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ON WALSH-FOURIER SERIES(})

BY
GEORGE W. MORGENTHALER

1. Introduction. In recent papers N. J. Fine [1; 2; 3](?) has developed
effective notation and techniques and has achieved important results in
major areas of the Fourier theory of the Walsh orthonormal system which, is
the completion of the following orthonormal system introduced by Rade-
macher [10] in 1922:

x < 1/2,

1, 0=
2=<=x<1,

golx) = {_1’ y
do(x + 1) = ¢o(x),
on(2) = ¢o(27x).

Fine’s papers refer to earlier work on Fourier properties of Walsh series
by Walsh, Kaczmarz, Steinhaus, and Paley. The latter’s modified definition
of the Walsh functions will be used here:

(a) ‘I/O(x) = 1:

1.2) (b) If » has the unique dyadic expansion > x:2¢, where 2; = 0, 1 and
. =0

2 = 0, for i > my, then Yu(x) = Gm(%)Pmy(%) -« * dmi(x) where
my, + - -, m, corresponds to the coefficients xm; = 1.

1.1)

Every function f(x) which is of period 1 and Lebesgue integrable on [0, 1]
may be expanded in a Walsh-Fourier series(®), f(x)~ > v ar(x), where
ak:f(;f(x)xbk(x)dx: k=0’ 1, 2’ ]

Fine exhibited some of the basic similarities and differences between the
trigonometric orthonormal system and the Walsh system. He identified the
Walsh functions with the full set of characters of the dyadic group G. Con-
temporary with th\e work of Fine and somewhat more general is the work of

Presented to the Society, April 26, 1952 under the title Theorems on series of Walsh func-
tions; received by the editors September 13, 1954 and, in revised form, April 2, 1956 and May 3,
1956.

() This work, supported by the Office of Naval Research, forms the second part of a dis-
sertation submitted in June, 1953 in partial fulfillment of the requirements for the Ph.D. degree
at the University of Chicago. The author wishes to express his gratitude to Professor Antoni
Zygmund for his valuable suggestions and encouragement. The referee alsb has been most
helpful with suggestions for shortening proofs of several theorems, particularly those of §s.

(2) The numbers in brackets refer to the bibliography at the end of the paper.

(%) Hereinafter “W.F.S.” will denote “Walsh-Fourier series.”
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N. Vilenkin [17] on expansion of functions in Fourier series of the characters
of an arbitrary zero-dimensional, separable group. A. A. Sneider [13; 14; 15]
applied this theory to obtain results on the Walsh system. Other results on
Fourier properties of Walsh functions paralleling the classical trigonometric
results have been reported in recent articles by Sunouchi [16] and Yano
[18; 19].

The object of the present study is to extend the comparison of trigono-
metric and Walsh series formed in the above papers. A summary of the prin-
cipal results will appear presently, but first it is necessary to acquaint the
reader with some of the main facts of the situation as found in Fine's work.

The dyadic group G is the set of all sequences &= {xn}, x,=0, 1, n
=1,2,3, - - -, the operation of G being addition modulo 2 in each coordinate.
Denote this addition in G by “_T_” and let the identity of elements in G be
denoted by “=".

Corresponding to each element #= {x,} of G there is a real number

1.3) ME) = =+ ok +
(1. ey T e T

lying in the closed interval [0, 1]. At the dyadic rationals x:0 <x <1 we have
two representations in the dyadic scale, and hence two elements of G map
onto these. If u(x) is the inverse of A we have for all real x

(1.4) Mu(2)) = x — [x],

the finite expansion in G being associated under u with dyadic rationals.
Then u(A (%)) =% provided A(%) is not a dyadic rational.

Fine establishes that,_1(x) =x.(u(x)),n =1, where x, (%) =x,,({x1x2 c e })
is a character of G defined as +1 if x,=0; —1 if x,=1. All characters of G
may be obtained by taking finite products of these basic characters. Each

Walsh function is expressible as ¥, (%) = x;,(u(x)) x5 (u(x)) - - - x5,(u(x)), and
so the Walsh functions are identified with the full set of characters of G.
For the convenient abbreviation

(1.5) Mu(y) F w@) = 3+ 5, » 5 teal,
several useful relations have been established. In particular,
@ x+y= E——————————~| x,.z—"y,.| where « = gl%;y=§;—g:
finite expansions being used for dyadic rationals.
(1.6) () |(x+n —=x| =h 052<1,0=h<1
(c) ¥ulx + y) = Yu(x)¢¥i(y) whenever (x + y) is not a dyadic rational;

this exception is a denumerable event for each fixed x.
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A basic property of the abbreviation “4” is the invariance of the Le-
besgue integral with respect toit. That s, let x be fixed, let y belong to a meas-
urable set 4 lying in the unit interval, and let T,(4) = {(x-i—y) ] yEA } Then
| T.(4)| =| 4| (%. If f(x) is integrable, then for every fixed «,

(1.7) f Sz + y)dy = f f(3)dy.

There is a natural topology of G which is obtained by taking as neighbor-
hoods the sets of points {xl, Xa, * ¢ty Xpy Bpgr ¢ ¢ ¢ } in which %y, - - -, x, are
fixed and d,41, - + - vary independently. These neighborhoods, N(xi, x3, - + -,
%,), form a basis for G. \:G—R]0, 1] defines a metric on G which is continuous
on G, and the topology induced on G by this metric is equivalent to the orig-
inal topology.

To each real-valued function g(x) of period 1 there corresponds a function
z(x) on G defined by

g(%) = g(x) if u(x) = % for some x € [0, 1],

(1.8) g(%) = lim sup g(§) if w(x) # & for any x € [0, 1]

oz
where lim sup is taken over those § which corresond to dyadic irrationals.
This definition forms the basis for discussing the relation between two given
classes of functions, one class on G and one on [0, 1].

Characteristic functions of neighborhoods of G are continuous on G since
each neighborhood is both open and closed. Finite linear combinations of such
characteristic functions are then continuous on G.

In §2 the Haar measure on G is exhibited, and the classes of measurable
and integrable real-valued functions on G are related to the corresponding
classes on [0, 1].

§3 deals with order of coefficients and investigates further the startling
result of Fine that, unlike the trigonometrical case, the only absolutely con-
tinuous functions whose Walsh-Fourier coefficients satisfy b,=0(1/k) are
the constants. It is shown in particular that the arithmetic mean of the
sequence {k|b:|} does tend to zero. As a subsidiary result, the class of func-
tions on [0, 1] whose G-extensions are continuous with respect to the topology
of G is characterized.

The class of functions on [0, 1] whose G-extensions are Lipschitz functions
on G is identified in §4, and analogues of various results from the trigono-
metric Fourier theory of Lipschitz a functions are obtained. The analogues of
the well known theorems of Rogosinski are established in §5. The most inter-
esting result of this section is the verification of the formula

flx) = —;—{ lim inf S,(x) + lim sup S,.(x)} a.e. on [0, 1]

n—o n—o

() | E| denotes the Lebesgue measure of the set E.
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when f(x) is integrable and the partial sums S,(x) of the W.F.S. for f(x)
satisfy lim Supn.e S»(x) <-4 . §6 establishes the analogues of some results
of the transformation theory of trigonometric series.

In §7 on lacunary Walsh series, the Walsh analogue of the Central Limit
Problem of Salem and Zygmund [12] is established. Another well known
property of trigonometrical lacunary series is established for the Walsh func-
tions: if the partial sums Sx(x) of a lacunary Walsh series oscillate finitely at
each point of an interval, then E;Ll | akl < 4 «. This section also establishes
the Walsh analogues of the theorems of Banach on the existence of Fourier
series with given coefficients at prescribed lacunary places.

In the final section an example is given of a continuous nondecreasing
function whose Walsh Fourier-Stieltjes coefficients do not tend to zero.

2. Haar measure on G. The discussion of the Fourier properties of the
Walsh system may proceed from two points of view:

(a) Characters x.(x) of G and their products,
Haar measure on G,
The various classes of functions on G,

or

(b) Functions ¢,(x) on [0, 1],
Lebesgue measure on [0, 1],
The various classes of functions on [0, 1], usually related to the classes
on G in some sense involving definition (1.8).

The work of Fine on W.F.S. followed mainly the second approach, refer-
ence being made to G only when a particular property of + was required.
Because of the analogy with the exponentials {e2?7is}, it may be thought that
the first approach is preferable. The present study shall attempt an analysis
which permits both points of view.

Letting m denote the obvious product measure on G and 7 its completion
(see Halmos [4, pp. 158-159]), the following theorem is immediate.

TrEOREM I. (1) If f(x) is Borel (Lebesgue) measurable on [0, 1], its G-
extension by (1.8), f(%), is Borel () measurable on G and conversely.

(2) If f(x) is Lebesgue integrable on [0, 1], then the G-extension, F(&), is
integrable on G with respect to i and conversely, the integrals being equal.

This theorem essentially implies that the two basic points of view listed
above should yield the same Fourier results with respect to classes of functions
characterized by integrability conditions.

3. On the order of coefficients. Fine has obtained the classical results for
the order of Walsh-Fourier coefficients of various classes of functions. How-
ever, an important difference was displayed in the case of coefficients of ab-
solutely continuous functions. If f(x) has mean value zero over (0, 27), the
periodic function F(x) = [§f(t)dt has trigonometric Fourier coefficients which
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are o(1/k). Fine showed that the only absolutely continuous functions on
[0, 1] whose Walsh-Fourier coefficients are o(1/k) are constants. The follow-

ing theorem shows that “on the average” the coefficients behave as they do
in the classical system.

THEOREM II. Let f(x) be real-valued, periodic, and of mean value zero on

[0, 1]. Then if F(x)=[Zf(t)dt and F(x)~ D 1o bibi(x) the arithmetic means
of the sequence {k|bi|} tend to zero.

Proof. Let f(x)~ > 1 aii(x). Then by Fine [1, Theorem VII] for fixed
k20 and y— w0,

borppy = — 27 0gp, 4 0(271).

It follows that k|bx| <|ax'| +0(1), where k =274k, k' <2”. Therefore

n 1 1
Sklb £—— X Jaw| +—— X ar] +01)

n+ 1312 n+ 1 osksniwsr n+ 1 osksmiw>r
=8+ S+ o(1).

