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Section 1 : THE TOPOLOGY O F  EUCLIDEAN SPACE 

W e  begin these  notes  with a b r i e f  review of po in t  set topology. 

W e  s h a l l ,  in. t h e  sequel,  always be concerned with "nice" spaces (metr ic  
I 

spaces) .  Thus, w e  s h a l l  no t  d e a l  he re  a t  a l l  with pathologica l  examples 

st but s h a l l  restrict ourselves,  whenever convenient, t o  m e t r i c  spaces. 
C 

1 w A topo log ica l  space, (X, .T) ,  i s  a set, X, t oge ther  with a co l l e c t i on ,  
r. 

I 
: T ,  of subsets  of X c a l l ed  open subse t s  of X. The c o l l e c t i o n  is 
1 

required t o  s a t i s f y  t h e  following four  axioms : 

I 
I 

1,) X i s  an open subset  of X. . 

I 2 ) Tfie empty set, +, is an open subset  o f  X. 
4' 

1 3 An a rbLt ra ry  union of  open subsets  i s  an open subset  of X. 

7, 4 )  . # f i n i t e  i n t e r s ec t i on  of open subse t s  is  an open subset .  

The main example t h a t  w e  have i n  mind i n  t h i s  chapter  i n  Euclidean 

space, mn. Its underlying set c o n s i s t s  of a l l  n-tuples,  (xl, . - , xn) ,  

= A of r e a l  numbers. The topology is defined i n  terms of t h e  usual  d i s t ance  

* 
I, funct ion  i n  mn : 



W e  de f ine  t h e  open b a l l  of radius  r centered about a po in t  p 

t o  be : 

A set U i n  lRn is defined t o  be open i f  and only i f  f o r  each , 

p E U t h e r e  i s  E > 0 so  t h a t  BE(p) C U .  One checks e a s i l y  t h a t  

t h i s  c o l l e c t i o n  of subsets  s a t i s f i e s  t h e  four  axioms. 

I f  X is a topologica l  space, and i f  A c X i s  a subset ,  then 
Z* 

A i n h e r i t s  a topology from X, The open sets of A a r e  a l l  i n t e r -  

sec t ions ,  A n U,  where U is  an open subset  of X. A s  an example, if 

w e  l e t  lRk lRn be t h e  subset  of a l l  n-tuples  of t h e  form 

{ ( x ~ ,  - * *  , xk, 0, - . , 0) 3,  then t h e  topology t h a t  mk i n h e r i t s  from 

lRn i s  ident ical .  t o  t h e  topology defined a b s t r a c t l y ,  a s  above, f o r  lRk 

I f  X and Y are topologica l  spaces,  then f : X + Y is a 

continuous funct ion  i f  and only f o r  every open set U GI, t h e  set 

f - I  ( u )  c X i s  open. ( R e c a l l  t h a t  f - I  (u)  = {x E x I f  (x)  E u 1 .  ) A 

homeomorphism from X t o  Y i s  a continuous b i j e c t i o n  f : X -+ Y 

whose inverse  f-' : Y -t X is  a l s o  continuous. 

A s  we  have seen, t h e  topology of Eln is defined i n  t e r m s  of t h e  

Pythagorean d i s t ance  function. Abstract ing t h e  ba s i c  p roper t i e s  of 

t h i s  d i s t ance  funct ion  leads  t o  t h e  concept of  a metric space. Many 

of t h e  ba s i c  p rope r t i e s  of  IR" a r e  shared by a l l  metric spaces. 

Def in i t ion  : L e t  X be a topologica l  space. A metr ic  i s  a continuous 

funct ion  d : X x X -t lR+ = {r  E lRl r - > 03 such t h a t  : 



2 d(x,y) = o if andonly if x = y ,  and 

e 
L 

A word is necessary about the topology on X x X. It is the so called - - 
product topology, In general, if A and B are topological spaces, 

then A x B receives a natural topology - the product topology. A 

set V = A  x B is open if and only if for every p E V, there are 

open sets, UA of A and UB of B, such that p E (UA x UB) c v. 

It is an easy exercise to show that the topology on lFtn agrees with 

the (n-fold) product topology when we consider IR" as IRx  xIR 
i 

(n-times) . 
The metric on IEZn is, of course, the Pythagorean distance. We. 

also denote d(x,O) by Ilxll. 
00 

If X is a metric space and {X,},=~ is a sequence of points 

of X, then we say that x .  converges to x, or {xn) + X, if 

and only if lim d(xn,x) = 0 . (As an exercise, give the definition 
n+m 

of convergence in an arbitrary topological space .) Clearly, a sequence 

can . converge.', to at most one point in a metric space and need not 
-4 

converge to any point at all. - - 

Lemma 1.1 : Let X and Y be metric spaces, and let f : X + Y be - - - -- - 
a function. Then f is continuous if and only if whenever a sequence - - - -- - - 
{x 1 converges to x & X the sequence. {f (xn) } comerqe$ to f (x) in y. n - - 



proof : Suppose t h a t  t he re  is  a sequence x i n  X which converges 

t o  x but t h a t  {f (x,) 1 does not  converge t o  f (x)  . This means t h a t  

t he re  is an open b a l l ,  BE ( f  (x)) and a sequence of na tu ra l  numbers % 

approaching + so t h a t  f (x 1 fi BE (f  (x)  . Hence, f m l  (BE ( f  (x) ) ) 
"k 

contains x but does not  contain any x n  . Since { x . ~  1 4  x. t h i s  
k 

implies t h a t  no open b a l l ,  B6 (x)  , is contained i n  f m L ( B E  (x) . This I 

shows t h a t  f - l  (BE (f (x) )) i s  no; open, and consequently t h a t  f i s  

not  continuous. Conversely, suppose t h a t  whenever k,} + x then 

{ f ( x n ) }  + f ( x )  . Suppose i n  addi t ion t h a t  f is not  continuous. 

From these  assumptions we  w i l l  de r ive  a contradic t ion.  If f is not  

continuous, then the re  is an open set U c Y so  t h a t  f-'(U) c X i s  

not  open. Thus, t he re  is x E f-'(U) such t h a t  t h e r e  is no open b a l l  

of t h e  form B6 (x) contained i n  f - l  (U)  . Thus, f o r  every n > 0 ,  

t he re  is  a point  xn E ( X  - fw1(U)) such t h a t  d(x.,,x) < . The 

sequence {xn> converges t o  x. Since xn j! fml (u) , w e  have f (in) fi iJ. 

Thus, {f (xn) 1 does not  converge t o  f ( x ) .  This i s  t h e  sought a f t e r  

contradic t ion which shows t h a t  i f  €xsn1 + x implies If(x,) 1 + f ( x ) .  

then f is contir~uous. 

Examples : 1) Any map f : Wn + W which i s  given by polynomials i n  

t he  coordinates ( x ~ ,  --• , xn) i s  continuous. Hence the  following 

maps a r e  continuous : 
n 



2 )  Let d(lRn, *) be the linear maps from lRn to lRm. Any such 

mapping is identified with an (m x n) -matrix, (ai ) . (Recall that 

when we identify linear maps with matrices we write elements in lRn 

and lRm as column vectors. ) A matrix gives a linear map via matrix 

- multiplication on the left : 
- 

This correspondence identifies d(lRn , lRm ) with mm n - We use this 

identification to define a topology on , lRm) . Thus, an open set 

of linear maps is one with the following property. Given any 4 in 

' the set with matrix representative . there is E > 0 SO that 
17 

every I/J with I I/Jij - dij 1 < E for every pair (i,j) is in the set. 

Ta utologically , d (lRn, lRm ) becomes homeomorphic to lRn -m via this 

identification. Consider the evaluation map e : 2 (lRn, fl) x. nn R"- lRm 

- _ given by e (9 ,x ) = 4 (x) . If we give d(lRn , lRm ) x lRn the product 

- - topology, then e becomes continuous. The reason is that, in the 

coordinates a ,  x i L  e is given by quadratic polynomials. 

3 )  The map (xl, - r x-,) H 1 is a continuous function 

on - , -.., xn) 
. i=l 



A) Let be the complex plane with variable z. Any complex poly- 

nomial, p (2)  , defines a continuous function from to , z )--f, p (2 

Definition : Let X be a topological space and A c X  a subspace. 

A is closed if and only if (X-A) is open. 

Theorem 1.2 : A set X c JRn is closed if and' only if it contains all -- - ------ - 
h 

its limit points, i.e., if and only if whenever €xn1 C X converges - -- - 

The proof is straightforward and is left as an exercise. As a consequence, 
- 

if X c lRn , then its closure, X, (i.e., the smallest closed subset of 

JRn containing X) is obtained by adjoining all limit points of X to X. 

Exercise : Show that 

Definition A topological space X is connected if and only if it can 

not be written as A U B with A and B both open and non-empty and 

Lemma 1.3 : Let X c lR1 be non-empty. It is connected if and only if - - -- -- - 
whenever r, s E X with r < s, then the interval [r, s] c X. -- - - -- 

~ o f e  : The subsets of lR1 satisfying these properties are : 

1) points, 2) intervals (closed, open, or half-open), 3 )  half-aays (in 

either direction and open or closed) , 4) lR1 . 



Proof : L e t  us  show t h a t  the  condit ion i s  necessary. Suppose, t o  t h e  

contrary,  t h a t  X is  connected, r < t < s, and r, s E X but  t x. 

L e t  A = X n ( - m , t )  and B = X fl (t, a ) .  Clearly,  X = A  U B and 

A and B a r e  open, d i s j o i n t ,  and non-empty. This is a contradic t ion.  

Conversely, suppose t h a t  whenever r < s and r,s E X, then [r,s] c x) kt x 

i s  not  connected. Say X = A U B with A and B open, d i s j o i n t  and 

non-empty. Take r E A and s E B .  For s impl ic i ty  l e t  us assume 

r < s. Consider A '  c [ r , s ]  and B' c [ r , s ]  given by A '  = A n [ r , s ]  ; 

B'  fl [ r , s ] ,  Clearly,  [ r , s ]  = A'  U B' and A '  and B '  a r e  open, 

non-empty and d i s j o i n t .  L e t  f2 = {x E [ r , s l  1 [ r ,x l  c A ' ) ,  Clearly,  

r E SE and s i s  an upper bound f o r  f 2 .  L e t  t E  [ r , s ]  be t h e  l e a s t  

upper bound f o r  SE. W e  claim t h a t  t )5 A'.  For i f  t E A ' ,  then t h e  

i n t e r v a l  ( t - E ,  t + E )  C A f o r  some E >  0. Thus, e i t h e r  t = s f  

contradic t ing the  f a c t  t h a t  s E B t ,  o r  t is  not  an upper bound f o r  f2. 

Thus t E B' .  Clearly, t # r, Hence, ( t - 6 ,  t ]  c B '  f o r  some 6 >  0 .  

Since every t '< t is contained i n  A' t h i s  implies t h a t  A' n B'  # 4 .  

This contradic t ion es tab l i shes  t he  suff ic iency of t h e  condit ion,  

Defini t ion : If X is a topological  space, then an open cover of X - 
is a co l l ec t ion  of open sets of X,  {Uct )e r~~ '  SO t h a t  u UG = X. nEI - -- 
A topological  space X i s  compact i f  every open cover u has a  

f i n i t e  sub-collection {U , * - - ,  U which i s  a l s o  an open cover. 
"1 a* 

W e  c a l l  such a sub-col lec t ion a f i n i t e  sub-cover. 

Theorem (Heine-Borel) 1 . 4  : X c IRn is  compact i f  and only i f  X ' is  - -- - - 
closed and bounded (bounded means X c BR (0) f o r  some R < m )  . - -- 



Lemma 1.5 : - L e t  Y be a compact metric space and x c Y  a subspace. - -  - - 
Then X is  compact i f  and only i f  X i s  closed. - - -- - - 

Proof : Suppose X c Y  is closed. L e t  {uaIaEI be an open cover 

of X. Then {Ua U (Y - X )  laCI is an open cover of Y. (Ua U ( Y  - X )  

has- complement ( X  - Ua) which is closed i n  X and hence closed i n  Y , )  

U ( Y  - X) , , U U ( Y  - X )  ) be a f i n i t e  sub-cover of t h i s  
an 

open cover of Y. Then {Ual te - -  , U , is a f i n i t e  sub-cover of t he  
% 

o r i g i n a l  cover of X. 

Conversely, suppose X c Y i s  compact and l e t  { p n }  be a 

sequence of po in t s  i n  X converging t o  y E Y .  Suppose y g X. W e  

claim t h a t  f o r  any k - > 0, {Pn):=k U {p) is a ,  closed subspace of Y. 

This is  because I ~ ~ I : ~ ~ .  U {p) conta ins  a l l  i t s  l i m i t  points .  Thus!, 

f U. . pn) is a closed subset  of X. Hence, Uh = X - f  .U p 1 is  an 
E.8 n l k  n 

open set i n  X. Clearly,  t h e  open cover { u ~ ) ; = ~  of X has no 

f i n i t e  sub-cover. 

Lemma 1 .6  : - I f  X and Y a r e  compact spaces, then X x Y is  compact. - - - - 

( H e r e  of course, X x Y i s  given the  product topology.) 

Proof : L e t  {uaIuEI be an open cover of X x Y. For each po in t  

y E Y, t he re  is a f i n i t e  co l l ec t ion  )"Y 
'uai(y) i=l wliich cover X x {y} 

( s ince  X x {y) is compact). W e  claim t h a t  t h e r e  is an open set 
n~ 

V c Y containing y s o  t h a t  X x V c ( iY1 Ual (y)  
Y Y 

) . The reason is  
A 

t h a t  f o r  each { x x y }  € X x {y}, t h e r e  a r e  open sets Wx c X and 
"Y 

zx c Y so  t h a t  {x x y)  € Wx x Zx C (iil Ua (y)  ) . This g ives  an open 
i 



cover {WxxZx}xEX of Xx{y).&t{~, .xZ ,---,W xZ 1 bea finite subcover. - 1 Xl % Xn 
n lLY n 

) and j,U1 Zx is an open subset 
j 

of Y containing y. 

Let us recapitulate what we have accomplished so far. Given 

any open cover - { U a } a ~ ~  of X x Y we have found for each y EY : 

n 
a) a finite collection {U ai (Y) 

1 , and 
i=l 

b) an open set Z C Y ,  containing y, so that 
Y 

n~ 

The {ZylyEy form an open cover of Y. Let {Z , - - - I  Z 
Y1 Y s 

be a finite sub-cover, Then 

is a finite sub cover of { u a ~ u € ~ '  

Note : The statement that an arbitrary product of compact spaces is - 
compact (Tychonoff's Theorem) is equivalent to the axiom of choice, 

Proposition 1.7 : A closed interval [a,b] C IR' is compact. - - 

Proof : ~ e t  {uaIaEI be an open- cover of [a, bl , Consider 

Q = Ex E [a,bl I [a,xl is covered by finitely many of the {ua}}. 



clearly, a E 52. We claim that 52 is both open and closed in [a,b]. 

If SO, then, since [arb] is connected and 52 # +, it will follow 
that 52 = [a,b] , and consequently, that [a,b] is compact. We first 

show that 52 is closed. Suppose {xn\ E Q and xn -t x E [a,bl. Then, 

there is a U so that x E Ua . This implies that for some N > 0, 
a. 0 

the interval 
[XN'X1 Uao 

. Since XN E $2, there is a fidte cover 

(U , - - -  , Ua 1 of [a,xN1 . Then (ua , U , . . , U } covers [a,x] . 
"1 T 0 al 01 T 

On the other hand, if x E a ,  then [a,x] has a finite cover 

~hus, €U , ---  t Ua 1 covers [a,yl for every y E((x-E,X + E )  n [arb1 1 .  
"1 n 

Hence, ((x-E,X+E) n [arb]) c'Q, This shows that 52 is open. 

Let us use these three lemmas to prove the Heine-Bore1 theorem. 

If X c lEZn is compact, then X c BR(0) for some R > 0 (else the 

open cover (X n BR(0)lR,O would have no finite refinement). Thus, 
n 

X is bounded, and hence contained in a cube (i=l x [a,bl). By Lemma 1.6 
n and 1.7, this cube is compact. By Lemma 1.5, X ( i ~ l  [a,bl) n~ust 

be closed. 

Conversely, if X is bounded, then there is an interval [a,b] 
n 

so that X c (izl[a,b]). 

n 
If X cmn is closed, then X S C  (i~l[a,b]) is closed. By Lemma 1.5, 

X is the compact. 



Corollary 1.8 : - Let f : X -t I R ~  be a continuous function, and - -  - 
suppose that X is compact. There are numbers m and M so that - - - - -- 
m < f(x) < M for all x EX. Let m be the leastupper bound for all - - -- - --- -- 
such m, and W be the greatest lower bound for all such M. There - - -- --- 

- - 
I$ are points x, y E X so that f (x) = m and f (y) = M. 

t 

C, 

.s 

Proof : Consider f(X) c I R ~ .  It is a simple lemma (Exercise 3) 

that the image under a continuous function of a compact space is 

compact. Any compact set in lFtl is closed and bounded. Being 
- 

closed it contains its greatest lower bound, m, and its least upper 

bound, W. 
4 

I! 

Two of the basic facts about compact spaces are given in the 

next propositions, 

CO 
Proposition 1.9 : - Let X be a compact space and { ~ ~ 4 = ~  - - -  - a consequence - 

w 
of points. Then, there is a subsequence {xn Ijil which converges - - --  

i 

4 

1 CO 

Proof : ~f {X~I~'~ - has no convergent subsequences, then {igNxd 
w 

is a closed subset for each N > 1. Thus X - { . _ U  x.3 = UN is open, - 1-N 1 

and the open covering { u ~ I ~ = ~  has no finite sub-cover. Hence, 

X is not compact, 

Proposition 1.10 : '(Uniform Continuity) : Let X be a compact metric - --  



space, and let f : X += lR1 be a continuous function. Given E > 0 -- --  
there - is 6 > 0 -- so that 1 f (xl) - f (xO) I < E whenever d (xl, xo) < 6 . 

Proff : Given E > 0 and x E X let Tx be the least upper bound 

for the set {6 1 f (y) - f (x) 1 < E for y EBg (x) 3. (xx could 
- 

conceivably be + ) We claim that there is 6 > 0 so that 

F 3 for all x E X. If we can show this, then the result will 
X - 
follow. If we suppose, to the contrary, that no such 6 exists, 

CCP - 
then there is a sequence { x ~ ] ~ = ~  so that 6 += 0. By taking a 

Xi 
subsequence, if necessary, we can assume that {xi} +- X. There is 

d o  sothat lf(y) -f(x)I < @  if B26 (x). There is N > 0 
so that d(xi,x) < 60 for i - > N. By the triangle inequality 

for i > N : - 

Thus for any i - > N, If(y - f(x)I < 5. for all y E B6 (xi) and 

€. 
0 

C (xi) - f (XI 14 r. Consequently, If (y) - f (xi) I < E for all 
- 

y E B8 (xi) and all i - > N, This proves that 6 > 6 and gives 
0 Xi - 0 

a contradiction, 



1 Exercises : 1) Let X be a topological space. Define what it means 

i for a sequence {x n n=l in X to converge to x E X. 

* 
2) Show that if X is Hausdorff, then a squence 

'xn'i=l can converge to at most one point of X. 

I -- 
3) Let X be a compact space and f : X + Y a continuous - - mapping. Show that f(X) c Y  is a compact space, 

4) Suppose Y is Hausdorff and A c Y is a compact 

subspace. Show that A is closed in Y. 

h 
5) Show that {(x~, M a  xn) I i=1 Z ai X: = 11 is compact 

and non-empty if and only if every a is positive, i 

* 
A Hausdorff space is one in which any two distinct points 
x snd y are contained in disjoint open sets Ux and uy. 



82. The Di f f e ren t i a l  St ructure  o f  Euclidean Space 

The topology of R" adds much s t ruc tu re  b u t  there  i s  

even more--the d i f f e r e n t i a l  s t ructure .  I n  t h i s  sect ion we 

s h a l l  study- t h i s  aspect  of  the s i tua t ion .  Let U c R* 
t 

be an open set, R e c a l l  t h a t  a function f :  U + R i s  

d i f f e ren t i ab le  a t  p F: U, i f  and only i f  t he re  is a l i n e a r  

function L: R~ + R such that :  

The l i n e a r  function, i f  it- e x i s t s ,  i s  e a s i l y  seen t o  be 

unique. It is ca l led  the d i f f e r e n t i a l  of f at p and 

i s  denoted Df - R~ + R. If f: U -t R is d i f f e r e n t i a b l e  a t  
P- 

n 
every po in t  of U, then we  have Df: U + & ( R  , R ) .  

W e  say t h a t  f  i s  c1 (d i f f e ren t i ab le  of t he  f i r s t  c l a s s )  

n 
on U i f  and only i f  Df: U + d ( R  , R )  i s  continuous. One 

2 3 could continue i n  t h i s  fashion defining C , C , e tc . ,  bu t  

t he  resu l t ing  de f in i t i ons  a r e  somewhat clumsy. There i s  

1 
an a l t e r n a t e  de f in i t i on  of  C which general izes  more eas i ly .  

n Lemma 2.1: Let U c  R be an open set and f:  U +  R. Then 

1 f C i f  and only i f  the  n p a r t i a l  der iva t ives  

e x i s t  a t  every point  of and a r e  continuous 

functions. 



(N.B. It i s  not the case, i n  general, t h a t  f  i s  d i f fe rent iab le  

a t  p i f  a l l  the p a r t i a l  der ivat ives  e x i s t  a t  p, nor i s  

it the case t h a t  f  i s  d i f fe rent iab le  a t  every point  of U 

i f  the  p a r t i a l  derivatives e x i s t  a t  every point  of u.) 

Proof: I f  f :  U += R i s  d i f fe rent iab le  a t  p E U, then 

af - af (p) e x i s t s  and the (lxn) -matrix (p) , . . . ,- (p) ) 
ax - axn " represents ~f (p) : R ' ~  + R. (Recall t h a t  we a r e  thinking of 

n points of R as column vectors, and we a re  l e t t i n g  

(1xn)-matrices a c t  by l e f t  mult iplication.)  We must show, 

a f af conversely, that i f  [-,...,-I e x i s t  and a r e  continuous 

- -  - 
near p, then f  is d i f f e r e n t i a b l e  at p.. For h E R ~ ,  _--- 

h = (hl,...hn), l e t  hi = (hlr-*eh.,O,...,O), 1 and l e t  

yi(tl = p+thi+(l-t)hi-l , f o r  0 5 t 1. Then, f * y i  

l af i-1 
is d i f fe rent iab le  and fo yi (t) = *- (p+thi+ (1-t) h 1 . hi axi 

and consequently, 
af 

f  (pth) - f (p) = ( (p+thi+ (1-t) hi-') d t .  
i=l 

Given E > 0 ,  there  i s  a 6 > 0 so tha t  

af af I -.(p+q) - - (p)I < ~ / n  i f  IjqII < 6 .  
8x1 axi 

If we pick h so t h a t  I\ hi\ < 6 ,  then \\thi+ ( 1 4 )  hi-'l\ < 6 
- 

for a l l  t between 0 and 1. Hence, 



n a f  I f ( ~ + h l  - f ( p )  - h i  (p)  I 
i=l i 

n 
af c i-1 a f  - i=l I - 0- a j i i c ~ + t h i + ( ~ - t ) h  1 - ~ i ~ p ~ ~ t ~  ' 

Since t was choseh a r b i t r a r i l y ,  this proves t h a t  

Thus, f i s  d i f f e r e n t i a b l e  a t  g, and Df (p) i s  represented 

1 Defini t ion:  A map f :  U + R defined on an open subspace, 

1 
U, o f  Fin is  s a i d  t o  be a C - iuhctian i f  and only if the; n p a r t i a l  

af derivatives--- af (p) , . . . , (p) --exist  and a r e  continuous 
axn 

throughout U. The map i s  said to be cry r 2 1, i f  and only 

if a l l  p a r t i a l  de r iva t ives  of  olrder r, 

e x i s t  and a r e  continuous throughout U. I f  p a r t i a l  de r iva t ives  

of a l l  orders  e x i s t  and a r e  continuous, then we say t h a t  f  

i s  cW. It i s  common nota t ion t o  denote continuous maps 

0 r by C . However, when we  say C , we s h a l l  always imp l i c i t l y  



be assuming 1 r < +oo. 

Examples: 1) A l l  polynomial, exponential and logarithm 

m 
maps are  C where defined: 

a )  (xl,. . . ,xn) W e x l -  aXn i s  cm on a l l  of R ~ .  

m 
C)  (x~,. I .  , X  ) H log (x +. . . + xn) i s  C on n 1 

f o r  (x,y) = (0,O). 

L 

Clearly, f i s  away from (0,O). We claim t h a t  e f ( ~ , O )  = 0 
ax 

= 0. (This follows from the f a c t  t h a t  

f ( t ,O)  = f (0 , t )  = 0. ) However, f i s  not d i f fe rent iab le  

a t  (0,O) since it i s  not continuous a t  t h i s  point. (See 

exercise 3 below.) 

k Definition: L e t  U c Rn be an open set and f :  U + R be a 

function: f ( x )  = ( f l (x ) ,  ..., f k ( x ) ) .  We say t h a t  f i s  

r cr i f  and only i f  each of the f i  a re  of c l a s s  C . In 

par t icu lar ,  f i s  d i f fe rent iab le  a t  p e U i f  grid only i f  

there  i s  a l inea r  function Df : + Rk so t h a t  
P 



- .-1f.f (-1 - f (p) - Df (h) 11 
lim E 

IIh I1 I= 0, 
I I ~  I 130 

k 
and f: U -t Rk is c1 if and only if Df: U + &(Rn,R ) is 

continuous. 

k 
Proposition 2.2: - Let U c Rn - and V c R be open sets. 

r 
Suppose f: u + V* g: V + R' are C J -  then 

r 
g.f: U-R' is c , and ~ ( 9 . f ) ~  = Dgf(x) oDf,. 

(This is the chain rule in several variables. For a proof, 

consult any text on advanced calculus.) 

Definition: Let U and V be open sets in Rn and let 

Q: U + V be a cI-map. Q is a cA-diffeom~r~hism if and only if 

1) @ is a homeomorphism, and 

Exercises: 1) Show that f: R1 + R~ defined by f(t) = t 3 

Q) 

is a C -map and a homeomorphism but that f is not a 

1 
C -diffeomorphism. 

2) Show that 

-l/t 2 / 

I e  t > O  

f (t) = 

. t i 0  

00 1 
is a C -function on R . Show that there does not exist a 



00 

convergent power se r i e s  a.  ti which represents f (t) - I. 

i n  any neighborhood of 0. 

n 
3) Show t h a t  i f  U i s  an open set i n  R and f:  U + R 

I 

i s  d i f fe rent iab le  a t  p E U, then f i s  continuous a t  p. 

n 
4)  Suppose t h a t  U i s  an open set of R and V i s  

m 1 an open s e t  of R , and suppose t h a t  there  a re  C -maps 

f: U +  V  and g: V + U  so t h a t  f.g = I d  and g.f = v Idu. 

Show n = m. (Hint: U s e  the  chain rule. ) 

5)  For each r 21 1, give an example of a function which 

r+ l  . is  cr but  not  c . 
n 

6)  Give an example of two open sets U, V c R 

which a re  not diffeomorphic. 

7 1  SAowthat any power serles is the  Taylor s e r i e s  

1 of some Ca-functron a t  the  orlgLn 2n Rt . 



13. Inverse and Implicit  Function Tlieorems 

In  t h i s  section we sha l l  begin the study of the zeroes 

of s e t s  of different iable functions. Some care must be 

taken t o  ensure tha t  the zero s e t  has the r ight  dimension 

and is- " smooth". Of course, the study of more general 

solution se t s  i s  interesting. It i s  much more complicated and 

should be taken up after one has familairity with the easikst 

case. There is another reason for  concentrating on the 

"smooth" case and tha t  i s  tha t  it is generic. 

n 
For example, i f  one considers, an open set U c R and 

the space of a51  functions from U t o  FX1 (with a su i tab~e :  
I 

topology), then those functions whose solution s e t  is ""smooeht* 

form an open and dense subset. 

L e t  us begin with a few examples which show what can 

go wrong: 

n 2 x = 0. Here, even though we have put only 1 

one condition on n-variables, the resu l t  i s  a single p o ~ n t .  

2 2 3 2 )  x + xZ = 0 i n  R . Again, the dimension i s  "wrong". 1 
3 

One condition i n  R should leave us with a 2-dimensional 

solution s e t  but here the solution s e t  i s  the  curve 

2 
3 )  x1.x2 = 0 i n  R . Here the dimension is  correct, b u t  - 

something bad i s  happening a t  the  origin where the solution 



set is two lines crossing. 

3 2 
4)  x = y .  

Here, the solution set has the correct dimension, 1, but 

it has a cusp (i. e. , a non-smooth point) at the origin. 
2 2 2 

5) x + y - z = 0. Again a singular point at the 

origin, 



There is a natural and simple condition which rules  

out a l l  these pathologies and ensures t ha t  the solution s e t  

local ly looks l ike  a Euclidean space of the "proper" 

dimension. It i s  given by the Implicit Function Theorem. 

- Theorem 3.1: (Implicit  unction Theorem) Let U c R~ be 

k r an open s e t  and f: U + R be a C -function. Suppose for  

k 
p E f-l(O) the d i f ferent ia l  Df (p) ; + R i s  onto (i. e. . . 

of rank k) .  Then there i s  a cr-diffeomorphism 

N n 8 :  W + V c U, with W and V open i n  R and p E V, SO - - - - 
k t h a t  ST.: W + R sends (xl,. . . , x  ) to (xl, . . , - n - 5) 

Explanation: 

(The l ines  represent the level s e t s  of projection and f 

N 

.respectively. ) Thus, i transforms the subspace 

0 
Y = Y ~  E wlxl = Xly. . . ,Xk = $1 of W t o  the level  



-1 0 s e t  f (xl, ..., 0 5) f l  V. In  particular,  l e t  4 be $ 

n-k res t r ic ted  t o  {0} x R c R~ x R 
n-k 

= Rn. Then 

n-k r 
4: ( [o)  x R ) n W +  ~ ' ( 0 )  n V gives a C -map which i s  a 

n-k homeomorphism between an open s e t  i n  R and an open 

subset of the level s e t  fW1(0) containing p. We say that  

any ident if icat ion induced i n  t h i s  manner i s  a system of 

local  coordinates for  f - l (0 )  near p. The coordinates are 

functions ~ P ~ , . . . , ( P , ~  defined on f-l(O) fl V, pi = x i+k 
-1 

which are homeomorphic (via @ ) t o  the standard coordinate 

functions on an open set of R " - ~ .  In particular,  an open 
e 

s e t  of f-l(O) containing p is  homeomorphic t o  an open s e t  

i n  R " - ~ .  Of course, t h i s  coordinate system depends on 

choices tha t  we make. Thus, what is important i s  not a 

part icular  coordinate system but rather the existence 

of one (and hence many) such systems. I t  i s  also important 

t o  understand how different  coordinate systems mesh or 

match. The resu l t  is  tha t  t h e i r  difference i s  a 

Proposition 3.2: at U c R~ be an own set and f:  U + R k 

r a c -function. Suppose t ha t  for  every p E f-'(0), t h e  - 
k d i f fe ren t ia l  Df Rn -t R i s  onto. Let I-. : Wi n R n-k 

P : 1 

+ f-I  (0) fl V. be two cr-coordinate systems (i = 0 , l )  as . 
1 



-1 
constructed above. Then let $ I ~ ( V ~  n V1 n f (0) ) c Wi 

be Zi for i = 0 and 1. The mar, - 

r n-k 
is a C -diffeomosph-i,sm~bs;tween,. op,en sets in R . 

Proof: By construction $ and B1 come via restriction from 
0 

c'-di f feomorphisrns 

and 

N N 

@=: W1->V1. 

