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PREFACE

From its beginning critical point theory has been concerned with
mutual relations between topology and geometric analysis, including
differential geometry. Although it may have seemed to many to have
been directed in its initial years toward applications of topology to
analysis, one now sees that the road from topology to geometric
analysis is a two-way street. Today the methods of critical point
theory enter into the foundations of almost all studies of analysis
or geometry “in the large.”

Mathematicians are finding that the study of global analysis or
differential topology requires a knowledge not only of the separate
techniques of analysis, differential geometry, topology, and algebra,
but also a deeper understanding of how these fields can join
forces.

It is the object of this book to add to this understanding in a new
way, a way that lays rigorous and revealing foundations.

The reader may be interested in diverse problems: in the Poincaré
problem when n = 3 or 4, in the existence of equilibria in conservative
fields of forces, in the existence of periodic orbits, in global aspects
of Lie theory, or even in the possibility of new approaches to homology
or homotopy theory by way of critical point theory.

In the Introduction we refer to notable recent discoveries by masters
of global analysis. This book aims to reformulate and establish some
of the first theorems underlying these advances.

Among those who appear to have a major interest in the methods
here presented are mathematical physicists. Our studies of focal
points and of equilibrium points of Newtonian potentials contribute
to geometric optics and dynamics. The possibility of new global

vii



viii PREFACE

topological attacks on quantum mechanics has been sensed by many
who are familiar with critical point theory.

This book should be understandable to a mature first-year graduate
student who has taken introductory courses in modern algebra,
analysis, and general topology. The course in algebra should have
familiarized the student with the elements of group theory and with
fields and rings. In analysis a knowledge is needed of classical implicit
function theorems and of existence theorems for ordinary differential
equations.

In an application of the theory to critical chords of compact
differentiable manifolds, given late in the book, a knowledge of how
a short minimizing geodesic arc varies with its end points is briefly
outlined and used. There are many places in the literature where the
student can find the geometric analysis needed to clarify this use of
geodesic arcs.

The reader will find the book a source of problems and fields of
study. This is true both in analysis and topology. The student whose
preference is for analysis will find, for example, several problems
at the end of §32 on “Equilibrium Points of an Electrostatic Potential.”
One whose major interest is topology will be challenged by our
treatment of the homology of differentiable manifolds without any
use of global triangulations of the manifolds. Our treatment must be
supplemented in many ways.

This book could be used for individual study or as a basis for a
graduate course. There are four parts:

Part I.  Analysis of nondegenerate functions.

Part II.  Abstract differentiable manifolds.

Part III. Singular homology theory.

Part IV. Other applications of critical point theory.

Part I is concerned with the existence of nondegenerate functions on
regular manifolds in euclidean spaces. See Morse [2].*

In Part II abstract differentiable manifolds M, are defined. Studies
of focal points of regular manifolds and of dynamical systems on M,
are followed by the fundamental homotopy theorems of §23.

* References will be indicated by giving the author’s name followed by a number,
usually [1], giving the number of the paper as listed in our bibliography.
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Part IIT starts with a development of singular homology theory
over an arbitrary field, based on the original definitions of Eilenberg
[1]. It continues with a determination of homology groups by an
inductive process which avoids any use of a global triangulation
of M, .

Part IV applies the theory to the “critical chords” of an arbitrary
compact regular manifold, to projective spaces both complex (Milnor
[2]) and real, to Stein manifolds (Andreotti and Frankel [1]), and to
electrostatic potentials.

The first of three appendices contains preliminary definitions.
The second supplements the analysis in Part I. The third appendix
is described in the Introduction.

The student who approaches critical point theory for the first time
may find the Introduction a little formidable. We recommend that
such a student make a first reading of the Introduction as a historical
document and a later reading for a more complete understanding.
For the less advanced student another recommendation will be
helpful. Theorem 10.1 is basic among the ‘“‘equilibrium” theorems
and also leads to Theorem 12.4, a first theorem on ‘“‘cobordism.”
Theorem 10.1 is not otherwise needed. It is accordingly recommended
that in a first reading the student omit §11, “Proof of Theorem 10.1
under Boundary Conditions B.”

This book is concerned with nondegenerate functions. The study
of degenerate functions or integrals has a large history. One of the
greatest contributions to this theory was made in 1929 by the Russian
mathematicians Snirel'mann and Ljusternik [1]. References to these
mathematicians and to other distinguished Russian contributors will
be found in our bibliography. In particular, see Ljusternik [1].

We are indebted to those mathematicians who have labored to
clarify the field. The book by Seifert and Threlfall [1] has had and
still has a large influence. One must also pay one’s respect to Munkres
for his book [1] on Elementary Differential Topology.

The authors are indebted to Rev. John Blanton, S.J., and
Dr. Gudrun Kalmbach for their painstaking analysis, criticism and
correction of the manuscript of this book.

The text of this book had its origin in lectures by Morse at the
University of Rennes in the spring of 1965 and in lectures at the City
University of New York in the academic year 1965-66. The authors,
Cairns and Morse, began their collaboration in September of 1967.
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INTRODUCTION

This introduction to critical point theory covers finite-dimensional
differentiable manifolds, and will be followed by an exposition of
global variational theory. The distinction between global analysis and
differential topology corresponds to the contrast between a theory of
equilibria in analysis and the role of nondegenerate (ND) functions as
a structural basis for homotopy or homology theory on differentiable
manifolds.

Equilibria. The theory of equilibria is concerned with the existence
and classification with regard to stability of points of equilibrium of
a “function of forces” such as a ‘“‘Newtonian potential,”’ the existence
and density of focal points of ‘“‘regular’” r-manifolds in (n + 7)-
Euclidean spaces, including the real manifolds defined by the complex-
structured Stein manifolds (Andreotti and Frankel [1]), and the
existence of extremal chords, arcs, orbits, and minimal surfaces under
diverse boundary conditions.

ND Functions on M,. The existence of infinitely many such
functions was affirmed in the first theorem by Morse [2]. It has been
made clear by the notable applications and extensions of critical point
theory by Bott, Milnor, Smale, and Thom that the existence of ND
functions on a differentiable manifold M,, gives an initial topological
structure on M, whose modification leads to the most fundamental
results. We shall strengthen this conclusion by stating a major
theorem.

