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Introduction. 

The author considers a system of n ordinary, second-order, linear, 
homogeneous differential equations. The system is supposed self=adjoint 
and regular. Starting with the theorem tha t  any such system may be 
considered as the Euler equations of an integral of a quadratic form, he 
shows that  the Sturm Separation and Comparison Theorems naturally 
generalize into theorems concerning the interrelation of conjugate and focal 
points. Care is taken at  every stage to state the final results in a purely 
analytical form belonging to the theory of differential equations proper. 

The results obtained were made possible by certain other discoveries 
already made in connection with the author's theory o/ the calculus o/ 
variations in the large"). 

w 

SelI-  adjoint  systems. 

Let there be given a system of n differentia[ equations of the form :~) 

(2.1) a~,z;' + bi~zj + c,,z~. = 0 (i, j - -  1 . . . . .  n),  l a~. i + 0 

1) See B6cher, Lemons sur tes M~thodes de Sturm, Paris (1917), Gauthier- 
Villars et Cie. 

e) Marston Morse, The foundations of the calctflus of variations in the large in 
m-space (first paper). Transactions of the American Mathematical Society 31, No. 3 
(1929). See also, The critical points of functions and the calculus of variations in 
the large, Bulletin of the American Mathematical Society 35 (1929), pp. 38-54. The 
first paper will hereafter be referred to as Morse. 

3) We adopt the convention that a repetition of a subscript in a term shall 
indicate a sum with respect to that subscript. 
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where x is the independent variable, and a~r bij  , a n d  Cij , are of class C" 
on a segment ;I of the x axis. The system adjoint to (2.1) is 

(2. 2) (ai jy i )"  --  (bi jyi) '  -+- (ci jy ,)  = O. 

A set of necessary and sufficient conditions that (2.1) be se]f-adjoint is 

readily seen to be*) 

(2 .3) '  aij =~ %i, 

(2 .3 )"  2 a'j ~ b,y ~. bjl, 

�9 ?' b �9 (2.3)" '  as -- i j ~ c ~ i - - % .  

On the other hand let us turn to the integral 

I - -  f(Ao.z[zj'')Bijz~z]:-C~jz~z~)dx-= _ 
.T o 

where Aij, and Bij,  and (7~. are functions of cIass C '  on 7. No loss of 
generality results if we assume 

(~ .4)  A~j -= Aj~, c ,j  :- cj~.  

The Euler equations corresponding to the integral I are 

(2.5) d~ ~ (&J zj' + Bj~z~) --  (B~jzs" -~ C ~ z ~ )  - -  O. 

We see that a set of necessary and sufficient conditions for the system 
(2.5) ,  when expanded, to be identical with the system (2.!1), is the 
following 

(2 .6) '  aij ~ A i j ,  

(2. 6)" b~j ~ A~'~ + E ~  - B~j, 
t (2 .6)" '  c~j : Bj~ --  Cij .  

We shall prove the following theorem. 

T h e o r e m  1. A necessary and su]/icient condition that the system (2.1) 
admit  the /orm (2 .5)  is that the system (2. 1) be sel]-ad]oint. 

That it is necessary that  (2. 1) be self-adjoint is a we|l known fact ~) 
whose proof we need not give. 

To prove that  it is sufficient that  (2.1) be self-adjoint for (2. 1) to 
admit the form (2 .5) ,  we assume that  the equations (2 .3)  hold, and 

*) See Davis R. D., The inverse problem of the calculus of variations hi higher 
space, Transactions of the American Mathematical Society 30 (1928), p. 711-713. 

~) See Hadamard, Lemons sur ]e calcu! des variations, _Paris 19t0, 1, p. 3t9. 
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then show that it is possible to choose A~, B.j., and C~j., so as to satisfy 
(2. 4) and (2 .6) .  

We first choose Air as ajj.  We then choose the functions Ci5 as 
arbitrary hmctions of class C except tot the conditions C~ = C~.i. We 
next choose Bji and Bii so as to satisfy (2. 6)"  as an initial condition 
at some point x ~ x o. Equations (2 .6 )"  give apparently two conditions 
on B y i -  Bis , obtained by interchanging i and j, namely, 

B j i  - -  B i j  ~ b i j  - -  A' j ,  

Bij  --  Bji ~ bj~ --  A :. :)~,, 

But  these two conditions are really the same as is seen from the fact 
that Aii. has been chosen as aij , and from the fact that (2 .3)"  is assu- 
med to hold. Subject to this condition we now choose Bj. i and Bi~. so 

to satisfy (2. 6)" .  
We have made our choices of Ai~, B q ,  and Cq. I t  remains to show 

that (2. 6)"  holds not only at x = x o but  identically. 
According to the choices of B i j  and Bj l  as satisfying (2.6)" ' ,  

we have 
B;i -- B ~  ~ cij -- cji. 

By virtue of (2.3)  and of our choice of All as aii this becomes 

(2.7)  A'~. -~- Bj:i ' ' - -  B i j  ~ bij. 

