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Section 1 : THE TOPOLOGY OF EUCLIDEAN SPACE

We begin these notes with a brief review of point set topology.

We shall, in the seéuel, always be concerned with "nice" spaces (metric

spaces). Thus, we shall not deal here at all with pathological examples

but shall restrict ourselves, whenever convenient, to metric spaces.

A topological space, (X,T1), is a set, X, together with a collection,

7, of subsets of X called open subsets of X. The collection is

required to satisfy the following four axioms :

1)
2)

3)
4)

X 1is an open subset of X.
The empty set, ¢, is an open subset of X.
An arbitrary union of open subsets is an open subset of X.

A finite intersection of open subsets is an open subset.

The main example that we have in mind in this chapter in Euclidean

space, R".

Its underlying set consists of all n-tuples, (xl,---, xn),

of real numbers. The topology is defined in terms of the usual distance

function in

nf‘:

dtx,y) = Y xpmy P24 ek (x -y )2 .



We define the open ball of fadius r centered about a point P

to be :

B.(p) = {yeanld(y,p) < r}.
A set U in TR" is defined to be open if and only if for each
p € U there is € > 0 so that Be(p) C U. One checks easily that
this collection of subsets satisfies the four axioms.
If X 1is a topological space, and if A < X 1is a subset, then
A inherits a topology from X. The open sets of A are all inter-

sections, A N U, where U is an open subset of X. As an example, if

we let EJ‘ c Ifl be»the subset of all n-tuples of the form
{(xl, cee, xk,O, e+, 0)}, then the topology that n¥‘ inherits from

R® is identical to the topology defined abstractly, as above, for IJ{

If X and Y are topological spaces, then f : X - Y is a

continuous function if and only for every open set U < Y, the set

£ 1) ©x is open. (Recall that £ 1(U) = {x € X| £(x) € U}.) A

homeomorphism from X to Y is a continuous bijection £ : X » Y

. -1 - ,
whose inverse £ : Y > X 1is also continuous.

As we have seen, the topology of R" is defined in terms of the
Pythagorean distance function. Abstracting the basic properties of
this distance function leads to the concept of a metric space. Many

of the basic properties of R" are shared by all metric spaces.

Definition : Let X be a topological space. A metric is a continuous

function d : X X X * RT = {r € R|r > 0} such that :

L]

IS



1) d(x,y)
2) d(x,y)

d(y,x),

0 if and‘only if x =y, and

3) d(x,y) + d(y.,z) _<_ d(x,z) .

A word is necessary about the topology on X X X. It is the so called
product topology. 1In general, if A and B are topological spaces,
then A x B receives a natural topology - the product topology. A
set V €A x B 1is open if and only if for every p € V, there are
open sets, U of A and U ’

A B
It is an easy exercise to show that the topology on Rr" agrees with

of B, such that p G(UA X UB)~C v.

the (n-fold) product topology when we consider R® as IRx---xR
(n-times). |

The metric on R" is, of course, the Pythagorean distance. We
also denote d(x,0) by ||x]| .

If X is a metric space and {x_}.

is a sequence of points
n n=1 q . P

of X, then we say that {x_} converges to x, or {xn} +x, if

and only if 1lim d(xn,x) = 0 . (As an exercise, give the definition
n-—>o -

of convergence in an arbitrary topological space .) Clearly, a sequence

can . converge . to at most one point in a metric space and need not

converge to any point at all.

Lemma 1.1 : Let X and Y be metric spaces, and let f : X ~ Y be

a function. Then £ is continuous if and only if whenever a sequence

{x,} converges to x in X the sequence {f(x )} converges to f(x) in Y.



Proof : Suppose that there is a sequence {xn} in X which converges

to x but that {f(xn)} does not converge to f(x). This means that
there is an open ball, Be(f(x» and a sequence of natural numbers n
approaching +« so that £0e, ) £ B (E(x)). Hence, £ (B_(£(x)))
contains x but does not contain any x . Since {xnk}—* X, this
implies that no open ball, B,(x), is contained in f-l(Be(x)). This
shows that f-l(Be(f(x)» is;noé open, and consequently that £ is
not continuous. Conversely, suppose that whenever ﬁﬁn} > x then
{f(xn)} + f(x) . Suppose in addition that £ is not continuous.

From these assumptions we will derive a contradiction. If £ is not

continuous, then there is an open set U CY so that £ T (U) cXx is

not open. Thus, there is x €f ~(U) such that there is no open ball

of the form Bs(x) contained in f-l(U). Thus, for every n > 0,

there is a point x _ €(X - £ 1(U)) such that dx ,x) < %'. The
sequence {xn} converges to X. Since X £ f-l(U), we have f(xn) £ U.
Thus, {f(xn)} does not converge to f(x). This is the sought after
contradiction which shéws that if {xn} + x implies {f(xn)} » f£(x),

then f 1is continuous.

Examples : 1) Any map f : R® -+ R which is given by polynomials in

the coordinates (xl, cee, xn) is continuous. Hence the following

maps are continuous :

X.
ll

nh=as

Geyr wotrxg) =
i
n
(Xq7 **cpx) = I X5
i=1 n
12 - 2
(xir ""’“n) s ||k = E X

i=1 *



2) Let .i(,IRn r ]Rm) be the linear maps from R" to R". Any such

mapping is identified with an (mxn)-matrix, (oa..). (Recall that

when we identify linear maps with matrices we write elements in WR"

m

-and IR as column vectors.) A matrix gives a linear map via matrix

multiplication on the left :

4 e s e 5{ n X
/x’l /%11 “1n}{ /1 .El %1i 1\
' ll v ' i 1=L
/ ' i [} [ / ' ' \
v / ] ' ] = ¥
r— =
; l ] ! !
| o :
\ z
X. Q, Q. X o X
n ml mn ) j=1 mi7i

This correspondence identifies i(]Rn v IRm) with ®R" © . We use this

identification to define a topology on i(IRn, ®R™). Thus, an open set
of linear maps is one with the following property. Given any ¢ in

" the set with matrix representative (cbij) there is € > 0 so that -
every Yy with lwij - ¢ijl < e for every pair (i,j) is in the set.

Tautologically, i(IRn, ]Rm) becomes homeomorphic to R

via this
identification. Consider the evaluation map e : Sf (]Rn, ]Rm) X, ]Rn—> r™
given by e(¢,x) = ¢(x). If we give Z(RY, ®") x BR® the product
topology, then e becomes continuous. The reason is that, in the

coordinates {aij' xi},_ e 1is given by quadratic polynomials.

3) The map (xl, cee, x.n) — S .{'. = is a continuous function
n . n 1l n
on m - {(xl' cee, xn) H xi.-_‘ 0}'



4) Let € be the complex‘plane with variable z. Any complex poly-

nomial, p(z), defines a continuous function from € to €, z +H>» p(z).

Definition : Let X be a topological space and A < X a subspace.

A is closed if and only if (X-A) is open.

Theorem 1.2 : A set X < R" is closed if and only if it contains all

its limit points, i.e., if and only if whenever {x_} =X converges

to pe€ B', pE€X.

The proof is straightforward and is left as an exercise. As a consequence,

if X < nf‘, then its closure, E, (i.e., the smallest closed subset of

n

IR" containing X) is obtained by adjoining all limit points of X to

Exercise : Show that B€Zx) = {y eR"|d(x,y) <el.

Definition A topological space X is connected if and only if it can

not be written as A UB with A and B both open and non-empty and
ANB=¢.

Lemma 1.3 : Let X € R: be non-empty. It is connected if and only if

whenever r, s € X with r < s, then the interval [r,s] < X.

Note : The subsets of HG' satisfying these properties are :

1) points, 2) intervals (closed, open, or half-open), 3) half-xays (in

either direction and open or closed), 4) IRl.



Proof : Let us show that‘the condition is necessary. Suppose, to the
<contrary, that X 1is connected, r < t <s, and r, s €X but t ¢ X.
Let A=X0(-»,t) and B =X N (t, »). Clearly, X =A UB and

A and B are open, disjoint, and non-empty. This is a contradiction.
Conversely, suppose that whenever r <s and r,s € X, then [r,s] € X, but X
is not connected. Say X = A U»B with A and B open, disjoint and
non-empty. Take r € A and s € B. For simplicity let us assume

r < s. Consider A'< [r,s] and B' < [r,s] given by A' = A N [r,s];
B' N [r,s]. Clearly, I[r,s] =A' UB' and A' and B' are open,
non-empty and disjoint. Let Q = {x €[r,s] | [r,x] ©A'}. Clearly,

r €Q and s is an upper bound for. Q. Let t €[r,s] be the least
upper bound for Q. We claim that t £ A'. For if t € A', then the
interval (t-¢, t + €) € A for some e> 0. Thus, either t = s,
contradicting the fact that s E'B', or t is not an upper bound for Q.
Thus t € B'. Clearly, t # r. Hence, (t-6,t] ©€B' for some 6> 0.
Since every t'< t is contained in A' this implies that A' N1 B' # ¢.

This contradiction establishes the sufficiency of the condition.

Definition : If X is a topological space, then an open cover of X

+ SO that uu = X.
o€l o€l @

A topological space X is compact if every open cover {Ua} has a

is a collection of open sets of X, '{Ua}

finite sub-collection {Ua )y ", Ua } which is also an open cover.
1 n
We call such a sub-collection a finite sub-cover.

Theorem (Heine-Borel) 1.4 : X < R" is compact if and only if X is

closed and bounded (bounded means X C BR(O) for some R < =),




Lemma 1.5 : Let Y be a compact metric space and x © Y a subspace.

Then X is compact if and only if X is closed.

be an open cover
o€l P

of X. Then {Ua U (y - X)}aEI is an open cover of Y. (Ua_U(Y - X)

Proof : Suppose X €Y is closed. Let {Ua}

has complement (X - Ua) which is closed in X and hence closed in Y,)

Let {Ua U(Y = X), *--, Ua U(Y-X)} be a finite sub-cover of this
1l n

open cover of Y. Then ({U *» U} 1is a finite sub-cover of the

agr o
original cover of X.

Conversely, suppose X C©Y is compact and let ({ pn} -~ be a
sequence of points in X cohverging to y € Y. Suppose y £ X. We
claim that for any k > 0, {pn}:=k U {p} 1is a closed subspace of Y.
This is because {pn}:=k.u {p} contains all its limit points. Thus,
P, } 1is a closed subset of X. Hence, U = X-{ngk p} is an
open set in X. Clearly, the open cover {Uk%z=l of X has no

{n>k

finite sub-cover.

Lemma 1.6 : If X and Y are compact spaces, then X x Y is compact.

(Here of course, X x Y is given the product topology.)

be an open cover of X x Y. For each point
ny
3.
ai(y) i=1

(since X x {y} is compact). We claim that there is an open set
n

Y
VY €Y containing y so that X x VYC( U U

Proof : Let {Ua}aEI

y € Y, there is a finite collection {U which cover X x{y}

oy (y))' The reason is

that for each {xxy} € X x{y}, there are open sets W, <X and
n
Y

Z, €Y so that {xxy} € W, x 72 C ( U U, (y)). This gives an open
o3 ‘



cover {Wx x Zx}xex of X x{y}l}.lIlet {le“x le,---,Wxnx an} be a finite sub-cover.
. n Ny % i bset
. open se
Clearly, X x (le ij) o= (igl Uai(y)) and 521 ij is an open su

of Y containing vy.

Let us recapitulate what we have accomplished so far. Given

any open cover {Ua}ael of XxY we have found for each y €Y :

a) a finite collection {Ua

b) an open set z €Y, containing y, so that
Ny

X x 2, < (;¥

Y Uai(y))°

Th Z s e Z }
e | Y}YGY form an open cover of Y. Let ‘{Zyll * %y

be a finite sub-cover. Then

n,. s
{{u y Yiy
@3 (¥5) " 521 5=

is a finite sub cover of {Ua}QEI‘

Note : The statement that an arbitrary product of compact spaces is

compact (Tychonoff's Theorem) is equivalent to the axiom of choice.

Proposition 1.7 : A closed interval [a,b] < r! is compact.

Proof : Let {Ua} be an open-cover of [a,b]. Consider

o €I
@ = {x €[a,b] | [a,x] 1is covered by finitely many of the {Ua}}.
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Clearly, a € Q. We claim that  is both open and closed in [a,b].
If so, then, since [a,b] is connected and Q # ¢, it will follow
that Q = [a,b], énd consequently, that [a,b] is compact. We first
show that O 1is closed. Suppose {xn\e Q and X, > X € [a,b]. Then,
there is a Uao so that x € Uao. This implies that for some N > O,
the interval [xN,x] C1U0‘0. Since XN € Q, there is a finite cover

{fu, ++-, U } of [a,x,]. Then {U , U , «.., U } covers [a,x].
01,1 OLT xN (!.0 oal OLT

On the other hand, if x € Q, then [a,x] has a finite cover

‘{Ua U }. Then there is €>0"so that ((x-e,x+¢) N[a,bl)cUu_ .
1’ r % ’ %7

Thus, '{Ua rctte Uy } covers [a,y] for every vy €&(x-e,x+¢) (1 [a,b]).
1 n

Hence, ((x-¢g,x+¢) N [a,b]) ©Q. This shows that Q is open.

Let us use these three lemmas to prove the Heine-Borel theorem.
If x c®’RY is compact, then X ciBR(O) for some R>0 (else the
open cover {X N BR(O)}R>o would have no finite refinement). Thus,
X is bounded, and hence cpntained in a cube (igl[a'b])' By Lemma 1.6
and 1.7, this cube is compact; By Lemma 1.5, X < (igl [a,b]) must
be closed.

Conversely, if X is bounded, then there is an interval [a,b]

so that X < (igl[a,b]).

n
If x € R" is closed, then X & (igl[a,b]) is closed. By Lemma 1.5,

X 1is the compact.
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Corollary 1.8 : Let f : X » r! be a continuous function, and

suppose that X 1is compact. There are numbers m and M so that

m< £(x) <M for all x€X. Let m be the leastupper bound for all

such m, and M be the greatest lower bound for all such M. There

are points x,y€X so that £f(x) =m and f(y) = M.

Proof : Consider f£(X) Cim;. It is a simple lemma (Exercise 3)

that the image under a continuous function of a compact space is

1 is closed and bounded. Being

compact. Any compact set in 1R
closed it contains its greatest lower bound, m, and its least upper

bound, M.

Two of the basic facts about compact spaces are given in the

next propositions.

Proposition 1.9 : Let X be a compact space and {xi};;l a consequence

of points. Then, there is a subsequence {x };;1 which converges
i~ :

o x€ X.

o
Proof : 1If {xi}:=1 has no convergent subsequences, then ‘{igN><J

[+
.

is a closed subset for each N >1. Thus X -{13N2%} = Uy is open,
and the open covering {UN};=1 has no finite sub-cover. Hence,

X 1is not compact.

Proposition 1.10 : (Uniform Continuity) : Let X be a compact metric
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spacer and let £ : X ~» ®! be a continuous function. Given € > 0

there is 6§ > 0 so that [f(x;) - f(x,)|<e whenever d(x;,x,) <§.

Proff : Given € > 0 and x € X let 3% be the least upper bound
for the set {6 |[f(y) -£f(x)]| <e for vy €B6(x)}. (Eg could
conceivably be + o,) We claim that there is § > 0 so that

§;> § for all x € X. If we can show this, then the result will
follow. If we suppose, to the contrary, that no such § exists,
then there is a sequence {xi}i;l so that Ex + 0. By taking a

i
subsequence, if necessary, we can assume that {xi} + X. There is

§, so that |f(y) - £(x)]| < % if y€B, (x). There is N>0

0 60

so that d(xi,x) < 60 for i > N. By the triangle inequality

Bao‘xi) < Bys (x)

Thus for any i > N, |[f(y ) - £(x)] <-% for éll y € By (x;) and
If(xi) - £(x)|< §- Consequently, |f(y) - f(x;)| <e for 211

y € BSé(xi) and‘all i > N. This proves that Exi > 60 and gives
a contradiction.



'{xn}m
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Exercises : 1) Let X Dbe a topological space. Define what it means

}oo

n=] In X to converge to x € X.

for a sequence {xn

2) Show that if X is Hausdorffﬁ then a sequence

n=] ¢€an converge to at most one point of X.

3) Let X be a compact space and £ : X - Y a continuous

mapping. Show that £(X) ©Y is a compact space.

4) Suppose Y 1is Hausdorff and A ©CY is a compact

subspace. Show that A 1is closed in Y.
h 2

5) show that {(x;, --°, xn)l iL; a; x; = 11 1s.compa§t

and non-empty if and only if every a; is positive.

* . . . C e .
A Hausdorff space is one in which any two distinct points
X snd i i isjoi :

Yy are contained in disjoint open sets Ux and U .
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82. The Differential Structure of Euclidean Space

The topology of Rn adas much structure but there is
even more--the differential structure. In this section we
shall study this aspect of the situation. Let U cC R"
be an open set. Recall that a function f£: U > R is

differentiable at p € U, if and only if there is a linear

. function L: R" > R such that:

lim (E(pth) -“}fﬁp) - L(h)|)= 0.

(>0

The linear function,‘if it exists, is easily seen to be

unique. It is called the differential of f at p and

is denoted Dfp: Rn > R. If f: U > R is differentiable at
every point of U, then we have Df: U > £(Rn,R).

‘We say that £ is Cl (differentiable of the first class)
on U if and only if Df: U - £(Rn,R) is continuous. One
could continue‘in this fashion defining Cz, C3, etc., but
the resulting definitions are somewhat clumsy. There is

an alternate definition of C1 which generalizes more easily.

Lemma 2.1l: Let UC Rn be an open set and £f: U - R. Then

f is Cl if and onl? if the n partial derivatives

£ - - . ‘
‘ii‘,...,}%? exist at every point of U and are continuous
1 n

functions.
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(N.B. It is not the case, in general, that f is differentiable
at p if all the partial derivatives exist at p, nor is
it the case that f is differentiable at every point of U

if the partial derivatives exist at every point of U.)

Proof: If f£f: U > R is differentiable at p € U, then

(p) exists and the (lxn)-matrix cjﬂ;(p),...;ju;(p))
i axl xn

represents Df(p): R" > R. (Recall that we are thinking of

ax

points of R" as column vectors, and we are letting

(1xn)-matrices act by left multiplication.) We must show,

conversely, that if {2f ...,—15] exist and are continuous
o y n
near p, then f is differentiable‘at. p.. For h ¢ Rn,

s ~— T e

h = (h,...h), let h'= (hl,...,h ,0,...,0}, and let

y; (&) = prent+@-t)ni™l | for 0 <t < 1. Then, £ov;

n, -2£ (prent+ (1-e)nt™h .
i9xg

is differentiable and foyi(t)

Thus,

f(p+hi) - f(p+hi‘l) J; h; 'z +th1+(1--t)hl l)dt,

and consequently,

f (p+h} - £(p) = :E: ]P h; - ax (p+th1+(l t)h )dt.
Given € > 0, there is a § > 0 so that

l Bxl(p q) "'—— (p)| < e/n if ||lql] < 8.

