V',P') 3 lgm_liv‘) is a simple isomorphism onto T.

Let A > F + T be a based resolution for T with the basis for WF

being ('1""”3:" Represent the z, by disjointly embedded spheres

3':"‘1::...9-, The normal bundles of these spheres are trivialized by the

bundle data covering f'. The classes niIST-]'] are zero in K, (f'). Thus
there are immersed manifolds x‘:-t-n' with 3X, = n.S.. By the Hurewicz
theorem we can take each xi to be a sphere with holes. Each of these is
immersed by the bundle data covering the normal map. The normal bundles
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are thus trivialized by a trivialization extending the ones for the 81.

By hypothesis we can choose the X, so that I,.[xj_] = 0. Since the linking

x
pairing and its quadratic refinement vanish on T, we can deform the xi

by regular homotopy (moving the si) until (2 -xj =0 for i ¥ j and

8X xi = 0 (see II.3.3). Once this is accomplished we can deform the xi

' -
i
relative to their boundaries so that 8X, n 1!:j =@ for i ¥ j and

axi n (xi - axi) = @. Since ,.{[xi]) = 0, we can in addition suppose that
the self-intersections of each X, are circles whose preimages in X, - °xi
are two circles.

It is timé now to remove the remaining self-intersections and inter-
sections of the X;. For this we need embedded spheres with trivial normal

bundles S*cs>P' so that

i
i g i3
| S{ n xj =
' 1 pt iwm 3 .
|
' These spheres represent elements in Km_llf') which project via i* to the
canonical generating set for T*. Using an argument as in II.3.3 we can
|

arrange the desired intersections. Consider now a circle of intersection

We deform the intersection in X, until it bounds a small

of X, with X_.

i 3 3
2 disk in the D" normal to s; at the point s; n xj' We can assume that
a neighborhood of the circle of intersection in X is ™ x sl Sg x D"

f".

1

Replace D" © x s! in X, by (8§ =D ) x8
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This changes the homotopy class of xi but not its homology class or the
fact that it is immersed with trivial normal bundle compatibly with the

bundle data. It also removes one circle of intersection.

The argument to remove the circles of self-intersection is exactly
the same (once we know that their preimages are two circles not one). In
the end we have the xi disjointly embedded with trivial normal bundle
compatibly with the bundle data.

Do surgery on the BT-J'L‘—.»P'zm_l. Let W L R X I be the resulting

normal bordism, and f": P" + R be the "other end". By II.3.5

-0 *¥m-1,m
Ky (£") = A* % =nm -1

A * = m.

The basis for A = lﬁ‘(t') is represented by
L] L] ] (]
{-Rl ] l'l:ldl,...,--att ] ntdt}

where d, is the case of the handle added along 3?-1: aj 3

pushed out to the boundary of the handle along a normal field, and x; is

is a copy of d

X, with a neighborhood of §X, removed. These cycles are immersed sﬂwral.

j

Once we push the n

3

j copies of d; apart they become embedded with normal

bundles which are trivialized by the bundle data.

Now do surgery an these spheres. Note that these spheres are m
dimensional in sz-l. Nonetheless, we have managed to find them disjointly
embedded with trivial normal bundles. Since they form a basis for Km(ﬁ")

surgery on these provides a normal bordism from f£f" to a simple homotopy
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equivalence. The union of this with the previous normal bordism from f

to £" is the normal bordism required in IV.3.4.

IV.3.5: Suppose, under the hypothesis of 10.4, that we have embedded

T“l,...,zﬁ-l in P which represent those elements in the generat-

ing set which are of order a power of 2. If each Zi is equipped with a

cycles 2

normal field ¢ by the bundle data so that n.2, = ac: with C, .2} = 0 for

all i and j, then in the bordism W constructed in IV.3.4 the zi bound

disjointly embedded manifolds YT. The embeddings of the !T are compatible

(relative to the Zi) with the bundle data of the normal map.

