On the Pontrjagin square and the signature

By Shigeyuki MORITA

§ 1. Statement of results.

Let V be a Z_2 -vector space and let

$$\mu: V \otimes V \rightarrow Z_2$$

be a non-singular symmetric pairing. A function $\eta:V\to Z_4$ is said to be quadratic with respect to μ if

$$\eta(x+y) = \eta(x) + \eta(y) + j\mu(x \otimes y)$$
 for all $x, y \in V$,

where $j: Z_2 \to Z_4$ is the non-trivial homomorphism. Then according to E.H. Brown [1], we define the Arf invariant $\sigma(V, \eta) \in Z_8$ as follows.

If we put $\alpha(\eta) = \sum_{x \in V} i^{\eta(x)} \in C$, (where $i^2 = -1$, and Z_4 acts naturally on $\{1, i, i\}$) -1, -i), then it can be shown that (see the proof of Prop. 2-3)

$$\alpha(\eta)^8 = (\sqrt{2}^{\dim V})^8$$
;

therefore

$$\alpha(\eta) = \sqrt{2^{\dim V}} \cdot \left(\frac{1+i}{\sqrt{2}}\right)^m$$

for some $m \in Z_8$. We put $\sigma(V, \eta) = m$.

Now let M^{4n} be an oriented Poincaré complex of formal dimension 4n, then the Pontrjagin square

$$P_2: H^{2n}(M; Z_2) \to H^{4n}(M; Z_4) = Z_4$$

is quadratic with respect to the cup-product

$$\mu: H^{2n}(M; Z_2) \otimes H^{2n}(M; Z_2) \to H^{4n}(M; Z_2) = Z_2$$
.

Hence we can define

$$\sigma(M, P_2) = \sigma(H^{2n}(M; Z_2), P_2) \in Z_8$$
.

Our results are

THEOREM 1-1. If M⁴ⁿ is an oriented Poincaré complex of formal dimension 4n, then

$$\sigma(M, P_2) = \text{signature } M \mod 8$$
.

This theorem was conjectured by E.H. Brown in [2].

COROLLARY 1-2. Let M^{4n} be an oriented Poincaré complex, then signature $M{\equiv}0\pmod{4}$ if and only if

$$P_2(v_{2n})=0$$
.

Here v_{2n} is the 2n-th Wu class of M.

Theorem 1-1 and Corollary 1-2 will be proved in §4.

I would like to express my gratitude to Professor A. Hattori for many advices and encouragement.

Added in proof. I have heard from G. Brumfiel that he and E. H. Brown, E. Thomas also have proved Theorem 1-1.

2. Some remarks on the Arf invariant.

The following proposition is due to E. H. Brown.

PROPOSITION 2-1. (i). Let $\eta_i: V_i \to Z_4$ (i=1,2) be two quadratic functions with respect to μ_i . If we define

$$\eta_1 + \eta_2 : V_1 \oplus V_2 \rightarrow Z_4$$

by $(\eta_1+\eta_2)(x_1, x_2)=\eta_1(x_1)+\eta_2(x_2)$, then $\eta_1+\eta_2$ is quadratic with respect to $\mu_1+\mu_2$ and

$$\sigma(V_1+V_2, \eta_1+\eta_2) = \sigma(V_1, \eta_1) + \sigma(V_2, \eta_2)$$
.

(ii). If $L: V \to Z_4$ is linear, then

$$lpha(L)=2^{\dim V} \quad if \quad L=0,$$
 $lpha(L)=0 \quad if \quad L\neq 0.$

(iii). If $\eta: U \to Z$ is a unimodular quadratic form over Z, $\eta: U/2U \to Z_4$ is well defined and quadratic and

$$\sigma(U/2U, \eta) = \text{signature } \eta \mod 8$$
.

COROLLARY 2-2. If $V=A\oplus B$, dim $A=\dim B$ and μ is zero on A, then for any quadratic function $\eta:V\to Z_4$ with respect to μ such that $\eta(A)=0$,

$$\sigma(V, \eta) = 0$$
.