--I - --I --1 r 
Hence, @i o $ ~ :  )O (V1 n VO) + B i  (V1 fl Vo), is a C -diffao- 

n --1 H 
morphism between open sets in R . Restricting . $0 

-1 -1 
gives the map il -1 

: (v, nv, n f co)) -* ii1(v1 nv, n il(o)). 
r 

Hence, the latter map is a C -homeomorphism. Since the 

-1 -1 same argument works for B0 we see that il .is 

actually a cr-di f feomorphism. 



-1 
The change of coordinates map $ 0 go, where defined, 

1 

is  called the  overlap function. The above proposition 

says tha t  the overlap functions for  the local  coordinates on 

d - f-1 (0) are d i f  feomorphisms of the same c lass  of. d i f  f eren- 

1 t i a b i l i t y  as f .  

I Definition: W e  say tha t  M c R~ i s  a -Crt'-\scr1* xx& &ntension 

I (n.-k) i f  for  every p E M there are: - 
n 1) an open s e t  U c R containing p, 

I 



n 
2 )  an open s e t  W c R , and 

3 )  a cr-dif feomorphism @ : W + U so tha t  

- c1 ( ~ n  U) = (€01 x f -k) n W. 

n k r 
Thus, if M = f - l (0 ) ,  where f :  R + R i s  a C -function 

with Df (p) of rank k for  every p E M, then M is  a cr- 

manifold of dimension (n-k). 

The converse is  t rue  locally. That i s  t o  say, i f  

Mn-k r 
c R~ i s  a C -manifold of dimension (n-k) and i f  p E M, 

n r 
then there i s  an open s e t  U c R and a C -function f :  U + R 

k 

so tha t  U n M = f-l(O) and so t h a t  Df i s  of rank k a t  

every point of U FI M. To construct such a function one begins 

n-k 
with a-. ~~-dif5eomorphisrn @: W + U so t h a t  @({O} x R ) = M n U. 

@-I The map U + 1 - & R ~  i s  the required function 

(p  (xl, . . . , x 1 = (xl, . . . , xk) ) . It i s  not t rue  t ha t  every n 
n-k manifold M 

n c R can be given slobal ly by a function 

n f: R + R~ with D f  of rank k a t  every point of M. We sha l l  

see examples of t h i s  l a te r .  

n 2 
Exam~les: 1) f (x) = xi) - 1 defines a ~ '~manf  fold 

of dimension (n-1). The reason i s  tha t  D f  (xl, . . . ,x ) 1 

= (2xl, . , 2xn), and hence Df (p) has rank 1 for  a l l  p # 0. 

n- 1 
This manifold i s  the (n-1) -dimensional sphere, S . 



This equation defines a coo-manifold. Note t h a t  xy = 0 

f a i l s  t o  s a t i s f y  the  d i f f e r e n t i a l  condition a t  (0.0). and 

t h a t  indeed xy = 0 i s  not a manifold near the  point  (0,O): 

3) Let f: R n-k + R~ be any cr-function. The graph of 

f ,  r ( f )  , whicl~ i s  the s e t  of a l l  p a i r s  

{ ( x Y ~ ( x ) )  E R 
n-k n r x R~ = R } , i s  a C -manifold. The defining 

equation f o r  r ( f )  i s  

{f (xl,. .X n-k - 'xn-k+l ,..., X ) = 0). n 

(Check t h a t  the  d i f f e r e n t i a l  has rank k a t  every point .)  

4)  Let C and z be complex variables.  The equation 



2 4 
defines a subset of E = R . I f  we wri te  { = x + i w  and 

z = u + iv, then the above complex equation becomes 2 rea l  

equations : 

4 
These equations define a coo-manifold of dimension 2 i n  R . 
(Again, check tha t  the d i f fe ren t ia l  i s  rank 2 . )  

n 
5 )  If p(xl, ,x n ) = xi=l (xi/ai12 (ai # O for a l l  i) , 

then p(xl,. . . ,x ) = 1 defines a coo-manifold cal led an n 

ell ipsoid.  

n 2 
6)  Let (nxn)-matrices be ident if ied w i t h  R . The 

n 2 
invert ible  matrices, GL (n, R )  , form, an open subspace of R 

given by det  # 0. Inside GL(n,R) we have the matrices of 

t race  1. 
2 

This i s  a manifold of dimension (n - 1). 

Its defining eqyation is ( t race  = 1) (i .e . ,  

x + x +...+ x = 1 The orthogonal group O(n) i s  a 
11 - 22 nn 

manifold of dimension n (n-1) /2. I ts  defining equations are : 

2 
It is an easy exercPse t o  show tha t  the  map F: R~ -r R 

(n+l) n/2 



n defined by F(x 
) = [zjzl x i j e s j  i j - dik) (l A n, 

. -1 has DF of rank (n) (n+1)/2 everywhere along F (0) .  

A manifold M ~ - '  c Fbn defined by one equation ~ ( x )  = 0 

-1 (with Dq of rank 1 a t  every point of cp ( 0 ) )  i s  called a 

N hypersurface. The fac t  t ha t  Dq(p) # 0 for  every p E M .. 
means tha t  vq(p) # 0 for  every p E M. I f  we take a 

1 
C -curve y: ( -  + R~ with y(0) = p and y 1 ( O )  = ocp(p), 

then ~ e y ( 0 )  = 0 and q.yl(0) = ~lvcp(p)ll~ > 0. Hence, there i s  

e > : 0  so a a t  c p ( y ( t ) )  < 0 for  - e  < t < 0 and q ( y ( t ) )  > 0 

for  -0 < t < e. Thus y crosses from the region where cp 

i s  negative t o  the region where i s  posit ive.  

Thus on one side of M, rp is posit ive and on the other it i s  

n-1 negative. Of course, M does not have t o  be connected so 

t h a t  there can be several regions where cp is posit ive and 

negative. For example, le t  

2 2 2 2 2 2 
9 (x,Y) = (X2+Y2-1) (x +y -2) (X +y -3) (x +y -4). Then, 

-1 
M = cg (0) i s  four c i rc les  of rqd$i 1, J2, a, and 2 ,  



Corollary 3 . 3  : Suppose U is a connected open s e t  i n  R~ 

1 1 cp: U += R i s  a C -function with Dq (p) of rank 1 for  a l l  

p E qjml(0). Then U - rp-l (0 )  has a t  l e a s t  two connected 

Proof2 cp > 0 and cp < 0 a r e  open,. disjaint,non-empty subsets - 

Examples: 1) The equations: 

L e t  U be the open define a c i r c l e  of radius R i n  R , SR. 

3 1 1 
set of [p  E R I d (p, sR) < c )  . Here, d (p, SR) = min d (p,x). 

1 X E S ~  

me choose c < w2.1 Inside U we have 

B 3 [ ( ( ~ + t  ~ i n ( ~ ) ) c o s  @,(R+t ~ i n ( ~ ) s m  e , t  C O S ( ~ ) )  O C I ~ I C E  and " I 
0<8$21~) .  - 



It i s  the ~ 8 b i u s  band. 

C 

We claim tha t  it is  a 2 dimensional manifold inside U, but 

it is  not given by one equation since it has only one "side", 

2 
i .e.  U - M i s  connected. In  fac t ,  there is  no open s e t  V, 

M c V c U, and cm-function f: V + R~ so tha t  rank Df (m) = 1 

-1 
for  every m E M and so tha t  M = f (0) .  

n 
One way t o  define manifolds i n  open se t s  of R i s  t o  

adjoint inequalit ies t o  the equal i t ies .  For example? 

defines a hemisphere which is  a hypersurface i n  the open s e t  



Thus a general hypersurface i n  an open s e t  would be 

given by : 

with the. proviso tha t  vf (p) # 0 for a l l  p such tha t  

f (p) =-0 and cpi(p) > 0. 

2 defines a coo-manifold i n  R - CO .OLI. 

I n  ef fec t ,  we have removed the singular point of the cusp. 

Exercises: 1) Suppose f (zl,. . . , zn) = 0 i s  a complex 

n 
analytic function defined i n  an open s e t  U c (C . I f  



a f af (c, . . . ,-) are never a l l  zero, then show tha t  f defines 
1 azn 

a cm-manifold of dimension (2n - 2 ) .  

2 )  Let p(x,y) = ax2 + bxy + cy2 be a quadratic 

polynomial. Show tha t  p (x,y) = 1 defines a cW-manifold. 

3 )  Show tha t  the ~ 6 b i u s  band as  described i n  example 

2 i s  a 2-dimensional manifold i n  U, i. e. show tha t  for  

each p e M there i s  an open s e t  W containing p and 

a c*-function f: w + R~ so tha t  ~ ~ ( 0 )  = M il W and so tha t  

Df(x) i s  rank 1 for  every x e M n W. 

4) Show tha t  

defines a hypersurface i n  the open s e t  

From the given formulation,the name "Implicit  Function 

Theorem" seems somewhat mysterious. There is, however, 

another (s l ight ly  stronger) formula t ion  which explains 

the name more clearly. Suppose U c R" i s  an open s e t  and 

f: u + dC i s  a given cr-function. We say t h a t  the level  s e t  

f ( y ,  . . . y ) implicit ly defines x 
k n-k+lJ . . . ,x as  functions n 

r of (xl,. . . , X  ) i f  and only i f  there are C -functions on n-k 



n-k 1 an open s e t  W i n  R , gn-k+19'**,gn : w + R , so t ha t  

= ( ( x ~ " ~ " X ~ - ~ ~ ~ ~ - ~ + ~  ( l , . . . ,  x n-k ) ,..., gn(x1,..-,x n-k ) ) l ( x l , * = * , X  n-k ) EW).'  

t 

This means tha t  the level  s e t  fel(yl,. . . ,y ) is actual ly k 
k 

the graph of a function g: W + R , g = (gn-k+l,.. . ,gn). 
* 

With t h i s  i n  mind we give the reformulation of the Implicit  

Function Theorem. 

Theorem 3.4: at U c R~ be an open set .  and* l e t  f: U + R 
k 

b* a ~ ~ - f w c t i g m ,  w i t &  f (p,) = 0 and, w i t h  - 

an invert ible  (k x k)-matrix. Then there is  a n  open s e t  
1 

n 
V c U with p E V, an open s e t  W c R , and a cr-diffeomorphism 

so tha t  fti$xl,. . . ,x ) = n (xn-k+l' 0 0 . 9  X ) .  n 

Note tha t  i f  w e  f i x  (yl,. . . ,yk) E R~ and define 

g x ,  9 t o  be ii (xlY * ,Xn-k,Y1, " ,yk) , then n-k 
-1 the graph of g = (gn-k+l,. . . , gn) i s  equal t o  f (yl, . . . , y ) k 



Hence, @ describes, all at once, every level set 

(f-' (yl,. . . ,y ) ] n v as the graph of a function 
k 

This version of the theorem is stronger than the first' 

r version since it restricts the t m e  of C -diffeomorphism 

which is allowed. To see that the second version actually 

k 
implies the first,note that if we have f: U + R with Df (p) 

of rank k, then there are k coordinates (which after 

renumbering we can assume to be (x n-k+l ' ..., x ) )  so that n 

is invertible. 

n 
Example : 2 x = 1, near the point (0,0,. . . ,0,1), 1 1 

implicitly defines x as a function of (xl, . . . ,x ) , namely n n-1 - - 

2 2 1-x -x -...- x 2 ' 
1 2  

Near (0,0,. . . ,0,-l), x is n-1 ' n 

implicitly defined as 
2 - X1 ...- X 2 '  

n-1 ' 

We shall deduce the-Implicit Function Theorem from a 

special case (k = n) which is called the Inverse Function 

Theorem. 



Theorem 3.5 (Inverse Function Theorem) : k t '  U c Rn & 
n r an open set and let f: U'+ R be a C -map with Df 

P 

invertible. There are open sets V and W &I Rn, w i t h  

r 
x E V c U, so that fl~: V -t W is a C -diffeomorphism. In 

x -1 
particular, f Iv: V += W has a C -inverse f : W -, V. 

Proof that Inverse Function Theorem .+*Implicit Function Theorem: 

k r n 
Let f: U -+ R be a C -map on an open subset of R 

and suppose 

.n-k 
is invertible. Define F: U += R k 

X R by 

F ( X ~ , ~ . ~ X  n ) = (x1,..-x f (X ..., x ) ,..., fk(xl ,..., x ) )  n-k' 1 1' n n 

r 
This map, F, is C and DF is given by the matrix 



Hence, DF i s  invertible i f  and only i f  
X 

is  invertible.  

Thus DF(p) is invertible. Consequently, there are open 

n-k 
se t s  V c U, with x E V, and W c R x R~ 80 tha t  

r -1 F I  V: V -t W i s  a  C -diffeomorphism. Consider F : W + V. 

Clearly F-' (yl, . . . , yn) 
i 

-1 -1 
= ( Y ~ ~ . * . , Y ~ - ~ , ~ ~ - ~ + ~ ( Y ~ , ' * * , Y ~ ) , * * * , ~  ( Y ~ , * * * , Y  1 )  and n n 

-1 
f .~- '  (+. . ,y = ( Y , - ~ + ~ ,  . . . , yn) . Hence, F i s  the 

n 

diffeomorphism required by the Implicit  Function Theorem 

(strong version). 

Proof of the Inverse Function Theorem: 

n 
'Ziemma 3.6: Let U and W be open se t s  i n  R and f :  U + W - 

r 
be a C -homeomorphism with f-l: W + U different iable a t  - 
every p 

r 
o in t  p E W. Then fhl is a  C map, i .e .  f  i s  a  

cL-dif feomorphism. 

Proof: Let ~ u t o  ( R ~ )  c d ( R n ,  R n )  be the open subset of 

invert ible  l inear  maps. (Auto (Rn)  is open since it i s  

defined by the condition (determinant # 0). ) Consider 

the map o: Auto(Rn) + Auto(Rn) given by sending an 

invert ible  l inear  map t o  i t s  inverse. Thi's i s  a  coo- 



diffeomorphism. The reason i s  that ,  i n  terms of matrix 

entr ies ,  the map w i s  given by 

where.. M, , is. the determinant of the (n-1) x (n-1)-matrix 
A J  

t h  
obtained by deleting the ith-row and the j -column of 

(a..). (Recall t ha t  the determinant of a matrix i s  a poly- 
1 3  

r 
nomial i n  the ent r ies . )  Let f :  U + W be a C -homeomorphism 

w i t h  f-l: w + U different iable a t  every point of W. By 

-1 
the- chain rule  D ( f ) = w(Df ) .  Thus 

P. 
n n ~ ( f - l )  : W + &(R , R  ) is given by the composition 

-I 

W f .,U Df   nu to(^*) ~ u t o ( ~ ~ ) .  

r -1 
B y  assumption f i s  a C -homeomorphism, r 2 1. Hence f 

00 

and Df are continuous. Since w i s  C , it follows tha t  

n n -1 1 D ( f  : w + ( R  , ) i s  continuous, i. e . ,  f i s  C . 
s Suppose tha t  we have shown t h a t  f-' i s  C , 1 A s < r. 

-1 S s+l Then D(f) = w*Df .f i s  C . This means t ha t  f i s  C . 
r 

This proves, inductively, t ha t  f-' is  actually C , and 

consequently t ha t  f i s  a cr-diffeomorphism. 

Lemma 3.7: at L: Rn + Rn be a l inear  map. Define 

m ( L )  = min 115 (x) 11 and M ( L )  = max I ~ L  (x) 11. Then, 
xesn-1 xesn-1 



L is invertible if and onlv if 0 < m (L) . The functions m, 

1 
M: P{R~,R") + R are continuous. 

(Note: By Lemma 1 this minimum and this naxirnum exist 

n-1 
since S is compact.) 

- 
rn Proof: Since L is linear L (x) = I I x I I = L  (x/IIxII) for any 

n 
x # 0 .  Thus m (L) IIx I I  < . I I L  (XI 11 5 M(L) llxll for any x E R . 
Also m(L) # 0 if and only if L(x) = 0 implies x = 0. This 

means that m(L) # 0 if and only if L: R" + Rn is injective. 

n 
But any injective linear map from R to R" is an isomorphism. 

1 Let us show that m: &(R",R") + R is continuous. (The 
C 

n n 
argument for M is similar.) Let (Li) + L in .C(R ,R ) .  

C 

n-1 
choose x E S so that 1 1 ~  (x) 11 = m(L), and choose c > 0. 

We know that ( I I L ~  (XI 11 1 + IIL (XI 11 and that m (Li) 5 IILi (XI 11. 

From this it follows that m(Li) - r m(L) for all 

sufficiently large i. Let us show, conversely, that 

m(L. ) + t 2 m(L) for all sufficiently large i. These two 
1 

inequalities together imply that lim m (L. ) = m (L) . This, 
1 i- 

of course, implies that m is continuous. We prove the 

second inequality by contradiction. If it does not hold, 

then there are integers nl < n2 <. . . such e a t  
m(L ) + c<m(L) for all k. Choosex E S n-1 so that 

nk 
IIL (X ) 1 1  = m(L 1. By taking a subsequence, if necessary., 

nk nk nk 



n- 1 n- 1 
we can assume t h a t  Ex- ) + x i n  S (since S i s  compact). 

=Lk n n n 
The evaluation map p:  &(R , R  ) x R + R~ i s  continuous. 

Hence l i m  L (x ) = L(x), and consequently, 
k- ?k nk 

l i m  m(L ) = l i m l l ~  (x ),I1 = I I L  (x)-II 2 m (L) . This i s  
h nk k- nk nk 

impossible since m ( L  ) + c m l c )  fo r  a11 k. This 
nk 

contradiction shows tha t  m(Li) + e > m (L) fo r  a l l  suff ic ient ly  

large i. 

n Lemma3.8: at U c R be an open set, and l e t  f: U + R 
k 

f 11 f ( x )  -f ( y )  -My (x-Y) 11 
fo r  x # Y 1 1 ~ - Y  I1 

ep(x,y) =- I O for  x = y .  

Then ep is  a continuous function. - 

Proof: Clearly cp is continuous everywhere except possibly 

along the diagonal [x=y). To show tha t  it is continuous 

there we must show tha t  given p E U and.cc > 0 there i s  

b > 0 so tha t  

/ 

for  a l l  x,y E BI(p). Choose 6 > b so t ha t  B -  (p) c U and 
(L 



af a f  s 
so tha t  1- (q)  - - (p) I < yn for  a l l  q E Bd (p) . (Here we 

axi axi 

use the  f ac t  tha t  f i s c l . )  It follows tha t  fo r  any 

points q, q'  E BI (PI 

Recall tha t  i f  x - y = (hl, . . . ,h ) , then n 

Thus, 

n l  + 'Is %s 

and hence 

fo r  any x,y E B6 (PI 

Proof of the Inverse Function Theorem: Suppose t ha t  we 

n have a cr-function f:  U + R with Df invertible.  We sha l l  
P 

find a smaller open s e t  V c U, w i t h  p E V, so that: 

1) f I V  i s  1-1, 

2 )  f ( ~ )  c R" i s  open, 

-1 
3)  f : f (V) -, V i s  continuous, and 



4 )  fw1: f (V) + V is differentiable at every point 

g f(V)- 

By Lemma 3.6 this will prove that f : V + f (V) is a 

r 
C -dif feomorphism. 

Since Df is invertible,m(Df ) > 0. Since f is C 1 
P P 

and m,M are continuous, there are constants 0 < a < A and 
an open set V c U so that a m ( D f  ) and A 2  M(Df ) for 1 9 9 

all q EV1. Since the function g: U x,U + 1l of Lemma 3.8 

is continuous, there is 6 > 0 so that B6(P)cv1 and 

- t 

for all x and x '  in B6 Cp) . Since aljx' - x, l i <  I! Dfx (x -XI+ I( 5 

8 

411~ - 3 11, we see that 

for all x and x' in .v. Let V be ~ ~ ( p ) .  Then 

from the first inequality in (*I it follows immediately 

that f 1 is one-to-one, and that fml:f (V) + V is 

continuous . 
Naxt, we claim that f (V) eln is an open set. Let . 

q = f(v) for some veV. Let b be one half the distance 



from q t o  f (3 (Bg(p) ) ) .  Note tha t  b > o', i.e., q k f ( 3 ( B a ( p ) ) ) ,  

since f l B  (p) i s  one-to-one and q = f ( v )  fo r  some v E B (p) .  
6 ti 

Claim: B,(q) c f (V).  

I f  we can establish t h i s  claim, then we sha l l  have 

proven tha t  f (v) c R" i s  open. 

1 
Proof of Claim: Let q' E % (q) . Define + : B6 (p) + R by 

2 
$ (x) = llf (x) - q '  1i2. Clearly, 9 (v) < b , whereas fo r  any 

2 x '  E b (B (p) ) , 9 (x' ) > b by the t r iangle inequality: 
6 

Since B (p) i s  compact, + achieves i t s  minimum a t  
6 

some point x E B (p) . Since I/J (v) < 9 (x' ) fo r  any 
6 

x'  E a ( B g  (p ) ) ,  the point x must be i n  B (p) = V. A t  such 
6 

n a rninimum,D$ (h) = 0 for a l l  h i n  R . By the chain rule,  
, x 

D ' Y ~ ( ~ )  = 2(f  (x) - q '  )*DfX(h).  Since Df is invert ible ,  we 
X 

conclude tha t  f (x) - q' = 0, i .e.  tha t  f (x) = q ' .  This 

proves the claim. 



Lastly, we must show tha t  f-l: f (v) + V i s  differentiable.  

Let y E f(V) and y + h E f(V) with f ( x )  = y and f ( x l )  = 

y + h. Given s > 0 there is p > 0 so t h a t  i f  [Ixl-xII < p ,  

then llh - ~f~ (xa -x) I[ < 6 .  IIxa -xII. of course, I[xl -xII < all. 
a 

a 
Thus, i f  llhll < 3 p , then . 

On the other hand, 

Putting these two statements together proves t ha t  

~lf-l(y+h) - j 1 ( y )  - (Dfrl(y) 
l i m  

1 - l  lh) 11 
llhll 

= 0 
llhll+ 0 

This proves tha t  fol is different iable and t h a t  

-1 
~ ( f - l ) ~ ( ~ )  = (Dfx) . This completes the proof of the 

/ 

Inverse Function Theorem. 



84. Manifolds--The Abstract ~efinition. 

The definition of manifolds as the level sets of 

n 
certain functions defined on open sets of R has the 

disadvantage of carrying much-excess baggage along, For 

most considerations, the fact that M is a subset of 

or that certain functions define it is totally irrelevant 

and,in fact, only obscurg the central issue, What is 

important is that M be a space with systems of local 

coordinates which differ by cr-dif feomorphism. In this 

section, we emphasize this more abstract point of view by 

giving a second definition of a manifold. We will also. 
, 

compare the two definitions. 

r 
Definition: A pre-C omanifold of d~mension n is a trlple-- 

a topological space X, an open cover [U } of X, and 
a ~ E I  

homeomorphisms yo: Va + U where Va is an open subset of a' 

R"--which satisfies the following axioms : 

u-r 
1) X is a Hausdorff, metrizable space. 

n 
cr-diffe~mor~hisrn between open sets in R for 

all a,@ E I. / 

Clearly, condition 2) posits the existence of local coordinate 

r systems which overlap in a C -manner. Axiom 1 requires 

amplification. First of all, it is not a consequence of all 



the other assumptions (i. e., tha t  X i s  local ly homeomorphic 

1 1  
t o  R ~ ) .  For example, take two copies of R , R x [a )  

1 and R x {b), and identify [x x a)  with [x  x b) for  a l l  x # 0. 

This produces a l i ne  w i t h  a double origin: 

1 
which i s  local ly homeomorphic t o  R but  which i s  not 

Hausdorff. The condition tha t  X be metrizable once it 

is  Hausdorff i s  equivalent t o  X ' s  being paracompact. This 

mean-s t ha t  any open covering h a s  a countable, local ly 

f i n i t e  refinement. This w i l l  be assured i f  X is covered 

by countably many open se t s  Ua which are homeomorphic t o  

open subsrts of R ~ .  The standarcl wnonmetrizable* manifold" 

i s  &e "long lines'. Let n - be the f i r &  uncountable 

cardinal and consider the s e t  of cardinals S = [a1 a < 61). 

This i s  an uncountable s e t  but  each element i n  S has a t  

most countably many predecessors. L e t  W = SL a x T where 
aes 

T is  the open in terval  (0 , l )  . Define an ordering on W by: 

1) res t r ic ted  t o  S c W,the ordering i s  the usual one, 

for  any t E T 



Once given an order,define open intervals  (v,u) for  v,u E w 

t o  be {a  E W I V  < a < u}. An arbi t rary  open s e t  i s  a union 

of open intervals.  This defines a topology on W which 

makes it the "long line",  L. One establishes the- following: 

1) L is Hausdorff and local ly Euclidean. 

2)  ~ n y  sequence i n  L has a convergent subsequence. 

3)  I f  L were a metric space, then, fo r  each integer 

n,  it would have a f i n i t e  s e t  X so t h a t  every n 
1 

p E L i s  within distance - t o  some point in  Xn. n 

4)  I f  L were a metric space, then it would have a 

countable, dense subset. 

5) L has no countable, dense subset. 

These examples show the necessity of assuming Hausdorff 

and metrizablet but the main condition of i n t e r e s t  i s  the 

existence of local coorainates which overlap i n  a cr manner. 

n 
The homeomorphisms va: Va + U where V, c R s e t  and a' 

U c M are open, are  called charts. We think of such a a 

chart  as  giving coordinates (xl, . . . , x  ) valid i n  U,. n 

Actually, i f  (xl, . . . ,xn) are the usual coordinates on V,, 

-1 -1 
then the induced coordinates on U are (x ecp ,. . . ,xn.cpa ).  a 1 a 

(Here, we are  viewing xi as a function xi: Va + R.) A 

collection of charts [U~,~,,V,], ,~ which cover M, i. e. , so 
- 

t h a t  u Ua = M ,  i s  called a cz-atlas. An aklas [ u , , c p , , ~ ~ } ~ ~ ~  
U E I  



r determines a unique Maximal C -at las consisting of a l l  

n hom&omorphisms, cp: V += U from open se t s  i n  R t o  open sets  

i -1 -1 
with theLproperty that  @-l.cp: cp (U n ua) += qa a (d n ua) 

i s  'a Cr-d~ffe&&hj". f 11 a € I. Any element in  the 
r . -  3 - 

maximal a t ras  &efinws d?coordinate!s bn some open subset L 

df M. - " 

sdorf f ,  metrizable space 

" r *  

r r 
,Of  coux,se, any pre-C -manifold determines a C -manifold 

but many different pre-~r-mam&folds can determine the 
C 

same one. 

N o t e  tha t  if M is a cr~manifold and U c M i s  an 

open set,  then U i t s e l f  inheri ts  the structure of a 

09 
cr-manifold. Thus any open subset of Ftn i s  a C -manifold. 

r 
If (XY [ua,Cpa,val Iap I  i s  a pre-C omanifold and f: X + R 

is a continuous function, then f i s  said t o  be class cS 

for any s r provided tha t  feepa: V + R is of. class cS a 

for every a E A. Of course, i f  we ckieck the condition 

tha t  f ecp is cS for a l l  cpa forming an at las,  then it a 

follows for  a l l  the cp, i n  the maximal a t l a s  tha t  they 

generate. Similarly, we define f: X + R' t o  be cS i f  a l l  

S i t s  coordinate functions are C . I f  (X, {ua,cpa,va]) and 



r 
(Y, {u&,~;,v;]) are pre-C -manifolds, then f :  X + Y i s  

of class  cS for  any s r, provided tha t  the composition: 

i s  of class  cS for  a l l  pairs  (a, ' ) . The map f: X + Y 

r i s  a C -diffeomorphism i f  f is  a homeomorphism and both 

r 
f and f - l  are C - functions. Two pre-~r-manif o ld  struc- . 

tures  on .a space M define the same cr-manifold s tructure 

r i f  and only i f  the ident i ty  IdM: M + M i s  a C -diffeomorphism 

from one structure t o  the other. 

1 
Example: Give R the usual s t ructure as a cm-manifold, 

U s e  the homeomorphism t r, t3 t o  define a d i f fe ren t  

1 
cOD-manifold structure. In  the second structure 9: U + R i s  

3 a em-mapping on U c RI i f  and only i f  q ( t  ) defines a 

00 
C -mapping i n  t. Call t h i s  new structure R '  . These two 

structures are d i f ferent  since ?t i s  on R '  but not 

1 on R . These manifolds are, however, cm-dif fe~mor~hic .  In 

1 00 f ac t  p :  R '  + R given by 0 (t) = % i s  a C -diffeomorphism. 

It turns out t h a t  i n  higher dimensions one can find two 

-tiif ferent cm-mani fold structures on a topological space 

which are not even diffeomorphic. The lowest dimensional 

- example of this i s  S' where there are 28 d i s t i nc t  different iable 
I 

structures. 



In our definition of an atlas we required'each V a 

to be an open set in the same dimensional Euclidean space. 

If M is connected, then this requirement is superfluous; 

it actually fol-lows from the other axioms. To see this, 

let ( u ~ " P ~ * ~ ~ ~ ~ ~ ~ ,  be a cr-atlas except for this condition 

and let u U be connected. If Ua tl U # fl, then Va and 
a&I 

a B 
V must be open sets in the same dimensional Euclidean B 

-1 -1 
space. The reason is that ip (Ua f l  U ) and qB (Ua n Up) a B 
are diffeomorphic and hence by exercise 4 of section 2 

are open sets in the same dimensional Euclidean space. 

Define Wn c M to be U Ua. Clearly, U Wn = M, 
(aldim va n20 

and each W is open. By the above discussion,W n W = jd n n m 

if - n # m. If M is connected, then all the Wn except 1 

must be empty. If M is not connected, then its various 

components can have different dimensions (if we drop the 

requirement that all the Va be of the same dimension). If 

every component has dimension n, then we say that M is 

of dimension n, 

00 
When dealing with cW-manifolds and C -maps, we shall 

use the words differentiable manifold or differentiable 
. 

function. When we are dealing with cr-ran~folds, we shall say 

cr explicitly. Though much of what we shall do for 

cW-manifolds can be carred through for cr-manifolds r 2 1, 



we shal l  usually adopt the easier ccxlrse of restr ict ing t o  

03 
the C -case. 

X 

Exercises: 1)  Show that the e l l i p s e  [zn (>) = 1)  and 
i=l a, 

sn-l 
are diffeomorphic. 

n-1 2 )  Given a cOD-atlas for S . 
2 2 3 3 )  Given a cm-atlas for { ( ~ , z )  E P: I C  = z - 1). 



15: Examples of Differentiable Manifolds 

One general way t o  construct new manifolds) $.koma old 
' 

ones i s  by taking quotients of cer tain ,group actions.. Even 

i f  the original manifold comes equipped with defining: " 

n ' equations i n  R , the quotient manifold may have *no such 

natural  description. Thus, when taking quotientsr it is 

much easier  t o  work with abstract  manifolds, 

Let G be a group and give G the d iscre te  topology. 

An action of G on X i s  a continuous map 

such tha t  p-(gkY,x) = ep (g,cp (h',x) ) , qi (e., x) = x. ~t follows 

immediatexy: t ha t  q(g,  ) :  X -* X is a homeomorphism whose 

-1 
inverse i s  ep (g , ) : X -* X. This leads t o  an a l ternate  

description of an actlon of G on X: An action of G 

on X i s  a group homomorphism from G t o  Homeo (X) , the 

group (under composition) of homeomorphisms of X. We 

often denote the  homeomorphism associated t o  g by 

x * gex, An action i s  f ree  i f  g-x = x from some x E X 

implies t ha t  g = e. An action is  properly discontinuous i f  

for  every x E X there i s  an open se t  U c X containing ,x, 

so tha t  g.U tl U = jd fo r  a l l  but  a f i n i t e  number of elements 

g e G. In  an action.,the s tab i l i ze r  of a paint  x E X i s  
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the subgroup (g  e ~ l g x  = x]. Thus, an action i s  f r ee  i f  and 

only i f  the  s t a b i l i z e r  of every point  i s  the iden t i ty  

subgroup. 

