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Abstract 

The q-invariant of Riemannian 3-manifolds is defined by means of the spectrum of a certain 
elliptic operator. In this paper, we give a geometric interpretation of the deviation from the mul- 
tiplicativity of the q-invariant for finite coverings. We then apply it to mapping tori with finite 
monodromies, and obtain a simple formula of the q-invariant for it. 
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0. Introduction 

The definition of the v-invariant was originally given by Atiyah, Patodi and Singer 

[3] in terms of the spectrum of a self-adjoint elliptic operator. The v-invariant in which 

we are interested here is that of the signature operator on 3-dimensional Riemannian 

manifolds. The main result of [3] shows that this invariant is equal to the integral of 

the first Pontrjagin form minus the signature of 4-manifold which allows us to compute 

it without using analytic tools. However it should be emphasized that this is not a 

topological invariant, but a spectral invariant. 

In general, the q-invariant of the total space of a finite covering is not the multiple of 

that of the base space by the factor of the covering degree, and in fact the deviation of the 

multiplicativity is calculated by using the G-signature theorem (see [1,5]). In our point 

of view, we will regard this deviation as the difference between (Atiyah’s) canonical 2- 

framings [2] of the total space and the base space. If we consider the case where the total 

space admits an orientation reversing isometry, then by definition its q-invariant vanishes, 

Therefore it follows that calculating the v-invariant of the base space and the difference 
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between the 2-framings are equivalent each other. In particular, for a mapping torus iLfV 

corresponding to an element cp of the mapping class group M, of an oriented closed 

surface Cg of genus 9, we can describe the difference by using the 2-cocycle c(cp, $) 

which corresponds to a certain central extension of M, (see Section 3 for details). The 

main result of this paper is the following. 

Main Theorem. Let (p be an orientation preserving diffeomorphism of C, offinite order 

m and ‘p E M, be its mapping class. Then the q-invariant of the mapping torus M;_ 

(1 < n 6 m) is given by 

?f(Mp) = f 
1 

Here we endow Mp with the metric which is induced from the product metric of any 

metric for which (p acts as an isomerry on C, and the standard metric on S’ via the 

projection C, x: 5” + M;_. 

Now we describe the contents of this paper. In Section 1 we recall the definitions of 

the q-invariant and the canonical 2-framing according to [2] and [3]. In Section 2 we 

give a formula of the q-invariant for finite coverings of Riemannian 3-manifolds. By 

this formula, we see the equivalence mentioned above. In Section 3 we compute the 

difference between the 2-framings for mapping tori. 

The author would like to express his sincere gratitude to Professor Shigeyuki Morita 

for his constant encouragement and many useful suggestions. 

1. Definitions of v-invariant and canonical 2-framing 

As shown in [3], the q-invariant of 3-manifolds measures the extent to which the 

Hirzebruch signature formula fails for a non-closed 4-dimensional Riemannian manifold 

whose metric is a product near its boundary. 

Theorem 1.1 [3]. Let W be a 4-dimensional compact oriented Riemannian manifold with 

boundary M and assume that, near M, it is isometric to a product. Then 

q(M) = f _/PI - Sign K 
w 

where Sign W is the signature of the nondegenerate quadratic form defined by the cup 

product on the image of H2(W, M) in H2(W) and pi is the first Pontrjagin form of the 

Riemannian metric. 

In the following, we will consider the above description as a definition of q(M). For 

example, in the case of M = S’, the v-invariant of S” with respect to the standard metric 

vanishes, because 5” has an orientation reversing isometry. 



Example 1.2 [4]. The v-invariant of the 3-dimensional lens space L(p, q) is given by 

7&E&q)) = -;~cot($r)cot(~7T) = -4S(%P). 

Here (p, q) is a coprime pair of integers and s(q, p) is the Dedekind sum (see [S]). 

Next we review the definition of the 2-framings briefly. See Atiyah [2] for details. Let 

M be a closed oriented 3-manifold. We call a trivialization of twice the tangent bundle 

of M, denoted by 2TM = TM @ TM, as a Spin(6)-bundle a 2-framing of M. Atiyah 

has shown that there is a canonical choice for these 2-framings. It is characterized by 

the following property: If W is an oriented 4-manifold such that aW = M, then the 

signature of W is 

Sign W = &1(2TW, TV), 

where the relative Pontrjagin number is computed by using the 2-framing tM on the 

boundary. We call tM the canonical 2-framing of M. 