PROOF. Let $A_b = \{a+b : a \in A\}$ for any $b \in B$, and we give a Z_2 -vector space structure on A_b by

$$(a_1+b)+(a_2+b)=a_1+a_2+b$$
.

Consider the function $\eta_b: A_b \to Z_4$ defined by

$$\eta_b(a+b) = \eta(a+b) - \eta(b) = j\mu(a \otimes b)$$

then η_b is linear with respect to $\dot{+}$, hence by Proposition 2-1 if $b\neq 0$, then $\alpha(\eta_b)=0$, and if b=0, then $\alpha(\eta_0)=2^{\dim A}$. Therefore

$$\alpha(\eta) = \sum_{b \in B} \alpha(\eta|A_b) = \sum_{b \in B} \alpha(\eta_b) \cdot i^{\eta(b)} = \alpha(\eta_0) = 2^{\dim A}$$
.

Hence

$$\sigma(V, \eta) = 0$$
. Q.E.D.

Now let M^{2n} be an oriented Poincaré complex and let $\eta: H^n(M; \mathbb{Z}_2) \to \mathbb{Z}_4$ be a quadratic function with respect to the cup-product, then we prove a formula relating $\sigma(M, \eta)$ with $\eta(v_n)$, where v_n is the *n*-th Wu class of M.

PROPOSITION 2-3. In the above situation, $\sigma(M, \eta) = \eta(v_n) \pmod{4}$.

PROOF. We write V for $H^n(M; \mathbb{Z}_2)$. Consider

$$\eta + \eta : V \oplus V \to Z_4$$
.

Let $V_v = \{(u+v, u) ; u \in V\}$ and we give V_v a Z_2 -vector space structure by

$$(u_1+v, u_1)+(u_2+v, u_2)=(u_1+u_2+v, u_1+u_2)$$
.

Consider

$$2\eta | V_v : V_v \rightarrow Z_4$$
,

we have

$$2\eta(u+v,u) = \eta(u+v) + \eta(u) = \eta(v) + 2 \cdot \eta(u) + j\mu(u \otimes v) = \eta(v) + j\mu(u \otimes u) + j\mu(u \otimes v).$$

Hence if we define $\eta_v: V_v \to Z_4$ by

$$\eta_{n}(u+v,u)=2\eta(u+v,u)-\eta(v)$$
,

then η_v is linear with respect to $\dot{+}$. Now if

$$u^2+uv=0$$
 for all $u\in V$,

then $v=v_n$, the *n*-th Wu class. Hence if $v\neq v_n$, then $\alpha(\eta_v)=0$, and $\alpha(\eta_{v_n})=2^{\dim V}$ (by Prop. 2-1). Therefore

$$\begin{split} &\alpha(2\eta) \!=\! \sum\limits_{u \,\in\, V} \alpha(2\eta|\,V_v) \!=\! \sum\limits_{u \,\in\, V} \alpha(\eta_v) \cdot i^{\,\eta\,\,(v)} \!=\! \alpha(\eta_{v_n}) \cdot i^{\,\eta\,\,(v_n)} \!=\! 2^{\dim\,V} \cdot i^{\,\eta\,\,(v_n)} \\ &= 2^{\dim\,V} \cdot \left(\frac{1\!+\!i}{\sqrt{2}}\right)^{2\,\eta\,\,(v_n)} \,. \end{split}$$

Hence

$$2\sigma(M, \eta) = 2\sigma(V, \eta) = \sigma(V \oplus V, \eta + \eta) = 2\eta(v_n)$$

hence

$$\sigma(M, \eta) \equiv \eta(v_n) \pmod{4}$$
.

Q.E.D.

COROLLARY 2-4. Let M^{2n} be an oriented Poincaré complex, n; odd, and let $\eta: H^n(M; \mathbb{Z}_2) \to \mathbb{Z}_4$ be a quadratic function, then

$$\sigma(M, \eta) \equiv 0 \pmod{4}$$

i.e.,

$$\sigma(M, \eta) = 0$$
 or 4.