Lemma 5.1: I f  G a c t s  properly discontinuously on X, 

then the s t a b i l i z e r  of e v e n  point  i s  f i n i t e .  Furthermore, 

i f  X i s  a Hausdorff space, then qiven x E X there  i s  an - 
open s e t  U c X contaihinq x, so t h a t  U r l  gU # 9 only for  

g i n  the s t a b i l i z e r  of x. 

Proof: The f i r s t  assert ion is  clear .  A s  fo r  the  second, 

consider x E X and g E G such t h a t  gx # x. Since X i s  

Hausdorff, there a re  open sets Vx and V containing x 
gx 

and gx respectively, such t h a t  Vx fl V = g. Consider 
g x 

-1 
U = Vx n g (Vgx). This i s  an open s e t  con ta in~ng  x, and 

U n gU = 9. Now suppose G a c t s  properly discontinuously 

on X. Choose U so t h a t  U n gU # jd f o r  only f i n i t e l y  

many g E GY say ~ g l y ~ o ~ y  . For each gi which does not 
$ 

s t a b i l i z e  x, we choose Ui,an open set containing x, so  

t h a t  Ui n giUi = jd. The intersect ion-  

is the  required open se t .  

Corollary 5.2: I f  X i s  Hausdorff and G a c t s  f ree ly  and 



2 & .~- ? 

prope;lv discontinu&isl$' on X, &en fo r  each" 3c X there 

, so t ha t  U n go = pl for 

a l l  g # e. - 
Given . aet30n.~ :G I. x X !w YX., we define 'the quo ti"ent,:$space 

X/G; AS a set.$, it " is -We +equivalrence_ cbassed under' : the$&. 

are called $ the  orBirs**af - G, a n d i t h q q o t i e n t  space i s  t he  

o r b i t  space. ) The topology on ,x/G:.~ s $the quotient topology 

for  the map IT: X += X/G. This means tha t  U c X/G i s  open 
, ' . *  2 - d ~ ~ F ~  s 

-1 i f  sad ow1.y if ?r (U) c X i s  awn. 
1821:! >'!** :*: . r ,  

Tf: M i& a cr-mhnifbld, then arf action of G on M 
- h l ' *  

I-. 4 ca 'g p.'JII; T;  

r i s  a C -action i f  tEe ho&ednorpfiism induced by each g E G 

r 
is- a C -diffeomorpfiism. * 

, * 

r 
Theorera 5..3r K t  .the. a C -fianifold and l e t  , G  x M + M 

- 
be a free,  properly discOntinuous, &-action. Then M / G  

natura3.W I;nherits the3strticture of a cr-manifold so t h a t  

Proof: We deflne an a t l a s  fo r  M/G. For each x E M,choose 

r 9,: V -, U a C -chart w i t h  x E Ua,so t h a t  Ua fl gUa = pl a a) 

for  a l l  g # e in  G. Consider n(Ua) c M / O .  It i s  an open 

set since i t s  preimage is U gUa. Furthermore, 
gcG 

nl Ua: U + n (U ) i s  a homeomorphism. We take a a 



t # 
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I 

I 

r ocpa :  V + n (U,) t o  be a chart  near [x] E M / O .  One checks that a 
r 

t h e  overlap functions for  t h i s  a t l a s  are  C , and hence 

tha t  this a t l a s  defines a &manifold s tructure on M/G. 

Clearly, n: M + M / D  i s  a cr-map whose d i f fe ren t ia l  a t  x E M, 

r calculated i n  local  C -coordinates, i s  of maximal rank. 

Examples: 1) Let Z (the integers) ac t  on R by translat ion 

n.r = n+r. Clearly, t h i s  is a free,  properly discontinuous3 

C* action on R. The quotient manifold R/Z is cW-diffeo- 

1 2 2 morphic t o  the circle:  S = ( (x, y) 1 x + y = 1 The cW- 

d i f  feomorphism 

cp: R/Z s1 

is  defined by 

cp (r) = (cos (2nr),  s i n  (2nr) ) . 

2 )  Generalizing example 1 , l e t  V be an n-dimensional 

rea l  vector space and L c V a l a t t i c e .  This means L i s  

a l l  integral  l inear  combinations of a basis  (el,. . . , en) for  V. 

We l e t  L a c t  on V by t ranslat ion A - 8  = A+V. This i s  

c learly a free, COD-action. We claim that?  i n  addition, 

it i s  properly discontinuous. To show t h i s  it suff ices t o  

show tha t  there i s  an open s e t  U, containing Q, ., Mat 

4. U n A' . U = % if A # A' are l a t t f  ce elements. The open . 

n 1 s e t  is  a l l  - airi[ \ail. < 5). The quotient V/L i s  i n  



n-dimensional torus. As a speci 
.\h ' I 2 ,i 

1-e t be el and e 2' 

rom the parallelogram P by 
. * 

identifying opposite sides. It is diffeomo 
3 ,x ,- e - 

i * 2-2 *,+ ,' ' 

3 
following subset of R : 

{((a+b, cos g)cos 0, (a+b cos $,)sin 0,b sin $ 1  10 5 Q, J1 1 2n1.- 
,$ r :; 

Notkce that v/L is a act manifold since the compact 
' W " ,  " 

3 .  

n 
set a. e . I  0 a in V maps ont - , Z  I *  > 

e action of the cyclic group of order 

n 
sphere S c R . It is defined 

by y(xl ,..., x ) = (-xl ,..., -x 1 .  It is easily seen to be 
n,+ d . n 

free, properly discontinuous, and cOD. The quotient 
,! " , 

 manifold is called RP"-', real projective (n-1) space. 



n 
I t  i s  identified w i t h  the space of l ines  i n  R through 

n- 1 
the origin. Each l ine  meets S i n  a pa i r  of antipodal 

n-1 
points, and hence each l i ne  determines a point i n  RP 

n-1 n-1 and vice versa. Since S is compact,so i s  RP . There 

n-1 
i s  another way t o  think of RP . That i s  as  a compacti- 

n-1 n- 1 f ication of R . We define a mapping R + Rpn-l as  

follows. Let n(x) = . Then send 

(xl,. . . , x 1 * [n (XI (xl, . . . , x n-1' 1) 1. This i s  the obvious 
n-1 
n-1 

map from R, t o  the hemisphere 

U 

.I 

n 

T- * = 1  L 'i 
i=l 

Yn > 0 

n-1 followed by the projection t o  RP . This map i s  a 

n-1 n-1 cm-diffeomorphism Prom R onto an open s e t  i n  RP . 
The complement of the image is [ [x l ,  ... , X  n-1' 011, and hence 

n-2 the complement is an RP c RP~-'. This copy of RP n-2 

n- 1 is- said t o  be the " l ines  a t  mu' i n  the compactification of R . 
There i s  a complex version of this, Dpn-', complex 

project ive space. I t  i s  the space of complex l ines  

through the origin i n  a?. There is  a map C" - [o )  2 DP n-1 

n which associates t o  a non-zero point i n  D the unique complex 

l i n e  through it and the origin. D p n - l  has the quotient 

n- 1 topology under t h i s  map. Thus points i n  D P  a re  described 



by "homogeneous coordinates" [zl,. . . , zn] , not all zero, where 
- [zl ,..., zn] - [hzl ,..., hzn] for any h E u! - (0). T o  show 

n-1 00 
that u!P is a C -manifold,we describe an atlas for it. 

n-1 
Let Ui c CP be all points represented by homogeneous 

t 

coordinates [zl, ..., zn] with zi # 0. Define 

Define 

z 
1 

Z z z 
i-1 i+l 
3- 

n 
$ -  1 ([zl,...,z n I) I (-,..., , - . . , -I .  z.. zc. z z 

1 l. i i 

One ch6cks easily that qi and Si ife well-defined, and that they arb 
n a-1 

inverses. Thus, cpi is a homeomorphism. Clearly U Ui = u!P . 
i=l 

Lastly, we claim that the overlap functions are cW. Let 

-1 n-1 i < j and consider ip (Ui n U.) c E  . It is all 
i 3 

) such that C # 0. -1 
(C1P + I  j-1 Similarly cp (ui n U. ) 

j 3 

is all (C1,.. . , 
Cn-1 

) with ci # 0. The map 

sends 



I 

I This is a d is 

I 2 2 "  - ab 

hs these charts define. a* C -atlas nsequently, a C - 
I tca5d*:-gf - 3 .  a ' -  , -I n-1 n-1 
I - manifold structure on EP . A; befo;e, CP is a 

2 .  t >  La:- *;: tz;*- I n-i ' , 
compactification of IC obtainAd by adding the "complix 

$ L , \ b "  i .fi- 1 
lines at wfi e complement of c gpn-l 

. , "" ni2 
(which ' is EP ) . 

r , 551,5? ,  . ; f x  s -* -' 2 L > 

Let *M be a cr- d of dimension n, 

hi; i m s  < - - > d  *r . " " * t , * i  c ' 3 $ 4 "  . 
( u ~ , ~ ~ , V ~ J  be a C -atlas for'it. Suppose that we have 
* & \ , - %  

C -functions fa: 
- --, # - 8  4 2*#7 < ++"i-li$+ ., .?-7 

& ,  

1) (fa (0) 1 n u,, and 
-, . .'i < 

2 )  bfi  ( p j A i ~  of rank k fo= all p E fil (0). 
I (  t*l~':'!:i3f2*- -: 

Then, U (f (0) ) c M is a manifold of dimehsion (n-k) . 
a a 

" i 

As an example this,let us extend the manifold M 
- f 

] in E2 to a manifold fi c 

ompactification of M. The 

add a third complex variable t to (C,z) and .use [~,z, t] 
"a s 

2 as homogeneous coordinates in Ep2 with C being [c, z, l] . 
Next make the equation homogeneous, i.e., replace j-t by 

3 Such a homogeneous equation has solution set in C consisting 



2 3 3 
of a union of complex l ines.  For i f  a c = b - c , then 

2 
(La) ( X C )  = ( ~ b ) ~  - for all Ee Let M c (CP 

2 

be the s e to fpo in t s  corresponding t o  the l ines  i n  the 

solution set ,  i .e . ,  [a,b,c] c i i f  and only i f  

2 3 3 2 a c = b - c . I f  we consider G tl U! , then we have 

2 3 2 [ [ c , z , l ] I ~  = z - 1). Thus E n D = M .  points a t  a, i.e., 

points i n  M - M, have homogenous coordinates [C,z,O]. For 

such a point t o  be i n  fi, it i s  necessary fo r  z t o  be 0. 

Thus, there is only one point a t  a, [1,0,0] = [C, O,O] . 
Let us consider the coordinates (X,Y) = ( z / ~ ,  t / ~ )  i n  the 

open set U = [ [ ~ , z , t ] l ~ - #  0) .  Clearly, tl U is given by 

3 3 the equation Y = X - Y . Since the  p a r t i a l  derivatives 

of this equation are (3x2,-3y2 - 1)) they do not both vanish 

a t  any point of tl U. Thus, % is a coo-manifold. Being 

2 a closed subset of U!P , it i s  compact. 

2 
It i s  t rue  fo r  any manifold M c PC given by one 

polynomial equation p(C,z) = 0 t ha t  we can form the 

2 compactification i of M i n  EP . It w i l l  always be the 

case tha t  - M i s  a f i n i t e  s e t  of points. Often however, 

fi w i l l  not be a different iable manifold, i. e. , it w i l l  have 

a singularity a t  one of  i t s  points a t  co. 

A Lie Group is a cco-manifold G with a group 

mul t ip l~ca t ion  so tha t  the map G x G + G defined by 



~xaxnnles: 1) ~ u t o  (ln) , the space of linear automorphisms 
n 

of n , is the open subset of &(R", R") given by the condition 
n 00 

{determinant # 0). Consequently, Auto(R ) is a C -manifold. 

The group law is given by composition of automorphisms. In 

ices,Lt is matrix multiplication. Thus 

to 

(g,h) + is a C -mapping. &is Lie group is also called 

the general linear group and is denoted GL(n,R). 

n 
2)- R is a Lie group with the group law being translation. 

3) The set of upper triangular real matrices with 
L 

1's down the diagonal: 

is a Lie group under composition. It is a nilpotent Lie group. 

4) 0 (n) c GL (n, R) , the orthogonal group, is a Lie 

group. It is the space of matrices (a ) whose columns, 
i j 

n thought of as vectors in R , all have length 1 and which 

are mutually perpendicular. The group law is again matrix 



multiplication. A more abstract definition of O(n) is the 

n 
subgroup of Auto(R ) consisting of those automorphisms which 

n 
preserve lengths of vectors in R and angles between vectors. 

5) SO (n) is the subgroup of 0 (n) consisting of those 

matrices in O(n) of determinant 1. Alternatively, it consists 

of those elements of O(n) which preserve the orientation of 

R". Similarly, SL (n,lR) is the subgroup of GL (n,l) consisting 

of those matrices of determinant 1. 

Definition: If G  is a Lie group and r c G  is a subgroup, 

then I' is a discrete subgroup if and only if there is an 

open set U c G so that yU n y.'U = fi for all y and y' 

distinct edements of r. 

Theorem 5.4: I f  r c G is a subqroup, then I' acts on G  

via yeg = yg. If I' c G  is a discrete subqroup, then this - - 
action is free and properly discontinuous. Hence ~ / r  

a differentiable manifold. 

Proof: This is immediate from the definf tions. 

Examples: 1) Let P c R be a regular n-gon centered 
n 

at the origin: 



Consider the group' of r ig id  motions of t h i s  figure, S (Pn) . 
I t  i s  a group of order 2n and a discrete  subgroup of O ( 2 ) .  

The quotient 0 ( 2 ) / ~  (P ) turns out t o  be diffeomorphic t o  n 

the circle .  

3 
2 )  Let D c R be a regular dodecahedron i n  R~ centered 

a t  the origln (12 pentagonal faces.) consider the group 

of rotations (i. e. elements i n  SO (3) ) wh~ch when applied t o  

D bring it back t o  i t s e l f ,  m . This i s  a group of order 

60. (In fact ,  it is  A . )  The quotient s0(3)/rD i s  a 5 

cm-manifold of dimension 3 f i r s t  discovered by ~ o i n c a r g  

It i s  a counter-example t o  one of h i s  ear ly conjectures 

about manifolds. 

There are many more examples of t h i s  type. In  fac t ,  

there i s  active research today centered on such manifolds. 

n- 1 
Exercises: 1) Show tha t  CP i s  compact. 

1 
2 )  Show tha t  CP is diffeomorphic t o  S '. 

1 1 
3)  Show tha t  RP i s  diffeomorphic t o  S . 
4)  Show tha t  SO (n) i s  a connected Lie group. 

5 )  Show tha t  TD i n  example. 2 above has order 60. 

6 )  I f  G i s  a L i e  group and r c G i s  a discrete  

subgroup, then r i s  said t o  be uniform i f  and only i f  there 

is a compact s e t  K c G so tha t  U yK = G. Show tha t  r i s  
 YE^ 

uniform i f  and only i f  ~ / r  i s  compact. 



7)  Show- t h a t  lgpn can be described a s  follows. 

Its undeklying set is - ~ ~ L R P ~ - ' .  The open sub*& f o r  

the  topology a r e  a l l  U U V  c R n 4  IKP n-l such t h  

" " 

a )  u c x n  is open. 

b'l ' If p 4 V, then there. is an open set Wo of ~ p * - l  & i t h  

p s  W O c V ;  and R > -0, s o  %hat i f  W = l x e  Pix i s  'contained 

i n  a l i n e  i n  w0 1. then W n (ILn - B (0) ) is  contained i n  U. R 



86. Further Notes and Generalizations. 

Note that a cr-manifold deflnes a cs-manifold for all 

1 s < r, but that different cr-manifolds can define the 
S 

same C -manifold. 

One can deflne many other types of manifolds simply 

by restricting the overlap functions which one allows. 

Thus, consider 8 a subset of ho~lecnnorphisms between all 

n 
pairs of open sets in R . 8 must satisfy the following 
axioms : 

1) If f: U -, V is in 8 and W c  V is an open set, 

2 )  If U = ma, and f: U + V is a homeomorphism with 

flua: Ua + f(Ua) in Q, then f is in Q. 

4) Compositions of elements in 8 are in 8. 

5) Inverses of elements in 8 are in 8. 

Note: If U c Rn is open and f: U + f(U) c Rn is a homeo- 

morphism, then f (U) is automatically open in Rn. We have 

proved this for c'-diffeomorphisms. The proof for arbitrary 

homomorphisms is much more involved. Later in the course we 

shall give a proof using homology. 

Given such a collection B, we define @-atlases and 



B-manifolds as before. If we take O to be all homeomorphisms, 

the result is topological manifolds. If we take 8 to be 

r 
C -diffeomorphisms, then the result is cr-manifolds. 

If we take 8 to be real analytic diffeomorphisms, then 

the result is real analytic manrfolds. If n = 2k and we give 

R" the structure of ak and take 8 to be the complex 

analytic diffeomorphisms, then the resulting manifolds are 

complex analytic manifolds. gpn-' is a complex analytic 

manifold. 

w n-k 
As a different type of example consider R as R~ x R 

with coordinates (x,y) and take diffeomorphisms of the form 

cp (x9y) = (cpl (x,Y) ,cp2 (y) 1. These are precisely those 

diffeomorphisms which preserve the family of k-dimensional 

subspaces given by {y = constant): 

The resulting manifolds are cm-manifolds with a codimension 

(n-k) foliation. Thus, M" is written as a union of manifolds 

of dimension k, called the leaves of the foliation, which 

locally look like the family of R~ x {constant} c R ~ .  . 

2 Example: Let L c R be the lattice generated by (1,O) and 



The vertical foliation is preserved by the translations in 

L. Thus, the torus is foliated. Each leaf is a copy of R 
1 

and is everywhere dense (since n is irrational). 

Sometimes it is hard to tell whether or not two mani- 

folds of the same dimension are diffeomorphic. For example 

2 1 2 2 2 2 2 2 
S , CP , and the ellipse Ex /a + y /b + z / c  = 1) are 

2 2 2 
all diffeomorphic. But RP , S and R /L are all different. 

Of course, to show that two manifolds are diffeomorphic one 

constructs an explicit diffeomarphism between them. The 

usual way to show that two manifolds are not diffeomorphic 

is to find some numerical (or algebraic) invariant which is 

associated to each manifold which takes a different value 

on the two manifolds in question. (The word invariant 

here means that the thing associated to diffeomorphic manifolds 

is the same.) Much of this course will be concerned with 

defining suitable invariants. As a first example of such 

an invariant (at least for connected manifolds), w e  have 

the dimension. 



We sha l l  a lso need the concept of a manifold w i t h  

boundary. L e t  8 c Rn be the half  space 

n 
{(xl,  ..., x Ixn 2 0) .  I f  U C H  is  an open subspace of n 
n a define aU t o  be U n {(xl, ..., xn)lxn = 0) = U n axn. 

Lema6.L: Lf U s d ,  V a r e o w n  se t s  i n  Hn and i f .*f :  U -t V 

1 
is a. C .-dbffeomorphism, then f ( BU) = aV. - 

1 
( A - C  -diffeomorphism between open sets i n  H" i s  a map 

which i s  the res t r i c t ion  of a cl-dif f eomorphism between open 

se t s  of R>O t he i r  intersections with c.) 
proof: suppose tha t  there i s  a point p E BU SO t ha t  

f ( p )  d av. ' B y  res t r ic t ing  to smaller open se t s  we can 
- L 

assume aV = jd and ;U # jd. I f  aV = $, ' then V is open 

i n  Rn and hence U must be open i n  Rn (by the Inverse 

~ u n c t i  eorem a . But implies that 

1s contradiction proves t h a t  f ( aU)  c BV. 

-1 ~ikewise ,  f (av) c aU. This means f (au) = av. 

Definition: A cr-manifold w ~ t h  boundary is a Hausdorff, 

metrizable space with an a t l a s  {U ,q ,V ) a a a ~ E I  
where each 

va is an open subset of fl and where the overlap functions 

r <Jcp are C -diffeomorphisms. I f  M i s  a cr-manifold w i t h  a B 

boundary, then aM, the boundary of M, i s  U BUa. Using. 
a 



r 
Lemma 6 .1  one sees t h a t  a ~ '  is a C -manifold (without boundary) 

of dimension (n-1). 

A 6-manifold w i t h  boundary whose boundary i s  empty 

r 
i s  natural ly  ident i f ied  with an ordinary C -manifold. I f  

r 
M is a C -manifold with boundary, then i n t  M = M - aM i s  

r a C -manifold without boundary. 

Algebraic v a r i e t i e s  a re  defined s i n i l a r l y ,  i n  s p i r i t ,  t o  

t h e  w a y  manifolds a re  defined. Let V C  lgn he defined by polynomials 

(P, = O , . . . ,  pk = 0). It is  sa id  t o  be an a f f i n e  algebraic 

variety.  A ra t lona l  f u n c t ~ o n  on V i s  the r e s t r i c t i o n  

a quotient  of polynomials: 

S t r i c t l y  speaking such a r a t iona l  function gives a continuous, 

real-valued function only on 

A r a t iona l  map between a f f i n e  v a r i e t i e s  V -r W, V c Rn, 

w c R ~ ,  i s  a functron from V n (xlbl # 0, b2 # 0, ... ,bm # 0) 

t o  w of the form v - (al (v)/bl (y), . . . ,a (v)/b,(.jl) with m 

the  (ai} and [bi) polynomials. A r e a l  a lgebraic  var ie ty  i s  

a Hausdorff space X w i t h  an open cover {x,) and 

homeomorphisms qa: Y += X with Y an a f f i n e  var ie ty ,  so a a' a 



tha t  a l l  overlap functions are rat ional  maps. 

This defines a rea l  algebraic variety. An algebraic 

variety over any f ie ld ,  k, e.g. E, 2/p, Q [ i ]  , i s  defined 

analogously. 

Exercises: 1) L e t  p (x,y) be a complex polynomial i n  

two (complex) variables. Suppose t h a t  for  each (xO,yO) 

such tha t  p(xo,yo) = 0, e i the r  ap/ax(xo,yo) o r  ap/ay(xO,yO) 

-1 2 
i s  non-zero show tha t  p (0)  c P: i s  a complex analyt ic  ' 

manifold. 

n 
2 )  Let (CP be complex projective n space. Suppose 

given a homogeneous polynomial p(zo,. . . ,zn).  Let X c EPn 

be the s o l u t ~ o n  se t ,  i. e. X = [ [zb, . . . , z 1 I p (zo,. . . , Zn) = 01. n 

Show tha t  i f  fo r  every x E X there i s  i such t h a t  

ap/azi(x) # 0, then X c C P ~  i s  a compact complex analytic 

manifold of rea l  dimension (2n-2) , i. e. of complex dimension 

(n-1) . 
3)  I f  M is an n-dimensional manifold show tha t  

i n t  M = M - aM is a n-dimensional manifold and tha t  aM i s  

an (n-1) -dimensional manif old. 



§7. Maps between Manifolds. 

I f  xn and ? a re  cr-manifolds, then a function 

r r f :  X + Y i s  C i f  fo r  every p a i r  of char t s  i n  t&e C -a t lases  

f o r  X and Y, cpa: Va -+ Ua c X a n d  JI V + W  c Y , t h e  B: B B 
-1 r r composition ( .f i s  C . Of course, i f  f l u  i s  C i n  one 
B 

r 
p a i r  of char ts ,  then it w i l l  be C i n  any p a i r  of char t s  

r 
since the change of coordinate functions a r e  themselves C . 
Things l i k e  the matrix en t r i e s  f o r  Df w i l l  vary a s  we 

P 

change the c o ~ r d i n a t e s ~ a n d  thus they have no i n t r i n s i c  

meaning. There is,  however, a quanti ty associated with matrix 

representatives fo r  Df which is invar iant  a s  we change 
P 

coordinates. This i s  the  rank of Df thought of as  a l i n e a r  
P 

n n map, from R t o  R ~ .  For as we  change coordinates i n  X 

and 'fO, the  resu l t ing  change i n  the matrix representing Df 
P 

i s  given as follows. Suppose t h a t  i n  one p a i r  of loca l  

coordinate systems for  X near p and Y near f (p ) ,  Dfp 

i s  given by (a ) L e t  us change coordinates i n  X and Y 
i j  

with ( A i j )  being the  d i f f e r e n t i a l  of the  change of 

ccordinates of f ( p )  E Y and (p i j )  being t h e  d i f f e r e n t i a l  of 

t h e  change of coordinates a t  p E X. Then, i n  the  new 

systems D f  i s  represented by ( A .  . ) (a. . ) (p . . ) . Since 
P 1 3  1 3  1 3  

( A i j )  is an inve r t ib le  (mxm)-matrix and (p ) i s  an 
i j 

inve r t ib le  (nxn) -matrix, t h i s  a l t e r a t i o n  does not  a f f e c t  



the rank (which is the dimension of the image). 

r 
Thus, if f: X += Y is a C -map, then associated to 

every p E X is an integer, rk(~f~). This is not necessarily 

a continuous function, but it is lower semi-continuous. 

r n 
A C -map f: X + yrn is said to be an immersion if rk(Df )=  n 

P 

for all p E X. It is said to be a submersion if rk(Df ) =  m 
P 

for all p E X. 

1 2 
Examples: The following are immersions of R into R : 

27t x n (COS (- 1 , sin ( 2fl'-) 1 
l+ex l+ex 

2 
3 )  The mapping R1 + R /L defined by x *  [(x,O)] is 

2 
an immersion of R1 into the torus R /L. If 

1 
L n (R x (0)) # ply then the image is a circle. If 

1 1 
L n (R x (0)) = ply then the image is a copy of R dense 

2 
in R h. In fact, in this case the image of R1 is one of the 

leaves of the foliatim of Section 6. 

1 
4 )  The map R2 + R given by (x,y) w x + y is a submersion. 

5) The map R2/z2 + R/Z given by [ (x,y) ] t+ [x] is a 

submersion. 



6)  The map Rn R"/L, x E= [x], i s  both a submersion 

and an immersion. 

I f  M" i s  a cr-manifold, then a subspace X c M i s .  a 

r k-dimensional C -submanifold i f  for  -every p E M, there is a 

6-coordinate system (xl,. . . ,x ) valid, on an open s e t  u n 

containing p so tha t  X fl U = U f l  ( x ~ + ~  = 0, ..., x = 01. I f  n 

f: X I+ M i s  a one-to-one immersion whose image f (X) c M 

r r i s  a C -submanifold, then f i s  a C -embedding (or an embedding 

fo r  short) .  Note tha t  our or iginal  defini t ion of a cr- 

manifold yields a cr-submanifold of Rn. The following theorem 

makes c lear  the relat ion of immersions t o  embeddings. 

Theorem 7.1: at f: X -+ Y - be a cL-immersion. For f t o  be 

an embeddins it is necessary and suff ic ient  t h a t  f be 

one-to-one and closed. 

(A cmtinuous map f:  A + B is called closed i f  whenever 

X c A i s  a closed s e t  f(X) c B i s  closed.) Before beginning 

r 
the  proof proper we need a lemma &out any C -immersion. 

r Lemma 7.2: a t  f: X" -+ ? be a C -immersion and l e t  p c  X. 

There a re  open se t s  V c X contain~nq p - and U c Y containinq 

f ( ) and cr-coordinates (xl,. . . , X  ) valid i n  V and (yl,.. .,Y,) 
P J -  n 

val id i n  U, so tha t  f :  V -+ U sends (xl, . . . , xn) t o  



Proof: Choose V c X containing p with coordinates 

(xl,.. . ,X ) and U c Y containing f (p) with coordinates 
n 

(yl,.. . ,ym) We can assume that in these coordinates 

(?(P$ 
(i, j = 1, . . ,n) 

is non-singular. There is a map F defined on an open 3 

subset of (p x 0) E V x R m-n with values in U,given by 

F(x,z~ ,.... z ) = f(x) + (O,...,O,Z~ ,..., z 1. We see m-n m-n 

that F is cr and that 

n 

m-n 

n m-n 

Hence, DF (p x 0) is non-singular. Invoking the Inverse 

Function Theorem, we see that Fy restricted to a small open 

m-n r set about (p x 0) in V x R , is a C -diffeomorphism. We 

use the coordinates (xl,. . . ,x,, zl, . . . , z ) , pushed foward via 
m-n 

r 
F *o an open set about f (p). In these C -coordinates 

f (xl,. . . ,x ) = (xl,. . . 'X , 0,. . . ,0) . n n 

Of course, in a general immersion U n f(X) can be 

bigger than f (v) . For example: 



1) There can be another branch cutting through 

f (V)  a t  f f xl: 

( in  which case, f i s  not 1-1). 

2 )  There can be another branch coming down t o  f (x) 

but not touching it: 

3 )  There can be a sequence of branches p i l ing  up onto 

(In case 2 and 3,  f w i l l  not be closed.) 

Proof of 7.1: Let us return t o  the proof of the theorem. 

B y  defini t ion i f  f i s  an embedding, then it i s  one-to-one. 

Let us show t h a t  it must also be closed. I f  f :  x + ym 

i s  an embedding and p E X, then there are open se t s  V c X, 



containing p and U i n  Y containing f ( p )  with cr 

coordinates (x . . . ,x  ) and (yl,. . . , 1' 
y ) so tha t  f: V -t U n m - 

is given by f ( x  
19*** xn) = (xl,. . . ,xn, 0, .  . . , 0) . Thus, 

r 
f (V) i s  a closed subset of U and a C -manifold of 

dimension n. Since f i s  an embedding, there i s  another 

r 
open s e t  U' and C -coordinates ( y , . . . ,  so t ha t  m 

U'  n f (x )  = ( Y ; I + ~  = O,. .  ., y; = 03. We can assume t h a t  U '  
f 

i s  an open b a l l  i n  (yi, . . . , y;) -space and t h a t  U' c U. 

-1 
Restricting t o  U fl U '  and replacing V w i t h  f (U fl U' ) 

allows us t o  assume tha t  U = U' . Clearly, f (V) c f(X) fl U. 

Also, f (X) n U i s  a closed subset of U and a connected 

cr-manifold of dimension n. (It i s  connected since U '  

i s  an open b a l l  i n  ( y  , . . . , y ) space and m 

f (XI = U' n ~ Y ; I + ~  = 0,. . ,ym I = 01.) The map f: V -, f(X) fl U 

i s  a local  cr-dif feomor~ism and hence f (V) c f (X) fl U i s  

an open subset. We have already seen tha t  it i s  a closed 

subset. Since f(X) fl U i s  connected, it follows t h a t  

f(V) = f(X) n U. Thus, i f  f: X + Y i s  an embedding and 

q E Y, then there is an open s e t  U c Y containing q w i t h  

r 
C coordinates (yl, . . . , ym) SO that :  

-1 r 
1) f (U) = V c X has C- -coordinates (xl, . . . ,x ) , and n 

2 )  f : V + U i s g i v e n b y f ( x  ..., x )  = (xl ,..., x 0 , . . . ,0 ) .  1' n nJ 

I f  C c X is closed, then we sha l l  show tha t  Y - f(C) 

i s  open. For this l e t  y E Y - f ( ~ ) .  Choose U open about 



y as above. Since C fl f-'(U) is closed and 

fl f-'(u) + u n { Y ~ + ~  = 0,. . . ,ym = 0) is a homeomoprhism 

f(C) U is a closed subset of U n [Y,+~ - - ...- - ym = 0) 

and hence a closed subset of U. Hence; U - (f (C) n U) 

is an open set in U, and consequently, an open set in Y 

which contains q and misses f (C) . This proves that 

f (C) is closed. 

Conversely, suppose that f: X + Y is a closed, one-to- 

one immersion. Let q E Y. If q / f (XI, then, since 
f(X) c Y is a closed subset, there is an open set U 

containing q and missing f (X) . Restricting U to be 

r 
smaller, we can assume that on U we have C -coordinates 

(yl,...,ym) SO that [yn+, = 0 ,..., ym = 0] fl U = 8. This 

produces the required coordinate system about q. Now suppose 

q = f(p) 
r . Since f is an immer~ion~there are C -coordinates. 

on open sets V c X containing p and U c Y containing q, 

so that f: V + U is given by f (xl, . . . , x ) = (xl, . . . , x 0 , . . . ,0) . 
n n' 

Since f is closed, f(X - V) c Y is a closed subset. Replace 

U by U1 = U n (Y - f (X-V) ) . Because f is one-to-one ,- 
-1 

f (V) c U' , and, in fact, f (U' ) = V. This gives the 

coordinates required near f(p) on the open sets U' and V. 

 corolla^ 7.3: a t  f: X" + yn be a one-to-one immersion. 