Equation (2.7)  is also obtainable by differentiating (2 .6)" .  Since Bij 
and Bji  have been chosen so that  (2 .6 )"  holds for at least one x, by 
virtue of (2. 7) it holds identically. 

Thus the system (2. 6) is satisfied by our choices of Aij,  Bij , and Cij, 
and the theorem is proved. 

We note the following. 

We can choose Cij = Cji arbitrarily, and Aij ~ -  a l j .  The/unctions Bii 
are then uniquely determined to an arbitrary constant. The/unct ions  Biy 
/or i + j, are uniquely determined, except that an arbitrary constant may 
be added to an admissible choice o/ Bij  i f  substracted from the corre- 
sponding admissible choice o/ B j i .  

The second variation of the integral I takes the form of 2 I  with (z) 
replaced by (7) as is conventional. Thus if a system (2.1) is self-adjoint 
it may be considered as the system of Jaeobi differential equations of a 
problem of the calculus of variations. Conversely, as is well known, the 
Jacobi differential equations of an ordinary problem in non-parametric 
form will always reduce to a system (2.1) that  is self-adjoint. 
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w  

A canonical form for the differential equations. 

We now make a transformation from the variables (z) to variables (y )  

of the form 

(3.1) z, - u , ~  ( x )  y~, ( i ,  k = 1 . . . . .  n ) .  

We seek to determine the functions ui~. (x) so that  they shall be of 
class C', their deterTninant shall not  be zero, and so that  after (3. 1) the 
terms in Yh Y~ shall disappear from the integral 2". 

We can also write (3. 1) in the form 

(3.2)  zj  = u jhy l ,  (], h == 1 . . . . .  n ) .  

If we make these substitutions in the integral I the terms in the inte- 
grand involving both the y ' s  and their derivatives take the form 

(3.3)  Ai3uik ' u ~hy~y~-7- ' A i j ~  �9 u '  ,~aY~Ya + ' 2 B ~ j u ~ u j a y k y ~ .  

The second sum in (3 .3)  will not be changed if we interchange h with k 
and i with j.  The sum (3 .3)  then becomes 

A ' (:3.4) 2 [ i~u~  + B i j u i k ] u j ~ y ~ y ~ .  

We can make this sum vanish identically by choosing ui~ so that  

(3 .5)  A ' ijui~. + B i j u i k  = O. 

We choose the kth column of [ui~l as that solution of the n diffe- 
rential equations 

Aisu i  ' ~7' B~sui : 0 ( i ,  i = 1 , _9, . . . ,  n ) ,  

which takes on the values 

u ~ ( a )  = 1, u , ( a )  ~- 0 (i + k) .  

For this choice of the elements uij  the determinant ]u~k ] is not zero at  
x ~ a, and is accordingly never zero. 

The transformation (3. 1) so determined reduces the integral I to 
the form 

~ j  

f l  , , (3. I = yj + p, : (x)  wv ] 
~o 

where 

ri~ = rj~, Pfj -~ Pj i, (i rij ] + 0 ) .  

Our  d i / / eren t ia l  equat ions  have  thus  been reduced to the canonica l  lo t to ,  

(3. 7) - = o .  
dx 
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We shall assume that the calculus o/ variations problem arisinq 
]rom I is regular. That is we assume that 

(3. s)  r,j > 0 

]or every set ( ~?) O= O, and/or  every value o/ x on the given interval. 

w 

Conjugate families of solutions. 

From this point on we shall take our system in the form (3. 7). 
If (y)  and (z) stand for any two solutions of (3 .7)  it follows readily 
from (3.7)  that  

(4. 1) rij (yiz~ -- z~yj) ~ const. 

I f  the constant in (4.1) is zero (y) and (z) are called mutually conjugate 
according to yon Escherich 6). 

A system of n linearly independent mutually conjugate solutions will 
be called a conjugate base. The set of all solutions lineaEy dependent on 
the solutions of a conjugate base will be called a conjugate /amily. 

By a determinant D (x) of a conjugate base is meant the determinant 
whose columns are the respective solutions of the base. A determinant 
D ( x )  cannot vanish identically. In fact one can easily show that  it  
vanishes at a point x = a at most to a finite order equal to the nullity 7) 
of D(a) .  (Morse w 7.) I t  is also clear tha t  the determinants of two 
different conjugate bases of the same conjugate family are non-vanishing 
constant multiples of each other. 

A zero of the r t h  order of a determinant D ( x )  will be called a 
~oval point of the r th order of the corresponding family. 

If  x ~ a is not a focal point of a given conjugate family, one can 
always select a conjugate base of elements Yij (x) which at a point x ~ - a  
take on the values 

(4. 2) y ,  (a) - - 1 ,  yij (a) = 0 (i  =? ?'), 

Such a base will be termed unitary at x = a .  

w 

The initial elements gij (a )  oi a conjugate family. 

We shall now investigate with what freedom one can determine a 
conjugate family by prescribing initial conditions at x-----a. 