PROOF. By Proposition 2-3,

$$\sigma(M, \eta) \equiv \eta(v_n) \pmod{4}$$

but since n is odd and M is orientable, $v_n=0$, hence

$$\sigma(M, \eta) \equiv 0 \pmod{4}$$
.

Q.E.D.

§ 3. The Bockstein Spectral Sequence.

Let M^{4n} be an oriented Poincaré complex and let $\{E_r^*, d_r\}$ and $\{E_r^*, d^r\}$ be the mod 2 Bockstein spectral sequence in cohomology and homology respectively. Then by Browder [1], we have

PROPOSITION 3-1. (i). $\{E_r^*, d_r\}$ and $\{E_r^*, d^r\}$ are dual each other by the Kronecker index.

(ii) $E_{\infty}^* = H^*(M)/\operatorname{Tor} \otimes Z_2$, $E_{*}^{\infty} = H_*(M)/\operatorname{Tor} \otimes Z_2$.

Now since M^{4n} is orientable, we have

$$E_1^{4n} = E_2^{4n} = \cdots = E_{\infty}^{4n} = Z_2$$

and

$$E_{4n}^1 = E_{4n}^2 = \cdots = E_{4n}^{\infty} = Z_2$$
.

Let $\mu_2 \in E_{4n}^1 = \cdots = E_{4n}^{\infty}$ be the mod 2 fundamental class. Then we can prove PROPOSITION 3-2. The Poincaré duality holds for $\{E_r^*, d_r\}$ and $\{E_r^*, d^r\}$;

(i) The cup-product

$$\mu: E^a_r \otimes E^b_r \to E^{a+b}_r$$

is well defined and similarly for the cap-product.

(ii) $\cap \mu_2: E_r^k \to E_{4n-k}^r$ is an isomorphism for all k and r, and

$$d^r(x \cap \mu_2) = d^r x \cap \mu_2$$
 for all $x \in E_r^k$.

(iii) The cup-product

$$\mu: E_r^k \otimes E_r^{4n-k} \to E_r^{4n} = Z_2$$

is non singular.

PROOF. (i) If r=1, then it is clear. Assume the statement holds for $r \leq m$, then we define

$$\mu: E_{m+1}^a \otimes E_{m+1}^b \to E_{m+1}^{a+b}$$

by

$$\mu([x]\otimes[y])=[\mu(x\otimes y)]$$
,

where $x \in E_m^a$, $d_m x = 0$ and $y \in E_m^b$, $d_m y = 0$. Since

$$d_m(x \cdot y) = d_m x \cdot y + x \cdot d_m y = 0$$
,

and

$$d_m x' \cdot y = d_m(x' \cdot y)$$
 for $x' \in E_m^{a-1}$,

 μ is well defined.

The proof for the cap-product is similar.

(ii) Clearly $\cap \mu_2: E_1^k \to E_{4n-k}^1$ is an isomorphism. And

$$d^{1}(x \cap \mu_{2}) = d_{1}x \cap \mu_{2} + x \cap d^{1}\mu_{2}$$
 ,

but since M is orientable, $d^1\mu_2=0$ and

$$d^{1}(x \cap \mu_{2}) = d_{1}x \cap \mu_{2}$$
.

Now suppose

$$\cap \mu_2: E_\tau^k \cong E_{4n-k}^r, \text{ and } d^r(x \cap \mu_2) = d_r x \cap \mu_2$$
for all $r \leq m$ and $x \in E_\tau^k$.

Then we define

$$\cap\,\mu_2:E^k_{m+1}\to E^{\,m+1}_{\,4\,n-k}$$

as follows.

Let $x \in E_m^k$ and suppose $d_m x = 0$, then $[x] \in E_{m+1}^k$ and $d^m(x \cap \mu_2) = d_m x \cap \mu_2 = 0$. Hence

$$[x\cap\mu_2]\!\in\!E^{\frac{m+1}{4n-k}}$$

and we define

$$[x] \cap \mu_2 = [x \cap \mu_2]$$
.

