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- RELATIONS BETWEEN THE CRITICAL POINTS
OF A REAL FUNCTION OF n INDEPENDENT VARIABLES*

BY
MARSTON MORSE

INTRODUCTION

In the main body of the paper the results and proofs are given for the
general case of a real function of s independent variables, and for a
domain of definition of the given function that is very general from the
point of view of analysis situs. For the purposes of an introduction one
of the principal results will be given for the case where n = 2. It must
be stated, however, that the results for the general case differ tremendously
from those for the case n = 2. The results for the case n < 2 can
conveniently be given in geometric language as follows:

Let R consist of the interior points of a finite, connected region of the
x, y plane, bounded by a finite number of distinct closed curves without
multiple points of any sort, possessing at each point a tangent which turns
continuously with movement of its point of contact. Denote the boundary
of R by B. Let f(x,y) be a real function of « and y defined and con-
tinuous in R and on B, and possessing continuous third order partial
derivatives in R taking on continuous boundary values on B. By the
positive direction of the normal to B will be understood the direction
that leads across B from points in R to points not in E. It is assumed
that the unilateral, directional derivative of f(x, y) on the side of the
inner half of the normal and in the positive direction along the normal
is everywhere positive on B.

Let z = f(z,y) be interpreted as a surface in ordinary euclidean
(x, y, 2) space. By a critical point of f(z,y) is meant a point in the
x,y plane corresponding to which the tangent plane to the surface
z = f(z, y) is parallel to the x,y plane. In the neighborhood of such
a critical point let f(z, ) be expanded according to Taylor’s formula in
powers of differences of the z’s and #’s which vanish at the critical point,
and with the remainder as a term of the third order. We hereby assume
that in this expansion the discriminant of the terms of the second order
is not zero.

From these assumptions it follows that the critical points are isolated
and finite in number, and that they are of the two general types called

* Presented to the Society, December 28, 1923.
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346 MARSTON MORSE [July

in differential geometry elliptic and hyperbolic points. The elliptic critical
points can be further subdivided into points at which f(z, ) takes on a
relative minimum, and those at which f(x, ) takes on a relative maximum.
Suppose that f(z,y) has a relative minimum at M, different points, and
a relative maximum at M, different points, while the hyperbolic critical
points are in number ;. Suppose that R and its boundary form a region
of linear connectivity &;.* With this understood we have the equality
fundamental for the case n = 2,

(a) MO_MI"}‘lMg: 2’_R1.
From this it follows immediately that
(b) ﬂ[l g ]l/[0+ 1{1“— 2 .

Tt should be noted that (a) does not follow from (b). The inequality (b)
has been obtained by G. D. Birkhoff.t Enunciated in slightly different form
for the general case, he has called his result the “minimax principle” and
he uses it to infer the existence of at least M, -+ R, —2 critical points
of the hyperbolic type when the existence of M, points of relative minimum
are known. He has carried out his work for the general case of real,
analytic function of = real variables and applied his result to the theory
of dynamical systems. Upon reading Birkhoff’s paper it occurred to the
author that inasmuch as there are m--1 different kinds of critical points
possible (in a sense to be defined later) there ought to be relations analogous
to (b) involving the numbers of critical points of all kinds and not simply
of just two kinds. With a proper interpretation of M; and R, (b) however
will serve to state Birkhoff’s “minimax principle” in any number of
dimensions.

The author has replaced the inequality (b) by an equality involving all
of the n+1 possible types of critical points, and in addition all of the
connectivity numbers of the »-dimensional region of definition of the given
function (Theorems 8 and 9). Further, a set of » additional inequality
relations have been discovered. The author ventures without proof the
opinion that these relations, or relations derivable from them, are all the
the relations there are between the numbers involved.

* Oswald Veblen, Analysis Situs, The Cambridge Colloguiwm, Part 2, p. 50, § 28.

We shall have occasion in the future as well as here to make use of the terms of
analysis situs. They will be used in the semses in which they are defined in the work
just cited. In the remainder of this paper reference to this work will be indicated by
the letter V.

+ Dynamical systems with two degrees of freedom, these Transactions, vol. 18 (1917),
p. 240.
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Note. For the case » =2 the author has been able to outline an
alternative proof of one of the relations between the critical points by
making use of the Kronecker characteristic of the given function and its
partial derivatives. That the Kronecker theory as developed by Kronecker
(Werke, vol. I, pp. 176-226, and vol. II, pp. 71-82) will not suffice in
general to obtain the results of this paper is evident from the fact that
Kronecker distinguishes between the critical points according to the sign
of the hessian of the function, while in this paper both in the proofs and
in the results there is an essential distinction between the n -1 types of
critical points. Further, in Kronecker no reference is made to anything
like the connectivity numbers of the regions in which the critical points
are being studied.*

THE FUNCTION f' (2, @9, -+, Xn)

1. The function f(z,, ., ..., ,) and its critical points. Let
(21, X2, + -+, xa) be the coordinates of any point (X) in a euclidean space
of n dimensions. In a finite part of this space let there be given an
n-dimensional region 3. The set of interior points of = will be denoted
by E. At every point of R let there be defined a real, single-valued,
continuous function of the z’s, namely f(x,, s, - -+, 2s). Suppose further
that in I2 this function possesses continuous partial derivatives with respect
to each of the «’s of at least the first and second orders.

A point of B at which all of the first partial derivatives of f vanish
will be called a critical point of f. Any other point of I will be called
an ordinary point of f. The value of f at a critical point will be termed
a cretical value of f. As a further assumption regarding f we will suppose
that in the neighborhood of each critical point f possesses continuous
third partial derivatives. Let there be given a critical point of f at which
J takes on the value ¢. For simplicity suppose this critical point at the
origin. In the neighborhood of the origin, f can be represented with the
aid of Taylor’s formula in the form

(1) Sy, 2oy o ovyap) — ¢ = Zaij iz (e, x, oo vy x0)
i
(4 =1,2 ..., m wy = aj),

where the terms of first order are missing because the origin is a critical
point, where the terms of second order are represented as a symmetric
quadratic form in the = «’s with constant coefficients, and where the
remainder »(x;, y, - -+, @) is included as a term of the third order. In

* For closely connected results in the case n =2 see a paper by H. Poincaré, Journal
de Mathématiques, ser. 3, vol. 7 (1881), pp. 375-421.

22+



348 MARSTON MORSE [July

any representation such as this of the function f in the neighborhood of
a critical point, it is hereby assumed that the terms of the second order
constitute a non-singular quadratic form. Analytically this means that the
determinant

(2) | F0.

It is a consequence of this last restriction upon f that in a sufficiently
small neighborhood of any critical point there is mo other critical point.
For, if the partial derivative of f with respect to z; be denoted by f:
(=1, 2,..-, n), each critical point of f is a solution of the equations

(3) fi:‘fz:--.:f‘n:().

Now the jacobian of the n functions f; with respect to the n variables a;
at the critical point we are here considering, namely the origin, vanishes
only with the determinant |e;| which we have assumed not zero. It
follows from the theory of implicit functions that the system of equations (3)
has no other solution in the neighborhood of the origin than the origin
itself. Thus there are no other critical points in the neighborhood of the
origin.

A consequence of the result just obtained is that in any closed region
S all of whose points are points of R, there are at most a finite nuwmber
of critical points of the given function. For if there were an infinite
number of critical points in S, by the Weierstrass cluster point theorem,
these critical points would have at least one cluster point, which, since S
is closed, would belong to §, and hence would be a point of 2. At each
of these critical points all of the first partial derivatives of f would
vanish, and since these partial derivatives are assumed continuous at every
point in R, they would all be zero at the cluster point. Thus the cluster
point would also be a critical point contrary to the result of the pre-
ceding paragraph that the critical points of f are isolated.

2. Certain preliminary lemmas. Lemmas 1 and 2 of this section are
important aids in later proofs. They refer to a function F'(x;, @, -, zn),
real, single-valued, and continuous in the neighborhood of the origin
(written N). To aid in proving Lemma 1, results (A), (B), and (C) will
first be established.

(A) If F(zy, g, -+, xn) possesses continuous first partial derivatives in N,
then in N

(4) F(xl,xg, "',(lfn) = F(O, Loy Tgy * o0y xn) "I‘ a(xl, Loy v o0y xn) &Xy

where a(xy, Xy -+, xn) 18 single-valued and continuous in N.
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A function a(z, xs,---, xs) readily seen to satisfy the requirements of
(A) is defined by the equations

— F(x1’x27 "‘)*xfb) - F(ny%"';xn)
X !

(6) a0, zs, 25, « -+, xn) = I (0; x?)"'yxn))

x F 0,

(5) “(xly Lzyrey 'Tn)

where F; will be taken to mean the partial derivative of F' with respect
to x; (¢ =1, 2, ..., n).

(B) If F(xy, xs, + -+, xn) possesses continuous second partial derivatives in
N, then in N

(1) F(xh Xgy e, an) = F(0, x27"'71'n) + I (0, Tay ey Xn) X
+ b(xl7w27 Tty xn) .’I)%

where b(xy, x9, + -+, ) 1s single-valued and continuous in N.
A function b(x, zy, -, z,) readily seen to satisfy the requirements
of (B) is defined by the equations

(8) b(mh Lay ey xn)

o F(wl)xm"'7-%71)‘17(0,552;"';xn)—Fl(O,J/':)y"‘,xn)xl 0
- x:z y L1 :i: ’

1

Fu(O, X, ~-~,xn)
2 )

(9) b(O?x‘Zi "‘7xlb) -

where Fj; will be taken to mean the second partial derivative of F' with
respect to #; and x; (4,5 = 1, 2,...,n).

(C) If F(wy, xs, -+, xn) possesses continuous first partial derivatives in N,
then i N

(10) F(zy, 29, -+, xy) == F(0,0,-.-,0) + 2.“@' (T, 28y soeyn) s (1=1,2,..+, m),
(2

where each a; can be so chosen as to be continuous in N.

From (A) it follows that (C) is true for » = 1. Following the
method of mathematical induction the truth of (C) is now assumed for the
case of n—1 independent variables. Whence

(11) F(Orx?,”"xﬂ) - F(O’O» ,O) + sz (%;"',xn) Zi (Z = 27"'7 n)
. i

where each b; is continuous in N. If F(0, x, -+, ap) in (4) be replaced
by the right hand member of (11) the result (C) follows directly.
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LemMA 1. If F(xzy, xs,- -+, @y) possesses continuous second partial deri-
vatives in N, and vanishes with its first partial derivatives at the origin,
then in N

(12) F(xl) Loyt Tn) = Zaij (.Z‘[, Loy =ocy Zn) Zixj (L.j = 1,2,..-, n)
1)

where each function a; can be so chosen as to be continuous in N.
For n = 1 (B) shows that Lemma 1 is true. If Lemma 1 be assumed
to be true for the case of »—1 independent variables, then

(13) F(Q, zg, -+, 7n) = Zbij (2 + vy Xn) X7 (dyj =2,3,-.,m)
i

where each b; is continuous in N. If F'(zy, s, - - -, xa) satisfies the hypo-
theses of this lemma, F, (0, xy, - - -, ) will satisfy the hypotheses (C) so that

(14) Fr(0, aaye ey an) = ¢ (25, v, Tn) @ (G =2,8,+-+,n)
1

where each ¢; is continuous in N. If now in (7) F (0, 25, -+, x,) and
F, (0, 23, - - -, 2y) be replaced by their values from (13) and (14) respectively,
then Lemma 1 follows as stated.

To prove Lemma 2, the following results, (A"), (B'), and (C), will first
be proved.

(A') If F possesses continuous second partial derivatives in N then the
Sfunction a(xy, 2o, « -+, xn) of (A) as defined by (5) and (6) has continuwous
first partial derivatives in N.