Proof of IV.3.5: Given a set of disjointly embedded cycles with normal

m-1 szul

fields zi — which represent torsion classes in Km_l{P) there is a

well defined chain intersection matrix. Namely let nizi = c? where the ng
sheets of c, leave z; along the negative direction of the normal field

form Ci-zi for i ¥ j and ci-z'. This matrix of intersections depends only

3

on the position of the zi and their normal fields not on the choice of the

2m-1 " Rzm-l

C.. Once we have done surgery to make f: P highly connected

:

the zi will be bordant, in P X I, to spheres. Use the bundle data to

immersion the bordisms relative to the Zi in P X (0). Pipe all the inter-

section and self-intersection points off the P X (1} end. This will give

up spheres S?_kla-sz-l. The chain intersection pairing that they

generate will agree with the one for the Zi. Thus if the zi generate the

0 intersection pairing so will the s?'l. If the z, are a partial generat-

ing set for T we complete the set of spheres in P x (1] to a full set
keeping the chain intersection pairing trivial. Once we have such spheres
we might have to shift the ones of odd order before doing surgery as

required in IV.3.4, but we can leave the ones of even order fixed. Thus

the sT“l which are bordant in M X I to the z?'l bound the cores of the

handles added in doing the surgery. ‘
Let £ bea normal map f£:(P?™,3P)+(R,3R) and a an element in !n$!¢!?3
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which is represented by a relative bordism element

(X", 3x™) —2> (p, 3P)

Lo

(¥, a_‘Y) _"" (R, 2R)

with aY = a"_Y gxx. Suppose that the bundle map covering f is '{: vp *r.
Then we can reduce vy = ¢*r to an m-plane bundle over ¥ and reduce

“’Y - 4*¢)| (¥ - X) to an (m-1l) plane bundle. Restricting to X this
gives an immersion x"‘at—»pz“ and a normal field for 3X<»aP. (Of course,
generically the immersion of 3X into 3P is an embedding.) The normal
field for 3X<» 3P automatically extends over the immersion X#»P. We call
such an immersion which when restricted to the boundary is an embedding
with a normal field compatible with the bundle data. It is in this sense

2m=1 1 ound disjointly embedded manifolds Y cr wn

that we say that z’;"‘c—»p
with the embedding compatible with the bundle data.
2m 2n~-1 ;

If we have two normal maps fis (Pi ,Ql’i ) » (Ri,aRi) i = 1,2 which
agree on the boundary, then we can glue them together to form a normal map
fl U fzz Pl U Pz > Rl 1] Rz' Suppose we have elments a, € Km(fi,tinpi)
which are represented by immersed relative bordism elements (wl;, alf; )
(Pi,api) compatibly with the bundle data, and that the embeddings
wl::c:..» api are the same and have the same normal field. The union
¥y b =Wy 2
for calculating the self-intersection of the class it represents.

°‘—~P1 U P, is immersed by the bundle data and thus is correct

#

Now we are ready to construct a normal bordism from 5

f x IL: au x Lu“'

1+l

+ aD X L to a simple homotopy equivalence (when

d(Lz ) = 0). By IV.3.1 we can assume that there is a subgroup

241

T « Tor H‘{L ) so that

1%
T —>Tor H, (L) —2 e
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is exact. The map f X lL: U X L » 3D X L is an s-nice normal map. Its

kernel groups are K_ @ H, (L), and the pairings are the tensor product of

3z
the intersection pairing on Ka and the usual linking and intersection

R

pairings on H,(L). Thus Ka ® T<»>Tor Kn—1+z(f >4 1L) is a submodule on
which the linking pairing vanishes and the following sequence is exact and

has 0 Whitehead torsion:

—_— *,
Ky ® T—p=Tor K ., (fxl)—3=K, @& T

By IV.1l.3 and IV.1l.3 the quadratic refinement of the linking pairing also
vanishes on Ka ® T. To be able to invoke IV.3.4 there is one more condi-
tion we must check, namely that there is a lifting of Ka ® T into

Kn+z(f X 1L;m/zn which is in the kernel of the self-intersection form.

This is proved using the following lemma.

2+1 1 L2 41 24+1

Lemma IV.3.6: Let X be a %Z/x manifold mapping into L
Suppose (§X) X = O0(k). Then there is an immersion of X in L homotopic
to the original map. This immersion is an embedding on §X and has only

circles of self-intersection whose preimages in X - §X are two circles.