Now since

$$\begin{aligned} [x+d_mx'] \cap \mu_2 &= [(x+d_mx') \cap \mu_2] = [x \cap \mu_2] + [d_mx' \cap \mu_2] \\ &= [x \cap \mu_2] + [d^m(x' \cap \mu_2)] = [x \cap \mu_2] \end{aligned}$$

 $\cap \mu_2$ is well defined.

(a) $\cap \mu_2$ is epimorphic.

Take any $[y] \in E_{4n-k}^{m+1}$, $y \in E_{4n-k}^{m}$, $d^{m}y=0$, then there is an element $x \in E_{n}^{k}$ such that

$$x \cap \mu_2 = y$$
 .

Then

$$0=d^{m}y=d^{m}(x\cap \mu_{2})=d_{m}x\cap \mu_{2}$$
,

hence $d_m x=0$ and $[x] \in E_{m+1}^k$.

Therefore

$$[x] \cap \mu_2 = [y]$$

and $\cap \mu_2$ is epimorphic.

(b) $\cap \mu_2$ is monomorphic.

Suppose

$$[x] \cap \mu_2 = 0$$
.

then $x \cap \mu_2 = d^m y$ for some $y \in E_{4n-k-1}^m$. Let $x' \in E_m^{k+1}$ be such that

$$x' \cap \mu_2 = y$$
,

then

$$d_mx'\cap\mu_2=d^m(x'\cap\mu_2)=d^my.$$

Hence

$$d_m x' \cap \mu_2 = x \cap \mu_2, \quad x = d_m x', \quad [x] = 0.$$

(c) $d^{m+1}([x] \cap \mu_2) = d_{m+1}[x] \cap \mu_2$, for

$$d^{m+1}([x] \cap \mu_2) = d_{m+1}[x] \cap \mu_2 + [x] \cap d^{m+1}\mu_2 = d_{m+1}[x] \cap \mu_2.$$

(iii) Suppose

$$x \cdot y = 0$$
 for all x ,

then

$$\langle x \cdot y, \mu_2 \rangle = 0, \langle x, y \cap \mu_2 \rangle = 0$$

hence y=0.

Q.E.D.

§4. Proof of Theorem 1-1 and Corollary 1-2.

Let $\{E_r^*, d_r\}$ and $\{E_r^*, d^r\}$ be the mod 2 Bockstein spectral sequence for $H^*(M)$ and $H_*(M)$, where M^{4n} is an oriented Poincaré complex. We prove the following statement by induction on r.

 (Q_{τ}) ; $P_2^{(\tau)}:E_{\tau}^{(2n)}\to Z_4$ can be defined so as to be quadratic with respect to the cup-product

$$\mu: E_r^{2n} \otimes E_r^{2n} \to E_r^{4n} = Z_2$$

and $\sigma(E_r^{2n}, P_2^{(r)}) = \sigma(E_{r-1}^{2n}, P_2^{(r-1)}).$

If r=1, then (Q_1) is trivial and

$$\sigma(E_1^{2n}, P_2^{(1)}) = \sigma(M, P_2)$$
.

Now assume (Q_r) holds for $r \leq m$, then we define

$$P_2^{(m+1)}: E_{m+1}^{2n} \to Z_4$$

as follows. If $[x] \in E_{m+1}^{2n}$, $x \in E_m^{2n}$, $d_m x = 0$, then we set

$$P_{2}^{(m+1)}([x]) = P_{2}^{(m)}(x)$$
.

