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A NOTE ON VON NEUMANN RHO-INVARIANT OF
SURFACE BUNDLES OVER THE CIRCLE
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Abstract. In this short note, we give a formula for the von Neumann rho-invariant of
surface bundles over the circle S1. As a corollary, we describe a relation among the von Neu-
mann rho-invariant, the first Morita-Mumford class and the Rochlin invariant in a framework
of the bounded cohomology.

1. Introduction. Let M be an oriented closed Riemannian 3-manifold. Then we can
define the η-invariant η(M) of the signature operator. If we are given a surjective homomor-
phism from π1M to a discrete group Γ , we have a Γ -covering M̄ → M and we can lift
the metric and the signature operator to M̄. In this situation, the von Neumann η-invariant
η(2)(M̄) is defined for M̄ . Cheeger and Gromov showed in [3] that the difference η(2) − η

is independent of a Riemannian metric. This topological invariant η(2) − η is called the von
Neumann rho-invariant and is denoted by ρ(2)(M̄).

Recently, an approximation theorem of the η-invariants is shown by Vaillant [11] and
Lück-Schick [7]. To be more precise, for a sequence of normal subgroups Γ � Γ1 � Γ2 � · · ·
such that [Γ : Γk] < ∞ and

⋂
k Γk = {e}, and Γ/Γk-coverings Mk = M̄/Γk → M , it holds

that

η(2)(M̄) = lim
k→∞

η(Mk)

[Γ : Γk] .

Applying this formula to surface bundles over the circle S1, we can describe the von Neumann
rho-invariant by virtue of Meyer’s signature cocycle [8] (see Proposition 2.1).

Let Σg be an oriented closed surface of genus g (g ≥ 2) and Mg its mapping class
group. Namely, Mg is the group of all isotopy classes of orientation preserving diffeomor-
phisms of Σg . Then the first Morita-Mumford class e1 ∈ H 2(Mg , Z) (see [10]) is defined to
be the Gysin image (integration along the fiber) of the square of the Euler class of the central
extension

0 → Z → Mg,1 → Mg,∗ → 1 .

Here Mg,1 is the mapping class group of Σg relative to an embedded disc D ⊂ Σg and
Mg,∗ denotes the one relative to a base point ∗ ∈ D. It is also known that e1 is a bounded
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cohomology class. For a technical reason (see Section 3), we consider e1 on Mg,∗ rather than
on Mg .

In general, the pull back of e1 via a holonomy homomorphism f : π1S
1 → Mg,∗ of a

Σg -bundle over S1 is automatically vanishing, because H 2(S1, Z) is trivial. However, Kitano
showed in [6] that e1/48 makes sense as a bounded cohomology class in H 2

b (S1, Z) and
furthermore it is essentially given by the Rochlin invariant µ, if the image of f is contained
in the Torelli subgroup Ig,∗ = Ker{Mg,∗ → Sp(2g, Z)}. Combining our formula for ρ(2)

with a result of Kitano, we have the following result on the level 2 subgroup Mg,∗(2) =
Ker{Mg,∗ → Sp(2g, Z/2)} ⊃ Ig,∗.

THEOREM 1.1. Let f : Z → Mg,∗(2) be a holonomy homomorphism. Then the first
Morita-Mumford class f ∗e1/48 ∈ H 2

b (Z, Z) is represented by µf −ρ(2)f/16 ∈ H 1(Z, R/Z).

REMARK 1.2. It is known that H 2
b (Z, Z) ∼= H 1

b (Z, R/Z) ∼= H 1(Z, R/Z) ∼= R/Z. See
[4], [6] for the proof.

As was mentioned in [6], e1/48 and µ depend on a fixed spin structure on the fiber Σg . In
principle, our theorem implies that the difference between the first Morita-Mumford class and
the Rochlin invariant does not depend on a spin structure, and it is given by the von Neumann
rho-invariant. In particular, we see from Corollary 2.4 that vanishing of the von Neumann
rho-invariant gives a description of the first Morita-Mumford class via the Rochlin invariant
on the Torelli group Ig,∗.