Given €>0, choose T so that |ax| <e for #’>7. Then S;<e. For S; write
k=2"4+Fk', where 0<v<r, 0§k’§T, and 7 is defined by 2"<# <2+!, Then

515——"-2 iak,|= (L__*M=0(1)
n+1,5 k'ao n+1
and the proof is complete.

Imposing a still stronger smoothness condition on a function is reflected,
in the trigonometric system, in a more rapid convergence of the Fourier co-
efficients to zero. Specifically, if F(x) is p times differentiable, its Fourier
coefficients {bk} satisfy k”] bkl —0. Once again the jumps of the Walsh func-
tions cannot be smoothed out in time, and the corresponding property is
lacking entirely. In fact, the damage is so thorough that a strongly negative
result similar to the result of Fine can be established. The proof will not be
given here(®).

TurorReEM III. The only twice-differentiable functions F(x), F(x)

~Z,f,0 bk (x) for which the arithmetic means of the sequence {k2| bk| } tend
to zero are the constants.

A well known result from trigonometric Fourier series is the proposition
that if the Fourier coefficients of a function f(x) of bounded variation are
o(1/n), f(x) is continuous. This result is not valid for the Walsh functions.
Walsh polynomial coefficients, being zero from some place on, are surely
o(1/n), however, such polynomials are not continuous functions. If continuity
in the group G is considered, a partial analogue may be obtained. It is con-

() Where proofs are not given, they are found in the author's thesis (see footnote 1).
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venient first to define a special class of functions on [0, 1] which are related
to the continuous functions on G.

Recalling the meaning of the induced combining symbol “4” on the
interval [0, 1] given in (1.5), we make the following definition:

A function f(x) of period 1 is “continuous (W)” at a point x of 0 =x <1 if
e>0-D-30(e, x)>0:—)|f(x-i-y) —f(x)] < e whenever 0=y <d(e, x).

Any continuous function is continuous (W). The usual algebraic proper-
ties of continuous functions hold for continuous (W) functions. Any Walsh
function is continuous (W), for, at their dyadic rational discontinuities xo,
(x0-49) lies to the right of x, for y sufficiently small, and Walsh functions are
continuous on the right. Consider f(x) = D_4,z. 8;, where {d:} is an enumera-
tion of the dyadic rationals in [0, 1] and 8;>0, >°8;< + . This function is

continuous (), not continuous, and is not a polynomial in Walsh functions.

The next theorem is easily verified and shows that the concept “continu-
ous (W)” is a natural candidate to replace ordinary continuity on the real
line in situations involving Walsh functions and the ordinary processes of
analysis.

THEOREM V. If f(x) is continuous (W) on 0=x <1 and if f(x—0) exists
and is finite at each dyadic rational x, 0 <x =1, then f(&), the G-extension of
f(x), is continuous on G. If (%) is continuous on G, the function f(x) = =F(u(x)) is
continuous (W) on 0 =<x<1 and f(x—0) exists and is finite at each dyadic ra-
tional 0 <x=1.

To verify that in the theorem the condition “f(x —0) exists and is finite at
each dyadic rational x,” is not redundant, it is enough to exhibit a function
which is continuous (W) but such that f(x —0) =+« at a dyadic rational.
The function 1/1 —2x on 0Sx<1/2 and equal to 1 on 1/2<x=1is such a
function with f(1/2—0) =

TuEOREM V. If f(x) is nondecreasing and bounded on 0=x=1 and its
Walsh-Fourier coefficients satisfy ax=0(1/2"), then the function f*(x) =f(x+0)
has the same coefficients as f(x) and has its G-extension continuous on G.

In view of the result of Fine, that the only absolutely continuous functions
whose Walsh-Fourier coefficients are o(1/#) are the constants, it is well to
observe that any nondecreasing step-function with dyadic intervals of con-
stancy is an example of a function satisfying the conditions of the theorem,
although it is not known how general such functions can be.

Proof. f*(x) obviously has the same coefficients as f(x) and it is enough
to show that f* has only dyadic rational discontinuities.

LEMMA 1. The Walsh-Fourier coefficients {ax} of the function

0, 0=t<x,
g.(t) =
b, x=S1<1,6>0
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are nonpositive, zero for x =m/2" and n large, negative and #£0(1/2") for other x.

Proof. a; =0 [ ()dt = —bJp(x) = —b/2"J1(2"x) by Fine [1, p. 400]. If
x=m/2" then ay»=0 for n=r and is negative for n<r. If x is not a dyadic
rational the fractional part of 27x falls between 1/4 and 3/4 for infinitely
many #.

Decompose f*(x) into a continuous part and a jump function, f*(x)
—¢(x) +j(x). Clearly j() = Doceise [*(c) —f*(ci—0)], where {c} are the
discontinuities of f*. It is enough to show that j(x) has no discontinuities
other than dyadic rationals.

As in Lemma I, we denote the step-function at ¢; with jump (f*(c;)
—f*(¢i—0)) by ge,(x). Then j(x) =limy ., Zi_l ge;(x) and the value of the
27th Fourier coefficient of 7(x), a®, is D i, a$?, where af%” is the 27th Walsh-
Fourier coefficient of g.(x).

Suppose ¢; is a dyadic irrational discontinuity of j(x). Then by Lemma I,

(j) (c4)

a £ ay 20, | > | ap”

, n=1,23-
and

o 0(1/2").

However, the 2*th Walsh-Fourier coefficients of f*(x) are 0(1/27). If the
27th Walsh-Fourier coefficient of the continuous part of f*(x), a$, is non-
positive, then ag=a® +af <af) <0, and hence af =0(1/2"), which would

be a contradiction. But

P 2"—1 (k+1) /2"
o = f dOn(Ddt = 3 cDr(i)di < 0.
A=0 k2™

Each term in the sum is nonpositive since g(x) is nondecreasing and ys» is +1
on the first half of [£/2, (k+1)/2"] and —1 on the second half. The theorem
is therefore proved.

4. On convergence and summability. The »#th partial sum and nth (C, 1)
mean of a Fourier series are denoted respectively by

w1 iSk(x;f)
(4.1) Su(xi ) = 3 aa() and  on(x; f) = ——

k=0 n

The Dirichlet kernel is D,(x) = >_#Zs Yx(x), and Fine has shown that S,(x)
may be written

(4.2) Sa(x) = fo 1 flx 4+ O)D,(t)dt = fo 1 F(O)Da(x + t)dt.

The size of D,(t) is estimated by ID,,(t)I <2/t, 0<t<1; and Dg(t) =2~ for
t€ [0, 1/2%) and zero elsewhere.
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Fejér's kernel is K,(x) =n~1Y 2., Di(x), so that
1
.3) (@) = [ fx 0K
0

These formulas and other relations for D,(x) and K,(x) have obvious counter-
parts on G. For example, if A;(%) represents the 7th character of G(A; being a
finite product of the x,(%)), then corresponding to (4.2)

5.0 = [ 70 ( 2:: set 5))am - [ Ja 9D

Fine [3] has recently proved that if fEL(0, 1), its W.F.S. is (¢, @) sum-
mable a.e. (a>0). The following lemma due to Yano [18] is used in proving
Theorem VI.

LemMa IL. [3| K.(t)|dt<2, n=1,2,3, - - -.

THEOREM VL. If f(x)EL(0, 1), [3|own(x; ) —f(x)|dx—0 as k— = where
ou(x; ) is the (C, 1) mean of the W.F.S. of f(x). Similarly, [¢| 51(%; f) —F(%)| dm
—0 as k— o for every f in L(G).

Proof. The proof of the last sentence of the theorem follows from the first
sentence by Theorem I. Let g(x) be a continuous function for which

f | f(x) — g(=) | dx < .

For continuous g(x) the theorem is true since ox(x; g)—g(x) uniformly (cf.
Fine [1, Theorem 24 II]). Then

ar(f) — fldx = — 0 d o -~ d
fol () — 7] ds folakm o | x+fol o) — gl da
+ [ lr-slas
<[ \ak<f—g>ldx+o(1>+folf—g|dx

1
s Sf |/ — g| dx + o(1), since for any k(x) E L,
0

follak(ac;h)ldac=fo1
§f01|h(x)l(follK,.(x—i—t)|dt>dx§2fol|hldx.

dx

th(x 4+ HK.(h)dt
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This proves the theorem. The result may also be obtained from the work of
Orlicz [8] on the mean convergence of Toeplitz transformations whose ker-
nels are bounded. The idea of Orlicz applied to the Walsh case is to prove
that f3|ox(x; f)| dx < CJs| f(x)| dx (a result which is valid for C=2) for any
integrable f(x). This together with the point-wise convergence a.e. of gx(x)
—f(x) for f(x) bounded implies the result.

We now consider certain problems involving the concept of a Lipschiiz o
class of functions, 0<a=1. Fine [1] has demonstrated, just as in the trig-
onometric case, that the W.F.S. of such functions converge uniformly to f(x).
Moreover, if a>1/2, the series converges absolutely. Yano [19] has demon-
strated that if f(x) is a Lipschitz a function on (0, 1), 0<a<1, the (C, 1)
means of the W.F.S. for f(x) satisfy o.(x) —f(x) =0(n—=). Additional exact
analogues of several results of trigonometrical Fourier theory (cf. Zygmund
[21, p. 106]) can be obtained if the concept of a Lipschitz a function is carried
to the group G.

We define the class of Lipschitz a functions f(&) on G, 0<a =1, as those
functions satisfying

- - *
(4.4 | f@&® - 79 | < C\& + %), for some constant C.
We further define f(x) on [0, 1] to be Lipschitz a(W), 0 <a =1, if
4.5) | /(x4 9) — f@)] <Cy= 0=x<1,05y<1,

u(x + ) = w(@) + w0,

*
i.e., except when (u(x)+u(y)) ends in a sequence of 1’s. The following theorem
may then be established.

TueoREM VII. If f(%) is a Lipschitz a function on G, 0 <a =1, then f(x)
=F(u(x)) is Lipschitz a(W) function on [0, 1), and f(x—0) exists and is finite
at each dyadic rational 0 <x <1. If f(x) is a Lipschitz (W) function on [0, 1),
0<as1, and f(x—0) exists and is finite at each dyadic rational 0 <x =1, then
the G-extension of f, (%), is a Lipschitz o function on G.