If we pick h sc that HhH < 4, then |ith +(l-—t)hl 1“ < 8§

for all ¢t between 0 and l. Hence,
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|£ (p+h) = £(p) - :Eihl 5x; (P |

<

l
s , -
illi, 3%&(p+thl+(1-t)hl 1

[ 0.

of
) - g§i(p)dt|

S

hil'(e/n) < (inll-€.

Since ¢ was chosen arbitrarily, this proves that

n of
|£(p+h) - £(p) - £, _, h,. axi(p)l
lim ( = » =) = 0.
Inl>o" I

Thus, £ is differentiable at p, and Df(p) is represented

. £
by the (1lxn)-matrix Céﬁ;(p),...;§i;(p)).
1 n

Definition: A map f: U ~» Rl defined on an open subspace,

U, of Rn is said to be a Ckfunctibn.if and only if the n partial

derivatives-ﬂiu;(p),..., af(p)—-ex:.st and are continuous
axl an

throughout U. The map is said to be Cr, r > 1, if and only
if all partial derivatives of order r,

ik S
¥x, ...a3x, ‘P/v
1 1
1 r

exist and are continuous throughout U. 1If partial derivatives
of all orders exist and are continuous, then we say that £
is ¢'. It is common notation to denote continuous maps

by CO. However, when we say Cr, we shall always implicitly
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be assuming 1 { r < +w.

'Examples: 1) All polynomial, exponential and logarithm

maps are c’ where defined:

a) (xl,...,xn)F——> e®1+++%Xn is c” on all of Rn.
i A - %
b) (xl,...,xn)k——+ - is C on {(xl,...,xn)lxn #0}.
. 00
c) (xl,...,xn)r——> log(xl+...+ xn) is C on
n
[(xl,...,xn)|2i=l x, > 0},
— for (x,y) # (0,0)
X +y
d) f(X,Y) =
0 for (x,y) = (0,0).

Clearly, £f is c” away from (0,0). We claim that ff(o,O) =0
and-%f(0,0) = d. (This follows from the fact that

f(ﬁ,O) = £(0,t) = 0.) However, £ is not differentiable

at (0,0) siﬁce it is not continuous at this point. (See

exercise 3 below.)

Definition: Let U c R" be an open set and f: U > Rk be a
function: f£(x) = (fl(x),...,fk(x)). We say that £ is
Cr if and only if each of the fi are of class C°. 1In
particular, £ is differentiable at p € U if and only if

there is a linear function Dfp: Rn > Rk so that
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) ~ -ftpr) - £(p) - DE_(h) ||
© lim ( Tl B = 0,
[n]>0

and £f: U > Rk is Cl if and only if Df: U - £(Rn,Rk) is

continuous.

Proposition 2.2: Let U c R" and V c:Rk be open sets.

Suppose f: U > V and g: V » RY are c®, then

£ . r
g.f: U—>R is C, and D(g.f)x = Dgf(x)°Dfx'

(This is the chain rule in several variables. For a proof,

consult any text on advanced calculus.)

Definition: Let U and V be open sets in R” and let

§: U > V be a Cr-map. § is a Cr-diffeomorphism if and only if

1) & 4is a homeomorphism, and

2) 3 t:v-uisct.

Exercises: 1) Show that f: Rl > Rl defined by f(t) = t3

is a Cw—map and a homeomorphism but that £ is not a
Cl-diffeomorphism.

2) Show that

f(t) = {

l 0 . t<o0

2 -
e_l/t t >0

is a Cm-function on Rl. Show that there does not exist a
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convergent power series 2:_ aitl which represents f(t)

0
in any neighborhood of 0.
3) Show that if U is an open set in R” and £: U > R
is differentiable at p € U, then f 1is continuous at p.
4) Suppose that U is an open set of R" and ? is
an open set of Rm, and suppose that there are Cl-maps
f: U»> V and g: V > U so that f.g = IdV and g.f = Idﬁ.
Show n = m. (Hint: Use the chain rule.)
5) For each r > 1, give an example of a function which
is ¢© but not cT*l.
6) Give an example of two open sets U, V C Rn

which are not diffeomorphic.

7] Show that any power series is the Taylor series

of some C®~function at the origin in Rl.
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§3. Inverse and Implicit Function Theorems

In this section we shall begin the study of the zeroes
of sets of differentiable functions.k Some care must be
taken to ensure that the zero set has the right dimension
and is "smooth". Of course, ﬁhe study of more general
solution sets is interesting. It is much more complicated and
should be taken up after one has familairity with the easiest
case. There is another reason for concentrating on the
"smooth" case and that is that it is generic.

For example, if one considers. an ogen.set U c R® and
the space of all Cw—functions from U to Rl (with a suiﬁablq~
topology), then those functions whose solution set is "smooth"
form an open and dense subset.

Let us begin with a few examples which show what can

go wrong:

n 2

1) 21—1 xl = 0. Here, even though we have put only

one condition on n-variables, the result is a single point.

2) xi + xz = 0 in R3. Again, the dimension is "wrong".

One condition in R3 should leave us with a 2-dimensional

solution_set but here the solution set is the curve

{(0,0,x3)]-

3) xl-x2 = 0 in Rz. Here the dimension is correct,"but i

something bad is happening at the origin where the solution

L]
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set is two lines crossing.

4) x3 = y2.

Here, the solution set has the correct dimension, 1, but

it has a cusp (i.e., a non-smooth point) at the origin.

5) x2 + y2 - z2 = 0. Again a singular point at the

origin,




There is a natural and simplé condition which rules
out all these pathologies and ensures that the solution set
locally looks like a Euclidean space of the "proper"

dimension. It is given by the Implicit Function Theorem.

Theorem 3.1: (Implicit Function Theorem) Let U c R" be

an open set and f: U > Rk be a Cr—function. Suppose for

P € f_l(O) the differential Df(p): R" > Rk is onto (i.e;4

of rank k). Then there is a cr-diffeomorphism

.3: W->VcU, with W and V open in Rn and p € V, so

e k _
that f£i®: W > R sends (xl,...,xn) Eg (xl,...,xk)..

Explanation:

ion £ ~_ /

onto 1 I

k factors \\\\\\\

projecg

—

g k

-

(The lines represent the level sets of projection and f
respectively.) Thus, & transforms the subspace

0 0
{(xl,...,xn) EW Xp = Kyseea,X = xk} of W to the level



set f_l(xg,...,xﬁ) N V. 1In particular, let & be ¢

n-k _ Rk X Rn_k = R®. Then

restricted to {0} X R
§: ({0} x Rn—k) nw-> f-l(O) N V gives a Cr-map which is a
homeomorphism between an open set in Rn_k and an open
subset of the levél set f_l(O) containing p. We say that
any identification induced in this manner is a system of
local coordinates'for f-l(O) near p. The coordinates are
functions @;,...,p _, defined on f—l(O) nNv, g, = xi+kd¢-l
which are homeomorphic (via Q-l) to the standard coordinate
functions on an open set of Rn-k. In particular, an open
set of f_l(O) containing p is homeomorphic to an open set
in Rn-k. Of course, this coordinatg system depends on
choices that we make. Thus, what is important is noﬁ a
particular coordinate system but rather the existence

of one (and hence many) such systems. It is also important
to understand how different coordinate systems mesh or

match. The result is that their difference is a

Cr-diffeomorphism.

Proposition 3.2: Let U c R" be an open set and f: U > Rk

a cF-function. Suppose that for every p ¢ f_l(O), the
n-k

differential Dfp: R" > Rk is onto. Let.i1= Wi N R

> f-l(O) n Vi be two C'-coordinate systems (i = 0,1) as

23
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constructed above. Then let §;l(V0 nv, nN f-l(O)) c Wi

1

be Zi for i = 0 and 1. The map

Proof: By construction @O and Ql come via restriction from

Cr-diffeomorphisms

QO: Wb~—-—e>~V

0
and
Hence 3—1.3¥° E-l(v nv. - Efl(v nv.,), is a Crédiffeo—
A 0" "0 1 0 1 1 (0 e

morphism between open sets in Rn. Restricting 3Il¢30

. -1 -1 -1 -1 -1
gives the map §l .QO. @0 (Vl nv.,. n £ ~(0)) » §1 (Vl nv,.n £  (0)).

0 0

Hence, the latter map is a Cr-homeomorphism. Since the
same argument works for Qal.Ql we see that Qzloio_is

actually a cr-diffeomorphism.
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The change of coordinates map Qiloio, where defined,
is called the overlap function. The above proposition
says that the overlap functions for the local coordinates on

f_l(o) are diffeomorphisms of the same class of_ differen-

tiability as £.

Definition: We say that M c R” is a\Crvmanifoid“of\dimension

(n~k) if for every p ¢ M there are:

1) an open set U c R™ containing p,
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2) an open set W c'Rn, and
3) a Cr-diffeomorphism §: W > U so that
s lmny = (Lo} x2"7F) nw.

Thus, if M = f-l(O), where f: Rn -> Rk is a Cr—function
with Df(p) of rank k for every p € M, then M 1is a ct-
manifold of dimension (n-k).

The converse is tgﬁe locally. That is to say, if

Mn_k c R is a cr—manifold of dimension (n-k) and if p € M,

then there is an open set U C R" and a c*-function f: U > Rk
so that UN M= f—l(O) and so that Df is of rank %k at

every point of U N M. To construct such a function one begins

with a»cr-diffeomorphism $: W~> U so that ({0} x Rn_k) =MANU.

-1
The map U-E—a-W—grRk is the required function
(p(xl,...,xn) = (xl,...,xk)). It is not true that every
manifold Mp_k c R" can be given globally by a function
£: R" > Rk with Df of rank k at every point of M. We shall

see examples of this later.

Examples: 1) £(x) = (22=l xi) - 1  defines a C*wmanifold

of dimension (n-l). The reason is that Df(x

l,ooo’xl)
= (2x1,...,2xn), and hence Df(p) has rank 1 for all p # O.

This manifold is the (n-1l)-dimensional sphere, Sn_l.

2) xy-1=0,



xy =1

This equation defines a c’-manifold. Note that xy = 0
fails to satisfy the differential condition at (0,0), and

that indeed xy = 0 is not a manifold near the point (0,0):

3) Let f: Rn--k > Rk be any c’-function. The graph of

£f, T(f), which is the set of all pairs
{(x,£f(x)) € Rn-k X Rk = Rn},is a Cr—manifold. The defining

. equation for T'(f) is

[f(xl,...,xn_k) - (xn-k-'-l,.oo’xn) = 0}'

(Check that the differential has rank k at every point.)

4) Let ( and 2z be complex variables. The equation

27
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defines a subset of m2 = R4. If we write { = x + iw and

z = u + iv, then the above complex equation becomes 2 real

equations :

2 2 'u3 _ 3uv2

w
1
g
]

2XW = 3ﬁ2v - v3

These equations define a Cw-manifold of dimension 2 in R4.

(Again, check that the differential is rank 2.)

n . ,
5) If p(xp,.-.,X)) = I;_; (x;/a;)® (a; # 0 for all i),

then p(xl,...,xn) = 1 defines a C -manifold called an
ellipsoid.
2
6) Let (nxn)-matrices be identified with Rn .  The

2
invertible matrices, GL(n,R), form an open subspace of Rn

given by det # 0. Inside GL(n,R) we have the matrices of
trace 1. This is a manifold of dimension (n2 - 1).
Its defining equation is {trace = 1} (i.e.,

X1 +_x22 tootx 0= 1l). The orthogonal group O(n) is a

manifold of dimension n(n-1)/2. Its defining equations are:

n
(inj-xkj=6ik) (1l <i<k<n).
j=1

2

It is an easy exercise to show that the map F: R® - R(n+l)n/2
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defineé by F(xij) = [2?=1 xij.xkj - éik} (L i<k<n)
has DF of rank (n) (n+l)/2 everywhere along'F-l(O).

A manifold Mk-l c R" defined by one equation g(x) =0
(with Dy of rank 1 at every point of ¢-l(0)) is called a
hypersurface. The fact that D¢(p)_# 0 for eﬁery PeM
means that vy (p) # O for every p € M. If we take a
clocurve y: (-6,8) > R" with y(0) = p and v'(0) = vo(p),
then ey (0) = 0 and e.y' (0) = "v¢(p)“2 > 0. Hence, there is
¢ > 0 so that @(y(t)) < 0 for -¢ < t < 0 and @(y(t)) > O

for 0 < £t < e. Thus Yy crosses from the region where o

is negative to the region where ¢ 1is positive,

o> 0 Vep(p)

<0 Y

Thus on one side of M, ¢ is positive and on the other it is
negative. Of course, Mn-l does not have to be connected so
that there can be several regions where ¢ is positive and
negative. For example, let

v(x,y) = (x2+y2-l)(x2+y2—2)(x2+y2-3)(x2+y2-4). Then,

M= ¢—l(0) is four circles of radii 1, 42, ¥3, and 2,
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>0

ES

Corollary 3.3: Suppose U is a connected open set in R" and

©»: U > Rl is a Cl—function with Dyp(p) of rank 1 for all

P € w-l(O). Then U - w_l(O) has at least two connected

components.

Proof: @ > O and ¢ < O are open, disjoint,non-empty subsets

of U.

Examples: 1) The equations:

<2 + y2 - g2
z =0
define a circle of radius R in_RB, S;. Let U Dbe the open
3 1 1 .
set of {p € R Id(p,SR) < e¢}. Here, d(p,sy) = min d(p,x).

xeSR

(We choose ¢ < R/2.) Inside U we have

{ ((R+t sinkg))cos 9, (R+t sintg)SLn 9,t coscg))A 0<|t|<e and

0<o<2m}
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It is the MObius band.

ES

We claim that it is a 2 dimensional manifold inside U, but
it is not given by one equation since it has only one "side",
i.e. ﬁ - M2 is connected. In fact, there is no open set V,
Mc VcU, and Cm—function £f: VvV > R; so that rank Df(m) = 1

- for every m € M and so that M = f-l(O).

One way to define manifolds in open sets of R" is to
adjoint inequalities to the equalities. For example:
X2 + y2 + 22 =1

x>0

defines a hemisphere which is a hypersurface in the open set

{ (x,y,2)|x > 0}.

g
7 -




Thus a general hypersurface in an open set would be

given by .
f(xl,...,xn) =0

cpl(xl,. . .,xn). > 0

@k(xl,...,xn) >0

’
‘with the proviso that yf(p) # 0 for all p such that

£(p) =0 and g, (p) > O.

2) y° = x

x2 + y2 >0

defines a C -manifold in R2-'{(0,01}.

In effect, we have removed the singular point of the cusp.

Exercises: 1) Suppose f(zl,...,zn) = 0 is a complex

analytic function defined in an open set U c c®. 1f

32



cgfi,...,ézg) are never all zero,then show that f defines
1 n

a C -manifold of dimension (2n - 2).
2) Let p(x,y) = ax2 + bxy + cy2 be a quadratic
polynomial. Show that p(x,y) = 1 defines a c’-manifold.
3) show that the Mobius band as described in example
2 is a 2-dimensional manifold in U, i.e. show that for
each p ¢ M there is an open set W containing p and
a C -function f: W - Rl so that f_l(O) = M N W and so that
Df(x) is rank 1 for every x ¢ M N W.

4) sShow that
f(xl,...,xn) =0
| 2
o€y ,eeaux )2 > 0

defines a hypersurface in the open set

[(xl,...,xn)|Df(xl,...,xn) # 0}.

From the given formulation, the name "Implicit Function
Theorem" seems somewhat mysterious. There is, however,
another (slightly stronger) formula tion which explains
the name more clearly. Suppose U cC R" is an open set and
f: U > RX is a given c’-function. We say that the level set

o’x

-1 . . . .
£ (yl,...,yk) implicitly defines X n

k41’ as functions

of (xl,...,xn_k) if and only if there are Cr—functions on

33
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: W > Rl, so that

. . n-
an open set W in R s gn-k+l""’gn'

-1
£ (¥ esyy)
= {(xl,...,xn_k,gn_k+l(xl,...,xn_k),...,gn(xl,...,xn_k))|(xl,...,xn_k)eW}.'
This means that the level set f_l(yl,...,yk) is actually

the graph of a function g: W > Rk, g =

ES

With this in mind we give the reformulation of the Implicit

(gn_k+l) LA ’gn) .

Function Theorem.

k

Theorem 3.4: Let U cC R” be an open set, and let f: U > R

f(p) = 0 and with

3f,
<—a-;‘—l(x)> (i=1,...,k; j = n-k+1,...,n)
j

an_invertible (k X k)-matrix. Then there is an open set

Al

VcUwith p € V, an open _set W C Rn, and a Cr—diffeomorphism

d: W-~->V,
@(xl,...,xn) = (xl,...,xn_k,én_k+l(xl,...,xn),...,Qn(xl,...,xn)),
so thgt f,iAxl,...,xn) = (xn—k+l""’xn)'

Note that if we fix (yl,...,yk) e‘Rk and define
gi(xl”"’xn-k) to be Qi (xl,...,xn_k,yl,...,yk), then

. -1
the graph of g = (gn—k+l""’gn) is equal to £ (yl,...,yk).
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Hence, & describes, all at once, every level set

{f—l(yl,...,yk)} N V as the graph~of a function

) (xl: c e :xn_k)yl: LRCIRS ’yk)

= (Q (xl’ono’xn_k,yl,o-n’yk),o-o,én(xl,u-.,xn-k,byl,-oo,yk))o

n-k+1

This version of the theorem is stronger than the first
version since it restricts the type of Cr-diffeomorphism
which is allowed. To see that the second version actually
implies the first,note that if we have f: U - Rk with Df(p)
6f rank k, then there are k coordinates (which after

renumbering we can assume to be (x ;.,xn)) so that

n-k+1’°
afi
S;T(p) (i =1,...,k; j = n-k+1,...,n)
J

is invertible.
Example: 22_1 xi = 1, near the point (0,0,...,0,1),
implicitly defines x, as a function of (xl,...,xn_l), namely
X = +/l-x2—x2 - - x2 A Near (0,0 0,-1) i
n"' 1 2 ® o o n-—l' ea F) 50 e 0 k) 5} xn lS

2 _ 2
l LN I ) xn-l L]

We shall deduce the Implicit Function Theorem from a

implicitly defined as 7/1 - X

special case (k = n) which is called the Inverse Function

Theorem.,
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n

Theorem 3.5 (Inverse Function Theorem): Let U c R be

an open set and let f: U ~» Rn be a Cr-map with DfP

invertible. There are open sets V and W in Rn, with

X € Vc U, so that £|V: V> W is a c'-diffeomorphism. In

particular, £|V: V> W has a c-inverse f—l: W > V.