1



2 INTRODUCTION

The singular homology groups (Eilenberg [1]) on M, over an arbitrary
field can be determined up to an isomorphism by giving a suitable ND func-
tion f on M, without making use of any global triangulation of M, .

A ND function f on M, is termed suitable if each of its critical
values is assumed at just one critical point of f. The homology groups
of M,, over a prescribed field are determined by the indices % of the
respective critical points of f and the homology characteristics of the
(R — 1)-spheres bounding the universal k-caps, which we have
associated with p, (see Appendix III for a definition of universal
k-caps).

A triangulation of a differentiable manifold M, exists, but is not
needed or used. The motivation in dispensing with triangulations was
simplicity and not abstract generality.

A paper by the authors on ““Singular homology theory over Z on an
untriangulated manifold” will follow.

Some Recent Advances. It is clearly impossible in a book of this
size, intended as an introduction, to go deeply into the many fields
of application of critical point theory. We shall nevertheless indicate
how the works of some of the principal contributors are introduced.

Bott [1] and Bott and Samelson [1] have shown how the critical
point theory can be effectively applied in the homology theory of
Lie groups. An introduction to these contributions is given in Bott’s
lectures [3] at Bonn. In Theorem A by Bott [3] one finds a ‘“homotopy
equivalence” of basic importance. Inspired by Bott’s formulation of
Theorem A, we have obtained a similar homotopy equivalence in
Corollary 23.3. Our formulation makes use of ‘“bowls” and of the
theorems on retracting deformations of § 23. We shall turn to the
contributions of Bott and Samelson on “Symmetric Spaces” [1] in a
later exposition of variational analysis.

The discovery by Smale [2] of how to solve the Poincaré problem
when » > 4 was accompanied by major advances in the structural
analysis of differentiable manifolds (Smale [3]). Smale makes use of
handlebodies in his approach to the problem. At the end of § 23 we
recall how such handlebodies were introduced (but not named)
by Morse [1].

One of the major auxiliary theorems used in solving the Poincaré
problem for » > 4 is Theorem B of Smale [1]. Smale here affirms
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that there exist ND functions on the given compact differentiable
manifold whose critical values have the numerical order of the
indices of the corresponding critical points.

Somewhat later Morse [12, 16] made a detailed analysis of bowls,
f-fiber-bundles, and the alteration of critical values. This analysis
shows how the alteration of critical values of f and the domain of
altered values can be made to depend on the nature of the ‘“‘bowls”
ascending and descending from the critical points of f. The critical
points remain invariant with their indices. Theorem 39.4 gives one
of the theorems of Morse [12]. Corollary 39.1 of Theorem 39.4
recovers Theorem B of Smale [1].

Milnor’s contributions and lectures are most illuminating. Our
Theorem 16.8 comes from Milnor’s paper [1]. In § 35 we follow
Milnor in determining the homology groups of the complex projective
n-space.

In his 1965 lectures Milnor [3] presents his proof and extensions
of Smale’s “h-cobordism theorem.” Milnor departs considerably
from Smale’s mode of proof. The applications of the *“A-cobordism
theorem” by Smale and Milnor are of the greatest importance from
the point of view of the critical point theory.

The earlier studies of cobordism by Thom [1] are of continued
interest both historically and mathematically.

Theorem 12.4. In approaching the problem of the cobordism of
two differentiable manifolds (see § 12) critical point theory has entered
naturally in the form of Theorem 12.4, stated as a first necessary
condition for the cobordism of X2’ and 2" (see Wallace [1] and
Milnor [3]).

A proof of Theorem 12.4 can be modeled after our proof of
Theorem 12.1. Such a proof of Theorem 12.4 depends in part on an
existence theorem for ND functions with ND boundary value
functions. Theorem 9.1 of Morse [15] is such a theorem. However,
our proof of Theorem 12.4, as abstracted in § 12, depends to a greater
degree on an extension of Theorem 10.1, in which the underlying
manifold E, , is replaced by a general differentiable manifold M, ,, .

For the original proof of Theorem 10.1 see Morse and Van
Schaack [1]. Our proof of the extension of Theorem 10.1 when E, , is
replaced by M,, ., is modeled almost exactly on the proof of Theorem
10.1 given in § 11.



4 INTRODUCTION

Topologically ND Functions. A word must be added concerning
the mathematical possibilities which may attend the development of
singular homology theory without the use of any triangulation or
block subdivision of CW type. This is both realistic and desirable,
especially when one recalls that the spaces of analysis to which the
critical point theory is naturally applied are often not even locally
compact, and that nonisotopic deformations and retractions are
natural instruments, particularly in variational theory.

Morse’s [8] definition and use of topologically ND functions,
together with the methods of Morse’s lectures [4] in 1947, make the
following fairly evident: If a compact topological manifold M, is
provided with a topologically ND function f, the determination, up
to an isomorphism, of the singular homology groups of M, can be
carried through and results in essentially the same homological
relations as in the differentiable case.

According to Kervaire [1] there are compact topological manifolds
that are triangulable, but which admit no differentiable structure.
To this we add the results of Eells and Kuiper [1] that a compact
combinatorial manifold is the domain of a topologically ND function.
A crucial question is then: Do there exist topological manifolds I,
which neither admit a differentiable structure nor are kmown to be
triangulable, but which are the domains of a topologically ND
function f? The homology groups of any such manifolds are then
determinable with an explicitness not previously known to be possible.

Other Developments. An extension of part of the theory to Hilbert
space has been made by Palais [1]. Other mathematicians, including
Smale, have obtained results of a similar abstract nature.

The paper of Eells and Kuiper [1] is a model of research on an
inverse problem: On what manifolds are there ND functions with
just three critical points? Many more such problems should be studied.



PART I

ANALYSIS OF NONDEGENERATE
FUNCTIONS



This Page Intentionally Left Blank



§1
DIFFERENTIABLE MAPPINGS

Let E, and U, be Euclidean spaces of points x and u, respectively,
with coordinates x, ,..., ¥, and %, ,..., #,, . A mapping ¢ of an open
subset X of E, into a ‘“‘subspace” Y of U, is said to be of class C7,
r > 0, if the mapping of X into U,, with the same values as ¢ is of
class C7, in the sense of Appendix I. A mapping ¢ of class C”, is of
class C? for 0 < ¢ < r. For brevity, we term a mapping of class
Cr a CT-mapping. A mapping ¢ of an arbitrary nonempty subspace X
of E, into a subspace Y of U, is said to be of class C” if s admits an
extension over an open neighborhood of X in E, which is a mapping
of class C7 into a subspace of U, .