The final version of this note was written while the author was visiting the Ludwig-
Maximilians-Universität in München. He would like to express his sincere thanks for their
hospitality.

2. A formula of ρ(2). In this section, we give a formula for the von Neumann rho-
invariant ρ(2) of surface bundles over S1. As for the precise definition, see Cheeger-Gromov
[3]. We remark that it does not depend on a Riemannian metric on the manifold.

Let Mϕ be the mapping torus Σg × R/(x, t) ∼ (ϕ(x), t + 1) corresponding to a ho-
lonomy ϕ ∈ Mg,∗. Let Z → M̄ϕ → Mϕ be the Z-covering associated to the surjective
homomorphism p : π1Mϕ → π1S

1 ∼= Z.

PROPOSITION 2.1. The von Neumann rho-invariant of M̄ϕ is given by

ρ(2)(M̄ϕ) = − lim
k→∞

1

k

k−1∑
i=1

sign(ϕ, ϕi) ,

where sign is Meyer’s signature 2-cocycle [8] of the mapping class group Mg,∗.

PROOF. Set Mk
ϕ = M̄ϕ/k!Z. It is easy to see that Z/k! → Mk

ϕ → Mϕ is the Z/k!-
covering associated to a homomorphism pk : π1Mϕ → Z/k!. We then apply an approxima-
tion theorem of the η-invariants, due to Vaillant [11] and Lück-Schick [7], to the sequence
Z � 2!Z � 3!Z � · · · . It follows that
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ρ(2)(M̄ϕ) = η(2)(M̄ϕ) − η(Mϕ) = lim
k→∞

η(Mk
ϕ)

k! − η(Mϕ)

= lim
k→∞

{
1

k!η(Mϕk!) − η(Mϕ)

}
.

Since Mϕk! → Mϕ is a k!-fold cyclic covering, we can directly apply our previous results to
this covering (see [9] Propositions 2.2 and 3.1). Hence we obtain

ρ(2)(M̄ϕ) = lim
k→∞

1

3k!
k!−1∑
i=1

c(ϕ, ϕi) ,

where c denotes Atiyah’s 2-cocycle [1] of the mapping class group defined by the canonical
2-framing of 3-manifolds. Furthermore it is known that the cocycle c coincides with −3 ×
Meyer’s signature cocycle sign (see [10] for instance). Therefore we have

ρ(2)(M̄ϕ) = − lim
k→∞

1

k!
k!−1∑
i=1

sign(ϕ, ϕi) = − lim
k→∞

1

k

k−1∑
i=1

sign(ϕ, ϕi) . �

REMARK 2.2. By definition, Meyer’s cocycle is a bounded 2-cocycle, so that the
above limit exists. Moreover this defines a class function on Mg,∗. We also remark that
the above formula holds for torus bundles (that is, g = 1).

EXAMPLE 2.3. Let us consider the genus one case. As is well-known, in this case
M1,∗ ∼= SL(2, Z) holds. An element A ∈ SL(2, Z) is classified by its trace into the following
three cases:

(i) Elliptic case (namely, |tr A| < 2). Let An ∈ SL(2, Z) have the order n (n =
3, 4, 6). We can take

A3 =
(−1 −1

1 0

)
, A4 =

(
0 −1
1 0

)
and A6 =

(
0 −1
1 1

)
.

An easy calculation shows that sign(An,An) = · · · = sign(An,A
n−2
n ) = −2 and

sign(An,A
n−1
n ) = sign(An,A

n
n) = 0 (see [8]). Hence we have

ρ(2)(M̄An) =




2/3 , n = 3 ,

1 , n = 4 ,

4/3 , n = 6 .

It should be noted that ρ(2)(M̄ϕ) = 0 for any involution ϕ ∈ Mg,∗ (see [9]).
(ii) Parabolic case (namely, |tr A| = 2). We can take

Ab =
(

1 b

0 1

)
(b ∈ Z) .