Proof that Inverse Function Theorem = Implicit Function Theorem:

Let £: U ~» Rk be a Cr—map on an open subset of R"

and suppose

of,
/ (}E;é(P) (i =1,...,k: j = n-k+l,...,n)

is invertible. Define F: U -» Rn""k X Rk by

F(xl,...,xn) = (xl,...,xn_k,fl(xl,...,xn),...,fk(xl,...,xn))

This map, F, is Cr and DF is given by the matrix

(n - k) k
1 /d\ ,//"5“\\

o - X 1 ;

if_l L} . L} . L] . _a__f_]_'

a?l .n
k . .

3f of
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Hence, DFx is invertible if and only if

n_k+l,uo.n)

/\‘
| o
¥| %
0
N
-
I
(=]
n
[}
]

_____ e~ ——— ——— w — -

is invertible.
- Thus DF(p) is invertible. Consequently, there are open
! . n-k k
sets Vc U, with x € V, and Wc R X R so that

F|V: V> W is a Cr-diffeomorphism. Consider F—l: W > V.

-1
Clearly F (yl"'°’yn)

-1 -1
(yl"‘"yn-k’Fn—k+l(yl"'"Yn)""’Fn (yl,...,yn)) and

, -1 _ -1 .
foF (yl,...,yn) = (Yn-k+1”"’yn)‘ Hence, F ~ is the
diffeomorphism required by the Implicit Function Theorem

¢ (strong version).
Proof of the Inverse Function Theorem:

Lemma 3.6: Let U and W be open sets in Rn and f: U-> W

be a Cr-homeomorphism with f_l: W > U differentiable at

every point p € W. Then f--l is a c© map, i.e. £ is a

Cr-diggeomorphism.

Proof: Let Auto(R") < £(Rn,Rn) be the open subset of
invertible linear maps. (Auto (Rn) is_open since it is
defined by the condition {determinant # 0}.) Consider
the map w: Auto(Rn)‘+ Auto(Rn) given by sending an

. 3 3 3 . . ’ . w
invertible linear map to its inverse. This is a C -
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diffeomorphism. The reason is that, in terms of matrix

entries, the map w 1is given by

) W 1

i
@;5) — det(aij)(('l) M;5)

wherewMi. is the determinant of the (n-1) X (n-l)—matrix

. | . . th .th
obtained by deleting the i -row and the j -column of
(aij). (Recall that the determinant of a matrix is a poly-
nomial in the entries.) Let f: U > W be a Cr—homeomorphism

with f_l: W > U differentiable at every point of W. By

1

the chain rulefD(fé ) = w(Dfp). Thus

£(p)
-1 n _n, . . , , .
D(f 7): W> £(R ,R’) is given by the composition

-1
w S—=u 2Es auto®®) 2> autoRY).

. . . -1
By assumption £ is a CrAhomeomorphlsm, r > 1. Hence £

and Df are continuous. Since w 1is Cm, it follows that

D(ffl): w > 2(R®,R®) is continuous, i.e., f--l is Cl.

Suppose that we have shown that fml is Cs, l1<s<Kr.

Then D(f) = w.Df-f-l is Cs. This means that £ is Cs+l.
This proves, inductively, that f-l is actually Cr, and

consequently that £ is a Cr-diffeomorphism.

Lemma 3.7: Let L: R - R" be a linear map. Define

m(L) = min |L(x)| and M(L) = max ||L(x)||. Then,
xeSn- xesSn-1

0 <m< M and m|x|| < [|L(x)]| < M||x|| for all x ¢ RR,
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L is invertible if and only if 0 < m(L). The functions m,

M:'i(Rn,Rn) -> Rl are continuous.

(Note: By Lemma 1 +this minimum and this maximum exist

since Sn-l is compact. )

Proof: Since L is linear L(x) = |x|-L{(x/||x||) for any

x #0. Thus m(L)-|x|| < JL(x)] < M(L)-||x]| for any x e R".
Also m(L) # 0 if and only if L(x) = O implies x = 0. This
means that m(L) # 0 if and only if L: Rn > Rn is injective.
But any injective linear map from Rn to R® is an isomorphism.

1. .
is continuous. (The

Let us show that m: £(Rn,Rn) - R
argument for M 1is similar.) Let (Li} -> L in £(Rn,Rn).
Choose x ¢ s™ ! so that |lL(x)]|| = m(L), and choose ¢ > O.
We know that {HLi(x)H} > ||L(x)]] and that m(L;) < ”Li(x)”.
From this it follows that m(Li) - ¢ < m(L) for all
sufficiently large i. Let us show, conversely, that
m(Li) + ¢ > m(L) for all sufficiently large i. These two
inequalities together imply that }im m(Li) = m(L). This,
of course, implies that m is co;:znuous. We prove the
second inequality by contradiction. If it does not hold,
then there are integers nl < n2 <... such that

m(L ) + ¢ < m(L) for all k. Choose x ¢ s™ so that
x P

I (x )| =m(L_). By taking a subsequence, if necessary,

"k "™k x
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. - . n-1 .

we can assume that {x_ } = x in s™ 1 (since S is compact).
. n _n n n . .

The evaluation map p: (R ,R) X R > R 1is continuous.

Hence lim L  (x_ ) = L(x), and consequently,
k>

lim m(L_ ) = lim||L

(x_ )| = |lL(x)|| > m(@). This is
) i R ) Dy

impossible since m(Lnk) + ¢ < m(L) for all k. This
contradiction shows that m(Li) + ¢ > m(L)vfor all sufficiently

large 1.

Lemma 3.8: Let U c R be an open set, and let f: U - Rk

be alcl-function, Define 9: U X U > Rl by

(e -£0)-pE, (x-y) |
=~y

for x £y
exy) = <

0 for x = vy.

L

Then ¢ is a continuous function.

Proof: Clearly @ is continuous everywhere except possibly
along the diagonal {x=y}. To show that it is continuous
there we must show that given p € U and ¢ > 0 there is

8 > 0 so that

-

l£@) - £) - pE (x-p) | < e

|x-v||

for all x,y € Bo(p). Choose & > 0 so that BQ(P) c U and
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so that |—'—(q) - axf (P)| < 36;1 for all g ¢ B6 (p). (Here we
X .

use the fact that f is~Cl.) It follows that for any

points q,q' € Bc(p)
of ., _ f €
I3x (@) - 3% @] <5
i i

Recall that if x -y = (h ,hn), then

EERE

£(x) - £(y) j Z -"'(y + t(x-y))dt.

Thus,
1 n
f(x) - £(y) - ny(h) =j\o Zhi' axl(y+t(x y)) - _a_:(Y))dt'
1=
and hence
|£(x) - £(y) - D () || < Zlhil = < e |n

i=1

for any x,y € Be(p);

Proof of the Inverse Function Theorem: Suppose that we

have a c'-function f: U > R" with Dfp invertible. We shall
find a smaller open set V c U, with p ¢ V, so that:
1) £|v is 1-1,
n
2) £(V) c R is open,

3) f-l: £(V) - V is continuous; and
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4) f_l: £(V) > V is differentiable at every point

g e £(V).
By Lemma 3.6 this will prove that f: V > £(V) is a
Cr—diffeomorphism.

Since DfP is invertiblg,m(Dfp) > 0. 'Since f is Cl
and m,M are continuous, there are constants 0 < a < A and
an open set Vl
all g eVl. Since the function p: U xU > R

c U so that a < m(qu) and A > M(qu) for
1 of Lemma 3.8

is continuous, there is § > 0 so that BGZpic:Vl and

(1) lEx") - £(x) - DE_(x'=x) || < ggux' - x|

for all x and x in Bé(p). Since alix' - x.“ﬁl!DfX(x'-th <

A“x' - %/, we see that

™ Sl - x g EED - felle @+ D e - x|
for all x and x  in Bg(p). Let V be B&(p). Then
from the first inequality in (*) it follows immediately
that fIV' is one~to-one, and that f'lzf(V) + V is
continuous.

Next, we claim that £(V) «B™ is an open set. Let

g = £(v) for some wv¢V. Let b be one half the distance
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from g to f(a(Bé(p))). Note that b > 0, i.e., q £ f(a(Ba(p))),

since f|Ba(p) is one-to-one and q = £(v) for some v ¢ Be(p).

Claim: Bb(q) c £(v).
If we can establish this claim, then we shall have

proven that f£(V) c RY is open.

1
Proof of Claim: Let q' € Bb(q). Define ¢: Ba(p) - R by

V(x) = ||£(x) - q'“z. Clearly, ¥ (v) < b2, whereas for any

x' € a(Bb(p)), w(x') > b2 by the triangle inequality:

N\

3\

\

£(3(B, (p)))

N

Since Ba(p) is compact, y achieves its minimum at

,_\\
5'

some point x ¢ Ba(p). Since Y¥(v) < Y(x') for any

X' ¢ a(Bé(p)), the point x must be in Bé(P) = V. At such
a minimuT,Dwx(h) =0 for all h in R". By the chain rule,
Dwx(h) = 2(f(x) - q')onx(h). Since Df_ is invertible, we
conclud? that £(x) - q' = 0, i.e. that £(x) = q'. This

proves the claim.
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1

Lastly, we must show that f " : f(yy) > V is differentiable.

Let y € £(V) and y + h € £(V) with f(x) = y and £(x') =
y + h. Given ¢ > O there is y > 0 so that if ||x'-x| < u,

Of course, [x'-x| < 2ﬂhﬂ.

then |h - DE_(x'-x)| < &-|x'-x]. o

~ Thus, if [h <'§ W, then

H(Dfx)—l(h-Dfx(x'—x))“ < M((Dfx)—lnh - Df_(x'-x) ||

<

On the other hand,

(DE,) -1 (h-DE_(x'-x))

M((Dfx)_l)-crux'-xn

1

- 2
M((DE) ) - e-2|[h].

, -1
-(x -x—(Dfx) (h))

1

= (£ ) -£ L (v)- e ) TH ).
Putting these two statements together proves that
Ie w+n) - 1) - ey, 0 tm|
lim £ (y) =0
Iml> 0 =

This proves that f'-l
-1 -1
DIE Dg(x) = (PF)

Inverse Function Theorem.

is differentiable and that

This completes the proof of the
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84. Manifolds--The Abstract Definition.

The definition of manifolds ' as the level sets of

certain functions defined on open sets of Rn has the
- disadvantage of carrying much excess baggage along. For
most considerations, the fact that M is a subset of R"
or that certain functions define it is totally irrelevant
and,in fact,only cobscures the central issue. ‘What is
important is that M be a space with systems of local
coordinates which differ by Cr-diffeomorphism. In this
section, we emphasize this more abstract point of view by
giving a second definition of a manifold. We will also

compare the two definitions.

Definition: A gre-cr-manifold of dimension n is a triple—-

a topological space X, an open cover {Ua}aeI of X, and

homeomorphisms Pyt Yd -> Ud, where Vd 1s an open subset of
Rn--which satisfies the following axioms:

st

1) X is a Hausdorff, metrizable space.
-1 -1 -1 .

2) Pg Pyt 9 (U, n Uﬂ) > ¢g (Ud n Uﬁ) is a
Cr-diffeomorphism between open sets in R" for

all a,B € I. -

Clearly, condition 2) posits the existence of local coordinate

systems which overlap in a C;-manner. Axiom 1 requires

-amplification. First of all, it is not a consequence of all
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the other assumptions (i.e.,that X 1is locally homeomorphic
to Rn). For example, take two copies of Rl,,Rl x {a}
and Rl X {b}, and identify {x X a} with {x X b} for all x # O.

This produces a line with a double origin:

which is locally homeomorphic to Rl but which is not
Hausdorff. The condition that X be metrizable once it
is Hausdorff is equivalent to X's being paracompact. This
means that any open covering haS~a,countab1e, locally
finite refinement. This will be assured if X is covered
by countably many open~se£s Ud which are homeomorphic to
open subsets of Rn. The standard "nonmetrizable manifold"
is the "long line". Let @ be the first uncountable
cardinal and consider the set of cardinals S = {ala < a}.
This is an uncountable set but each element in S has at
most countably many predecessors. Let W = SJJ_ @ X T where
T is the open interval (0,1). Define an org:§ing on W by:

1) restricted tobs € W, the ordering is the usual one,

2) axt<a for any t € T

3) a<pBxt if a<lB,

4) axt<p if a< B,

5) axXxt<Bxs if a<Bor ifa =8 and t < s.
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Once given an order, define open intervals (v,u) for v,u ¢ w
to be {a € W|v < a < u}. An arbitrary open set is a union
of open intervals. This defines a topology on W which
makes it the "long line", L. One establishes the following:
1) L is Hausdorff and locally Euclidean.
2) Any sequence in L has a convergent subsequence.
3) If L were a metric space,then,for each integer

n, it would have a finite set Xn so that every

b
P € L is within distance % to some point in Xn.
4) If L were a metric space, then it would have a

countable, dense subset.

5) L has no countable, dense subset.

These examples show the necessity of assuming Hausdorff
and metrizable; but the main condition of interest is the
existence of local coordinates which overlap in a c® manner.

The homeomorphisms 9, Vy > Uy, where vV, © R” set and
Ua C M are open, are called charts. We think of such a
chart as giving coordinates (xl,...,xn) valid-in Ua‘
Actually, if (xl,...,xn) are the usual coordinates on Va’
then the induced coordinates on U, are (xle¢;l,...,xno¢;l).
(Here, we are viewing X, as a function x; ¢ Va - R.) A
collection of charts {Ua’wa’v } which cover M, i.e., so

a‘ael

. : r . \ ,
that agl U, =M, is called a C'-atlas. An atlas {Ua’@a’va}ael
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determines a unique maximal C -atlas consisting of all
homeomorphisms, ¢: V - U from open sets in Rn to open sets

in M, with the property that ¢;lo¢: ¢-1(U nu)) - ¢;1(U’n u,)
is a cF-diffeomorphism for all o ¢ I. Any element in the
maximal atlas defines C -coordinates on some open subset

of M.

Definition: A Cr-man;fold is a Hausdorff, metrizable space

M and a maximal Cr—atlas for M.

Of course, any pre—cr—manifold determines a C'-manifold
but many different pre—C:-manifolds can determine the
same one.
~ Note that if M is a c*-manifold and UcMis an
open set, then U itself inherits the structure of a
r . n ., 0 .
C -manifold. Thus any open subset of R is a C -manifold.

If (x’{Ud’¢a’va}) is a pre—C?-manifold and £f: X > R

ael
is a continuous function, then £ is said to be class c®
for any s { r provided that f-@a: Vd > R is of class c°®
for every a € A. Of course, if we check the condition

. s . .
that fe¢a is C for all ¢, forming an atlas, then it
follows for all the Py in the maximal atlas that they

generate. Similarly, we define f: X - Rk to be c® if all

its coordinate functions are C°. If (x’{Ud’¢a’va}) and
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(Y,[U&,¢&,v&}) are pre—cr-manifolds, then f: X > Y is
of class c° for any s £ r, provided that the composition:

-1
® Pn
o -1 £ B

og (£ (U,
is of class c® for all pairs (a,B'). The map f: X > Y

is a‘Cr—diffeomorphism if £ 1is a homeomorphism and both

£ and £ ' are c°- functions. Two pre-C¥-manifold struc- -
tures on .a space M define the same Cr—manifold structure
if and only if the identity Id_.: M > M is a C -diffeomorphism

M

from one structure to the other.

Example: Give Rl the usual structure as a C -manifold.
Use the homeomorphism t » t3 to define a different
c’-manifold sﬁructure. In the second structure g: U »’Rl is
a Cm-mapping on U C Rl if and only if m(t3) defines a
Cw-mapping in t. Call this new structure R'. These two
structures are différent since U?E is ¢© on R' but not

on Rl. These manifolds are, however, Cm-diffeomorphic. In
fact p: R' > Rl given by o (t) = Jt is a Cw—diffeomorphism.
It turns out that in higher dimensions one can find two
different C -manifold structures on a topological space
which are not even diffeomorphic. The lowest dimensional

" example of this is S7 where there are 28 distinct differeﬁtiable

structures.
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In our definition of an atlas we required/each Va
to be an open set in the same dimensional Euclidean space.
If M 1is connected, then this requirement is superfluous;
it actually follows from the other axioms. To see this,
let (U _,p ,V ] be a Cr-atlas except for this condition

o’ "a® a"del

and let U U_ be connected. If U N U, # @, then V_ and
ael o o B o
VB must be open sets in the same dimensional Euclidean

space. The reason is that m;l(Ua N U.,) and @él(Ua nu,)

B p

are diffeomorphic and hence by exercise 4 of section 2
are open sets in the same dimensional Euclidean space.

Define Wh,c M to be ” U Ua‘ Clearly, U Wﬁ;= M,
{a|dim'va=n} n>0

and each W is open. By the above diSCussion,Wh N wo= ']
ifn#m. If M is connected, then all the W except 1
must be empty. If M is not connected, then its various
components can have different aimensions (if we drop the
requirement that all the Vd be of the same dimension). If
every component has dimension n, then we say that M is
of dimension n.

When dealing with c -manifolds and Cm-maps,'we shall
use the words differentiable manifold or differentiable
function. When we are dealing with Cr-manﬁfolds, we shall say

c* explicitly. Though much of what we shall do for

c -manifolds can be carred through for c’-manifolds r > 1,
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we shall usually adopt the easier course of restricting to

the Cm-case.

X,
Exercises: 1) Show that the ellipse {22=1c;5)2 = 1} and
i

Sn-1 are diffeomorphic.

1

2) Given a Cw-atlas for Sn-

3) Given a c’-atlas for {(¢,2) € m2|g2 = z3 - 13}.
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§5: Examples of Differentiable Manifolds

One general way to construct new manifoldé from old -
ones is by taking quotients of certain group actions, Even
if the originél manifold comes equipped with defining
equations in Rn,éhe quotient manifold may have no such
natural description. ‘Thqs, when;taking quotients, it is
much easier to work with abstract manifolds.

Let G be a group and give G the discrete topology.

An action of G on X is a continuous map

w: GX X —»X

such that ¢@(gh,x) = ¢(g,9(h,x)), p(e,x) = x. It follows
immediately‘that w(g, ): X > X is a homeomorphism whose
inverse is @(g-l, ): X > X. This leads to an alternate
description of an action of G on X: An action of G

on X 1is a group homomorphism from G to Homeo(X), the
group (undér composition) of homeomorphisms of X. We
often denote the homeomorphism associated to g by

X g-X. An action is free if g.x = x from some x € X
implies that g = e. An action is properly discontinuous if
for every x ¢ X there is an open set U c X containing x,
so that g.U N U = @ for all but a finite number of elements

g € G. In an action,the stabilizer of a point x ¢ X is
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the subgroup {g € G|gx = x}. Thus, an action is free if and
only if the stabilizer of every point is the identity

subgroup.