REMARKS. (1) If f(x) is a function of class Lipschitz a on [0, 1], f(x) is a
Lipschitz a(W) function.

(2) If f(x) is a function of class Lipschitz a(W) on [0, 1], f(x) is continu-
ous (W) on [0, 1].

(3) In the case of the system {e’“’"’}, each function is of Lipschitz class 1,
but the corresponding constant of the definition changes with each n. The
G-extensions of the Walsh functions have a similar property. The function
xx(%) is constant on each of the 2" neighborhoods N;= N(xy, %z, - -+, %x,). If
% and § are in N, Ix,,(oz)—xn(y)l =0. If £EN,, 3&N;, 17, then

ANz + 9) = 1/20
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since the first # coordinates of £ must differ from the first # coordinates
of 7 in at least one place. Under all circumstances I X (%) —x,,(y')[ =2, and it
follows that for C=2n»+1,

| (@ — ()| SONE L), % 7inG.

From these remarks it is easy to see that no constant will serve for every #.
The statement is proved in the same way for a general character of G which is
a finite product of the x.(%). The function ¥,(x) is Lipschitz a(W) on [0, 1),
and again the constant increases with #.

If f(x) is a Lipschitz & function on [0, 1], then w(§, f) < C8 for some con-
stant C where w(8, f) is the modulus of continuity of f(x). We define

(4.6) a@, f) = max , | @) - F&) .

all z, JEG with N(E+9) <5

Clearly if f(#) is a Lipschitz & function on G, &(8, f) < C8=. The counterpart
of (8, f) on the real line is

“.n  ww@f) = | (e + 9) — f(®)] .

Jmax
052<1; 05y<8; (u(z)+-n(y)) not ending In 1's

If f(x) is a Lipschitz a(W) function, ww(8, f) <Cé= By Theorem VII, if f(®
is Lipschitz a on G, then f(x) =f(u(x)) satisfies ww (9, f) <Cd= on [0, 1].
The next results are stated both on G and on [0, 1], but are proved on G.

TrEOREM VIII. (1) If f(%) is a Lipschitz o function on G, then the partial
sums Sn(%) of the Fourier development of f(%) relative to the characters of G
satisfy

— 1
(8, Su(x)) = 0(6“ log ?) uniformly in n.

(2) If f(x) is a Lipschitz a(W) function on [0, 1] and f(x —0) exists and is
Jinite at dyadic rationals, then

1
ww (8, Sx(x)) = O (6“ log ?> uniformly in n.
*
Proof. For any %, yEG with N\(247) <8

@y 150 -50] - |[Fetn-st mn.a)dm‘

]
all Tx()Ss

* * *
The second integral (since 7\[(9‘5—7—5)+(5’+i)]=)\(£+5') < 8) satisfies

all N (D>
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\l‘all Ixh>s

s e | D) | i

. all Tn()>s

4.9

(4.9) Ly )

= C&"f — dt = 2C6* log — -
s ! ]

For the first integral in (4.8) we have

[ lie+D - o £ DDam|
all Tz(hss

<[ ljetn-jo! |50 m
INUEY

+f _Niw-fotol1Dlant|[ (i) - io)D0dm|
YO

INOEY

But since N((-1) %) =A@ and N(54-8) 1) =\ (), we have

é ta
(4.10) s Zat |jw -0 f Da(tt].

Now the function g(x) =1 on (0, 8), =0 elsewhere, is a function of bounded
variation, and so S,(0; g)—g(0) by a result of Walsh. But S, (0; g) = [¢D.(t)dt.
Therefore | ng,,(t)dtl is bounded, say by M. Thus the first integral in (4.8) is

a

(4.11)

+ MCs=.
Combining (4.9) and (4.11)

_ _ 1
[&@—&@|gaw%?

*®
for small & and A(#+$) <8, the constant C* being independent of %, and
(8, S,) =0(8= log 1/8) uniformly in #.

THEOREM IX. (1) A necessary and sufficient condition for f(£) in L to be a
Lipschitz a function on G is that {c'r,,(a?) }, the (C, 1) means of the Fourier de-
velopment of (&) relative to the characters of G and Haar measure, be Lipschitz
o functions on G uniformly in n.

(2) A necessary and sufficient condition for f(x) in L to be a Lipschitz (Wa)
function on [0, 1] for which f(x —0) exists and is finite at dyadic rationals is that
{oa(x) }, the (C, 1) means of the W.F.S. of f(x), are Lipschitz a(W) functions
uniformly in n.

Proof. Suppose f(%) is a Lipschitz « function on G. Then
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5@~ 50| =| [ G 10 = 75 3 DD
aq

where K, (?) is the G-extension of the Fejér kernel. By Theorem I and Lemma
11, [¢| K.(3) | di=[3| Ka(t)| d¢ =2, and hence

|h@—h@|éfﬁhib<ﬁinfﬂﬂm
(4.12) ¢
saletnt ool [ 1Kol s ot
aq

Conversely, suppose {c'r,.(a'c)} satisfies (4.12) uniformly in #. By (C, 1)
summability a.e. of the W.F.S. of f(x) =f(u(x)), (%) converges to f(&) a.e.
with respect to Haar measure on G. Let & be a point of convergence to a
finite limit. Then { on(%0) } is a bounded sequence of numbers, say by M, and

|28 | = | 3a(a0) | = | 50(®) — Gul@) | S OMNE T &)= = C,
and so
|oan(®| s M+ C

for all # and all & in G. By Ascoli’s theorem, a subsequence {&a,(%) } converges
uniformly on G to f(%). Now for any &, ¥,

|7@ —F5) | £ 7@ — 0@ | + |m@ — 5@ | + | 33) =T |-

Choosing k so large that the first and third terms on the right are each less
than

oG + 9),

the second term satisfies this by (4.12), and hence f(Z) is in Lipschitz class
on G, proving the theorem.

5. Theorems of Rogosinski. The following important results of Rogosinski
are usually included in a study of the Gibbs phenomenon for Fourier series:

(a) If @,=0(1/n) and if the series 1/2ao+ > ey (ar cos kx+b; sin kx)
converges to s(x), then 1/2[Sn(x+a,)+Sa(x —an) | os(x).

(b) If this series is summable (C, 1) to s(x), and if a,=0(1/#), then
{ 1/2[Sn(x+a,) +Sa(x — ) | = (Sn(x) —s(x)) cos na,.}—>s(x). The analogues
of these results in the Walsh system will now be investigated.

THEOREM X. If X a0 au(%) is a Walsh series on G which converges to
5(x) at % in G, then for any sequence {a,,} of G with \N(&,) =0(1/n),

Sa(% -T~ an) — 5(&) as n — ©.
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Proof. The following calculation on [0, 1] can be done on G for every £,
{@}, Ma.) =0(1/n).

n—1

Sa(x + a,) = Z ar(x)Yr(an) for x & E(an), | E(an) l = 0.
k=0
Using a device found in Fine [1, pp. 391 and 403 ], let 2"~ <@, <2~ and write
(n—1)=r2"+s, 055 <2*. Then

r—1 2V—

Sale + an) = 2 Z 0 mt V2w o (¥)V 2 mp(otn) + Z a2r4 W2"rs (X)W e"rs p(atn)
m=0 p=0 D=0

for x&E(a,). But is easily verified that Ywmip(an) =¢p(@n)¢¥m(2a,), and

¥o(a,) =1 when p <2”. Hence

r—1 2"—1

S (x + Oln) = Z Z az'm+p‘l/2 m+p(x)'l/m(2yan) + Z as”, r+p¢2 r+p(x)‘pf(2 aﬂ)

m=( p=0

r—1

Z Ym(2as) [S(m+1)2 (x) sz'(x)] + Y1) [Sn(x) - r2'(x)]

where S, (x) = D 420 awi(x) and ¥, (2"a,) =Yar(atn) =Vorr(0tn)¥s(@n) =¥a_1(otn).

Or we may write

Sul  an) = Se(x) + 3 ¥m(Zan) [Seme(5) — Swa()]

m=1

+ \bn—l(an) [Sn(x) - S,-z"(x)]

¥ & E(an). Now, a, <2¢/n for some fixed ¢. Hence r <n/2* <2¢/2'a, £2¢*! and
the number of terms in the right side of (5.1) is bounded. If S,(x)—s(x), then
the first term on the right side of (5.1) tends also to s(x) and the remaining
terms go to zero for all x&U,_; E(a,), and the theorem is proved.

Concerning the second result of Rogosinski stated at the beginning of this
section, the Walsh analogue might be expected to take the form

(5.1

(5.2) (5. T @) — Gul@® — 58)Pns(@n)} — 5(2).

This is #ot a correct result, however. In fact, if x =\(%), oo =\(@,), x+a, are
not dyadic rationals, (5.2) is equivalent (after a double application of Abel’s
formula) to

n—3

> (k4 1) [Yalan) = 20ia(an) + Yrse(an) [{orn(@) — s(x)}

k=0

+ (n — 1) [¥n-s(an) — ¥nr(an) J{ona(a) — s(x)}
= Z b,.,k{ak+1(x) - s(x)} -0

k=0
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Thus we have a linear transformation of {ak+1(x)—s(x)} by the infinite
matrix (ba.i). Let (n—1) =2"+s, 0 <5 <2’ and choose x’, &, '+, not dyadic
rationals, with 2—~1<aj, <2~*. Then ) s, Ib,,,kl =#n and the matrix is not
a Toeplitz matrix. Thus there exists a sequence {o4(x") } converging to s'(x")
but for which (5.2) does not hold for {a;}. Moreover, it is possible to find a
Walsh series Y s-o aix(x) which at x’ has the (C, 1) means {a,’t(x’)}.

THEOREM XI. Let f(x)EL¥0, 1), 1<k< o, and {nk} be a lacunary se-
quence of integers niy/ny>q>1. Then for any sequence 0 =<c,=0(1/n), the
W.F.S. of f(x) satisfies Su,(x+an,)—f(x) a.e. as k— .