1t follows from (5) that @ (xy, xa, - - -, 2,) has continuous first partial deri-
vatives in Nif z; 0. For 2; = 0 the partial derivatives of « (x, 23, -« -, 2n)
with respect to (xs, as, - -, 2,) exist, as follows from (6). For xz, 4 0 it
follows from Taylor’s formula that

Fll (01'1, Ly *vvy 'Tn) Xy

(15) a(wuﬂ%,"';xn) :FI (07w2>"')xn)+ 2

, 0<26<1.

From (15) and (6) and the definition of a derivative it follows that the
partial derivative

El (O; Loy * ) 'Tn)r

awl(o) Loy * 0y Xn) = 9

To prove dg, (s, s, - -+, #;) continuous for z, = 0, observe that from (5)
for 2; + 0 it follows that

— .’IC1F1(x1,x2, "'7xn)_—[F(x1; L y “'7xn)_"F(0,(L’2, ) xn)]
’

Ay
1 2
x

1

which by two applications of Taylor’s formula becomes
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xl[Fl (07 3)2, Ct xn)'{”Fu(exl; x2} M) -Tn)xl]

2
Ty

/
F11(0 x17x2; "'73911)93%
2

-FI(O; Lgyery xn)xl—l_

2
Zy

Iy, (0/x1; Ly, wn)
2

= Fi (g, g, « oy a0) — , 0<<0<C1, 0< ',

whence

lim ay (i, x2, -+, xn) = 11 (0, ?2’ "ty @n)
x,—>0

and a., is thereby proved continuous in N without exception.
To show that a,,(ry, s, -+, 24) is continuous in N for z; = 0 observe
that from (5) for z, 4 0 it follows that

Folry, xg, ooy an) —Fo (0, 20, -+, x
arg(xul'ﬂ, _“’wn) —_ 2( 1y L2y ] )L)x 2( ) A2y ] n),
1

which by Taylor’s formula gives

(16) ad’iz(xlya’h"':wn) = Fy (01, 29, + - -, in), 001, J'l:f‘oy
while from (6)

(17) Uy (0, 9y ooy an) = Fi3(0, T, -+, ap).

From (16) and (17) it follows that a, is continuous in N even when z; = 0.
The remaining partial derivatives of a(xy, #,, - -+, 2,) are similarly seen
to be continuous in N.

(B) If F possesses continuous third partial derivatives in N, then the
Sunction b(xy, xa, -+, 20) of (B) as defined by (8) and (9) possesses con-
tinuous first partial derivatives in N.

The proof of (B') is similar to that of (A).

(C") If F possesses continuous second partial derivatives in N then the
Junctions a;(xy, za, - -+, xn) of (C) can be so chosen as to possess continuous
Jirst partial derivatives in N.

A review of the proof of (C) with (A’) in mind will show the truth of (C').

LeEMMA 2. If F possesses continuous third partial derivatives in N, and
vanishes with its first partial derivatives «t the origin, then F can be
represented in the form

(18) . Fxy, 2o, -+, xn) :Zayxixj (yj=1,2,.--,m)
ij

where each a;; possesses continuous first partial derivatives in N.
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A review of the proof of Lemma 1 with (A’), (B') and (C') in mind
will show the truth of Lemma 2.

LEmMA 3. The functions ai; (%, x5, - -+, xx) of Lemmas 1 and 2 are such
that at the origin

(19) aij + aji = Fy.
Under the hypotheses of Lemmas 1 and 2

ZEJ (lely 02 Xy ooy ann) XiZj

(20) F(xl)xm "‘,xn) = 4 9 y 0<C;<1.

Hence from (20) and (18)

ZEJ (lely 027}2, cery Onxn) X Xj
1) Sajrimy =
i 2

Let (y1, 43, - -+, yu) be any point in N, and let » be a positive constant
so small that (ry, rys, -++, *yu) is a point in N for any choice of
(W1 Y2, -+, yn) in N. In (21) set 2; = ry; and in the resulting equation
cancel the factor +* from both members. There will then result the equation

2” I (r6, Y1, 702 Yz, + -y rO0ulYn) Yilfj
ij
2

(22) i (rys, vy -5 1) Yildhi =
ij

The two members of (22) possess limits as » approaches zero, and these

limits are equal, giving

iZ.Fij 0,0,---,0) YilYj
(23) 2y (0,0, 0) ayy = 5

Equation (23) is an identity in the y’s. Hence the coefficients of corre-
sponding powers are equal. The equation (19) follows directly and the
lemma is proved.

3. Different types of critical points. Let there be given a critical
point of f. At this critical point let ¢ be the value of f. If this critical
point be supposed to lie at the origin, it follows from Lemma 2 that in
the neighborhood of the origin the difference f—c¢ can be represented in
the form

(24) f(xlyxm""xn)_c == 2“0 (21, X9, +++, Xn) i (Z,J = 1,2,..,n)
7

where a; (1, s, - -+, @) is a single-valued, continuous function of the z’s
in a sufficiently small neighborhood of the origin, provided with continuous
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first partial derivatives with respect to each of the x’s. Further without
any loss of generality, we can suppose that

(25) Ay = Qji.

If we set a; (0,0, .-+, 0) = e, according to Lemma 3, we will have
at the origin
(26) 2“0’ = fxixj.

Equation (26) shows that the constants «; appearing here are the same
as the constants e; used in (1). In § 1 we assumed that || 4 0. We
can conclude that

27 lag| +0,

in a sufficiently small neighborhood of the origin.

According to the well known theory of quadratic forms a non-singular
quadratic form in n variables (xy, xs, .-, x,), by a real, non-singular,
linear transformation of (z;, zz, - - -, 2x) into n new variables (v, ¥z, - - -, Yn),
can be reduced to a quadratic form

(28) — =y Yt vt

where & is one of the integers from O to =, inclusive.* An examination
of the Lagrange method of making this reduction shows that it can be
carried through in the case where the coefficients a; are not constants,
by formally following the method used for the case where the coefficients
a;; are constants, writing down the Lagrange transformation at each stage
with the variable coefficients a;; substituted for the constant coefficients a;
of the ordinary theory, provided at each stage at least one of the co-
efficients a; is not zero at the origin. If at any stage all of the co-
efficients a; are zero at the origin, at least one of the remaining coefficients,
say ars, Will not be zero at the origin since | e | + 0. If the preliminary
transformation

Ty == &y —— s,
xs == 2y -+ zs,
T )

be made the resulting coefficients of z., and z, will not be zero at the
origin, and the Lagrange type of transformation can then be used. The
transformation will of course be restricted to a neighborhood of the origin
for which | ;| + 0 and such that each a; by which it has been necessary

* Bocher, Introduction to Higher Algebra, p. 131.
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to divide shall not be zero. If the given critical point is not at the origin
a proper translation of the space of the n 2’s will bring the critical point
to the origin. The above method of reduction of the function f will then
give the following lemma.

Lemma 4. If flay, 2, -+, @) takes on the value ¢ at a critical point
(@0, 2, -+, 20) = (X,) then there exists a real transformation of the form

(29) i zzclj(.rj'~a§), 10 G=1,2-,m)

wunder which

(30) .f(a"p Loy * vy ""’n)’—(’ T ’/i "'”?/3 s I/;% —*' 2/;2”,1“‘ v +Z/72;
where each ¢ is a continuous function of the 2’s provided with continuous
Sirst partial derivatives in a sufficiently small neighborhood of (Xo), and
where &k is some integer from O to m, inclusive.

The integer k is called the type of the given critical point. The number
of critical points of the kth type under boundary conditions to be introduced
presently will be shown to be finite and will be denoted by my.. It is the
purpose of this paper to obtain the relations between the numbers »; under
various types of boundary conditions.

The jacobian of the functions (yi, /2, -+, ya) of (29) with respect to
the variables (z;, s, - - -, xy) reduces at (Xp) to the value of '¢;| at (Xo).
Thus this jacobian is not zero at (X,). It follows that the {ransformation (29)
s one-to-one in the neighborhood of the given critical point.

4, The boundary conditions «. In order to proceed further it is
necessary to make some assumptions regarding boundary conditions. The
first boundary conditions that we introduce are, strictly speaking, not
boundary conditions alone. They will be shown later to lead to results
depending upon boundary conditions in a strict sense. These first boundary
conditions which we consider are introduced because of their simplicity.

The boundary conditions e will be considered as fulfilled if among the
(n — 1)- demensional spreads

Sxy, 2oy -, xn) = const.

there exists one, say A, with the following properties:
I. A is a closed manifold;
II. A forms the complete boundary of a portion of space, S, including A.
all of whose points are points of R;
II1. Each critical point of f is an interior point of S;
IV. The value of f on A is greater than the value of f at any interior
point of S.
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The region § as defined in the boundary conditions e« is a closed region
containing all of the critical points of f. It follows from the results of
§ 1 that there are at most a finite number of critical points of /. According
to condition IIT there is no critical point of f on A.

5. The complex of points satisfying 7 (x,, z,, - - -, ) < ¢. According
to the boundary condition IV the absolute maximum of f in § is taken on
at each point on the boundary of S and at no other point of S. If any
absolute minimum point of f in § be joined by a continuous curve to some
boundary point of S, every constant ¢ between the absolute minimum m
of £ in § and the absolute maximum M of f in S will be taken on by f
at some point in S on this curve. Let ¢ be any such constant between m
and M, not a critical value of f. The set of points (xy, 2z, - -, @y) = (X),
lying in § and satisfying
31 Sy, xy, <oy xn) = ¢

according to the choice of ¢, are all ordinary points of f. This set of points
is closed since f is continuous. Its points are all interior points of S since
the value of f on &’s boundary is M. If (X,) be any point on (31), at
least one of the partial derivatives of f; say fx, will not be zero at (Xo). It
follows that the points (z, ., - - -, x») Which satisfy (31) in the neighborhood
of (X,) can be represented in the form

2 = h(xs, 25,7, )

where A (x3, 23, - -+, z,) is a single-valued function of its arguments provided
with continuous partial derivatives up to the second order all in the neigh-
borhood of (X,). Geometrically this means that the manifold of points
satisfying (31) possesses at each point of (31) a hypertangent plane which
turns continuously as the point of tangency varies continuously on (31).
The manifold (31) thus has no singular points.

The set of points (X) in § satisfying

(32) e

will make up an n-dimensional region, say C,. In particular C, will include
all of the points neighboring any absolute minimum of f. Its points are
all interior points of S, and its boundary obviously consists of the points (X)
satisfying (31). It can be shown that C, is an n-dimensional complex in
the technical sense of analysis situs.* In a proof of this the same sort
of considerations would enter as enter in connection with the so called
“regular regions” in the plane.t

* See V, loc. cit., Chap. 3.
+ W. F. Osgood, Lehrbuch der Funktionentheorie, p. 179.
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The variation of the counectivity numbers R,, Ry, ---, R, of €, with
variations of ¢ will now be studied. To that end it will be convenient to
consider first the trajectories orthogonal to the manifolds /= const.

6. The trajectories orthogonal to the manifolds /' = const. In
studying the trajectories orthogonal to the manifolds /= ¢ the neighborhoods
of critical points of f will be excluded from consideration. The trajectories
orthogonal to the manifolds /== ¢ at ordinary points of / might be defined
as those curves along which the differentials dx,, ds, ---, dxn, at any
point are proportional to the partial derivatives fi, f3, - - -, f» at that point,
where f; is used to denote the partial derivative of f with respect to x;
(¢=1,2,..., m). Two trajectories are considered as the same if they
consist of the same points (z;, xe, ---, z»). It is thus explicitly pointed
out that a difference of parametric representative alone does not, according
to this convention, constitute a difference in the trajectories.

At any ordinary point of f at least one of the partial derivatives of f
is not zero. Let (P) be an ordinary point of f and suppose that at (P)
the partial derivative f,, + 0. The trajectories passing through the points
neighboring (P) will be solutions of the differential equations

dx, S

) A

where 7 takes on all the integers from 1 to n except m. According to
the fundamental existence theorems for ordinary differential equations there
is one and only one trajectory through each point of a sufficiently small
neighborhood of (P).

