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A NOTE ON VON NEUMANN RHO-INVARIANT OF
SURFACE BUNDLES OVER THE CIRCLE
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Abstract. In this short note, we give a formula for the von Neumann rho-invariant of
surface bundles over the circle S!. As a corollary, we describe a relation among the von Neu-
mann rho-invariant, the first Morita-Mumford class and the Rochlin invariant in a framework
of the bounded cohomology.

1. Introduction. Let M be an oriented closed Riemannian 3-manifold. Then we can
define the n-invariant n(M) of the signature operator. If we are given a surjective homomor-
phism from 7 M to a discrete group I", we have a I'-covering M — M and we can lift
the metric and the signature operator to M. In this situation, the von Neumann n-invariant
n® (M) is defined for M. Cheeger and Gromov showed in [3] that the difference n® — p
is independent of a Riemannian metric. This topological invariant 7® — 7 is called the von
Neumann rho-invariant and is denoted by ,0(2)(1\71 ).

Recently, an approximation theorem of the n-invariants is shown by Vaillant [11] and
Liick-Schick [7]. To be more precise, for a sequence of normal subgroups I"' > I >[5 > - - -
such that [I" : I}] < oo and ﬂk Iy = {e}, and I" /T'}-coverings MK = M/Fk — M, it holds
that

D) = lim ey '
k—oo [I": T}]
Applying this formula to surface bundles over the circle S', we can describe the von Neumann
rho-invariant by virtue of Meyer’s signature cocycle [8] (see Proposition 2.1).

Let Xy be an oriented closed surface of genus g (¢ > 2) and M, its mapping class
group. Namely, M, is the group of all isotopy classes of orientation preserving diffeomor-
phisms of X'y. Then the first Morita-Mumford class e € Hz(./\/lg, Z) (see [10]) is defined to
be the Gysin image (integration along the fiber) of the square of the Euler class of the central
extension

0—>Z—> Mg1—> Mg—1.

Here My, is the mapping class group of Xy relative to an embedded disc D C X, and
M.« denotes the one relative to a base point * € D. It is also known that ¢; is a bounded
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cohomology class. For a technical reason (see Section 3), we consider e; on Mg , rather than
on M.

In general, the pull back of e via a holonomy homomorphism f : 715! — M g+ o0fa
X 4-bundle over § Lis automatically vanishing, because H 2(Sl, Z) is trivial. However, Kitano
showed in [6] that e /48 makes sense as a bounded cohomology class in Hbz(Sl,Z) and
furthermore it is essentially given by the Rochlin invariant p, if the image of f is contained
in the Torelli subgroup Z, » = Ker{My .« — Sp(2g,Z)}. Combining our formula for p?
with a result of Kitano, we have the following result on the level 2 subgroup My .(2) =
Ker{M g« — Sp(29,Z/2)} D 14 .

THEOREM 1.1. Let f : Z — Mg +(2) be a holonomy homomorphism. Then the first
Morita-Mumford class f*e; /48 € Hbz(Z, Z) is represented by juf —p® /16 € HY(Z, R/ Z).

REMARK 1.2. Itis known that H>(Z,Z) = H}Z,R/Z) = H'(Z,R/Z) = R/Z. See
[4], [6] for the proof.

As was mentioned in [6], e1 /48 and u depend on a fixed spin structure on the fiber X'g. In
principle, our theorem implies that the difference between the first Morita-Mumford class and
the Rochlin invariant does not depend on a spin structure, and it is given by the von Neumann
rho-invariant. In particular, we see from Corollary 2.4 that vanishing of the von Neumann
rho-invariant gives a description of the first Morita-Mumford class via the Rochlin invariant
on the Torelli group Zg ..

The final version of this note was written while the author was visiting the Ludwig-
Maximilians-Universitdt in Miinchen. He would like to express his sincere thanks for their
hospitality.

2. A formula of p®. In this section, we give a formula for the von Neumann rho-
invariant p® of surface bundles over S!. As for the precise definition, see Cheeger-Gromov
[3]. We remark that it does not depend on a Riemannian metric on the manifold.

Let M, be the mapping torus X4 x R/(x,t) ~ (¢(x),t + 1) corresponding to a ho-
lonomy ¢ € Mg, LetZ — M(p — M, be the Z-covering associated to the surjective
homomorphism p : 1M, — mS' =Z.

PROPOSITION 2.1. The von Neumann rho-invariant of A;I‘p is given by

k—1
_ 1 .
@ —  lm & - i
P (My) = klggokélmgn(w,w),
1=

where sign is Meyer’s signature 2-cocycle [8] of the mapping class group M g .

PROOF. Set M} = M,/k'Z. It is easy to see that Z/k! — My — M, is the Z/k!-
covering associated to a homomorphism py : 71 M, — Z/k!. We then apply an approxima-
tion theorem of the n-invariants, due to Vaillant [11] and Liick-Schick [7], to the sequence
Zv>2Z>3Z>---. It follows that
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n(M5)

k!