Proof. Using (5.1) with n=m;, 27 'S, <27, and m—1=r2"+p,
0=<p <2 it is apparent that the partial sums on the right are lacunary if
n=mn; and, as before, there is a finite number of terms. By the following
lemma due to Paley [9] the right side tends to f(x) a.e. and the result is
proved.

LemMmA II1. If f(x) €L*(0,1), 1 <k < «, and {ni} is a lacunary sequence of
integers mp1/m>q>1, the partial sums of the W.F.S. of f(x) satisfy Sa,(x)
—f(x) a.e.

The next theorem resembles the second theorem of Rogosinski.

TreorEM XII. If f(x)EL*0, 1), 1<k<x, and {a,,} is any sequence
satisfying 0 S o, =0(1/n), then the partial sums of the W.F.S. of f(x) satisfy

[Sn(x + a,.) - (Sn(x) - f(x))'//n—l(an)] —’f(x) a.e.
Proof. Formula (5.1) may be rewritten as

Sal F o) = Yana(on) [Sa(a) — (2)]
= S(x) + Z dnZe) [, (@), — Sur (@] + Yaslan) 1) = S(®)]

m=1
for x & E(an).

The relation holds for each # if x&§ U, E(a,). As n— «, y— 0, and the col-
lections {S,,.g'(x)}, m=1, 2, -+ -, r<2°! are each lacunary sequences of
partial sums. By Lemma III each such sequence tends to f(x) a.e. so the right
side converges a.e. to f(x).

This section will end with the proof of a valuable formula for any integra-
ble function f(x) in terms of the partial sums of its W.F.S. This result (which
is an analogue of a well known result for the trigonometrical system, e.g., see
Marcinkiewicz and Zygmund [7, pp. 3, 4]) is not related to the theorems of
Rogosinski, but depends on some of the facts used in the proofs of these
theorems, and so it is included in this section.

TreorREM XIII. If f(x) EL(0, 1) and if the W.F.S. of f(x) has partial sums
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satisfying lim supn_.Sa(x) <+ o for xCE where E is any set of positive
measure, then for almost every x € E we have
lim inf S,(x) > — «
n—s0

and

n—+o0 n—0

1
flx) = —{hm inf S,(x) + lim sup S,.(x)}

Proof. The function S*(x)=lim sups—S.(x) <+ ® is a measurable
function on E, and following Lusin, there exists a set FCE such that the
complement of F relative to E has measure less than ¢/2, and S*(x) is con-
tinuous on F relative to F.

Also the sequence of functions {I.u.b. ,,;,.S,,(x)} converges on F to S*(x),
and therefore there is a measurable subset E’ of F such that | E'—F| <e/2,
and the sequence converges uniformly on E'.

Let x be a point of metric density of E’. Then the relative density of
any interval containing x and of sufficiently small diameter is close to unity.
More specifically, if an,(x), Bn(x) are defined by

P P +

(5.3) am(x) = '2— Srxl——= ﬂm(x)7

then there exists v¢ such that for » =»,
1
| B0 (@), @) | > 27,

For every n such that (n—1) > 2%, define » by 2" < (n —1) <2**1, and consider
the image of the interval I:2-0+D <a <2~ under transformation T.(I)
= {x—]—a, aC€I}. We have I T,,(I)] = | II =2-0+D_ However, except for a set
of measure zero T,(I) C(ew(x), By(x)), and so ENT,(I) is not void, i.e., there
exists an a=a, such that (x4a,) EE’ and a,EI. For such «, by (5.1) with
r=1, as is now the case,

Sa(x + an) = Sy (%) [1 - ‘I’n—l(an)] + Yn_1(ctn)Sa(%).
But ¥s(an) =y (a,) =¢1(2’a;,) = —1 since o, €I. Thus
(5.9 Sa(x 4 an) = 2S»(x) — Sa(x) for each n.

Now in view of the continuity of S*(x) over E’ relative to E’ and the fact
that x is in E’ and for each #, (x+a,) belongs to E’, we have

Sn(x + 0n) £ S*(x + an) + e £ S*(x) + o(1), n large.
By (5.4)
2S5p(x) S S*(x) + o(1) + Sa(x), large n.
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But Ser(x) =f(x) +€.(x), €.(x)—0 a.e. Assume that the x under consideration
is such a point of convergence and f(x) is finite (which it is a.e.). Then
S*(x)+o0(1) = —Su(x) +2f(x) +2€.(x), and hence S*(x)—2f(x)= —Sx(x)
= —lim inf,., S.(x). Consequently lim inf,.. S.(x)> — «, and the first
assertion of the theorem is proved since E’ is of measure arbitrarily close to
that of E.

Knowing Sk(x) > — «» we may write

(5.5) flz) = —;— {S*(x) + Sx(#)} a.e. on E.

Suppose now that the argument were repeated starting with the inequality
Sx(x) > — « as the given condition. All inequalities would be reversed, and
from this would follow 1/2{S*(x)+S*(x)} =f(x) a.e. on E. Combining this
with (5.5) proves the theorem.

6. Transformations of Walsh series. In the theory of trigonometric series
a number of results have been established (see Zygmund [21]) which identify
Fourier series with classes of functions. A theory of transformation of series
from one class to another class by means of multipliers has also been estab-
lished. In this section, the Walsh analogues are obtained. If a Walsh series
> w0 (%) is the Fourier series of f(x) which belongs to a class of functions
Q, then we shall say (following the classical exposition) that the series itself
belongs to . For any numerical sequence {)\k} consider besides the Walsh
series the two series

6.1) 3 aa(®)
k=0

and

6.2) O e,
k=0

Given two classes P, Q, of Walsh series, the class of sequences {)\k} denoted
by (P, Q) is composed of sequences which transform P into Q, that is, when- -
ever the given Walsh series belongs to P, (6.2) belongs to Q. We first identify
the series belonging to certain classes of functions.

TueorREM XIV. A necessary and sufficient condition that a Walsh series
should belong to the class B of essentially bounded periodic functions on [0, 1],
is the existence of a constant M such that the (C, 1) means of the series satisfies
|ow(x)| 2M, all k, all x.

Proof. If |f(x)| < M a.e., then by Lemma II | au(x)| < [3|f(x+0)| | Ku(t)] at
<2M, all x and k.
If |ox(x)| S2M, all k and all «, then
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1 k—1 >\ 2 v » \ 2
4M? gf ai(x)dx = Ea?(l — i) = Eai(l - —J—)
0 =0 k =0 k
where » is any fixed integer less than (k—1). But as k—o this implies
D -0 &y S4M?, and since v is arbitrary, Y ;- a2 <+ . There exists an fx)
in L? such that f(x)~ > 2, ay;(x). By the result of Paley [9], & (x)—f(x)
a.e. and since Iak(x)l =<2M for all k and all x, |f(x)| <2M a.e.

In characterizing series which belong to the class of continuous functions,
the continuity on the group G is required. The usual characterization (uni-
form convergence of the (C, 1) means o4 (x)) fails because the Walsh (C, 1)
means are only continuous (). For example, if f(x) is a Walsh polynomial,
or(x; f)—f(x) uniformly, but f(x) is not continuous.

THEOREM XV. 4 necessary and sufficient condition for a Walsh series on G
to belong to the class C of continuous functions on G is that the (C, 1) means
{&k(x)} of the series should converge uniformly.

Proof. If D> 5, axi(%) is the Fourier series of a function f(#) continuous
on G, then {&k(a?:)} converges uniformly. This is the theorem of Fejér on the
group G.

On the other hand, if { &;,(92)} converges uniformly, define f(&)
=limy..., 5x(%). Note that f(%) is continuous. Consider

{jth coefficient of (@)} = <1 - %) e; = fq&k(x)n/'xj(oz)dn_ft.

Now as k— o the left side converges to a; while the right side converges to
Jof(®)¥;(z)dm.

In the classical theory, the concept of a Fourier-Stieltjes series is intro-
duced. To every function F(x) of bounded variation on [0, 2] corresponds a
trigonometrical series whose coefficients are Riemann-Stieltjes integrals, e.g.,
(1/7) 3 cos ktdF(t).

In the Walsh case the corresponding integrals [y (£)dF(t) need not exist
as Riemann-Stieltjes integrals. This is the case, for example, when the func-
tion of bounded variation F(x) has a common discontinuity with y;(x). It is
necessary, therefore, either to consider the problem in the context of the group
G where ¥,(%) is continuous or to generalize the Stieltjes integral involved
and/or restrict F(t). The first approach leads to the difficulty of defining
functions of bounded variation on the unordered group G. The Lebesgue-
Stieltjes integral or modified Pollard-Moore Stieltjes integral of Hildebrandt
[5] are generalizations for which [3yx()dF(f) does exist for every F(t) of
bounded variation on [0, 1], however, this approach has thus far involved
other difficulties. The validity of the sufficiency portion of the classical nec-
essary and sufficient condition for a series to be a Fourier-Stieltjes series
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f3|an(x) | dx =V has thus far been neither proved nor disproved by the
author. We therefore define S’ as the class of series D no axr(x) whose coeffi-
cients are ay = [oyr(t)dF(t) where F(t) is continuous and of bounded variation.

TrEOREM XVI. If D, awh(x) belongs to S, [o]|oa(x)|dx<2V and
1/n Y223 awbe(x) converges to zero uniformly in x and conversely.

Proof. Except when (x-+¢) is a dyadic rational (the set of such ¢ for fixed
x has F-measure zero)

k—1
Ka(x 4 ) = Ka(®, ) = 20 20 ¥(a)¥:() /n
k=1 r=0
and hence |o.(x)| < /3| Ka(x+8)||dF(t)|. Then with (n—1)=2"+n’,
0=n' <2,

follan(xﬂdx§L1<L1[Kn(x-i—z)| IdF(t)|)dx

2"+1 ] 1 (i+1) /2v+1
K,,(x + Ev?>lf,-,2m | dF(2) ])dx s2v

S (%

since K,(x+f) is constant (for fixed x) for ¢ in [i/2"+!, (s+1)/2"*1), and
Jo| Ka(u)|du <2 by Lemma II.