A set of differential equations will now be introduced in which the in-
dependent variable is not x, but a parameter z, but whose solutions also
represent orthogonal trajectories. The equations are

dx;

(34) d'l;

= rf; (2=1,2,...,n)

where
1

AR AT

P

The particular form of dependence of the 2’s upon » which is required
by the above differential equations (34) is chosen in preference to any
other because for a solution z (¥), @y (¥), - - -, 2za(z) of (34) the following
identity in ¢ holds:

(35) flei (), 23(x), -+, 2a(¥)] = 7 4 const.
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For if the left hand member of (35) be differentiated with respect to =,
making use of (34) it is found that the resulting derivative is unity.
Whence (35) follows directly.

Let there be given an ordinary point (B) with coordinates (b, by, - - -, bn).
In a sufficiently small neighborhood of (B) the denominator of the quotient
in (34) giving » is not zero, and in such a neighborhood the right hand
members of the differential equations (34) possess continuous partial deri-
vatives with respect to each of the «’s. Further these right hand members
do not involve = at all. It follows from the fundamental existence theorems
of ordinary differential equations that there exists a positive constant e
so small that for any point (4) = (@, as, -+, @,) in the e neighborhood
of (B) and for any constant 7, whatsoever, and range of + within e of
7y, there exist functions

(85") 2 = (@, @y ooy n, 1, 1) (i =1,2,...,n)

which give for constant values of (ay, as, -, tn, 7o) and for a variation
of 7, a solution of (34) that passes through (4) when = = 7,, and is the
only such solution of (34). Further, for the above prescribed domain of
(ar, as, -+, an, 7o) the right hand members of (35') possess continuous
partial derivatives of at least the first order with respect to all of their
arguments.

Because the right hand members of (34) do not involve = it follows
that two solutions of (34), for which the points (ay, as, ---, a,) are the
same but for which 7, differs, will give the same set of points (z;, s, - - -, 2),
assigned however by (35') to different values of . What is here desired
is to obtain all of the orthogonal trajectories in a form which will be the
simplest possible for our purposes. This end will be served by setting

o = fay, as, -, an).
Upon writing
hilay, as, -, an, f @y, ag, -+, an), v] = Hi(ay, @z, -+, tn, T) (i = 1,2,--+, 1)
(35') reduces to
(36) i = Hi(ay, aa,--+, an, 7).

For initial conditions we now have
(37) ai =Hi [aiya%"‘,a‘m .f(alyab""an)L

an identity in all of the a;’s in the neighborhood of (B). If the solution
of (34), namely «, (z), . (z), - .-, z, (v), appearing in (35) be now understood
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to be a solution given by (36), a substitution in (35) of v = f(a;, @z, -+, a,)
will show that the constant in (35) is zero. Thus for all solutions of (34)
given by (36) there results the identity in

(38) f[afl (T)y Xy (T)y ) In (T)J = 7.

Thus we have proved the following lemma:

LeEMMA B,  The trajectories orthogonal to the manifolds f = ¢ can be so
represented that the parameter © at any one of their points equals the value
of [ at that point.

7. Invariance of the connectivity numbers of the complex
S <c with variation of ¢ through ordinary values of f. The following
lemma will now be proved.

LemMA 6. Let a and b (a < b) be two ordinary values of f in S such
that the interval between a and b contains only ordinary values of f; then
the set of points in S satisfying
(39) f=Za

can be put into one-to-one continuous correspondence with the set of points
in S satisfying
(40) S =0

The constant a is by hypothesis not a critical value of /. Since there
are altogether at most a finite number of critical values of f there can
be chosen a constant « less than a and differing from @ by so little that
between an @ and « there is no constant equal to a critical value of f.
Denote by H a set of orthogonal trajectories in which there is just one
trajectory passing through each point of

(41) S = «.

Let these trajectories be represented in the form described in Lemma 5
in which the value of the parameter = at each point equals the value of
/ at that point. The point on each trajectory that lies on (41) will
correspond to the parameter value r = «.

Since there is no critical value of f equal to a constant between «
and b each trajectory that starts from a point of (41) can be continued
through an arc corresponding to a range of values of v from « to b.
On these arcs the parameter values + = a and = = b, respectively, will
correspond to points on /=« and f=>b. To the complete set of values
of v satistying
(42) a <t <)
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there will correspond points satisfying
43) e« < <0,

Further, the set of trajectories H, including as it does a trajectory through
each point of (41), it continued through the interval (42) will include at
least one trajectory through each point (2, @, ..., @,) satisfying (43).
For if

(@, ag, +--, an) = (4)
be any point such that

(44) a« < flay, ag, «-+, ay) =0

a trajectory through (A4), represented as described in Lemma b, will pass
through (4) for a parameter value + = f (ay, as, ---, ay) and if continued
in the sense of decreasing v will reach a point on (41) when ¢ reaches
the value 7 = «. Finally, it follows from the fundamental existence
theorem stated in § 6 that there is not more than one of these trajectories
through each point satisfying (43).

The correspondence whose existence is affirmed in the lemma can now
be set up. First observe that the points satisfying (39) consist of the
sum of the points satisfying

(45) S«
and those satisfying
(46) a < f < a,

while the points satisfying (40) consist of the points satisfying (45) together
with the points satisfying
47 < f < b

Thus to put the points satisfying (39) into correspondence with the
points satisfying (40) the points satisfying (45) are first made to correspond
to themselves. The points satisfying (46) are then put into correspondence
with those satisfying (47) by requiring that any point satisfying (46) that
arises on the trajectory through it from a value of ¢ that divides the
interval from « to @ in a certain ratio, shall correspond to that point
satisfying (47) that lies on the same trajectory and arises from a value
of = that divides the interval from « to b in the same ratio.

That the latter correspondence is one-to-one follows from the fact
that the trajectories concerned pass through each of the points concerned
with one and only one trajectory through each point. That this correspon-
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dence is continuous follows from the nature of the dependence of the
points of the trajectories on = and on their initial points on (41). Further,
the correspondence of the points satisfying (45) with themselves obviously
joins up in a continuous manner with the correspondence of the points
satisfying (46) with those satistying (47). Thus the lemma is proved.

CRITICAL POINTS OF THE TYPE ZERO

8. The connectivity numbers of the complex /< m -¢* where
m is the absolute minimum of /. Let e be a positive constant so small
that between m and m - ¢* there is no constant equal to a critical value
of /. Under the boundary conditions «, § 4, f will take on its absolute
minimum at one or more points all interior to S. Let P be one such
point. Itfollows from L.emma 4 of § 3 that the points (z;, z,, -+, 2,) = (X)
neighboring P can be transformed in a one-to-one continuous manner
into the points (v, ¥s, +++, yu) = (1) neighboring the origin in such a
manner that

S, wyy e, ) —m = yitys+- 4yl

Thus the points in the neighborhood of P satistying
.f(xly Xy, -Tn) é nl_]‘ 02,

for a sufficiently small positive constant e, will correspond in a one-to-one
continuous manner to the points satisfying

v+t tdy <

or what might be described as the points interior to and on an (n—1)-
dimensional hypersphere in an n-dimensional space. Such a set of points
would constitute, in the terms of analysis situs, an n-cell and its boundary.
With this understood we can state the following lemma.

Lemma 7. If f takes on its absolute minimum m in S at s distinct
points of S, then for a sufficiently small positive constant e the set of points
mn S satisfying

Slay, xg, ooy a0) < m—+eé*

constitutes s distinct n-cells and their boundaries.
From this lemma and the definitions of the connectivity numbers* we
have the following theorem.

* 'V, loc. cit.
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THEOREM 1. If f takes on its absolute minimum m in S at s distinct
points of S then for a sufficiently small positive constant e the set of points
in S satisfying

S@r, xey ey ) < mt e

makes up an n-dimensional complex with the conmectivity numbers By = s,
BR=~Ry=...=R,= 1.

9. A critical point of type zero at which /' is not equal to its
absolute minimum.

THEOREM 2. If a and b (¢ << b) are any two ordinary values of f in
S between which there is just one critical value of f, say ¢, taken on at p,
critical points all of the zeroth type, then the commectivity numbers B;, of
the set of points in S satisfying

(48) f(wl,m%“'yxn)éb’
differ from the commectivity numbers Ry of the set of points in S satisfying

(49) f‘(xlaxéy""xn)g a
only in that
By = R +]70 .

Let P be any one of the p, critical points of the zeroth type. If e be
a sufficiently small positive constant it follows from Lemma 4, § 3, that
the points (x;, @y, ..., 2,) neighboring P and satisfying

(50) S<c+é

can be made to correspond in a one-to-one continuous manner to a set
of points (yi, ¥, -, yn) satisfying

(61) ittty e

Now the points satisfying (51) make up an n-cell and its boundary. There
will thus be associated with each of the p, critical points an n-cell and
its boundary consisting of points satisfying (50). For e sufficiently small
these n-cells will be distinct from each other and from the set of
remaining points, say Cy, satisfying (50).

The set Cy is bounded by points at which /= ¢+ e*, and contains only
those critical points which are already contained among the points satistying
(49). With the aid of the orthogonal trajectories as used in the proof of
Lemma 6, it is easy to show that €y can be put into one-to-one continuous

23
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correspondence with the set of points satisfying (49). The connectivity
numbers of C, are accordingly equal to the connectivity numbers R; of
the complex (49).

If now the po m-cells and their boundaries be added to the complex
C, there will result the entire set of points satisfying (50) and the only
connectivity number to be thereby changed will be Ry, which will be
increased by po. If finally we suppose e originally chosen so small that
¢+e? < b, it follows from Lemma 6 that the set of points satisfying (50)
can be put into one-to-one correspondence with the set of points satis-
fying (48). Hence (48) defines a complex with the same connectivity
numbers as the complex defined by (50). Retracing the steps it is seen
that the relation between the connectivity numbers of the complexes (48)
and (49) is as stated.

CRITICAL POINTS OF TYPES 1, 2, ..., n—1

10. Outline of the method to be followed. Throughout this chapter
we shall assume that we are dealing with a critical value ¢ taken on by
f at just one critical point of the kth type, where k& may be any one of
the integers 1, 2, --., n—1. We can and will suppose e to be so small
a positive constant that there is no critical value of f between ¢—e*
and c¢-Fe? or equal to ¢c—e* or ¢-+e® Tt is the aim of this chapter to
determine the difference between the connectivity numbers of the complex
of points (X) satisfying

(52) f < e—é
and the complex of points (X) satisfying
(53) J < cteb

To accomplish this we will first show that the complex (52) can be put
into one-to-one continuous correspondence with the complex (53) provided
we exclude a properly chosen neighborhood of the given critical point.
This will be accomplished with the aid of the orthogonal trajectories
already used in § 7. The problem then will be resolved into one of
determining the difference between the connectivities of the complex (53)
and of the complex (53) with this neighborhood excluded.

11. Simultaneous reduction of f(x,, ., .-+, ,) and the dif-
ferential equations of the orthogonal trajectories to a simple form.
It follows from Lemma 2, § 2, that, in the neighborhood of a critical point
(a, af, -+, 25) at which f'= ¢,
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(54) f—e = 2y (@—ad) —a) (G, j=1,2 -, n),
Y

where each b; is a continuous function of the x's possessing continuous
first partial derivatives, and where we can suppose that b; = b;;. In the
following the matrix whose element in the ¢th row and jth column is
given by a symbol such as 0; will itself be denoted be the same symbol
b without the subscripts. Conjugates of matrices will be indicated by adding
a prime.

LemmMa A, In the neighborhood of a critical point (sc(l), :cg, cey :L'f,) = (Xo)
there exists a real transformation of the form

(55) ai—ad = 2wz (G, =1,2 -, n)
J

such that (54) becomes

(56) ;bﬁ(w" — x9) (xj——x}’) = 1+t

where 1y, s, - -+, ri are negative constants and vy, rita, - -+, 7n are positive
constants, while in (55) each wy; is a function of the 2's possessing continuous
Jirst partial derivatives in the neighborhood of the origin of the space of the
2’s, and at the origin the matriz equation

(57) Ct(O’O"",()) a’(0,0,---,O) =1
holds where 1 is the unit matrix.