A 1-1 mapping is termed biunique; it may be discontinuous. We
shall define a diffeomorphism (abbreviated “diff’) of a nonempty
open subset X of E,, onto a subspace Y of U, in two ways and prove
these two definitions equivalent.

Definition 1.1. Diffs. A biunique mapping ¢ : X — Y of a non-
empty open subset X of E, onto a subspace Y of U, will be called a
Cr-diff if both ¢ and its inverse ¢ : ¥ — X are C™-mappings, r > 0.

Definition 1.2. Diffs. A biunique mapping ¢ : X — Y of a non-
empty open subset X of E, onto a subspace Y of U, will be called a
C-diff, r > 0, if  is of class C, and if its Jacobian vanishes at no point
of X.

There is no assumption that Y is open in either definition. However,
the openness of Y follows from the second definition and the classical
implicit function theory locally applied. We shall prove the following
lemma:

7



8 I. ANALYSIS OF NONDEGENERATE FUNCTIONS

Lemma 1.1. The above two definitions of a diff of X onto Y are
equivalent.

It is trivial that a mapping which is a diff in the sense of Definition
1.2 is a diff in the sense of Definition 1.1. It remains to show that a
mapping ¢ which satisfies the conditions of Definition 1.1 has a
nonvanishing Jacobian at each point of X.

If @ is the inverse of ¢, then if x is an arbitrary point of X,

(Pod)x) =%  xeX, (L.1)

(see Appendix I). By hypothesis, ¢ admits an extension ¢* as a mapping
of class C! of an open neighborhood Y% of Y in U, into E,, . If one sets

po(v) = ((Pl“(u)’"" Pn®(#)), ueye,
P(x) = ((®)sees (),  x€ X,

it follows from the identity (1.1) and the chain rule that at each point
x € X, for k and p on the range 1,2,...,7n

e Z_ﬁf = 8%, (1.2)
where 8;* is the Kronecker delta.
We are following a convention of tensor algebra whereby the term
inscribed on the left of (1.2), with index j repeated in both factors, is
summed for j on its range 1, 2,..., n.
If ], and J, are the Jacobians of the mappings ¢° and ¥, it follows
from (1.2) that at each point x € X ’

Jow) Jo(x) = 1, u = ().

Hence J,(x) # O at each point x € X.

Lemma 1.1 follows.

A particular consequence of the equivalence of the two definitions
is that under the conditions of either definition §(X) is an open subset
of U, and that ! is a diff of y(X) onto X.

LetE, , E, , E, be Euclidean n-spaces. By means of either definition
one readily proves the following: If ¢ is a diff of an open subset X
of E, onto an open subspace Y of E; and ¢ is a diff of ¥ onto an open
subspace Z of E, , then ¢ o 4 is a diff of X onto Z.
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Definition 1.3. Critical Points. Given a real-valued function
x — f(x) of class C! defined in an open subset X of E, , a critical
point of f is a point x € X at which each of the first-order partial
derivatives of f vanishes. A point of X which is not critical is termed
ordinary.



§2
LAWS OF THE MEAN

We shall have need of integral laws of the mean in various forms.

Lemma 21. Let x — f(x) be a real-valued function of class C*
defined on an open convex subset X of E,, . If u and x are in X,

F(®) — f(w) = (w; — u;) Ay(x, u), (2.1)
summing with respect to i, where i has the range 1, 2,..., n, and

AM@50W+M—MM 2.2)
so that
Ay, 4) = fo(u). (2.3)

For an elementary proof of this lemma see Jordan [1], p. 251.
One can represent the right side of (2.1) as the “product”

(x — u) - A(x, u) (2.4)
of the vector
(2 —u) = (%) — 4y, X3 — Ug oo, Xy — Uy)
and the vector
A(x, u) = (Ay(x, u), Ay(x, #)y.e., Ay, 8)). (2.5)

The norm of a vector z in E,, is defined as its length and denoted
by || = .
10



2. LAWS OF THE MEAN 11

It follows from (2.1) that
|f@) —f@)| <Ilx—ullll A(, w)ll. (2.6)

Corresponding to any compact subset K of X there accordingly
exists a positive constant Hy such that

|f(®x) —f@) <llx—ul|Hg, xeK,uek. (2.7)
The following is an important consequence of Lemma 2.1:
Corollary 2.1. Corresponding to any compact subset K of X and

to the closed subset K, (supposed not empty) of critical points of f in K,
there exists a monotone continuous mapping

t—>g(t): R,—~R,, R, ={teR[t>0} 28)
such that $(0) = 0, ¢(z) > 0 for t > 0, and
| A, u)| < o(lx —ull), uekK,, xeck. (2.9)

Definition of ¢. Let d be the diameter of K. It will be sufficient
to define ¢(¢) for ¢ € [0, d] and then set (t) = ¢(d) for ¢ > d. The
relation (2.9) involves no values of ¢ other than those for which
te [0, d].

Foru e K;and t € [0, d] set

M(u,t) = max{|| A(y, )| |y K, |y —u]| <t} (2.10)

So defined, M is uniformly continuous, and for fixed # € K; monotone
increasing with respect to ¢. For each ¢ € [0, d] set

o(t) = max{M(u, t) | u € K} +t, (2.11)

and for t > d set ¢(t) = ¢(d).

So defined, ¢ is continuous and monotone increasing. For
each u € K, A(u, u) = 0, in accord with (2.3), so that M(u, 0) =
¢(0) = 0. It follows from (2.10) that

| A(x, u)l| < M(u,||x —ull), xeK,uek,, (2.12)
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and from (2.11) that ¢(¢) > 0 for ¢ > 0 and
Mu,t) < ¢(t), uekK,;te0,d] (2.13)

Relation (2.9) follows from (2.12) and (2.13).

This establishes Corollary 2.1.