It is an embeddins if: 



1) X is compact, or 

-I 
2) f is proper (i. e. f (K) is compact whenever K 

is compact). 

Proof: If X is compact and C c X is closed,. then C 

is compact. As a result, f(C) c Y is compact. since Y 

is Hausdorff, f(C) is closed. This proves that f is closed 

when X is compact. 

Likewise, under the hypothesis that f is proper, it 

follows that f is closed. For suppose that f is proper 

CO 

and that C c X is closed. Suppose that [yi)i=l E f (C) is 

a sequence that converges to y ,d f(C). The set 
CO CO 

( tJ y. U y) c Y is compact. Consider f-l( U yi U y) fl C. 
1 

i=b i=l 
If f is proper, this must be compact. But there are points 

x E f-'(yi) n C. If the sequence [xi) had a converge 
i 

subsequence {x ) + x E C, then f (x) = y. Since y # f (C) 
nk 

this means that [ x . )  has no convergence subsequence, and 
1 

CO 

hence that f-l( U y1 U y) fl C is not compact. The 
J. 

i=l 
contradiction establishes the fact that if f is proper, 

then it is closed. 

Exercises: 1) Give an example of an immersion f: X -+ Y 

which is not an embedding but whose image is a submanifold. 

2) We showed that a proper mapping between metric 

spaces was closed. Show that a finite-to-one, closed map 

between metric spaces is proper. 



3) Let y and z be complex variables and p(z) 

a polynomial without repeated roots. Show that 

2 
{ y  = p(z) ) defines a complex analytic manifold, V, and 

that R: V -, IC, n(y,z) = z is an immersion V + IC at all (y,z) 

except those for which p Cz) = 0. 

4) Let A be a (2 x 2)-matrix of determinant 1, 

i.e., AESL(2,BL). Show that A determines a diffeomor- 

2 2 phism of T* = 1. /Z onto itself. 

5 )  More generally, show that any A ESLCn,Ig) 

determines a diffeomorphism of T" = BLn/zn onto itself. 



'SUPPLEMENT TO CHAPTER I 

Let U c be an open set, and let f : U + be a complex 

valued function on U. It is said to be holomorphic if 

f ( z  + h) - f W )  = f,(z) lim ( -  
h+O h 

exists for all z E U. (Here, h is a complex variable.) It turns 

out that if f : U + (C1 is holomorphic, then f is C-, and, in 

fact, complex analytic. This means that if z E U and BE(z) C U, 
00 

then there is a power series, Z ah( 5 - z ) ~ ,  which is absolutely 
n=O 

convergent in BE(z) and which represents f there, i.e. with 

At the end of Chapter I11 we shall give-a proof of this (in the 
w 

1 case when f is C ) using Stoke6 ': Theorem. If we identify 

with 3R2 (z = x + iy), then f : U + $ becomes (R , I) : U + IR 2 

(f (z) = R(z) + i I(z) . The existence of f' (z) is equivalent to 

1) R -and I being differentiable at z, and 

The two equations in 2) are called the Cauchy-Riemann equations. 

If they are satisfied, then D (R, I) : IR2 + 3R2 is the (2 x 2) -matrix 

representing complex multiplication by f' (2). - 
If U c (Cn is an open set, then the following are equivalent : 

1) f : U + is holomorphic in each variable separately; i. e., 

f (zl, ..., zi+h, z~+~,..., 2 n )-f(zl ,..., z n ) 
lim ( 

af I =  Ei(zl,.*., 2 1 
h n h+O 

exists for all (zl,. . . , 2,) in U and all i, 1 - < i < n. 



2) DfZ : an + a exists for each z E U and is a complex linear 

mapping. 

3) Near each (zl, ..., zn) f is represented by an absolutely 

convergenk poweclseries , 

We shall not prove this theorem but it can be found in any book on 

several complex variables . 
F k  A function U + is said to be holomorphic (or complex 

analytic) if each of its coordinate functions are. 

Theorem (Complex Analytic Inverse Function Theorem). 

Let U c lCn be an open set and F : U + (c" be holomorphic . - -- -- - 
If DFZ : an + an - is non-singular, - then there --- are open sets U' c U 

containing z - and W c an, so that F : Uv + W -- has a holomorphic 

inverse, 

Proof: By the cm-~nverse Function Theorem, there are open sets 

U' c U and W c an so that F : Uv + W is a cm-diffeomorphism . 
It remains to show that F-' : W + U' is complex analytic. For 

this we need only to show that for each w E W DF;' is a complex 
. P \ 

linear map an + an. Since DF;~ = DF 

F - ~  (w) 

is complex linear, 5t follows that DF;~ is complex linear. 

Corollary (Real Analytic Inverse Function Theorem). 

Let U c IR" be open and F : U + IEln be a real analytic - - - --- 
function with DF invertible . Then, there are open sets - P - - 
U' c U, p E Uv, arid W c nn so that F : U' + W has a real - -- --- 
analytic inverse . 



Proof: By restricting to a sufficiently small open set about p 

we can assume that F is given by an absolutely convergent power 

series. 

where the a . are elements of mn .. The exact same power series il *.. ln 

define. a function, i ,  on a neighborhood of p in an with values 

in an which is clearly complex analytic. Since DF : lRn+ lRn 
P 

is invertible, so is D? : an + cn . Applying to complex analytic 
P 

Inverse Function Theorem, we find a complex analytic inverse 
- 5-1 

F for F near p. Restricting to the real points gives 

the required real analytic inverse to F near p. 

Arguing as in Section 3, we can deduce from these results $2 

complex analytic and real analytic versions of the Implicit Function 

Theorem. 

A complex analytic hypersurface in (en is the solution set 

to an equation of the form 

8~ where p is a (complex) polynomial. If p (z) = 0 but E~ (2) f 0, 

then there is a neighborhood of z in an, U, so that X I7 U is 

a complex manifold of (complex) dimension (n-1) . If p(z) = 0 

8P and - (z) = 0 for all i, then z is said to be a singular point 82, 
I 

of X. It is an isolated singular point, if there is a neighborhood 

of z in X which contains no other singular point. One way to 

study an isolated singularity of a complex hypersurface is to study 

its link. - 



Theorem - Let {p(zl, ..., 2,) = 0) - -  be a complex hypersurface 

with an isola'ted singularity at the origin. For all E > 0 which -- -- -- 
are sufficiently small, the &-link of the singularity, i.e., - - -- 

2n-1 
is a smooth submabifold of SE . - -  - 

Proof : The proof uses some basic facts from algebraic geometry 

which we shall not prove. 

Fact 1 : Let X c lFtk be an algebraic set, i. e. , the solutions 
set of a finite number of polynomial equations. Then, there is apro- 

per algebraic subset C (X) and r < k so that X - C (X) is 
I 

- 
locally defined by r polynomials, p ,  , p wikh D(pl, ..., Pr ) 
of rank r. We call C(X) the singularity of X. 

Fact 2 : If Xo 3 X1 3 X2 2 is a decreasing sequence of 

algebraic sets, then it must stabilize at some point, i.e., 

- X N =  " 0  

Fact 3 : If X is a smooth algebraic set, i.e., if X is an 

algebraic set with CX = 4,  then X has finitely many components. 

Sublemma : If X -- is an algebraic set and W c X  is an algebraic -- -- 
subset containing C(X), then X - W has finitely many components. - - 

Proof : We claim that if X c IRn is an algebraic set then X - W 
is diffeomorphic to a smooth algebraic set in IRn+l . To see this 
suppose that the ideal of polynomials which vanish on X is 

generated by'{f ..., f and that the ideal which vanish on W is 
1' T 



generated by {fl, ..., fT,gl, . g . Consider mn x IR 1 

with variables (xl, ..., x t). The defining equations for n ' 
(X - W) C mn x IE?' are : 

Clearly, the projection map onto lFtn induces a diffeomorphism 

from this algebraic set to X - W. One sees easily that the 

above algebraic set is smooth- 

Lemma If - -  is an algebraic set and -- -- is an algebraic -- 
subset, - then X - W - has finitely many components. 

1 Proof : Define C (X) = C (X) and 2"" (X) = 2(xn (x) ) . By Fact 2. 

we know that CN(x) = 4 for some N. Thus, we wrire X - W as 

Each piece in the union is of the form V - Z where Z 3 C(V) . 
Hence, we have written X - W as a finite union of spaces each 

of which has finitely many components. It follows that X - W 
has finitely many components. 

Let us return now to {p (zl, . . . , zn) = O }  c 6" a complex 

hypersurface with an isolated singularity at the origin. Let 

X C 6" be the solution set. Clearly, X c IR2" is a real . 

algebraic set. Consider $ : IRZn + IE? defined by 



$ (  xl, . . . , x ) = ? x2 . We wish to show that J, I (X - 0) has 
Zn i=l j 

only finitely many critical values. Let R and I be the real 

an imaginary parts of p(zl, ..., 2,). The defining equations 

for X c lR2n are {R = 0 and I = 0) . At all points of X 

except 0, VR and VI are linearly independent. Let Z c lR2n 

be defined by : 

{ x , . ,  x ) I R =  0, 1 = 0, and VR, VI, and VJ, are 
2n 

linearly dependent) . 
Clearly, Z is an algebraic set contained in X. It consists of 

0 union the critical points of J, on X - (0) . Since Z - {O) 
has only finitely many components, and J, restricted to any 

component of Z - {O) is constant, J, has only finitely many 

critical values on X - 1.03 . In particular, J, has no critical . 
value in some interval of the form (0, E )  . 

3 2 Examples: 1) Let p(zl,z2) = z  
1 

- z2 . The hypersurface 

{p  = 0) has gn isolated singularity at the origin. The link 

3 is isotopic to a torus knot of type (2,3) in S . 



r s 
2) More generally, if p(zl, z2) = z1 + z2 with r 

is and s relatively prime, then the link {p(zl, z2) = 03 n S, 

a torus knot of type (r, s) . 
+ 2 3  +z 3)  Let p(zl, zZ, z3) = z1 2 Then, the 3 

5 link {p = 01 n S, is diffeomorphic to dodecahedra1 space : 

SO (3)/~symmetries of the dodecahedron). 

2 3 5 2 2 
4) Let p(zl, z2, z3, z4, z5) = z1 + z2 + z3 + z4 + z5 . 

is a differentiable 7 manifold which is The link {p = 03 n S, 
7 homeomorphic to s7 but not dif f eomorphic to S . 



Chapter Tanqential Structure 

The first chapter deal t  with manifolds and maps 

between them. Any serious study o f  these objects requires 

the use of  infinitesimal versions--tangent planes and 

di f ferent ia l s .  I t  is  the purpose of t h i s  chapter t o  introduce 

these and t o  enumerate some of their  basic structure. 



1 :  The Case of Submanifolds of Rn 

We begin our study of tangent planes t o  manifolds 

N with the  simplest case--that of M~ c R . The tangent plane 

n n 
t o  M a t  p E M . T M ~  i s  the  l i n e a r  subspace of RN (through 

P" 

the or ig in)  given i n  any one of the  following three  ways: 

1) Choose an open s e t  U c RN about p E M and a 

d i f f e ren t i ab le  function F: U -+ R 
N-n so t h a t  DF i s  of rank 

P 
-1 (N-n) and M n U = F (0) .  W e  define T M ~  t o  be the kernel  

P 
N N-n 

o f D F : R  + R  . 
P 

N 
2 )  Choose an open set U c R a b o u t p  E M, another 

open set W, and a diffeomorphism cPz W + U so t h a t  p = i ( 0 )  

andM n U =  p ( ( R n x  ( 0 ) )  n w) .  We define TM" t o b e  the  
P 

N image of D I ~  ( R n  x ( 0 ) )  i n  R . 
1 

3)  Take the col lect ion of a l l  C -curves 

y: ( - 6 . 6 ) j R  
N 

so t h a t  

~ ( 0 )  = P and y(-s.c) c M. 

Associate t o  each such curve the  vector y '  (0) E RN. A l l  

N these vectors form a l inea r  subspace of R . 

Theorem 1.1: The three subspaces defined above a l l  aqree. 

N-n Proof of 1) = 22: Let i: W + U be as i n  2 )  and F: U +  R 



be as i n  1). Since F O ) ( X ~  ,..., x ,0 ,..., 0) = 0 f o r  a l l  n 

(xl,. . . , X  ) suf f ic ien t ly  c lose t o  zero we  see t h a t  t h e  n 

subspace D I O ( ~ I 1  x ( 0 ) )  i s  contained i n  the  kernel  of DF 
P . 

n 
Since , i -  i s  a diffeomorphism, dim(DGO ( R  x ( 0 ) )  = n. 

Since DF i s  of maximal rank, the dimension of the  kernel  
P 

of DF i s  a l so  n. This means t h a t  these two l i n e a r  subspaces 
P 

have the same dimension and hence a re  ident ica l .  

Proof 2 )  = 3 ) :  Let y: (-.,I) + 'Mbe  a cl-curve w i t h  

-1 1 
y(0) = p.  Then I *y:  ( - r ,s )  + w i s  a C -curve whose 

n -1 
image i s  contained i n  R x (0) .  Hence, ( 4  * y ) ' ( O )  i s  . 

-1 
contained i n  R" x (0) .  Consequently, D I .  ( I  y ) ' (0) i s  

C n contained i n  D P O ( R  x {O}). But, by the chain r u l e  

-1 
D l  0 ( ) - l e y )  ' (0) = (9.4 .y)  ' (0) = y '  ( 0 ) .  This shows the 

P 

subspace i n  3)  i s  contained i n  the one defined i n  2 ) .  To 

show t h a t  it i s  equal t o  the  one defined i n  2 )  consider 

the  curve y (t) = 9 (tq,. . . ,tan,O,. . . , 0 ) .  Then, 

y ' (0) = Dlp(al,. . . , a  0,. . . , O )  . n' 
n 

A s  defined, TM is an n-dimensional l i n e a r  subspace of 
P 

N 
R , e. g., it passes through the origin.  When we draw 

pic tures  we usually t r ans la t e  t h i s  plane t o  pass through 

the  point  p E M. When we do t h i s  it looks l i k e  the  "tangent 

plane". 



Examples: 

2 2 
Consider the  c i r c l e  [ x  + y2 = 1 )  i n  R . 

The tangent plane a t  (cos 8,  s i n  8) i s  the  l i n e  perpendicular 

t o  (COS 8,  s i n  81,  e g g - ,  

I = [ ( a , b ) l  a cos 0 + b  s i n  8 = 0). The 
TS (cos e ,  s i n  e )  

2 
reason i s  t h a t  i f  f (x,y) = x + y2 - 1, then ~f ( x , ~ )  = ( 2 x , 2 ~ )  

and kernel  ~f (x,y) = [ (a,b) I 2xa + 2yb = 01. ~ i k e w i s e ,  

n-1 n 
i n  the  case of S 

2 
= [ (xl,. . . ,xn) I Xi-l - x i = 1 )  the  tangent 

plane a t  (xl, . . . ,x  ) i s  the  plane perpendicular t o  n 

Consider xy = 1, 

1 
The tangent plane a t  (x,-) i s  the plane perpendicular t o  

X 



n- 1 
Lemma 1.2: If M c R~ is defined by one equation 

f(xl, ..., x ) = 0 and if vf(xly ..., x ) never vanishes alonq n n 
n- 1 M, then TM 

L 
is of (p) . 

P - 
The proof is left as an exercise. 

The vector perpendicular to TM , of (p) , poxnts into 
P 

the side of M on which f is positive. 

n 
More generally, if M c R n+k is the common zeroes of 

I = (I1,. . . , I ) and if DI has rank k everywhere along M, 
k 

I 
then T M ~  = (vI1 (p) , . . . ,09~ (p) ) . ~f M~ c R n+k 

P 
is a submani- 

fold, then the normal space to M at p is space perpen- 

dicular to TM" As we have just seen, if M" is defined by 
P* 

(9 = 0) (I = (il,.- . I )  with Dl of rank k), then the 

normal space to M at p is the linear subspace spanned 

Exercise : 11 Prove Lemma 1.2. 



82. Tanqent Planes i n  General 

It  i s  not sa t i s fac tory  j u s t  t o  have tangent planes 

N defined from submanifolds of R . We need an abs t rac t  

def in i t ion  of the  tangent plane t o  an abs t rac t  manifold. 

The def in i t ion  is somewhat complicated. 

Definition: L e t  M be a d i f f e ren t i ab le  manifold and 

l e t  p E M. Consider a l l  p a i r s  (U, f )  , where U i s  an 

1 CO open s e t  of M containing p, and f:  U += R i s  a C -function. 

We define an equivalence re la t ion:  (U, f )  - (V,g) i f  and only 

V 

i f  there  i s  an open set W, p E W c U fl V, SO t h a t  

f l ~  = g l ~ .  The equivalence c lasses  a re  ca l led  qerms of 

cW-functions a t  p. The c l a s s  of (U,f) i s  ca l led  t h e  germ 

Exercises: 1) Show t h a t  the  r e l a t ion  given above is an 

equivalence re la t ion.  

2 )  Show t h a t  i f  the  germ of f and g a t  0 E R~ 

aLf  1. 

are  the  same, then a1 = q (0) 
axi . . . axi axi . . . ax 

1 r 1 i 

3 )  Show t h a t  there  a r e  two cCO-functions defined near 

1 
0 E R with the same Taylor expansions a t  0 bu t  which 

have d i f f e ren t  germs. 

n 
4 )  Suppose given a germ of a function a t  p E M . 

Show t h a t  given another point  q # p3there i s  a representative 



of the given germ which has any preassigned value a t  q. 

The germs of cm- functlcns a t  p E M define an algebra 

over R. We add two germs by taking representatives 

with a common domain of de f in i t ion  and adding t h e i r  values: 

Likewise, 

r[U,f] = [U,rf] f o r  r E R,  

and 

We denote t h i s  R-algebra by (MI 
P 

Definition: A derivation on (M) i s  a function D: d (M) +- R 
P P 

which 

1) is  R-linear, and 

2 )  s a t i s f i e s  the  Leibnitz ru le ,  i .e . ,  s a t i s f i e s  

~ ( a - p )  = ~ ( a ) + ( p )  + ~ ( P ) - D ( @ ) .  

1 
Example: L e t  y : (-s , t ) + M be a C curve with y (0) = p. 

This curve defines a derivation D by t h e  formula 
Y 

n 
Theorem 2.1: The derivations on $I (M ) form a r e a l  vector 

P 
00 

space of drmension n, T M ~  1 f  f :  M~ + Q ~ ,  i s  a c --, 
P* - 



then f induces Df T# + T Q ~  - I f  f :  M + Q and 
P: P f ( p ) '  - 

w 
g: Q + s a r e c  , then Dgf(p) .Df = ~ ( g . f )  

P P* 

Proof: Let us  begin by defining the r e a l  vector space 

s t ruc ture  on the  set of der ivat ions  on d ( M ) .  I f  Dl and 
. P 

D a re  derivations and r,s E R,  then we def ine 
2 

(rD,  + s D 2 ) ( a )  = r - D l ( a )  + s . D ? ( ~ ) .  This i s  eas i ly  seen 

t o  define a r e a l  vector space s t ructure .  Suppose f :  M + Q 

w 
i s  a C -map. There i s  an induced mapping 

f*: a ( Q ) + d P ( M )  de f inedby  [U,cp] + [ f - l ( ~ ) , ~ . f l .  
f (PI 

One checks that f*  is well defined and a map of R-algebras. 

i s d e f i n e d a s  follows: ~f T M ~  + T Q ~  
pi P 

~ f ~ ( : & )  (a) = h(f*a) 

fo r  a E $f (p )  (Q) and p E T M ~ .  Clearly, Df i s  well-defined 
j? 

and R-linear. Also, one sees t h a t  Dg 
f (PI 

oDf = D(9.f) 
P P* 

A s  a r e su l t ,  i f  f :  M + Q i s  a loca l  diffeomorphism a t  p E M y  

then Df : TM + TQ 
f (p) 

i s  a l i n e a r  isomor@ism. Thus, a s  
P P 

n n 
a vector space, TM is isomorphic t o  TRO. 

P 
n 

L e t  us  consider TRO. There a r e  n na tura l  derivations 

a a - ( 0 ,  . . 0 on $ (R") . We claim t h a t  they form a . 
axl axn 
b a s i s  fo r  a l l  the derivations. F i r s t  l e t  us show t h a t  

the  n derivatlons a re  l l n e a r l y  independent. I f  



n b a ( 0 )  i s  the t r i v i a l  derivation , then 
i i ax 

i 

To show that  the p a r t l a l  derivatives span the space of a l l  

derivations we need a lemma. 

1 
Lemma 2.2: Let cp: U + R be a ~ ~ - f u ~ c t i o n  defined on an 

n 
open b a l l  about 0 in R . If f (0) = 0, then 

n x .h .  where the hi are cm-functions. 'P = i 1 

e 03 
Proof: Define hi (x) = ji 2 ( tx )d t .  Clearly each hi i s  C . 

. W e  claim tha t   BY-^ - x:h. (x) = cp (x) . The reason i s  t ha t  
1 1  

= cp (XI. 

This completes the proof of Lemma 2.2. 





coordinates. Of course, it is just the chain rule in 

df sgufse. 

Definition : Let and N be cW-manifolds and 

f: M + N a ~ - - m a ~ ~ i n ~ .  Let P be a submanifold on N 

We say that f is'ttahsverse (or tran'svBrse\r@gttlar'l to - 
-1 

P provided that for each x E f (PI the subspaces 

Dfx (TM ) and TPf span TNf (XI . (Of course, TPf 
X 

is identified with a subspace of TNf(xl since we have the 

n+k 
Exercises: 1) Let f: Mn c Q be an embedding. Suppose 

n 
that near f(p) there are local cW-coordinates in which M 

is given by 1(~~,...,y,+~) = 0 for 1 a function of rank k. 

n+k equals the kernel of DGf (p) . show that ~f (TM") c T Q ~  
P P 

1 
2) Give a definition of the tangent plane to a C - 

1 manifold. (Hint: Use C -curves. ) 

N 
3 )  If Mn c R . then we have two definitions of T# 

P 
Show that the resulting spaces have a natural identification 

between them. 

4) Show that if f : Idm +Nn is transverse to 

P n -1 
P c + N  , then f (P) is either a submanifold of M 

of dimension (n - m + p) or is empty. 



83. The Tansent Bundle 

The col lect ion of a l l  the tangent planes t o  a  manifold 

[ ' ~ i } ~ e M  
f i t  together t o  make a  space and, i n  fac t ,  a  

cm-manifold. The maniiold i s  ca l led  the tangent bundle 

of M, TM. The underlying s e t  i s  [ ( p , ~ )  lp  E M and T E TM }. 
P 

To define the  topology and d i f f e r e n t i a l  s t ruc tu re  on TM we 

begin with an c*-atlas [ ~ ~ , c p , , V ~ ]  f o r  M. Since V c Rn a 

i s  an open se t ,  wehave a b a s i s  f o r  T ( V  ) namely 
a qJ 

a a 
(q) , . . . ,- (q) ). Using t h i s  bas i s  gives an iden t i f i ca t ion  

axn - 
of T ( V  ) w i t h  R". Doing this fo r  every q E V gives us 

a q a 
n 2n 

a  b i j ec t ion  V x Rn c T V a .  Since Va x R~ c R x Rn = R , a 

t h i s  i s  a  b i  jectlon between an open set i n  RZn and TV, We 
n 

use t h i s  ident i f ica t ion  of TV, with V, x 1 t o  define 
m 

a  topology and C -manifold s t ruc tu re  on TV,. 

The map Dy, : TV, + TU, defined by Dy, (q ,T ) = 

C .  (q) , D (TI ) i s  a  b i jec t ion .  Push forward 
9 

the  topology and Cm-manifold s t ruc tu re  on TV, t o  

TO, v ia  t h l s  bi ject ion.  This means t h a t  w e  define 

X C TU, t o  be open il and only i f  (Dy,) (X) c TV, i s  
1 open, and we define : T O ,  1 t o  be CI i f  and only 

i f  poDya i s  C-. 

W e  l e t  the  {TO,} generate a  topology on TM. Define 

X C T M  t o  be open i f  and only i f  X nTU, i s  an open subset 

of TU, f o r  a l l  a. Clearly, t h i s  defines a  topology on 

TM. W e  claim t h a t  i f  w e  use t h i s  topology on TM t o  



induce one on TU then we get back the topology wich we a' 
began with on TU . To show this comes down to showing 

'3 

that if XCTU, is an open set (in the topology induced 

by Dyq), then X QTU is an open subset of TU (again 
6 B 

in the topology induced by Dtp ) for all 6. First, note 
I 6 

that TUaiq TU = T (UaR U ) . Hence, TU :7 TU is an open 
6 B a 6 

subset of both TU, and TU I3 l Next, the mapping 

n n 
is a homeomorphism between open sets in R x R . Thus, if 

X c TU is open, i.e., if (Dcpa)-tx) c TVa is open, then so a 
-I is (Drp,) (X n T(UB)). Hence 

open. This means that open. This proves 

that TU c TM is a homeomorphism onto an open set. a 

Lastly, we claim that {TU~,DW~,TV,.} is a cm-atlas for TM. 

-1 
The overlap functions for this atlas are D y e  aD.y,. If we let 

,/, = 
?a' then $ is a c~-diffeomorphism between open sets 

n 
in R . By the chain rule ( D  ) = D .  Thus, this B 
composition sends 

p , ,  t n 1 )  0 ($(PI,( f (p)-t.) ) .  "n 
axi I. 

i=l 



03 

Clearly, t h i s  i s  a C -mapping between open subsets of 

Rn X Rn. This defines the c"-manifold s tructure on TM. 

03 
There i s  a C -projection map, n: TM -, M defined by 

00 

T T ( P , T )  = p. This map i s  a C -submersion. The "fiber" over 

-1 x, i. e. , n (x) , i s  the vector space T M ~  x Thus, we have a 

family of vector spaces parameterized by the points of M". 

I t  i s  a local ly t r i v i a l  family i n  the sense t ha t  fo r  each 

x E M, there i s  an open s e t  U c M containing x and a 

cm-d i f fean~r~hism $ which is l inear  on each f ibe r  and which 

makes the following diagram commute: 

u 

Such a diagram is called a local  t r iv ia l iza t ion .  

00 

I f  f: M~ + Nn i s  a C -map, then there i s  induced a 

m 
C -map Df: TM + TN which "covers" f ,  i.e. so t h a t  

commutes. Df is l inear  on each f iber ,  and i n  fact ,  

i s  jus t  Df 
P Df:  TM + T N f ( ~ )  P* 



The tangent bundle i s  an example of a more general 

c l a s s  of objects--locally t r i v i a l  vector bundles (or  vector 

bundles fo r  shor t ) .  Let B be any topological space. A 

vector bundle over B i s  a family of vector spaces 

'Vb)beB which form a topological space E. The map 

1T 
E + B obtained by sending V t o  b i s  ca l led  the  projection b 

map. In addit ion,  there  a r e  an open covering {U 1 of B,,vector 
a 

spaces y,, and horneomcrphisms + :U,XV, + (U,) so t h a t  a 

commutes, and so tha t J Ia  i s  a l l n e a r  isomorphism on each 

f iber .  Such a col lect ion (+ ) i s  ca l led  co l lec t ion  of ' , a  - 

local  t r i v f a l f z a t i o n s  fo r  the  cover {vale  

There i s  another way t o  describe a vector bundle. 

Begin with an open covering {u,} of B, and a f i n i t e  

dimensional vector space V. Take continuous maps 

ga B : U, f' U +GL (V) which s a t i s f y  : 1) g,, (x) = Id 2 )  B 
gag [XI *gya (x) = qy@ (XI  f o r  a l l  x 5 U, l-. U g  ' Uy . 
Given a l l  t h i s  data one forms the  quotient  space 

(A Ua x v)/" where (u E Ua,v) '- (U E U ,g  (u) .v)  
~ E I  B a@ 



fo r  any u E Ua n U 
B '  

The quot ient  space i s  E, the  t o t a l  

space of the  vector bundle. 

Examples: 1) L e t  M~ c R n+k be a cm-submanifold. Define 

N(M"), t he  normal bundle 'of Mn t o  be a l l  p a i r s  

n-L 
( (p, v) 1 p E M" and v E (TMp) . The loca l  t r i v i a l i z a t i o n s  

come from choosing open sets Wa c R ~ + ~ ,  which cover M, 

and COO-fufictions of rank k, iPa: Wa + Rk so  t h a t  

-I 
@a (0)  = M f l  Wa. A t  each p E M 0 Wa we have a bas i s  for  

n 
N ( M  jp,  namely (V(@,)~(~),..,V(~P~)~(P)~. we use this 

n 
bas i s  t o  define a t r i v i a l i z a t i o n  f o r  N(M ) over M n Wa. 

2 )  B x Rn i s  a vector bundle, ca l l ed  the t r i v i a l  vector 

bundle of dimension n over B. 

1 1 
3 )  Let Uo c S be S - [ ( 0 , 1 ) ]  and U1 c s1 be 

1 
S - ( - 0  Define g 0,1: uo .n u, + G L ( R )  = R* by 

go, 1 
( c o s ( @ ) , s i n  8 )  = t -1 It < e < 27~. 

This dcf $nee .a v e c t o r  bundle wef S' whose t o t a l  space is 

the  Mobius Band. 

A map between 2 vector bundles is a commutative diagram: 

"f 
E -> E '  

rJ 

arch t h a t  2s l inear  on each f ibe r .  (The map f i s  sa id  



to cover f .) A Cm-bundle map is a bundle map between Cm- 

bundles which is a Cm-map between the total spaces. If 

g: M + N is a Cm-map, then Dg: TM + TN is a c"-bundle map. 

A C C ~ )  BUhdPe' ~somorphism is a (Cm-) bundle map, covering 

the identity on the base, which has a (Cm-) bundle map inverse. 
m 

rt Is an easy exercise to show that a (C -)bundle map,cover- 
m 

ing the identity on the base, is a (C -)bundle isomorphism 

If and only if it is a linear isomorphism on each fiber. 

A (c"-l vector bundle is trivial if and only if it is 

2somorph2c to a product bundle B x V. 

Let IE E + B  be a bundle, and let A C B  be a subspace. 

The restriction of E to A, denoted E I A  is the family 

of vector spaces u -'(a) . It inherits from E a aa~' 
topology and local trivializations. If IT: E + B is a Cm- 

vector bundle and A is a C--submanifold of B, then E I A  

is a c"-vector bundle. 

Let T: E + B be a (cm-) vector bundle, and let (S b b e B  
-1 be a collection of linear subspaces, SbCs (b). The 

union, s = U b E B  'b, is a subspace of E. We say that it is 

a (Cm-) subbundle if and only if there are local (Cm-) 
-1 

trivializations, U, xV& s (U,) , in which u s  
beU, b 

1 
is given by (U, X V ~ )  for V, a linear subspace of V,. 

This implies that S has (Cm-) local triviaaizations, and, 

in particular, that S is a (c"-) vector bundle in its own 

right. To study subbundles we need the following lemma. 



L-.a 3.1 :a)Let - U be an open subset of %", and let 

cr: U + M (r, s j  be - a  mappin pin^ so that o (u) is of rank k 

for all ucU. For each u e U  there is an open set V , 
u 

with - u E V , and ~~-rna~pin~s V + Gl (s,%) and 
u - $1: u - 

$2: V U  so that 

k r-k 

B) - rf U is' ahy'.t'op'ol'og'ical' space, then a result similar 

ta tBe an@ in\park a )  hbl'd~\~itt the. @ and $2 being 
1- 

Proof: We shall prove part a), and leave part b) as an exer- 

cise. Since ~Cul is of rank 1.. there is a (kxk) -minor 

of du) which is non-singular. We assume for simplicity 

that It Is the mlnor u . . ) 1 j . There is an open 
1 3  

set Vu containing u in which this same minor remains 

non-singular. We call this minor M(s(v) 1. The map 

a: Vu +GL(s,L) given by 

2s a C-map. The product a(v) O ( v )  has the form 

, 



Since each of these matrices is of rank k, further row and 

column operations will leave it in the form 

The row operations are achieved by left multiplying by an 

element B(v)E GL(s, lR), while the column operations are 

achieved by right multiplying by y (v) E GL (r , IR) . There is 

no choice in the way we perform these row and column operations, 

and they clearly vary in a cm- manner with the matrix 

a (v) o (v) . Letting Ill (v) = 6 (v) a (v) and 112 (v) = y (v) 

gives the result. 