Proof. From the results of § 3 it follows that in the neighborhood of
the given critical point there exists a transformation

(58) xz—xg :jze’ijyj (/l.h/' = 1727"'7 %)
under which
(59) ;j:bij (@, —a) (@;—a) = —yi—v; - —yi+vi T Ui, eyl

where each e¢; is a function of the #’s possessing continuous first partial
derivatives in the neighborhood of the origin of the space of the y's.
Denote by 7, the value of e; at the origin of the 3’s. Suppose that under
the transformation

(60) X, :2”]@'%‘ (1.;.7 =1,2,..., ")7
J

(61) Zz:xf Z;Vﬁyz‘yj'

23*
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According to the theory of pairs of quadratic forms the quadratic forms
in the right hand members of (59) and (61), by a real non-singular trans-
formation with constant coefficients of the form

(62) v =20, G, j = 1,2,---,m)
J
can be reduced to a pair of forms
le‘f + 7.223 .-+ rnz‘;'z’
a4 a4+ 2.

The transformation obtained by expressing the z’s in (58) in terms of
the 2's in (62) is the one whose existence is affirmed in the lemma. For
the matrix of this combined transformation, namely ¢d, reduces at the
origin to 5d, and 7J is the matrix of a transformation under which

n n
et =22,
=1 =1

so that gd is orthogonal as (57) requires. The remaining assertions of
Lemma A follow directly.

Lemma B, In the meighborhood of the critical point (X,) there exists
a real transformation

(63) x,—a; :;f‘yij?jj (Gjg=1,2,--,m)
such that
(64) iZjb,,-(x,--w?) @—a) = —gi—yi— - — i+t +od

while the differential equations of the orthogonal trajectories to the manifolds
S = const. if taken in the form

dxh o
(65) ‘d—t—::fh h=1,2,.--.,n0)

are transformed into the equations
(66) “Zz’t‘ = 2Thyh + szAhijyiyj (e, i, =1,2,..., ’n)

where 1y, ra, -+, Yk are positive constants and Viyi, Tid2, -+, Tn are nega-
tive constants, where each gy and Awngj is a continuous function of the y's
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wm the neighborhood of the origin and the g;j there possess continuous first
partial derivatives.

Proof. With the aid of the representation of f given in (54), (65)
becomes

d 8 by
(67) T — 9 3 i) + 2 (g —a0) (y — ).
dt 7 i oxn J

It follows from (C), § 2, that each by; equals its value, say Bn at (Xp),
plus a sum of terms each a product of a difference (z; — «f) multiplied by

a function of the z’s continuous in the neighborhood of (X;). Thus (67)
becomes

(68) ddmzb = 2 2 Bui (i — 0) + 2 Buj (s — %) (2 — )
7 %

where each Bp; is a continuous function of the z’s in the neighborhood
of the origin. The transformation (55) of Lemma A will be applied to
(68). Remembering that the value of a; at the origin is written as ey,
it is seen that (55) may be written

(69) an——ah = ;“hizi + ;‘ Chij 23 2
4
where each Cp;; is a continuous function of the z’s in the neighborhood

of their origin.
The transformation (55) applied to (68) gives

dzn ¢ O
(70) T 2 zZj)m'zi + 12,' Dyijzizj,
where the elements pp; are constants such that, in matrix notation,
(71) p=ca18a
and each Dy; is a continuous function of the z’s in the neighborhood of
their origin. But according to (57) ¢’ = 1 so that ¢’ = e~!. Hence
(71) may be written as
(72) p = o Ba.

But from (55) and (56) it follows that
(73) aba = r.

Matrix relation (73) becomes at the origin

(74) lx’ﬂa = 7
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so that from (74) and (72) we have

p =7
Thus (70) takes the form
dzn
(75) T = 2rnen + ;DhijZiZj.
Finally the transformation
(76) Yn = Vl/lTh‘—zh (h =1,2,.-- n)

changes the right hand member of (56) to the right hand member of (64)
and takes (75) into the form (66). Thus the transformation obtained by
combining (55) and (76) so as to eliminate the 2’s is of the nature
required of (63) and the lemma is proved.

12. The correspondence between the complex f < ¢ — ¢* and
the complex f < c-¢* with the points (79) excluded. We are
concerned with a critical value ¢ taken on by f at just one critical point
(X,) of the kth type (0<Ck< m). Let the points (X) in the neighborhood
of (X,) be subjected to the transformation (63) of Lemma B, § 11, so that
in terms of the new variables (y, %2, -, ¥n) = (¥)

(77 fS—c=q¢d—p
where
=i+t -+

(78) 2 2 2
= Yiyy Tt Yne

It is the purpose of this section to show that for a proper choice of con-
stants @ and e(a™>e>0), the complex of points satisfying f < ¢ — ¢*
can be put into one-to-one continuous correspondence with the complex
of points satisfying f < ¢ ¢® provided we exclude from the latter complex
those points which satisfy

(79) c— < f<e+té p* < a’.

The existence of this correspondence is affirmed in slightly different terms
in the following lemma.

LemMA 8. If ¢ be a critical value of f taken on by f at just one critical
point (Xo), and if (X,) is of the type for which 0 <k <m, then for a proper
choice of a and e, a>>e>0, the points (X) satisfying

(80) f<c—¢é
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can be put into one-to-one continuous correspondence with the set of points
consisting of the poinls (80) together with the points satisfiying

(81) c— e <f< cté, PP atF

=

The latter inequality p®=>«® has a meaning and is intended to have a
meaning only where the variables y;, #s,---, yn are defined (Lemma B),
that is, in the neighborhood of the given critical point. To prove this
lemma, Lemmas C, D, E, F, and G will first be established. For this
purpose the boundary points of (81) will be grouped into the following
sets of points: the points on f = c-}-¢® satisfying

(82) Jf = c+é, pP>at*
the points on f = c-—e? satisfying
(83) f = c—é, pP>at ¥

the points on p® = @® satisfying

(84) pE = a?, ¢ — < f< cte?
and the points
(85) pr=a?, f=c— c.

LemMa C.  There exists a positive constant d so small that when a s
chosen less than d, e can then be chosen so small that none of the trajectories
orthogonal to the manifolds f = const. passes through more than one point
of (84) or its boundary.

Proof of Lemma C. For e sufficiently small each point of (84) lies
arbitrarily near some point satisfying

(86) pPP= ¢= a’.

Let (B) = (by, by, - - -, bn) be a point satisfying (86). Let (I7) = (i, 1tz - - -, tn)
be a point in the space of the y’s near (B). The solutions of (66) which
pass through (U) when ¢ = 0 are representable for ¢ near O in the form

(87) yn = Yn(ug, tta, -+, Un, 1) h=1,2,...,n),
for which
(88) up = Yo (ug, g,y « -+, tn, 0),

* Where the latter condition has no meaning through lack of definition of p it will be
supposed satisfied vacuously.
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where each Y, possesses continuous partial derivatives with respect to
all of its arguments for (U) neighboring (B) and ¢ neighboring 0.

If now any point (U) neighboring (B) be given, the trajectory passing
through (U) for ¢ = 0 meets the manifold p® = o® in as many points as

there are solutions (yy, ¥z, -+, ¥a, t) of the equations
o= Y5 (U, Ug, -, Un, L
(89) y2 21 1y 2,y y Wny )}
p: = a®.

Equations (89) will be written in the form

yn— Yo (1, uzy oy Un, £) = 0,

(90) ‘

Yit+yitetyp—at =0.
The jacobian J of .the left hand members of (90) with respect to 1, ¥z, -+, ¥n
and ¢ for ¢=0 is obtained by bordering an n-square unit matrix I as
follows (Lemma B, § 11):

§’~271y1+-..
%_27’2y2+...
I ... .
J =
2.7/1; 2?/2)---, 2_7/]5, O,’O 0

where the terms omitted in the last column are of the form 4; y;y;, where
each 4; is a continuous function of the #’s in the neighborhood of the
origin. The value of this jacobian when (U) = (Y) = (b1, by, - -+, bn) is

1) J— 427’hl7i+23mijbmbibj (m,z,]:l,?,...,n;)
h mij \ ]l :1’2,..-,k

where each By; is a continuous function of the b’s in the neighborhood
of the origin.

Recalling that #», »y, - -, 7% are all negative constants, let m and M be
two positive constants such that
m<—4ry, <M h=1,2,...,k).
Then

(92) m 2 b5, < —4 2 rn b < M D b



1925] CRITICAL POINTS 369
Since the point (B) satisfies (86),

ol = Zlbi.
12

Hence from (92)

mu2<m4§rhb}i<ﬂza2 (h=1,2,..., k).
That is
(93) 4§rh B = Ra,

where R is a function of (b, by, ---, bs) such that

(94) m << |R| <M.

2

Now the point (B) satisfies p? = ¢® = «° from which it follows that
(95) i <a.

Moreover since the functions B, in (91) are continuous functions of the
point (B) for (B) in the neighborhood of the origin, there exists a constant
H such that for that neighborhood

(96) ]Bmiji < H.
For this neighborhood it follows from (95) and (96) that

2 Bnij b bs bj << 0 H a?,

mij

where n® appears since there are not more than »® terms b,, b; ;. Thus

ZBmy bm bi bj = T(Ls,

miy

where 7' is a function of the point (B) such that in the neighborhood of
the origin
97) |T| < n*H.

From (91), (93), and (97) it follows that
J = Ra’+ Ta’
We can and do hereby choose a positive constant d so small that for 0 << a <d

J % 0.
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For this choice of @ none of the segments of the trajectories with points
all lying sufficiently near (B) pass through more than one point of p® = a®
neighboring (B). To show that none of these trajectories return to points
of (84) it will be useful to take again that representation of the trajectories
in which the parameter v at any point on a trajectory equals the value
of f at that point. For e sufficiently small the points on the trajectories
passing through some point in a sufficiently small neighborhood of (B)

and for which
c—et < v <c¢+é

will all lie arbitrarily near (B) and hence have at most one intersection
with p? = a® But these trajectories no matter how extended will not
return to points of (84) or its boundary, for points on the extended tra-
jectories will be points for which

Tt>c+e or T<c—eé
and hence will be points at which
f>c+e or f<c—ed

and hence will not be points satisfying (84) or its boundary.

The following lemma follows from the above proof, and in particular
from the non-vanishing of the above jacobian.

LeEMMA D.  For a choice of a such that the above jacobian is not zero and
Jor amy point (U) sufficiently mear some point of

a2 2 2
Pi= ¢’ = a’,

the trajectory passing through (U) for t = 0 meets the manifold

P= a?
in a pomt (Y) whose coordinales and parameter value t are continuous
Sunctions of the cobrdinates of (U) and are provided with continuous first
partial derivatives.

The proof of the following lemma could be given along the same lines
as the proof of Lemmas C and D.

Lemma E. For a sufficiently small positive constant a, and corresponding
to this a, a sufficiently small positive constant e, and for anmy point (U)
sufficiently mear some point of

pP= ¢* = a},
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the trajectory which passes through (U) when t = 0 meets the manifold
pz____ qz = ot

m a point (Y) whose coordinates and parameter value t are continuous
Junctions of the codrdinates of (U) and are provided with continwous first
parteal deriwatives.

The following lemma will now be proved:

Lemma F. For a sufficiently small positive constant a, and corresponding
to this a, a sufficiently small positive constant e, all of the trajectories passing
through points of (84) pass through points of (83).

The equations (84) may be written in terms of the point (Y) as

(98) —f=p =Pl =
or again as
(99) p? = a? a*— < < a’+ e

while (83) may be written as
(100) pP—q = & pi>at

To distinguish between a point (1) on (99) and a point (1) on (100),
any point (¥) on (99) will be written as (¥) = (U) = (ux, ug, - - -, Un).
Now (99) and (100) have as common boundary points the points satistying

(101) p? = a? g’ = a®—é.