6) See Bolza, Vorlesungen fiber Variations%echnung, p. 626. 
~) The nullity of a determinant is its order minus its rank. 
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We shall restrict ourselves in this section to conjugate families for 
which x = a is not a focal point. Such a family will have a conjugate 
base yiy(x)  that  is unitary at x ~ a.  Let  us set 

(5. 1) g~j (a) -~ ri~(a) y~j (a).  

We see that  g i j ' ~  gji" For the condition that  the i t h  and j t h  column 
of the base yi5(x) be conjugate is that  

(5.2) rh~(yj, i y~j --  YayYli) ~ 0 

which reduces at x - - . a  with the aid of (4 .2)  to the condition g ~ j : g j , .  

Conversely if the gij's are arbitrary elements os a symmetric matrix 
one sees at once that  a matrix of functions y~j(x) whose cob~m~s satisfy 
the differential equations, whose values at  x : a are given by (4. 2), and 
which satisfy (5.1), will also satisfy (5.2),  and thus be a conjugate base 
that is unitary at x = a. 

We have thus proved the following. 

Lemma.  The most general conjugate ]amily without [oeal point at 
x ~ a may be determined by giving an arbitrary sym~netric matrix o/ 
constants g i j (a ) ,  and determining a conjugate base that is unitary at 
x -~ a and satisfies ( 5. 1). 

When the constants g~j (a) are related to a conjugate family as in 
the preceding lemma the constants g~i C a) will be called the initial elements 
o/ the /amily  at x - - a .  

w 

Transverse manifolds. 

We need to develo p the theory of conjugate families in connection 
with the theory of transverse manifolds. But  the latter theory proceeds 
with difficulty if the integral be zero along an extremal. Now the inte- 
grand H of I is zero along r .  We can avoid any difficulty by taking a 
new integrand 

(6.1)  L ( x ,  y, y ' )  = H ( x ,  y, y ' )  ~ - ! .  

The corresponding integral 

J =  fL(z ,  y, v')dx 
So 

will have the same extremals as the previous one. 

Relative to our new integral J we shall now briefly indicate a proof 
of the following lemma. 
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Le mm a .  Through each point P o/ y at which D (x) + 0 there passes 
an n-mani]old S which in the neighborhood o/ P is regular s) and o/ 
class G", and which cuta the extremals o/ the given conjugate /amily 
transversaUy. 

Let Yij (x) be the elements of a base of the given conjugate family. 
The extremals of the conjugate family may be represented in the form 

( 6 . 3 )  y,  ( i ,  j - -  1, 2 . . . .  , n ) .  

In i (x, y, y') let Yi and y~ b e  replaced by the right members of (6. 3) 
and their derivatives respectively. The condition that  the h th and /cth 
columns of our base be mutually conjugate may now be written in the form 

(6 .4)  ~yl OLy; Oy, SLy, 
~ch ~c~ ~ck ~ch ~-0  ( i , h , k - ~ l , 2  . . . .  , n ) .  

In this form the condition (6.4)  may be identified with the usual con- 
dition appearing in the literature 9) that the Hilbert invariant integral I ~ 
set up for the family (6. 3), be independent of the path, at least in the 
neighborhood of any point x ~ - a  on ~, at which l yi.  I =~ 0. In the neigh- 
borhood of x = a on ~, the Hilbert integral then becomes a function 
I ~ (x, Yl . . . .  , y~) of class C". The equation 

(6. 5) I~  x, Yl . . . . .  Y,~) = I~ (a, O, . . . .  O) 

is solvable for x as a function ~ ( y )  of the yi 's,  since 

I2(a,  O)=  L (a ,  O, O ) = l  =~0. 

Equation (6. 5) thus defines a manifold S which in the neighborhood of 
x - ~  a on ~, satisfies the lemma. 

Reference to the form of I ~ shows that  all the partial derivatives of 
I ~ with respect to the y~'s vanish when (y) ~ (0),  from which it follows 
that  S is orthogonal to the x axis at  x = a .  

If  now we suppose the base yij(x) is unitary at a ~ x  we may 
apply the lemma of Morse w 16 to the )'th column of y~j, and thereby 
obtain the following. 

~2u, v j (O)-~r i~(a)y~j (a)=O ( i ,  j ,  ]r = 1  . . . .  , n ) .  

I/  we compare this with (5. 1) we see that 

( 6 . 6 )  ( o )  = - g , j ,  

a relation that will be use]ul presently. 

8) An n-manifold S is called regular if on it the coordinates of points neigh- 
boring a given point admit a representation in terms of n parameters in which not 
all of the jacobians of the coordinates with respect to the n parameters are zero. 

~) Bliss, The transformations of Clebsch in the calculus of variations, Trans- 
actions of the American Mathematical Society 17 (1916), p. 595. 
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w 

The fundamental quadratic form of a conjugate family. 

We shall now review certain theorems which show how to charac- 
terize focal points in terms of a fundamental quadratic form. Consider a 
conjugate family without/ocal point at x ~ a on ~,. Let S be the mani- 
fold which cuts the family transversaUy at x = a.  