Proof: Shift the map on §X to an embedding and make the k sheets of X

come off of §X in some direction, (-g). Let Ct be a complement to ¢ in

L
y -C -
VOXCL. Let §X' be a copy of §X pushed out to 3“¢xcL along -¢ Let S
. ' ¥ "
denote a fiber of VQXCL' The cycle kg§X' + (§X-X)S” in °‘V¢XcL) bounds
in L - int VeXeL® Thus its intersection with itself is 0. If g4 = 0(2),
this tells us that b

¥

0 = [keX' + (8%-X)8¥].[kex' + (sX-X)S%] = k%5 (¢) + 2k (sX-X).

Since (8X-X) = O(k) it follows that y(¢) = 0(2). By changing the class
of the section ¢ we can change y(g) by any multiple of 2. Once we make’

x(¢) = 0, it follows that gX<X = 0. If 4 = 1(2), then y(g) is automati«

cally O whatever the section we choose. By varying the section we can
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change §X°X by any multiple of k. We choose the section that makes

8X.X = 0. Now that both y(¢) and §X.X are zero, we try to extend the
immersion of §X over all of X. It is more convenient to view the pro-
blem as a relative problem for a manifold with boundary. Let X be X
cut open along the k-sheets of $§X. We have reduced (“i - g*vL) to an
t-plane bundle over 3X. To complete the immersion over all of X it is
necessary and sufficient to extend this bundle reduction over all of >
The obstruction to doing this, if 4 = 0(2), is y(¢). Thus such an exten-
sion exists in the case. If g4 w 1(2) then the obstruction is an element
in Z/2. It is calculated by taking an (g+1) plane reduction of

(Vf - '*VL)’ and taking the obstruction to extending the section given in
the boundary over all of X. This latter obstruction is an integer, and
we are interested only in its residue class modulo 2. Such a bundle
reduction corresponds to an immersion of X into L X I extending the
given embedding of § X<#»L X (0). The obstruction to extending the
section is equal modulo 2 to [X)+[X]). But all such homological intersec-
tions are 0 in L X I. Thus the extended immersion of X into L exists.
Since 8X-X = 0 we can deform X by regular homotopy until

X n (X - 8X) = g. Then all self-intersections will be circles. If

2k + 1 = 3(4), then all these circles must have preimages which are two
circles. (The reason is that "I(L) = (e} and thus does not contain any
elements, s, with wl(l) = («1).,) If 2k + 1 = 1(4), then there can be
such doubly covered circles. Let 52r+£4$_l4r+1 be any immersion whose

normal bundle is the complement to a section in r , ... .
S

If we stabilize the immersion by adding one factor of nl to the
range, then the immersion, when shifted into general position, has normal

bundle 2r+1 and hence has an odd number of double points. By the
S

2r+l, | x4r+1

argument in IV.3.2 we see that the original immersion S must

have had an odd number of circles of self-intersection whose preimage in

2
S . was a single circle. By taking connected sum with such an immersion
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k+l, LZ)H-].

we can change the number of such circles in X (k = 2r) until it

is even. Once the number of these circles is even we can cancel them in

pairs as in IV.3.3.

24+1

Corollary IV.3.7: Let T<->Tor H‘{L ) be a subkernel and [tz""‘tr} be

a minimal generating set for the two torsion subgroup of T. There are

1+l 1 24+1

immersed W/ni-manifoldl as in 3.6 Xy s .,x:" > L with $X, repre-

senting £ and with ‘xi'xj =g,

Proof: By IV.3.6 we find the immersed [xf"l].

restricted to T is zero, we can deform the xi until axi n xj =g.i ¥ j.

Since the linking pairing

2441 o

Proposition IV.3.8: There is a normal bordism F: W+ 3D X L
£ 5 ]‘L' AU X L » 3D X L to a simple homotopy equivalence so that
1) K,(W,3) =0 for # p n+ g + 1,
2) K, (W,3) -! K._llau X L) is an isomorphism for * ¢ n + g - 1,
3) K, 08 >k,

Ka ) (Htlh)/‘ror @T).

(aU x L) is an isomorphism onto i

Proof: According to IV.3.4 we need only find S c Kn-i-z{'u X L: @Q/Z) so

that §: szxa@-ram,.]s-o. Since the image of , is 2 torsion any

lifting of K‘ ® (odd torsion) will suffice.