Moreover, let n=Z:_o x:2% x;=0, 1, x,=1, and let n,«=E‘,’_o x42°,
0 <j=<v. Repeating the formula D,(x) = Dy (x) +»(x) Dno(x) k times (k <v)
vields (using 5.3)

- E ar‘l/r(x) = i: x:‘ f ‘pn_n"_'(x + t)D2"_‘(x '+' t)dF(t) l
1 ! . :
+ ——'f 1[/n_"(x + t)D”(x 4+ 8)dF(f) | Dy(w) = 0.
7 0 v—k V—k
k—1 Xy_i v—1
=X [V(B.—i(x)) = V(aw-i(x))]

i=0 [
y—k+1 _
n 2-+1y(1) — V(0)]

n

1
< [V(Bi-sr1(%)) — V(ewrsa())] + Py V(1) = v(0)].

The first term can be made small uniformly in x by choosing # large and the
second small by choosing  large.

Conversely, if [3]o.(x)|dx =<2V and 1/7 232§ abr(x)—0 uniformly in x,
define F,(x) = [0, (f)dt. Then (cf. Zygmund [21, p. 80]) there exists F,(x),
a uniformly bounded subsequence converging everywhere to F(x) of bounded
variation.
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For each kB (n:>1)
6.3) Q-£)m=ﬁﬁmw¢wm=ﬁ}mwmw.

With 4=2¢414", 0<4’<2%, let I;=[j/25+, (41)/25+1), 7=0,1, 2, - - -,
(2¢#+1—1) be the intervals of constancy of ¢¥;(x). Then

i "o j+1 j
(6.4) (1 - n—k> a; = g ¥ill5) [Fnk (;_'__1) - F"k('z_;;;):l .

Letting k— «, and replacing each F,,(x) by F(x) we have a;=_foy:(x)dF(x)
if F(x) is continuous.

An idea of Fine [1, p. 406] may be used to demonstrate the continuity of
F(x). F(x—0) and F(x+0) exist everywhere and hence it is enough to find
dyadic rational sequences {r,*} and {rj‘} converging to x from right and left
respectively and F(rjt)—F(x), F(r7)—F(x).

By definition F,,(x)= 2 " (1—i/m)a:Ji(x), where Ji(x)=[op:(t)dt.
For 7 large enough J;(B,.(x)) = Ji(an(x)) =0, hence

2"—1) 1

Lando B ) k

(2"—1) ; Bn(z)
6.5) lim > (1 - f—) o f w(b)dt
n a

Lot ) k n (%)
Bn(x) Szu(x)
2n
an(zx)

by assumption. Hence if x is not a dyadic rational, we identify { B.(x)} with
{r#}, {an(x)} with {r;y}. If x is a dyadic rational, a,(x) == for large #, and
hence while {B.(x)} is still {rj*}, we define {r;}={ai(x)} = {a.(x)—1/2"}.
Then F(x) — F(a,(x)) =S(cg)/27"—0 since by assumption S:*(#)/2*—0 uni-
formly in % and so the theorem is proved.

THEOREM XVII. 4 necessary and sufficient condition that >0 axdi(E) be
the Walsh-Fourier series of a function f(£)EL(G) is that the (C, 1) means
satisfy fg] (%) —&,,(x)]dn‘i—»O, as m, n—> o,

Proof. The necessity is immediate from Theorem VI. It is enough to
prove the sufficiency on the unit interval. By completeness of L(0, 1) there
exists f(x) €L(0, 1) such that félf(x) -—an(x)ldx——)O as n— . Define F,(x)
= [3o.(t)dt, F(x)=[5f(t)dt. Then

| F(x) — Fo(®) | gf | /) = ou(®) | dt— 0 as n— e,
0
and so F,(x)—F(x).



1957] ON WALSH-FOURIER SERIES 491

As in (6.3), if >k, (1 —k/n)ar = [30.(x)¥u(x)dx = [o¥s(x)d F.(x). Arguing
as in (6.4), it is clear that as n— o, ar = [o¥u(x)d F(x) = [or (x)f (x)dx.

The proofs of the next results parallel closely the proofs of the classical
analogues.

THEOREM XVIIL. If > 2, Nhu(x) belongs to ', then {\.} belongs to
(B, B), (C, C(W)), and (L, L). Conversely if {)\,.} belongs to any of these classes
and if also D22 Nu(x)/n—0 uniformly in x, then Y pmo Nbi(x) belongs to S’
(¢f. Zygmund [21]).

Proof. Let 04(x), ¢.(x), and oj(x) denote respectively the (C, 1) means
of the series D o @li(%), D ro Mi(x), and Do ahbi(x). Assuming the
first series to belong to B and the second series to belong to .S/, we have

6.6) on(x) = 2(1 - -5)( fo 1%(;)41«*(;)) aba(x) = fo on + AR (D).

By Theorem XIV, lan(x-i-t)l =M, and hence |0': l = MYV. By Theorem XIV
Do aMi(x) belongs to B.

If the first series belongs to C, then [0,(x) —0m(x)]—0 uniformly for
x€[0, 1] by Fejér's theorem. But then

* * 1 .
| oa(2) — om(2) | gf | oa(e + £) — om(z +8)| |dF@)| —0

uniformly. This implies that {&,",‘ (%)} converges uniformly on G and hence by
Theorems XV and IV the transformed series is in C(W).

If the given series is in L, [3] 0a(*) —om(x)| dx—0 by Theorem VI. Hence
from (6.6)

1 1 1
a: —a:. dx £ n — Oom dF () |d
fol () (x) | xsfofola(x-w) (x4 0| | dF(t) |dx

=V l|an(x) — on(2) | dx — 0.
J.

By Theorem XVII, the transformed series belongs to L.
The proof of the necessity portion of the theorem proceeds exactly as in
the classical case and will not be given (cf. Zygmund [21, pp. 101-102]).

THEOREM XIX. If D o Mi(x) belongs to L, {\.} belongs to (S', L) and
(B, C(W)).

Proof. Given Y s ai(x) in S, it is clear that

1 1 1
J 1w -d@las [ [ 1ae+o - wetol o]

1
=< Vfo |q,.(x) - q,,.(x)ldx-—>0
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since D ;o Mx(x) belongs to L. But then by Theorems I and XVII, the
series D o ahe(x) is in L.
If Do awli(x) belongs to B,

* * 1 1
| oa(2) — on(2)| = f [ gu(®) — gu®) | | f(x+0) | dt = M f | gu(t) — gm(2) | dt

where M is the essential upper bound of f. Since D o M¥i(x) is in L, the
right side tends to zero and so {0':‘ (x)} is a uniformly convergent sequence.
An application of Theorems XV and IV shows D s, ahx(x) to be in C(W).

7. Lacunary Walsh Series. In this section, analogues are developed for a
number of interesting results from the theory of lacunary trigonometric
series. The first is for a result of Zygmund [20], the proof differing from that
of Zygmund’s only in respect to certain details which are peculiar to the
Walsh functions. In general, the results of this section may be restated on the
group G.

THEOREM XX. If X 5o an,(%) is a lacunary Walsh series whose partial
sums Sn(x) oscillate finitely at each point of an interval IC[0, 1], then
Do lakl < o,

Proof. We begin by proving the lemma of Baire for the Walsh series.

LemMA IV. If the partial sums of a Walsh series oscillate finitely at each
point of an interval I C [0, 1], there exists a constant M and subinterval [a,0]CI
such that | Sa(x)| £ M for all n and all xE€ [a, b].

Proof. Let I’ be a closed dyadic subinterval of I and consider the neighbor-
hood N of G which is mapped onto I’ under N. Define E;, = {a‘cENI l Si@®]
ék}. Each E;; is a closed set in G since S;(%) is continuous on G. Then

o1 Ei.=Ey is a closed set, and N’=U;.., E; is a union of closed sets. The set
N’ contains every £& N which does not end in a sequence of 1’s. This follows
from the fact that for all such & there is an x in I’ for which u(x) =% and
Si(#%) = Si(u(x)) =Si(x) by (1.8). But then {Si(x)} is a finitely oscillating
sequence, and so % belongs to E;; for every ¢ when & is sufficiently large.

This implies N= (U, E;)\UZ where Z is at most a denumerable set. But
N is a neighborhood of G and is not of the first category and hence one of
the E; is not nowhere dense. Call this set Ey. Then Ej contains a neighbor-
hood W of G.

By definition of Ey, | Si(#)| <M for all ¢ and all & in N. But then | S;(x)|
=M on [a, b], a dyadic subinterval of I’ which is part of the image of ¥
under .

Suppose now that 7;.1/n; exceeds ¢ >3 and set Py(x) = [[Y., (1 + e, (%)),
¢, =*+1. Then

(7.1) f bPN(x)dx = f : (1 + Z ayt//y(x))dx
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when expanded because products of ¥'s combine according to the following
combinatorial law (Fine [2]): if for any integers m, n we write m= Y o x:2¢,
n= P 1o ¥:i2i x5, :=0, 1, and we define

(7.2) m®n= f} | 2 — 9|27, then ¥(€)¥n(2) = Ym@a(x) for all 2.
=0

Let Gu: be the sum of all terms in the expansion of Py(x) which consist of a
product of % ¢'s and wherein %, is the largest of the subscripts in such a
product. Then

b
f (Gir + Gor + - -+ + Grr)dx

number of terms
é Z max'ﬁreahk

he1 in Gr

f,, (@) )

Now since #nx41/7,>¢> 3, each integer n: necessarily contains a higher power
of 2 in its dyadic expansion than its predecessor had. It follows that no “sum?”

v=mnk, Ome,® - 00 Oy, my <mpy, < - - <mgy can be zero. Hence
b 0 b
(Po(a) = x| S | [ G+ Gur+ -+ + Guds
a k=1 a

(7.3)

IIA

> ko /k—1 b
2 Z( )( max f Y(x)dx )
k=1 h=1 h—1 v appearing in th a

Now if the “sum” » belongs to G, its greatest “summand?” is n;=2¢n
+ni, 0 =ni <2*%. Thus

f,, 4 (x)da

= |1,0) = 7@ | = [%®)® — 7,,,®) = ¥(@)(a = 7,,,(0)) |
il
2

where v,, () is defined as that one of a,,,(b), Bs,,(0) (defined in (5.3)) which
is closer to b and similarly for 7, (a). Then

EE(T)EGE) o

k=1 k=1 \B— 1/ mi\qg— 2

IIA

(7.4)

f b(PN(x) — 1)dx

LEMMA V. If {m.} is a sequence of integers with mpy/mi>q>3 and v
= (4, Oy ® - - - D1gy), My <may< - -+ <mp;, then vE[mi;(q—2)/(g—1),
g/ (@—1) ).