Then we obtain ρ(2)(M̄Ab) = −sgn(b), where sgn(b) = b/|b| if b 
= 0 and 0 if b = 0.
(iii) Hyperbolic case (namely, |tr A| > 2). Since Meyer’s function of genus one, that

is a class function φ : SL(2, Z) → (1/3)Z such that δφ = sign, satisfies φ(Ak) = kφ(A) for
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a hyperbolic element A (see [8]), we have

ρ(2)(M̄A) = − lim
k→∞

1

k

k−1∑
i=1

sign(A,Ai) = − lim
k→∞

{
φ(A) − 1

k
φ(Ak)

}
= 0 .

COROLLARY 2.4. If ϕ is an element of the Torelli group Ig,∗, then ρ(2)(M̄ϕ) = 0.

PROOF. Meyer’s 2-cocycle sign is originally defined on the Siegel modular group
Sp(2g, Z), and Ig,∗ is the kernel of the homomorphism Mg,∗ → Sp(2g, Z), so that
sign(ϕ, ϕi) vanishes for any i. �

3. Morita-Mumford class and Rochlin invariant. In this section, we summarize a
work of Kitano [6], which gives a description of the Rochlin invariant as a secondary char-
acteristic class within a framework of the bounded cohomology H ∗

b . As for the definition of
H ∗

b , see Gromov [5].
Let (M, α) be an oriented spin 3-manifold with a spin structure α. It is a classical result

that there exists a compact oriented spin 4-manifold (W, β) such that ∂W = M and β|M = α.
The Rochlin invariant µ(M,α) ∈ Q/Z is defined by

µ(M,α) = Sign W

16
mod Z ,

where Sign W denotes the signature of a 4-manifold W . By Rochlin’s theorem, µ(M,α) does
not depend on the choice of W .

Let us fix a spin structure α of Σg (g ≥ 2). For each ϕ ∈ Mg,∗(2), there exists a spin
structure α̃ on Mϕ such that the restriction on each fiber is α. If we require that the restriction
of α̃ to the S1-orbit of ∗ ∈ Σg is the bounding spin structure (namely, not the Lie group spin
structure), then α̃ is uniquely determined. This is the reason why we consider Mg,∗(2) rather
than Mg .

Now consider the set of pairs {(ϕ,W)} , where ϕ ∈ Mg,∗(2) and W is an oriented spin
4-manifold. Of course, ∂W = Mϕ and the induced spin structure on Mϕ is α̃. Two pairs
(ϕ,W) and (ϕ,W ′) are said to be equivalent if Sign W = Sign W ′. The set of equivalence
classes, which we denote by Mα

g,∗(2), has a group structure defined by the fiber connected
sum (see [6] for details), and there is a natural surjective homomorphism

Mα
g,∗(2) → Mg,∗(2)

given by (ϕ,W) �→ ϕ. Moreover we introduce a map τ : Mα
g,∗(2) → Q by

τ (ϕ,W) = 1

16
Sign W ∈ 1

16
Z ⊂ Q .

PROPOSITION 3.1 (Kitano [6]). Under the setting above, the following hold.
(i) The Euler class eα of the extension Mα

g,∗(2) → Mg,∗(2) is a bounded cohomol-
ogy class and is given by e1/48 on the level 2 subgroup Mg,∗(2).

(ii) Let f : Z → Mg,∗(2) be a homomorphism. The pull back f ∗eα ∈ H 2
b (Z, Z) is

described by τ̄∞f ∈ H 1(Z, R/Z), where τ̄∞ : Mg,∗(2) → R/Z is the reduction mod Z of
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a map

τ∞(ϕ,W) = lim
k→∞

τ ((ϕ,W)k)

k
∈ R .

From the additivity of the signature, we obtain

τ∞(ϕ,W) = τ (ϕ,W) + 1

16
lim

k→∞
1

k

k−1∑
i=1

sign(ϕ, ϕi) .

Taking the reduction mod Z and using Proposition 2.1, we have

τ̄∞(ϕ) = µ(Mϕ, α̃) − 1

16
ρ(2)(M̄ϕ) ∈ R/Z

for ϕ ∈ Mg,∗(2). Therefore Theorem 1.1 follows from Proposition 3.1 and the proof is
completed.
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