Theorem 3.2 : Let n : E + B and IT' : E' + B be (coo-) - - 7 

LY 

vector bundles, -- and let f : E + E ' - -  be a (c--) bundle map - 
LY 

covering - the identity on - B. Define Ker (f) = U (Kernel f 1 IT-' (b) ) 
b EB 

.u 

and - Im(f) = U f (a (b) ) . -- Both of these - are (cW-) subbundles 
b EB 

LY 

if and only if the rank of f (IT-I (b) ) is locally constant. -- ---- - 



Proof : The necess i ty  of t h e  rank being l o c a l l y  constant  is  

c l ea r ,  W e  s h a l l  prove i t s  suff ic iency.  It  s u f f i c e s  t o  

consider t he  case  when t h e  rank of ( I T )  ) is k f o r  

a l l  b E B. Suppose given a vector  bundle over. B which 

has l o c a l  t r i v i a l i z a t i o n s  over an open cover {uaIaEI of 

B. If {vBIBfJ is a refinement of €uaIaEI, i-e., i f  each 

Vg i s  contained i n  some u a ( ~ )  ' then t h e  bundle has l o c a l  

t r iv ia l i za t ions  over {vgIBW. . Applying t h i s ,  one sees t h a t  

given two vector  bundles over B, t h e r e  i s  an open cover 

u f o r  which both bundles have l o c a l  t r i v i a l i z a t i o n s .  

Choose such a cover f o r  n : E + B and IT' : E -+ B, say {u~}. 

I'f w e  restrict  ? t o  n-I (ua} and use t h e  l o c a l  t r i v i a l i z a t i o n s ,  

then we have 

- 
Equipping V and W with bases,  w e  can view f a s  a (cm-) 

mapping o : Ua -t M ( r ,  s) . ( H e r e  dim V = r and dim W = s. ) 

By t h e  previous lemma, t h e r e  is an open cover {zg} of Ua 

and (cm-) changes of bases 

+1 : Z g  + G L ( s , l R )  and q2 t Z -r G L ( r , l R )  
B 

so  t h a t  $ J ~ ( Z )  - o ( z )  ~ + ~ ( z )  is t h e m a t r i x  



The maps and q2 define (cD-) bundle isomorphisms 

.., 
: zB x mS + z x v and G 2  B : zB X I R + Z  X W ,  B 

and hence define new (cW-) trivializations over {ZB}. In 
U 

these trivializations f is given by 

Thus, in these C -  trivializations (Ker 2) IZB is 

X ({O}V:B~-~) ,zB :X lRr and (1mZ)1zB is 

zB x ( I R ~  x {0}) C ZB x lRS . This proves that both Ker f and 
U 

Im f are vector bundles . 
Corollary 3.3. - Let n : E + B be - -  a (cW-) vector bundle 

and E1 c E a (coo-) subbundle. Then there is a quotient - - - --  
(cm-) bundle E/EV - and (cm-) mapping E + E/E ' . 

Proof : There is an open cover {ua} so that E I U ~  '. Ua x V - 
with E ' I u ~  t Ua x V'. 'The local trivialization for E/E' 

over Ua is Ua :x (V/V' . 
Definition : An exact sequence of - vector bundles is diagram 
of vector bundles and vector bundle maps covering the identity 

on the base . 

where f is a linear injection on each fiber, g is a linear 



-1 -1 surject ion i n  each f i b e r ,  and I m  ( f  (sl (b)  ) = ~ e r  (g 1 n2  (b)  ) 
£ g f o r  a l l  b i n  t he  base. If El - E2 -+ E j  is  an exact  

sequence of vector  bundles, then 1) K e r  f is a vector  bundle 

whose f i b e r s  a r e  t he  t r i v i a l  vector  space; 2 )  K e r  g = I m  f ; 

3) f : El + I m  f i s  an isomorphism; and 4 )  g : ( ~ ~ / K e r  g ) + E3 

is an  isomorphism, 

I f  IT : E + B i s  a (cw-) vector  bundle and i f  

f : A + B is a (cw-) map, then t h e r e  i s  defined the  pullback 
* 

of E v i a  f ,  f E,  The vector  space over a A 

-1 
i s  IT ( £ ( a ) ) .  The topology 

(and cw- s t ruc tu re )  are inhe r i t ed  from A x E. W e  view 
* 

f E a s  a subspace of A x E,  v iz .  { ( a , e ) I  f ( a )  = ~ ( e ) } .  
* 

This def ines  t he  topology f o r  f E. I f  A and E a r e  cw- 
w * 

manifolds and f and IT a r e  C - maps, then w e  view f E a s  

t h e  preimage of t h e  diagonal,  AB C B x B, under t he  cOD- 

mapping f x IT : A x E + B . x  B. One checks e a s i l y  t h a t  f x IT 

* 
i s  t ransverse  t o  AB, and hence, t h a t  f E is  a cw- manifold 

* 00 
with IT : f E + A  a C -mapping. I f  .rr : E + B has l o c a l  

* 
t r i a v i l i z a t i o n s  f o r  t he  cover {u,}, then f E has l o c a l  

t r i v i a l i z a t i o n s  f o r  € f - I  U, 3 ,  

The r e s t r i c t i o n  of a bundle t o  a subspace i s  a spec i a l  

case  of t h e  p u l l  back const ruct ion applied t o  t h e  inc lus ion  

map. , 

Suppose w e  have two (cw-) vector  bundles over B, 

n : E + B  and IT.' : E l  + B .  Formthe  product E x E 1  ?-BXB. 



One checks easily that this is a (c*-) vector bundle whose 

-1 -1 fiber over (bl ,b2) is n (bl) x n (bZ) . The restriction 
of this bundle to the diagonal is called the Whitney sum of 

E and E', It is denoted n @ n' : E @ E8 + B. The fiber 

over b is n-'(b) x nl-'(b) 

Exercises : 1) Show that if Mn c lFtn+k is given globally by 

k-equations : 1~"'~ + lRk whose differential is of rank 

k everywhere along M, then N (Mn) is trivial. 

2) Show N(s"-') is trivial. 

3) Show that if Mn c lRn+k , then TM" @ N (Mn) is 

a trivial bundle, 

4) Show that TS @ L is trivial, where L is 

a trivial line bundle. (N.B.  : This does not impolY that 

TS"-~ itself is trivial.) 

5 )  If G is a Lie group, show that TG is trivial. 

(Hint: Use multiplication By g to identify TG with . ' 1 e 

TG .) 
g 

6) Show that the bundle constructed in Example 3 

above is non-trivial. 

7) Give the definition of a CaO- vector bundle in 

terms of the transition functions. 

8 )  Let G x M + M be a C-, free, and properly 

-discontinuous action. Show that there is induced a free, 

properly discontinuous CW-action G x TM + TM, and that 

T(M/G) = (TM)/G. 

9) Actually it 2s possible to define the tangent 
r-1 

Bundle for any cr-manifold, rpl. It will Be a C -manifold. 



1 n 
I. Consider germs of C -curves y: (-s, c )  + R with 

y(0) = x. Define an eguivalence relation on these 

- germs : . 

1 

Y 2' 11 if and only if y' (0) = 11 (0) . 
11. The equivalence classes remain the same if we take 

1 
any C -change of coordinates. 

111. The equivalence classes form an n-dimensional 

vector space called T X ~  
0 ' 

IV. Use I1 and local coordinates to define TMx for 

1 
any C -manifold. 

IT. Show that TM is a Cr-'-manifold if M is a 

lOrThe Whitney sum extends to vector bundles the operation 

of direct sum on vector spaces. Extend the following operations 

on vector spaces to operations on vector bundles : tensor 

product, symmetric product, exterior product, homorphism, 

and dual. 



84 : Orientability 

If V is a real vector space of dimension n, then we 

define an equivalence relation on the set of ordered bases 

for V. We say that (el,. . . , 
en) 

- (fl, ... ,f ) if and only 
n 

if when we express the fi as linear combinations of the e 
j 

the resulting matrix has determinant greater than zero. 

There are exactly two equivalence classes and they are 

represented by (el, e2,. . . , e ) and (-el , e2 , . . . , n 
e n )  These 

equivalence classes are called orientations for V. We 

n 
equip R with its canonical orientation, i. e. , the one 

determined by {(1,0,. . .,0), (0,1,0,. . . ,0),. . . , (O,O,. . . ,Q,l)}. 

Exercises: 1) The set of all ordered bases for V forms 

an open subspace of V x. . . x V (n-times) . Show that this 

space has two path components corresponding to the two 

orientations of V. 

2) Show that GL(~,R) has two components as does 

~f L: V + W is a linear isomorphism and if we have an 

orientation for V, we can push it forward to get an 

orientation for W. If W = V, then the pushed foward 



orientation may, or may not agree with the original one. 

If it does we say that L: V + V is orientation preserving, 

and otherwise that L is orientation reversing. If we choose 

a basis {el,. . . ,en) for V and use it to express L as a 

matrix, then L is orientation preserving if and only if 

det L > 0. 

Let rr: E += M be a vector bundle. An orientation for E 

-1 
is an orientation for each vector space TT (m) so that 

there is an open cover {U ) of M and local trivializations 
a 

n 
over U a, cpa: U x R + E I U  which are orientation preserving a a 

on every fiber. An orientation for a manifold is an orientation 

for TM + M. 

Theorem 4.1: Let M be a coo-manifold which is connected. - - 
Then M either had no orientation or exactly 2 orientations, 

M has an orientation if and only if it is possible to find 

-1 
a cm-atlas [ua,qa,Va) for M with det(D(rp orpa) (p)) > 0 - B 

-1 
for all a and B and all p E rpa (Ua n Up). 

Proof: If M has an orientation, then we can take the 

opposite orientation obtained by reversing the orientation 

on every TM x ' Given two orientations for M, the set x E M 

for whlch they agree (or disagree) is an open set. Thus 

if M is connected,then two orientations either agree or 

disagree everywhere. Thus the two orientations are either 



the same or opposite on every tangent plane. This proves 

that when M has an orientation it has exactly two. 

Suppose that we have an atlas [ua,q ,Va) for M so 
a 

-1 
that det(D(cpg .qa) (p)) > 0. Define a orientation for TM 

X 

for each x E Ua by taking the standard orientation on 

-1 -1 
TVa (qa (p) ) and taking its image under wa (9, (p) ) . If 

p E Ua U then the orientations defined using qa and 
B 

-1 
using q agree since cp 09 is orientation preserving. B B a 

This then defines an orientation for M. Conversely, if M 

is oriented choose an atlas (ua,q ,V ) so that each Ua is 
a a 

connected. Then, for each a 
W a  

: T V ~  + TM~U, is either 

orientation preserving or orientation reversing at all 

points. If it is orientation reversing, then change the 

coordinates in V by replacing x by -xl. After this change a 1 

Dq (p) is orientation preserving for all a and all p E V 
a a* 

-1 
Hence, D(9, *yg) is also always orientation preserving. 

A manifold is said to be orientable if it admits an 

orientation and non-orientable if it does not. 

~xamples: 1) sn-l is orientable. One way to get an 

orientation for TS on S n-1 is to take a basis [el,. . . , e ) X n- 1 
n-1 

for TSX so that (el,. . . , e x) forms a basis giving the n-1' 
n usual orientation for R . It is easy to see that these 

orientations on TSx are locally trivial and hence form an 



n-1 
orientation for  S . 

2) Any hypersurface, M = {x E ~ ~ l f  (x) = o#}  with 

-1 
vf (p) # 0 for  every p E f (XI, i s  orientable. Again 

for  each p E f - I  (X) take a basis  fo r  TM e l  . . , e 1, 
P ' n-1 

n 
so t h a t  (e  l,. . . , e  ,vf(p)  ) i s  an oriented bas is  fo r  R . 

n-1 

3 ) More generally i f  M" c R n+k i s  defined by 

n+k 
k-equations,and some inequalities,on an open s e t  U c R , 

then M i s  orientable. 

Exercises: 1) Show tha t  the ~ z b i u s  band i s  non-orientable. 

2 )  Suppose tha t  M" i s  a connected, oriented manifold 

and tha t  y: M -, M is a diffeomorphism. Show tha t  

D Y ~ :  TM += TM 
is orientation preserving e i t he r  for  a l l  

P Y (PI 
p E M or for  no p E M. 

3 )  L e t  M be a connected, oriented manifold and 

r x M -, M a free,  properly discontinuous, different iable 

action. Show tha t  M/I '  i s  orientable i f  and only i f  each 

y E r i s  orientation preserving. 

4 )  Show RP" i s  orientable when n i s  odd and 

non-orientable when n is even. 

5 )  Suppose M i s  connected and oriented and r i s  
/ 

\ a free, properly discontinuous, different iable action. 

Show tha t  i f  every homomorphism r += {_+1} i s  t r i v i a l ,  then. 

~ / r  i s  orientable. 



2 
6 )  Show t h a t  i f  RP c Rn, then i t s  image cannot be 

n-2 given globally as  the zeroes of a function @: U + R 

where U i s  an open s e t  containing Rp2 and D@ has rank 
P 

2 (n-2) fo r  every p E RP . 
7 )  L e t  M~~ be a manifold which has the  s t ruc ture  of 

a complex analyt ic  manifold. Show t h a t  MZn i s  orientable.  



85. Vector Fields  

Let M be a c*-manifold and A c M a subspace. A 

vector f i e l d  over A i s  an association t o  each point  a E A 

of a vector r E TM: so t h a t  the  resu l t ing  map X: A -+ TM a 

i s  continuous. If A is an open set of M, then a vector 

r f i e l d  on A i s  sa id  t o  be C , or  cay i f  the  map X: A + TM 

r 
i s  C , or  CW respectively. I f  A c M i s  not open, then a 

r a vector f i e l d  on A i s  said  t o  be C , o r  C , i f  it admits 

r an extension t o  a C , o r  cmY respectively,  vector f i e l d  on 

some open s e t  of M containing A. 

n 
Examples: 1) Associating t o  x E R the  vector &(x) gives 

1 
a 

a c"-vector f i e l d  which we c a l l  - axj. 
n n a 

2 )  Associating t o  (x 1)' . . , x n ) E R the  vector i s x i =  (X 

co n 
i s  a C -vector f i e l d  on R . 

a a 
3) Associating t o  (x,y) 'the vector (-y- + xA) gives ax ay 

2 a c"-vector f i e l d  on B . 
Pictures of these vector f i e l d s  (when we ident i fy  

n n a b TRx = R ) by using the bas i s  . . . , }  are: 
axn 



C n 
I n  general, given a vector f i e l d  on M t o  know i f  it 

i s  continuous, cr, o r  coo we r e s t r i c t  t o  an open s e t  where 

oo 
we have C -coordinates (xl, ..., x ) and we w r i t e  out  the  vector n 

f i e l d  as: 

(x1,- 9 

a xn) = L f .  (xl,. . . , X  )- 
n ax, (x l , . . . ,x  1 

I. n 

r a, The vector f i e l d  i n  U i s  continuous, C o r  C , i f  and only 

i f  the  f i  a re  continuous, cry o r  coo. I f  U c R~ i s  an open 

a s e t ,  then w e  have coo-vector f i e l d s  - on U. ( T h i s i s  the 
axi 

a vector f i e l d  whose value a t  p E U i s  ( p )  E TU . )  
ax i P 

An i n t eg ra l  curve through p E M f o r  a vector f i e l d  

X on M i s  a curve y: ( - e , c )  + M y  with y(0)  = p and 

r '  (t) = X ( Y ( t ) )  for  a l l  t E ( -e ,  c ) .  For example, 

n 
y ( t )  = ( t , O ,  ..., 0) E R i s  an in teg ra l  curve through 0 

a f o r  -- 1 2 , y (t) = 2 (1 + t) (xl,.. . , x  ) i s  an i n t e g r a l  curve 
ax, n 
n a 1 

X - 
'Or 'i=l i axi through the  point  2 (xl,. . . , x ) ; n 

a a y (t) = (cos (t) , s i n  (t) ) is an in teg ra l  curve fo r  (-y -+x -) 
ax ay 

through ( 1 , O ) .  



An ordinary, f i r s t  order d i f f e r e n t i a l  equatlon i n  

u c R~ i s  a system k = pi ( t ,xl , .  . . ,x  ) f o r  i = 1,. . . ,n. 
i n 

0 0 
A loca l  solution with i n i t i a l  conditions (t , ( x19..., 

0 
xn, 1 

0 0 0 - i s  a curve Y :  (t - s , t  +s)  -, U SO t h a t  y ( t  ) = x 0 

and y ' (t) = (ql (t, 1,. . . , qn ( t ,  y (t) 1 )  fo r  a l l  

0 0 
t E [t - s , t  +s). For example, the  system% - - 'li has 

solution with i n i t i a l  conditions (0, (0, . . . ,0)  ) given by 

y (t) = (t, 0,. . . ,0) . An ordinary, f i r s t  order d i f f e r e n t i a l  

equation i s  time independent i f  t h e  q do not depend on t, i 

i .e .  cpi i s  a function of (xl,. . . ,x ) . A vector f i e l d  on n 

U corresponds t o  a t i m e  independent d i f f e r e n t i d  equation: 

a 
q i ( p ) ~  tj [ \  = qi(x) f o r  i = 1, ..., n}. 

i=l 

Under t h i s  correspondence an in teg ra l  curve through p for  

X corresponds t o  a loca l  solut ion of the  d i f f e r e n t i a l  

equation with i n i t i a l  condition ( 0, p) . 
The standard theory of ordinary d i f f e r e n t i a l  equations 

p o s i t s  the  existence, uniqueness and cm-variation with 

i n i t i a l  conditions of the  solution. Here we quote a version 

t h i s  theorem which can be found Pontrj agin "Ordinary 

Di f fe ren t i a l  Equations" pp. 150-183 b e e  espec ia l ly  the proof of 

theorem 2 beginning on page 159, proof of d i f f e r e n t i a b i l i t y  

beginning on page 170, remark B on page 177, and the 



discussion on pages 178 and 179 ) .  

Theorem 5.1: = rpi(t,xl,...,xn), i = 1 ,..., n be a 

Q) n 
C -d i f f e ren t i a l  equation i n  an open subset U c R . 

' 0  0 
1) Given i n i t i a l  conditions (t ,x  ) there  i s  s > 0 

0 0 
and a cm solution y: (t - r , t  + e )  + U. 

2 )  Given two solutions defined on in te rva l s  containins 

0 
and J I ,  then y ( t )  = $(t)  f o r  a l l  t for t Y  Y -  

which both y (t) and Jr (t) are  defined. 

0 0 
3 )  Given i n i t i a l  conditions (t ,x ) there  i s  a 

0 0 
neishborhood i n  R1 x Rn of (t , x  ) ,  N, - and s > 0 
so t h a t  the  solution y 

(7 ,s )  
(t) e x i s t s  f o r  a l l  

( ~ ~ 5 )  E N and a l l  t within e - of T.  Considerinq 

(7,s) (t) as  a function of ( t , ~ , ~ ) ,  it i s  cm 

a l l  variables. 

Corollary 5.2: L e t  1 : U + TU be a coo-vector f i e l d  on an open - - 
n s e t  U c R . ' There i s  an open s e t  of U x [o} c U x R y  W, so - - 

t h a t  i f  ( p , t )  E W then the  in teg ra l  curve fo r  X throush p 

i s  defined a t  time t, yp (t) . This gives a well-defined map 

W + U which i s  a cm-mapping. 

Corollary 5.3 : Let M be a cm-manifold and X: M -t TM a - - 
cm-vector f i e ld .  There i s  an open s e t  containing M x [O) ' 

1 i n  M x R , W, so tha t  i f  ( p , t )  E W, then y (t) i s  def ined - P 



where y i s  the  in teq ra l  curve f o r  X throuqh p ) .  The 
(---P 

resul t inq map W + M j.= cm. 

00 

Proof: The existence, uniqueness, and C -var ia t ion i s  a 

purely loca l  question. Hence, we can always work i n  a 

coordinate system and apply 5.2. 

. . 

Theorem 5.4: I f  M i s  compact and i f  X : M + TM i s  a C"O 

vector f i e l d ,  then the in teq ra l  curve fo r  X throuqh p E M 

1 can be defined f o r  a l l  t E R . The resu l t inq  map 

1 
M X R  + M a c m .  

Proof: The only p a r t  of 5.4 t h a t  i s n ' t  contained i n  5.3 

i s  the  existence of . y .  (t) f o r  a l l  t e R ~ .  ~ i r s t ,  we prove 
P 

t h a t  there  is e > 0 (independent of p) so t h a t  y (t) is  
P 

defined f o r  a l l  p E M and a l l  t with I tl < s. This i s  a 

1 
consequence of the f a c t  t h a t  i f  W c M x  R i s  an open set 

containing M x  (0) and i f  M i s  compact,then M x  ( - 6 , s )  c W 

f o r  some e > 0. (Exercise: Prove t h i s  statement.) 

rf yp (s) = q, then by the uniqueness of t h e  solut ion 

yp (t+s) = y (t) whenever both a r e  defined. 
9 

Thus, i f  y (t) i s  defined f o r  t E ( - T , T )  we can extend it 
P 

t o  be defined i n  (-T-e/2, T + s / ~ )  by s e t t i n g  q = y ( T - E / ~ )  
a ,P 

and r = y C - T + E / ~ )  and defining P 



y p ( t )  = ~ . ~ t t - r + o / 2 )  f o r  t .E (7 -~ /2 ,~+8 /2 )  

and 

f o r  t E- ( - ~ - e / 2 , - ~ + ~ / 2 ) .  

Continuing i n  this manner we can eventually define y (t) 
P 

1 f o r  a l l  t E R . 
A s  we have seen a vector f i e l d  on a manifold becomes a 

(time independent) ordinary f i r s t  order system of d i f f e r e n t i a l  

equations i n  loca l  coordinates. Ofter  we think of the  manifold 

as the  possible s t a t e s  of some physical system (cal led the 

configuration space) and the vector f i e l d  as  a dynamic o r  

motion law describing how s t a t e s  evolve with t i m e .  I n  t h i s  

case an in teg ra l  curve w i l l  describe the s t a t e  of the  system 

a t  t i m e  t i f  it begins i n  s t a t e  y(0)  a t  t i m e  0. 

Example: Consider n point  masses with masses ml, ..., m n 
3  i n  R which move according t o  the  gravi ta t iona l  force law 

and Newton' s equations. The s t a t e  space f o r  t h i s  system 

i s  an open subset of -  

R G n =  {{(v1,pl) ,..., (vn,pn)Ivi # v f o r  i # j]. Here v 
j i 

t h  represents the  posit ion vector i n  R 3  of the  i -mass and 

p .  represents i t s  momentum vector. The vector f i e l d  describing 
1 

t h e  motion is: 



where G i s  the universal gravi tat ional  constant. Written 

as  a d i f fe ren t ia l  equation it becomes: 

(defini t ion of momentum) 

( P~ = r Gmn. (v -vi)/llvj-vill 2 (Newton ' s law) . 
1 1  j  

j#i 

An integral  curve describes how the posit ions and momenta 

change w i t h  time. For t h i s  reason vector f i e ld s  are some 

times called flows. 

2 Example: Let (x,y) = (-y,x) be a  flow i n  R . The in tegra l  

curves are: 

1) c i rc les  of any radius r > 0, and 

2 ) the constant path y (t) = ( 0 , O )  . (A so- called fixed 

point fo r  the flow. ) 

X 1 
Example: Let X (x) = e  be a  vector f i e l d  on R . The in tegra l  

1 curve with y ( 0 )  = 0 i s  y ( t )  = An(-). Notice t h a t  t h i s  
1- t 

curve i s  only defined for  t < 1. What happens i s  t ha t  

s t a r t ing  a t  0 one f lows  a l l  the way t o  +a by the time t '=  1. 



In  terms of the tangent bundle, a vector f i e l d  on M 

i s  a function X :  M + TM so t h a t  n.X(m) = m. 1t i s  cO" 
00 00 

i f  X i s  a C -mapping between C -manifolds. A zero of a 

vector f i e l d  i s  an m E M such t h a t  X(m) i s  t h e  zero vector 

i n  TMx. 

Theorem 5.5: k t  X : M -t TM be a cm-vector f i e l d  with X(p) 

non-zero. There is  an open set U c M, containinq p, a d  

a 
COO coordinates on U, ( x ,  . . . x , i n  which X becomes - - 

axn 

00 
Proof: Choose loca l  C -coordinates near p,(xi ,  ..., x'). n 

n a a (p) ) There is an inve r t ib le  
Suppose X (PI = i a*; 
(nxn) -matrix ( A .  . ) so t h a t  

1 3  

n 
Consider ( A .  . ) as  a l inea r  automorphism of R and use it 

1 3  

t o  change coordinates from (xi ,  . . . , x;l) t o  (yl,. . . , yn' 

a In  the  new coordinates X (p) = ( p , ~  ) We can, i n  addition, 

suppose t h a t  p i s  the  or ig in  i n  (yl, . . . ,y  )-space. Let V n 
1 

be [ ( y  ,yn)Iyn = 0). Inside V x R t he re  i s  an open s e t  

W containing V x { O ) ,  so  t h a t  the  in teg ra l  curves define 

a cm-mapping Y:  W += U. Let the  coordinates i n  W be 

y 1 , ,  y n l , t .  One checks eas i ly  t h a t  DY(0) i s  the 



i den t i ty  matrix and hence inver t ib le .  Thus, t h e  image under ' 

Y o f  (yl,. . . , t) form loca l  coordinates near p. Call  

1' n 
a i n  these (x . . . ,x  ) . Clearly, the  vector f i e l d  i s  - 

axn 
these coordinates. 

Corollary 5.6: at M be a c*-manifold and _a cm-vector - 
f i e l d  on M which i s  never zero. The i n t e q r a l  curves of 

X define a one-dimensional f o l i a t i o n  on M. 

A s  we have seen, non-zero vector f i e l d s  loca l ly  a l l  

look the  same. This i s  not t r u e  a t  the  zero of a vector 

1 a 
f i e ld .  For example i n  R t he  vector f i e l d  t I+ t - a t  can not 

a CO o 
be changed i n t o  t I+ -t - by any C (or even any C ) change a t  
of coordinates. 



§6: Alqebraic Structure of Vector Fields  

Let 3 ( M )  be the s e t  of a l l  coo-vector f i e l d s  on M. 

Our f i r s t  construction i s  t o  give S ( M )  a  topology--the 

compact open topology. The sub-basic open sets a re  

denoted <K,U) where K c M i s  compact and U c TM i s  open. 

Such a  s e t  <K,U)  consis ts  of a l l  the  vector f i e l d s  whose 

values f o r  points i n  K l i e  i n  U; i. e. , 

< K y U )  = { X E 9(M) I X ( K )  c u).  A s e t  X c 3 ( ~ )  i s  open 

n (a) 
if and only i f  X = U ( f l  <K, , U  >), i.e., i f  and only if 

aeI  i=l i ai 

X is an a rb i t r a ry  union of f i n i t e  in te rsec t ions  of the 

Next, comes the r e a l  vector space s t ruc tu re  of 3 ( M ) :  

Lastly along these l ines ,  we have the  module s t ruc ture  of 

3 (M) over the r ing of r e a l  valued coo-functions on M, 

c ~ ( M ) .  I t  i s  given by (fox (p) = f (p) *X(p).  

There i s  another type of s t ructure:  The vector f i e l d s  

00 
a c t  as  derivations on the  C -functions. The formula i s  

X(f )  (p) =Xp  (germ of f a t  p)  . Since 

XP(ao@)  = a(p)Xp(p) + p(p)Xp(a),  it follows t h a t  

X ( f * g )  = f - j ( (g)  + g * X ( f ) .  Thus, the vector f i e l d s  a re  a  

module Cover the  coo-functlonsl of d.erivations. I t  is a 



straightforward exercise to show that the coo-vector fields 

are the module of all derivations on the coo-functions. 

Notice also that the module structure is compatible with 

the derivation structure in that. : 

There is one more very important piece of algebraic 

structure: the Lie bracket. This is a bilinear pairing 

which produces from two vector fie1 ds X , and third [ X , Y ] . 
To define [ X , r ]  we give its value at p E M as a derivation: 

[X  , YIP(£) =Xp(Y(f)) - Yp(X(f)). One checks that this 

is a continuous, bilinear map 

n 
In local coordinates (x . . . ,x ) if X = 1 f - 

n 
a and 

'i=l i ax i 

n b - r= gi ax then 
i 

i a - afi a 
i ax j 'j dx j TI* 

i, j=l 

In addition to the above properties [ , ] satisfies: 



The second relation is called the Jacobe identity. In 

general, any real vector space V together with a bilinear 

operation satisfying 6.2 a.) and b) is called a Lie algebra. 

Suppose that we are given a manifold M". A czk-plane 
k 

field,'$ , is a collection of k-dimensional linear subspaces 
a c TM for each p a M. These subspaces are required to 

P P 
vary in a cw-manner with P, i.e,, to be a subbundle of TM. 

An* fnfegYa.1 izubmanifold for a k-plane field on M" is a 

C--submanifold N ~ C  M so that TN =% :.for each prN. (Thus, N is 
P 

tangent to the k-plane field.) One might be tempted to 

think, in analogy with the case of flows, that such integral 

suBmanlfolds always exist at least locally. This is not true, 
k 

however. We say that% is integrable if it has integral 

submanifolds through every point. If a is integrable, 

then the Lie Bracket of any two vector fields in'bk must 

F-k be in $ . (Exercise : Prove this.) Thus, we have an 

obstruction to integrability -- the vector fields in zk 
must form a Lie subalgebra of the Lie algebra of all vector 

fields. The analogue of the 1-dimensional theorem is the 

following: 

k 
Theorem (Frobeniusl : - Let T be a ~ ~ - k - ~ l a n e  field in M. 

Tk is integrable if and only if the vector space of vector 
k 

fields whose values lie in 5 is ,closed under the Lie ' 

bracket. 



We sha l l  not prove t h i s  theorem is  t h i s  course. 

Exercises: 1) Verify t h a t  tEe ~ a c o b i  i d e n t i t y  holds f o r  

vector f i e l d s  and the Lie bracket.  

2 )  Let G be a Lie group. Consider t h e  vector 

space of l e f t  invar iant  vector f i e l d s  ins ide  a l l  vector 

f i e l d s  on G. (A vector f i e l d  i s  l e f t  invar ian t  i f  

(Dg) (X) = X where Dg denotes the  d i f f e r e n t i a l  of the  

diffeomorphism given by l e f t  multiplying by g.) Show t h a t  

t h i s  vector space can be iden t i f i ed  with TOe and hence i s  

f i n i t e  dimensional. Show t h a t  it i s  closed under the  bracket  

operation and hence becomes a f i n i t e  dimensional sub-Lie 

algebra of a l l  t he  vector f i e lds .  I t  i s  ca l l ed  the Lie 

algebra of G. 

3)  Show t h a t  i f  f :  M -t P i s  a cm-di f feom~r~hism then 

2 a a 
4 )  Let 7 be the plane f i e l d  i n  %3 given by (=, ;5ii + XZ) a 

2 
Show t h a t  i s  not integrable.  Indeed, show t h a t  

3 i f  w e  define four arcs  i n  B tangent t o  g2 and lying 

above the un i t  square i n  (x,y)-space, then these four 

3 arcs  cannot make a closed path i n  B . Thus, the  i n t e r i o r  of the  

3 u n i t  square cannot be l i f t e d  t o  % t o  be everywhere 

tangent t o  the  fo l i a t ion .  