Proof. It is clear that if m= D oo %25, n= D 1o ¥:2%, %49:=0, 1, both
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disappearing eventually, then m —n <m ®n <m-+n. Repeating this inequal-
ity we get my;— iy — i,y — + 0 — M S0 @n_, D - - - Omiy S+,
+nk;yt + - - 4y Substituting into this expression ni;/q" > ny;

)

nk, N,

j kj

nkj 7—? -—q’-—_1<l’<nk,+’—+q + +qi—l’
ni(g — 2) nr;q
qg—1 g—1

After these preliminaries we proceed to the main idea of the proof. Given
ney1/Me>g>1, in general, we write ¢=1-42¢. Now choose a number ¢ >0
which satisfies the following:

14
() +20(1 —€)>p>1 (b) n

o>
+ € P
(c) 3( +e)>p>1.

For this number ¢’ find Q(¢’) such that if p > Q(¢’), then (p—2)/(p—1)>1—¢’
and p/(p—1) <1+¢€'. Determine integer r so that ¢">max (3, Q(¢’)).

The sequence {#.} can then be split into 7 subsequences, {Marin],
p=1,2,3,...,r, with & varying from 0 to «. Define also the functions

(7.5)

k
(7.6) Pu(s) = IT (1 + &, V.(0), Pyy()
k=0 P nkr+p
_ PN.p(x)
A+ e, ¥.(2)
where €r4p,=+1, p=1, 2, - - -, r. Using the usual definition for the partial
sum of a lacunary series, we have for each p=1,2,3, - - -, 7,

b N—1 b
[ Swto)Prs@dz = T i [ 1+ e,, 9, @)ED @ (@ax

k=0

T N-—1 b
+ Z [ Z ak1‘+p'f 'l/nk,+,’PN,p(x)dx:|

p’'=1;p’ k=0
(7. 7) N—1 b n —1
> ampekm( [l <x>P<'=><x>dx)+ 3 Curtrtioes f P ()i
k=0 a nkrip k=0

+ X Zawekmr( [ o W@ (@)

* N,
p'=1ip’s#p k=0 hrte

=L+ I+ I,



1957] ON WALSH-FOURIER SERIES 495

Consider a typical coefficient from I,

fbe ¥ (%) P® (x)dx

kr+p nkr+p N,p

s|f v+ B | v@(Sewm)o

where Gj, is the sum of all products of (j+1) ¢'s, the largest subscript being
#iyryp- The first term on the right is majorized by 4/n; and the sum by

) v v
> | 2. max .
y=0;v5¢k L j=0 \ ] all subscripts y in G,',,

For these integrals, because ¢">max [3, 0(e") ] and #rip/Ms—tyr+p>¢", ANY
subscript v from G;, must (by Lemma V and choice of Q(¢’)) lie in the inter-
val [#,,4,(1 =€), Torsp(1+€’) | where v k.

But then 4 has as greatest power of 2, 2*mrp, and 744, has a different
greatest power of 2. Their “sum” under @ contains a power of 2 greater than
or equal to 2*mir+,. Thus [f3¢ﬂk,+p(x)t[/.,(x)dxl <4/n,,1p and

4 e w8/ ¢
<2+3 g—( : ) ¢ >3

"1 y=0 Portp ni\q" —

(1.8) .
+ 2

y=03vk

b
[l g o

(7.9

fbe Z (x)PI(V")p(x)dx

kr+p nkr+p

For I, by (7.4),

( [ "va’fi,(x)dx) =[ [Fax - faba - z‘v’il,(x))dx]
4

g@—@——(q ) q >3
n\q — 2

(7.10)

Finally, for coefficients of I; we have
b b
[ vt 0 RO

+NZ_:]|—4{:<;> max

y=0 L j=0 all subscriptsy appearing In G,

=

(7.11)

b
f ‘pnkr(*z?"l/'v( ®)dx

where p’5p, and now » may equal k.

Again vy belongs to the interval [#orip(1 =€), frsp(1+¢€’)], and so the
closest that this interval may come to 7.4, as » and p vary is when v =k and
p=p’+1; or v=k—1 and p'=1, p=r; or v=Fk+1 or p’=r and p=1.
In any of these cases #,ri, and 74, are succeeding terms (in some order)
in the original sequence {nk} The terms on the right in (7.11) are largest
when v and 74, are close. We may describe the two situations in which
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Nkryp 1S Very close to v, i.e., the worst possible cases as:

(@) vE[m@—¢), ni(14+¢€')] and Mir4p plays the role of 7.

(b) 7xr4p plays the role of 7y and ¥ &€ [m(1—¢’), m(14¢)].

In the first situation the choice of ¢’ as made at the beginning of the
proof enables us to say M1 /Y S /m(14€') >q/(1+¢) =(142¢)/(14¢)
>p>1. In the second case 7v/m_y>mi(1 —€)/m>q(1—€)=(142¢)
*(1—¢€")>p>1. The next lemma is easily verified.

LeEmMA VI. There exist constants A and B, depending on p, such that for
m>n>A(p) and m/n>p>1, (m®n) contains a power of 2 at least as large as
2em=B®) where m =2m4-m’, 0 Sm' < 2om,

An application of the lemma shows that

J ® —7J (e !

B (kr+p")DY ® (krtp! yDY 22y—B

IIA

.12 | [y, G @i

Since v is in the interval [n,,,,(1 —¢’), Nurip(1+€’) ], it follows that

b
4., s

Using this estimate in (7.11), we have for a typical term of I,

stz 2(0):5]

Ny v=0L j=o

(7.13) =

Rortp

b
f enkr+p'¢ﬂkr+p’PNap(x)dx
a

2v

4 N—1
(7.14) S—+CcXY
ny

v=0 nvr+p

4 . qC
=—(14 ) qgr> 3.
n q'—2

Let us now observe that if #, is only sufficiently large, (7.9) implies that
the coefficient of each term in I of (7.7) is less than % in absolute value.

Similarly, (7.10) shows that for n, large enough, the coefficients in I; of
(7.7) are all non-negative and numerically larger than [(b—a) —9]. F inally,
from (7.14), a large #, implies the coefficients in I; of (7.7) are all less than 7
in absolute value. Setting ¢;= (sgn a;) we have from (7.7

b
Sne(%) Py, p(x)dx

(7.15) Nt . N1
= Z (6 — a)— 27) !akr+p\ - E E !a”kr+p’ .

k=0 P'=1p'#p k=0

If we now sum over all p,



1957] ON WALSH-FOURIER SERIES 497

r

b Nr Nr
S| Swe(®)Pyp(2)dx = ; (6—a)—2m)]a;| —=(r—1) 2n|ay

(7.16) """ 1 . ’(;1 |
T —a

>—(b— i1 Uy

25 0-9 % 1a "<+

However, on [a, b], ISN,(x)I <M, and since Py ,(x) is a product of non-
negative factors (14¥.(x)), we have

(b—a
2

Nr r b
Slal =X |Sw®] | Pro(®)| do

j=1 p=1 a

r b
SMY, | Py(x)dx £ Mr,

p=1v a

and so as N— » the theorem now follows.
This result may be shown to hold under more general conditions, e.g.

Sy (x) bounded above, etc. Remarks on such generalizations are found at the
close of the paper of Zygmund in which the theorem is presented. An easy
consequence of this theorem is the Walsh analogue of the well known theorem
of Szidon.

TrEOREM XXI (Szidon). If a lacunary Walsh series is the Fourier series of
a function f(x) EB (class of bounded functions), then the series converges abso-
lutely.

Proof.

(N—-1)

'SN(x) - O'”N(x) l = E ak‘l’nk(x)
k=1

_ (ny — ny)awn, (%) + (ny — na)asdny(x) + - - - + (v — NN 1) ON—1Wny — (%)
nN
< ml|a| + nalas| + -+ -1 | av- |
= -

< (loval e+ |oval 2+ oo 4 o] o®9) —o0.

But from Theorem XIV, {a,,N(x)} is a uniformly bounded sequence. It fol-
lows that { SN(x)} is a uniformly bounded sequence, and so by Theorem XX
the series is absolutely convergent.

The next theorem is preliminary to establishing the analogues of the re-
markable theorems of Banach on the existence of Fourier series with pre-
scribed coefficients at lacunary places. These results are found in the text of
Zygmund [21], but a less complicated presentation appears in a more recent
article by Salem and Zygmund [11]. The proofs given below follow in part
this more recent exposition.
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TrEOREM XXII. If { nk} is any lacunary sequence of positive integers
ip1/m>q>1 and {a.-} is any sequence of real numbers tending to zero, there
exists a Walsh Fourier-Stieltjes series Y o cibi(x) such that cn,=a;, i=1, 2,
3, -

Proof. Suppose Ia,'[ =1 for all <. Consider first the case #nyy1/7,>q>3.
Since each factor is non-negative,

(7.17) Pi(z) = II (1 + agn,(x)) = 0.

The following lemma proves that if P,(x) were multiplied out, there would be
no collapsing of terms following the employment of the product formula,

Ym(£)Pn (%) =¥men(x).

Lemma VIL. If >3, all subscripts v=(n; ®n:,® - - - ®ny), ny, <ni, -
<ni; which appear in the expansion Pi(x) =1+ >, a(x) are distinct.

Proof. For ¢> 3, each integer #; necessarily contains a higher power of 2
in its dyadic expansion than its predecessor had. In comparing two distinct
subscripts », the largest “summand” to appear in the first » is, or is not, equal
to the largest “summand” to appear in the second ».

Consider (n:,®n:,@® - - - ®ny;) and (#;,®7:,® - - - ©a;,) in which
ni;> 1, Since #n;; contains a higher power of 2 in its expansion than does
i, the two subscripts are distinct.

Suppose the subscripts have #n;; =7, but differ first at the rth “summand.”
Then the one having the larger “summand” at that place will have a particu-
lar power of 2, say 2% (where 2% represents the greatest power of 2 in the
dyadic expansion of the rth “summand”) enter the calculation of its numeri-
cal value one time more than it will enter the calculation of the numerical
value of the other subscript. In all cases then the subscripts are distinct, and
the lemma is proved.