Lemma 5.1: f G acts preperly discontinuously on X,

then the stabilizer of every point is finite. Furthermore,

if X 1is a Hausdorff space, then given x ¢ X there is an

open set U c X contaihing x, so that U N gU # g only for

g in the stabilizer of =x.

Proof: The first assertion is clear. As for the second,
consider x € X and g € G such that gx # x. Since X 1is
Hausdorff, there are open sets Vx and Vgx containing x

and gx respectively, such that Vx n Véx = @#. Consider

U = Vx n g_l(Véx). This is an open set containing x, and

UNgu = @#. Now suppose G acts properly discontinuously
on X. Choose U so that UN gU # @ for only finitely

many g € G, say {gl,...,gT}. For each 95 which does not

\

stabilize x, we choose Ui,an open set containing x, so

that Ui n giUi = @. The intersection-

Un ( U.)

n
(i]g x#Ax}

is the required open set.

Corollary 5.2: f X is Hausdorff and G acts freely and
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properly discontinuously on X, then for each x ¢ X there

is an open set U, containing x, so that U N gu = @ for

all g # e.

Given an action G X X » X,we define the quotient\space
X/G. As a set, it is the equivalence classes under the
rélation‘xxﬂ,gx for all x € X and g € G. (These classes
are called the orbitsﬂof”~qjand:theAquotient space is the
orbit space.) The topology on X/G is the quotient topology
for the map m: X > X/G. This means that U c X/G is open
if and only if m T (U) < X J.sopen -

If M is a Cr—méniégld;wéhen,én*aétion of G on M
is a cr4ac£i6n‘if'thé ﬁdﬁéoﬁé?phism induced by each g € G

isxa'cr—diffeomorphism.

Theorem 5.3: Let ‘M wbe,a'cr-manifold and let. G X M> M

, . r .
be a free, properly discontinuous, C -action. Then M/G

naturally inherits the structure of a Crfggnifold so_that

s M > M/G is a cF-function.

Proof: We define an atlas for M/G. For each x ¢ M,choose

r .
L Vd > Ud’a C -chart with x ¢ Ua>so that Ua n gUa =g
for all g # e in G. Consider n(Ua) c M/G. It is an open

set since its preimage is gUd. Furthermore,
geG

m Ua= Ua -> n(Ua) is a homeomorphism. We take



55

Mo, * Va -> n(Ud) to be a chart near [x] € M/G. One checks that
the overlap  functions for this atlas are Cr,,and hence
that this atlas defines a C:manifold structure on M/G.

Clearly, m: M > M/G is a Cr—map whose differential at x ¢ M,

calculated in local Cr—coordinates, is of maximal rank.

Examples: 1) Let Z (the integers) act on R by translation

ner = n+r. Clearly, this is a free, properly discontinuous)

c” action on R. The quotient manifold R/Z is c’-diffeo-

morphic to the circle: Sl = {(x,y)|x2 + y2 = 1}. The c’-
diffeomorphism
©: R/Z —> Sl
is defined by
o(r) = (cos(2nr),sin(2nr)).

2) Generalizing example l,let V be an n-dimensional
real vector space and L € V a lattice. This means L 1is

all integral linear combinations of a basis (e .,en) for V.

17 -
We let L act on V by translation £-Vv = £4+V. This is
clearly a free, C®-action. We claim that,in addition,

it is properly discontinuous. To show this it suffices to
show that there is an open set U, containing @, so that

£:U N £'.U =g if 4 # 4' are lattice elements. The open

. n 1 . .
set is all [2i=1 a,r, }ail < 2]. The quotient V/L is an
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n-dimensional torus. As a specific example,let n = 2 and

let L be spannedfby e, and e,.

Then\Rz/L,is obtained from the parallelogram P by
identifying opposite sides. It is diffeomorphic to the

following subset of R3:

{ ((a+b cos y)cos @, (a+b cos §)sin @,b sin §)|0 < 6, ¥ < 2m},

Notice/thé£ V/L is alwéys a compact manifold gince the compact
set {22;1 aieilo skai gk;} in Vv ﬁaps onto V/L.

3) The:ewis/a‘free action of the ¢yclic group of order
2, {e,y]yz =:g}, 6n tﬁe sphere sl R®. It is defined
by y(xl,,..,xn) ;,(fxl""’—xn)'v It is easily’seen to be

free, properly discqntinuous,and c”. The quotient

c’-manifold is called RPn-l, real projective (n-1l) space.
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It is identified with the space of lines in R" through

- . -1 . . . :
the origin. Each line meets s” in a pair of antipodal

. . . . . n-1
points, and hence each line determines a point in RP

and vice versa. Since Sn-l is compact,so is RPn—l. There
is another way to think of RPn_l. That is as a compacti-
fication of Rn-l. We define a mapping Rn_l -> RPn-l as
1]
follows. Let n(x) = +»———3—- Then send
[l +1
(xl,...,xn_l) » [n(x)-(xl,...,xn_l,l)]. This is the obvious

map from RP_l to the hemisphere
n
Y2 o
L Yi=?
i1

'.J

y, > 0

followed by the projection to RPn-l. This map is a

cm—diffeomorphism from Rn-'l onto an open set in RPn—l.

The complement of the image is[[xl,...,xn_l,O]}, and hence

the complement is an RPn-2 c RPn-l. This copy of RPn—2

is said to be the "lines at =" in the compactification of Rp_l.
There is a complex version of this, mPn_l, complex

projective space. It is the space of complex lines

through the origin in T€". There is a map c” - {0} i mPn_l

which associates to a non-zero point in t® the unique complex
line through it and the origin. EPn—l has the quotient

topology under this map. Thus points in mPn-l are described
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by "homogeneous coordinates" [zl,...,zn], not all zero, where
[zl,...,zn] = [le,...,xzn] for any A e € - {0}. 'To show
that CPn_l is a Cm-manifold,we describe an atlas for it.

Let Ui c mPn-l be all points represented by homogeneous

coordinates [zl,...,zn] with z, # 0. Define

n-1
¢i= C -_ Ui

by ¢i(cl,...,cn_l) = [Cl’cz""’Ci—l’l’ci""’cn—l]' Define

b2 U > L by

v, (2 2 1) = oF,.. i1 il Fn,
wi l,...’ n - Zq’...’ Z.. ’ Z."..,Z. :
h 1 1 1

One checks easily that 9 and §, are well-defined, and that they are
. n &
inverses. Thus, ®; is a homeomorphism. Clearly U Ui = TP" l.
, i=1
Lastly,we claim that the overlap functions are c’. Let

i < j and consider ¢11(Ui n Uj) c mn-l. It is all
.. -1
(;l,...,cn_l) such that Cj-l # 0. Similarly ¢j (Ui n Uj)

is all (;l,...,;n_l) with c; # 0. The map

-1 -1
ch °¢i' ¢i (Ui n Uj) "—'% wj (Ui n Uj)

sends

(Clsv--:cn_l)

to
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IS R T Ly-2 &5 Cn—l)

L b b 2 2 3
IS RS T RS U RS O R

This is a dlffeomorphlsm from {c -1 # 0} to [c # 0} Thus,
these charts deflne a C -atlas, and consequently, a C -
manifoly SEinctuse on ce’ l. As before,mP lisa
”compactlflcetion of En-l obtalned by addlng the'"complex

lines at w® whlch form the complement of T 1 mPn-l

(whlch is ¢ 2).’
/ Let M be’a C -manlfold of dlmen31on n, end'let
{U ,@a V } be a C —atlas for it. Snépoee that'weAhaﬁe
¢ -functions'fa: Ud > R so that " N
fliYC*(fglfdjfln‘UB = (fél(O))‘n'Ua,lénd:
éf' Dfd(pilis’of rank k for all p e f;l(O).

Then, U(f;l(dlf‘c M is a manifold of dimension (n-k).
a

As an example of this,let ns extend the nanlfold M
given by [C 3 -1} in m2 to a manlfold Mc ch. M
will be the compactlflcatlon of M. The first’step is to
add a third complex variable t to (¢,2) and use [{,z,t]

as homogeneous coordinates in EPZ with m2 being [{,z,1].

Next make the equation homogeneous, i.e.' replace it by

Such a homogeneous equation has solution set in ¢3 consisting
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of a union of complex lines. For if a2c = b3 - c3, then
2 3 3 = 2
(Aa)“(Ac) = (Ab)” - (Ac)” for all A e €. Let M c CP
be the set of points corresponding to the lines in the
solution set, i.e., [a,b,c] ¢ M if and only if

a2c = b3 - c3. If we consider M N mz, then we have

3. 1}. Thus M N m2 = M. Points at », i.e.,

(1¢,2,11]¢% = 2
points in M - M, have homogenous coordinates [(.2,0]. For
such a point to be in ﬁ, it is necessary for 2z to be O.
Thus, there is only one point at «, [1,0,0] = [{,0,0].

Let us consider the coordinates (X,Y) = (z/{,t/{) in the
open set U = {[{,z,t]|{ # 0}. Clearly, M N U is given by

the equation Y = X3 - Y3. Since the partial derivatives

of this equation are (3X2,-3Y2

- lb they do not both vanish
at any point of M N U. Thus, M is a C -manifold. Being
a cldsed subset of EPZ, it is compact.

It is true for any manifold M c m2 given by one
polynomial equation p({,z) = O that we can form the
compactification M of M in CPZ. It will always be the
case that M - M is a finite set of points. Often however,

M will not be a differentiable manifold, i.e., it will have
a singularity at one of its points at .

A Lie Group is a C -manifold G with a group

multiplication so that the map G X G » G defined by
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(g,h) » g—lh is a C -map.

"Ekaméiesé 1) Auto(Rh), the space of linear automorphisms
of nn, is the open subset of £(Rn,Rn) givén by the condition
{determinant # 0}. Consequently, Auto(Rn) is a C -manifold.
The group law is given by composition of automorphisms. 1In
terms of matrices,it is matrix multiplication. Thus
(g,h) > g-lh is a Cm—mapping.A This Lie group is also called
the general linear group and is denoted GL(n,R).
2) R™ is a Lie group with the group law being translation.
3) The set of upper triangular real matrices with

1's down the diagonal:

1 * * *
1 * *
1
0 ’ *
1

is a Lie group under composition. It is a nilpotent Lie group.
4) 0O(n) < GL(n,R), the orthogonal group, is a Lie

group. It is the space of matrices (aij) whose columns,

thought of as vectors in Rn, all have length 1 and which

are mutually perpendicular. The group law is égain matrix
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multiplication. A more abstract definition of O(n) is the
‘subgroup of Auto(Rn) consisting of those automorphisms which
preserve lengths of vectors in Rn and angles between vectors.
5) SsO(n) is the subgroup of O(n) consisting of those
matrices in O0(n) of determinant 1. Alternatively, it consists
of those elements of 0(n) which preserve the orientation of

R". Similarly, SL(n,R) is the subgroup of GL(n,R) cbnsisting
of those matrices of determinant 1.

Definition: If G is a Lie group and I' € G is a subgroup,

"then I 1is a discrete subgroup if and only if there is an
open set U c G so that yU N 4'U =@ for all vy and y'

distinct elements of T.

Theorem 5.4: If I' € G is a subgroup, then I acts on G

via y.g = yg. If I'c G is a discrete subgroup, then this

action is free and properly discontinuous. Hence G/T is

a differentiable manifold.

Proof: This is immediate from the definitions.

Examples: 1) Let Pn c R be a regular n-gon centered

at the origin:
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Consider the group of rigid motions of this figure, S(Pn).
It is a group of order 2n and a discrete subgroup of 0(2).
The quotient O(2)/S(Pn) turns out to be diffeomorphic to
the circle.

2) Let D c R3 be a regular dodecahedron in R3 centered
at the origin (12 pentagonal faces.) Consider the group
.of rotations (i.e. elements in SO(3)) which when applied to
D bring it back to itself, FD. This is a group of order
60. (In fact, it is A5.) The quotient SO(3)/FD is a
c’-manifold of dimension 3 first discovered by Poincare.

It is a counter-example to one of his early conjectures
about manifolds.

There are many more examples of this tYpe. In fact,

there is active research today centered on such manifolds.

Exercises: 1) Show that EPn—l is compact.

2) Show that TP is diffeomorphic to S2.

3) show that RP® is diffeomorphic to S<t.

4) show that SO(n) is a connected Lie group.

5) Show that FD in example. 2 above has order 60.

6) If G is a Lie group and I' € G is a discrete
subgroup, then T is said to be uniform if and only if there
is a compact set K< G so that |y yK = G. Show that I is

: yeT
uniform if and only if G/T is compact.
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7) Show that RP® can be described as follows.
Its underlying set is mn_u_mPn"l. The open subsets for

the topology are all ULUVcR®Q BP”"! such that:

a) UckE" is open.
bl If peV, then there is an open set Wy of gpR—1 with
pe WycV, and R > 0, so that if W = {xe ®"®|x is contained

in a line in Wy}, then W N (R - BR(O)) is contained in U.
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86. Further Notes and Generalizations.

Note that a C'-manifold defines a C -manifold for all
1l < s < r, but that different c*-manifolds can define the
same Cs—manifold.

One can define many other types of manifolds simply
by restricting the overlaﬁ functions which one allows.
Thus, consider € a subset of homeomorphisms between all
pairs of open sets in R'. @ must sétisfy the following
axioms:

l) If £f: U~>V is in € and Wc V is an open set,

then f|W: W~ £(W) is in @&.

2) IfuU =’UUa, and £f: U > V is a homeomorphism with

fan= U, > f(Ud) in @, then f is in @&.

3) IdU: U~>Uis in @&.

4) Compositions of elements in € are in #&.

5) Inverses of elements in @ are in #&.

Note: If U C R" is open and f: U »> £(U) c R" is a homeo-
morphism, then £(U) is automatically open in R". We have
proved this for Cl-diffeomorphisms. The proof for arbitrary
homomorphisms is much more involved. Later in the course we
shall give a proof using homology.

Given such a collection 65 we define #&-atlases and



66

#-manifolds as before. If we take @ to be all homeomorphisms,
the result is topological manifolds. If we take & to be
Cr-diffeomorphisms, then the result is C -manifolds.
If we take & to be real analytic diffeomorphisms, then
the result is real analytic manifolds. If n = 2k and we give
R" the structure of mk and take & to be the complex
analytic diffeomdfphisms, then the resulting manifolds are
complex analytic manifolds. mPn—l is a complex analytic
mani fold.

As a different type of example consider R" as Rk X Rn--k
with coordinates (x,y) and take diffeomorphisms of the form
e(x,y) = (¢l(x,y),¢2(y)). These are precisely those

diffeomorphisms which preserve the family of k-dimensional

subspaces given by {y = constant}:

P,
——

E -—

®

The resulting manifolds are c -manifolds with a codimension

(n-k) foliation. Thus, Mn is written as a union of manifolds
of dimension k, called the leaves of the foliation, which

locally look like the family of Rk x {constant} c R

Example: Let L c R2 be the lattice generated by (1,0) and

(m,1):
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The vertical foliation is preserved by the translations in
L. Thus, the torus is foliated. Each leaf is a copy of Rl
and is everywhere dense (since m is irrational).
Sometimes it is hard to tell whether or not two mani-
folds of the same dimension are diffeomorphic. For example

Sz, EPl, and the ellipse {xz/a2 + y2/b2 + zz/c.2 = 1} are

all diffeomorphic. But RPZ, 82 and R2/L are all different.
Of course, to show that two manifolds are diffeomorphic one
constructs an explicit diffeomorphism between them. The

usual way to show that two manifolds are noundiffeomorphic
is to find some numerical (or algebraic) invariant which is

associated to each manifold which takes a different value

on the two manifolds in question. (The word invariant

here means that the thing associated to diffeomorphic manifolds

is the same.) Much of this course will be concerned with
defining suitable invariants. As a first example of such
an invariant (at least for connected manifolds), we have °

the dimension.
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We shall also need the concept of a manifold with
boundary. Let E' c R" be the half space
{(xl,...,xn|xn.2 0}. If U c E" is an open subspace of

mn define dU to be U N {(xl,...,xn)lxn =0} =UnN amn.

Lemma 6.1: If U and V are open sets in B and if f: U > V

is,avcl—diffeomg;phism, then £(3U) = av.

(A Cl—diffeomorphism between open sets in B is a map
which is the restriction of a cl—diffeomorphism between open

sets of R?vto;their intersections with m#.)

Proof: Supposé thatrthere:is a point p € 3U so that

f(p) £ 3V. By restricting to smaller 6pen sets we can
assﬁmé that 8V = @ and U # #. If ¥V = @, then V is open
in Rn aﬁd'hence U must be open in Rn (by the Inverse
Functioh'Theorem a?plied to'f—l). But this implies that

3V = #. This contradiction proves that £(3U) c av.

Likewise, f-l(aV) C 3U. This means £(3U) = V.

Definition: A c’-manifold with boundary is a Hausdorff,

metrizable space with an atlas {Ua,cpa,va}czeI where each

Vd is an open subset of E" and where the overlap functions

¢;¥¢Bare c"-diffeomorphisms. 'If M is a C'-manifold with

boundary, then 3M, the boundary of M, is aua. Using:
o
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Lemma 6.1 one sees that 3M is a Cr—manifold (without boundary)
of dimension (n-1).
A c"-manifold with boundafy whose boundary is empty
is naturally identified with an ordinary c'-manifold. If
M is a c'-manifold with boundary, then int M = M - M is
a Cr—manifold without boundary.
Algebraic varieties are defined similarly, in spirit, to
the way manifolds are defined. Let V¢ R® be defined by polynomials
{pl = 0,...,p = 0}. It is said to be an affine algebraic |
variety. A rational function on V 1is the restriction

to V of a quotient of polynomials:

a(Xys000,%)

b(xl’o'o’xn) .

Strictly speaking such a rational function gives a continuous,

real-valued function only on
v N {(xl,...,xn)|b(xl,...,xn) = 0}.

A rational map between affine varieties V > W, V c Rn,

W< R®, is a function from V 0 (xlbl #0, b, # 0,...,b # 0}
to W of the form v » (al(v)/bl(V),...,am(v)/bm(v)) with
the {ai} and {bi} polynomials. A real algebraic variety is
a Hausdorff space X with an open cover {Xa] and

homeomorphisms 9y ° Ya > Xa’ with Ya an affine variety, so



70

that all overlap functions are rational maps.
This defines a real algebraic variety. An algebraic
variety over any field, k, e.g. €, Z/p, QR[i], is defined

analogously.