5) Show that if A is any associative algebra, 

then there is a Lie algebra structure on A defined by 

6) Show that the Lie algebra of GL(n,l) can be 

identified with vector space of all (nxn)-matrices so 

that the Lie bracket becomes [X,Y] = X-Y - Y*X. Show 

that the L3e algebra of SL(n,%) is the subalgebra of 

matrlces of trace zero. Show that the Lie algebra of 

O h 1  is the subalgebra of all skew symmetric matrices. 



Chapter I11 : D i f f e r e n t i a l  Forms 

I n  t he  f i r s t  chapter  we d e a l t  with t he  b a s i c  p rope r t i e s  

of t he  spaces on which we s h a l l  do calculus--manifolds. I n  

t h e  second chapter  we d e a l t  with t h e  i n f i n i t e s i m a l  s t r u c t u r e  

of manifolds--the t angen t i a l  s t r uc tu r e .  This chapter  

develops t h e  d i f f e r e n t i a l  and i n t e g r a l  ca lcu lus  on manifolds. 

What, i n  modern terminology a r e  c a l l e d  d i f f e r e n t i a l  forms, 

were o r i g i n a l l y  c a l l e d  i n t e g r a l s .  There a r e  two p a r t s  t o  

an in tegra l - - the  th ing being in tegra ted ,  e .g . ,  t h e  

integrand,  and t he  region over which it i s  being i n t eg ra t ed ,  

e. g. , t he  i n t e r v a l  of in tegra t ion .  The in tegrand could no t  

s tand alone. A s  f i r s t  year  ca lcu lus  s tuden t s  a r e  wont t o  

ask, "What i s  t h e  'dx' anyway?" Or ig ina l ly ,  i n  h igher  

dimensions, one considered i n t e g r a l s  of in tegrands  over 

regions and s tudied  t h e  change o f  t h e  r e s u l t  a s  t h e  region 

was deformed. This separated somewhat t h e  two ingred ien t s .  

I n  t h e  modern p o i n t  of view t h e  two a r e  completely 

separated.  

The integrands a r e  d i f f e r e n t i a l  forms, and they have an 

ex i s tence  independent of any opera t ion  of i n t eg ra t i ng .  They 

l i v e  i n  an appropr ia te  i n f i n i t e  dimensional algebra.  Whag 

they a r e  a c t u a l l y  i s  templates o r  models f o r  integrands.  



When we supply the region of integrat ion we can make an 

in teg ra l  using the  model o r  "form". The region of integrat ion 

i s  usually a submanifold or  a union of pieces of submanifolds. 

Of course, the  models o r  forms carry with them the dimension 

of the  region over which they can be integrated,  I t  runs 

from 0 t o  the  dimension of the  ambient manifold i n  which 

we a re  working. 

Before taking up the  study of forms, we must prepare 

t h e i r  hab i t a t  . This requires the  introduction of the 

multi-linear algebra of f i n i t e  dimensional r e a l  vector spaces. 



1 Mult i l inear  Alqebra 

2 
L e t  us begin by studying order  p a i r s  of vectors  i n  R  , 

(el,e2}. I f  the  vectors  a r e  l i n e a r l y  independent, then they 

give  an or ien ta t ion .  Compare t h i s  with t he  standard 

o r i en t a t i on  and assign a + i f  they agree and a - i f  

they disagree.  Next consider t he  parallelogram t h a t  

they span: 

Let  i t s  area  be  A. Multiply t he  two q u a n t i t i e s  together .  

The r e s u l t ,  _+A, i s  ca l l ed  t h e  signed area  of the  parallelogram 

generated by (el,e2}. I f  el and e a r e  l i n e a r l y  dependent, 
2 

2 2 then assign 0. Cal l  the  r e s u l t i n g  assoc ia t ion  a: R  x R  += R .  

2 2 
A map cp: R x R  + R  i s  b i l i n e a r  i f  it i s  l i n e a r  i n  each 

fac tor ,  i . e .  i f  q ( r e  + s e '  e ) = rrp(el,e2) + s q ( e i , e 2 )  1 1' 2 

and rp(el,re + s e ' )  = rcp(el,e2) + sq(el ,e;) .  I t  i s  
2 2 

a l t e rna t ing  i f  cp (el, e2) = -0 (e2,  el) , 

2 Theorem 1.1: The map a: R  x R~ + R  defined above i s  

2 b i l i n e a r  and a l t e rna t inq .  I f  9: R  x R~ +- R  i s  any b i l i n e a r ,  

a l t e rna t inq  map, then there  r E R  such t h a t  cp(el,e2) = ra(e l ,e2)  



L fo r  a l l  (el, e2)  E R x R ~ .  ' 

Proof: Suppose e  = (a,b) and e  = (c ,d) .  By def in i t ion  
1 2 

a (el, e2)  = ad - bc. From t h i s  formula it i s  immediate t h a t  

a i s  b i l l n e a r  and alternating.  Suppose cp i s  any b i l i n e a r  

a l te rna t ing  map. Then cp ( (a ,b) ,  (c,d) ) = adcp ( (1 ,0) ,  (0,1) ) 

+ bcg( (O, l ) , ( l ,O) )  + acep( ( l ,0 ) , ( lY0) )  + bdcp( (0 , l ) , (OYl ) ) -  

By  the  f a c t  t h a t  9  i s  a l ternat ing,  we have q ( e , e )  = 0 

a n d l , l ,  = - Thus, 

Q( (a ,b) ,  (c,d) ) = (ad - bc)cp( ( l , 0 ,  (0,1) 1. Letting 

e r = q ( (1,0),  (0 , l )  ) gives the r e s u l t  

2 Corollary 1 .2 :  If L: R~ + R i s  a  l i n e a r  map, then 

a (L ( 1 , O )  , L ( O , l )  ) = d e t  L. 

Let V be a  f i n i t e  dimensional r e a l  vector space. 

A map g: V x.. .x V + R i s  multLlinear i f  it i s  l i n e a r  i n  

each variable,  i.e., i f  f o r  each i: 

= rcp (vl,. . . ,vn) + scp (vly. . . ,v i  . . . ,v ) . i ' n 

- It  i s  al$ernating i f  fo r ,  a l l  i < j: 



Consider a l l  mu l t i l i nea r  a l t e r n a t i n g  maps 

--) R 

k f a c t o r s  

This  set i s  a r e a l  vector  space under t h e  obvious operat ions:  

k 
This r e a l  vector  space i s  denoted fl ( V * ) .  By convention 

0 
(V*) = R .  

Examples: 1) Let  V be n-dimensional wi th  ( b  , b  1 a n 
n 

b a s i s .  One element q E A (V*) i s  described a s  follows. 

n 
Given ( e  , . . . e n  then express e = 

1 
a b . Define = i j  j 

qy (el , .  . . , e ) t o  be d e t  (a i j ) .  This i s  c l e a r l y  a m u l t i l i n e a r  
n 

a l t e r n a t i n g  map s ince  "det"  is .  I n  more geometric terms, 

we use  [bl, .  . . , b  } t o  i d e n t i f y  V with R ~ .  The 
n 

n 
{ e l , * o o ,  e n } span an n-dimensional pa r a l l e l ep iped  i n  R . 
I t s  signed n-dimensional volume is  d e t ( a  ) .  A s  we  s h a l l  i j 

see  below a l l  o the r  elements of hn(v*) a r e  mul t ip les  of 

t h i s  one. 

1 
2) A (V*) = d ( V , R )  t h e  space of r e a l  valued, l i n e a r  

maps on V ( a l s o  c a l l e d  t h e  dual  space t o  v ) .  



Lemma 1.3: If (el ,  ..., e ] E V a r e  l i n e a r l y  dependent and 
k 

k 
i f  rq E A (V*), then ip(el,. . . , ek)  = 0 .  - 

Proof: Suppose a e +. . . + 
1 1  %"k 

= 0 with n o t  a l l  t h e  ai = 0. 

We can suppose t h a t  al f 0 .  Then 

e = (-a /a ) e  +...+ (-a /a ) e  
1 2 1 2  k 1 k'  

Hence, 

k 
cp (el , .  . . , ek) = (-ai/al)cp (ei,  e2 , .  . . , e k ) .  BY t h e  

a l t e r n a t i n g  property ~p (v  , v  ) vanishes i f  two of 1'"' k 

t h e  v ' s  a r e  equal.  Consequently, rp ( e  , . . . e = 0. 
i 

k 
Theorem 1.4: 1) A (V*) = 0 for k > dim V. 

2 )  I f  t h e  dimension of V & n, then t h e  dimension 

k n n 
of A (v*) & (k ) .  I n  p a r t i c u l a r ,  A (V*) i s  one - 
dimensional. 

Proof: P a r t  1) follows immediately from the  previous lemma 

s ince  any [ e  1' " . , e  ) must be l i n e a r l y  dependent i f  k > dim V. k 

Let  (bl, .  . . , b  ) be a b a s i s  f o r  V. We claim t h a t  n 
k n rp E A (V*) i s  determined by t h e  (k)  numbers cp (b  , . . . ,bi ) , i 

1 k 
1 1 il <. . .< ik 1 n and t h a t  any c o l l e c t i o n  of ( numbers 

occurs f o r  some . F i r s t ,  suppose t h a t  p and $ y i e l d  

t h e  same co l l ec t i on  of  numbers. Then i f  [bi ,. . . , b .  ] 
1 1 k 

i s  any k- tuple  of  t h e  b a s i s  vectors ,  then 

'@ (bi , . . . , b . ) = $ (bi , . . . , b . ) . The reason i s  t h a t  e i t h e r  
1 l k  1 1 k 
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some b a s i s  element appears twice i n  t h e  co l l e c t i on ,  i n  

which case  cp and ( both vanish s i nce  they a r e  a l t e r n a t i n g ,  

o r  by a f i n i t e  number of interchanges w e  can pu t  t h e  

elements i n  ascending order.  Each such interchange switches 

t h e  s ign  of both and $ evaluated on t h e  c o l l e c t i o n ,  

and, a f t e r  we have achieved ascending order ,  cp and $ 

take  t h e  same value. Now consider  cp ( e  . , e ) and 
1'" k 

n 
( (el , .  . . ,ek) . Express e = Z 

i 
a b .  and use  t h e  

j=1 i j  

m u l t i l i n e a r i t y  t o  show t h a t :  

and 

From t h i s ,  and t h e  f a c t  t h a t  q and I# eva lua te  t h e  same 

on k-tuples  of b a s i s  vectors ,  it follows t h a t  

Conversely suppose given 1 i < i < <  i n. We 
1 

k 
s h a l l  cons t ruc t  rp E A (V*) so  t h a t  cp(b , . . . , b .  ) = 1, and 

i 1 1 k 
q ( b j  ,. . . , b .  ) = 0 f o r  a l l  o t h e r  sequences jl< ... < jk. 

1 'k 
Given [ e  . . , e  > express each e a s  a column vec to r  i n  

1' ' k i 

t h e  b a s i s  [bl, . . , bn) They produce an (nxk) -matrix 



Pick o u t  t h e  rows i ,  i . . . , i ) t o  form a (kxk)-matrix k 

and take  i t s  determinant. One checks e a s i l y  t h a t  t h i s  

i s  t h e  required  mu l t i l i nea r  map. 

k 
Elements i n  A (V*) a r e  c a l l e d  k-covectors. There 

i s  a pa i r ing  

given by 

where 

Here, o runs through t h e  permutations of  t h e  s e t  

Q [l,. . . ,k+a) ,  and (-1) = - + 1 means t h e  s ign  of t h e  

permutation, i . e . ,  ( - 1 ) O  i s  +1 i f  and only i f  o i s  a product 

of an even number of interchanges.  



This operation is easily seen to be bilinear, associative 

and to be qraded commutative, i. e. , to satisfy 

n k  
Consequently, this multiplication makes @ A (V*) a graded 

algebra with an associative, graded-commutative multiplica- 

0 tion. The unit of this algebra is the 1 E R = A (V*). 

The algebra is called the exterior alqebra on V*. 

Proposition 1.6: a t  V be an n-dimensional real vector 

space. The pairinq 

n-k 
Ak(v*) X A (V*) -2) hn(v*) = R 

is non-sinqular in the sense that if g A w = 0 for all 

n-k 
w E A (V*), theng = 0. 

Proof: Let (bl, . . . ,b ] be a basis for V and fix n 
n-k 1 A il <. . . < n. Choose w E A (V*) SO that 

w(bi ,. . . ,bi ) = 1 and w(b ,..., b ) = 0 for all 
1 n-k '1 In-k 

other sequences 1 j < j < . . < jn-k n. Then 

cp A w (bl,. . . ,b ) = +lp (br , . . . ,b ) where n - 
1 r k 

b , . . . b ,b , . . . ,b ] = (bl , . * . ,  b 1.  Thus, ifcp A w = 0, 
1 

r i  
k 1 

i n-k n 

then lp (br , . . . ,br ) = 0. Consequently, if cp A w = 0 for all 
1 k 



n-k 
w E A (v*), thenrp(br ,..., b r )  = 0 for all 

1 k 
1 r1...r n, and hence cp = 0. 

k 

n 
Example: Let V = TRO A basis for V is 

1 
Denote the dual basis for V* = A (v* ) by {dxly . Y dx 1. n 

a 
This means that dx. (-) = 'ij . Using the multiplication, 

1 axi 
n J 

a k A, in O A (V*) we define elements dx A. . . A dxi E A (V*) . 
a=o 

i 
1 k 

The collection {dxi A...A dx } is a basis 
1 ik Mi,<. . . <i&n 

k for A (W). 

One can define multi-vector as well as multi-covectors. 

* 
Let V be a finite dimensional real vector space. Define 

k 
'T A V to be a quotient of the free abelian group generated by 

. The relations that define the quotient are: 

k-times 

and 

a Exercises: 1) Verify the claim that O A (v*) is an 
a=o 

associative, graded commutative algebra under A .  

k 
2) Show that A V is naturally identified with 

Ak ( (V* )*  ) . (Here W = d(V, R) is the dual space to V. ) 

k 
3) Show that if V is of dimension n, then A V 

n 
is of dimension ( ) .  

k 



4 )  Let V be a vector space with basis  {b ,bnl 

k 
Show tha t  i f  c p ( ~  (v*)) sa t i s f i e s  

b)  q(bi ,..., b .  ) = 0 i f  some i > k, then 
1 

1 k j  

( e l , . . . , )  i s  the volume of the dimensional parallelepiped 

spanned by the projections of ( e  . . . , e 3 in to  the subspace 1' k 

spanned by [bl,. . . ,bkJ 



52. D i f f e r e n t i a l  Forms--The Def in i t ion  

W e  have seen an in t imate  connection between volumes 

and t h e  e x t e r i o r  algebra.  I t  i s  this connection t h a t  makes 

t h e  e x t e r i o r  algebra t h e  c o r r e c t  p lace  f o r  forms t o  l i v e .  

Before g iv ing t h e  de f in i t i on ,  we must f i r s t  s tudy t he  

parameterized version of  t h e  e x t e r i o r  algebra.  This  i s  

p a r t  of a genera l  pattern--any na tu r a l ,  a l geb ra i c  opera t ion  

on vector  spaces has an extension t o  vector  bundles. Let  

E 7 B be a vector  bundle. We s h a l l  de f ine  another  vec to r  

k -1 k -1 
bundle A (E*) 5' B. The f i b e r  n1 (b)  i s  1\ ( n  ( b ) * )  a s  

a vector  space. To g ive  t h e  l o c a l  t r i v i a l i z a t i o n s  f o r  

k 
A (E*) we have need f o r  a lemma. 

Lemma 2.1:  at a: V -, W be a l i n e a r  map between f i n i t e  

dimensional r e a l  vector  spaces. Then a induces a l i n e a r  

k k 
A (a*): hk(W)  -* A (v*) .  This def ines  

a R 
A a * )  : @ A ( W )  + 0 A (V*) an alqebra homomorphism. 

a a 

k 
Proof: W e  g ive  t he  d e f i n i t i o n  of A (a*)  and leave  t h e  

checking of  t h e  p rope r t i e s  a s  an e x e r c i s e :  

n 
L e t  E +- B be a vector  bundle with l o c a l  t r i v i a l i z a t i o n s  



over t h e  elements of an open cover [U ) of B. ~ e f i n e  a 

This map i s  a b i j e c t i o n  and a l i n e a r  isomorphism on each 

k -1 f i b e r .  We us-e it t o  de f ine  a topology on U A (rr (b) * ) . 
beUa 

To show that ,  i n  t h e  r e s u l t i n g  topology on h k ( l * ) ,  t h e  maps 

given above de f ine  a l o c a l  t r i v i a l i z a t i o n  w e  must know t h a t  

t h e  over lap  funct ions a r e  homeomorphisms 

This follows from t h e  genera l  f a c t  t h a t  t h e  map defined i n  

k Lemma 2.1, Auto (V)  + Auto ( A  (V* ) ), is  continuous. (Actual ly,  

it i s  cW.) 

Thus we have defined t h e  s t r u c t u r e  of  a l o c a l l y  t r i v i a l  

k vec to r  bundle f o r  A (E*) 5' B. I f  E  2 . + ~  i s  a cW-vector 

w k n 
bundle over a C -manifold, then A (E*) -t M i s  a l s o  a 

c*-vector bundle. This i s  a consequence of t h e  f a c t  t h a t  



the mapping i n  Lemma 2 . 1  i s  cCO. 
1 

A s  examples, 1\ (E*) (a l so  wr i t ten  E*) i s  ca l led  the 

dual bundle t o  E. I ts f ibe r s  a re  the dual  vector spaces 

0 
t o  the f i b e r s  of E. A (E*) i s  the t r i v i a l  one 

dimensional bundle B x R. I f  E 5 M i s  the tangent bundle 

TM, then E* i s  denoted T*M and i s  ca l led  the cotangent 

bundle of M. 

Definition: A d i f f e r e n t i a l  k-form on M i s  a cCO section 

k 
In  loca l  cm-coordinates (x . . . ,xn), A (T*M ) has 1' P 

a bas i s  (dx A. .  . A  dxi ) Thus i n  these 
i 1 k lAi,<. . .<+no 

l o c a l  coordinates, a k-form i s  

C lAi,<. . .<i&n f il.. . i (x l , . . . , x  )axi h . . . ~ d x  n ik ' where the  
k 1 

CO 

f a re  C -functions. 
i l...i k 

I t  i s  important t o  know not only the loca l  expressions 

which are  k-forms but  a l so  the  transformation law. To 

understand t h i s  we study the behavior of k-fsrms under 

03 k 
C -maps. Let f :  M + N be a cm-map and s: N + A (T*N) a 

d i f f e r e n t i a l  k-form on N. We define f*w, a d i f f e r e n t i a l  

k-form on M. I ts value a t  p E My f*w k 
P 

E 1\ (T*M~), i s  

determined by giving f*w ( e l y e  f o r  (el, ... , 
P k 

ekl E TM 
P ' 

We define 





ca 
This shows t h a t  f * ( d y . )  i s  a cm-form. A general  C 

1 

k-form l o c a l l y  has an expression 

By 2 . 2  and the  above ca lcu la t ion  

Ik  
d x . ) .  

ax J 
j 

This i s  c l e a r l y  a cW-form as  w e l l .  

Corollary 2.4: at (xl, .  . . ,xn) and ( y l J . .  . ,yn)  be two s e t s  

of l o c a l  cW-coordinates on an open set U of M. Suppose 

t h a t  w i s  a d i f f e r e n t i a l  k-form i n  U which i s  qiven by 

y ,  , y n  A * .  . A  dyi 
1 1 k 

i n  t h e  (yl , .  . . ,yn)  system. Then, it i s  qiven by 

i n  t he  (x 
l ' *** '  

x ) system. 
n 

Corollary 2.5 : Let (xl, . . . , xn) and (yl ,. . . , y ) be two n 

cW-coordinate systems on an open s e t  U & M ~ .  Let w - 
be a d i f f e r e n t i a l  n-form, m = f (y l , .  . . ,yn)dyl A . .  . A  dyn. 

Then, expressed i n  t he  (x 
l J * * . '  

x ) system n 



Proof: The form dyl A . .  . A dyn evaluates  on 

n a n 
a -  ,..., C 

a 
('j=1 i j  ayj 

a ) t o  g ive  d e t  (a ) Applying j=1 n j  ayj i j  

t h i s  and 2.4 y i e l d s  t he  r e s u l t .  

There a r e  two po in t s  of view which amount t o  t h e  same 

thing.  One can view a d i f f e r e n t i a l  form a s  a  s ec t i on  of 

k 
A (T*M) ( t h e  a b s t r a c t  po in t  of view) and any time it i s  

necessary t o  make computations t ake  l o c a l  coordinates  and 

express  t h e  form i n  them. O r  one can view the  form a s  a 

c o l l e c t i o n  of  expressions i n  terms of l o c a l  coordinate  

03 

systems i n  a  C - a t l a s  which s a t i s f y  t h e  t ransformation law 

(2.4)  a s  we pass  from one system t o  another .  These two 

po in t s  of view a re ,  of course,  mathematically equivalent .  

The s t r u c t u r e  of a  graded r i ng  (under A )  f o r  

A 
@ A (T*M ) produces t he  s t r u c t u r e  of  a  graded commutative, 

a=o P 
a s soc i a t i ve  a lgebra  on t h e  d i f f e r e n t i a l  forms of  a l l  degrees.  - 
Thus, i f  w i s  a k-form and p i s  a  A-form, we de f ine  

w A p ,  a  (k+A)-form by 
P 

= w  A p p  . Clear ly ,  from 
P 

1 . 5 ,  it follows t h a t  w A p, = (-lIka p, A w and 

( w  A p,)  A v = w A (p  A v )  . I n  add i t ion ,  t h e  d i f f e r e n t i a l  

m 
k-forms a r e  a  module over t h e  C -funct ions.  The s t r u c t u r e  



i s  given by 

w 
f o r  a C - funct ion and w a d i f f e r e n t i a l  k-form. 

These products  a r e  preserved under t h e  p u l l  back 

opera t ion , i . e . .  f*(w A p )  = f*w A f*p and 

w 
f *  ( m e  w )  = f  *o. Actually,  the  C -functions a r e  cW- seCtions 

of M x R and hence 0-forms. The mu l t i p l i c a t i on  o f  a k-form 

by a funct ion i s  j u s t  a spec i a l  case  of t h e  wedge product 

( A )  of forms. 

A l l  of  t h i s  s t r u c t u r e  can be summarized by saying t h a t  

t h e  d i f f e r e n t i a l  forms (of a l l  degrees)  on M a r e  an 

assoc ia t ive ,  graded commutative a lgebra  under wedge product.  

The subalgebra i n  degree 0 i s  t h e  a lgebra  of cm-funct ions 

on M. I f  f :  M + N i s  a cm-map, then f induces f*  a graded 

a lgebra  homomorphism from t h e  graded a lgebra  of d i f f e r e n t i a l  

forms on N t o  t h a t  of d i f f e r e n t i a l  forms on M. ( I n  shor t ,  

t h e  graded a lgebra  of d i f f e r e n t i a l  forms i s  a con t r ava r i an t  

func to r  f o r  cm-manifolds and cm-maps between them. ) 

The space of coo-vector f i e l d s  on M was a l s o  given 

t h e  s t r u c t u r e  a s  a module over t he  r i ng  of cm-functions.  

I t  t u rn s  ou t  t h a t  the modules of 1-forms and vector  f i e l d s  



CO 

a r e  dual  modules over the  C -funct ions.  The d u a l i t y  i s  

given by <w,X> (p)  = < w  (p)  , X  ( P I > .  This  i s  e a s i l y  seen t o  

be an i n j e c t i o n  and t o  be l i n e a r  over t he  funct ions .  I t  

r equ i r e s  a  l i t t l e  work t o  show t h a t  it i s  onto a s  well .  

We leave  t h i s  t o  t h e  reader.  

n  
I f  ( T ~ ,  ..., T ) a r e  vec to rs  i n  R we de f ine  t h e  

k  

k-dimensional volume spanned by ( T  , . . . , T a s  follows. 

a )  I f  ( T ,  . T ) l i e  i n  Rk c R n ,  then V O ~ ~ ( T ~  , . . ,  T ~ )  
k  

i s  t h e  usual  volume of t h e  pa r a l l e l ep iped  t h a t  

they span, i . e .  l e t  T~ = ' and take  

l d e t ( a i j )  1 

b )  I f  g E ~ ( n ) ,  then V O ~ ~ ( T ~ , . . . ,  T ~ )  = V O ~ ~ ( ~ T ~ ,  - . . , g ~ ~ l .  

k  n  
Since any k-tuple of  vectors  can be r o t a t e d  i n t o  R c R , 

t h e r e  can be a t  most one such volume funct ion.  To show t h a t  

k  
t h i s  indeed e x i s t s  we must show t h a t  i f  g: Rk + R i s  an 

element of 0 (n)  then 1 d e t  ( . . . , T 1 = I d e t  ( g ~ ~ ,  . . . , g rk )  1 .  

This follows from the  f a c t  t h a t  determinants  mul t ip ly  and 

k  
t h e  f a c t  t h a t  the  l l n e a r  map gl R i s  i n  0 (k)  and hence ha s  

determinant 21. 

k  
Let  M c H~ be an o r i en t ed  cW-submanfiold. Associated 

t o  M i s  a  k-form c a l l e d  t he  volume form, w It i s  vo l*  

def ined by <w v0 l J  ( T ~ ,  . . . , T ~ )  > = 2 ~ 0 1  ( P  ( T ~ ,  . . . , T ~ )  ) where 



P ( T ~ ,  . . . , T  ) i s  the parallelepiped spanned by C T ~ ,  , T k } >  
k 

i. e. vol (P ( . r l , .  . . , T ) ) i s  j u s t  the k-dimensional volume 
k 

defined i n  the previous paragraph. The ambiguous. f measures 

1 the  difference of the or ientat ion of TM given by 
P 

. . , T ] and the one caning from the or ien ta t ion  of M. k 
m 

I f  ( x l  ... ,\) are  local  C -coordinates f o r  M and i f  

k 
cp:  M -t Rn i s  the inclusion map, then 

W = vol { 
V O ~  k ax, ' * * * '  

*)dXl ,,...A d v  
axk 

2 3 
Example: I f  M c R i s  an oriented hypersurface, then we 

2 2 
associate t o  it a Gauss map G: M + S . This map assigns 

t o  each p M~ the  outward u n i t  normal t o  M2 a t  p. (The 

outward normal, v ,  i s  the  one so t h a t  i f  ( e  e ) i s  an 
1' 2 

oriented basis  fo r  TM then (el, e2, v )  i s  an oriented bas is  
pY 

3 m fo r  R . )  One sees t h a t  G i s  a C -mapping. In  f ac t ,  

i f  cp: M + R3 i s  the embedding, and (x,y) i s  an oriented 

loca l  cm-coordinate system for  M, Chen 

2 2 
The pullback t o  M of the  volume form on S v ia  the Gauss 

map i s  cal led the curvature form for  M. In  loca l  

coordinates it i s  



aG bG 
(G (p) (G (PI dy (PI Idx A dy. 

Exercises: 1) Let U c R~ be an open se t .  Show t h a t  the  

module of l-forms on U i s  f r e e  over the functions on U. 

A bas is  i s  (dxl, ..., dx }.  n 

2 )  Let  ~ f l  be. a. coo-manifold. Show t h a t  the  l-forms 

on M a r e  a f r e e  module over the  coo-functions i f  and only 

i f  there  a re  l-forms wl , .  . . , w so  t h a t  [wl (p) , . . . , w (p) ] n n 

i s  a bas is  f o r  T*M fo r  every p E .M. (Hint: Show t h a t  there  
P 

00 n + 
i s  a C -function p : R + R so t h a t  p (0)  = 1 and y (x) = 0 

i f  llxll 2 1.) Dually, show t h a t  the  coo-vector f i e l d s  a r e  

f r e e  over the  coo-functions i f  and only i f  there  a re  vector 

f i e l d s  X1,. . . , X so t h a t  f o r  every p E My n 

( p  , . , . , (p) } i s  a bas i s  f o r  TM n P 
TT 

3 )  Show t h a t  a coo-vector bundle E + M i s  t r i v i a l  i f  

and only i f  i t s  cm-sections, a s  a module over the  coo-functions 

i s  free.  I t  turns  out  t h a t  not  a l l  vector bundles a re  

t r i v i a l ,  and hence not a l l  the  modules of sect ions  a re  free.  

They a r e  a l l  pro j ec t i v e  modul es , however. 

* 2 4)  Show t h a t  TS i s  not t r i v i a l .  I n  f a c t  show t h a t  i f  

2 00 X: S* + TS i s  any C -vector f i e l d ,  then 1 must have a zero. 

5) Show t h a t  M~ i s  or ientable  i f  and only i f  



n 
AnTM* +-M i s  a t r i v i a l  bundle, i f  and only i f  t h e  module 

n 
of n-forms on M i s  f ree  over the  functions, i f  and only i f  

n 
there  i s  an n-form w so t h a t  w(p) # 0 f o r  a l l  p E M . 

6 )  Show t h a t  the d i f f e r e n t i a l  1-forms and the  vector 

f i e l d s  a re  dual modules over the  cm-functions. 

7) Define cr-forms on a ?-manifold, -and show t h a t  

they form an associative,  graded commutative algebra over 

the  r ing of cr-functions. 



53 : Inteqrat ion 

In  t h i s  section we s h a l l  def ine the in teg ra l  of a 

n 03 
k-form on M over oriented C -submanifolds of dimension 

k i n  M ~ .  I n  the  end of course, such integrat ion comes 

down t o  ordinary k-dimensional Lebesque in tegra t ion  

k on subsets of R . Let us begin w i t h  the ' s imples t  case. 

We take the case where the  ambient manifold, M, i s  an open 

k subset of R , U (and hence n = k ) .  A s  region of 

integrat ion we take a compact subset of U whose boundary 

i s  f i n i t e l y  many pieces of ~ ~ - h ~ ~ e r s u r f a c e s  8 - I  i c U. 

a, 
More precisely,  l e t  {cpl, . . . , c p l }  be C -functions defined on 

U, so t h a t  {qi = 0) defines a cm-submanifold of U (i. e. , 

Dqi (x) # 0 fo r  any x such t h a t  cpi (x) = 0) . We c a l l  

N = {p E uIcpl (p) 2 0, .  . . ,qr l  (p)  2 O }  a manifold with piecewise 

smooth boundary. Actually, N i s  a union of two pieces 

i n t  N = [ p  E uIcpl(p) > 0 ,..., cpl(p) > O }  and aN = N - i n t  N. 

The s e t  ( i n t  N)  i s  an open subset  of U and hence i s  a 

manifold of dimension k (possibly empty) . Without 

fur ther  assumptions aN can be qu i t e  nasty. 

, Examples: 1) ~ ~ ( p )  n U. 

2 )  The cube 
k 'X r0,11 

i=l 

3 )  C ( x , y ) l a i x I b  andcp(x) I Y I  $ ( x ) } .  



Let w = f (xl, ..., %)dxl " . . . A  d~ be a d i f f e r e n t i a l  

k k-form i n  U c R . suppose N c U i s  a compact manifold with 

piecewise smooth boundary. We define 

as  follows: 

d% denotes t h e  usual Lebesque measure on R 
k 

Here, dx 
1 " *  

and x i s  the charac ter i s t ic  function of N, i . e .  
N 

xN(p) = 0 i f  p / N and xN(p) = 1 i f  p E N. Actually, 

t h i s  def in i t ion  i s  val id  fo r  any measurable s e t  N contained 

i n  U. ( A s  we  s h a l l  see the  measure of BN i s  0 , and hence 

N i s  measurable, and 
'Nu = 4 n t  N 

W.  ) A s l i g h t l y  more 

i n t r i n s i c  def in i t ion  o f  t h i s  in t eg ra l  i s  the  following: 

In  t h i s  formulation we do not need the  expression f o r  w 

i n  loca l  coordinates though we s t i l l  need the  l o c a l  coordinates 

t o  do the integration.  