Let us cut across the portion of 7 for which a < x < b with m suc- 
cessive n-planes t i, perpendicular to 7, cutting respectively in points at 
which x = x i. These n-planes divide 7 into m ~ 1 successive segments. 
Suppose these n-planes are placed so near together that  no one of these 
m ~ 1 segments contains a conjugate point of its initial end point. Let 
Pi be any point on t i near 7. Let the points on ~, at  which x - ~ a  and 
x =  b respectively be denoted by A and B.  Let Q denote any point 
near A on the manifold S .  

The points 

(7.1) Q, P1, P., . . . . .  P , , , B  

can be successively joined by extremal segments neighboring 7- Let the 
resulting broken extremal be denoted by E.  Let (v) be a set of 
/t = (m + 1 ) n  variables of which the first n are the coordinates (y) of 
Q, the second n are those of P1, and so on, until finally the last n 
are the coordinates (y) of 1),. The value of the integral I taken along E 
will be a function of the variables (v) of class C" at least, and will be 
denoted by J (v ) .  

The function J(v)  will have a critical point when ( v ) =  (0). We set 

(7.2) H(u)  = J~h~(O) uhu ~ (h, k = 1, 2 . . . . .  /x). 

The form H(u)  will be called t he /undamen ta l / o r m  of the given conjugate 
family taken from x = a  to x = b .  

Consider now the points 

(7.3) Po, P, . . . . .  P , , , B ,  

where Q in (7.1) is here replaced by a point Po in the plane x = a .  
Let (u) be a complex of /~ variables composed of the sets of coordi- 
nates (y) of the points (7.3) omitting B ,  and taking these sets in the 
order of the points (7.3). A curve of class C'  which passes from Po to B 
through points (7.3) will be said to determine the corresponding set (u). 

If we differentiate the function 

J ( e u  t . . . . .  euu) 
twice with respect to e, and set e = 0, malting use of (6. 6), we obtain, 
as in the proof of the lemma, Morse w 17, the following result. 
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Le mm a .  The /undamental form H(u) of the given conjugate family 
is given as follows: 

b 

where gij is the i j th  initial element o/ the /amily at x = a ,  and [~j(x)] 
gives the coordinates (y) along the broken extremal from Po to B which 
determines the set (u). 

We come to the following theorem. 

T h e o r e m  2. I] the point x ~ b is a focal point of the given family 
o/ the r th order, the rank o/ t t (u )  is ~ - - r .  I/ x = b  is not a focal 
point of the /amily the rank of H(u)  is u ,  and the negative type 
number 1~ o/ t t (u)  equals the number o/ /ocal points o/the given/amily 
between x ~ a and x ~ b, always counting focal points according to 
their orders. 

For the reader who has examined the proofs of Theorems 1 to 4 of 
the earlier paper it will suffice here to enumerate the essential steps as 
follows. 

a) The nullity of the matrix of H(u) will equal the number of 
hnearly independent solutions (u) of the ]~ equations H ~ =  0. The latter 
equations when expressed in the terms of the right member of (7.4),  are 
seen to be necessary and sufficient conditions on a set (u) for such a set 
to determine a member of the conjugate family passing through B .  If 
B is a focal point of the family of the r th order there will be exactly r 
such sets which are linearly independent. The statements of the theorem 
about the rank of H(u) follow. 

b) To determine the type numbers of H(u) we vary the position of 
the point b from a point nearer x ~ a than any focal point of the family, 
to its final position as given. At the start of this variation we see that  
I t (u)  will be of negative type zero. As b increases through each focal 
point the negative type number of H(u) can change by at most the 
nullity of H ( u ) ,  that  is by at  most the order of the focal point. Hence 
the negative type number is at most the sum q of the orders of the 
focal points. 

c) A lemma on quadratic forms could be stated as follows. A qua- 
dratie form which is negative on a q-plane through the origin, excepting 
the origin, will be of negative type at least q. 

x0) By the positive and negative type numbers of a real quadratic form, will 
be understood the number of positive and negative terms respectively in the form 
when reduced by ~ real non-singxllar linear transformation to squaxed terms only. 
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Let x = c  be any focal point of the family. We now join B to a 
point Po on the n-plane x ~ - a  as follows. We pass along the x axis 
from B to x = c, and then along any curve of the conjugate family to 
a point Po on x = a.  Let (u) be the set determined by this curve. If 
c is of order r we can get r such sets which are linearly independent, 
and from all the focal points we can get q sets (u) which are linearly 

independent. 
Each of the curves just described and their linear combinations will 

make the right member of (7 .4)  zero if (~) in that  member be taken 
atot~g such a curve, and (u)  be the set which that  curve determines. This 
is proved by suitably integrating the first sum in the integral by parts. 
If now each of those curves be replaced by the broken extremal which 
determines the same (u),  the integral will be decreased, at least unless 
some of the points x ~ x i are focal points, or unless (~) )~  (0) .  