The preceding lemma and corollary are concerned with a mapping
of the set X of Lemma 2.1 into R, the axis of reals. We extend this
lemma and corollary to a mapping into E, as follows.

Let S be the (n — 1)-sphere of directions «, that is, of points
o = (a0, &g ..., ) Such that | «|| = 1.

Lemma 2.2. Let there be given a mapping

x—F(x) = (Fy(x),..., Fy(%)) : X — E, (2.14)

of class C* of an open convex subset X of E,, into E,, . If o is an arbitrary
direction, x and u arbitrary points in X, then

o F(x) — a Fu) = (x — u) - A(x, u, a), (2.15)
where the vector-valued mapping
(%, %, o) — A(%, 4,0) : X X X X S— E, (2.16)

is continuous and so chosen that
oF oF
A, u,9) = ( o W (). (2.17)

Lemma 2.2 results from setting f = « * F in Lemma 2.1. Relation
(2.15) follows from (2.1), where

1 oF
Ax, u, ) = f (o g (e — ), (2.18)
in accord with (2.2), understanding that

;= ()

o, =1,..,n (2.19)

Relation (2.17) follows from (2.18).
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A consequence of (2.15) is that
lo-Flx) — a-Fu)| <|lx—ul|||l A(x,u, o) (2:20)

for each direction « and for x and # in X. It follows from (2.20) that
corresponding to any compact subset K of X there exists a positive
constant Hy such that

|a-F(x) —a - Fu)| <||x —ul|| Hg, xeK,ueK;aeS. (2.21)

An Extension of Corollary 2.1. Given u € X, the n linear conditions

- oF(u) _

e =0 i=lom, (2.22)

on (v ,..., a,) are satisfied for some direction « and point # € X if
and only if the Jacobian

_ DFy,..., Fp)

J) = D(%y 5.0y %)

(Goursat [1], p. 93).

The set (K x S),. Given a compact subset K of X, we introduce
the subset

() =0 (2.23)

o= {uek| Ju) =0} (2.24)

of K, assuming that ¢ # @. For each point u € o there is at least one
direction « such that conditions (2.22) are satisfied. Let [K X S],
denote the ensemble of such pairs (u, «). For (¥, a) e [K X S),,
u is a critical point of « - F.

We state the following extension of Corollary 2.1:

Corollary 2.2. Corresponding to the compact subset K of the convex
set X of Lemma 2.2 and to [K X S}, , supposed nonempty, there exists
a continuous monotone mapping t — ¢(t) of R, into R, such that
®(0) = 0, (t) > 0 fort > 0, and

| A@ u, o)l <@llx—ul), (@a)e[K X ShixeK. (2.25)

The proof is similar to the proof of Corollary 2.1, (¢, ) € [K X S},
replacing v € K, .
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The following lemma is essential in reducing f to its canonical form
near a critical point (see Jordan [1], p. 251):

Lemma 2.3. If fis a real-valued function of class C™2%, r > 0, in an
open convex subset X of E, and if the origin 0 is a critical point of f, then
f(®) —f©0) = ay(¥) xx;, x€X, (2.26)

where

0u(®) = [ (1= 1) o t5) . (227)

We sce that each coefficient function a; is of class C” on X. More-
over, for £, j on the range 1,..., 7 we have a,(x) = a,(x) and

2244(0) = fua(0)- (2.28)



§3
REAL, SYMMETRIC, QUADRATIC FORMS

We shall be concerned in this section with a symmetric quadratic
form

O(x) = axx; a; = a;, 3.1)

in n variables x, ,..., ¥, . The coeflicients a;; are assumed real. The
matrix of coefficients will be denoted by a or by [/ 4|, and the
determinant of this matrix by | a;; |.

The rank r of a is called the rank of Q(x). The integer n — r is
called the nullity of a and of Q(x). The following definition is particu-
larly important:

Definition 3.1. The Index of Q(x). By the index of Q(x) is meant
the maximum integer % such that Q(x) is negative-definite on some
k-plane =, meeting the origin.

We shall state without detailed proof a number of fundamental
theorems concerning Q(x), referring the reader to standard intro-
ductory books on algebra for the proofs of these theorems.

Theorem 3.1. If in the quadratic form (3.1) the coordinates are
subjected to a homogeneous linear transformation

X; = €Y 1= 1,..., n,

with n-square matrix c, there results a new symmetric quadratic form
P(y) with matrix c'ac, where ¢’ is the transpose of c (cf. Bocher [1],
p. 129).

15



16 I. ANALYSIS OF NONDEGENERATE FUNCTIONS

Theorem 3.2. Under a real, nonsingular, linear transformation of the
variables x the index, rank, and nullity of a quadratic form are invariant.

The principal theorems of this section are concerned with the
index of Q(x) and reductions of Q(x) by nonsingular linear trans-
formations to canonical forms. These reductions are of three types:
(1) The Lagrange method of reduction. (2) Reduction by orthogonal
transformations. (3) The Kronecker method of reduction.

The Lagrange method (1) will be extended in §4 to real-valued
functions f no longer quadratic, but restricted to a neighborhood of a
critical point of f. Orthogonal transformations (2) are needed to reduce
O(x) to a canonical form essential in defining centers of principal normal
curvature of regular differentiable manifolds M,_, in E, . We shall
need only one of Kromecker’s theorems (3) and its corollary. It is
essential in the study in § 11 of the critical points under boundary
conditions B.

Theorem 3.3. There exists a real, nonsingular, linear transformation
of the variables x to variables y by virtue of which Q(x) is reduced to
a form

2 Bt Pl o PN S o ) (3:2)

where k and r are, respectively, the index and rank of Q(x) (see Bocher [1],
p. 148).

The Lagrange method, as presented in § 45 of Bocher, suffices to
prove Theorem 3.3. It is recommended that the reader familiarize
himself with this method, inasmuch as this method will be extended
in §4 to obtain the first fundamental ‘“Reduction Theorem  for f
near a critical point.

Orthogonal Transformations. Definition 3.2. Two n-square ma-
trices a and b with real elements a;; and b,; are termed similar if there
is a real, nonsingular, n-square matrix p such that

b = pap-L. (3.3)

We shall refer to the n-square diagonal matrix I, whose elements
are the Kronecker deltas §;; .