There i s  a subt le  point  here  about or ien ta t ions  and 



orderings of the  variables. The Lebesque measure on R 
k 

dx 
1 " *  

d\ is- independent of or ien ta t ion  and thus of 

ordering of the  variables,  i. e. , dx dx 1 2 * * -  dxk 
= dx dx . . . d s .  This i s  because the  volume o r  measure 

of a set is independent of any or ientat ion.  However, t h i s  

i s  not t r u e  f o r  forms, 

dx A  dx2 A . . . A  d\ = -dx A  dx A . . .  1 2 1 A d v  The reason 

i s  t h a t  these forms measure oriented volumes. I n  our equa- 

t i o n  re l a t ing  the  in teg ra l  of forms t o  t h a t  of measures 

then i s  s l i g h t l y  peculiar: 

j dx A . . . A  d s  = j 
1 xN dxl . . . d s  = volume ( N )  , 

N U 

[ dx, A dx A . . .  
1 d?k =-$ % dxZdxl . . . dxn. = - volume ( N ) .  

N U 

How do we account systematically f o r  the  minus sign i n  the 

second equation? The point  i s  t h a t  i n t  N, being an open - 
k a a 

subset of R , has a natural  or ien ta t ion  (-, . . . ,-) a t  
3x1 a x ,  

R 

every point  and lN dx A . . . A  dx = L  SU xN dx ... dxi 
il ik i 1 k 

a a where the 2 sign i s  (dx A. .  . A dx , (-, . . . ,-I>. 
il i ax, k a% 

The f i r s t  bas ic  theorem about this in tegra t ion  i s  t h a t  

00 
it i s  independent of the  C -coordinates. This i s  a consequence 

of the  f a c t  t h a t  dxl A . .  . A  d s  i s  a form which measures 

volum? as  well  as  of the chain rule.  



k 
Theorem 3.2: &t U c R be an open set, and let w be 

a differential k-form. Suppose (xly.. . , \I and (Yl, ,Yk) 

are two sets of coo-coordinates in U which sive the standard 

orientation. Let N c U be a compact manifold with piece- 

wise smooth boundary. If we use (3.1) to define JNw using 

either set of coordinates, then the two results are equal. 

Proof: Suppose that in the (xl,. . . , 5 )  -coordinates 

w = f(x ly...,x,)dxl " . . . A  d 5 .  Consider the change of 

coordinates as a diffeomorphism 

Calculating in the (yl, ...,y ) system w becomes 
k 

Since m = ( Q 9 .  ) is orientation preserving, 
k 

ami 
det(-) > 0. The two Lebesque integrals which we must 

ay; 
J 

compare are 

and 

f(# (y ' * *  
1 1  



We claim that in general if @: V -t U is a diffeomorphism, 

then 

or letting P = 9-I (N) and dropping the notation dx ... d 5  

or dy * . . . *  dyn 
1 

from the Lebesque integral, we claim 

It is in this form that we shall establish the result. First 

notice that in dimension 1 it is the usual change of 

variable formula, viz. if a < b then 

S rayb] f " ~ * l ~ l l  = ~:(~'g)lg'~ =$([a,bl) f" Sg([a,b])£ 

f) if g' > 0 and is fg(a) (f) if g' < 0. ) Consequently, 
g (b) 

the result holds in dimension 1. We shall prove the result 

by induction on k. There are several steps in the proof, - 
and only the final one uses the inductive hypothesis. 

k-1 Step I: Let A c R be a bounded set and suppose that 

p :  w + R~ is ceO (W is an open set in R k-1 containing x. 1 

The k-dimensional volume of 



$ f = 0 f o r  any measurable function f .  
T ( P )  

Proof: We show tha t  for  every s > 0, T ( p )  i s  contained i n  a 

s e t  of measure l e s s  than 6. Since c U, there  i s  a f i n i t e  
T 

union of cubes C . . . ,CT C' U so t h a t  A c 
1 ' U CT. Thus it 

i=l 

suff ices  t o  consider the case when A c C c U with C 

a cube. Let a be the side length of C. Subdivide C 

i n t o  smaller cubes of s ide length a/A. There w i l l  be 

af 
A k - I  of these smaller cubes. Since A i s  compact 1- (x) I 5 M ax; 

A 

fo r  a l l  i = l,. .  ,k-1 and a l l  x E A. Thus, the  var ia t ion  

of f on any one of the smaller cubes w i l l  be a t  most 

Me (k-1) (a/A). Thus, above each of the smaller cubes C 
i 

i s  an k-dimensional cube Ci x [a b .  ] containing I7 ( p  1 ci) i' I. 

where bi - a = M(k-1) (a/A). i 

u 

ak-l 

Thus, T ( p )  c U Ci x [ai,bi] . The measure of the cubes 
i=l 

a - (g)k-l.M(k-l) 7 - ak (M* (k-1) ) is P k-1 a 
a R 

A s  we take 1 larger  and l a rge r  t h i s  volume approaches 0. 



03 k 
Step 11: Let Xk-l be a C -hypersurface i n  uk c R and 

l e t  K c X be a compact se t .  Then v o 5  (K) = 0. 

k-1 k-1 
Proof: Near any x E X , X defines one of the  coordinates 

00 
impl ic i t ly  as a C -function of the  other (k-1) . Thus, 

there  i s  an open s e t  of X containing x i n  which x has th-e  

form FCpI .  Applying s t ep  I, we see t h a t  any bounded set 

inside s ~ c A  an open set has measure zero. We cover K by 

f i n i t e l y  many such open s e t s  and f ind t h a t  the  measure on 

k-dimensional volume of K i s  zero. 

+ k 
Step 111: Let N c U be given by {(pIq l (p)  2 O , . .  . , qR(p)  2 01, 

00 

where each qi defines a C -hypersurface i n  U. Suppose 

t h a t  N i s  compact. Then 

R 
Proof: Since N - i n t  N = II (qi = 0) n [cpj 2 01 and since 

i=l j#i  
each of the  s e t s  i n  the union i s  a compact subset of a 

00 
C -hypersurface, it follows from s t e p  I1 t h a t  

volk (N - i n t  N) = 0. Hence, 



-1 
Since 9: V + U i s  a diffeomorphism P = @ (N) i s  a 

-1 
manifold with piecewise smooth boundary and @ ( i n t  N )  = i n t  P. 

Hence, the upshot of s teps  I, 11, and I11 i s  t h a t  t o  prove 

the theorem f o r  compact manifolds with piecewise smooth 

boundary it suff ices  t o  prove the  theorem f o r  open s e t s  

with compact closures, i. e. f o r  bounded open se t s .  

- Step IV:  Given P and . a- as i n  (3 .3) ,  then i f  t he  r e s u l t  
n 

holds for  any rectangle X [ai,bi] contained i n  P, then 
i=l 

it holds f o r  P. 

Proof: A s  we remarked above it suf f ices  t o  prove (3.3) 

fo r  the  open s e t  ( i n t  P ) .  But being an open s e t ,  ( i n t  P) 

i s  a union of a countable number of closed rectangles with 
00 

d i s j o i n t  i n t e r i o r s  i n t  P = U R.  (see exercise 1). Since 
1 

i=l 
the  Lebesque in teg ra l  i s  countably addit ive 

Likewise, 

From these equal i t ies  Step I V  follows immediately. 

Step V: Given P and 9 suppose t h a t  f o r  each p E P there  



i s  an open s e t  U conta5ning p so t h a t  the  r e s u l t  holds 
P 

f o r  any rectangle contained i n  U n P.. Then the r e s u l t  
P 

holds f o r  P. 

Proof: The open s e t s  [U ) Pep give an open covering of P. 

L e t  ( u ~ , .  . . ,U ) be a f i n i t e  subcover. There i s  s > 0 so 
T 

t h a t  any rectangle of diameter l e s s  than 6 i n  P i s  

contained i n  some Ui. Take a decomposition as i n  Step IV:  

CO 
i n t  P = U R:. By subdividing the R: we can assume t h a t  

.L J. 
i=l 

each has diameter l e s s  than e .  (Only f i n i t e l y  many have 

diameter > e t o  begin with.) Since the r e s u l t  holds f o r  each 

of  the  new, smaller rectangles, it holds f o r  P. 

Step VI: Suppose given {P, 9) and [ Q (P)  , I )  a s  i n  (3.3) f o r  

which the r e s u l t  holds. Then it holds for  {P,Y .Q) as well. 

proof: I f  p :  V + U i s  a diffeomorphism denote by J ( P )  i t s  
ap 2 

Jacobian determinant, viz. d e t  (->) . Then i f  
ay 



Step V I I :  The r e s u l t  holds fo r  su f f i c i en t ly  small rectanqles. 

By t h i s  we mean t h a t  given- 6: V -+ U and p E V we s h a l l  

show t h a t  there i s  e > 0 so t h a t  ( 3 , 3 )  holds f o r  any 

rectangle contained i n  the e-ball about p. Given p E V, 

there  i s  an (k-1)-tuple, 1 < il < i <. . .< ik-l k, so 
2 

I - -  t h a t  

J 
( - 1 ; f o r  j ,  r = l t . . . t k - l t  

ay, 

i s  inver t ib le  near p. For s implic i ty  l e t  us assume t h a t  

the  missing index i s  k. Define T: V -+ W by 

I 
y 1  Y = ( G l  (y1> ,yk) y 3 Gkm1 (y1> Yyk) Yyk) 

I Then I' i s  a diffeomorphism on some open s e t  V containing 
I 

m P 
-1 

I p. Let Y = G T . Clearly, Y (zl,. . . , z )  = (zl , . . . ,z  k - l ~  P (zk) ) 

I We claim t h a t  i f  R i s  any rectangle i n  V then the r e s u l t  
I pY 

holds fo r  (R, l?) and ( T  (R)  , Y )  . By Step V I  t h e  r e s u l t  holds 

a l so  for  (R,Y*T) = (R ,@) .  

L e t  us study [R,l?) f i r s t .  We-write v = (yl, ..., yk-l 1 

I * 
h and C = (zl,.. . , z  1. Then T(v,yk) = (l? ( v )  ,yk) where 

I k-1 
L Yk 

% T ( v )  i s  the Cth-coordinate of T (v,yk) . Note t h a t  
Y,, 

I J(T(v,yk))  = J ( T  ( v ) ) .  L e t  R be a rectangle contained i n  

Yk 
I V ( the  domain where l? i s  a diffeomorphism) . We wri te  

I P 

R = R x [a,b] . Then 
C 





Since Y (S) = u p ({c} x [c, dl ) , Fubini' s theorem t e l l s  
C E S C  

us t h a t  

This completes the proof of Step V I I  and of theorem 3.2. 

k 
Exercises: 1) Show tha t  i f  A c R i s  a bounded, open s e t ,  

CO 
then A = bl R .  where the Ri a r e  rectangles with s ides  

1 
i=l 

p a r a l l e l  t o  the  coordinate hyperplanes and where the  { R ~ }  

have d i s j o i n t  in te r iors .  

2 )  Show t h a t  i f  A c R~ i s  bounded, A c U, with U 
T 

open, then A c U Ri c U where the Ri a r e  rectangles with 
i=l 

d i s j o i n t  in t e r io r s .  

A t  t h i s  stage we have only begun. We have defined 

JNw i f  N i s  a compact k-dimensional manifold with piecewise 

k smooth boundary contained i n  an open s e t  U i n  R and w 

i n  a k-form defined on U. The next s t e p  i s  t o  define 

k 
SNw where Nk c M i s  a compact manifold with piecewise smooth 

k boundary and w i s  a k-form on M (whi& i s  or iented) .  

T 
B y  exercise 1 below, one 'can wr i te  N = U N .  with 

1 
i=l 



( i n t  N . )  n ( i n t  N . )  = j?f f o r  i # j ,  where each N i s  a 
1 3 i 

manifold with piecewise smooth boundary contained i n  the 

image of a coordinate path. We l e t  

where SN o i s  defined by (3.1) using the  loca l  coordinates 
- 

i n  an open s e t  containing N i The r e s u l t  i s  independent 
J. 

of the decomposition; for ,  i f  we  have two such, N = U 
Ni 

i=l 
S 

and N = U N!, then t h e i r  in te rsec t ion  gives a t h i r d  such 
j =1 3 

T S 
decomposition: N = U U ( N .  fl N ! ) ,  which i s  f i n e r  than 

1 3 i=1 j=1 
e i t h e r  of the i n i t i a l  two ( f i n e r  i n  t h e  sense t h a t  each 

element i n  the  th i rd  decomposition i s  contained i n  some 

element of each of the  f i r s t  two), Clearly, 

i f  we  use the  same cm-coordinates, ( x ,  . . . ) , t o  ca lcu la te  

a l l  the  integrals .  On the  other  hand Theorem 3.2 t e l l s  

us t h a t  the in tegra ls  are  independent of the  coordinates. 

Hence, 



n 03 Now l e t  M be a C -manifold of any dimension, n, and 

n 
l e t  w be a k-form on M . Suppose N~ c pk i s  a compact 

k 
submanifold w i t h  piecewise smooth boundary, and P i s  

k k oriented. L e t  cp: P + M be a cw map. We define 

n n 
f.dxi, and l e t  y:  [a,b] -t R Examples: 1) Let w 

w 
be a C -curve. Then f y w  = f b  a 'i=l f i  (y  (t) * y i  ( t ) d t .  

2 ,  ~ e t  P:M -%n be a ~ ' - r n a ~ ~ i n = .  Suppose t h a t  M 
2 

i s  oriented. Define a 2cform on M~ a s  follows. 
vol  

L e t  r , r2ETM.  Then, W V o l ( ~ l , ~ 2 )  i s  the  area of the  
1 P 

parallelouram (DP (rll ,DP ( r 2 )  I i n  IKn. The sign i s  + i f  and only 

2 
r\ 

i f  (rl, r 1 give the  or ientat ion f o r  TM The area of p (M ) i s )  v2wm 
.. P. 

3 )  There i s  a d i f f e r e n t i a l  1-form on the c i r c l e  ca l led  

1 2 de. I f  we consider i: S c + R  , the  u n i t  c i r c l e ,  then 

dg = i *  (-y dx + x dy).  We claim t h a t  S d$ = 2n. To 
S 

1 see t h i s  define p : [0,2n] + S by p (t) = (cos (t) , s i n  (t) ) . 
1 

Since S = i m ( p  ) and p I [O,2n) i s  in jec t ive  S dg = Jgn p* dg. 
S 

But p* (d9) = -sin t * c o s 1  ( t ) d t  + c o s ( t ) s i n g  ( t ) d t  = d t .  

1 2 03 More generally, i f  y:  S + R - [o) i s  any C -mapping, 

1 then the winding number of y (S ) about or ig in  i s  defined 



We sha l l  show l a t e r  i n  t h i s  chapter t ha t  w ( y )  i s  always 

an integer. 
t 

k k k 
Exercises: 1) I f  M i s  a cw-manifold and N c M i s  a 

k 
subset, then N i s  a cw submanifold with piecewise smooth 

boundary i f  for  each p E M there i s  an open s e t  U 

w 
containing p and C -functions {ql, . . . ,q4):  U + R so tha t  

N = {p E ~lq ; (p )  2 0,. . . ,q4(p)  2 0( and so t ha t  {pi = 0) 

k k 
defines a ~ ~ - h ~ ~ e r s u r f a c e  in  U. Show t h a t  i f  N c M 

w 
is a compact C -submanifold with piecewise smooth boundary, 

then there are: 

1) a f i n i t e  collection of open se t s  U c M~ so t ha t  
rn 

a 

2 )  a decomposition N = U Na with Na c Ua such that :  
a=1 

a)  each Ua has cw-coordinates, 

b) each Na i s  a compact submanifold of Ua with 

piecewise smooth boundary, and 

are d is jo in t .  C )  the in te r io rs  of the { N ~ ] ~ = ~  

2) Show tha t  i f  we have two such decompositions of 
T S 

N, N = U Na and N = 'j N' then t h e i r  intersection 
a=l  ~ = 1  B' 

S 
N = U U Na f l  N' i s  also such a decomposition. 

a=l ~ = 1  B' 



§4: Exterior Different ia t ion 

The previous section d e a l t  with se t t ing  up the many- 

dimensional analogue of in t eg ra l  calculus. In  t h i s  sec t  ion 

we es tab l i sh  the  analogue of d i f fe rent ia t ion .  It  i s  ca l led  

ex ter ior  d i f fe rent ia t ion .  

We denote the module of k-forms on a  c~-manifold M 

k 
by A ( M ) .  The ex ter ior  d i f f e ren t l a t ion  i s  a  l inea r  map 

k  k+l  
d: A (M) + A (M) . It s a t i s f i e s  the  following propert ies:  

w 
1) d i s  natural  fo r  C -mappings, i . e .  

2) d(dw) = 0, 

deg w 
3 )  d(w A p )  = dw A I J ,  +, (-1) w A dp,, and 

n  
4)  f f  U c R i s  an open s e t  and xi: U + R i s  one 

of the coordinate functions then d(xi)  = dxi. 

Theorem 4.1: There is  a  unique ex ter ior  d i f f e ren t i a t ion  

sat isfyinq propert ies 1) - 4)  . I f ,  i n  loca l  coordinates, - 
n 

w =- Z cp dxi A. . . A  dxi , then dw = dx.A dx. A . . . A  dxi . 
1 k ' 'j=1 ax j  I 1 k 1 

I 

Proof: Let us show f i r s t  of a l l  t h a t  there  i s  a t  most 

one ex ter ior  d i f f e ren t i a t ion  sa t i s fy ing  1) - 4 ) .  

Suppose d  and d '  a re  ex ter ior  d i f f e ren t i a t ions  sa t i s fy ing  

1) - 4 Let f be a  function defined i n  a  neighborhood. 

\ 



n 
U of 0 i n  R ~ .  Then, f = EiZl xihi + f (0) by Lemma 2.2  

of Chapter 11. Thus 

Since f (0) i s  a constant function d ( f  (0) ) = f (0) d (1). But 

d (1 )  = d ( l . 1 )  = l d ( 1 )  + d ( l ) * l  = 2 d ( l ) .  It follows t h a t  

d (1) = 0, and hence, t h a t  d (f (0) ) = 0. Thus, 

n 
d ( f ) ,  = Ci=l dxi.hi(0). Exactly the same argument shows 

n 
t h a t  d '  ( f )  = d '  (xi) -hi  (0) . But property 4 )  ensures 

t h a t  d '  (xi) = dx 
i ' 

Thus d ( f ) O  = d o  ( f ) O .  

This argument i s  val id  a t  any point  p E U. Hence, 

n 
df = d ' f  f o r  a l l  functions defined i n  open s e t s  i n  R . 
Clearly d(dxi) = 0 and d '  (dxi) = 0. Thus, i f  

w = E f I  dxi A . .  . A  dxi then both dw and d'w a re  given by 
1 k 

25 dx, A dxi A.. . A  dxi . 
ax 

j 
3 

j -1 
1 k 

n This proves t h a t  d = d' on A* (U) fo r  U an open set i n  R . 
k n 

But i f  w 6 A (M ) and dw # d'w, then there  i s  a coordinate 

patch U c M" so t h a t  d(wlu) # d l  (w I u )  . Since we have j u s t  

shown t h a t  t h i s  i s  impossible, it follows t h a t  dw = d'w 

f o r  al1.w E A*(M). 

In  showing there  i s  a t  most one such d, we gave a 

formula f o r  dw i f  w i s  expressed i n  l o c a l  coordinates. I f  



w e  knew t h a t  t h i s  formula gave the same value fo r  dw 

what ever coordinates we used, then it would define dw f o r  

a l l  forms w E A* ( M ) .  The f a c t  t h a t  dw i s  independent of 

the  coordinates follows immediately from the  uniqueness 

2 
argument. The only axiom t h a t  needs t o  be checked i s  d = 0. 

2 
This w i l l  follow i f  we can show t h a t  d (f) = 0 f o r  a l l  

a, 
C -functions. In  loca l  coordinates 

2 d ( f )  = d (  

By the  skew symmetry of the  wedge product of l-forms, 

t h i s  i s  equal t o  

Since f i s  COO, i t s  cross p a r t i a l s  are  equal. This proves 

2 t h a t  d ( f )  = 0. 

Definition: form said closed i f  and only i f  

dw = 0. A form w i s  said  t o  be exact i f  and only i f  

there  i s  a form p so t h a t  dp = w. 

2 
Since d = 0 every exact form i s  closed. The converse 

does not  hold. The amount by which it f a i l s  i s  a strong 

invar iant  of a manifold. 



1 
Exercises: 1) Show t h a t  de on S i s  closed bu t  not  exact. 

Hint: I f  it were exact show t h a t s  de would be 0. 
S 

2) Let f (z)  = h (x,y) + i k (x ,y )  be a holanorphic function 

1 
i n  some region U c C . Show t h a t  h(x,y)dx - k (x,y)dy i s  a 

closed 1-form ins U.. 

3) ' ~ e t  M~ be- a connected manifold. Show that' the., 

only closed f u n c t ~ o n s  a re  the  constants. 

4 )  Show t h a t  every n-form on M" i s  closed. 

5 )  Consider T~ = Rn/zn. Show t h a t  the  1-forms 

n n dxl,. . . ,dx on R define 1-forms dxl,. . . ,dxn on T . Show n 

t h a t  on T" these 1-forms a re  not exact. (Of course, on 

Rn dx. is  exact since it is  d ( x . ) . )  
1 1 

3 
6 )  I n  R we  ident i fy  1-forms and 2-forms with vector 

f i e l d s  and 3-forms with functions according t o  the 

following scheme : 

a a f dy A ~ Z  + f 2  dx Adz + f 3  dx A dy<->flz - f - a 
1 2 ay + f3  dz" 

Show t h a t  when we make these iden t i f i ca t ions  we have a 

commutative diagram: 



d 
Functions -) 1-forms A 2-forms 

d -3 3-forms 

Functions -!+ Vector fields qh Vector fields Functions 

2 Thus d = 0 contains the results, curl(grad) = 0 and 

div (curl) = 0. 

7) Show that if (F ,F ,F ) is a vector field in R 
3 

1 2 3  
3 

with w the corresponding 2-form and if S c K is an 

CO 
oriented C- surface, then 

where c(p) is the unit normal to S at p which completes 
9 

an oriented basis for TS to an oriented basis for TR= 
P P 

The formula on the right hand side is the usual formula for 

integrating a vector field over a surface in 3-space. 

8) . Suppose w is a closed 1-form on  which is 
connected). Show that w = df if and only if 

J w = 0 for every closed curve I' in M. 
r 

(Note: A closed curve is a map y: [a,b] + M so that 

Hint: If w =df, and.y: [ajb] + M  is a curve then 

y*w = dfoy. Hence, by the Fundamental Theorem of Calculus 



y*a = f (y (b) ) - f (y (a) ) .  conversely, i f  $, e = 0 f o r  a l l  

CO closed curves show t h a t  i f  y and (I a r e  C -paths from 

a t o  b, then s =$(I e. Define f :  M - t  R by 
Y 

W, where. yx i s  any ~ ~ - ~ a t h  from a f ixed point  
X 

Po E M t o  x. Show df = s. 



a5. Complex Valued Dif ferent ia l  Forms 

Heretofore, we have been studying r e a l  valued functions 

and r e a l  valued d i f f e r e n t i a l  forms. There is,  however, 

an obvious extension t o  complex valued forms. I f  we work 

globally and abstract ly ,  we consider complex valued 

multi l inear,  skew-symmetric forms on V ( a  r e a l  vector 

space) 

k These form a vector space ha("). I t  i s  na tura l ly  isomorphic 

k n 
t o  A (V) aR R'. I f  E + B is  a r e a l  vector bundle, then we 

k k -1 can form A (E*) with f ibe r s  $ ( n  (b)*) .  Again, 
(I: 

k k a, 
(E* ) = A (E* ) BR R'. A C -complex valued k- form on M 

k 03 
is  a C -section of (T*M). Such sect ions  form a complex 

k 
vector space which we denote by A (M;(I:). One sees t h a t  

k k 
A (M;E) = A (M;R) @ (I: as  a module over the  coo-functions. 

R 

In  loca l  coordinates a complex valued k-form i s  

a, 
where the cp a re  complex valued, C functions on M. 

I 

The operations of integrat ion and exter ior  d i f f e ren t i a t ion  



have complex analogues. The map 

is just the linear extension of the reai exterior differen- 

tiation: 

A...A dxi ) = p% dx. ~ d x .  ~ . . . ~ d x  . 
a ax 

j 
I 1 1 

i 
j =1 

a 

The integral Sp (N)w can be evaluated by writing w = p + iv 

with p and v real and setting 

1 
All this is very straightforward, It becomes more 

interesting when we consider complex valued forms on a 

complex-manifold. Suppose that (zl,. . . ,z ) are holomorphic n 
n 

coordinates on U, an open subset of D , with z = x + iy . 
j j j 

Then, we have complex valued functions ( z  : U + D) and 
j - 

(zj: U + D). The first set are holomorphic and the second 

are anti-holomorphic. Their differentials (dz dz j' j j=1 

form a basis (over the complex-valued, cm-functions) . for 
the complex-valued 1-forms in U. In fact, we see that 

dz = dx. + idy and da = dx - idy.. Hence, 
j 3 j j j I 

1 - 
dx =A(dz. + dI.1 and dy = -(dzj - dz.). 

j 2 1  I j 2i 7- 

Let us denote dz A .  A d by dzI and 
i 
1 a 



- 
dz . A. . . A dz by dz where I is the multi-index 
.]I jk J 

(il,. . . , i ) and J is the multi-index (jl,. . . , jk) . The 
R 

exterior derivative, d, decomposes as a + a where: 

and n 

If we make a holomorphic change of coordinates 
aIJJ .: 

(GI,. . . , Cn) = (zl,.. . ,zn) , then 4 = 0. (These are just 
aC 

the Cauchy-Riemann equations in several variables.) Thus, 

and 

Consequently, a holomorphic change of coordinates 

leaves invariant the module (over the complex valued, cC0- - 
functions) spanned by the differentials of local holomorphic 

1 
functions. This submodule is denoted A" O (M) c A (M: D) . 
Likewise, we have the module spanned by the anti-holomorphic 

1 
differentials A" (M) c A (M:D) . Clearly, this gives a 

direct sum decomposition 



Proposition 5.1: 

a )  at w E A I ' O ( M )  be  a closed 1-form. Then, i n  

loca l  holomorphic coordinates w = C f . d z .  where 
1 1  

the  f . are  holomorphic functions. - 1 
b) IF w E A" O (M) i s  exact  and i f  M i s  compact, 

then w = 0. - 
n - - 

Proof: We have w = Bi,l f i  (zl, . .  . , zn, zl , . .  . , zn)dzi. Thus 

- n - afi a f i  
dw = a w  + aw = cjZl az dz .  A dzi + - as d i .  A dzi. 

j 
3 

j 
3 

Since [dzi A dg . } ,  i, j = 1,. . . ,n a re  l i n e a r l y  independent 
3 

over the cm-functions, it follows t h a t  i f  dw = 0, then 

A - -  
az - 0 f o r  a l l  i, j.  This i s  the  de f in i t ion  of the  function 

4 

f . being holomorphic. 
1 

I f  w i s  i n  A l y O ( ~ )  and w = dq, then cp i s  a function 

on M and Sq = 0. This means t h a t  cp i s  holomorphic. 

But a compact complex manifold has only loca l ly  constant - 
holomorphic functions. Hence % = 0. 

1 Example: Let U c 9: be an open s e t  and l e t  z be the 

holomorphic variable. I f  f (z )  i s  a holomorphic f u n c t ~ o n ,  

then we claim t h a t  f ( z ) d z  i s  a closed 1-form. AS we have 



seen 5 (f (z)dz)  = 0 since f i s  holomorphic. On the 

other hand, 8 ( f  (z)dz)  = dz h dz = 0. Thus 

d ( f (z )  dz) = 0. This shows t h a t  on a complex curve any 

holomorphic 1-form i s  closed. I f  the  curve i s  compact, then 

none (save 0) a re  exact. 

Exercises: 1) Let C = E/L where L c E i s  a l a t t i c e  

i . e . ,  L BZ R sR E. Show t h a t  dz induces a holomorphic 

1-form on C. Show t h a t  dz i s  not exact on C. 

2 )  a )  Let f ( z )  be holomorphic i n  U = [ z [ 0  < lzl < 1) 

and suppose t h a t  f ( z )  has a pole with zero residue a t  

(C +oo n 
0, i . e . ,  near 0, f ( z )  = C  a z with a-l = 0. n=-k n 

Show t h a t  f ( z ) d z  is exact on U. 

dz 
b) Show t h a t  - i s  not exact i n  U. 

z 



§ 6 .  Manifolds with Corners 

k k k Let M bk a coo-manifold and N c M a subset. Suppose 

CO 

given any point  p E M t h a t  there  a re  C -functions defined 

i n  an open s e t  u of M containing p, kpl,- , q 3 } ,  

so t h a t  

N n u =  [q E u(q1(q) 2 O,.. . ,pa(q) 2 01, and 

2) i f  q E N n U and qi (q) = 0,. . . ,lpi (q) = 0, then 
1 r 

{ D V ~  (q) , . . . , D ~ J ~  (q)  1 a r e  l i n e a r l y  independent 
1 r 

elements i n  &(TM , R) = T*M 
9 q ' 

k 
The subset N i s  ca l led  a manifold with corners. 

k k k Theorem 6.1: Let M be a coo-manifold and N c M . Then 

i s  a manifold with corners i f  and only i f  fo r  every 

there  is  a loca l  coo-coordinate system (x 
1' ' 

. , ,  val id  i n  

an open s e t  U containinq p, a d  s 2 0 so t h a t  

Proof: I f  such coordinates e x i s t  near p, then w e  define 

q i  t o  be x fo r  i F; s. Conversely, suppose 
i 8 c M~ i s  a 

manifold with corners and l e t  p E M. Let gl, . .  . ,qA be 

the functions defined i n  an open s e t  U containing p so 

m a t  N l l  U = {qlql(q) 2 0, ...,@ (q) 2 0). After  renumbering a 
w e  can assume t h a t  cpl (p) = 0,.  . . ,cps (p)  = 0, 'Ps+l (P) # 0, ,qL (P) # 0. 



There are two cases to consider--p E N and p k N. If p # Ny 

then, since N is closed in M, there is an open set U 

containing p which misses N with coordinates (x ... ,x ) .  1 n 

We can assume x < -0 throughout U. Thus 
1 

N n u = [(xl,...,xn) E U(xl 2 0). If p E N, then 

%+l (p) > 0,. . . ,qA (p) > 0. By restricting to a smaller 

open set V containing p, we can assume q s+l > 0, ... 'OA > 0 

throughout V. Thus, N n V = (q E vlql(q) 2 0 ,..., qs(q) 2 0). 

Since [ D Q ~  (p) , . . . , ~ q ,  (p) } are linearly independent, there 
are s of the variables, which, after renumbering, we can 

assume are (x . . ,xS) SO that 1' ' 

n 
is invertible. Consider the map Y: V -, R given 

Y ( X  j ) = ( l l j  j y . y j y ) yXs+ly. JXn) n n 

The map is a local diffeomorphism near p, say in W. Define 

new coordinates (yl,. . . , yn) valid in W by yi = Y (xl , . . . , xn) . 
In these coordinates N tl W = ((yl,...,yn E wlyl 2 OJ...,ys 2 0). 

k k 
Definition: Let N c M be a manifold with corners. Define 

Ci(N), i 2 0, to be the union of those p E N SO that near 

p there are c*-coordinates so that p is the origin and 

N = [(xl ,... ,xn)lxl 2 O,...,xi 2 0). 



Lemma 6 .2  : 
k 

a )  N = U C i ( N ) .  
i = O  

b) C i ( N )  n C . ( N )  = f l  f o r  i # j. 
3 

- 
C )  Ci(N)  = U C .  ( N ) .  

j l i  3 

d)  C i ( N )  c M - U C .  (N) i s  a codimension i submanifold. 
j > i  ' 

Proof: Part  a )  i s  immediate from 6.1. P a r t  b) follows from 

the  f a c t  t h a t  ( (xl, . . . , xn) 1 xl 2 0, .  . . ,xi 2 0) and 

{ (xl, . . . , xn) 1 xl 2 0 , . . . , x . 2 0)  a r e  not loca l ly  diffeomorphic 
3 

a t  the or ig in  i f  i # j. 