Without changing the type numbers of H(u)  we can, however, always 
displace the points x = x i so that  they are not focal points. We conclude 
that H(u) is negative at each point of a q-p}ane ~q through the origin, 
excepting the origin, so that the negative type number of H(u) must be 
exactly q. 

Thus the theorem is proved. 

The preceding proof also includes a proof of the following lemma. 

L e m m a  A. Suppose ~wne o/ the points x i are/ocal points but that 
x = b is a /ocal point o/ the rth order. Let q equal the sum o/the orders 
v/ the /ocal points on the interval a < x ~ b. Then there exists a q-plane 
~q through the origin, at each point o/ which H(u)  < 0 except at the 
points o/ a sub r-plane .-7 r o/ points (u determined by the members o/ 
the coniugate /amily through B. 

At no point o] ztq excepting the origin are the /irst n o/ the ui's 
all zero. 

The last statement follows from the fact that the only member 
of the conjugate family which vanishes at  x = a is coincident with the 
x axis. 

The special quadratic form for conjugate points. 

Suppose now that  we have a conjugate family every member of which 
vanishes at x = a. The focal points of such a family determine what are 
called the conjugate points of x = a.  We proceed with this ease much 
as in w 7, defining the n-planes ti, the points x/, the points Pi, A, and B. 
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The points 

(8. 1) A, Pl . . . . .  P,., B 

determine a broken extremal E along which I is evaluated. 
By the set (u) is here meant the ~ = m n  variables of which the 

first n are the y-coordinates of /)1, the second n those of P~, etc., and 
the last those of P~. The integral I taken along E thus becomes a func- 
tion J ( u ) .  We set 

Q ( u ) = - J ~ ( O ) u h u  k (h,/r = 1, 2 . . . .  , v )  

and term Q(u)  the special /orm associated with 7 taken from x-----a 
to x ~ b .  

The following ]emma and theorem are established in Morse w 10 --  w 13. 

L e m m a .  The special ]orm Q (u) associated with 7 t a k e n / t o m  x ~ a 
to x = b is given by the /ormula 

b 

a 

where [~ (x ) ]  gives the y-coordinates along the broken extremal ~oining 
the points (8. 1) determined by (u) .  

T h e o r e m  3. I /  x : b  is a conjugate point o] x - ~ a  o/ the rth 
order, the rank o/ Q ( u )  is ~ , - r .  1/ x = b  is not conjugate to x = a  
the rank o/ Q (u) is ~,, and its negative type number is the sum o] the 
orders o~ the conjugate points o/ x : a preceding x ~ b. 

w 

The continuous variation of conjugate points and focal points. 

By the k th  conjugate point of a point x ~ a on 7 is meant the k t h  
conjugate point of x = a  following x =  a, counting conjugate points 
according to their orders. We shall prove the following lemr-a. 

L e m m a .  The kth conjugate point x = c  o/ a point x ~ a  on 7 
varies continuously with x ~ a as long as x = c remains on 7. 

Let x ~ b and x ~ b' be any two points on 7 or on a slight exten- 
sion of 7, not conjugate to x = a, and such that  

a ~ b '  < c < b .  

The special form Q (u) of Theorem 3 set up for the segment of 7 between 
x - - a  and x = b will be non-singular, and of negative type at least k. 
For a sufficiently small variation of x = a, Q will remain non-singular 
and hence unchanged in type, so that  the k th  conjugate point will exist 
and preceed x - ~  b. 
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On the other hand the form Q (u) set up for the segment of r be- 
tween x ~ a and x = b' will be non-singular and of negative type less 
than k. For a sufficiently small variation of x - ~  a, Q (u) will remain 
non-singular, and hence of type less than k, so that  the k th  conjugate 

point of x ~ a will follow x -~  b'. 

The lemma follows from the fact that  b and b' may be taken arbi- 

trarily near the given value of c. 

We shall now prove the following theorem. 

T h e o r e m  4. The k th  conjugate point o] a point x =  a on ,/ ad- 

vances or regresses continuously with x = a as long as it remains on 7. 

According to the preceding lemma the /r conjugate point of x - - a  
varies continuously with x ~ a.  To prove that  i t  advances with x = a, 
suppose the theorem false and that  when x ~ a advances to a nearby 
point x ~ a~ the k th conjugate point of z ~ a regresses from x ~ c to 
x = c ~ .  Let  z ~ b  be a point not conjugate to x : a ,  and between c, 

and c. We are supposing that 

a < al < cl < b.< c. 

The form Q(u)  set up for the segment of ~, from x = a  to x = b  
will be non-singular, and of negative type less than k ,  since b precedes c. 
On the other hand if we choose the point of division xl of w 7 as a~, 

and set the first n of the variables (u)  in Q ( u )  equal zero, Q (u) will 
reduce to a non-singular form which will have a negative type number 
equal to the number of conjugate points of x - ~  a,  preceding x = b, or 
since c~ precedes b, a negative type number at  least k. According to the 
theory of quadratic forms Q (u) must then be of negative type number 
at least k. From this contradiction we infer that  the k th  conjugate point 
of x ~ a advances with x ~ a.  