Remark. The Hirzebruch formula continues to hold when M = aW is not connected, 

provided each component of M is given its canonical 2-framing. 

2. A formula for finite coverings 

In this section, we study the q-invariant for finite coverings. Let W and n/l be as in 

Theorem 1.1 above. Namely, suppose that W is isometric to a product M x [0, I] near 

M, where M = M x 0. We set Wo = W - M x [0, 1). Moreover let F(W) be the 

SO(4) oriented frame bundle of W. 

We calculate the integral of the first Pontrjagin form in Theorem 1.1 by using a 

connection on 2TW which is defined as follows: Let F(M) be the SO(3) oriented 

frame bundle of M and wg be the Levi-Civita connection on F(M). Let w,,, be the 

(flat) connection on F(M) defined by an orthonormal framing ~0. Choose a smooth 

monotonic function p on [0, I] satisfying 0 < I_L < 1, p([O, f]) = 0 and p([$, 11) = 1. 

For t E [0, 11, let wt be the connection on F(M) defined by 

Wt = (1 - &))Wg + PL(Q-b”, 

where + is taken in the convex linear space of all the smooth connections on F(M). 

Then wc = wg and WI = w,,,. Let w be the connection on F(M x [0, 11) such that w = wt 

on F(M x t) and w is trivial in the direction of t. Extend w to a smooth connection on 

F(W) in an arbitrary way on F(W ) 0 and we get a smooth connection on F(W). We 

denote it by w again. 

For twice the tangent bundle of W, we define the desired connection on 2TW by 

2w = w @ w. Then direct calculation shows that 

cy*cs + $II@TW, a), 
W M 
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where pt (2TW, a) is the relative Pontrjagin number with respect to the 2-framing CY 

which is induced by (~0 and CS is the Chern-Simons form [6] of the connection on 

2TW induced by the metric. Here we think of the 2-framing CY as a section. 

Now Sign W is an integer by definition and ipt (2TW, cy) is also an integer, so that 

we can evalute the difference from the canonical 2-framing tM by an integer value. 

Definition 2.1. For a 2-framing (Y on 3-manifold M, we define the difference degree 

4~; tit4) by 

d(a; tn~) = ip1(2TW, o) - 3 Sign W E Z. 

Remark. d(~; tb~) does not depend on the choice of W. 

By using the difference degree, WC obtain 

r/(M) = ; 
J’ 

a*cs + ;qo; t,,1). 

A‘1 

In particular if Q = t~,l, 

v(M) = ; 
J’ 

tfi1*cs. 

A4 

We now consider the next situation. Let ?r : G + M be an n-fold Riemannian covering 

where Z is the lift of the projection r. For M = M and LY = r*tDf (the lift of TV), we 

have 

7i(@=iJ( 1 
T*t*J)*CS + -d(T*t&&’ 

3 
M 

where E is the Chern-Simons form on 2TW (3% = %). Then we can compute the 

first term as follows: 

-I6 J’ (7r*tbf)*E = ; / @i-*t&*(?*CS) = A /7r*(tM*CS) 

h-r ,M fi 
1 

= n, - 
6 J tnr*cs = n7/(Acc) nr 
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Therefore we get the next simple formulation. 

Proposition 2.2. Let n : G -+ M be an n-fold Riemannian covering. Then the deviation 

from the multiplicativity qf the rl-invariant is described by the diflerence between the 

canonical 2;framings: 

q(G) = nv(M) + ;d(z*t~;t~). 

In particular, if G admits an orientation reversing isometry, the above proposition 

implies that calculating the q-invariant of M and the difference degree are equivalent. 

Corollary 2.3. For the p-fold covering 7r : S’ + L(p, q) with respect to the standard 

metric, d(7r*t~(~,~);tsl) = 0 if and only if q* = -1 (mod p). In other words, the 

following two conditions are equivalent: 

(i) The lift of tL(P,Q), 7r*tL(p,n) coincides exactly with ts 7 on S3. That is, the canonical 

2-framing of 5” is invariant under a cyclic group action of order p. 

(ii) L(p, q) has an orientation reversing self-isometry. 