Let (B) = (b, b, - -+, by) be any point on (101). The complete set of
points on (99) consists of the points on the following family of straight lines:

Uy = by,
Uy = by,
(102) . = by,
U1 = M b4,
)
Uy = mby,

where m is a parameter varying on each straight line on the interval

(103) 1<m <V“+e

a®—eé®
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For m = 1, (U) = (B). If m, considered as the single independent
variable, vary on its interval (103), (U) will then vary on the straight
line (102), and the trajectory through (U), according to Lemma E, will
meet p2—¢* = ¢® in a point (¥) whose codrdinates and parameter value ¢
will be continuous functions of m provided with continuous derivatives
with respect to m. (U), (¥), and ¢, thus depending upon m, satisfy (87)
making (87) an indentity in m. The lemma will follow readily if it can be
shown that as m increases on its interval, and (Y) depends on m as just
described, p* = 32+ y2 4 . .- -+ y3, considered as a function of m, increases.

To this end let (87) be differentiated with respect to m. At m = 1 and
hence ¢ = 0 (cf. (66)),

Ll_?/_h__ [c, \T ]_@7 (75:1}2" y]',
(104) dm 427h3/h + % Ahz,/!/z]// am Z',j' _ 1’2, I 3
(105) i bn —+ [2 rayn 4 2 Anij 3/‘1/-] s (h=Fk-+1,.., n).

dm = T dm Y

If the two members of the equation in (104) which gives dyn/dm be
multiplied by 2y, (A = 1, 2,..., k) and the resulting % equations added,
the left hand sum will become dp?/dm, and if in the right hand sum we set
(Y) = (U) = (B) we will have

dp® _ [ o p2 ] at
(106) T =4 ;mbﬁ—--- g =12,
where the terms omitted here and in the subsequent equations of this
proof are sums of terms of the form

Bhij by b; b;,

where Bp; is a continuous function of all of the 0’s in the neighborhood
of the origin.

Similarly, upon multiplying the two members of the equation in (105)
that gives dyn/dm by 2yn (b = k-1, ..., n) and adding the resulting
n—Uk equations we will have at (Y) = (U) = (B), using (101),

dt

7,2
da” 2(a2—c¢2)—|—4[21'hb,3+~~]% (h=Fk4+1,.--, m).
D

(107) im

Now the coordinates of (Y) considered as the above functions of m satisfy
p®—q® = ¢ identically. Thus
dg? dp?

(108) dm  dm"
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2
Upon eliminating z?n and % from (106), (107), and (108), we have

B2 ... 2 2

dp2 _ 2 [;7hbh+ ] (a 8) (h _ 1, 2’ e ]C,)
d?’n 2 ", b;i——— 27'7: b? + P ?

h i

11
w
+
=

(109)
2 | Smvpt ] @—e
= - h — > (7.:‘]72;"'7/”)'
= STnlB+ ‘

Now if a be a sufficiently small positive constant and ¢ be less, say,
than /2, it can be shown by the methods used at the end of the proof
of Lemma C that the expression (109) has the sign of

2 2l b2
R
—JZl r | 05
and hence is positive.

For this choice of @ and e, dp*dm is then positive at (B), that is, when
m = 1. For o fixed (¢>>0) and for e sufficiently small, the interval (103)
will be arbitrarily small. Hence for e sufficiently small dp*/dm will be
positive throughout the interval (103). But for m = 1, p* = a® Thus
on the interval (103) p®*>a® and the lemma follows directly.

The preceding proof requires only a formal alteration to serve as the
proof of the following lemma.

LEMMA G. For a sufficiently small positive constant a and, corresponding
to this a, a sufficiently small positive constant e, none of the trajectories passing
through points of (84) or its boundary will pass through a point of (82).

Proof of Lemma 8. Let us return to that form of representation of the
orthogonal trajectories in which the parameter ¢ at any point on a trajec-
tory equals the value of f at that point. Let (X) be any interior point
of (81). On the trajectory through (X) there will be a first point P pre-
ceding (X) in the sense of a decreasing ¢ which is on the boundary of (81),
and a first point @ following (X) in the sense of an increasing ¢ which is
on the boundary of (81). It follows from Lemmas C and G that neither P
nor @ can lie on (85). P will lie then either on (83) or else on (84), while @
will lie on (82) or else on (84). There are four possibilities:

(a) P on (84), Q on (84),

(b) P on (84), Q@ on (82),
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(¢) P on (83), @ on (84),

(d P on (83), Q on (82).

The combination (a) is impossible according to Lemma C, while combina-
tion (b) is impossible according to L.emma G.

Thus P always lies on (83). Further, the points P will include each
point P, on (83). For there are no boundary points of (81) other than
points /== ¢—e® neighboring P,. Hence all of the points neighboring P,
for which f>¢—e¢* will be interior points of (81). Hence on a trajectory
through P, the points neighboring P, for which z>c¢—e? will be interior
points of (81). Thus P, will be one of the points P.

According to (c) and (d) all of the points @ lie either on (82) or else
on (84). Further, the points @ include all of the points of (82), a fact which
can be proved after the manner of proof in the preceding paragraph. The
points @ also include all the points @, of (84). For according to L.emma F
a trajectory which passes through a point @, on (84) in the sense of a
decreasing » will meet (83) in a point, say P,. Now any point of (83)
such as P, has just been proved to be a point P. Since there can be
no point on (82) or (84) between P, and @, @, must be a point Q. Thus
the points @ include all of the points of (82) and (84). To sum up, the
segments PQ include all of the points of (81) and the boundary of (81)
save the points of (85). At each of the points of (85) it is convenient to
suppose a point P coincident with a point Q.

Let 7; and 7, be respectively the values of z at a point P and corre-
sponding . The value of ¢, is ¢—e® The position of @ and value of =,
are readily seen to be continuous functions of the position of P. To define
the correspondence whose existence is affirmed in Lemma 8 let each trajec-
tory PQ be continued from P in the sense of a decreasing v to a point R
at which ¢ = ¢,, where

Ty— Ty = Tg — 1Ty,

The new trajectory segments RP will consist of points satisfying (80). Now
let every point of (80) not on a segment EP correspond to itself, and let
every point of (80) with parameter value = on a segment R P correspond
to that point on RPQ with parameter value ¢’, at which

(t'—7o) = 2 (r — 7).

The correspondence thereby established is readily seen to be of the nature
required in the lemma to be proved.

13. Incidence relations between the boundary of D, and the
remainder of the complex f<<c-}e®. Following the general outline
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of the method given in § 10 this section is devoted first to proving that
the set of points D, satisfying

(110) —E<PF—pr< e, pP<da?, 0<c<a,

make up an n-cell a, and its boundary, and secondly to investigating the
incidence relations between D, and the remainder of the complex of points
satisfying /< ¢+ e

For the moment let p and ¢ in (110) be interpreted as the rectangular
cartesian coordinates (pg) of a point in a p, ¢ plane. So interpreted the
points (pg) which satisfy (110) consist of all those points lying between
the two conjugate hyperbolas

pi—g® = ¢t g —pt = et
which also lie between the two straight lines
p=a, p = —a.

Since a>e these two straight lines meet the two conjugate hyperbolas
altogether in eight real points. The two-dimensional set of points in the
(pg) plane satisfying (110) will be denoted by D,. D, contains the origin
and is symmetrical with respect to it.

We will now consider a transformation 7' of the codrdinates (pq) into
rectangular coordinates (uv) which carries D, into a rectangle E; with
vertices at the intersections of the straight lines p = -4 a with the hyper-
bola ¢®—p® = ¢*. By the methods of elementary analytic geometry it is
seen that a straight line segment issuing from the origin in the (pg) plane
in any direction whatsoever meets the boundary of D, in just one point
whose distance from the origin varies continuously with the angle the given
line segment makes with the p axis. The same is true of the boundary
of the rectangle E,. D, and E, can be put into a one-to-one continuous
correspondence 7' by requiring that a point (pg) on D, that divides the
straight line segment from the origin to the boundary of D, in a particular
ratio shall correspond on X, to a point on the same straight line and so
placed as to divide the line segment from the origin to the boundary of E, in
the same ratio.

The following properties of the transformation 7' will be used.

(A) Under the transformation 7' the point (pq) is related to its corre-
spondent (uv) as follows:

w=1(p*q"p,

11
i v=r@"¢)q 7(00) = 0,
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where 7 (p®¢? is a positive, single-valued, continuous function of p* and ¢*
for each pair (pg) in D, not equal to (00). The pair (pq) is obviously also
related to its correspondent (uv) as follows:

I

P oW u,

11
3 g = oW v’)v, ¢ (00) = 0,

where ¢ (2 v? is a positive, single-valued, continuous function of «* and
v® for each pair (wv) in E, not equal to (00).
(B) Under T the points (pq) on D,, that is the points satisfying

(113) —esg—p=e, p=da

=1 b
correspond to the points (uv) on E,, that is the points satisfying

(114) < a?, v < b

= )

where we have set a® et = D

(C) The points on the boundary of D, satisfying

2 2

(115) PP—q = ¢, < aP— e

I

taken with the points on the boundary of D, which satisty
(116) PP = a?, — <3< P

form two continuous curve segments which correspond under 7' to those two
sides of the rectangle F, which satisfy

117) = a?, i/

The points (pq) satisfying (115) are the two finite curve segments cut off

from the hyperbola p®— ¢* = ¢® by the straight lines p = 4+ a, while

the points (pq) satisfying (116) make up the four finite segments of the

straight lines p = -+ a which lie between the two conjugate hyperbolas.
(D) The points on the boundary of D, which satisfy

(118) ¢ —p?= e, pr<a?,
correspond under 7' to those two sides of the rectangle £, which satisfy

(119) u? = 12, vE<ak
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The points (pg) satistying (118) obviously make up those two finite segments
of the hyperbola ¢*— p* = ¢® which lie between the two straight lines
p = +a.

The results just obtained properly interpreted will give us the following
lemma. In this lemma we will again understand by p® and ¢®the expressions

=9 +v: +---+u,

(120) s 2 ) )
Q= yk+1+yk+2+"'+yn?

and in addition, in terms of the variables (z, 2,---, 2,) = (Z) we set

+8 ot

(121) . : ,
A AP e A

Lemma 9. There exists a one-to-one continuous correspondence between
a set of points (Y1, Yo, -+, yn) = (Y) and a set of points (z;, 2, - -, 2n) = (Z)
(a) under which the set of points (Y) satisfying
(122) —l= —p = = a
corresponds to the points (Z) satisfying
(123) u? < a?, <D
(b) while that part of the boundary of (122) that consists of points (Y)

satisfying
(124) pPP—gt= ¢ < a?— ¢t

)
and of points (Y) satisfying

(125) PP = a® a*— e < g? < a’+ e
corresponds to those boundary points (Z) of (123) which satisfy
(126) u® = af v < b

(c) while the boundary points (Y) of (122) satisfying

(127) ¢*—pt=é p<a
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correspond to those boundary points (Z) of (123) which satisfy
128) v = b3 u? < al

The correspondence whose existence is affirmed in this lemma may be
given in terms of the function (p2q¢?) of (111) as follows:

(129) 2z = 1P’y (i =1,2,-.-.m),

where p* and ¢® here as in the future stand for the functions of the y’s
to which they are set equal in (120).
From (129) we have at once that

424+ =2+ + -+,

(130)
oy + o+l =2y, + - YL

Equations (130) show that the functions p® and ¢® are related under the
transformation (129) to the functions »? and »? by equations obtained by
squaring the different members of (111). But from equations (111) so squared
follow those parts of the results of (B), (C) and (D) which describe in detail
how p* and ¢* are transformed into »® and »?, and the analytical results
there contained abstracted from their geometric setting lead directly to the
results (a), (b) and (¢) of this iemma.