PO (My) =02 (My) = n(My) = lim = 1(My)

1
=kgn;o{ﬁn<M¢k!) - n(Mw)} :

Since M n — M, is a k!-fold cyclic covering, we can directly apply our previous results to
this covering (see [9] Propositions 2.2 and 3.1). Hence we obtain

k!—1
_ 1 .
@ — i i
p7 (M) = lim —r Elc(cﬂ,fﬂ),
1=

where ¢ denotes Atiyah’s 2-cocycle [1] of the mapping class group defined by the canonical
2-framing of 3-manifolds. Furthermore it is known that the cocycle ¢ coincides with —3 x
Meyer’s signature cocycle sign (see [10] for instance). Therefore we have

k!—1 k—1
_ . 1 .
2) T o . i 1 L . i
P (My) = — lim -2 _El sign(g, ¢) = — lim E 1 sign(g, ¢') . O
1= 1=

REMARK 2.2. By definition, Meyer’s cocycle is a bounded 2-cocycle, so that the
above limit exists. Moreover this defines a class function on M, .. We also remark that
the above formula holds for torus bundles (thatis, g = 1).

EXAMPLE 2.3. Let us consider the genus one case. As is well-known, in this case
M.« = SL(2,Z) holds. Anelement A € SL(2, Z) is classified by its trace into the following
three cases:

(1) Elliptic case (namely, |tr A] < 2). Let A, € SL(2,Z) have the order n (n =
3,4,6). We can take

-1 -1 0 -1 0 -1
A3=<1 0), A4=<1 0) and A6=<1 1).

An easy calculation shows that sign(A,,A,) = --- = sign(An,AZ’z) = —2 and
sign(A,, AZ’I) = sign(A,, A}}) = 0 (see [8]). Hence we have

2/3, n=3,
pPP(My) =11, n=4,
4/3, n=6.

It should be noted that p® (1\7I¢,) = 0 for any involution ¢ € M, , (see [9]).
(i) Parabolic case (namely, |tr A| = 2). We can take

Ab=<(1) 117) beZ).

Then we obtain p® (M,,) = —sgn(b), where sgn(b) = b/|b|if b # 0 and 0 if b = 0.
(iii) Hyperbolic case (namely, |tr A| > 2). Since Meyer’s function of genus one, that
is a class function ¢ : SL(2,Z) — (1/3)Z such that §¢p = sign, satisfies #(AX) = k¢ (A) for
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a hyperbolic element A (see [8]), we have
& 1
PP (M) = = lim - ;slgnm, ATy = — lim {¢<A> L9(A )} =0.
1=

COROLLARY 2.4. If is an element of the Torelli group L 4, then p(z)(M‘p) =0.

PROOF. Meyer’s 2-cocycle sign is originally defined on the Siegel modular group
Sp(2g,Z), and Zg s is the kernel of the homomorphism Mg, — Sp(2g,Z), so that
sign(¢, ¢') vanishes for any i. O

3. Morita-Mumford class and Rochlin invariant. In this section, we summarize a
work of Kitano [6], which gives a description of the Rochlin invariant as a secondary char-
acteristic class within a framework of the bounded cohomology H;'. As for the definition of
Hp, see Gromov [5].

Let (M, ) be an oriented spin 3-manifold with a spin structure «. It is a classical result
that there exists a compact oriented spin 4-manifold (W, B) such that W = M and 8|y = «.
The Rochlin invariant n(M, @) € Q/Z is defined by

Sign W
WM, o) = 22

mod Z,

where Sign W denotes the signature of a 4-manifold W. By Rochlin’s theorem, (M, o) does
not depend on the choice of W.

Let us fix a spin structure o of X'y (g > 2). For each ¢ € M 4(2), there exists a spin
structure & on M, such that the restriction on each fiber is «. If we require that the restriction
of & to the S'-orbit of x € X ¢ is the bounding spin structure (namely, not the Lie group spin
structure), then & is uniquely determined. This is the reason why we consider M 4 . (2) rather
than M.

Now consider the set of pairs {(¢, W)} , where ¢ € M +(2) and W is an oriented spin
4-manifold. Of course, W = M, and the induced spin structure on M, is &. Two pairs
(¢, W) and (¢, W’) are said to be equivalent if Sign W = Sign W’. The set of equivalence
classes, which we denote by Mgs*(Z), has a group structure defined by the fiber connected
sum (see [6] for details), and there is a natural surjective homomorphism

Mg’*(Z) — My «(2)
given by (¢, W) > ¢. Moreover we introduce a map 7 : Mg ,(2) — Q by

1 1

PRrROPOSITION 3.1 (Kitano [6]). Under the setting above, the following hold.
(1) The Euler class ey of the extension Mgﬁ*(Z) — My +(2) is a bounded cohomol-
ogy class and is given by e| /48 on the level 2 subgroup Mg (2).
(i) Let f : Z — My «(2) be a homomorphism. The pull back f*e, € Hbz(Z, Z) is
described by Too f € HY(Z,R/Z), where To : Mg .+(2) = R/Z is the reduction mod Z of
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a map

. (o, W)F)
Too(g, W) =kgn;o‘”f €R.

From the additivity of the signature, we obtain

Too (9, W) = T(g, W)+— Jim —ZSIgn(w ¢').

Taking the reduction mod Z and using Proposition 2.1, we have
- - 1 -
Too (@) = My, @) — Epm(M(p) €R/Z

for ¢ € Mg 4(2). Therefore Theorem 1.1 follows from Proposition 3.1 and the proof is
completed.
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