Exercises: 1) Let p(x,y) be a complex polynomial in

)

two (complex) variables. Suppose that for each (xo,yO
such that p(xo,yo) = 0, either ap/ax(xo,yo) or ap/ay(xo,yo)
is non-zero show that p*l(O) c m2 is a complex analytic -
manifold.k

2) Let P be complex projective n space. Suppose
given a homogeneous polynomial p(zo,.,.,zn). Let X mPn
be the solution set, i.e. X = {[zo,...,zn]|p(zo,...,zn) = 0}.
Show that if for every x € X there is 1 such that
ap/azi(x) # 0, then X c ce” is a compact complex analytic
manifold of real dimension (2n-2), i.e. of complex dimension
(n-1).

3) If M is an n-dimensional manifold show that

int M =M - ?M is a n-dimensional manifold and that 3M is

an (n-l)-dimensional manifold.
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§7. Maps between Manifolds.

If Xn and Ym are Cr—manifolds, then a function
f: X > Y is ct if for every pair of charts in the cF-atlases

for X and Y, Py Va -> Ua c X and ¢B: V, > W, € Y, the

B B

composition vélofowa is c*. Of course, if f£|lU is c® in one
pair of charts, then it will be c’ in any pair of charts
since the change of coordinate functions are themselves ct.
Things like the matrix entries for Dfp will vary as we
change the coordinates,and thus they have no intrinsic
meaning. There is, however, a quantity associated with matrix
representatives for Dfp which is invariant as we change
coordinates. This is the rank of Dfp thought of as a linear
map, from R" to R". For as we change coordinates in x"

and Ym, the resulting change in the matrix representing Dfp
is given as follows. Suppose that in one pair of local
coordinate systems for X near p and Y near f(p), Dfp
is given by (aij). Let us change coordinates in X and Y
with (Aij) being the differential of the change of
coordinates of f£(p) € Y and (uij) being the differential of
the change of coordinates at p € X. Then, in the new
systems Dfp is represented by (kij)(aij)(uij). Since

(Aij) is an invertible (mxm)-matrix and (uij) is an

invertible (nxn)-matrix, this alteration does not affect
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the rank (which is the dimension of the image).

Thus, if £f: X > Y is a Cr—map, then associated to
every p € X is an integer, rk(Dfpl This is not necessarily
a continuous function, but it is lower semi—cdntinuous.

A Cr-map f: X' > Y is said to be an immersion if rk(Dfp)= n

for all p ¢ X. It is said to be a submersion if rk(Dfp)= m

for all p € X.

Examples: The following are immersions of Rl into R2:

) Ao

- . 27,
X), sin( x))
l+e l+e

2) x » (cos

3) The mapping Rl -> RZ/L defined by x = [(x,0)] 1is
an immersion of Rl into the torus RZ/L. If
LN (Rl x {0}) # @, then the image is a circle. If
LN (Rl x {0}) = @, then the image is a copy of Rl dense
in RZ/L. In fact, in this case the image of Rl is one of the
leaves of the foliation of Section 6.
4) The map R2 -> Rl given by (x,y) » x + y is a submersion.
5) The map R2/Z2 > R/Z given by [(x,y)] » [x] is a

submersion.
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6) The map R I Rn/L, x » [x], is both a submersion
and an immersion.

If Mp is a Cr—manifold, then a subspace X c M is a
k-dimensional C'-submanifold if for '‘every p € M, there is a
Cr—coordinate system (xl,...,xh) valid. on an open set U
containlﬁg p so that X N U =U N {Xk+l = 0,...,xn = 0}. If
f: X» M is a one-to-one immersion whose image £(X) ¢ M
is a Cr-submanifold, then f 1is a Cr—embedding (or an embedding
for short). Note that our original definition of a ct-

manifold yields a c’-submanifold of R™. The following theorem

makes clear the relation of immersions to embeddings.

Theorem 7.1l: Let f: X > Y be a Cr-immersion. For f to be

an embedding it is necessary and sufficient that £ be

one-to-one and closed.
(A continuous map f: A > B is called closed if whenever
X c A is a closed set £(X) ¢ B is closed.) Before beginning

the proof proper we need a lemma about any c’-immersion.

Lemma 7.2: Let f: x" > Y" be a c'-immersion and let pe X.

There are open sets V < X containing p and U c Y containing

r - . o
f(P% and C -coordinates (xl,...,xn) valid in V and (yl,...,ym)

valid in U, so that f: V > U sends (xl,...,xn) to

(Xl,...,xn,o,...,O).
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Proof: Choose V ¢ X containing p with coordinates
(xl,...,xn) and U € Y containing f(p) with coordinates

(yl,...,ym). We can assume that in these coordinates
afi \ ’
=, ®) (1,3 = 1,...,n)
J N

is non-singular. There is a map F) defined on an open
subset of (p X 0) € V X Rm—n with values in Ujgiven by
F(x,zl,...,zm_n) = £(x) + (0,...,0,21,...,zm_n). We see
that F is c* and that

Hence, DF(p X 0) is non-singular. Invoking the Inverse

Function Theorem, we see that F, rest;icted to a small open
. m-n r .. ) .

set about (p X 0) in V X R , is a C ' -diffeomorphism. We

use the coordinates (xl,...,xn,zl,...,z ), pushed foward via

m-n
F to an open set about f(p). In these c*-coordinates
f(xl,...,xn) = (xl,...,xn,O,...,O).

Of course, in a general immersion U N £(X) can be

bigger than f£(V). For example:
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1) There can be another branch cutting through

£(V) at £(x}:

£(v)

(in which case, £ is not 1-1).
2) There can bé another branch coming down to f(x)

but not touching it:

3)

£(V):

(In case 2 and 3, £ will not be closed.)

Proof of 7.1: Let us return to the proof of the theorem.
By definition if f 4is an embedding, then it is one-to-one.
Let us show that it must also be closed. If f: X - Y"

is an embedding and p € X, then there are open sets V c X,
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containing p and U in Y containing f£(p) with c*
coordinates (xl,...,xn) and (yl,...,ym) so that f: V> U
is given by f(xl,...,xn) = (xl,...,xn,O,...,O). Thus,
£f(V) is a closed subset of U and a Cr-manifold of
dimension n. Since f is an embedding, there is another
open set U' and cF-coordinates (yi,...,y&) so that

U' n £X) = {yﬁ+l = 0,...,yA = 0}. We can assume that U’

’

is an open ball in (yi,...,yﬁ)-space and that U' < U.
Restricting to U N U' and replacing V with f_l(U n u')
allows us to assume that U = U'. Clearly, f(V) c £(X) n U.
Also, £(X) N U is a closed subset of U and a connected
Cr-manifold of dimension n. (It is connected'sincé U’
is an open ball in (yi,...,yﬁ) space and
£(X) = U ﬂ'{yﬁ+l = 0,...,y$ = 0}.) Themap f: V> £(X) N U
is a local Cr-diffeomorphism and hence £(V) ¢ £(X) N U is
an open subset. Werhave already seen that it is a closed
subset. Since £(X) N U is connected, it follows that
£f(V) = £(X) N U. Thus, if £f: X > Y is an embedding and
q € Y, then there is an open set U ¢ Y containing gq with
c® coordinates (yl,...,ym) so that:
1) f-l(U).= V c X has Cr-coordinates (xl,...,xn), and
2) f: V> U is given by f(xl,...,xn) = (xl,
If C ¢ X is closed, then we shall show that Y - £(C)

-oo’xn,o,‘cco,o).

is open. For this let y € Y - £(C). Choose U open about
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y as above. Since C N f—l(U) is closed and
flf_l(U) > UnN [Yn+l =0,...,y = 0} is a homeomoprhism
£(C) N U is a closed subset of U N {Yn+l =...=y = 0}
and hence a closed subset of U. Hence, U - (£(C) N U)
is an open set in U, and consequently, an open set in Y
which contains g and misses £(C). This proves that
£(C) is closed.

Conversely, suppose that f: X - Y is a closed, one-to-
one immersion. Let q € Y. If q/dlf(X), then, since
f(X) € Y is a closed subset, there is an open set U
containing gq and missing f£(X). Restricting U to be
smaller, we can assume that on U we have Cr—coordinates
(yl,...,ym) so that [Yn+l =0,...,y, = 0} N U =g@. This
produces the required coordinate system about g. Now suppose
qg = £f(p). Since f is an immersion,there are Cr—coordinates”
on open sets V c X containing p and Uc Y containiﬁg ds
so that f: V> U isrgiven by f(xl,...,xn) = (xl,...,xn,O,...,O)o
Since f 1is closed, £(X - V) c Y is a closed subset. Replace
U by U =UnN (Y - £(X~V)). Because f is one-to—one,
£f(vVv) < U', and, in fact, f-l(U') = V. This gives the

coordinates required near f(p) on the open sets U' and V.

Corollary 7.3: Let ] Xn > Yn be a one-to-one immersion.

It is an embedding if:
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l) X is compact, or

2) £ is proper (i.e. f_l(K) is compact whenever K

is compact).

Proof: If X is compact and C < X is closéd, then C

is compact. As a result, £(C) c Y is compact. Since Y

is Hausdorff, £(C) is closed. This proves that f is closed
when X 1is compact.

Likewi#e, under the hypothesis that f is proper, it
follows that £ is closed. For suppose that f is proper
and that C ¢ X is closed. Suppose that {Yi}:=l e £(C) is
a sequence that converges to y £ £(C). The set

(o]

('§1 Y; Uy) €Y is compact. Consider f.l(.gl Y Uy) ne.
I;— f is proper, this must be compact. But-there are points
X, € f-l(yi) N C. If the sequence [xi} had a converge
subsequence {xnk} > X € C, then £(xX) = y. Since y £ £(C)
this means that {xi} has no convergence subsequence, and
hence that f_l(.otj1 y; U y) N C is not compact. The

i=

contradiction establishes the fact that if £ is proper,

then it is closed.

Exercises: 1) Give an example of an immersion f: X - Y

which is not an embedding but whose image is a submanifoldf
2) We showed that a proper mapping between metric

spaces was closed. ©Show that a finite-to-one, closed map

between metric spaces is proper.
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3) Let y and =z Dbe complex variables and p(z)
a polynomial without repeated roots. Show that
{y2 = p(z)} defines a complex analytic manifold, V, and
that 7: V> T, n(y,z) = 2 is an immgrsion V> C at all (y,z)

except those for which p(z) = 0.

4) Let A be a (2 x 2)-matrix of determinant 1,
i.e., A€SL(2,R). Show that A determines a diffeomor-

2

phism of T° = EZ/ZZ onto itself.

5) More generally, show that any A € SL(n,R)

determines a diffeomorphism of ™ = R™/Z™ onto itself.



| s1
‘SUPPLEMENT TO CHAPTER I

Let U C (I:l be an open set, and let f : U - (l:l be a complex

valued function on U. It is said to be holomorphic if

1im (B2 + h) = £(2),

= f'(z
o h (z)

exists for all z € U. (Here, h is a complex variable.) It turns
out that if £ : U - u:l is holomorphic, then £ is C°°, and, in

fact, complex analytic. This means that if z € U and Be(z) c U,
o -
then there is a power series, b ah( z - z)n, which is absolutely
n=0
convergent in Be(z) and which represents £ there, i.e. with
oo ) '
£(z) = ¢ a(z -2)".
n=0

At the end of Chapter III we shall give a proof of this (in the

case when f is Cl) using Stokesg" Theorem. If we identify Cl:,l

2 (z = x + iy), then £ : U->(|:‘l becomes (R, I) : U > IR

with IR
(f(z) = R(2) + iI(z) . The existence of f'(z) is equivalent to

1) R .and I being differentiable at 2z, and

(2) = 3% (2) 5 35 (1) = - g3 (2) .

oR

2)-5§

The two equations in 2) are called the Cauchy-Riemann equations.

If they are satisfied, then D(R, I)Z : ]R2-> IR2 is the (2 x2)-matrix

representing complex multiplication by £'(z).

—

If U ce® is an open set, then the following are equivalent :
1) £ : U0 ~» (l:l is holomorphic in each variable separately; i.e.,
f(zl’.'.' zi+h, zi+l"...' zn)_f(zl'..., zn) af

1im ( )= AN (Z Feceyg Z )
h~0 h 9z 1 n

exists for all (zl,..., zn) in U and all i, 1 < i < n.
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2) sz : ¢ > C exists for each z € U and is a complex linear

mapping.
3) Near each (zi;.;.}:zh) f is repfesented by an absdlutely

convergeat power ‘geries .

E(oyreeer g =2y oy (5 - 21)11.‘” (2, -z )"
. : n '
We shall not prove this theorem but it can be found in any book on
several complex variables . |

A function U E mk is said to be holomorphic (or complex

analytic) if each of its coordinate functions are.

Theorem (Complex Analytic Inverse Function Theorem).

Let U c¢” be an open set and F : U ~ c” be holomorphic .

n

If DFz R N is non-singular, then there are open sets U' < U

containing z and W Cimn,~§g that F : U' - W has a holomorphic

inverse.

Proof: By the c”-Inverse Function Theorem, there are open sets

U' €U and Wc<E® sothat F : U' > W is a Cm—diffeomorphism .

It remains to show that F L : W » U' is complex analytic. For
this we need only to show that for each w € W DF‘;l is a complex
linear map €" » €". Since pr-! ={pF 1 ana DF

(w)
is complex linear, it follows that DF;l is complex linear.

(w)

Corollary (Real Analytic Inverse Function Theorem).

Let U c R" be open and F : U » r" be a real analytic

function with DFp invertible . Then, there are open sets

U' €U, p€U', and W S R" so that F : U' - W has a real

analytic inverse .
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Proof: By restricting to a sufficiently small open set about p

we can assume that F is given by an absolutely convergent power

series.
i i
F(Xl XX XN Xn) = Z ai "'i (xl—pl) l. ® * (xn-pn) n
1 n .
where the a, . are elements of R" . The exact same power series

l I..l
1 n

defines a function, ﬁ, on a neighborhood of p in t® with values
in €% which is clearly complex analytic. Since DFp : R"» ®%

n

is invertible, so is Dfp : T > mnv. Applying to complex analytic

Inverse Function Theorem, we find a complex analytic inverse
g—l for F near p. Restricting E-l to the real points gives
the required real analytic inverse to F near p.

Arqguing as in Section 3, we can deduce from these results
complex analytic and real analytic versions of the Implicit Function
Theorem.

A complex analytic hypersurface in ¢” is the solution set
to an equation of the form

7 = qp (2] yeeer z)) = 0}

where p is a (complex) polynomial. If p(z) = 0 but %% (z) #0,
i

then there is a neighborhood of 2z in ¢n, U, so that X N U is
a complex manifold of (complex) dimension (n-1). If p(z) = 0
and %% (z) =0 for all i, then 2z is said to be a singular point

i
of X. It is an isolated singular point, if there is a neighborhood

of 2z in X which contains no other singular point. One way to

study an isolated singularity of a complex hypersurface is to study

its link.



Theorem Let {p(zl, ceey zn) = 0} be a complex hypersurface

sS4

with an isolated singularity at the origin. For all € > 0 which

are sufficiently small, the e-link of the singularity, i.e.,

2n-1
Se n {p(zl, ceer 2) = 0},
2n-1
ig a smooth submanifold of Se .

Proof : The proof uses some basic facts from algebraic geometry

which we shall not prove.

Fact 1 : Let X <€ IR

k be an algebraic set, i.e., the solutions

set of a finite number of polynomial equations. Then, there is

per algebraic subset I(X) and r < k so that X - I(X) is

locally defined

of rank r. We

FPact 2 : If X0

algebraic sets,
Xy = Xye1 = 00

Fact 3 : If X

algebraic set with

Sublemma : If X

subset containing

by r polynomials, {pl, ceoy pr} with D(pl,

call I (X) the singularity of X.

> Xl 2 x2 2 +«+« 1is a decreasing sequence of

then it must stabilize at some point, i.e.,

is a smooth algebraic set, i.e., if X 1is an

a pro-

«cer PL)

X = ¢, then X has finitely many components.

is an algebraic set and W ©X 1is an algebraic

Z(X), then X - W has finitely many components.

Proof : We claim that if X < R®™ 1is an algebraic set then X - W

n+1

is diffeomorphic to a smooth algebraic set in IR . To see this

suppose that the ideal of polynomials which vanish on X is

generated by'{fl,...,fT} and that the ideal which vanish on W is
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generated by {fl, coer EpiGye oo ggl . Consider R®® x mt

with variables (xl, ceer Xy t). The defining equations for

(X -W) ] x Y are:

fl(xl' e o o p Xn) - e o e - fT(X1, LA B 4 xn) = 0
S

t - (Z g?

j=l J (Xl, es ey Xn)) = 0

Clearly, the projection map onto R® induces a diffeomorphism
from this algebraic set to X - W. One sees easily that the

above algebraic set is smooth.

subset, then X - W has finitely many components.

n+l

proof : Define £l (X) = £(x) and ™1 (x) = r(z®(x)). By Fact 2,

we know that ZN(X) = ¢ for some N. Thus, we wrire X - W as
{x-wWUzx)H} U{Z(X) -(@wWNzI(Xx)U 2 (X)} Ueeo U1 (x) -w ﬂ{zN'lx}.

Each piece in the union is of the form V - Z where 2 =2 I(V) .
Hence, we have written X - W as a finite union of spaces each
of which has finitely many components. It follows that X = W

has finitely many components.

Let us return now to {p(zl, ecoy zn) = 0} cec’ a complex

hypersurface with an isolated singularity at the origin. Let

X < ¢” be the solution set. Clearly, X C ]Rzn

algebraic set. Consider V¢ : IRzrl > R defined by

is a real
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2n '
1p(xy . x2n) = I x% . We wish to show that ¢ |(X - 0) has
i=1
only finitely many critical values. Let R and I be the real
an imaginary parts of p(zl, ceer zn). The defining equations

for X cm®R®® are {R=0 and I = 0}. At all points of X

except 0, VR and VI are linearly independent. Let 2 CZIRzn

be defined by :

{(xl,..., X,) |R=0, I =0, and VR, VI, and Vy are

linearly dependent} .
Clearly, Z is an algebraic set contained in X. It consists of
0 union the critical points of ¥ on X - {0} . Since 2z - {0}
has only finitely many componénts, and ¢ restricted to any
component of 7 - {0} is constant, ¥ has only finitely many
critical values on X - {0} . 1In particular, ¥ has no critical

value in some interval of the form (0, €) .

2
Examples: 1) Let p(zl,zz) = zi -2z . The hypersurface

{p = 0} has an isolated singularity at the origin. The link

is isotopic to a torus knot of type (2,3) in S3
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2) More generally, if p(zl, zz) = zi + zg with r

‘and s relatively prime, then the link {p(zl, 22) =0} N Sz is

a torus knot of type (r, s) .
' _ .2 3 5 ~
3) Let p(zl, Zys z3) = 2z + z, +z3 . Then, the

5
€

SO (3)/{symmetries of the dodecahedron}.

link {p =0} N's is diffeomorphic to dodecahedral space :

. ’ _ 2 3 5 2 2
4) Let p(zl, Zor Z3r Z4 25) = 2y + z, + Z 4 + z, + Zg .