3. REAL, SYMMETRIC, QUADRATIC FORMS 17

Definition 3.3. By the characteristic values or roots of an n-square
matrix a, is meant the # roots A, ,..., A, of the equation

lay; —2;] = —A) (A —4) = 0. (34

Equation (3.4) is termed the characteristic equation of a.
The following lemma is easily proved (see Birkhoff and Mac Lane

[1], p. 249):

Lemma 3.1. The characteristic values of similar n-square matrices are
equal.

Definition 3.4. Orthogonal Transformations. A linear transforma-
tion of form (3.2) is termed orthogonal if for each point x € E, and its
image y, || 2| = [ ¥ [l

For a proof of the following lemma see Birkhoff and Mac Lane [1],
p. 258:

Lemma 3.2. A4 real n X n matrix a is the matrix of an orthogonal
transformation T if and only if aa’ = I, .

From the relation aa’ = I,, follows the relation a'a = I, , so that
a and a’ are inverses and T is nonsingular.

The following theorem is essential (see Birkhoff and Mac Lane [1],
p. 314):

Theorem 3.4. (i) The characteristic values of a real symmetric
matrix are real.
(i) A quadratic form Q(x) with real symmetric
matrix a may be reduced by an orthogonal transformation to a form

Ay + Ay o+ A y? (3.5)

where the coefficients A; are the roots of the characteristic equation of a.

As a consequence, the index k of Q(x) is the number of roots A;
which are negative, counting each root with its multiplicity as a root,
since Theorem 3.2 implies that the index of Q(x) is the index of the
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form (3.5), while Definition 3.1 of the index of a quadratic form
implies that the index of the form (3.5) is the number of roots A,
which are negative.

We add the following theorem:

Theorem 3.5. A gquadratic form Q(x) and a quadratic form obtained
from O(x) by subjecting the variables x to an orthogonal transformation
have matrices with the same characteristic values.

If a is the matrix of O(x) and ¢ the matrix of the orthogonal trans-
formation, the new form has the matrix

c'ac = clac.

The matrices of the two forms are thus similar and so have the same
characteristic values.

The following theorem will be useful in our study of Riemannian
forms:

Theorem 3.6. If a is a symmetric, nonsingular, n-square matrix, the
characteristic values of a and of a=! are reciprocals.

It follows from Theorem 3.4 that if ¢ is a suitably chosen orthogonal
matrix,

c'ac =b, (3.6)

where b is a diagonal matrix whose diagonal elements are the charac-
teristic values of a. From (3.6) it follows that

cla-lc = b (3.7

The characteristic values of b~! are the reciprocals of those of b, that
is, of those of a. By Lemma 3.1 the characteristic values of b-! and
of a~! are equal.

This establishes Theorem 3.6.

Corollary 3.1. If Q(x) is a positive-definite quadratic form with
matrix a, the quadratic form whose matrix is a=' is also positive-definite.
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A Kronecker Theorem

Theorem 3.7. Let Q(x) be a quadratic form in variables x, ,..., %,
with coefficients a,; and with A, the cofactor of a,, in| ay |.If A,, # 0,
variables y, ..., ¥, can be introduced by a nonsingular linear transforma-
tion T under which x, = y, and

n—-1

O(x) = Z A YnYr + a AH | Yn?

For proof see Bdcher [1], p. 141.

Corollary 3.2. If | ay| Ay >0, the index of the form Q is the
index of the form 37 @y, Y4 i -



§ 4
THE REDUCTION THEOREM FOR f

Introduction. The reduction theorem, presented here as Theorem
4.1, was first stated as Lemma 10.1 by Morse [5], p. 44. The original
proof assumed that f was of class C® in a neighborhood of a non-
degenerate critical point at the origin. For an extension to Hilbert
space see Palais [1].

The theorem, as reformulated here, is valid even when f is of
class C2. In this extreme case we show that a composition of f with
an L%-homeomorphism (see Definition 4.3) is a canonical quadratic
form associated with f at the origin. Our method has the advantage
that it “‘reduces” f in the sense of Theorem 4.2 even when the origin
is a degenerate critical point, provided the rank of the quadratic form
“underlying’’ f at the origin is not zero.

Kuiper [1] has given a proof of the reduction theorem in the
nondegenerate case which makes the reduction by a diff even when
f is of class C2. We have not followed Kuiper’s interesting method
for two reasons. His method does not seem applicable in the degenerate
case, and in the nondegenerate case the theorem presented here aidsina
verification of Kuiper’s proof which seems necessary for completeness.

Definition 4.1. Nondegenerate Functions. A critical point x = a
of a real-valued C2?-function on an open subset X of E, will be termed
ND (nondegenerate) if the Jacobian

H = |fam(a)l # 0. (4.1)

If each critical point of fis ND, f itself will be termed ND.

We shall verify Lemmas 4.1 and 4.2.
20



4. THE REDUCTION THEOREM FOR f 21

Lemma 4.1. If f is of class C?* and ND, its critical points are isolated.

Proof. If x = a is a critical point of f, (4.1) holds by hypothesis,
so that by the classical implicit function theorem the equations

fml(x) =fm,(x) = =f:c,,(x) =0,

have no solution other than x = a in a sufficiently small neighborhood
of a.

Definition 4.2. Let f be a real-valued function of class C? defined
in a neighborhood in E, of a critical point 2% The index and nullity
of x° as a critical point of f are taken as the index and nullity of the
quadratic form with matrix

 f ().

Lemma 4.2. Let f and F be real-valued functions of class C? defined
respectively, on open subsets U and V of E,, . If there exists a C*-diffeo-
morphism

x — p(x) = (@2(*)s--, ul*))
of V onto U such that F = f o ¢, then:
(i) The critical points of f and F correspond under ¢ in a 1-1 manner.

(ii) The indices and nullities of corresponding critical points are equal.

Proof of (i). By hypothesis F(x) = f(p(x)) for x € V. Hence by the
chain rule, forx e V

Fo (%) = fu9(®)) Sol®) i, mxeV 4.2)

ox;

Since the Jacobian of ¢ never vanishes, by hypothesis, Cramer’s rule
applied to (4.2) implies that grad f (cf. Appendix I) vanishes at ¢(x)
if and only if grad F vanishes at x. Thus (i) is true.