The correspondence is obviously continuous. That it is one-to-one will
now be proved by giving its inverse. From (111) and (112) it follows that
if neither (pg) nor (uv) = (00)

1
o
Thus (129) may be written
(131) yi = o(u?v?)z @=1,2...,m),

where here %’ and »* stand for those functions of the z’s to which they
are set equal in (121). Further, (131) obviously also holds for the points
just excepted, namely (¥) = (Z) = (0, 0, --., 0). Thus the correspondence
is one-to-one, and the lemma is completely proved.

The set of points (Z) satisfying (123) can readily be shown to make
up an n-cell and its boundary. Hence the corresponding set of points (¥)
satisfying (122) make up an n-cell and its boundary. The set of points (¥)
satisfying (122) has been termed the set D,. D, will also be used to
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designate the set of points (X) = (w1, 29, -+, 2») corresponding to the
points (I") of D,.

Let ¢ be the value of f at the given critical point. All of the points (X)
of D, satisfy

(132) S = ete

and are separated from the remaining points (X) satisfying (132) by those
boundary points of D, satisfying (124) and (125). These boundary points
of D, satisfying (124) and (125) will be termed the old boundary points
of D, while the remaining boundary points of D,, namely those satisfying
(127), will be termed the new boundary points of D,. The set of all points
of D, other than the old boundary points of D, will be called the new
points of Dy.

The points (Z) satisfying (123) may be represented by a pair of points
(PQ®) of which P is a point in a /-dimensional space with coordinates
(21, 2, ---, 2x) satisfying

2

u

2

a®,

I\

and @ is a point in an (n—Fk) - dimensional space with coordinates
(2r41, Zhto, - -+, 2n) satisfying

" Let the (k—1)-dimensional hypersphere «® = a2 in the space of the points
P be denoted by Si—1 and the (n—k—1)-dimensional hypersphere v* = b*
in the space of the points @ be denoted by S,—p—i1. With the above
convention the results of Lemma 9 may be translated into the following
lemma.

Lemma 10.  The set D, of points (Y) satisfying (122) make up an n-cell
and its boundary. It can be put into one-to-one continuous correspondence
with the set of pairs of points (PQ) obtained by combining an arbitrary
point P interior to or on a (k—1)-dimensional lypersphere Sp—1 with an
arbitrary point Q interior to or on an (n—»k—1)-dimensional hypersphere
Sn—x—1. In this correspondence, points on the old boundary of Dy cor-
respond to those pairs (PQ) that are obtained by combining an arbitrary
point P on Sp—1 with an arbitrary point Q interior to or on S,-x—1, while
points on the new boundary of Dy correspond to those pairs of (PQ) that
are obtained by combining an arbitrary point P interior to Sp—1 with an
arbitrary point Q on Sp—p—1.

If we make use of the terms of the preceding lemma, Lemma 8 may
be restated and completed as follows.

24*
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LEMMA 11. The complex of points satisfying f< c¢—e® can be put into
one-to-one continuous correspondence with the complex of points, say Cy,
consisting of the points satisfying f = ¢+ e* with the new points of Dy
excluded. The remaining points of Dy, namely the points on the old
boundary of Dy, are on the boundary of Cn.

14. A representation of D, in terms of the cells of §;_; and
S, _x—1. Suppose the hypersphere Sy_; ‘“‘covered just once” by a non-
singular complex whose matrices of incidence H; are given by the equations

(i=1,2, - k—1).

1 1
weli}

1
Denote the two #-cells of Sy—1 by a; and af (=0, 1, ..., k—1). Denote
the k-cell consisting of the points interior to Sp—: by ax. Similarly suppose
Sy—r—1 covered just once by a non-singular complex whose matrices of
incidence H; (j =1, 2,..., n—k—1) are each identical with the pre-
ceding matrices H;. Denote the two j-cells of S,—r— by bj and 0/
(j=0,1, ..., n—k—1). Denote the (n—F%)-cell consisting of the points
interior to Sp—x—1 by bu—r.

Let o be any one of the cells af, @ or ax, and 8 be any one of the
cells o}, b'j, or by—. If an arbitrary point P of a cell « be combined
with an arbitrary point @ of a cell 8 there will result a set of pairs of
points (PQ) which may be considered as the elements of an (i-j)-cell.
Denote such an (¢ 4 7)-cell by (¢8). According to Lemma 10 the complex
consisting of all such (¢4 j)-cells will be a non-singular complex covering
Dy, just once. This complex of (i-}j)-cells will be adopted as the future
representation of Dy.

It follows from Liemma 10 that in the representation of D, just adopted
the interior points of D, will be represented by the n-cell (ax byp—r) Wwhile
the new boundary of D, will be represented by the (k- 7)-cells (axbj)
and (axbj). Here k is the number specifying the type of critical point
being considered, and j takes on the values 0, 1, ..., n—k—1. It should
be noted that for each value of j there are just two of these (% 4-7)-cells.
The cells (axb)), (arbdj’), and (axbp—x) will be termed the new cells of D,
and the remaining cells of D, the old cells of Dy.

The above representation of D, shows that there are no new cells of
dimensionality less than k. The points on the boundary of a cell («g)
will be represented by the pairs (P@) obtained by combining a point P
on the boundary of « with a point @ on 8 or its boundary, or by combining
a point @ on the boundary of @ with a point P on « or its boundary.
For the work to follow it is important to determine the (m—1)-cells on
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the boundary of each new m-cell. We begin with the new cells of lowest
dimensionality.

The only (kA—1)-cells on the boundary of the new k-cell (ax0) will be
obtained by combining an arbitrary point of a boundary (k—1)-cell of ax,
namely aj—; or ai—i, with b) giving thus the two (k—1)-cells

(ak—1 bo), (ak— bo) on  (ax bo),

both of which are old cells of D,. Similarly the only (:—1)-cells on the
boundary of (axbo) are the old cells

(ar—100), (ak—1b¢) on (arby).

Forj=1,2,...,n—k—1 the (k+j—1)-cells on the boundary of the
new (k-+j)-cell (ax bj) are obtained by combining a boundary (k—1)-cell
of ax, namely ai—; or ai—1, with b}, or by combining a boundary (j—1)-cell
of bf, namely bj—1 or bj_1, with az, giving thus the (k- j—1)-cells

(a';&?—l b.;)’ (a’llcll b‘;); (Ctk bj—l); (dk bJ{,—l) on ((ék bjl) (] == 17 27 tt n"—k—‘l);

of which the first two cells are old cells and the latter two cells are new
cells. Similarly the (k 47—1)-cells on the boundary of the new (k- 7)-cell
(a b)) are the cells

(@r—18)), (@l b)), (anbj-1), (axbjs) on (ardi) (5 =1,2,...,n—k—1),

of which the first two are old cells and the latter two are new cells.
Finally the (n—1)-cells on the boundary of the new #-cell (arb,—1) are

(@hk—1bn—r), (ak—1 bp—-r), (ar bn—r—), (@ br—r-1) on (axba—r),

of which the first two are old cells and the latter two are new cells.

156. Differences between the connectivity numbers of the
complex f<c¢—e? and the complex f<c-+e* It follows from
Lemma 11 that the complex f <X ¢c—e® has the same connectivity numbers
as the complex C, consisting of the points satisfying f =< ¢ ¢* with the
new points of D, excluded. The problem of this section then resolves
itself into one of determining the relations between the connectivity numbers
of the complex C, and those of the complex /< ¢ ¢® Denote the latter
complex by C,.

If the new points of D, be added to ) there results C,. The question
then is what is the effect upon the conmectivity numbers of adding the
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new points of D, to Cp? According to Lemma 11 the only points of Dy
coinciding with points of C; are the old boundary points of D,. Because
of the simple nature of the functions defining the boundaries of these com-
plexes we can and will suppose C; broken up into its component cells in
such a manner that points of C, that coincide with points of D, all lie
on cells of O, that coincide with cells of D,.

Let H; (4 =1, 2, ..., n) be the 7th matrix of incidence of C;,. Let ¢;
be the rank (mod2) of H;. For the same values of ¢ let H/ be the
ith matrix of incidence of C,. Let o} be the rank (mod2) of H/. Let
Rj(j=0,1,...,7n) be the jth connectivity number of () and Ej that
of ¢). TFor the same values of j let «; be the number of j-cells on Cy
and « the corresponding number for Cy. The following well known
equations will be used:

Ro —1 = (4%} — 01 _],
R —1=a —oa —e,
(133) B, —1 =

Gy — Q2 03,

Ry 1—1 = op1— @u—1— 0n,

R, —1 = «a, T Qn-

Equations (133) refer to C,. Similar equations hold for C; and are obtained
by priming each letter in (133). From equations (133) and equations (133)
with the primes added there can be obtained by a subtraction of the corre-
sponding members of the respective equalities the equations

Ry —Ry =« —ai —(@ —ol),
R — R =0, —o —“‘(91 —Q{) *(92—“99,

Ry — Ré oy 0“5 - (92 - 9‘5) - (93 - ()é),

(134)

By 1—Rp1 = ap1—oap 11— (Qn——l_ Q;r—l) - (Qn_‘ Q;;),
R, —R, = an —ay —(en —en).

To apply these equations the relations between the matrices H; and H;
will now be determined. In the first place we have

H; = H/ (i=1’2y"'7k—1)7

since for these values of ¢ there are no new ¢-cells (§ 14) so that for these
values of ¢, C, and C, contain the same i-cells. According to the results
of § 14 the table of incidence of the (k — 1)-cells with the k-cells of C,
will take the following form:
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x x - x (axby) (arbd)
7
y 0 0
y 0 0
y 0 0
(ak—1 bo) Hj 1 0
(are—1 bo) 1 0
(ak—1b3) 0 1
(ar—1 bo') 0 1

where the z’s represent k-cells which it is not desired to give more
explicitly and the y’s represent (X —1)-cells. The rectangle containing Hy
is supposed filled out with the elements of the matrix Hf. The matrix Hy
of course consists of the elements of the above two rectangles combined.
It can be simplified as follows. The two new k-cells written above the
last two columns are on at least one new (k- 1)-cell (§ 14). The boundary
of this (k-+1)-cell is a k-circuit. Let the columns, other than the last
column, which in the table are written under k-cells that are on this
k-circuit, be added to the last column. The last column will thereby be
reduced to zero (mod2) without altering the rank of Hy. Let the third
from the last row be added to fourth from the last row. As a result there
will be but one element not zero in the last two columns. The rank of
of the matrix of elements of Hj has by these processes not been altered
(mod 2). It is seen that for g there are two possibilities depending upon
the nature of the resulting matrix in the left hand rectangle, namely either

Case 1, o = 0k
or (0 <<k << m).
Case 2, or = or+1

It may be shown by examples that both of these cases actually occur.

The tables of incidence corresponding to the matrices Hgy; for
j=1,2,...,n—k—1 (§ 14) are given by the first table on page 384.
In the special case where & = n—1 there is no table of this sort.

In this table conventions similar to those of the previous table are
made. The matrix Hgy; is of course the matrix of all the elements
included in the four rectangles. It can be simplified as follows. First,
exactly as in the case of the preceding table there is a set of columns
which added to the last column (mod 2) reduce that column to zeros. If
now the next to the last row be added to the three other rows that have
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x x - x (b)) (e b))

Y 0 0
Y 0 0

- Hyy,
Yy
(ak—1 b))
(k-1 b))
(a;{——l b}’)
(aii-1b}')
(e bj—)|] O 0 .. O
(axb~) O O ... O

_H = OO -~ O-.
—t et [ = OO O

unity in the next to the last columm, there will be left (mod 2) in the
last two rows and columns only one element not zero and that a 1 in
the next to the last row and column. It follows that

okt = Oj+1 G=12,...,n—k—1).
Finally, corresponding to the matrix H, there is the table

r x - (ot br—rc)

Yy 0 f

Y 0

. H,, .