Proof. It is well known that L(p, q) has an orientation reversing isometry if and only 

if r12 3 - 1 (mod p). Hence ‘only if’ part is trivial. Conversely, suppose cl = 0. Then 

by using the reciprocity law of the Dedekind sum (see [S]), we have 0 = 12pqs(p, q) = 

p2 + q2 + I - 3pq. It follows that q’ E - 1 (mod p) and this completes the proof. 0 

3. Difference degree of mapping tori 

In this section, we compute the difference degree of mapping tori. As a result, we can 

obtain the main theorem of this paper. See Atiyah [ 1,2] and Meyer [7]. 

Let C, be an oriented closed surface of genus g (g 3 1) and M, be its mapping 

class group. Namely, it is the group of all isotopy classes of orientation preserving 

diffeomorphisms of C,. For cp E M,, let MP be a mapping torus with monodromy cp. 

More precise, MP = C, x I/ - where we identify (x,0) with (P(X), 1) (X E C,). 

Now we recall the definition of a central extension 

As a set, G9 is all pairs of (cp, a), where cp E M, and cy is a 2-framing on MP. Let 

W~,,+~ (cp,ll, E M,) be a C,-bundle over 2-sphere with three holes (or pair of pants), 

whose boundaries are MP U M+ U (-M,+). Then the group law of &?g is defined by 

(9, a)($, p) = (cp$,, y), where y is the 2-framing on MP+ such that the relative pl of 

WC,,+,) with respect to the trivialization Q + p - y on aIV(,,,, vanishes. 

Let us consider the cohomology class of this extension. We define the canonical section 

s : M, + Gg by s(cp) = (cp, tnr,) (‘p E M,). This induces the associated 2-cocycle of 

the above extension 



This is the integer difference between the two 2-framings s(cp)s($) and s(p$) on MPG 

and we call it the canonical 2-cocycle. 

According to the definition of multiplication in the group M^,, the relative p, of the 4- 

manifold W~,,J) with respect to the trivialization s(v) +s($) - s(cp)s(G) on its boundary 

vanishes. Thus we have 

c(cp, ti) = &+W{+?# -I 

= -$I (27V&+ x f), -s(cp)s(G) + s(cp$)) 

= ;P1(2T&9,$), S(V) + s($) - SW)) > 

where we trivialize the boundary of Air,, x I by -s(cp)s($) on -Mp$ x 0 and s(cp$) 

on MP+ X I. 

Next we examine a connection between the canonical 2-cocycle and the difference 

degree. Now let us recall the definition of the difference degree. Let W be a 4-manifold - - 
such that aW’ = M and 71: M 3 M be a finite covering. Then 

d(7r*tn~; tn;) = ip~ (2TW, ?r*th,r) - 3 Sign W 

= $I, (2TW, 7r*t*l) - $7, (2TW, tk) 

= -;p, (2T(M x I), -7r*tfi1 + t2). 

Applying this to a mapping torus M,, we can compute its difference degree. From 

now on we simply denote the canonical 2-framing of a mapping torus My by t,. 

Proposition 3.1. Let fn : Mp + Mr be un n-fold covering. Then the difference degree 

of the 2-framing fn*tp is given hi 

n-l 

d(.f,“q& tip”) = c c(p, (0”). 
k=l 

Remark. This formula holds for any mapping classes (not necessarily finite orders). 

Proof. First, we consider a 2-fold covering f2 : AJp: 4 Mp. For the 4-manifold W(,,,), 

we trivialize its boundary aW(,,,) = bf+,UhfpU(-n/l,~) by t,+t,- f2*tip. Moreover 

for MV2 x I, we trivialize its boundary by -f2*tp on -Mpz x 0 and t,z on Mpz x I, 

where we regard -Mp2 x 0 as the original boundary component of WC,,,). Then we 

have 

d(f2*tP; tpP2) = -$I, (2T(M,2 x I), -f2*tv + t+$) 

= -$a pq,,,), Lp + t, - f2*b) 

+ $1 py,,,), ‘9 t +t,-t&. 

Since the 2-framing f2*tp is invariant under a cyclic group action of order 2, we see 

that f2*tp coincides with twice of t,. Accordingly the first term of the above formula 

vanishes. On the other hand, it is clear that the second term is equal to the canonical 2- 
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cocycle c(cp, cp), since we trivialize the boundary Mp U Mv U (-M,z) by their canonical 

2-framings respectively. Hence for a 2-fold covering of the mapping torus, it follows that 

4&fi*t,; c$) = c(cp, P). 