For the lifting on the 2-torsion we pick Wni-manitolda as in IV.3.7.
These crossed with a geometric basis for K. for a generating set for an
appropriate S. The product of the s“']'f'—y 3U with the immersion ' AL
x:+1vaL2"+l is an immersion compatible with the bundle data and-th!}‘*!*‘
appropriate for calculating the self-intersection function. The
immersion is regularly homotopic to an embedding. This uses ‘tﬁ.
that 5" %, 3U has a normal field. (In fact its normal bundle
;-H. in L2441 .

slightly in the direction of this normal field in the:§Ua

ized.) For a circle of self-intersections of X
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preimage circles in Xi.

G
NowformMoxLxIwaI*NoxLxI

MOXL NOXL

Let g be the result of this surgery: g: Mo XL yw-> No X L. The exact

kernel sequence of the pair shows that

K, ® H, (L) *<n+ g4 -2
K,(9) =

K. ® H

A (L) #«>n+ g +1

*-n+l

*
0——>-KAQ'1‘ —)-KM‘_l(g)——a—KR@H (L) —>—0

2+l

0—>K, ® Hz-l-l“‘)—" sz(g)——>l<R ® (H‘(L)/To: ® T)—0.

The classes of the form KA ® H, (L) are represented by product cycles in

0
duct cycles in M

M, X L; the ones of the form xn ® H, (L) are represented by relative pro-
0 X L union with relative cycles in W. Both the last
two sequences are split. All this implies that the pairings remain the
obvious tensor product pairings, and thus the map is an s-nice normal
map. Clearly, K, ® l-l“l/'rorc‘-pxnﬂl(g)/'ror is a subspace on which the
intersection pairing vanishes. If the quadratic function va.nish."also,
then it is a subkernel. To calculate the value of the quadratic fur;ction
on (x ® y) we represent x by Sn-lc-p Mo and y (or some odd multiple)
by Y"H&» L2z+1. Since the product of these two immersions is regularly
homotopic to an embedding, q(x ® y) = 0. Consequently, KA ® Hz+1/'1‘or is

a subkernel.

Before we can apply II.3.1 we must know that the quadratic function
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vanishes on the torsion submodule of Kn-i-.e (g). For RJ\ ® Tor H‘+1 (L) this

follows from the argument that showed q|KA ® 314-1 (L) /Tor is zero. The
submodule IS‘ ® T is somewhat more delicate. Of course we need only con-

sider 2 torsion classes. Let tl,.. "tr € T be the subset of the genera-

tors of T which have order a power of 2. Then in I.z"'+l

+1
yososXy

Let sxi' be a copy of .x. pushed out along the normal field. Let

we have

immersed Wn -manifolds X‘Hl whose Bocksteins represent the t

i*

[s" =2 u"1] be the geometric basis for K 1(QU) Here the inter-

1 gsnesB 2r
n-1

sections of the Si are all empty except for Szi 2 n 82:lL » 4 w1 ...,0,

which is one peoint of ti:ansverne intersection. We have a family of dis-

jointly embedded cycles (s? x 8X They represent

n A 8
3* 521 X %5)iey smye
the part of the natural generating set for the subkernel

211

l{n_l(au) ® T<» Tor ng—ltflw X lL) which is of order a power of 2. By

IV.3.5 they bound disjointly embedded manifolds zi‘*; in W24 e
F

241 % axj and §,, X axj extend over the zi,j'

A representative for a class in Kn+£ﬂdo X L y W) which projects to

normal fields over S

a® tj in l& ® Tor Hz (L) is given by the following construction. Suppose

aa =g '.\i[si] . Pick an immersed manifold V:-q- Mgn-l whose boundary is

geometrically ¥ xiSi. Then v, X ng-&.v M, X L represents o ® tLeEK @ T,
The self-intersections of this immersion are the self intersections of

vu crossed with gX.. The self-intersections of Vu are one manifolds.