Proof of (i}). Suppose that a critical point x° of F corresponds
under ¢ to a critical point y° = ¢(x°) of f. Set

a= Hfm‘w,(yo)” and b= ”Facia:,(xo)“
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and let ¢ be the Jacobian matrix of ¢ at x° If one differentiates both
sides of (4.2) with respect to x;, one finds that at x°

b = c‘ac.

Statement (ii) now follows from Theorems 3.1 and 3.2.

Definition 4.3.a. L"™-Homeomorphisms,’'7>0. A homeomorphism

5= §(x) = (Pu(F)ers @al®) : N> 7 (43)

of an open neighborhood N in E, of the origin 0 onto an open
subspace V of E,, such that

oi(%) = cy(x)x;; = 1,..,nxeN; 4.4

where each mapping ¢,; is of class C" on N and | ¢;(x)| # O, will be
called an Lr-homeomorphism.

Definition 4.3.b With an L"-homeomorphism ¢ we associate the
nonsingular transformation

¢0 Y = 0‘1(0) Xj s i= 1, 2,..., n, (4-5)
calling ¢° the linear homeomorphism underlying ¢.
If @ is an L’-homeomorphism for which 7 > 0, the Jacobian matrix
of ¢ at the origin is the matrix || ¢;;(0)] of (4.5).
Lemma 43. (i) ACH-diff, r >0,

x—o(x): X - o(X)CE, (4.6)
of a sufficiently small open convex neighborhood X of the origin which
leaves the origin fixed is an LT-homeomorphism in which (4.4) holds with

1 9 ;
culx) = f 06_?:, (%) oo, 1) &, xEX. (4.7)

(ii) For r = O the inverse Y of an L™-homeomorphism ¢ with domain
N is an L™-homeomorphism with domain o(N).

(i) Ifr > 0, an L™-homeomorphism ¢ is a C™-diff.
Statement (i) follows with the aid of Lemma 2.1.

t The letter L is used here to connote a type of pseudolinearity.
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To verify (ii), suppose that ¢ has the form (4.4) and set ||c;,(x)]| = c(x)
The matrix c~!(x) then exists for x € N. If one sets y = ¢(x) for
x € N, then by hypothesis x = ( y) for x € p(N). Set

ci(®) = (W) = 155N,y €p(N).

By Cramer’s rule the 7 equations y, = ¢;(»)x; , with x € N, admit the
solution
% =by(9)y; =9(3),  yeeW)ii=12.,n

Statement (ii) follows.

Statement (iii) is true, since ¢ i8 of class C*, r > 0, and has an
inverse of class C”.

This completes the proof of Lemma 4.3.

If @ and 4 are inverse L™-homeomorphisms, then ¢ o i is the identity
map of a neighborhood of the origin. It follows that [for notation

see (4.5)] Poyd =1 (4.8)

is the identity map of E, onto E,, .

Lr-homeomorphisms of Diagonal Type. An LT-homeomorphism ¢
whose underlying linear homeomorphism ¢° has a matrix of diagonal
type will be said to be of diagonal type.

If ¢ and ¢ are inverse L’-homeomorphisms, it follows from (4.8)
that ¢ is of diagonal type if and only if ¢ is of diagonal type.

Quadratic forms are generalized by Q"-functions (quadratic func-
tions) defined as follows:

Definition 4.4a. QO"-Functions. A real-valued function
x—> I(x) = ay(x) xx;,  ay(x) = au(x); x€V, (4.9)

defined on an open neighborhood V of the origin and such that each
function a; is of class C* on V will be called a Q"-function, r > 0.

Definition 4.4b. Given the Q"-function I', the quadratic form
I(x) = a;(0) x;x; ,
will be called the quadratic form underlying I'.

Lemmas 4.4 and 4.5 will be used in proving Theorem 4.1.
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Lemma 4.4, Given an L'-homeomorphism ¢ : N — V as in (4.3)
and (4.4) and a Q'-function I" with domain V as in (4.9), the composite
function T o @ is well-defined on N and is a Q"-function whose underlying
quadratic form is (I'° o @%)(x).

Proof. One finds that
(T o p)(x) = byy(w) %%, , xel,
where the coefficients b,(x) have a matrix

N Bas() = Il cos( 1| @e{ @Dl I} €a5()Il- (4.10)

Setting x = 0 in (4.10), we see that the quadratic forms (I” o ¢)%(x)
and (I"® o °)(x) have the same matrix, thereby establishing the lemma.

QOr-Functions of Diagonal Type. A quadratic form Q(x) whose
matrix is diagonal will be said to be of diagonal type. A O-function I’
for which the underlying quadratic I'%(x) is of diagonal type will be
said to be of diagonal type.

With this understood, Lemma 4.4 implies the following:

Lemma 4.5. A well-defined composition I' o ¢ of an L'-homeo-
morphism ¢ and a Q"-function I', both of diagonal type, is a Q"-function
of diagonal type.

The following notion of d™-equivalent Q-functions is central in the
proof of Theorem 4.1:

Definition 4.5. d"-Equivalent Q"-Functions. Two Q"-functions I
and I'” will be said to be d™-equivalent if there exists an open neigh-
borhood U of the origin and an L"-homeomorphism ¢ : U — ¢(U)CE,,
such that

Ie(x)) =I"(x), «xeU.

The relation of dr-equivalence among Or-functions is seen to be
symmetric, reflexive, and transitive.

Theorem 4.1 is a form of the first Reduction Theorem, simplified
by taking the critical point of f at the origin and the corresponding
critical value as zero.
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Theorem 4.1. Let f be a real-valued function of class C™2, r > 0,
on an open neighborhood N of the origin in E,, .

If the origin is an ND critical point of f of index k with critical value
zero, there exists an L"-homeomorphism ¢ : X — ¢(X) C E,, of an open
neighborhood X C N of the origin such that ¢(0) = 0 and

flep®) = —2® — = —x> + 2, + -+ 4% xeX. (411)

We shall establish this theorem by verifying statements (i)—(iii):

(i) If UCN is an open convex meighborhood of the origin, then
f1 Uis a Q"-function I.
(ii) I is d"-equivalent to a Q"-function
X —> Po(x) = aﬁ(x) XiXs o X € V, (4-12)
with underlying quadratic form,

ax,® + 0 + eyt = —x2 — oo — 2+ xh,y 4+ o+ 2,5 (4.13)
where k is the index of the origin as a critical point of f.
(i) Iy #s d™-equivalent to the quadratic form (4.13).