To show that $P_2^{(m+1)}$ is well defined, it suffices to show that

$$P_2^{(m)}(\text{im }d_m) = 0$$
,

for

$$\begin{split} P_{\mathbf{2}}^{(m)}(x+d_{m}y) &= P_{\mathbf{2}}^{(m)}(x) + P_{\mathbf{2}}^{(m)}(d_{m}y) + j(x \cdot d_{m}y) \\ &= P_{\mathbf{2}}^{(m)}(x) + P_{\mathbf{2}}^{(m)}(d_{m}y) + jd_{m}(x \cdot y) \\ &= P_{\mathbf{2}}^{(m)}(x) + P_{\mathbf{2}}^{(m)}(d_{m}y) \ , \end{split}$$

where $x \in E_m^{2n}$, $d_m x = 0$, $y \in E_m^{2n-1}$. Here we have used the fact that $d_m | E_m^{2n-1} = 0$ which follows from the orientability of M.

Now let $d_m x \in E_m^{2n}$, $x \in E_m^{2n-1}$, then if x is represented by an integral cochain u,

$$\delta u = 2^m \cdot a$$

and $d_m x$ is represented by $1/2^m \cdot \delta u = a$, $[a] \in H^{2n}(M; Z)$ and

$$P_{2}^{(m)}(d_{m}x)=P_{2}[a]$$
.

But clearly $2^m[a]=0$, hence $[a]^2$ is a torsion element in $H^{in}(M;Z)=Z$, therefore

$$[a]^2=0$$
, $P_2[a]=[a]^2 \mod 4=0$.

Clearly $P_2^{(m+1)}$ is quadratic with respect to the cup-product.

Next we prove $\sigma(E_{m+1}^{2n}, P_2^{(m+1)}) = \sigma(E_m^{2n}, P_2^{(m)})$. Let $[x_1], [x_2], \dots, [x_p]$ be a basis for E_{m+1}^{2n} and let

V=the subspace of E_m^{2n} , spanned by $x_1, x_2, \dots, x_p, x_i \in E_m^{2n}, d_m x_i = 0$. Let

$$ar{V} = \{y \in E_m^{\,2n} \; ; \; x \cdot y = 0 \quad \text{for all} \quad x \in V\}$$
 ,

then

LEMMA 4-1. $E_m^{2n} = V \oplus \bar{V}$.

PROOF. If $x \in V \cap \overline{V}$, then since $x \in V$, we have $d_m x = 0$ and $[x] \in E_{m+1}^{2n}$. Let $[y] \in E_{m+1}^{2n}$ be any element, then we may take y in V and

$$[x] \cdot [y] = [x \cdot y] = 0.$$

Hence [x]=0 and since $V \cap \text{im } d_m = \{0\}$, we have

$$x=0$$

By counting dimension, we obtain the lemma.

Q.E.D.

Now we have

$$\sigma(E_{\it m}^{\it 2n},\,P_{\it 2}^{\it (m)})\!=\!\sigma(V,\,P_{\it 2}^{\it (m)}\,|\,V)\!+\!\sigma(\,\bar{V},\,P_{\it 2}^{\it (m)}\,|\,\bar{V})$$
 ,

but clearly

$$\sigma(V, P_2^{(m)} | V) = \sigma(E_{m+1}^{2n}, P_2^{(m+1)})$$
 ,

hence we have only to prove

$$\sigma(|\bar{V},P_{\mathbf{z}}^{(m)}||\bar{V}){=}0$$
 .

To show this, it suffices to show that there is a subspace $A\subset ar{V}$ such that

- (i) $P_2^{(m)}(A) = 0$,
- (ii) The cup-product is trivial on A,
- (iii) dim A=1/2·dim \overline{V} . (See Cor. 2-2).

Now we claim that the subspace

$$\operatorname{im} (d_m: E_m^{\,2\,n-1} \to E_m^{\,2\,n}) \subset \bar{V}$$

satisfies the conditions above.

- (i) has already been proved (well definedness of $P_2^{(m+1)}$).
- (ii) If $d_m x$, $d_m y \in \operatorname{im} (d_m : E_m^{2n-1} \to E_m^{2n})$, then

$$d_m x \cdot d_m y = d_m (x \cdot d_m y) = 0 ,$$

since M is orientable.