Similarly it follows that  the k th  conjugate point of x ~ - a  regresses 
with x ~ - a  and the theorem is proved. 

We state the following theorem. 

T h e o r e m  5. The k th  local point o] a conjugate ]amily ]ollowing 
a point x - ~  a not a local ~oint ,  varies continuously with the initial 

elements gi~ at x ~- a, and with the coe]]icients o] the di]]erential equations. 

That the coefficients of the form H ( u )  vary continuously with 
the elements g.j, r;j and p~j, follows with the aid of (7 .4) .  One can 
then repeat the proof of the ]emma in this section, referring to focal 
points where conjugate points are there referred to, and using H ( u )  in 
place of Q ( u ) .  In this manner one arrives at a proof of the present 
theorem. 
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w lo. 

Separation Theorems. 

We commence with the following theorem. 

T h e o r e m  6. Let go and gO be respectively the initial elements at 
x = a o/ two conjugate /amilies F and F ~ Let P and N be respectively 
the positive and negative type numbers o/ the /orm 

D (u) = (gi~ - gi ~ ui uj (i,  i = 1 . . . .  , n) .  

I /  q and qO are respectively the numbers o/ /ocal points o/ P and F ~ 
on the interval a <_ x <_ b, we have 

(10.0)  qO p g q < = q O ~ N .  

I t  will be sufficient to give the proof for the case that x = b is not 
a focal point of 2'  or F ~ For  if for the given a the theorem is true for 
every b > a for which x = b is not a focal point, it is clearly true for 
the special values of b for which x -  b is a focal point. 

Let  the fundamental forms corresponding to F and F ~ taken from 
x = a to x ' =  b, be denoted by H ( u )  and H ~  respectively. According 
to the lemma of w 7 we have 

(10.1) H ( u )  -- H ~  = D (u) (i,  j = 1 . . . . .  n).  

Now D ( u )  may be written as a form D ( u )  of rank P and positive 
type P,  minus a form N ( u )  of rank N and positive type N. We can 
therefore write (10.1) in the form 

(10.2) H(u)  -- P ( u )  = H ~ (u) -- N ( u ) .  

The form H ~  of negative type qO, and hence will be negatively 
definite on a suitably chosen q~ :t through the origin in the space 
of the # variables (u).  Further P (u) will be zero on a suitably chosen 
( # - - P ) - p l a n e  ~1 also through the origin. If q O _ p >  O, zt will have at 
least a ( q ~  ~r e in common with ~r a. We see then from (10.2) 
that H(u)  will be negatively definite on :ze. Thus q _>__ qO _ p .  

On reversing the roles of H and H ~ one proves that qO is at least 
q - - N .  Hence q __< q O +  N. Thus the theorem is proved. 

Since P - ~ - N < :  n we have the following corollary. 

C o r o l l a r y  1. The number o/ /ocal points o~ any conjugate /amily  
on a given interval di/lers /rom that o/ any other conjugate /amily by 
at most n. 

If we are dealing with a second order differential equation in the 
plane, any solution of the differential equation not identically zero gives 
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the base of a conjugate family. Here n - - 1  and the corollary becomes 
the famous Sturm Separation Theorem. 

Corollary 1 applied to that  particular conjugate family F which de- 
~ermines the conjugate points of a given point, leads to Corollary 2. 

C o r o l l a r y  2. I! there are q conjugate points o / the  point x = a on 
ttte interval a < x <_~ b, there will be at most q @ n ]ocal points o/ any 
conjugate /amily on that interval. 

To still further extend Theorem 6 we need the following lemma. 

Lemma.  The nullity o/ the di[]erence /orm D ( u )  equals the number 
o~ linearly independent extremals common to the two families F and F ~ 

The nullity of the form D (u) is the number of linearly independent 
solutions (u s , . . . ,  u,,) of the equations 

0 U , = 2 ( g i s -  s==0  i,j= 1,..., 

If we refer to the definition (5. 1) of the initial elements gij, we see 
that (10.3) may be written in the form 

P ~ 0 v 
(10.4) ri~(a) [ykj(a) -- Ykj(a)] Uj = 0 

y where yis(x)  and are respectively elements of bases of F and F ~ 
which are unitary at x = a .  But (10.4) is equivalent to the equations 

# 0 ;  ;'10. 5) ykj(a)  U s = ykj(a)  uj (.]r j -~- 1 , . . . ,  n) .  

Since (10. 5) gives the conditions that  the members of F and F ~ which 
~ake on the values (u~ . . . . .  u )  at x - - a  be identical with each other, 
~he lemma follows at once. 

This leads to the following theorem. 

T h e o r e m  7. I/ two conjugate ]amilies have r linearly independent 
solutions in common, the number o/ local points o/ the one /amily on a 
given interval dif]ers ]rom that o/ the other /amily  by at most n -  r. 