3
Since gx; C—rLz"'*l has two linearly independent normal fields we can

remove all the self-intersections by deformation along these normal

fields in Lz‘"]'. The boundary of the immersion after it is shifted to be

4

an embedding is a linear combination

‘—l
L*isi X axj
where the various copies of jX j have been shifted along a normal field

for §X, so that they are all disjoint. Each individual si x 84X bounds

b b

zi j in W. If we have several parallel copies of §; X 8X 4 in
’
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a(va X oxj) then they will bound parallel copies of Zi 3 (since the normal
2

field Si X oxj extends over Z. .). The union

Sy
T

v X A

o X 8Ky U
i

thus is an immersed cycle in M, X L y W which represents an element in

0
Tor Kn+‘(f X 1L) which projects to a @ tj € KR ® T. As we have noted
this union is a correct immersion for calculating the value of the qua-
dratic form. The above argument shows that it is regularly homotopic to
an embedding. Thus the quadratic form vanishes on this element. Since
these elements are inTor Kn+‘(q), the intersection of any two of them

is 0. Thus the quadratic form vanishes on a torsion module that classes
of this type generate. Since we have already seen that the form vanishes
24+1

on KA ® Tor H‘+1(L

Applying II.3.l1 we see that we can perform surgery on

) it follows that it vanishes in all of Tor Kn+‘(g).

gt M, XL yw—>N_ xL

0 0

relative to its boundary to make it a simple homotopy equivalence. We

are left to do surgery on the other side
WyuUxL—=DXL

relative to its boundary. The obstruction to doing this is an index
(if n+ g = 0(2)) or a Kervaire obstruction (if n + ¢ = 1(2)). It agrees
with the index or Kervarie obstruction of the original product

. ]

e X L21+l -> N2n-1 X L2‘+1. By the product formula for these

£ % lL: M
simply connected obstructions, this obstruction is zero. Thus we can do
surgery on W y U X L » D X L relative to its boundary to make the map a
simple homotopy equivalence. Putting these two normal bordisms together

gives one form f X lL: M XL-=>N XL to a simple homotopy equivalence.

2
L+1)

Thus g(f X 1 ) =0 if d(L = 0. The general result, IV.1l.1l, then

L2441
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follows for any product by the same additivity argument given at the end

of section IV.1l.
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CHAPTER V: An Example

The missing information in the product formula in chapter 4 is a

g (n) . All

calculation of the maps ¢: Ln(") e Ln+1(") and msz L:(n) > L
we have shown about this map is that every element in its image is of
order 1 or 2. In this section we will prove that ¢ is not always zero.
In fact we will show that L La(l,-) 2 L4(ZQ-) is an isomorphism
0 Z/2 5 Z/2. By crossing with 81 one can produce, from this example,
examples for every n where g3 Ln(n) s Ln+1(") is non-zero, (or
ms: L:(n) > L:+1(n) is non zero). However, all examples we know where
¢ is non-zero are derived from this one. For instance, we know no
orientable example where g ¥ 0. The example we give here is just a rein-
terpretation of a result in [9] about Z/2-manifolds in the language of
non-simply connected surgery.

First we describe the groups La(lg-) and L4(Zg-), and show how to
determine the surgery obstruction of a normal map between such manifolds.
A (Z,-) manifold is a manifold MN which admits a simply connected, closed

n=l Juch that the normal bundle of gM" L in M" is trivial

submanifold (gM)
and such that Mn - (eMx(=1,1)) is a simply connected oriented manifold
with oriented boundary gM |y §M. It follows that "1(M) = Z and that the
generator reverses the orientation.

Let £3 M4n+3 s N4n+3

be a degree one normal map with N a (Z,-)
manifold. Put £ transverse to §N<+N and get the restricted map ‘43
f|: 8M > §N. This normal map has a Kervaire invariant, [2], in Z/2 which
by a relative version of the above construction is seen to be an invariant
of the normal bordism class of the original (%Z,-) normal map. Suppose it

vanishes. We can then assume f£|¢M is ahomotopy equivalence.Let f: M> N

be the normal map obtained by "opening up" f along g§M and gN. It is a
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normal map between simply connected manifolds which is a homotopy equi~ .
valence on the boundary. Since the dimension of N is congruent to

3 modulo 4 we can perform surgery on f relative to f]&ﬁ to produce a
homotopy equivalence of pairs. This proves that if the Kervaire invariant
of f along §N is zero, then £ is normal bordant to a homotopy equiva-
lence. Conversely, if f: H4n+3 > N‘MB is a homotopy equivalence between
(Z,~) manifolds, then one uses codimension 1 surgery techniques see [4]
and [18] to prove that it is deformable to a homotopy eguivalence of
pairs f: (M,8M) > (N,gN). Thus if 5(f) = 0, then the Kervaire obstruction
of f along §N is zero.