(iii) First we prove

LEMMA 4-2. dim E_m^{2n} = dim ker $(d_m; E_m^{2n} \to E_m^{2n+1})$ + dim im $(d_m: E_m^{2n-1} \to E_m^{2n})$. PROOF. We have

(1) dim E_m^{2n} dim ker $(d_m: E_m^{2n} \to E_m^{2n+1})$ = dim im $(d_m: E_m^{2n} \to E_m^{2n+1})$. Now we prove that

$$(\operatorname{im} (d_m: E_m^{2n} \to E_m^{2n+1}))^{\perp} = \ker (d^m: E_{2n+1}^m \to E_{2n}^m)$$
.

In fact if $\alpha \in (\operatorname{im}(d_m : E_m^{2n} \to E_m^{2n+1}))^{\perp}$, then

$$\langle d_m x, \alpha \rangle = 0$$
 for all $x \in E_m^{2n}$.

Hence

$$\langle x, d^m \alpha \rangle = 0$$
 for all x .

Therefore

$$d^m \alpha = 0$$
 i.e., $\alpha \in \ker (d^m : E_{2n+1}^m \to E_{2n}^m)$.

Conversely, assume $d^m \alpha = 0$, then

$$\langle d_m x, \alpha \rangle = \langle x, d^m \alpha \rangle = 0$$
 for all x .

Hence $\alpha \in (\text{im } (d_m : E_m^{2n} \to E_m^{2n+1}))^{\perp}$.

Therefore

(2) dim im $(d_m: E_m^{2n} \to E_m^{2n+1}) = \dim E_{2n+1}^m - \dim \ker (d^m: E_{2n+1}^m \to E_{2n}^m)$. Consider the following diagram, which is commutative by Proposition 3-2.

$$E_{2n+1}^{m} \xrightarrow{d^{m}} E_{2n}^{m}$$

$$\downarrow \bigcap_{1} \cap \mu_{2} \qquad \downarrow \bigcap_{1} \cap \mu_{2}$$

$$E_{m}^{2n-1} \xrightarrow{d_{m}} E_{m}^{2n}$$

We have

(3) dim E_{2n+1}^m dim ker $(d^m: E_{2n+1}^m \to E_{2n}^m) = \dim \operatorname{im} (d_m: E_m^{2n-1} \to E_m^{2n})$. Combining (1), (2) and (3), we obtain the lemma. Q.E.D. Proof of (iii);

$$\begin{split} \dim \bar{V} &= \dim E_m^{2n} - \dim E_{m+1}^{2n} = \dim \ker d_m + \dim \operatorname{im} d_m \\ &- (\dim \ker d_m - \dim \operatorname{im} d_m) = 2 \cdot \dim \operatorname{im} (d_m : E_m^{2n-1} \to E_m^{2n}) \ . \end{split}$$

This proves (iii).

Thus we have proved

$$\sigma(E_{m+1}^{2n}, P_2^{(m+1)}) = \sigma(E_m^{2n}, P_2^{(m)})$$

for all m. Therefore

$$\sigma(M, P_2) = \sigma(E_1^{2n}, P_2^{(1)}) = \sigma(E_\infty^{2n}, P_2^{(\infty)}) = \text{signature } M \mod 8 \text{ (by Prop. 2-1)}.$$

This proves Theorem 1-1.

PROOF OF COROLLARY 1-2. By Theorem 1-1

signature $M \mod 8 = \sigma(M, P_2)$

and by Proposition 2-3,

 $\sigma(M, P_2) \equiv P_2(v_{2n}) \pmod{4}$,

hence

signature $M \equiv P_2(v_{2n}) \pmod{4}$.

Q.E.D.

Bibliography

[1] Browder, W., Torsion in H-spaces, Ann. of Math. 74 (1961), 24-51.

[2] Brown, E. H. Jr., The Kervaire invariant of a manifold, Lecture Notes of Summe Institute on Algebraic Topology, Wisconsin, 1970.

(Received March 4, 1971)

Department of Mathematics Faculty of Science University of Tokyo Hongo, Tokyo 113 Japan