According to the lemma the nullity of D (u) is here r, so that  in 
Theorem 6, P @ N -- n -- r. The present theorem now follows from (10.0). 

To illustrate the general content of Theorem 6 and its corollaries, 
let us consider an extremal segment g of a regular problem in parametric 
form in the calculus of variations. (See Morse w 1.) We can transform g 
into a segment y of the x axis (Morse w 4), and obtain the following 
theorem. 

T h e o r e m  8. Suppose g is an extremal in a regular problem in 
parametric ]orm in the calculus o/ variations. Let S 1 and S. z be two 
regular mani]olds o/ class C"' which cut g transversally at points at 
which the integrand .F is positive. Then the number o//ocal paints o /S~ 

M a t h e m a t i s c h e  A n n a l e n .  103.  ,5 
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on any segment o/ g di]]ers ]rom the corresponding number /or S~ by 
at most n. 

The proof will be at once clear to the student of the calculus of 
variations, and will not be given here. 

w 

A comparison of coefficients. 

Let there be given two self-adjoint differential systems 

(11.1) dT (ri3" Y/) -- P~2 Y~' = 0, 

(11.. .)  ~ ( ~ ,  d~ .~ y / )  - ~ j  y~. = 0 

satisfying the requirements of w 3. We shall prove the following theorem. 

Theorem 9. Zet ,F and ~ be respectively conjugate/amilies o/ (11.1) 
and (11.2). 1] F and F have the same initial elements gi~ at x - -a ,  and if 

(11.3)  ~,~ ~, T < % , h ~ j  (v) + 0, 

(11.4) Pq ~, T < P,~ 'h ~ (,7) + o 

then the q th local point o/.F, i[ it exists, must be preceded by the q th 
~oval point o /F .  Moreover the same result holds i/either (t l .  3) or (11.4), 
but not both (11.3) and (11.4) become equalities. 

Let H(u) and H ( u )  be respectively the fundamental forms for F 
and f', taken from x = a to x = b. Let us suppose H(u) expressed by 
(7.4). For the same functions. [~ (x)] it follows from the minimizing pro- 
perties of the integral in (7.4) that 

b 

l~rom this relation and (7.4), together with (11.3) and (11.4) we see that 

(11.5) ~(u)  < H(u) (~) + 0. 

Now holding a fast, place x -~  b on ~ at a focal point of ~' of the 
r th order. Suppose b is then preceded by k focal points, counting focal 
points from x -~ a. It  follows from Lemma A of w 7 that H(u) ~ 0 along 
some (k ~- r)-plane t through the origin. According to (11.5), I-[(u) < 0 
on t, except at most at the origin. 

The negative type number of H ( u )  must then be at least k -~ r, so 
that the (k-~-r) th  focal point of f~ must precede b, and the theorem is 
nrove~. 
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w 12. 

Fur ther  comparison of initial c o n d i t i o n s .  

T h e o r e m  10. Let F and F ~ be respectively conjugate /amilie~ o/ 
(11.1) determined at x = a by initial elements gi3 and gOj. I /  

(12.1) z5 . . . .  , n ) ,  ( z ) + ( 0 )  

then the k th /ocal point o] F ~ x ~ a, i] it exists, must be pre- 
ceded by the k th /ocal point o/ F. 

Let H ( u )  and H~ be respectively the fundamental forms for F 
and F ~ taken from x ~ a  to x = - b .  Suppose b is a focal point of F ~ 
With the aid of (7 .4)  we see that  

(12.2)  H ( u )  -- H ~  - - (go  -- g~ uj (i,  j -= 1, 2 . . . .  , n) .  

I t  follows from the final lemma of w 7 that  H ~  ~ 0 at each point 
of a q-plane ~rq, where q is the sum of the orders of the conjugate points 
of F ~ on the interval from a to b inclusive, and that  at no point on ~ 
except the origin are the first n of the u i 's zero. Thus on ~q the right 
member of (12.2)  is negative except when (u)--= (0) .  Hence H ( u ) <  0 
on e x c e p t w h e n  ( u )  ---- ( 0 ) .  

The type number of H ( u )  must then be at least q, and hence the 
q th focal point of F must precede x ~ b. The theorem follows at once. 

This theorem can be given a geometric form in terms of manifolds S and 
S o which cut the x axis transversally at  x ~ a .  If we recall that  transver- 
sality ~educes to orthogonality at a point of the x axis, and recall also that  

where z ~ ~ ( y )  was our representation of S, we have the following result. 

I] the difference between the x coordinate o/ a point on S,  and a 
1)oint on 8 O with the same (y) is a positive de/inite /arm in the set (y ) ,  
then the k th local point o/ S o ]ollowing x = a, i /  it existS, must be pre- 
ceded by the k th /ocal point o/ S.  

If we have a single second order differential equation 

d 
d-~(ry')  -- p y  = 0 (r > O) 

the condition (12.1) becomes 

(12.3)  g ~ <  gO. 