The link {p = 0} N s€9 is a differentiable 7 manifold which is

7 7

homeomorphic to S but not diffeomorphic to S°.



80

Chapter II: Tangential Structure

The first chapter dealt with manifolds and maps
between them.. Any serious study of these objects requires
the use of infinitesimal versions--tangent planes and
differentials. It is the purpose of this chapter to introduce

these and to enumerate some of their basic structure.
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§l: The Case of Submanifolds of Rn

We begin our study of tangent planes to manifolds
with the simplest case--that of Mp c RN. The tangent plane
n n n . . N
toM at pe M, TMp,ls the linear subspace of R (through
the origin) given in any one of the following three ways:
1) Choose an open set U C RN about p € M and a

differentiable function F: U > RN_n so that DFp is of rank

(N-.n) and M N U = F—l(O). We define TM; to be the kernel

of DF_: RN > RV ™,

p

2) Choose an open set U c RN about p € M, another
open set W, and a diffeomorphism §: W~ U so that p = §(0)
and M N U = @((Rn x {0}) N W). We define TM; to be the
image of DQO(Rn x {0}) in RN.

3) Take the collection of all Cl—curves

vY: (-¢,8)—>= RN
so that

vy(0) = p and Yy(-¢s,¢) c M.

Associate to each such curve the vector y' (0) ¢ RY All

these vectors form a linear subspace of RN.

Theorem 1.1: The three subspaces defined above all agree.

Proof of 1) = 2): Let &: W > U be as in 2) and F: U ~»> RN_n
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be as in 1). Since‘Foé(xl,...,xn ,0,...,0) = 0 for all
(xl,...,xn) sufficiently close to zero we see that the
subspace DQO(Rn x {0}) is contained in the kernel of DFP.
Since QQ-‘is a diffeomorphism, dim(DQO(Rn x {0}) = n.
Since DFP is of maximal rank, the dimension of the kernel

of DF is also n. This means that these two linear subspaces

have the same dimension and hence are identical.

Proof 2) = 3): Let y: (-¢,¢) > M be a Cl—curve with

y(0) = p. Then Q—l-y: (-¢,6) - W is a Cl—curve whose
image is coﬁtained in RT x {0}. Hence, (Q—loy)'(O) is
contained in R" x {0}. Consequently, D§.(§-1.y)'(0) is
contained in DQO(Rn x {0}). But, by the chain rule
D§P°(§—10Y)'(O) = (Q.Q_l.y)'(O) = y'(0). This shows the
subspace in 3) is contained in the one defined in 2). To
show that it is equal to the one defined in 2) consider
the curve y(t) = 'Q(tal,...,tan,o,...,O). Then,

vy'(0) = Dép(a .,a_,0,...,0).

1’.. n

As defined, TM; is an n-dimensional linear subspace of
RN, e.g., it passes through the origin. When we draw
pictures we usually translate this plane to pass through

the point p ¢ M. When we do this it looks like the "tangent

plane".
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Examples:

Consider the circle {x2 + y2 =1} in R%

The tangent plane at (cos 8§, sin §) is the line perpendicular

to (cos §, sin 8), e.g.,

1

TS (cos @, sin 8) ((a,b)| a cos g + Db sin § = 0}. The

reason is that if f(x,y) = x2 + y2 - 1, then Df(x,y) = (2x%,2y)

and kernel Df(x,y) = {(a,b)| 2xa + 2yb = 0}. Likewise,

1 2

. n- n
in the case of S = {(xl,...,xn)|2i=l X, = 1} the tangent

plane at (xl,...,xn) is the plane perpendicular to

(xl,...,xn).

Consider xy = 1,

The tangent plane at (x;;) is the plane perpendicular to

(%{,X) :
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Lemma 1.2: If Mn_llc R" is defined by one equation
f(xl,..,;xn) = 0 and if vf(xl,...,xn) never vanishes along
M, then TM.II;-l iﬁ,vf(pTL.

The proof is left as an exercise.

The vector perpendicular to TM;-l, vf(p), points into
the side of M on which £ is positive.

More generally, if M" < Rn+k is the common zeroes of
$ = (@l,...,ék) and if D¢ has rank k everywhere along M,

then TM; = (v@l(p),...,vék(p))L. If Mn c Rn+k is a submani-

fold, then the normal space to M at p 1is space perpen-

dicular to TM;. As we have just seen, if M" is defined by

{8

0} (& = (él,...,ék) with D% of rank k), then the
normal space to M at p is the linear subspace spanned

by {v&.(p),...,vd (p)}.
1 k

Exercise : 1) Prove Lemma 1.2.
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§2. Tangent Planes in General

It is not satisfactory just to have tangent planes
defined from submanifolds of RN. We need an abstract
definition of the tangent plane to an abstract manifold.

The definition is somewhat complicated.

Definition: Let M be a differentiabie manifold and

let p € M. Consider all pairs (U,f), where U is an

open set of M containing p, and f: U > Rl is a C -function.
We define an equivalence relation: (U,f) ~ (V,g) if and only
if there is an open set W, p e Wc U N V, so that

f|W = g|W. The equivalence classes are called germs of

Cm—functions at p. The class of (U,f) is called the germ

of £ at p.

Exercises: 1) Show that the relation given above is an
equivalence relation.

2) Show that if the germ of £ and g at 0 ¢ R

r r
9 f ) = 3 g (0),

axi TTTaxi ) dX. ...OoX.
1 r 1 *

are the same, then

3) Show that there are two Cw-functions defined near
0 € Rl with the same Taylor expansions at 0 but which
have different germs.

4) Suppose given a germ of a function at p € M".

Show that given another point q # p,there is a representative
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of the given germ which has any preassigned value at q.

The germs of c’- functims at P € M define an algebra
over R. We add two germs by taking representatives

with a common domain of definition and adding their values:
[U,£] + [V,g] = [U N V,E| (U N V) +(g] (U N V)I.
Likewise,

r[U,£f] = [U,rf] for r € R,
and

[U,£]-[V,g] = [U N V,E| (U n v){g]| (unv)].

We denote this R-algebra by Xﬂp(M).

Definition: A derivation on QZP(M) is a function D:.ﬁé(M) > R
which

l) is R-linear, and

2) satisfies ﬁhe Leibnitz rule, i.e., satisfies

D(a.B) = D(a)-B() + a(p)-D(B).

Example: Let y: (-¢,¢) > M be a Cl curve with y(0) = p.

This curve defines a derivation DY by the formula

D ([U,£]) = £oy' (0).

Theorem 2.1: The derivations on .ﬁ%(mn) form a real vector

. n .
space of dimension n, TMP. If £: M > Qq, is a Cm-map,
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then f induces Dfp: TM; -> TQ%(p). If £f: M > Q and

0
g: Q> S are C , then Dgf(p)-DfP = D(g-f)p.

Proof: Let ﬁs begin by defining the real vector space

structure on the set of derivations on.éé(M), If Dy and

D2 are derivations and r,s € R, then we define

(rDl + sDz)(a) = r-Dl(a) + S-Dz(a)- This is easily seen
to define a real vector space structure. Suppose £f: M > Q
is a Cw—map. There is an induced mapping

. -1
£ 5 ﬂf(P) (@) > & (M) defined by [U,g] > [£ (U),p-£].

One checks that f* is well defined and a map of R-algebras.

DE : TM; > T is defined as follows:

e
% (p)

Dfp(i,/;) (@) = A(f*a)

for a ¢ ¥ and ™". Clearly, Df_ is well-defined
€ f(p)(Q) A € o early, 5 we efine

nd R-linear. Also, one that D oDf = D(g.f) .
and R-line so, sees a gf(p) D (g )P
As a result, if £f: M > Q is a local diffeomorphism at p € M,

then Dfp: TM.P > is a linear isomorphism. Thus, as

TQ¢ (p)

n., . .
a vector space, TMp is isomorphic to TRg.

. n .
Let us consider TRO. There are n natural derivations

'{_3.(0),“_’_1.(0)} on & (R"). We claim that they form a _
axl xn 0
basis for all the derivations. First let us show that

the n derivations are linearly independent. If
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3 . .. . .
2i=l ai‘SEI(O) is the trivial derivation , then

1

™~

U]
[}

X,
a, S;i(o) = 0, i.e., a. = 0.

i
To show that the partial derivatives span the space of all

derivations we need a lemma.

Lemma 2.2: Let ¢: U > Rl be a C -function defined on an

open ball about 0 in R". £ £(0) = 0, then

® = I, x,.h, where the h, are C -functions.
i=l "i i i

. _ 1 o . 0
Proof: Define hi(x) = jo axi(tx)dt. Clearly each hi is C .

We claim that 2?=l xihi(x) = g (x). The reason is that

1 a¢i 1 a
xi S;—(tx)dt j v¢(tx)~az(tx)dt

0] i 0

e

=
l
]

j1 4 1
— (@ (tx))dt = o (tx) |
o 9t 0

@ (x) - 9 (0)

@ (x),

This completes the proof of Lemma 2.2.
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coordinates. Of course, it is just the chain rule in

disguise.

Definition : Let M and N be C -manifolds and

£: M > N a C -mapping. Let P be a submanifold on N

We say that f is transverse (or transverse regular) to
| = = -1 ——
P provided that for each xe¢f (P) the subspaces

Dfx(TMx) and TPf(x) span TNf(x). (Of course, TPf(x)

is identified with a subspace of TN since we have the

f (x)
embedding Pc»>N.) ,

Exercises: 1) Let f£: M" < Qn+k be an embedding. Suppose
that near f(p) there are local Cm—coordinates in which Mn
is given by §(yl,...,yn+k) = 0 for & a function of rank k.

n n+k
Show that Dfp(TMp) c TQf(p) equals the kernel of Déf(p).

2) Give a definition of the tangent plane to a Cl-

manifold. (Hint: Use Cl-curves.)
n N | e e n
3) If M c R, then we have two definitions of TM .
Show that the resulting spaces have a natural identification
between them.

4) Show that if f : M™ »N® is transverse to
-1
Pp<;>Nn, then f ~(P) is either a submanifold of M

of dimension (n - m + p) or is empty.
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8§3. The Tangent Bundle

The collection of all the tangent planes to a manifold
[TM;}peM fit together to make a space and, in fact, a
c”-manifold. The manifold is called the tangent bundle
of M, TM. The underlying set is {(p,7)|p ¢ M and T € TMP}.
To define the topology and differential structure on TM we
begin with an c’-atlas [Ua,¢a,va} for M. Since v, < kn
is an open set, we have a basis for T(Va)q’ namely

ng‘(q),...;si—(q)}. Using this basis gives an identification
1 n : ‘
of T(Va)q with R". Doing this for every q € Vs gives us

a bijection V_ X R' <> TV_ . Since V_ x R® c R x R® = R%%,

this is a bijection between an open sef in R2n and TVa. We
use this identification of TV, with Vv, x E" to define
a topology and Cm-manifold structure on TVa.
The map Dy, : TV, > TU, defined by Dy, (g,T) =
(g (@) » D(?G)q(T)), is a bijection. Push forward
the topology and c®-manifold structure on TV, to
U, via this bijection. This means that we define
XCTU, to be open if and only if (an)“l(x)c:TVu is
open, and we define u : TU > ml to be ¢* if and only
if weDp, is C .
We let the'{TUa} generate a topology on TM. Define
XCTM to be open if and only if X NTU, is an open subset
of TU, for all &, Clearly, this defines a topology on

TM. We claim that if we use this topology on TM to
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induce one on TU&, then we get back the topology wich we
began with on TUd' To show this comes down to showing
that if XZTU, is an open set (in the topology induced

by th), then X NTU, is an open subset of TU, (again

B g
in the topology induced by Dq%) for all g. First, note

that TUdf\TU = T(Udfo ) . Hence, TUaf\TU is an open

g 8 8
subset of both TUd and TUB' Next, the mapping

(D¢5)'l-(D¢a): (Dwa)-l(T(UaﬂUB)) — (pma)"l(TUanUB))

. : . . n n .
is a homeomorphism between open sets in R° X R . Thus, if
X c TUa is open, i.e,, if (Dwa)_%x) c TVa is open, then so

is (D¢a)—l(X N T(U,)). Hence

B

(Dws)"l.(nwa)((n¢a)'l(x N T(U,NUg))} = D¢él(an(U ))

B p

is open. This means that X N TU6 c TU3 is open. This proves

that TUa C TM is a homeomorphism onto an open set.

Lastly, we claim that {TU_,Dg,,TV,} is a C”-atlas for TM.

The overlap functions for this atlas are D@B °Dy,. If we let
Y = q§%¢&’ then ¢ is a Cw—diffeomorphism between open sets
in R". By the chain rule (D¢B)_loD¢a = DY. Thus, this

composition sends

U 3y, L 3y_
(p,(tl,...,tn)) to (W(p),(ZE:'gzz(p)-ti,-.-:E::'g;j(p)-ti))a
i=1 o

i=1  *t
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Clearly, this is a cm-mapping between open subsets of

R® x R®. This defines the C®-manifold structure on TM.
There is a Cm-projection map, #: TM > M defined by

m(p,T) = p. This map is a C -submersion. The "fiber" over

x, i.e., n_l(x), is the vector space TMi. Thus, we have a

family of vector spaces parameterized by the points of Mo,

It is a locally trivial family in the sense that for each

X € M, there is an open set U c M containing x and a
Cw—diffeomorphism ¥ which is linear on each fiber and which

makes the following diagram commute:

Such a diagram is called a local trivialization.

If £f: M > N" is a Cm-map, then there is induced a

Cm-map Df: TM > TN which "covers" f, i.e. so that
Df
™ —————
— 5

l TN
M N
commutes. Df is linear on each fiber, and in fact,

Df: TM_-> TN is just Df .
b £(p) is jus P
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The tangent bundle is an example of a more general
class of objects--locally trivial vector bundleé (or vector
bundles for short). Let B be any topological space. A
vector bundle over B 1is a family of vector spaces
{vf}beB which form a top&logical space E. The map

E 3 B obtained by sending Vb to b 1is called the projection

map. In addition, there are an open covering'{Ua} of B, vector

spaces V,, and homeomorphisms ¥, iUV w—l(Ua), so that

w
U X Vy ——————> m (U ) C E

\/

commutes, and so thatlba is a linear isomorphism on each

fiber. Such a collection ﬁpa} is called collection of

local’trivﬁalizatiénS»fo; the cover {7 I. -
There is anothér Qéy to describe a vector bundle.

Begin with an open covering {Ua} of B, and a finite

dimensional vector space V. Take continucus maps

Iop * U, Ug +GL(V) which satisfy : 1) g,, () = Id, 2)

gaB(X)‘gwaQX) = QYB(X) for all x : Uy~ Ug Uy.

Given all this data one forms the quotient space

(5E1 Ud X V)/~ where (u ¢ U ,v) ~ (u € UB,gaB(u)-v)
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for any u ¢ Ua n US'

space of the vector bundle.

The quotient space is E, the total

Examples: 1) Let Mp c Rn+k

be a Cm—submanifold. Define
N(MP), the normal bundle of Mp to be all pairs

n n,+ e .
{(p,v)|p e M and v € (TMP) }. The local trivializatioms
come from choosing open sets Wd c Rn+k, which cover M,
and Cw-functions of rank Kk, éa: Wd -> Rk so that
é;l(O) =MDN Wd. At each p e M N Wd we have a basis for

n .

N (M )p’ namely {v(2,),(p),..,9(8,), (P)}. We use this

basis to define a trivialization forvN(Mp) over M N Wd.

2) B X Rn is a vector bundle, called the trivial vector

bundle of dimension n over B.

3) Let UO c sl be sl - {(0,1)} and Ul c sl be

1l .
s™ - {(-1,0)}. Define 99,1° UOin U, > GL(R) = R* by

+1 0O0<e<Lm

go’l(COS(e),sin 8) =

This defines a vector bundle OVer'Sl whose total space is

the Mobius band.
A map between 2 vector bundles is a commutative diagram:
E ___g__? El
Ul m'

B —f 5 g

such that £ is linear on each fiber. (The map f is said
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to cover £f.) A C®-bundle map is a bundle map between c®-

bundles which is a C®-map between the total spaces. If
g: M -+ N is a C”-map, then Dg: TM =+ TN is a C -bundle map.

A (C“L)bundie\iSOmorphism is a (C”-)bundle map, covering

the identity on the base, which has a (C -)bundle map inverse.
It is an easy exercise to show that a (C“L)bundle map,cover-
ing the identity on the base, is a (C“L)bundle isomorphism
if and only if it is a linear isomorphism on each fiber.

A (C*-)] vector bundle is trivial if and only if it is
isomorphic to a product bundle B x V.

Let m E B be a bundle, and let A c¢B be a subspace.
The restriction of E to A, denoted E|A is the family
of vector spaces ;;gw—l(a) . It inherits from E a
topology and local trivializations. If 7: E -+ B is a C%-
vector bundle and A is a C®-submanifold of B, then E|A

is a C*~vector bundle.

}

. m-
Let w: E+ B be a (C”) vector bundle, and let {Sb be B

be a collection of linear subspaces, S CZw-l

b
union, S = bEg; Sb’ is a subspace of E. We say that it is

(b). The

a (C®-) subbundle if and only if there are local (C*®-)

XV‘——ﬂa-n‘l(U ), in which U S
o a’’ beU, b

is given by (Uy xVy) for V& a linear subspace of V.

trivializations, Ua
This implies that S has (Cw-) local trivializations, and,
in particular, that S 1is a (Cm—) vector bundle in its own

right. To study subbundles we need the following lemma.



97

Lemma 3.1 :a)Let U be an open subset of Rn, and let

o: U » M(r,s) be a Cw—mapping so that o(u) is of rank k

for all ueU. For each u e¢U there is an open set V ,
— -_— u

with ue Vu, and Cm—mappings tpl: Vu + Gl(s,R) and

byt Vu—‘*GL(rrﬁ) so_that

k r-k

STORE
O O s=k

b) TIf U is any topological space, then a result similar

by (V) ro(v) "y (v) =

for all veV .
D u

" to the one in part a) holds® w‘i‘i_:‘h the. - wll and. q,z' being

continuous.