Proof of (i). (1) follows at once from Lemma 2.3,

Proof of (ii). Let A be a linear homeomorphism which reduces
the quadratic form I'%(x) underlying I" to the quadratic form (4.13).
A exists by virtue of Theorem 3.3. Let A be the restriction of 4 to so
small an open neighborhood V of the origin that "o A = I is a
well-defined Qr-function on V. It follows from Lemma 4.4 that

To@) = (MeX)x), xeV, (4.14)

so that the Q"-function I has the form (4.13) as underlying quadratic
form.
This establishes (ii).

Proof of (iii). By virtue of (ii) a,(0) = ¢; for i = 1,...,n and
a,;(0) = 0 if £ # j. Following the Lagrange method of reduction of a
quadratic form, we introduce the mapping

ay,(%) %y + a1a(%) %3 + *** + Aya(x) X
| ayy(x)[172 ’ xe Ny
4.15)

x— 0 (x) =
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where N; C V is an open convex neighborhood of the origin so small
that a,,(x) # O for x € N, . We note that

26
5;; (0) =¢ #0. (4.16)

The Lr-homeomorphism €. Let
x — (0y(x), Xy 000, %) = B(x)€ E,, x€N,, 4.17)

be the L-homeomorphism of N, in which 68, is given by (4.15).
This L™-homeomorphism has an inverse which is an L"-homeomor-
phism of the form

x— (P (%), Xy 5000, %) = P(x), x € O(N,). (4.18)

The Form of I'yo ¥. The first step in determining I'yo ¥ is
similar to the first step in the Lagrange reduction of a quadratic form.
For x € N, we see that

_ [@y(%) %y F -+ + ayu(x) %,]2

To(x) = ay(x) x; = a® + Ry(x), (4.19)
where
Ry(x) = w2 [ahk(x) - ‘lh(aﬁl)l(a;)ﬂ s, x€Np, (4.20)

summing terms in A&, k over the range 2, 3,..., n. We can write
Ty(x) = e,0,%(x) + Ry(). (4.21)

Since ¥ is the inverse of 8, (4.21) gives the identity
(Foo P)(x) = ex® + Y a2(x) max,,  x€ Oy,  (4.22)
2

where the mappings a}3 introduced here are of class C* on @(NN,). The
identity (4.22) shows that I'y is d"-equivalent to the Qr-function I'y(x),
given by the right side of (4.22).

Moreover, the quadratic form underlying I'y(x) is again the form
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(4.13). This follows from the fact that the quadratic form underlying
the Q"-function R;(x) of (4.20) is the form

e2x2z + -+ e’llx’llz’ (4.23)
while ¥o(x) = (e , %3 ..., %) [cf. (4.16) and (4.18)].

The Induction. Given an integer s such that 1 < s < n + 1, we
assume that I'; is d"-equivalent to a Q"-function with values

Ty y(x) = 31‘”12 + o ey + Z a;,‘}z(x) XpXy (4.24)

on some open neighborhood of the origin and with underlying
quadratic form (4.13), and prove this statement true if s is replaced by
s + 1. The assumption is valid if s = 2, as (4.22) shows.

By hypothesis a'(0) = ¢, , since the form (4.13) is assumed to
underlie I',_, .

Hence for suitable choice of an open neighborhood N, of the origin
there exists an L-homeomorphism,

x — (6y(x)y..., 0,(x)) = O(x),
in which 8(x) = x,fori # sand
(s)

0 _ 5 (%) %, + agﬂﬂ(x) Xep1 + °* + ae(;:l)x'n
o) [ a9 (x)172 ’

xeN,. (4.25)

Following the method used for s = 2, we find that I',_, is d"-equivalent
to a Qr-function I'y with values I'y(x) given by (4.24), with s 4 1
replacing s, and with underlying quadratic form (4.13).

By induction I’y is d"-equivalent to I, . But I', , as given by (4.24)
when s = n + 1, is identical to the form (4.13), so that Theorem 4.1
follows.

The Degenerate Case. The method of proof of Theorem 4.1
suffices, with trivial changes, to prove a theorem in which the origin
is a critical point of f which may be degenerate.

Theorem 4.2. Let f be a real-valued function of class C*+%, r > 0,
defined on an open neighborhood N of the origin in E, , vanishing at the
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origin. If the origin is a critical point of index k and rank v with
0 < v < m, there exists an L'-homeomorphism of form

x = @(x) = (P1(x);e0s PAX); Xpp1 52029 ¥n)

onto o(X), of an open neighborhood X C N of the origin 0, leaving the
origin fixed, and such that

fle@) = —x® — =2+ a3, + -+ 22+ Y du®) oy, x€X,
v+l
where each mapping A, is of class C™ on X and vanishes at the origin.
Recall that ¢ is a C*-diff if » > 0, but, as an L’-homeomorphism, it
is something more than a C7-diff. When v = n Theorem 4.2 reduces
to Theorem 4.1.



§5

REGULAR MANIFOLDS
IN EUCLIDEAN SPACES

In Part II abstract differentiable manifolds will be defined, each
with a differentiable structure.

However, the differentiable manifolds most relevant to the develop-
ments of Part I are differentiable manifolds in E, which are “regular”
in E, . We shall define these manifolds in a manner which will show
that they are differentiable manifolds in the sense of the general
definition of Part II. Our definition of regular manifolds will show
that two of the conditions which must be imposed on the general
manifolds of Part II are automatically satisfied by regular manifolds
in E,. We refer to the “compatibility’” and the “countability”
conditions.

Definition 5.0. Presentations. If V' is an open subset of some

Euclidean space E,, , a homeomorphism
v—>Fo):V->X

onto an open subspace' X of a topological n-manifold* will be called a
presentation (F : V, X) of X.