If we refer to the definition of the elements g~j we see that (12. 3) takes the form 
' a 

Yll(  ) < Y~ 
where 

- -  ( a )  - - - 1 .  

The theorem then becomes a well known comparison theorem. 
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w 13. 

Principal  planes.  

In order to obtain a more intimate knowledge of the variation of the 
focal points with the initial elements of a conjugate family F we introduce 
a generalization of the principal directions on a surface as follows. 

Suppose x = a is not a focal point of F. Let  x = c be a focal point 
of F of the r th order. The curves of F which pass through x = c on 7 
intersect the n-plane x ~ a in an r -plane ~ which will be called the 
principal r-plane corresponding t o  the focal point c. 

Suppose now that  the initial elements gij a t  x = a are functions (j~j (~) 
of class C' of a parameter  a for cc neighboring r For each a we obtain 
then a conjugate family, say F .  We need the following lemma. 

L e m m a .  I] as r approaches r certain ]ocal points approach the 
point x ~ c as a l imit  point, the corresponding principal planes on x = a 
will have all their l imit points on the principal plane corresponding to 

Let Yij (x, ~r be a base of F that  is unitary a t  x = a .  From the 
equations (5. 1) defining the elements gij it follows tha t  y~3 (x,  a) is con- 
tinuous in both x and a. A curve of F which meets the n-plane  x - - a  
in a point ( y ) :  (d) will be given by  

(13.1)  Y i = d j y ,  j ( x ,  cz). 

Now the right hand members of (13.1) are continuous in (d) ,  x, and a. 
The lemma follows readily. 

We state now our final comparison theorem. 

T h e o r e m  11. Let x ~ c  be a [ocal point o] the r th order o] the 
/amily  F~,  and let t be the corresponding principal r-plane on x = a.  
I /  on t the /orm 

(13 .2 )  g'J y, yj ( i ,  j - -  1, 2 . . . . .  n)  

is de/inite, then an increase o/ c~ in  any su//iciently small neighborhood 
o] % will cause an advance or regression o/ the r /ocal points at x = c 
according as the ]orm (13 .2)  is positively or negatively de]inite on t. 

Let  Ho(u ) and H ( u )  be respectively the fundamental forms corre- 
sponding to the families F~  and Fa, taken on the interval a _~ x ~ c. 
From (7 .4)  we see tha t  if we set (y)  equal to the first n variables in the 
set (u) we have 

(13.3)  H ( u ) - - H o ( u ) - ~ ( c ~ - - % ) g i S ( ~ ) y i y  j (i ,  j = 1  . . . . .  n) 

where ~ lies between a and %. 
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To be specific suppose the form (13. 2) is negatively definite on t. 
For ( e - - % )  positive, and sufficiently small, the right member of (10 .3)  
will still be negatively definite on t. 

I t  will be convenient to call a point (u)  unitary if u l u i :  1. 
Let us apply Lemma A of w 7 to the family F~ .  We shall prove 

that H ( u )  is negatively definite on the q-plane ~ of this lemma, where 
q is the number of focal points of F~o on the interval a ~ z ~ c. To prove 
this it will suffice to prove that  H ( u ) <  0 at all unitary points on %. 

Now, essentially by hypothesis the right member of (13.3) is nega- 
tively definite at the points (y) on t, and accordingly is negative at the 
unitary points (u) on the r-plane : r  of Lemma A, since the first n co- 
ordinates of (u) on ~ give points (y)  on t. Hence H ( u )  -< 0 at unitary 
points (u)  within a sufficiently small positive distance e of the unitary 

points on ~,.. 
At the remaining unitary points on ~q, Lemma A affirms that  H 0 (u) is 

negatiVe. Hence at these points H(u)  ~_ O, if e --  % be sufficiently small. 
Thus after a sufficiently small increase of ~ from %, H ( u ) <  0 for 

all unitary points on ~r e. Hence H(u)  is negatively definite on ~ .  Thus 
the negative type number of H ( u )  will be at least q. Hence as ~, in- 
creases slightly from er the r focal points originally at x ~ c regress. 

Not only will the focal points at x = c regress when a increases ~om %, 
but. also any small increase of ~ in the neighborhood of % will correspond 
to a regression of the focal points in the neighborhood of x = c. 

This follows from the lemma of this section, because with the aid of 
that lemma, and with the use of unitary points we see that  the form 

~j,~ (a) y, yj (i ,  j = 1 . . . .  , n) 

will be negatively definite on each of the principal planes that  correspond 
to focal points near x ~ c, provided ~ -  e o be sufficiently small. Thus 
in the proof already given we can replace eo by any other value of e,  
say ~1, sufficiently near %, and then show that a small increase of e 
from a~ also corresponds to a regression of the focal points near x - - c .  

The case where the form (13. 2) is positively definite is treated by 
first supposing that a decreases, and repeating in essence the preceding 
proof. The results for an increasing r then follow. 

Thus the theorem is proved. 

(Eingegaugen am 10. 7. 1929.) 