Par ts  c )  and d )  follow eas i ly .  

Definition: aN = U Ci (N)  and a S ~  = Cl (N)  . 
ill - 

Corollary 6.3: a S ~  c M - ( a N  -  as^) is a cm-submanifold 

of codimension 1. 

k k Let N c M be a manifold with corners and suppose 

k t h a t  M i s  oriented. The manifold, i n t  N, being an open 

k subset of M receives an or ien ta t ion  from t h a t  of M . 
s k  

W e  give a N , which i s  a (k-1) dimensional manifold, an 

or ientat ion.  A t  p E a choose a tangent vector v which 

points in to  the region M - N, i. e. i f  loca l ly  N i s  given 

by cp 0 choose a curve y so t h a t  y ( 0 )  = p , cp ( y ( t ) ) > O  ' 

f o r  t > 0 and y l ( 0 )  # 0. The vector y l ( 0 )  i s  a tangent 



vector pointing in to  M - N. If ('1, 9 ~ ~ - ~ )  i s  a bas is  

f o r  T($N) 
P it qives the or ien ta t ion  fo r  !?(aS?V) i f  and only i f  

P 
( v ,  T ~ ,  . . . , T ) gives the  o r i e n t a h o n  fo r  TM . 

k-1 P 
k k I f  N c M i s  a manifold with corners,  then M can 

a be covered by open s e t s  {U ) w i t h  COD-coordinates (x; # .  . . ,xk) a 
such tha t :  

a a a a 
N n ua = { ( X ~ , . . . , X ~ ) I X ~ ~  O , . . . , X , ~  01. 

k-1 a a a a a Consider X 
i = { ( x  ,,... ,xn) lX1 2 0 , . . . , x i  = 0 ,..., x 2 0 )  S 

S k-1 k-1 
i n  Ua. Clearly, a N  n Ua = U Xi . Also, each Xi i s  

i=l 
k-1 a a a 

a cm-submanifold with corners inside Yi = { ( x  ,,..., x ) \ x i  = 0 ) .  n 
k k Thus, i f  N c M i s  a compact manifold with corners, then 

aN i s  measurable and PN -  as^ - is  a s e t  of measure 0 (by 

Lema 6.2).  Thus, i f  w i s  any (k-1) form on M~ and i f  

aSN i s  oriented, then 

Exercises: 1) Give an abs t rac t  de f in i t ion  of a manifold 

with corners. 

2 )  Show t h a t  a manifold with boundary i s  the same 

thing as a manifold with corners with the condition t h a t  



87. Statement of Stokes' Theorem 

We have established the multi-variable version of 

d i f f e r e n t i a l  and in teg ra l  calculus. A na tura l  question t o  

ask a t  t h i s  point  i s  "What i s  the generalization of the 

Fundamental Theorem of Calculus?" The answer i s  StokesF 

Theorem. 

k k 
Theorem 7 . 1  (Stokes' Theorem): Kt N c M be a compact 

k 
suhmanifold with corners inside an oriented manifold, M . 

n k 
Let s be a c*- (k-1)- form on P and cp : M + pn 2 - - 
a3 

C -mappinq. Then, 

du, = S, ($1 S , , a N )  
u , .  

n Example: k = I: Let y: [a,b] + P be a c*-curve and l e t  

03 
y : P + R' be a C -function. Stokes ' theorem says 

I f  we p u l l  these forms back t o  forms on [a ,b] ,  then t h i s  

equation becomes 

Of cburse, d( f .y)  i s  jus t  (fay) ' ( t ) d t .  Hence, i n  t h i s  case 



Stokes' Theorem becomes the Fundamental Theorem of Calculus. 

Theproof in higher dimensions succeeds by reducing the 

problem to the Fundamental Theorem of Calculus. 



§8. Par t i t ions  of Unity 

The main technical  r e s u l t  t h a t  we need t o  prove 

Stokes' theorem is  an a b i l i t y  t o  reduce the  problem t o  a sum 

of ones which a re  non-zero only i n  one coordinate patch. 

This i s  achieved by using a .pa r t i t ion  of unity. A s  might 

be expected, t h i s  technique i s  very important t o  many 

d i f f e ren t  problems i n  the theory of manifolds. I n  f ac t ,  

the  existence of a p a r t i t i o n  of unity i s  the main difference 

between the cm-category and the ana ly t ic  category. 

n 
Let (uaIaeI be open subsets of M so t h a t  A c l~ Ua: 

a€I 
1 
t h i s  i s  ca l led  an open cover of A. _A  artitio it ion of uni ty  

f o r  A subordinate t o  the cover { u , ) ~ ~ ~  - i s  a co l lec t ion  
00 

of C -functions @ U + R where U i s  some open s e t  a-  

containing A such that:  

1) ep (p) 2 0 f o r  a l l  p E U. a 

2 )  Given p E U there  i s  an open s e t  V containing 

p so t h a t  a l l  bu t  f i n i t e l y  many of the  qa vanish 

on V. 

3 ,  'as1 wa(p) = 1 f o r  a l l  p E A. 

4) The support of cp,, i. e. (x  E ~Icp,(x) # 0) ,  i s  

contained i n  Ua f o r  a l l  a E I. 

k 
Theorem 8.1: Given A c M and any open cover {U ) of A, a a€I - 



there  is  a coo-partition of unity f o r  A subordinate t o  

Proof: Step I: Let 

-l/ (x-a) 2 
f e 

x >  a 

1 
Then f i s  a coo-function on R . a 

Step 11: Given a < b i n  R,  there  i s  a coo-function 

1 f:  R +- [0,1] which i s  pos i t ive  exactly on (a ,b) .  

Proof: f ( x ) * f  (-x) i s  such a function. a -b 

Step 111: Given a rectangle R = x [ai,b. ] there  i s  a 
1 i=l 

coo function cp - Rn + [0,1] which i s  pos i t ive  exactly on 
R *  

( i n t  R ) .  

Proof: L e t  cp (t) be a function pos i t ive  exactly on 
(aiybi) 

n 
(ai ,b21 q Then define qR( t ly . .  . ,tn) = q(ai,bi) (t. r 1 

i=l 

Step IV: Let C c U c Rn with C compact and U open. 

There is  a coo-function f :  Rn + [0,1] so t h a t  f l ~  = 1 and 

fl(Rn- U )  = 0. 

Proof: For each point,  p, of C there  i s  a rectangle 



L L  

R = x [ai,bi] SO t h a t  p E ( i n t  R )  and R c U. Cover C 
i=l 

by the  i n t e r i o r s  of f i n i t e l y  many such rectangles [ R ~ ,  . . . ,$I. 
n T Consder g: R + [O,m) defined by g = cpR where r=p 

i Ri 
i s  pos i t ive  exactly o n  ( i n t  R . ) .  Then gl (R" - U) = 0 

1 

and g l ~  > 0. Let o > 0 be the minimum value of g on C; 

Take a coo-function cp which i s  pos i t ive  exactly on 
(0,  e )  

(0, E) and 0 elsewhere. Define 

Clearly, 0 < $ (t) < 1 f o r  0 < t < c , and 

; f o r t i 0  

$(t)  =- 

; f o r  t 2  E .  

n 
Define f:  R + [O, 1 1  by f = Jrog. This i s  the required 

function. 

Step V: Suppose given A c M and an open cover { U  ) a a E I  

of A. Suppose {V ) 
8 BEJ is  a refinement of { u ~ ) ~ ~ ~ .  T h i s  

means t h a t  there  i s  a function b:  J -, I SO t h a t  V c U 
B P ( B )  

f o r  a l l  @ E J. Then, i f  A has a  artitio it ion of unity 

subordinate t o  { V  ) B BEJ' (qB) then it has one subordinate t o  



-1 
Proof: For each a E I consider p (a) c J. Form 

(Since for  each x E U a l l  bu t  f i n i t e l y  a 

many of the a re  zero i n  a neighborhood of x, t h i s  sum 
B 

CO 
makes sense and i s  a C -function.) Clearly $a i s  supported 

i n  Ua and ((a]aeI i s  a  artitio it ion of uni ty  subordinate 

Step V I :  L e t  A c  Mn be compact and [U ) be an open cover a aeI  

of A. Then there  i s  a  artitio it ion of uni ty  of A 

subordinate t o  [ualapI. 

Proof: By Step V we are  allowed t o  assume t h a t  each U a 

i s  a coordinate patch. Since A i s  compact, A c U U U Ua . 
"1 T 

We claim t h a t  there  a re  compact s e t s  Ci c Ua so t h a t  

T 
i 

A c ( U i n t  Ca ) .  I f  t h i s  i s  so, then there  are  l a r g e r  
i=l i 

compact s e t s  V with Ca c i n t  Vi c Ua . (See exercise 2. ) 
i ' i i 

+ 
Choose a cm-function fi: U + R which i s  1 on Ca and 0 

a: 
I I 

on U - ( i n t  vi). Extend f i  t o  a cm function on Mn by a i 
deferring it t o  be zero outside of U . Since A c CUC ) , it 

a .  a : 

f i ( a )  > 0 fo r  a l l  a E A. Hence, there  i s  f o l l o ~ s  

an open s e t  U, A c U c M", so t h a t  - f ( p )  > 0 f o r  any 

+ 
p E U. Define ~p : U + R by i 



Clearly, SUPP (cpi) c (U a n U) and 
i 

r cpi(p) = 1 for  a l l  p E U. 

I t  remains t o  construct the compact s e t s  C c U 
a: a: 

as required. For each a E A, a E U , there i s  a compact 
' 3 2  
I 

b a l l  Be (a)  c Ua . Choose f i n i t e ly  many such b a l l s  
.L 

B 1 . . . B  whose in ter iors  cover A. Associate t o  each Bi 
K 

some U which contains it and l e t  Ca be the union of 
a 
j j 

the ba l l s  associated t o  Ua . This i s  a f i n i t e  collectron 
i 
J 

of compact s e t s  as required. 

n 
Step V I I :  Any open subset U of M i s  an increasing union 

of compact sets:  

00 

A c i n t  A c...: U Ai = U. 
1 2 

i=l 

n Proof: Suppose t ha t  t h i s  i s  t rue  for  any open subset of R . 
00 

Let [ui,qi~vil  i,l be a countable a t l a s  of M. (Here i s  the 

f l r s t  and only time tha t  we use the f ac t  tha t  M i s  

paracompact. ) For each U .  c M, l e t  Ai, c i n t  A c. . . 
1 i , 2  

be compact se t s  whose union i s  U n U . Let Bi = U A .  
i 

jl i 1 Y i .  
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c l ea r ly ,  Bi c i n t  Bi+l; each B i s  compact; and lJ Bi = U .  i 
i=l 

I t  remains t o  show t h i s  r e s u l t  f o r  any ueRn. Let 

1 
Ai = (x E U I  llxll 2 i and d ( x , ~ ~  - U) 2 7).  

This i s  the  required sequence of compact s e t s  f i l l i n g  out  U. 

S t epVI I I :  Let A c ~ ~ b e  anopen  s e t  and ( u )  and open a a c ~  

cover of A. Then A has  a  artitio it ion of un i ty  

subordinate t o  [ u ~ ) ~ ~ ~ .  

Proof: Let A = lJ C .  where each Ci i s  compact and 
1 

i=l 
C ,  c i n t  Ci+l. For each i, there  i s  a  artitio it ion of 
1 

uni ty  f o r  Ci - ( i n t  C ) subordinate t o  the cover 
i-1 

[U n ( i n t  Ci+l ) . The f u l l  co l lec t ion  a - 'i-2) ' a a ~ '  ( q i , a  a.1 

'q i ,  a ) f o r  a E I and i = 1, ... i s  l o c a l l y  f i n i t e  i n  the  

sense t h a t  a l l  bu t  f i n i t e l y  many vanish near any point.  

Thus o(x)  = C (x) i s  a COO function on A. I t  i s  i , a  'Pi,a 

everywhere posi t ive .  Thus, def ine  

This co l lec t ion  of cm-functions i s  a  artitio it ion of uni ty  

f o r  the  ref inemen t ( i n t  C i + l  

Step V ,  these can be amalgamated i n t o  a  artitio it ion i, a 

of un i ty  f o r  ( u ~ ] ~ ~ ~ .  



, Step IX:  Let A c Mn be an a rb i t r a ry  s e t  and ( U  ) be 
a ~ E I  

an open covering fo r  A. Then there  i s  a  artitio it ion 
of uni ty  f o r  A subordinate t o  (U ) a ~ € 1 '  

Proof: Let U  = U uat By Step V I I I  there  i's a  artitio it ion 
a€I 

of unity f o r  U  subordinate t o  (u,) This gives a 

c*-partition f o r  A as  well. 

Exercises: 1) Let Mn be a compact manifold. Show t h a t  Mn 

N 
i s  a submanifold of some R . 

a)  Find a f i n i t e  a t l a s  ( U  h ) 
k 

a 3  a a=l  fo r  M~ w i t h  

b )  Choose a p a r t i t i o n  of uni ty  ( Q , ) ~ = ~  subordinate 

t o  t h i s  cover. 

C )  Let $: R + R be a cm-function so t h a t  

1 $(t)  = 0 fo r  t <  0 and $( t )  = 1 f o r  t 2 -  
2k' 

L e t  pa = (-cp,. Show t h a t  given x E M there i s  an a, 

1 a < . such t h a t  pa = 1 i n  a neighborhood of x. 

n d )  Define i: M + R ken 
by 

is  defined t o  be 0 E Rn outside of Ua. 

e )  Show t h a t  i i s  a one-to-one immersion and 

hence an embedding. 

2 )  Show t h a t  i f  C c U c Rn with C compact and U  

n open i n  R , then there  i s  a compact s e t  V  with C c i n t  V c U. 

3 )  Show t h a t  the  function f a  of Step I i s  cm. 



59: Proof of Stokes' Theorem 

k k CO Let N c M be a compact C -submanifold with corners. 

Suppose t h a t  M i s  oriented. For each p E Nk there  i s  

a natural  number s 2 0, and a cm-coordinate system centered 
\ 

a t  p and va l id  i n  an open s e t  U containing p, so t h a t  

N n u = [ (x,, ..., E ulxl 2 0 ...., xs 2 0 ) .  There i s  a 

rectangle 
C 

contained i n  U. We see t h a t  N fl R i s  a possibly smaller 

rectangle. Since N i s  compact we can cover it by 
T 

f i n i t e l y  many i n t e r i o r s  of such rectangles: N C M i n t  R . i 
i=l 

00 
Let (cpl,. . . ,cp ) be a C -par t i t ion  of uni ty  subordinate t o  

T 
k 

t h i s  open cover. Let w be a (k-1)-form on M . Clearly, 

Thus 
T 

JN d~ = SRanN d(gi*w) 
i=l 1 

On the  other  hand, 



B U ~  a ( R i  n N)  = ( a R .  n N )  u (R. n a ~ )  . and 
1 1 

S rp a = 0 since cp vanishes idan t i ca l ly  on aRi. ~ e n c e ,  aR:nN i i 

Thus, i f  we can show t h a t  

then it w i l l  follow t h a t  dw = J'" w. That i s  t o  say, 
N 

k it suf f ices  t o  prove Stokes' theorem fo r  a rectangle i n  R . 
Let R c U c R~ be a rectangle: 

Let w be a (k-1) -form on U of the following form: 

Since any form is  a sum of forms of t h i s  type, it suf f ices  

t o  r e s t r i c t  a t ten t ion  t o  them. W e  have 

Let R'  = x [ a j  , b . ] .  , Then R = R '  x [ai,bi]. Let C denote 
j#i 

the  (k-1) variables of R '  . 



On the other hand, since w has no dxi-term, i t s  in teg ra l  

along a l l  faces except R '  x {bi) and R '  x [ a )  must vanish. 

By the way we o r i e n t  the  faces the or ien ta t ion  f o r  

R '  x [bi] is  (-1) 
(i-1) 

- t i m e s  the  usual or ien ta t ion  on R ' .  

i 
The one f o r  R' x [ai) i s  (-1) -times the usual or ien ta t ion  

fo r  R'. Thus 

k  k  This completes the proof of Stokes' meorem fo r  N c M 

03 k 
and C -forms on M . 

k CO 
If p : M + pn i s  a  C -mapping, then w = 

n n 
Likewise, 

'p (3N)" = J a N  p * w .  Thus,Stokes' theorem f o r  k- 

k forms on M implies the  general version of the  theorem. 



Exercises: 1) Show that if w = f (x,~) dx + g(x,y) dy is 

a closed form defined everywhere on the square 0 < x, y < 1 

then w = dh for some cW-function defined on the square. 

1 t 
Hint: Define h(s,t) = lS f(xrT) dx + 1 g(s,y) dy . - 

1 
I - J. 

2 Z 
2) State and prove the analogous theorem-for the 

n-dimensional rectangle and the n-dimensional open ball. 

3) Suppose M" is compact, without boundary, and 

oriented. Show that there is an n-form w so that w > 0. 
M~ 



0 Applications of Stokes' Theorem and Examples 

The first remark to be made is that Stokes' Theorem is 

valid not only for cW-forms but also for cl-forms. Note 

that if w is a cl-form, then dw is a continuous form. We 

proved Stokes' Theorem by using a  artitio it ion of unity to 
reduce to the case of a rectangle in IRk. The case of the 

rectangle is then proved by kvoking the Fundamental Theorem 

of Calculus. Since the Fundamental Theorem of Calculus holds 

1 for C -functions, the proof given in Section 9, is valid 

mutatis-mutandis for cl-forms. 

Our first application of this is to prove the Cauchy 

Integral Formula for cl, complex-valued functions satisfying 

1 the Cauchy-Riemann equations. Suppose f : U + C , 
f (z) = R(z) + iI (z) with R and I real-valued functions, 

1 is a C -function with: 

- 
There is a short hand notation for this. If we let z : C + C  

- a a be given by z = x - iy, then - = - a + i- . Equations 
aB ax ay 

(C-R) above become simply - - - 0 . Suppose that B(z) is 
a; 

a closed ballcentered about z E C, and suppose B(z) E U. 



The Cauchy Integral Formula states 

We shall deduce this as a consequence of Stokes1 Theorem. 

f(<) First, we note that the integrand, (S-z) , is a holomorphic 

function of < for gE(U - (2)) . Thus, a result in Section 5 
implies that a- f( 'I d< is a closed 1-form in U - {z}. Let 

B ' c B (2) be any ball containing z in its' interior, Stokes ' 

Theorem, applied to B (z) - B' , tells us that 

Lemma 10.1: - If f : U + - -  is a cl-function satisfying - the 

(C-R) equations and if f (0) = 0, then - - .  - 

where h(z) is a continuous function . - -  

Proof: Consider f(z) as a complex valued function of two 
1 af 

(tx,ty) dt and real variables (x,y) . Let A(x,y) = 1 
af 0 

B(x,y) = 1 - (tx,ty) dt . By Lemma 2.2 of Chapter I1 
0 ay 

f (x,y) 
ar 
ax af , we have = x A(x,y) + y B(x,y) . Since - = - - 

ay 
A = -iB or B = iA , Thus, 



Now l e t  us r e t u r n  t o  t h e  proof of t h e  Cauchy I n t e g r a l  

Formula. Applying t h e  above lemma t o  f ( g )  w e  see t h a t  

f ( g )  = (<-z) A(<) + f ( z )  . Thus, 

A s  we  have seen t h e  i n t e g r a l  on t h e  l e f t  hand s i d e  i s  independent 

of t he  r ad iu s  of B (z ) .  Likewise, t h e  f i r s t  i n t e g r a l  on t h e  

r i g h t  hand s i d e  is independent of  t h e  r ad iu s  of  B(z)  . 
Consequently, s o  is - A(<) d< . Since  A ( < )  i s  continuous 

aB(z) 
a t  5 = z,  t h i s  i n t e g r a l  goes t o  zero a s  t h e  r a d i u s  of B(z )  

goes t o  zero. Thus, 

W e  can eva lua te  t h e  r i g h t  hand i n t e g r a l  d i r e c t l y .  

L e t  y ( 8 )  = z + re  ie f o r  0 < 0 < 2 a .  - - 

Then, [ ( z )  dg = f ( z )  I 2r d.(reie) 
a B ( z )  ( g - Z )  re i e  

0 

This  completes t h e  proof of t h e  Cauchy I n t e g r a l  Formula. 

From t h i s  formula w e  can e a s i l y  prove t h a t  f has an 



a b s o l u t e l y  convergent power series i n  (w - z )  which r e p r e s e n t s  

f ( S )  d <  = 2ni  f (w)  . i t o n  B ( z ) c U .  I f  w E B ( z ) ,  t h e n  $ (g-w)  
aB ( 2 )  

('I dg i s  a c losed  form i n  U - {w> . The reason i s  t h a t  - 
L-w < 

f ( 5 )  dg = Hence, by Stokes'  Theorem f (5 )  dg 
a ~ ( z ) T  as (w) 

provided t h a t  B-(w) c i n t ( B ( z ) )  ., (To see t h i s  apply  Stokes '  

Theorem to  B ( z )  - B (w) .) On t h e  o t h e r  hand, i f  w E - i n t  ( B  ( z )  ) 

and < i s  i n  aB ( 2 )  , w e  have 

00 

1 - =  1 - - - -  1 ] = -  W-z n 
5-w (g-z) - (w-z) c-z ( 1- w-z - (1 (-1 1 , C w Z  n=O 

s-z 

where t h e  power series on t h e  r i g h t  converges uniformly 

W-z ( s i n c e  l E l  c 1) . 
Thus, 

w 
1 f (w) = - f ( 5 )  d = - C (w-2) 

2 ~ i  ( S - 2 )  2n i  n+l f ( ' )  d< 
a~ ( 2 )  aB(z) n=O (g-z) 

w 

= 1 {TiiT f (c.1 
n+l dg)  . (w-zIn . 

n=O aB(z) ('-2) 

This  g i v e s  an  a b s o l u t e l y  convergent power series expansion 

f o r  f (w)  i n  i n t ( B ( z ) ) .  

Example I: Suppose f is a rneromorphic f u n c t i o n  on U c (C1 

w i th  po les  a t  z ,  ..., zN} only. I n  a neighborhood of 

z f has  a Laurent expansion 
j' 

w e  d e f i n e  awl t o  be t h e  r e s i d u e  of f a t  z 
j - 
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Let y : S' -c u - {zl, ..., zN} 1 be a cW-embedding with y (S ) 

bounding DL c U which contains z ,  . . . , zT 1 in its interior 

but misses the other poles . 

T 
Then, $ f (z) dz = 1 (2ri) (Residue of f at z . ) .  

Y(S 1 j=1 7 

To see this, form the 2-manifold with boundary DL-L B6 (zj). 
j=1 

Applying Stokes' Theorem to this manifold (and using the fact 

that f (2) dz is closed in U - Izl, . . . , zN}) we see that 

In B6 (zj ) f has a Laurent series 

an Clearly, if a = 0, then f (z) dz = d ( 1 (z -2.) n+l) -1 n=k - 3 

and hence r 
J f(z) dz = 0 . This proves that in general 



(when a-l is non-zero) 

Adding up the results at each pole gives the-formula that we 

claimed, 

Example 11: s2 is not dif feomorphic to T~ = IR2/ 2Z2 . 
There is a closed cm- 1-form, dx, on T* and a cm-embedded 

s1 !c2 so that 1, dx = 1. If y : S~ + s2 is any 
s '- 2 

cm-embedding, then the image of y (sl) misses a point of S . 
Hence y (sl) lies in a single coordinate patch, and in fact 

in a rectangle R c IR2 . Since any closed form on R is 

exact (See Exercise 2, Section 9), it follows that I w = 0 

2 y (sl) 
for all closed 2-forms- w on S . This distinguishes T~ 

and s2 . 
Example 111: The Winding Number . - 

We gave a description of the winding number for 

The form dx + dy is exact on I R ~  -1.01 since it is 2 2 x +y. 

d (log J x2 + y 2 )  . The sum of this form with i times the 
/ 

integral of the winding number integral is, when expressed in 

complex coordinates, equal to -=- dz . since 1- d ( l o g ( m ) ) = O ,  
L 

the winding number is also given by 



Near any point p E El - {Oj there is an analytic function, 

dz . The real part of log (z) log (2) , whose differential is 
is log(lz1) and the imaginary part is the amplitude of 

i0 z : log(Re ) = log(R) + i0 . Of course, this is a description 
(locally) of infinitely many functions whose imaginary parts 

all differ by multiples of 2.a . Given a ~ ~ - ~ a t h  y : 1 +- a'- {O 1 

and a choice of log (z) near y (0) , we can analytically 
continue this to a well-defined cm-function of t, log(y (t) ) . 
Of course, it is not necessarily true that, if y(tl) = y(t2), 

it then log(y(tl)) = log(y(t2)). For example, if y(t) = e , 

and we start with log (1) = 0, then log (y (t) ) = i t. Hence, 

y (27~) = y (0) , but log (y (27~) ) = 27ri and log (y (0) ) = 0 , 

It is true, however, that if y (tl) = y (to) , then log (y (tl) ) 

= log(y(tO)) + k2ai for some k E 2. The reason is that for 

each t, log(y(t)) is one of the infinite possible values, 

log(y (t) ) + i Amp(y (t)) , and these all differ by multiples of 2ai. 

If y : I + a'-10) is a ~ ~ - ~ a t h  and if we analytically continue 

log (z) along y to get a function log (y (t) ) , then 

dz - log(y(1)) -log(y(O)) , In case y is actually a ! y -  
Y (1) 1 1 

hap of SI into EL- {O), i.e., in case y(1) = y(O), we see 

that 1 dz - - log(y(1)) - log(y(0)) = kS2ri . Thus the 
Y (1) 1 winding number, - - 27ri dz , is an integer. 

1 1  z Y(S 1 

Example IV: The closed forms of deqree 0 on a connected 

manifold are the constant functions. 

If f is a closed function, then df = 0. This means' 

af that, in local coordinates, (xl, . .. , xn) , - - axi - 0. Thus, f 

must be locally constant. If the space on which f is defined 

is connected, then f is constant. 



1 Example V: Closed 1-forms on S . 
1 Consider s1 as IR1/ZZ. Any function on S , f, can be lifted 

to a periodic function, 2, on lR1 ; 

U .(. -. w 

f (x + 1) = f ( x ) ~  such that f (x) = f ( [x] ) . i 

II 4 

IE - f is c on sl, then f will be on lR1 . Likewise, . 

any cm-1-form on s1 lifts to a periodic C--1-form on lR1 . 
This gives identifications of the cm-functions and cm 1-forms 

1 on s1 with periodic cm-functions and 1- forms on lR . 
Clearly, this identification is compatible with exterior 

differentiation. 

The question that we address is when is a Cm 1-form on 

s1 exact. In light of the above discussion, the question is 

equivalent to the question of which cm- periodic 1-forms are 

differentials of periodic functions on lR1 . Let f (t) dt 
t 

be a ~--~eriodic 1-form . Then, f(t) dt = d( 1 f(s) ds + C). 
0 

The functions on the right hand side are the only solutions 

to the equation 

f (t) dt = dh , 

t 
Thus, we must decide when 1 f(s) ds is a periodic function 

0 
of t. Clearly, 

t+l t t+l 
I f(s) d s -  I f(s) d s =  1 f(s) ds 
0 0 t 

t+l 1 
Since f is periodic I f(s) ds = I f (s) ds . 

t 0 

Thus, f(t) dt is the differential of periodic function if and 



1 
only if I f (s) ds = 0. If we let f(t) dt represent the 

0 1 
form w on S , then 

Thus, a 1-form on s1 is exact if and only if 

II w = 0 . As a consequence, we see that if w is any 
S 
1-form on sl, then 

In particular, every 2-form on s1 is an exact 1-form plus 

a multiple of dt. The multiple is given by integrating the 

original form over s1 . 
Example VI: Closed forms on T" = IR'/Z' . 

The forms on this torus are identified with doubly periodic 

2 forms on IR : 

Once again, this identification is compatible with exterior 
h 

differentiation . 
1-forms: A 1-form = f (x,y) dx + g (x,y) dy is closed if and 

only if - - - 3 . If this is so, then there is a function ay ax 

h(x,y) such that ax - ah - ah - f and - - 
ay 

g . Consequently, dh = w. 

The question is when can this h be chosen to be doubly 

periodic. The function h is determined up to a constant 



and is given by the formula : 

Thus, h is doubly periodic if and only if 

1 1 
$ f(x,O) dx = 0 and $ g(s,y) dy = 0 - 
0 0 

Since f dx + g dy is closed and periodic, these two equations 

are equivalent to : 

1 1 
f(x,o) dx = 0 and I g(O,y) dy = 0 

0 0 

As a result any closed 1-form on T~ is an exact 1-form plus 

a multiply of dx plus a multiply of dy : 

1 1 
f dx + g dy = d h  + ( $ f(t,O) dt) dx + ( $ g(0,t) dt) dy . 

0 0 

This expression is unique except for the fact that h can be 

altered by a constant. 

2-forms: Let w be a 2-form on T~ . We represent it as 
4 (x,y) dx A dy where Ip is a doubly periodic cW-function 

2 on lR . We claim that w is exact if and only if 

Certainly, if w is exact I w = 0 . We have y : + T 2 

-T2 2 
a cW-map which is onto and 1 - 1 on interior (I ) . Thus, 

* * I w = I y w . But y w = $(x,y) d x h  dy Thus, 

T~ r2 





On the other hand 

d (gdy) = 3 dx A dy ax 

Thus, dw = $(x,y) dx dy . 

As a consequence of this calculation, w e  see that every 

2 closed 2-form on T , w, is an exact form plus a multiple of 
dx A dy . The multiple of dx A dy is obtained by integrating 

w over T~ . 
The general result for T" ( = lFln/P) is that every 

closed k-form is an exact form plus multiples of dxi . . . dxi , 
1 k 

il <... < ik . The multiples are determined by integrating 
the closed k-form over the various sub-tori of dimension k . 

Example VII: - If M~ is a cm- manifold with the property that 
P 

every cm-x y : S' + M has its image contained in an open 

ball in some coordinate chart, then all closed 1-forms on 

M are exact . 
Proof: To show that a 1-form w is exact it suffices, by 

Problem 8 of Section 4, to show that 

w = 0 for all cm-maps y : s1 + M" . 
y (sl) 



1 If y (S ) c U c M" where U has cm-coordinates which make 

it an open ball in lRn, then 

Since w l ~  is exact (see Problem 2, Section 9), it follows 

that 1 w l ~ =  0 and hence that 1 w = 0 . 
Y (sl) Y (sl) 

Exercises 1): Show that every closed 1-form on T~ is of the 

I I 

form dh + 1 ai dxi . Show that this expression is unique, 
i=l 

except for the fact that a constant can be added to h. 

2) Show that T~ and sn are not diffeomorphic . 
3) Let p (z) be a (complex) polynomial without 

2 repeated roots. Let X c 0* be the complex curve {y = p(z) 3 

a) Show that X is non-singular (i.e., a complex 

1-manif old) . 
b) Show that dy and dz, when restricted to X, define 

holomorphic 1-forms which satisfy 

2ydy = pg(z) 

c) Let t (z) be an entire function (that is - an 
everywhere defined, holomorphic function). Show that 

(z)dz is an everywhere defined, closed 1-form on X . 
Y 

d) Let y : I + be a ~ ~ - ~ a t h  which misses the roots 

of p ( z )  . By a lifting of y we mean a ~ ~ - ~ a t h  
LY 

y : I + X which sits above y in that T(t) = (y(t), p(t)) 

Show that there are exactly 2 liftings of y . Such a 

lifting is determined by closing a point (y(O), ~ ( 0 ) )  



where y (0) is one of the 2 square roots of p(y (0)) . 

e) Consider f (z)dz 

Y (1) rn There are two values 

depending on the choice of along y . Show 

that these two values are equal to 

and I 
7, (11 

LI .u 

where y and y are the two liftings of y . 
0 1 