Proof: We shall prove part a), and leave part b) as an exer-
cise. Since g(u) is of rank k there is a (kxk)-minor

of g(u) which is non-singular. We assume for simplicity
that it is the minor (o(u)ij) 1<i,j<k. There is an open
set Vu containing u in which this same minor remains
_non—singular. We call this minor M(g(v)). The map

a v, + GL(s,R) given by

M(o(v)) "t @\

olvl = | | O ra

is a C*map. The product o(v)°0(y) has the form
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&
Since each of these matrices is of rank k;, further row and

column operations will leave it in the form

S O
O | O

The row operations are achieved by left multiplying by an

element B(v)€ GL(s, IR), while the column operations are
achieved by right multiplying by vy(v)€ GL(r, IR) . There is
no choice in the way we perform these row and column operations,
and they clearly vary in a C - manner with the matrix

o(v) « o(v). Letting wl(v) = B(v)+~a(v) and wz(v)==y(v)

gives the result.

Theorem 3.2 : Let w :E+>B and 7' : E' - B be (Cw—)

~

vector bundles,and let £

E > E' be a (c”-) bundle map

covering the identity on B. Define Ker(E) = U (Kernel fln_l(b))
- b€EB
and Im(%) = U E(ﬂ(b)). Both of these are (Cm-) subbundles
b€EB

if and only if the rank of £(rLp)) is locally constant.
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Proof : The necessity of the rank being locally constant is
clear. We shall prove its sufficiency. It suffices to
consider the case when the rank of f(m T(b)) is k for
all b € B. Suppose given a vector bundle over B which

has local trivializations over an open cover {Ua}aEI of

B. If '{VB} is a refinement of {Ua} i.e., if each

BEJ a€I’
is contained in some Ua(B)’ then the bundle has local

Ve
trivializations over ‘{VB}BEJ . Applying this, one sees that
given two vector bundles over B, there is an open cover

{Uu} for which both bundles have local trivializations.

Choose such a cover for m : E+ B and 7' : E > B, say {Ua}°

If we restrict f to n-l(Ua} and use the local trivializations,

then we have

£f:U0 xV >0 xXW.
o o

Equipping V and W with bases, we can view E as a (C-)
mapping o : Ua + M(r,s). (Here dimV =r and dimW = s.)
By the previous lemma, there is an open cover {ZB} of U,
and (C =) changes of bases

\pl : zB + GL(s,IR) and wz t 2, - GL(r,IR)

B

so that wl(z) - g(z) -wz(z) is the matrix
0
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The maps wl and wz define (C -) bundle isomorphisms

E1:ZBXIRS+Zvaand fﬁz:zB:xiR'-»‘z"Bx'w,

and hence define new (C =) trivializations over ‘{ZB}. In

~

these trivializations £ 1is given by

f(zl(tll ceey tS)) = (Zr(tll"' ; £t,.,0, -+-,0))

kl

Thus, in these (c®-) trivializations (Ker E)IZB is

z, x ({0}x BE %) cz, x R" and (ImE)IZB is

B B

ZB X (IRk x {0}) < Z’3 x R® . This proves that both Ker f and

Im £ are vector bundles .

Corollary 3.3. Let m : E > B be a (Cm-) " vector bundle

and E' CE a (Cm-) subbundle. Then there is g'guotient

(c®-) bundle E/E' and (c®-) mapping E - E/E'.

Proof : There is an open cover {U } so that Ean = U xV

with E'|Ua = U, x V'. 'The local trivialization for E/E'

. " ]
over Ua is Ua x (V/V').

Definition : An exact sequence of vector bundles is diagram

of vector bundles and vector bundle maps covering the identity

on the base

£
El - E2 g E3

where f is a linear injection on each fiber, g is a linear
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surjection in each fiber, and Im(f(ﬂzl(b))= Kér(glﬂ;l(b))

£ g .
17 E2 > E3 is an exact

for all b in the base. If E
sequence of vector bundles, then 1) Ker £ is a vector bundle
whose fibers are the trivial vector space; 2) Kerg = Imf;
3) £ : E; > Im f is an isomorphism; and'.4) g : (E2/Kerg)~+E3
is an isomorphism. |

If m: E~+B is a (C°-) vector bundle and if

f : A>B is a (c®-) map, then there is defined the pullback

*
of E wvia £, £ E. The vector space over a A
. -1
is m “(£(a)). The topology

(and C - structure) are inherited from A x E. We view

f*E as a subspace of A x E, viz. {(a,e)| £f(a) = mw(e)}.
This defines the topology for f*E. If A and E are C -
manifolds and £ and % are C - maps, then we view f*E as
the preimage of the diagonal, AB cB x B, under the C -
mapping f Xxm : A x E - B x B. One checks easily that f x «
is transverse to AB' and hence, that f*E is a ¢"- manifold
with T s f*E-+A a C - mapping. If w : E > B has local
triavilizations for the cover {Ua}' then f*E has local
trivializations for {f ! Ua}'

The restriction of a bundle to a subspace is a special
case of the pull back construction applied to the inclusion
map. -

Suppose we have two (Cw-) vector bundles over B,

mT: E->B and m' : E' - B. Form the product E xE' T X0 RxB .



One checks easily that this is a (Cm—) vector bundle whose

fiber over (b ,b,) is w-l(bl) x w_l(bz). The restriction

of this bundle to the diagonal is called the Whitney sum of

E and E'. It is denoted 7 ® 7' : E ® E' - B. The fiber

1

over b is ﬂ-l(b) x ' ~(b) .

Exercises : 1) Show that if M Cimp+k

k-equations ¢ ::mp+k > ]Rk whose differential is of rank

is given globally by

k everywhere along M, then N(Mn) is trivial.

n—l)

2) Show N(S is trivial.

k

3) Show that if M" c R™*, then ™" & N(M") is

a trivial bundle.

4) Show that rs™ ! oL is trivial, where L is

a trivial line bundle. (N.B.: This does not impiy that

sl jtself is trivial.)

5) If G is a Lie group, show that TG is trivial.
(Hint: Use multiplication by g to identify TG_ with
TG ..
g )
6) Show that the bundle constructed in Example 3
above is non-trivial.

7) Give the definition of a Cm- vector bundle in

terms of the transition functions.

8) Let G xM -+ M be a Cm, free, and properly
- discontinuous action. Show that there is induced a free,
properly discontinuous C*-action G x TM - TM, and that
T(M/G) = (TM)/G.

9) Actually it is possible to define the tangent

-

r
bundle for any Cr-manifold, r>l. It will be a C -manifold.



103

I. Consider germs of Cl-curves y: (-e,¢) > R™ with

v(0) = x. Define an equivalence relation on these

Yy v u if and only if Y'(O) = u'(O).
II. The equivalencevclasses remain the same if we take
any Cl—change of coordinates.
ITII. The equivalence'classes form an n-dimensional
vector space called ng.
IV. Use II and local coordinates to define TMx for
any Cl—manifold.
V. Show that TM is a crfl-manifold if M is a

cf-mani fold.

10) The Whitney sum extends to vector bundles the operation

of direct sum on vector spaces. Extend the following operations
on vector spaces to operations on vector kundles : tensor
product, symmetric product, exterior product, homorphism,

and dual.



84 Orientability

(1]

If V is a real vector space of dimension n, then we
define an equivalence relation on the set of ordered bases
for V. We say that (el,...,en) ~ (fl,..-,fn) if and only

if when we express the fi as linear combinations of the ej

the resulting matrix has determinant greater than zero.
There are exactly two equivalence classes and they are
represented by (el,ez,...,en) and (-el,ez,...,en). These
equivalence classes are called orientations for V. We
equip Rn with its canonical orientation, i.e., the one

determined by {(1,0,...,0),(0,1,0,...,0),...,(0,0,...,0,1)}.

Exercises: 1) The set of all ordered bases for V forms

an open subspace of V X...X V (n-times). Show that this
space has two path components corresponding to the two
orientations of V.

2) sShow that GL(n,R) has two components as does

O(n).

If L: V> W is a linear isomorphism and if we have an
orientation for V, we can push it forward to get an

orientation for W. If W = V, then the pushed foward
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orientation may, or may not agree with the ofiginal one.

If it does we say that L: V » V is orientation preserving,

and otherwise that L isvorientation reversing. If we choose
a basis {el,...,en} for V and use it to express L as a
matrix, ;hen L is orientation preserving if and only if

det L > 0.

Let m: E > M be a vector bundle. An orientation for E
is an orientation for each vector space n_l(m) so that
there is an open cover {Ud] of M and local trivializations
over U , ®,: U, X R® > Ean which are orientation preserving

on every fiber. An orientation for a manifold is an orientation

for ™ -»> M.

Theorem 4.1l: Let M be a Cw-manifold which is connected.

Then M either had no orientation or exactly 2 orientations,

M has an orientation if and only if it is possible to find

e , . -1
a C -atlas {U,.6,,V,} for M with det(D(pg -p,) (P)) > O

for all a and B and all p ¢ m;l(Ud n UB).

Proof: If M has an orientation, then we can take the
opposite orientation obtained by reversing the orientation
on every TMx. Given two orientations for M, the set x ¢ M
for which they agree (or disagree) is an open set. Thus

if M is connected,then two orientations either agree or

disagree everywhere. Thus the two orientations are either
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the same or opposite on every tangent plane. This proves
that when M has an orientation it has exactly two.
Suppose that we have an atlas {Ua,¢a,Vd) for M so
that det(D(m;l.¢a)(p)) > 0. Define a orientation for TMx
for each x € Ua by taking the standard orien;ation on
TVd(w;l(p)) and téking its image under D¢a(¢;l(p)). If

peU, NU then the orientations defined using Py and

B

using Pg agree since Pg °¥q, is orientation preserving.

This then defines an orientation for M. Conversely, if M
is oriented choose an atlas {Ua,wa,Vd} so that each Ua is
connected. Then, for each a, Dy : TV, = T™|U, is either
orientation preserving or orientation reversing at all
points. If it is orientation reversing, then change the
coordinates in Va by replacing x

by -x After this change

1 1

Dwa(p) is orientation preserving for all o and all p ¢ Va'

Hence, D( 1, ) is also always orientation preserving.

A manifold is said to be orientable if it admits an

orientation and non-orientable if it does not.

Examples: 1) s™ is orientable. One way to get an

orientation for TSX on Sn-l is to take a basis [el,...,en_l}
for TS?{"l so that {el,...,en_l,x} forms a basis giving the

. . n .
usual orientation for R'. It is easy to see that these

orientations on TSx are locally trivial and hence form an
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orientation for Sn-l.
2) Any hypersurface, M = {x ¢ Rnlf(x) = 0} with
vE(p) # 0 for every p ¢ f-l(x), is orientable. Again
-1 .
for each p ¢ £ ~(X) take a basis for TMp, {el,...,en_l],
so that (el,...,en_l,vf(p)) is an oriented basis for Rn.

3) More generally if = Rn+k is defined by

. . s n+k
k-equations, and some inequalities,on an open set U c R s

then M 1is orientable.

Exercises: 1) Show that the Mobius band is non-orientable.
2) Suppose that M® is a connected, oriented manifold
and that y: M > M is a diffeomorphism. Show that
Dy : TM_ > T™M
'p P Y (p)

P € Mor for no p € M.

is orientation preserving either for all

3) Let M be a connected, oriented manifold and
I' XM~> M a free, properly discontinuous, differentiable
action. Show that M/T is orientable if and only if each
Yy € I is orientation preserving.

4) Show RPn is orientable when n 1is odd and
non-orientable when n is even. -

5) Suppose M 1is connected and oriented and T is
a free, properly discontinuous, differentiable action.
Show that if every homomorphism I > {+1} ié trivial, then-

M/T is orientable.



6) Show that if RP2 c Rn, then its image cannot be

given globélly as the zeroes of a function §: U -»> Rn-2

where U is an open set containing RP2 and D§p has rank

(n-2) for every p ¢ RP2.
7) Let M2n be a manifold which has the structure of

a complex analytic manifold. Show that M2n is orientable.
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g85. Vector Fields

Let M be a C -manifold and AcC M a subspace. A

vector field over A is an association to each point a € A

of a vector Ty € TMZ so that the resulting map X: A > TM

is continuous. If A 1is an open set of M, then a vector

field on A 1is said to be Cr, or Cm, if the map X: A > TM

. r . .
is C , or C°° respectively. If A c M is not open, then a

vector field on A is said to be Cr, or Cm, if it admits

. r 00 . .
an extension to a C, or C , respectively, vector field on

some open set of M containing A.

Examples: 1) Associating to x ¢ R" the vector g%fix) gives
i

a C®~vector field which we call IR

n
. . n P
2) Associating to (xl,...,xn) ¢ R~ the vector igaxiaxi(x)

. co . n
is a C -vector field on R .

a

- ' 3
3) Associating to (x,y) the vector (—y%; +vx§;)igives
2

c®-vector field on R“.

Pictures of these vector fields (when we identify

n n . i . -} 9
T = by using t b T et e e :
R, =R ) by g the basis {ax s % } are
1 n
— > _
—_—
i) D
- >)
/ . ( —D ——
—_— > —_
_— —_—
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. . n C e s
In general, given a vector field on M to know if it
. X r 00 . .
is continuous, C , or C we restrict to an open set where

we have C -coordinates (x .,xn) and we write out the vector

l,o-
field as:

n

-1
(xl,...,xn) = z::fi(xl"'"xn)axi(xl""’xn)
i=1

The vector field in U is continuous, ct or Cf,if and only
. . r 0 n .
if the fi are continuous, C°, or C . If Uc R 1is an open
set, then we have c’-vector fieldS'Si— on U. (This is the
i
vector field whose value at p € U iS'ss-(p) € TUp.)
i
An integral curve through p € M for a vector field
X on M is a curve y: (-¢,e¢) > M, with y(0) = p and

v'(t) = X(v(t)) for all t e (-s,6). For example,

vy(t) = (£,0,...,0) € R" is an integral curve through 0

for'—é—; y(t) = l(1 + t)2(x se++5X_) is an integral curve
axl 2 1 n
n 3 . 1 .

for Ei=l xi axi through the point 2(xl,...,xn),

vy(t) = (cos(t),sin(t)) is an integral curve for (—y'§i¢x é%)

through (1,0).
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An ordinary, first order differential equation in

' n . . .
Uc R 1is a system X, = @i(t,xl,...,xn) for i = 1,...,n.
. e . o)
A local solution with initial conditions (to,(xg,...,xn))

is a curve Y;_(to-e,t0+e) > U so that Y(to) = x°

and v'(t) = (@) (£, p(t)),... 0 (t,y(t))) for all
t e {to-c,to+e). For example, the systemmki = 61i has
solution with initial conditions (0, (0,...,0)) given by

vy(t) = (£,0,...,0). An ordinary, first order differential

equation is time independent if the P do not depend on t,

i.e. 9, is a function of (xl,...,xn). A vector field on

U corresponds to a time independent differential equation:

n

X (p) = zz: mi(prsif-é——é [ki = ¢i(x) for i =1,...,n}.
i=1 *
Under this correspondence an integral curve through p for
X corresponds to a local solution of the differential
equation with initial condition (0,p).

The standard theory of ordinary differential equat;ons
posits the existence, uniqueness and c’-variation with
initial conditions of the solution. Here we quote a version
of this theorem which can be found in Pontrjagin "Ordinary
Differential Equations" pp. 150-183 (see especially the proof of
theorem 2 beginning on page 159, proof of differentiability

beginning on page 170, remark B on page 177, and the
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discussion on pages 178 and 179 ).

Theorem 5.1: Let k, = @i(t,kl,.:.,xn), i=1,...,n be a

cw—differential equation in an open subset U c R".

1

1) _Given initial conditions (to,xo) there is ¢ > 0

and a C_ solution Y (to-e,t0+e) - U.

2) Given two solutions defined on intervals containing

to, v _and ¢, then y(t) = §(t) for all t for

which both vy(t) and §(t) are defined.

3) Given initial conditions (to,xo) there is a

neighborhood in Rl x R" g;_(to,xo), N,and ¢ > O

so that the solution y(T E)(t) exists for all

(t,8) e N and all t within € of . Considering

Y(T g)(t) as a function of (t,T7,§), it is C°° in
3

all variables.

Corollary 5.2: Let X : U > TU be a Cw—vector field on an open

set U c R". ' There is an open set of U x {0} c U X R, W, so

that if (p,t) ¢ W then the integral curve for X through p

is defined at time ¢, Yp(t). This gives a well-defined map

W > U which is a Cw-mapping.

Corollary 5.3: Let M be a c’-manifold and X: M>TM a

(eo) .
C -vector field. There is an open set containing M x {0}

in M X Rl, W,_so that if (p,t) € W, then Yp(t) is defined
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(where yp is the integral curve for X through p). The

resulting map W > M3;§-Cm.

. w 3 . .
Proof: The existence, uniqueness, and C -variation is a
purely local question. Hence, we can always work in a

coordinate system and apply 5.2.

‘Théofem 5.4: £f M is compact and if X : M > TM is a C®

vector field, then the integral curve for X through p € M

can be defined for all t ¢ Rl. The resulting map

1 . 00
MXR > Mis C .

Proof: The only part of 5.4 that isn't contained in 5.3

is the existence of.yp(t) for all t ¢ Rl. First, we prove
that there is ¢ > 0O (independent of p) so that yp(t) is
defined for all p ¢ M and all t with |t| < e. This is a
consequence of the fact that if wWc M X Rl is an open set
containing M x {0} énd if M is compact,then M X (-e¢,¢) C W

for some ¢ > 0. (Exercise: Prove this statement.)
Ifyp(s) = q, then by the uniqueness of the solution

yp(t+s) = yq(t) whenever both are defined.

Thus, if yp(t) is defined for t ¢ (-7,T) we can extend it
to be defined in (-T-¢/2,T+¢/2) by setting q = Yp(ree/z)

and r = Yp(“T+€/2) and defining
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yp(t) = Yq(t-T+€/2). . for t e (1-¢/2,7+¢/2)
and

yp(t) = Yr(t+T—€/2) ‘ : for t € (-1-¢/2,-T+8/2).

Continuing in this manner we can eventually define yp(t)
for all t € Rl.

As we have seen a vector field on a manifold becomes a
(time independent) ordinary first order system of differential
equations in local coordinates. Ofter we think of the manifold
as the possible states of some physical system (called the
configuration space) and the vector field as a dynamic or
motion law describing how states evolve with time. In.this

case an integral curve will describe the state of the system

at time t 1if it begins in state y(0) at time O.

Example: Consider n point masses with masses m ,m

l,... n
in R3 which move according to the gravitational force law
and Newton's equations. The state space for this system

is an open subset of.

én . .
R = [{(vl,pl),...,(vn,pn)|vi # vy for i # j}. Here vy

represents the position vector in R3 of the ith-mass and
P, represents its momentum vector. The vector field describing

the motion is:
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val,...,vn,pl,...,pn)

, . " “ ,
(pl/ml,...,pn/mn,E::Gmiml(vi—vl)/Hvi-le ""’Z:ijimn(vi-Vn)/”Vi_vn” )
i#l i#n
where G 1is the universal gravitational constant. Written

as a differential equation it becomes:

’ ﬁi = Pi/mi (definition of momentum)
o 2 f
b, —-EZ: ijmi(vj-vi)/nvj—vi“ (Newton's law).
A

An integral curve describes how the positions and momenta
change with time. For this reason vector fields are some

times called flows.