Hence as k— <, (7.17) actually becomes a Walsh series ) oo c;(x).
Many ¢; may be zero since no subscript v = (n;, ®7:,® - - - ®n,,) happens to
equal j; however, each coefficient ¢,, appears and has the value a..

Suppose Py(x) is the partial sum S,,(x) of D ;2 c¥j(x). Then fél So(x) | dx
= [o| Pi(x)|dx = [3Pi(x)dx = 1. We have therefore found a sequence of partial
sums bounded in the L! norm. The argument which established the sufficiency
statement in Theorem X VI based on the uniform boundedness in L! norm of
(€, 1) means may be repeated for a sequence of partial sums which are uni-
formly bounded in norm and for which the coefficients {¢;} of the given series
tend to zero. It is easily verified, using ]a;l =1 and a;—0, that ¢;—0 and the
theorem is valid for ¢ > 3.

" In the general case ¢>1, we break up {nk} into r sequences, {n,(,l) },
{n?)}, SR {nﬁ’)}, in such a way that n{,/2®>¢", k=1, 2, - - -, 1<s<r
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and 7 being a large number which shall be defined in a moment. Let P{®
denote the product (7.17) corresponding to the sequence {nff’}. By Lemma
V, if ¢">3 is large enough, the series [limy.. P,(f)], s=1,2,.--.,r wil
have no overlapping. But then for this 7 the combined series > _; [lim .., P®]
is the required Fourier-Stieltjes series.

THEOREM XXIII (Banach). Let {nk} be any lacunary sequence of positive
integers npyr/ne>q>1 and let {ai} be any sequence of real numbers tending
to gero. Then there exists a pertodic function f(x)EL(0, 1) such that the Walsh-
Fourier coefficients {c;} of f(x) satisfy cn;=ai, 1=1,2,3, - - - .

Proof. Given any sequence {a;} tending to zero and any set of positive
integers {7} there exists a convex sequence {e;} tending to zero such that
limi.., (air/€x) =0. By a result of Yano [18], the series Y o, ei(x) is a
Fourier series. Since (ax/€.,)—0, apply Theorem XXII, and there exists a
Fourier-Stieltjes series Y ., p¥;(x¥) with coefficients p,,=a:/ €. Apply
Theorem XIX, and the series D5, (pje)¥;(x) = D o ci¥;(x) belongs to L.
Then ¢, = (Pn€n,) =as, and the theorem is proved.

TreorEM XXIV (Banach). Givern any lacunary sequence of positive integers
%k}, mepr/ne>q>1, and any sequence of real numbers {ak} such that
1 @r < 0, there is a continuous (W) function f(x) on [0, 1] (or a continuous
function (%) on G) whose W.F.S. Y .o cibi(x) (or Do c;0;(%)) satisfies

Cop=ar, k=1,2, -+ -,

Proof. Given Y ., a2< » and any set of positive integers {nk}, there
exists a convex sequence {¢;} tending to zero and such that Y sy, a2/&, < ».
Then Dm0 adi(x) is a Fourier series. If the theorem is valid with “bounded
f{mction f(x)” replacing “continuous (W) function f(x),” an obvious applica-
tion of Theorem XIX would suffice to establish the stronger result.

LemMA VIII. If a subsequence of partial sums {S,,.,(x)} of a W. F. S. satis-
fies | Sm,(x)| = M, the function is a bounded function.

Proof. M?2 [).S% (x)dx= D 75" a} and hence there exists fEL2(0, 1)
whose W.F.S. has S,,,(x) as partial sums. By Lemma III, any lacunary sub-
sequence {Sm’ dx)} converges a.e. to f(x) and f is bounded a.e.

Assume q>‘3 and define

v 1
Pu) = — 11 (1 + iaspm(s)) = — (1 +iY aum(x)

1 k=1 i

+ 12D 0O W ®n, (%) + - - + Pay - a,npnle...en,(x)).

As in Theorem XXII, for ¢> 3 all subscripts are distinct, there is no collaps-
ing of terms, and P, is a partial sum of P,;;. As v— « we obtain formally a
Walsh series Yoo c,¥,(x) in which some coefficients may be complex. In the
natural ordering of terms (by size of subscript) and by replacing vacant
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terms by zero's, ¢., =ai. Now |S,.,+1(x)| =|P,(x)| = {1l (1 +a§§1/2< + o0,
all x, since D 4y aZ<+ o. Applying Lemma VIII, the series D= c,¥,(%)
is the Fourier series of a complex-valued bounded function, the real part of
which satisfies the revised weaker theorem.

The case ¢>1 is handled by splitting up the original sequence {#;} into
subsequences as in Theorem XXII.

The next two results are exact analogues of their classical counterparts,
and since the proofs are largely repetitious of the classical case, they will not
be given here.

THEOREM XXV. If D o, a2<+ o and {nk} is any lacunary sequence of
integers nipr/me>q>1, then D o1 Guln, (%) converges a.e. on [0, 1] to a function
f(x) which belongs to L?(0, 1) for every p>0.

THEOREM XXVI. If Y o, aln,(x) is a lacunary Walsh series, npi1/m
>qg>1, which is summable by any Toeplitz summation method in a set EC [0, 1],
|E| >0, then 3 5., a3<+ .

We now come to the Walsh counterpart of a Central Limit Theorem for
trigonometric lacunary series as established by Salem and Zygmund [12].
The innovations are in the use of “sums” of 7 terms in the Riesz products and
in Lemma IX.

THEOREM XXVII. Let {ai} be an arbitrary sequence of real numbers satis-
fying

(1) AN=(af+a:+...+ a:l.)l/z—>oo as N— o,

(2) anN = O(AN)-

Then for ANY lacunary sequence of positive integers {nk}, e/ me>q>1, and
ANY measurable set EC [0, 1], | E| >0, the distribution functions

y k¥'ng
Feni )

k=1 N

| E|

{xEE

Fy(y:E) = ) N=123---

converge to the Gaussian distribution with mean value zero and dispersion 1.

Proof. It is enough to show that for any E, ] E| >0, the characteristic func-
tions of the distributions Fy(y:E),

dy(\:E) |Er1f eMdFy(y: E)

—%

| El—lfu exp (i)\ i akﬁk(x)) dx,

kel N

(7.18)
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N=1,2,3, -, converge uniformly to ¢e=*'/2 for X on any finite range.
Split the partial sum of the given lacunary series into sums of » terms each
so that if N=Tr+N’, 0N’ <r, then

i NZ ak‘pﬂk(x) — i)\T—Zl (akr+1‘l’nk,+l(x)+akr+2\bnkr+z(x) + -4 a(k+l)r‘pﬂ(k+1)r(x))

k=1 N k=0 An
(7 19) + i (ad'r+l\0ﬂrr+1(x) + MT+2¢"Tr+2(x)+ R S aWnN(x))
An
T—1
= E ZN.k + aN,1.
k=0

Using the zy in the formula ef = (14+2)e /221" we have
&y(\, E)
(7.20)

= IE|"’L exp(é o | ZN.kl’))fI (1 4 zx.8) exp( ZZN k)dx

k=0

But |zwa| S |N [| @] + | @hrsa| + + - - + a(k+1),| ]/AN and this can be
made small uniformly. For large enough N N o( 2Nk 2) is equivalent to

T
e ol

k=0

2 2 2 . .
< )‘26[1'—1 (@kre1 + Gkrp2 + -+ + Gtnyr) n (arrgr+ -+ -+ aw)

2

2 2
k=0 AN AN -
(7.21) .
o | -1 Z O ki@ krt Y (x) Z ATy 0Ty (x)
+ 2% 15i<5 nket+i®Onip 45 15 i<j nr + Onpypay
2 ; + ;
k=0 Ay Ay

= e(\2 + 2A2| Py(%)|), € small.

Now IPN(x)l <r(r—1) so that we may drop the factor exp (X ieo o([ zN,kI %)
in the integrand of (7.20) with an error tending uniformly to zero.
Consider now the factor exp (1/2 D .o 234). From (7.21)

T
(7.22) 3 awn = — N(1 + 2Px(2)).

k=0
If | {x€[0, 1]] | Pw(x)| 28}| tends to zero as N— o, for any 80, it follows
that exp (1/2 Db, 23.4)—exp (—\?/2) in measure, uniformly for \ on a
finite range. Then since
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T N 1/2
TLa+avn|< (LG + lonal)
(1.23 °° -
< exp( > zN,klz) S MM, z€ [0, 1],
k=0
T
— —1,—\%/2 )
(.28 dy(\, E) — | E|e ) kI=IO (1 + zn.1)dx

— 0 uniformly for A = 0(1).
For any §>0, | {x&[0, 1]|| Px(x)| 28} | < /3P%(x)/8%x. By expanding,

2
1 Pu(x) 1 11 (Tl -
fo el 7{ Z( Z.“kf+iakr+f¢,.k,+$g>n,,,+f>

0 k=0 \ 1=54<J

+Z

2
(%) dx
Tr+'l. TT+J nrr+i@nTr+j

155
(7.25) 1 -1 .2 2 o2 o
= e 2 2 akr+iakr+j) + > aTr+za’rr+j}
824y Uilo \ 1< 1Si<i

| [sum (over e, B, 4, J, #, v) of cross prod-

uct terms corresponding to Walsh {dx

+

8245, .
functions ¢ X
nar+i®"“r+i®nﬂr+u®nﬂr+v
where in the last term ¢, j, u, v<7, and 0=Sa=<B=T; if =g, then ¢#u or
Jj#v.
The terms involving squares are easily dealt with as

1 T7—1 r 2 2 N/ 2 2
— 2 X Gkreirri )+ Do Orepioress

A:r k=0 \1=1<j 154<j
max | Grryqlt max | @rr4i
r(r — 1) 12! 1sis, | s N'(N'— 1) 1si=w | aresslf
(7.26) < > y + ”
2 a0 Ay 2 Ay
N
asg 4
r(r — 1) .L_'; ! |
< — 0.
2 Ay

The remaining terms can be separated into two classes; class 4, those for
which « and 8 appearing in the subscript of Y, @n,,, ®ns @540 (%) satisfy
B—a=2 and class A4,, those for which 0 =8—a=1. Class 4; can be dealt
with by estimating the number of terms in the class. As @ and § vary from 0
to T, there are T pairs (, ) with 8—a=1 and (T+1) pairs «=0. The num-
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ber of terms for a given «, 8 with @ = is not more than (r(r —1)/2)2 Thus the
total number of terms in class 4, does not exceed 2(T+1)(r(r—1)/2)?, and

T
> max | eyt

4f1<r(r — 1)>2 a0 15iSr i
0 2 Ay

N

2 |t

—1)\? =
< 4(’(’ )) k=1 Y
2 At

It remains only to show that the sum of the terms in class 4, is small.
Consider a typical term of 4,,

I
|

IIA

1
l { terms of class 4, } dx
0

(7.27)

¢ ¢ a a Y () )
(7.28) arti arti Brdu Br+v nar+i@nar+i@nBr+u@nBr+o

where f—a=2, 151<j=r, 1 Su<v=r. It follows that ar+j=< (Br+u)—r,
and so there are at least » numbers of the given sequence {#:} between
Naryj and #g-4y. Therefore #ng,1o/Mari>g". We cannot claim that for the ¢ in
(7.28), [oddx =0 since Y may be identically 1. That this does not happen too
frequently is the gist of the following basic lemma.