Next, we consider a 3-fold covering f3 : Mv3 + Mv. Then it is easy to see that the 

difference degree d(f3*trp; tip3) coincides with 

- &1(259&+), t, + t,z - f?i*q + ;p, py,,,y 3 t, + t(P2 - kp~). 

Now let ~~WfvP) be a C,-bundle over a 2-sphere with four holes, whose boundaries 

are My U Mp U Mp U (-Mpl). If we glue W(,,+,) to lV~~,~p2) along the boundary 

component Mpz, the trivialization on Mv2 vanishes. Consequently the first term of the 

above formula is equal to 

-- :P1(2T&,,,,)> t, + t, + r, - f3*t$J + ;Pl(2TkI&,,), t, + t, - Q) > 

by the additivity of the relative pt. From the same reason for the case of n = 2, the 

relative pr of W(V,,,,) is zero. The other terms can be described by the canonical 2- 

cocycles, so that we get 

d(f3’$; Q) = 4% ‘p) + 4% (P2). 

For the general case, we can repeat the above argument. The assertion follows and 

this completes the proof of Proposition 3.1. 0 

Combining Propositions 2.2 and 3.1, and applying it to an orientation preserving dif- 

feomorphism of C, of finite order, we can obtaion the main theorem. 

Example 3.2. Hyperelliptic involution ‘p : C, + 22, (namely ‘p2 = id), 

Consider the 2-fold covering M,z = Z, x S’ + My. Then cp has 2g + 2 isolated 

fixed points on C,, and the rotation angle at each point is 7r. Thus the contribution from 

the fixed points set vanishes. Hence q(M,) = 0 by the G-signature theorem (see [l]). 

On the other hand, we see the above fact immediately by our main theorem. More gen- 

erally, it follows that the q-invariant of a mapping torus corresponding to any involution 

vanishes. (In other words, the canonical 2-framing of the product 3-manifold C, x St is 

invariant under a i&-action determined by any involution of C,.) 

Example 3.3. The case of torus bundles (that is g = 1). 

It is known that the canonical 2-cocycle c(cp, $) is equal to minus thrice of Meyer’s 

signature cocycle ~(cp, $) (see [1,2] and [7], in particular note that r((p, +) represents 

the minus signature of Wtip,+)). Accordingly we have 

n-1 

d(fn*tA; t.sp) = -3 ~T(A, A’“) (A E SL(2, Z)). 
k=l 



Using this, we can calculate the n-invariant for the torus bundles determined by the 

elements of SL(2, Z) of finite orders. Such elements are elliptic (namely, Jtr A] < 2). 

(i) trA = 1. In this case, A has order 6. For example, we can take 

A= 

v(MA) = -q(MA’) = -& dMA2) = -dMA,) = -5, 

q(hfA?) = v(bfA6) = 0. 

(ii) trA = 0. In this case, A has order 4. For example, 

A= 
0 -1 

1 1 0 . 

q(h’f,J) = -v(bfA’) = -1, v(bf,Q) = q(MA4) = 0. 

(iii) trA = - 1. In this case, A has order 3. For example, 

A= 

v(MA) = -v(MAz) = - 

These values coincide with the results obtained by Atiyah in [l]. 

Finally we examine the case of a higher genus. For simplicity we calculate only for C2. 

Example 3.4. The case of Cz-bundles (orders 5 and 10). 

Let cp (respectively $) be a diffeomorphism on C2, defined in [9, p. 2581, of order 

5 (respectively 10). We choose a symplectic basis of H = Hl(C2, Z) as usual and 

fix it. Representing cp and $ as the elements of the Siegel modular group Sp(4, Z) by 

investigating the actions on H, we have the following matrices (we use the same letters): 

cp= 

-1 1 2 1 

0 0 1 1 

-2 2 2 1 

1 -2 -2 -2 

> $I=-p. 

Therefore we can compute Meyer’s cocycle and obtain the q-invariant of mapping tori 

corresponding to cp and $1 
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Here [CE] is the Gaussian symbol (that is the largest integer less than or equal to 2). 

In principle, similar computations can be made for cases of higher genera, although 

they will be more complicated. 
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