Y 0
(@he—1 bn—w) 1
(a;c,vl bn—]c) 1
(ak l)fl_k_l) 0 0 0 1
((Lk b;{_k_1) 0 0 0 1

from which it follows that
On — Q;z +1.

The number of cells of any particular rank which are contained in C, but
not in 5 can be read off from the preceding tables. We tabulate the
following results:

ai—eai — 0, 9i—ei =0 (G=1,2,. -, k—1);
ai—a; = 2, g—o; = 0 (=1L Case 1);
oj—al = 2, gi-—of = 1 (1=1% Case 2);
a;—af =2, g—gi =1 (i=k+1,k+2,-..,n—1);
ap—a; = 1, 9—ei =1 (i =m).
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From these equations and equations (134) it follows for a critical point
of the kth type (0 <<k < #) that

R; = R; e=0,1, -, k—2, k+1,k+2, ..., n)
while either
Ry 1 = R and Ry = Ri+1 (Case 1)
or
Ripy = R 1—1 and Ry = Ry, (Case 2).

That both Case 1 and Case 2 are possible may be shown by simple examples.
If we recall that the complex (5, has the same connectivity numbers as the
complex f < ¢—e¢® (Lemma 11, § 13) we have the following fundamental
theorem.

THEOREM 3. Let ¢ be a critical value assumed by f at just one critical
pont and that a critical point of a type for which 0<k<mn; then for a
sufficiently small positive constant e the connectivity numbers RB; of the complex
of points satisfying f < c-+e* differ from the connectivity numbers R; of
the complex of points satisfying f < c—e* only in that either

R, = R -+1
or else
Rk-l - R;cfl_l-

CRITICAL POINTS OF THE WTH TYPE

16. Let there be given a critical value of the given function, say c,
taken on by f at a critical point of the wth type, and at no other critical
point. Let e be a positive constant so small that there is no critical value,
other than ¢, between c—e® and c-+e? or equal to c—e® or ¢+ e This
section is devoted to proving the following theorem.

THEOREM 4. If ¢ be a critical value of f taken on at just one critical point,
and that of the nth type, then for a sufficiently small positive constant e, the
conmectivity numbers R; of the complex of points in S satisfying

(135) f<ete
differ from the connectivity numbers R of the complex of points in S satisfying
(136) | f<e—e

only in that
Rn~1 = R;@—l"— 1.

Before proving this theorem the following lemma will be established.
LeEmMA. For any complex Cy lying in o finite part of euclidean nm-space,
and bounded by a finite number of distinct closed manifolds on each of
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which f takes on a non-critical constant value the connectivity number Ry
equals unity.

While a theorem similar to this could be proved under much more general
hypotheses this particular lemma is all that we need here. To prove the
lemma observe that in the given euclidean n-space we can choose an
(n —1)-dimensional hypersphere S,—1 so large that it contains C, entirely
in its interior. Let 4, be the complex consisting of the points interior to
and on S,—3. 4, can be broken up into component cells in such a manner
as to contain C, as a sub-complex of its cells. Now as is well known,
for Ay, R, =1, or in equivalent terms 4, contains no n-circuits. Hence
C, contains no m-circuits, and its connectivity number R, must also be
unity. Thus the lemma is proved.

In terms of the 3's of Lemma 4, § 3, / can be represented in the
neighborhood of the given critical point in the form

J—e= —yi—y;— Y
‘If the points (Y) satisfy
(137) 0 < 2+t +yl<e,

the corresponding points (X) satisfy the relations
c—eflf< ¢

and thus satisfy (135) but not (136).

Denote the complex (135) by C, and the complex (136) by C,. The
points (A) corresponding to the points (Y) satisfying (137) obviously make
up an n-cell, say a,, which belongs to (5. The boundary of @, consists
of points at which the sum of the squares of the #’s equals ¢® and so
consists of points at which /' = c¢—=e® The boundary of a, thus lies on
the boundary of C;;. Let a, be added to Cp, thereby forming a complex
denoted by ). If use be made of the orthogonal trajectories employed for
a similar purpose in § 7, it is easy to prove that C, and €3 can be put
into one-to-one continuous correspondence and hence have the same
connectivity numbers RE.

The question remains as to what is the relation between the connectivity
numbers R; of (" and those R} of Cy. Cy and ) differ only in that a,
belongs to Cj and not to Cp If then ) be supposed represented by
the cells of 7, together with the 7-cell a,, it appears that all the matrices
of incidence of € and of () will be identical except the nth ones. From
formulas (134) it follows that the connectivity numbers of Cp and C, are
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the same with the possible exception of the nth and (n—1)th connec-
tivity numbers.

Now it follows from the preceding lemma that both R, and R) equal
unity so that
(138) R,— R, = 0.

Let &} and «; be respectively the numbers of 7-cells in (7, and C';, and
o and ¢} be respectively the ranks of the jth matrix of incidence of (7
and (. Since a, is the only n-cell in (7, that is not in C; we have

(139) oy —oy = 1.

The last two equations of (134) become under the present notation

(140) Ry y— Ry = “;[——1—C‘z’a—l—(955—1-9;1-1)—(932—Q:’:)’

(141) R, —R, = dy —ay —(h —en).

From (138), (139) and (141) it follows that

(142) on—on = 1.

Since a1 == a1 and gy—1 = 0n—1 it follows from (140) that
Ry—1 = R)1—1.

Thus the theorem is completely proved.

(GENERAL THEOREMS CONCERNING THE CRITICAL POINTS

17. The case of a critical value of ;' taken on at several
different critical points. Up to this point only those critical values of
f have been considered which are taken on at just one critical point.
A first theorem in the general case is the following:

THEOREM b. Let ¢ be any critical value of f that is not the absolute
minimum of f i S, and m; be the number of critical points of the ith type
at which f = c¢. Let e be a small positive constant. Let R; and Rj be
respectively the ith connectivity numbers of the complex of points in S satis-

Sying

(143) f<ce+e®
and
(144) S =< c—e

Then for e sufficiently small there exist imtegers po, pi, -+, Pn—1 and
@15 Q2, * 5 Qn, Gl positive or zero, such that
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Mo = po,
m = p +aq,

m =
( 1 45) 2 De + q2,
Mp—1 = Pn— + Qn—1,
My = Qn,
and such that
R, — R = Po —,

(146) I{I —R{ —_— ]71 ‘_QQ,

Rn—l-‘R;z~1 = Pn——{qn,
while, as ever,
(147) _Rn — R;; — 1.

Denote the complex defined by (143) by (%, and that defined by (144)
by Cn. The critical points at which £ = ¢ are divided for convenience
into those of type O, those of type =, and those of the remaining types.
Corresponding to this division of the critical points into classes the proof
of the above theorem is divided into parts A, B, and C.

A. Critical points of type 0 at which f = c. TFor e sufficiently small
it follows exactly as in the proof of Theorem 2 of § 9 that the points
in C, neighboring the m, critical points of type 0 make up m, n-cells and
their boundaries, distinet from each other and from any other points of
C,, and not included at all among the points of Cy,. If these my n-cells
and their boundaries be added to Cy there will result a complex, say O/,

"

whose connectivity numbers R; will differ from those of € only in that
(148) RY— Ry = my.

B. Critical points of type m at which f = c¢. For e sufficiently small
it follows exactly as in the proof of Theorem 4, § 16, that the points in
the neighborhood of the m, critical points of type n make up m, distinct
n-cells whose boundaries belong to Cj, but which themselves belong only
to Cp. If these my, m-cells be added to () there will result a complex

" 1"

%' whose connectivity numbers Ry’ will differ from those of €}/ only in that
(149) ;’[’—1——-R;'l,’—1 = — My.

C. Critical points not of type 0 or n at which f = c¢. With each
critical point of this class there can be associated a complex of points
Dy, exactly as is done in Lemmas 10 and 11 for the case where the given
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critical point is the only critical point at which /' = ¢. For e and a
sufficiently small the different complexes D, will all be distinct from each
other. The so called “néw points” of each complex D, will belong to Cj,.
Suppose that there are just » critical points, at which f = ¢ and which
are of a type neither 0 or n. Let 4; be the set of new points in the complex
D, associated with the jth one of these critical points (j = 1,2, ..., 7).

1244

Let all of the points of C, not already in C7’ and not among the points
of any set 4; be added to C}’, thereby forming a complex C7,”. C7” and

» can be put into one-to-one continuous correspondence by the methods
of Lemma 11, § 13, so that the complexes €3 and C3’' will have the
same connectivity numbers.

Finally to obtain C, we have only to add to C,"' the different sets 4;.
We will suppose that these sets A; are added in the order of their sub-
seripts.  Suppose that 4; was associated with a critical point of type %;.
The addition of 4; to what we shall call the old complex, consisting of

»'" and the points of Ay, Ao, --., Aj—1, will give a new complexr whose
connectivity numbers will differ from the connectivity numbers of the old
complex, either (Case 1) in that the Zjth connectivity number of the new
complex will be one greater than that of the old complex, or else (Case 2)
the (k;—1)th connectivity number of the new -complex will be one less
than that of the old complex. We now define p,, for i =1,2,..., n—1,
as the number of critical points of type ¢, at which f == ¢, which come
under Case 1, and define ¢, for the same values of i as the number of
critical points of the 4th type at which /= ¢ which come under Case 2.

The connectivity numbers R;”' of C"' are obviously then related to the
connectivity numbers R; of C, as follows:

Ry —R" = -,

Ry ‘_”Rim = P Qs
(150) - ;
Ry—o—Ry"s = pp—s— qu-1,

1
Rn—l"‘Rn-l = Pn—1.

We now define p, as equal to m, and define ¢, as equal to m,. If use
be made of the fact that the connectivity numbers of C5 and C,’ have no
differences other than that given by (148), and that the connectivity numbers
of Ci/ and Cy” have no differences other than that given by (149), while
R = R;i" without exception, then from equations (150) and the definitions
of the p’s and the ¢’s the theorem follows.

18. Relations between the connectivity numbers of the complex
S < ¢ and the complex f < c,.
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THEOREM 6. Let ¢, and co (¢, <C¢3) be two non-critical values taken on
by f in S. Let m; be the mumber of critical points of the ith type at which
J equals some comstamt between ¢, and cs. Let R; and Ri be the ith con-
nectivity numbers of the complexes of points in S respectively satisfying f < cs
and f = c;; then there exist integers, p,, Py, -y Pp_ys 00 1y Qys -5 G5
all positive or zero, such that

my, = Po,
m, = p,+q, =1,2,...,n—1),
mn, = qn’

and such that
R,— R, = p;—q,.,, (6 =0,1,...,n—1)
while as ever
Rn = )'7; == 1.

Let ay, as, - -+, ay be the critical values of f between ¢; and ¢, taken
in the order of increasing magnitude. With each of these critical values
of f, say aj;, let there be associated a positive constant ¢; taken so small
that for this choice of e; Theorem 5 holds if ¢ and e in Theorem 5 are
here taken to be @; and e; respectively. Let the constants e; be also taken
so small that the constants

(181) ¢, a—e;, a;te, az—es, aste, ooy @r—er, art+er, 0

are none of them equal and appear in (151) in the order of increasing
magnitude. Now there are no critical values of f between ¢; and a;—e;.
It follows from Lemma 6, § 7, that the complex f < ¢ has the same
connectivity numbers as the complex f << a1—e;. For the same reason
the complexes f < a;+¢ and f< agp1—ein, for i=1, 2, ..., r—1,
have the same connectivity numbers, as well as the complexes f < a, e
and f < ¢;. The relations between the connectivity numbers of the complex
F< aj+e¢ and the complex /<< a;—e¢; are of the nature of those given
by the preceding Theorem 5.

If then there be considered in succession the complexes of points in §
satisfying /' < ¢, where ¢ takes on, in succession, the constants in (151)
in their order from left to right, the relations between these successive
complexes will combine into the relations of which this theorem affirms
the existence.