Lemma IX. Let {nk} be any lacunary sequence of positive integers nry1/ne
>qg>1. For this q there exists a value T(q) such that of r>T(q), then for each
v=0, 1, 2, - - - the equation ny, ®nx,® - + - Smp, =7, mp, >ne,> - - - Sy,
has a finite number of solutions when ny,/ne,>q"; in fact, there exists for each
¥ and this q a constant C(y, q) such that the number of solutions is less than

C*(v, 9).
Proof. Write y= D 31, m2i, m;=0, 1, ms, =1. Then by the definition of

@, the equation 7, @74, ® - - - ©nr, =7 may be written in the tabular form:
Bl BZ
Nk || Mo Mi11 Mi2 * * * Migy| Misyt1 * * ° My
2 Moo Moy Mag * * ° Mogy | Mosyt1 * * ° Mag
(7.29) : M3 M3 - : Coc ot Mgy,
7lkp mpo mpl mp2 . . mPS'y ooooo mpa
7 mo ml ccccc 1
Here ny;= D0 o mji2%, j=1,2, -, p, where g is the largest exponent of 2

with nonzero coefficient in any ;. Now the entries in box B; must add up
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column-wise to m; (mod 2), while the entries in B; must add column-wise to
zero (mod 2) if the “sum?” is to equal .

Let j be an integer for which 1+41/27<q. Using s, to denote the largest
power of 2 contained in the integer b, we have for large n;, >, 2" =20> 2%y
and ng,/n, < 20+1-#, where s,,,=8. Since ¢>1, ¢"—® as r—» ,and hence r
may be chosen so that if ny,/7:,>¢" is to hold, then (g+1 —B) must be large.
This means (since the entries in B, must add to zero column-wise (mod 2))
that s, is not large enough, does not extend far enough into B, to help cancel
out the upper dyadic entries of #:,. Hence ni, and n:, must be identical in
the upper dyadic entries, that is, in the last (g+1 —p) entries. If #:, does not
have (g+1 —f) dyadic entries past 2%, then #;, and i, have identical entries
in all places past the s,th power of 2, i.e., all entries in B;. In the extreme
case when n;, and #;, are identical in all the upper (g+1—p) entries then

g, < (20 + mg_IZF—'l + . e + mﬂ+lzﬂ+l + mﬂzﬂ) + (Zﬂ—l + 26—2 + e + 20)

Wiy (2" + mg_120‘1 + oo 4 Mg+126+1 + m,325)
<1 28 { 1
=1+ rvie + py=ry

If (g—B)=j, we see that ni,/ni, <141/27 <q, which, of course, cannot be.
All this implies that by taking 7 large enough, we can insure that in any
solution of ny, @7, @1, @ - - - Smi, =7 with large my, i, and n;, are identi-
cal in all the upper g—B 2= entries if these all lie in B,. But then /7, <g,
and this cannot be. The conclusion is that for such a choice of 7, all solutions

of ny, ®ny,® - - - ©m,=v must have some of the (¢g—fF) upper entries of
my, lying in By if the sequence {n:} is lacunary. But then any such solution
is found among those sets of integers =y >mz,> - - - >my, for which

nx < 2%+, The number of such solutions is clearly less than [2:v+i]? = C(y, ¢)*.
Apply Lemma IX with p=4 and y=0 to the terms in class 4; of (7.25)
and obtain 7 such that

! (terms of Cc4(0, q) ‘
x| = —— max Ia"k,-l — 0.
o \class 4, A}‘f all ng, appearing in a
solution with y=0

(7.30)

Combining (7.26), (7.27), and (7.30), it is clear that the integral [y P}(x)/d%dx
—0 for each § as N— o, and so (7.24) has been established.

Now [I7.o (1 +2x.0) =af® + D a™y,(x) where o is the sum of all coeffi-
cients in the expansion whose subscripts correspond to a solution #y, ®nx,
D - Onue, =7, np, >n,> ¢ - - Smy, for p=1,2,3, - - -, N. In performing
the multiplication above, it is noticed that #x,, #,, and #y, in any sum for y
must necessarily come from three different sums of 7 terms, i.e., three different
zy 4's. Hence 4, and i, have at least 7 of the integers {n:} between them.
Thus #y,/nk,>q", and by Lemma IX
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N
af,N)l =X |>\|pCp('y, ¢) max [a‘IP/AZ.

o 1SiSN
But for N large, (Cl)\l maxisisy Ia.~| )/An <€/2 uniformly for N on a finite
range so that |a®| <e. This holds also for |af” —1| and so

o) ) .

ay, —0,vy=1,2,3,---and oy — 1, uniformly for X = 0(1),

fEH,f,o (1 +zN,k)dx——>| E| uniformly for \ on a finite range, and the theorem
is proved.

8. Fourier-Stieltjes coefficients. In this final section an example will be
given of a continuous function of bounded variation whose Walsh Fourier-
Stieltjes coefficients do not tend to zero. Hille and Tamarkin [6] have cal-
culated the trigonometrical Fourier-Stieltjes coefficients of the classical Leb-
esgue function w(x) (a function based on the Cantor ternary set) which is
continuous and of bounded variation and have shown an infinite number of
the coefficients to be bounded away from zero. The Cantor set may be gen-
eralized by dropping out (at each step in the construction) subintervals the
ratio of whose measures to that of the containing subinterval is an arbitrary
value 0, 0 <0 <1. The resulting Lebesgue functions we(x) constructed on these
generalized sets are each continuous and of bounded variation. The Walsh
Fourier-Stieltjes coefficients of the Lebesgue function constructed with
6=1/2 do not tend to zero. This example establishes the next theorem.

TueoreEM XXVIII. The Walsh Fourier-Stieltjes coefficients of continuous
Sfunction of bounded variation need not tend to zero.

Proof. On the interval [0, 1] drop out the open interval (1/4, 3/4). From
[0, 1/4] drop out the open interval (1/16, 3/16); from [3/4, 1] drop out
(13/16, 15/16), etc. At the nth step drop out from the remaining 2! closed
intervals open subintervals each of length 1/2 of the containing interval and
centrally located within the same. The set of points which remain, when this
is done infinitely often, is the Cantor set of ratio 1/2. It consists of all end-
points of all of the closed intervals used during the construction and all their
limit points. It may be verified that, just as the classical Cantor set consists
of all points x= Y s, ai/3%, a;=0 or 2, so the Cantor set of ratio 1/2 consists
precisely of all points x = D i, a;/4%, a;=0 or 3.

Let w(x)=wy2(x) be defined by specifying that

w(x) = Z — where «x = —, a,=0o0r3, and b, =—,
=1 v §=1 4‘ 3
8.1 ifzeC,

w(x) = common value of w(x) at the end points of the open interval of the

complement of C in which x lies, if x & C.
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w(x) is continuous, monotone, nondecreasing, and constant on each of the
subintervals rejected at some stage in the construction of C.

The Walsh Fourier-Stieltjes coefficients of w(x) are defined by o
= [ir(x)dw(x). This Riemann-Stieltjes integral exists and hence for any
partitions P¢={O=xo<x,,1<xt_2< S <xt,mt=1}, of norms tending to
zero and any £;,:€ [%4,i1, %4.5),

me

o = lim Z V(e o) [w(xt.i) - w(xt,i-—l)]'
L S |
After the fth step in the construction of C there remain 2¢ closed intervals
AP, j=1,2, -, 2% while 2+ open intervals have just been removed.

Formula (8.1) implies that on any of the closed intervals w(x) increases by
1/2¢ We therefore have

t
. 2
(8.2) ap=lim X yall) tea,”

t—w gy 2‘

Consider the integers {(22"+22"+‘)}, n=1, 2,3, . Any Walsh func-
tion of the form
V(%) = Yanp2ei(x) = ¢on(®)P2nta()
has a symmetric graph with respect to the abscissa 1/2. The corresponding
coefficient (8.2) takes the form

9t—1
(8.3) ap = 2lim > Vit

t—0 g1 2 ¢

where £, is any number in 4®. Choose £, as the left-hand end-point of 4.
The left end-points of the interval 4 have dyadic expansions of the form
oy

o
ot TOHO+ e a= 01

b= ob bt
2 e

For the special sequence of integers £=22"422"*1 and the special points &
we have (&) =don(Ee)Ponr1(£s) = +1 since the (2n+41)st and (2z+2)nd places
in the dyadic expansion of £, are identical. Thus for this sequence of values
of & (8.3) implies aix =2 limy., 2oy 1/2¢=1.

REMARK. It can easily be shown that the Walsh Fourier-Stieltjes coeffi-
cients of the generalized Lebesgue function ws(x) are given by

ao(@) = 1,

= 0 if # has an odd number of nonzero terms in its dyadic expansion,

ax(0) e i 2i +1 2i — 1 .
= [1 - E wp (&ﬁ) {tluc (W) - tl/k( Jts >}:| otherwise.
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