This gives an injection L3 (®,-) - Z/2. To see that it is onto let
K4k+2 > S4k+2 be the basic normal map of Kervaire invariant 1, see [6].
K4k+2 is the plumbing of two tangent disk bundles of SZHl whose boundary
is coned off

2k+1 2k+1
T T

# U cone (boundary)

The normal map p admits an orientation reversing homeomorphism h. The

2k+1

map h switches the two copies of «r and is extended by coning'%war
3

the cone on the boundary. On the sphere h is the suspension of the

4k+1
) |8

homeomorphism induced by h on 3a(r 4 1) (which is an S We form

me..’ﬂ&,.sxm,

This is a degree one normal map of %/2-manifolds whose Z/2 obstruction
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is 1.

Let g: x'"‘ - Y4k be a degree one normal map between (Z,-) manifolds.

Put g transversal to §¥Y<>¥. Since aY‘kﬁl is simply connected we can

do surgery on g-l(a'f}_glp.s‘l to produce a homotopy equivalence.

Let g: X +» ¥ be the "opened up" normal map after we have made g
g[g-I(aY)-v §Y a homotopy equivalence. Since g is a homotopy on the
boundary, there is an integral obstruction %{I(}-ﬂ - I1(¥)], to finding a
normal bordism relative to 3X from g to a homotopy equivalence. Let
olg) € Z/2 be %{I(i) - I(¥)) reduced modulo 2. Suppose h: X' + Y is
another normal map with hlh'l‘ (8Y) + &Y a homotopy equivalence and
h: X' » ¥ the "opened up" map, If g and h are normally bordant by
H: W+ Y x I, then shift H relative to aW to be transverse to §Y¥Y x I,

and let 2% be B™l(s¥ x I). Clearly W is a bordism relative to the

4k

boundary from X to 2 y X' y Z. Since Z = -+ §¥ X I is a degree one nor-
mal map which is a homotopy equivalence on the boundary, the signature
of Z is divisible by 8. Thus %(I()-(') - 1(X)) = 0(2). This proves
that g(g) € Z/2 is an invariant of the normal cobordism class of g.

If g(g) = 0 in Z/2, then we can create a normal bordism from g
H: W= Y X I so that E-I(.Y X I) - Y x I is a homotopy equivalence on
both ends and so that the signature of B Y x 1) is - -%-(1(:':) - I(Y)).
Let h: X' + Y be the other end of this normal bordism. Since
I(X') - 1(¥) = 0, we can do surgery on h to make it a homotopy
equivalence.

Conversely, if g is normally bordant to a homotopy oquivaltme,
then by codimension 1 techniques, [18], we can make g a homotopy eq:.li-
valence of pairs, and thus this Z/2-invariant 5(g) is 0.

The main theorem that we need from [9] is the following.

4k42 | | 4k+2

Lemma ([9] - theorem 6.1 Case 1): If f£: M is a normal map

44+l

between closed simply connected manifolds and L is a closed manifold,
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then the index of any normal bordism of £ X 1L= M XL->NXL to a homo=
topy equivalence is 4. (f) -d(L) in Z/8Z. Here, g(f) is the Kervaire

obstruction of £ in %/2, and d(L) is the de Rham invariant of L in

Z/2.

Theorem V.1: @s: Li(z—) -> L:(z,-) is an isomorphism.

Proof: Take f: M4k+3 = N4k+3

to be any normal map representing the non-
zero element in Lg (Z,-) . To calculate q,s, we must cross with any closed,
simply connected manifold L5 with d(Ls) = 1. First put f transverse

to §N, and call gM the preimage. Opening up along §N and §M gives

f: M > N. Crossing with R gives £ x L MXL>NXL. This map is

not a homotopy equivalence on the boundary. If W is any normal bordism
from ¢M X L > gM X L to a homotopy equivalence, then I(W) = 4(8).
According to our description of L: (%, -),

o(£x 1) = (3{IM yM xLyW - I(§ x L)]}mod 2. By the Novikov
additivity formula for the index and the fact that I(M x L) = I(N x L)

= 0, we have g(f X lL) = [-;'—[2 I(W)]}mod 2 = (%[2.4]]mod 2 =1 mod 2.

W SMXL M X L M W
I =4 I=0 I =4
homotopy homotopy
equivalence equivalence
"‘v
3

I=0
N X L

This proves ws is an isomorphism.
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