Example: Let (x,¥) = (-y,x) be a flow in Rz. The integral
curves are:

1) circles of ary radius r > 0, and

2) the constant path vy(t) = (0,0). (A so-called fixed

point for the flow.)

Example: Let X(x) = ex be a vector field on Rl. The integral

curve with y(0) = 0 is y(t)

znci%z . Notice that this

curve is only defined for t < 1. What happens is that

starting at 0 one flows all the way to +« by the time t = 1.
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In terms of the tangent bundle, a vector field on M
is a function - X:M > TM so that meX(m) = m. It is c”
if X is a Cm—mapping between C -manifolds. A zero of a
vector field is an m ¢ M such that X((m) is the zero vector

in ™ .
pd

Theorem 5.5: Let X : M > TM be a Cw-vectq;,field with X (p)

non-zero. There is an open set U ¢ M, containing p, and

c” coordinates on U, (xl,...,xn), in which X becomes é% .
n

Proof: Choose local Cm—coordinates near p,(xi,...,xﬁ).

n =) . . .
i=1 24 axi(p))' There is an invertible

Suppose X (p) = (p,T

(nxn)-matrix (hij) so that

|\/‘ 5
>
'—lo
.
o
u
[}
o
3
&

[
Il
(=]

Consider (hij) as a linear automorphism of R" and use it

to change coordinates from (xi,...,xﬁ) to (yl,...,yn).

In the new coordinates X (p) = (Piﬁ%_). We can, in addition,
n

suppose that p is the origin in (yl,...,yn)—space. Let V

0}. 1Inside V x Rl there is an open set

be {(yys...,v) |y,
W containing V x {0}, so that the integral curves define
a Cm—mapping ¥Y: W-> U. Let the coordinates in W be

(yl,...,yn_l,t). One checks easily that DY (0) is the
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identity matrix and hence invertible. Thus, the image under
Y of (yl,. ..,yn_l,t) form local coordinates near p. Call
these (xl,... ,xn). Clearly, the vector field is i—- in

these coordinates.

Corollary 5.6: Let M be a Cm-manifold and I a Coo—vector

field on M which is never zero. The integral curves of

X define a one-dimensional foliation on M.

As we have seen, non-zero vector fields locally all
look the same. This is not true at the zero of a vector

field. For example in Rl the vector field t » t —:T: can not

by any c’ (or even any CO) change

be changed into t » -t -ait

of coordinates.
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§6: Algebraic Structure of Vector Fields

Let % (M) bé tﬁe sét of all Cm—véctér fields on M.
Our first construction is to give % (M) a topology--the
compact open topology. The sub-basic open sets are
denoted <K,U> where K< M is compact and U < TM is open.
Such a set <K,U> consists of all the vector fields whose
values for points in K lie in U; i.e.,

<K,0> = {X e FM) | X(K) € U}. A set Xc %(M) is open

n(a)

if and only if X = U (N <K, .

,Ud >), i.e., if and only if
ael i=1 1 1

X 1is an arbitrary union of finite intersections of the

<K,U>'s.

Next, comes the real vector space structure of % (M):

(er + sXZ)(p) = er(p) + sXﬁ(p).

Lastly along these lines, we have the module structure of
% (M) over the ring of real valued c’-functions on M,

¢’ (M). It is given by (£:X)(p) = £(p)-X(p).

There is another type of structure: The vector fields

act as derivations on the Cm-functions. The formula is

XA(£) (p) :Xp (germ of £ at p). Since

)(p(ot.~6) a(p)xp(s) + B(p)xp(a), it follows that
X(£-g) = £:X(g) + g.-X(f). Thus, the vector fields are a

module (over the C —functions) of derivations. It is a
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straightforward exercise to show that the c’-vector fields
are the module of all derivations on the c’-functions.
Notice also that the module structure is compatible with

the derivation structure in that :

6.1: (£.X) (g) = £-(X(g)).

There is one more very important piece of algebraic
structure: the Lie bracket. This is a bilinear pairing
which produces from two vector fields X,Y and third [)X,Y].
To define [ X, Y] we give its value at p ¢ M as a derivation:

[X ,Y]p(f) =J(p(Y(f)) -Yp()((f)). One checks that this
is a continuous, bilinear map
[, 1: F(M) X F(M) —> F(M).

. . n [-) N
In local coordinates (xl,...,xn) if X= 2i=1 fi ——axi and

n -]

n
dg. f,
[jy’ij = ZE: (£. __J.._Q_ - g 1 ._Q_).

i axi axj j axj axi

In addition to the above properties [ , ] satisfies:
a) [X,Y] =-[Y,X] and

b) [[X,YI1,2] + [[2.,X],Y] + [[Y,Z]1,X] =0
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The second relation is called the Jacobe identity. 1In
general, any real vector space V together with a bilinear

operation satisfying 6.2 &) and b) is called a Lie algebra.

Suppose that we are given a manifold m®. a CO'Ok'B]_-ille_
field, '}'k, is a collection of k-dimensional linear subspaces
@‘];CTMP, for each peM. These subspaces are required to
vary in a Cc®-manner with P, i.e., to be a subbundle of TM.

An integral submanifold for a k-plane field on M is a

Cc”-submanifold Nkc M so that TNp =%_r];~for each peN. (Thus, N is
tangent to the k-plane field.) One might be tempted to

think, in analogy with the case of flows, that such integral
submanifolds always exist at least locally. This is not true,

k
however. We say that G is integrable if it has integral

submanifolds through every point. If 7F k is integrable,

then the Lie bracket of any two vector fields in ’ik must

be in fi:'k. (Exercise : Prove this.) Thus, we have an

obstruction to integrability -- the vector fields in 'fk

must form a Lie subalgebra of the Lie algebra of all vector
fields. The analogue of the l-dimensional theorem is the

following:

‘ k o
Theorem (Frobenius) : Let ¥ be a C -k-plane field in M.

k
F is integrable if and only if the vector space of vector

fields whose values lie in ?k is closed under the Lie

bracﬁet.
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We shall not prove this theorem is this course.

Exercises: 1) Verify that the Jacobi identity holds for
vector fields and the Lie bracket.

2) Let G be a Lie group. Consider the vector
space of left invariant vector fields inside all vector
fields on G. (A vector field X is left invariant if
(Dg) (X) = X where Dg denotes the differential of the
diffeomorphism given by left multiplying by g.) Show that
this vector space can be identified with TGe and hence is
finite dimensional. Show that it is closed under the bracket
operation and hence becomes a finite dimensional sub-Lie
algebra of all the vector fields. It is called the Lie
algebra of G.

3) Show that if f: M > P is a C -diffeomorphism then

[DE£(),DE(Y)] = DE(IX ,Y1).

3 9 3
I’ W'anz)e

2
Show that F is not integrable. Indeed, show that

. ,
4) Let F be the plane field in B3 given by (

if we define four arcs in m3 tangent to QFZ and lying

above the unit square in (x,y)-space, then these four

arcs cannot make a closed path in R3. Thus, the interior of the

unit square cannot be lifted to R3 to be everywhere

tangent to the foliation.



5) Show that if A is any associative algebra,

then there is a Lie algebra structure on A defined by
[a,b] = ab - ba ,

6) Show that the Lie algebra of GL(n,R) can be
identified with vector space of all (nXn)-matrices so
that the Lie bracket becomes [X,Y] = X°Y - ¥-X. Show
that the Lie algebra of SL(n,R) is the subalgebra of
matrices of trace zero. Show that the Lie algebra of

O(n) is the subalgebra of all skew symmetric matrices.

122
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Chapter ITII: Differential Forms

In the first chapter we dealt with the basic properties
of the spaces on which we shall do calculus--manifolds. In
the second chapter we dealt with the infinitesimal structure
of manifolds--the tangential structure. This chapter
develops the differential and integral calculus on manifolds.
What, in modern terminology are called differential forms,
were originally called integrals. There are two parts to
an integral--the thing being integrated, e.g., the
integrand, and the region over which it is being integrated,
e.g., the interval of integration. The integrand could not
stand alone. As first year calculus students are wont to
ask, "What is the 'dx' anyway?" Originally, in higher
dimensions, one considered integrals of integrands over
regions and studied the change of the result as the region
was deformed. This separated somewhat the two ingredients.
In the modern point of view the two are completely
separated.

The integrands are differential forms, and they have an
existence independent of any operation of integrating. They
live in an appropriate infinite dimensional algebra. What

they are actually is templates or models for integrands.
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When we supply the region of integration we can make an
integral using the model or "form". The region of integration
is usually a submanifold or a union of pieces of submanifolds.
Of course, the models or forms carry with them the dimension
of the region over which they can be integrated. It runs
from O to the dimension of the ambient manifold in which
we are working.

Before taking up the study of forms, we must prepare
their habitat . This requires the introduction of the

multi-linear algebra of finite dimensional real vector spaces.
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81. Multilinear Algebra

Let us begin by studying order pairs of vectors in R2,
{el,ez].‘ If the vectors are linearly independent, then they
give an orientation. Compare this with the standard
orientation and assign a + if they agree and a - 1if
they disagree. Next consider the parallelogram that
they span: |

+e

Let its area be A. Multiply the two quantities together.

The result, +A, is called the signed area of the parallelogram
generated by {el,ez]. If e and e2 are linearly dependent,
then assign 0. Call the resulting association a: R2 X R2 - R.
A map : R? x R® > R is bilinear if it is linear in each
factor, i.e. if cp(rel + sei,ez) = r¢(el,e2) + s¢(ei,e2)

and cp(el,re2 + seé) = rm(el,ez) + sw(el,eé). It is

alternating if m(el,ez) = —¢(e2,el).
Theorem 1l.l: The map O: R2 X R2 > R defined above is

bilinear and alternating. If o: R2 X R2 - R is any bilinear,

alternating map, then there r € R such that m(el,ez) = ra(el,ez)
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‘fdr all (e,,e.) € R2 X R2.

EE— 1’72

Proof: Suppose e, = (a,b) and e, = (c,d). By definition
a(el,ez) = ad - bec. From this formula it is immediate that

@ 1is bilinear and alternating. Suppose ¢ is any bilinear
alternating map. Then ¢ ((a,b),(c,d)) = adep((1,0),(0,1))

+ bcp((0,1),(1,0)) + acy((1,0),(1,0)) + bdy((0,1),(0,1)).

By the fact that ¢ is alternating, we have p(e,e) = 0

and o ((0,1),(1,0)) = -((1,0),(0,1)). Thus,

v((a,b),(c,d)) = (ad - bc)ep((1,0,(0,1)). Letting

r =¢((1,0),(0,1)) gives the result

¢(el,e2) = ra(el,ez).

Corollary 1.2: If L: R2 > R2 is a linear map, then

a(L(1,0),L(0,1)) det L.

Let V be a finite dimensional real vector space.
A map @: V X...X V> R is multilinear if it is linear in

each variable, i.e., if for each i:
)
@(vl,...,vi_l,rvi+svi,vi+l,...,vn)
= r¢(vl,...,vn) + s¢(v1,...,v!,...,v ).

1 n

_ It is algernating if for all i < j:



127

m(vl,ooo’Vi’coo’vj,ooo’vn) = _w(vl’oo-,Vj,ooo’vi,ooo,vn)c
Consider all multilinear alternating maps

V X...X V —3 R

k factors

This set is a real vector space under the obvious operations:

(r¢+s¢')(el,...,en) = rw(el,...,en)+s¢'(el,...,en).

This real vector space is denoted Ak(V*). By convention
A% (%) = R.
Examples: 1) Let V Dbe n-dimensional with {bl,...,bn} a

basis. One element ¢ ¢ An(V*) is described as follows.

. n .
Given [el,...,en], then express e1 = zj=l aijbj' Define
m(el,...,en) to be det(aij). This is clearly a multilinear

alternating map since "det" is. In more geometric terms,

we use {b ..,bn} to identify V with R®. The

17°
[el,...,en] span an n-dimensional parallelepiped in Rn.
Its signed n-dimensional volume is det(aij). As we shall
see below all other elements of An(V*) are multiples of
this one. |

2) Al(V*)'= £(V,R)} the space of real valued, linear

maps on V (also called the dual space to V).
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Lemma 1.3: £ {el,...,ek} € V are linearly dependent and

. k _
if ¢ € A (V*), then ¢(el,...,ek) = 0.

Proof: Suppose e to..+t e = 0 with not all the a, = 0.

We can suppose that a, # 0. Then

e, = (—az/al)e2 +...+ (—ak/al)ek. Hence,

k .
@(el,...,ek) = 2i=2(—ai/al)¢(ei,e2,...,ek). By the

alternating property ¢ (v ,vk) vanishes if two of

l,ooo
the vi's are equal. Consequently, ¢(el,...,ek) = 0.

Theorem 1.4: 1) Ak(V*) = 0 for k > dim V.

2) If the dimension of V 1is n, then the dimension

of Ak(V*) is (;). In particular, A" (V%) is one

dimensional.

Proof: Part 1) follows immediately from the previous lemma

since any {el,...,ek} must be linearly dependent if k > dim V.

Let {b .,bn] be a basis for V. We claim that

100

® € Ak(v*) is determined by the (n) numbers (b, ,...,b. ),
k ll lk

1 il <oooK ik‘g n. and that any collection of (ﬂ) numbers
occurs for some ¢. First, suppose that ¢ and ¢ yield

the same collection of numbers. Then if {bi ,...,bi }
1 k
is any k-tuple of the basis vectors, then

~

cp(bi ,...,bi ) = \|;(bi s+.+,b, ). The reason is that either
1 k 1
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some basis element appears twice in the collection, in

which case @ and ¢ Dboth vanish since they.are alternating,
or by a finite number of interchanges we can put the

elements in ascending order. Each such interchange switches
the sign of both @ and { evaluated on the collection,

and, after we have achieved ascending order, ¢ and

take the same value. Now consider ¢(el,...,ek) and

n

W(el,...,ek). Express e, = Ej:l aijbj and use the
multilinearity to show that:
vle,;,...,e ) = ' Q.. < . ...0 . (. ,...,b. )
1 E (4 ) 13; 23, kT g Ik
Jl""’]k

and

Sme——

a-. «Q . ° o o . W(b_ ,oo-,b. )c
; Z__ - 13 23, kI 4 Ik
oo eIy

\b(el,.-.,ek)

From this, and the fact that ¢ and § evaluate the same
on k-tuples of basis vectors, it follows that
m(el,...,ek) = w(el,...,ek).

Conversely suppose given 1 < il < 12 <oooKL ik‘g n. We

shall construct ¢ ¢ Ak(V*) so that qp(bi seeesb, ) =1, and

1 x
(. ,...,b. ) = 0 for all other sequences j.<...< J..
Jl jk 1 k
Given {el,...,ek] express each ei as a column vector in

the basis {b ..,bn]. They produce an (nxk)-matrix

1°°



130

Pick out the rows (i ,ik} to form a (kxk)-matrix

1’i2""
and take its determinant. One checks easily that this
is the required multilinear map.

Elements in Ak(V*) are called k-covectors. There

is a pairing

k+4

Ay x atoe) Ly 2P

given by
(p,w)— @ Ao

where

® A w(el""’ek+£)

-1 -1)° .
= k:z:(_}_—_( Doeles 1y, ,% 00 1) 280 (ktp) )
(o}

Here, o runs through the permutations of the set

{1,...,k+4}, and (-l)a = + 1 means the sign of the

o)

permutation, i.e., (-1)  is +1 if and only if o 1is a product

of an even number of interchanges.
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This operation is easily seen to be bilinear, associative

and to be graded commutative, i.e., to satisfy

(1.5) o Aw= (-l)k'zw A .

n
Consequently, this multiplication makes @ Ak(V*) a graded
k=0

algebra with an associative, graded-commutative multiplica-
tion. The unit of this algebra is the 1 € R = AO(V*).

The algebra is called the exterior algebra on V*.

Proposition 1.6: Let V be an n-dimensional real vector

space. The pairing

AF ) x APTR ey Ay AP(v) = R

is non-singular in the sense that if ¢ A w

w € An_k(V*), then ¢ = O.

0 for all

Proof: Let {b ..,bn} be a basis for V and fix

1°°
. . n-k
1 i, <...K ;n—k's n. Choose w € A (V*¥) so that

w(bi ,...,bi ) =1 and w(b, ,...,b. ) = 0 for all
1 n-k J1 In-x

other sequences 1 < 5 < 32 <...< s < n. Then
P A w(bl,...,bn) = i¢(br ,...,br ) where
1 k
(b_ ,...,b_ ,b, ,...,b, } = {b,,..
1 x 11 *n-k 1
then cp(br seeesb ) = 0. Consequently, if ¢ A w = 0 for all
1 k

.,bn]. Thus, if ¢ A w = 0,
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w € An-k(V*), then @(b_ ,...,b_ ) = 0 for all
r r
- 1 k
1< L EREERE N < n, and hence g = 0.

Example: Let V = TRg. A basis for V is [ai ""’B: }.
1 n
Denote the dual basis for V* = Al(V*) by [dxl,...,dxn}.
This means that dxifgi-) = aij' Using the multiplication,
T k
A, in ® A (V*) we define elements dx. A...A dx. e A (V¥*).
i i
4=0 1 k
The collection [dxi Ao oA dxi }Lgi <...<ik§n is a basis
" 1 k 1
for A (V*).

One can define multi-vector as well as multi-covectors.

Let V Dbe a finite dimensional real vector space. Define

AkV to be a quotient of the free abelian group generated by

V X...X V. The relations that define the quotient are:

N———

k-times

1) e A...Ne.A...Ae.A...Ae
i J n

-e. A...Ne.A...Ne.A...ANe
1 : J i n

1

and

[ ] — (]
2) el/\.../\(rei+sei)/\.../\en = r(el/\.../\en)+s(el/\.../\ei/\.../\en)°

n

Exercises: 1) Verify the claim that @ AL(V*) is an
2=0

associative, graded commutative algebra under .

2) sShow that AkV is naturally identified with
Ak((V*)*). (Here V* = #(V,R) is the dual space to V.)
3) Show that if V is of dimension n, then AkV

is of dimension (i).
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4) Let V be a vector space with basis {bl,. .. ,bn].

Show that if m(Ak(V*)) satisfies
a) cp(bl,...,bk) # 0, and

b) cp(bil,...,bik) = 0 if some ].j > k, then

cp(el,. . .,ek) is the volume of the dimensional parallelepiped

spanned by the projections of [el,. . ,ek] into the subspace

spanned by [bl, cen ,bk} .
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