19. Relations between all of the critical points in § and the
connectivities of S. The following theorem is proved under the boundary
conditions e« of § 4.

THEOREM 7. Let M; be the total number of critical points of f of the
ith type (i = 0, 1, ---, n). Let R; be the jth comnectivity number of S.
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Under the boundary conditions « there exist integers Py, Py, -+, Pn_1 and

@, Qu, -+, Qu, all positive or zero, such that
ﬂ[o - P0+1,

(152) M; = P+ Q (i =1,2, ..., n—1),
Mi - Qn

and such that

(153) Ri—1 = Pi— Qi1 (¢=20,1, ..., n—1)

while as ever

(154) Ry,—1 = 0.

Let s be the number of critical points at which ftakes on its absolute
minimum m. According to Theorem 2, § 9, for a sufficiently small positive
constant e, the connectivity numbers R} of the complex of points satisfying
J < m-+e* are given by the relations

(155) Ry=3s, Rl=2DRi=..=R,=1

The proof of these results in Theorem 2 presupposed that ¢ was so small
that there were no other critical points than the s absolute minimum
points of /' among the points in S satistying / < m + ¢*. This supposition
is again made here. For this choice of ¢, an application can now be
made of Theorem 6. In this application the notation of Theorem 6 will
be taken over. The constants ¢; and ¢, of Theorem 6 will here be taken
respectively as m +e® and the value M which f takes on upon the
boundary of S. Observe now that M,, the total number of critical points
of type O in S, equals s +my. This we write

(156) my = My—s.
Otherwise
157) m; = M; =12 ..., n).
We now give the following definitions of F,, P, .-+, Pn-qa and of
Ql’ Q27 tt an
Py = pot+s—1,
(158) P = p i=1,2, ..., n—1),
Q.i = 4qj (/ =12 ... n)7

and note that Py, in particular, as defined, is either positive or zero, since
po is at least zero, and s at least one.

If in the relations of Theorem 6, for the constants R} there be substituted
their values as given by (155), and for m, and m; their values from (156)
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and (167) and for p, and the p; and ¢; their values as given by (158),
there will result the equations which are to be proved.

The following theorem gives the answer to one of the fundamental
questions with which this paper is concerned.

THEOREM 8. Under the boundary conditions « the following relations exist
between the set of nmumbers M;, where M; is the number of critical points
of the ith type of f in S, and the set of connectivity numbers E; of S

(%JZO 17"'7"):
1 é( _-RO_|"1)a
1 = (Mo—Ry+1)— (M, — B, +1),
1< (My—Ry+1)— (M — B+ 1)+ (QL— Ry, + 1),
1= (M — Ry + )——(M RIJ—1)+(M<»~R2+1)—(M3—R3+1),
_<[<M0 R0+1)_+ +(__1)n l(ll/fn I_Pn 1‘1 1)] (_1)11——1

1 =My—Ry+1)—+-- -+ (=1 (M —R. +1.

To prove the theorem consider equations (152) together with equations (153),
without the last equation of (152). These equations together form the system

M, = F, ‘1‘ 17
(159) M; = Pi-+ Qi (i =

’ 27 Tty 71—1):
1. .

1
Ri—1 = P—Qjx (=0,1,---,n—1).

Suppose the left hand members of (159) known constants, and the P’s
and @’s in the right hand members unknown constants or variables. The
determinant of the coefficients of these unknown variables is readily seen
to be different from zero, so that if the M’s and the connectivity numbers
are known, the equations (159) uniquely determine the P’s and @’s as
constants satisfying (159). In particular the equations (159) can be solved
successively for the @'s as follows:

1+Q1 :(MO—R0+1)7
1-_‘Q2 == (Mo‘—Ro‘i‘ 1)_‘(1M1_R1+1),

(160) 1+ Qs = (]V[()““R0+ 1) ’“(Ml—Rr{‘ 1)+(Mz —R9+1);
1—Q4:(MO—R0+1)—(M1—R1+1)+(1U) Ib‘*‘l)_(n[a P5+1),

1+(_1)n lQn—(luo R0+1)“+ +(—l)n l(ﬂ[n 1—Rn)1+1)

Of the equations of Theorem 7 which are not included in (159) there
remain the equations

(161)

Ri—1 = 0,
Itfn = Qn-
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With the aid of (161) we can write
Qn = ]lfn'—'Rn'*— 1.

If this expression for @, be substituted for @, in the last of equations (160)
there will result the equality given by the last of the equations of Theorem 8
The remaining relations of Theorem 8 result immediately from (160) upon
recalling that the @’s are all either positive or zero. Thus the theorem
is proved.

If the domain S be one which can in particular be put into one-to-one
continuous correspondence with the points in n-space interior to and on
an (n—1)-dimensional hypersphere, then the connectivity numbers &; of S
are all unity. Hence we have the following corollary to Theorem 8.

CoroLLARY. If S be an n-dimensional region homeomorphic with the points
in n-space interior to and on an (n — 1)-dimensional hypersphere, and M;
be the number of critical points of the ith type of fin S (i =20,1,..., %)
then under the boundary conditions « the following relations hold true:

1< M,

1> My— M,

1 é MO—M1+M2,

1> Mo— M-+ My— M,

< [My— My My— My+ — -+ (— 1= My y] (— 1),
1= My— Myt My — My — .. - (— 1) M.

20. The boundary conditions 2 defined. The boundary conditions 8
are the following.

I. The boundary B of the domain R of § 1 shall consist of a closed set
of points lying in a finite part of the space of the variables (z1, a2, - -+, ).

II. The points on B in the neighborhood of any particular point (Xj)
on B shall satisfy a relation of the sort

F(xly Loy veey xﬂ) - 07

where F (1, 22, - -+, ) is a single-valued continuous function of (x1, a2, - -, )
possessing continuous first, second, and third partial derivatives in the
neighborhood of each point of B, of which not all of the first partial
derivatives are to be zero at any point of B.

III. The function f(xi, 23, - -, 2,) in addition to satisfying the conditions
of § 1 shall be continuous on B, and its first partial derivatives shall take
on continuous boundary values on B.
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IV. At each point of B the unilateral directional derivative of f(x1, zs, -, 2%)
along the normal to B in the sense that leads from points of B to points
not in £, and on the side that lies in £, shall be positive.

21. The boundary conditions 8 reduced to the boundary con-
ditions « (§ 4). By a redefinition of j'(21, 2, - - -, ) in the neighborhood
of B there can be obtained a function L(x, a3, - ., w,) with critical points
identical in position and in type with those of f(x1, a2, -+, 2,), but such
that one of the manifolds

Lz, a2, -+ -, xy) = const.

will serve as a boundary A satisfying the earlier boundary conditions.
Under condition IT of the boundary conditions 8 there is a definite normal

to B at each point (a9, 23, ..., 2f) = (X)) of B whose equations may be
given in the form

(162) w,—ad = A (a3, af, -+, 2%)s (i =1,2,..-,m)),
where 4, (29, x5, - - -, 20) together with its first and second partial derivatives

are continuous functions of their arguments in the neighborhood of any
given point on B, where s is the distance along the normal, being zero on B,
and increasing as the point on the normal crosses B from points of B to
points not in Z. We can and will suppose s; to be a negative constant
chosen so small that the points (x1, 2, - -+, @) = (X) on the normal (162)
at the points at which

(163) s < <20

include once and only once every point of R, not including B, in the
neighborhood of B.

Because of the boundary conditions IV we can and will suppose that s,
is so small that the points (X) given by (162) for values of s satisfying (163)
contain no critical points of f. It follows that there is one and only one
of the trajectories orthogonal to the manifolds f = const., through each
point of (162) for which (163) holds. Let s,, s;, and s, be three constants
such that

8y <8y <8y <8, <0,

Let Ty, Ty, T3, and T, be respectively the (n»—1)-dimensional manifolds
of points (X) obtained by putting s = s, s, sz, and s, in (162) and
letting (X,) vary on B. It is a consequence of boundary conditions IV, as
the calculation of the appropriate jacobian will show, that if s, be a
sufficiently small negative constant, any trajectory orthogonal to the
manifolds /' == const. passing through a point P, of 7} also passes through
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uniquely determined points P,, P;, and P, on 7%, 7%, and T}, respectively,
such that the positions of Py, P;, and P, are continuous functions of the
position of P, on 7.

We again make use of that representation of the orthogonal trajectories
in which the parameter at any point equals the value of f at that point,
and we let 7y, 75, 73, and 7, respectively be the values of = at P, P,
P; and P,.

We now are in a position to replace f(x,, xs, - - -, 2,) by a new function
L(xy, 23, +++, xy) defined as follows. At each point of B mnot a point
given by (162) for a value of s>s,, we define

(164) Ly, aay -y @) = @, 23, -, Zn).

To define L (z;, %5, - - -, 2,) further it will be convenient, for those points (X)
given by (162) for which
(165) s = s < sy,

to replace (x;, s, .-+, x») by a new set of » independent variables,
namely (n—1) independent parameters (uy, us, ---, #n—1), determining
a point P, on 7) and thereby a trajectory through P, and an nth
independent parameter, namely the above parameter = determining a
point (X) on the trajectory through P;. To represent a set of points (X)
satisfying (165) and neighboring a particular trajectory, the parameters
(uy, Uz, + -+, Un—1) can be so chosen that the coordinates of (X) are single-
valued functions of the variables (uy, s, ---, up—1, ©) provided with
continuous second partial derivatives. Now in terms of the new variables
the points satisfying (165) are the points at which

(166) ST 7.

Of these points the hpoints at which

(167) 7St
are points at which L (z, s, ---, 2x) has already been defined. Setting
L(x17 x?; Tty xn)z "I’(T, uly u?, M) un—l)

the previous definition of L, namely (164), reduces for the points of (167) to
(168) (T, U, U, «++, Up—1) = T.

To define L (xy, #s,---, x,) further note that z,, v, 7;, and 7, are
functions of (uy, ws,---, un—1). Let G be a constant greater than the
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value of f in R. For those points of (166) for which

(169) . Ty
we now define

(170) ¢ (v, uy, Ugy + -y Un—1) =T + H (g, -+ -, un—1) [t—75 (s, - - -, n-1)]*

IA

T

A

Ty

where H is defined by the equation
(171) G = 1’3+H[T3_T2]4

as a positive function of (uy, us, - -+, #s—1). From (170) and (171) it follows
that

(172) ¢ (Tg, Uy, Ugy v vy Up—1) = G,
For any point corresponding to a value of = satisfying (169) we now define

L(zy, @z, -+ -y @n) = ¢(%, ta, +++, Un-1)
at that point.

Let R’ be the domain in which L has been defined. L(xy, a2, -+, 2n)
and its second partial derivatives are readily seen to be continuous in R'.
No ecritical points are introduced by the definition (170), as follows upon
verification of the fact that the partial derivative ¢z(7, uy, - -+, tp—1) > 0
for points for which (170) and (171) hold. Thus in the neighborhood of
critical points of f or of L, (164) holds. From (172) it follows that on
the manifold 7%

L(xy, 2oy «++y 2a) = G.

Boundary conditions « of § 4 will obviously be satisfied if we take for
the manifold 4 used in boundary conditions e the manifold 75. Further,
with the aid of the normals (162) it is easy to see dhat the complex of
points satisfying L(wx, #s, -+, 2) < G can be put into one-to-one
continuous correspondence with the complex consisting of the domain R
and the above boundary B. Thus these two complexes have the same
connectivity numbers. From Theorem 8 we obtain accordingly the fol-
lowing theorem.

THEOREM 9. Under the boundary conditions B the relations between the
numbers M;, where M; (i = 0,1,...,m) is the number of critical points
of f of type i in R, and the numbers R;j, where Rj (j =0, 1,...,n) is
the jth connectivity number of the complex consisting of K and its boundary B,
are the same as those given in Theorem 8.

CorNELL UNIVERSITY,
ItEACA, N. Y.