Definition 5.1a. A C™-Immersionin E,. Supposethat0 < n <.
A C™-mapping, m > 0,

v —F(v) = (Fy(v),..,F(v)): V> E, (V open in E,), (5.1)

* For definition see Appendix I.
29
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such that the » x n functional matrix

|55
0v;

} (5.2)

has the rank # at each point v = (v, ,..., v,,) € V is called a C™-immer-
sionof VinE,.

Definition 5.1b. A Cm-embedding. A C™-immersion (5.1) which
is a homeomorphism onto a subspace X of E, is called a C™-embedding
of V and a regular C™-presentation of X in E, .

It is important to note that the above definition of a C™-embedding
in E, would be essentially changed in meaning if the phrase ‘‘a homeo-
morphism onto X were replaced by the phrase “a continuous
biunique mapping onto X.” In fact, F might then fail to be a homeo-
morphism onto X, as simple examples when # =1 and r = 2
would show.

Let I', be a topological n-manifold.

Definition 5.2. Families of Presentations Covering I', . A family
(Fr: Vi s Xirea (V' open in E,) (53)

of presentations of open subspaces X, of I', whose union is I, is
termed a family of presentations covering I', .

Definition 5.3. Regular C™-Manifoldsin E,. LetT,,0 <n <,
be a topological n-manifold which is a subspace of E, and is coverable by
a family (5.3) of regular C™-presentations.

The set of all regular C™-presentations of open subspaces of I',, defines
a ‘‘differentiable structure” D on I', . T, , provided with the differentiable
structure D, is called a regular C™manifold M, in E, with *“‘carrier”
| M, | = I, and set of presentations 2M,, .

If a presentation (F: V, X) is in 2M, , X is called a coordinate
domain of M, and the coordinates (v, ,...,v,) of a point v € V the
F-coordinates of the point F(v) € X.

As indicated earlier, regular manifolds M, in E, possess properties
which must be postulated for the abstract manifolds of Part II.
We shall define these properties and verify their possession by regular
manifolds in E, .
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Compatibility. Let I', be an arbitrary topological n-manifold and
v—F@):V—-X  (VopeninE),

(54)
u—>Gu): U—-Y  (Uopenin E,),

be two homeomorphisms onto open subspaces X and Y of I, . If
XNnY # g, let

v—>Fo): V>XnY (PCP)

u—>Gu):0>XnY (OCU), (53)

be the unique restrictions of F and G, respectively, such that

FP)=GU)=XnY.

Definition 5.4. C™-Compatibility, m > 0. The homeomorphisms
F and G introduced in (5.4) are termed C™-compatible if X N'Y = o,
or if the “transition” homeomorphism

A=G1oF:V—>U (onto D) (5.6)

is a C™-diff.
We shall prove the following “compatibility” lemma.

Lemma 5.1. Let the topological n-manifold I', be a subspace of E,
which is the carrier of a regular C™-manifold M,, in E, ,0 <n < r,and
let F and G of (5.4) be presentations in 2M,, of coordinate domains X
and Y of M, .

Then F and G are C™-compatible.

If X n'Y = g, there is nothing to prove.

If XNnY # @, we refer to the “transition” homeomorphism
v — X(v) defined in (5.6) (assuming that I, = | M, |). Subject to
the relation u = A(v), one has G(u) = F(v) for v e ¥, or more
explicitly

-

Giu) =F(v), i=1,.,r; veV. (5.7)

We shall show that both A and its inverse are of class C™, thereby
implying that A is a C™-diff of ¥ onto U (Definition 1.1).
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If ¢° is given in P, the point #® = A(2?) is in U. Since G is a Cm-
embedding in E,, there is a set w of n of the integers 1,..., 7 such
that the » mappings

u—G,(u), peo, uel, (5.8)

have a nonvanishing Jacobian [, at u = w9,
Now the n equations

G () =F,(v), pecw, vel, uel, (5.9)

with v prescribed in ¥, have the solution ¥ = A(v) with u® = A(2°)
as an initial solution. Since the Jacobian J, # 0, it follows from the
classical implicit function theory that the mapping v — A(v) is of
class C™ in some neighborhood of ¢® in V. Since ¢ is arbitrary in 7,
it follows that A is of class C™ on V.

One shows, similarly, that the homeomorphism A-! of U onto ¥
is of class C™, The compatibility lemma now follows from Defini-
tion 1.1.

The following theorem characterizes a regular C™-manifold M,
in E, in a manner which shows that regular C™-manifolds in E, are
differentiable manifolds in the sense of the general definition in Part II.

Theorem 5.1. Let M, be a regular C™-manifold in E, , 0 < n < r,
and (5.3) a family of presentations in DM, covering | M,, |. Then 2M,,
is the ensemble of those presentations (F : V, X) of open subspaces X of
| M,, | which are C™-compatible with each presentation in the given
Sfamily (5.3).

2M,, is given as the set of all regular C™-presentations of open
subspaces of | M, |, while | M, | is itself given as a topological
n-space which is a subspace of E, .

Taking Lemma 5.1 into account, it is sufficient to show that a
presentation (F : V, X) of an open subspace X of | M,, | such that F
is Cm-compatible with each C™-presentation of the family (5.3)
is a regular C™-presentation of X.

By hypothesis, for v € V, F(v) is a point

(Fl(v)s"-’Fr(v)) € | Mn | C Er .

We must show that F is of class C on V, and that the corresponding
functional matrix (5.2) has the rank n forv € V.
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Given v e V, set x% = F(v%). Let (G: U, Y) be a regular C™-
presentation of a coordinate domain Y of M, such that x® € Y. Such
a presentation will be taken from the given family (5.3). In the notation
of Definition 5.4, with I, = | M,, | the transition homeomorphism A
given by (5.6) is, by hypothesis, a C™-diff. Moreover, (5.6) implies that

F=0Gon (5.10)

Relation (5.10) shows that F'is of class C™ on P and that the functional
matrix (5.2) is of rank n forv e V.

Since ¢° is an arbitrary point of V, it follows that (F: V, X) is a
regular C™-presentation of X, thereby establishing Theorem 5.1.

Covering Countability. A second property of regular C™-mani-
folds M, in E,, which is postulated in the general definition of
differentiable manifolds in Part II, is characterized in Theorem 5.2.

Theorem 5.2. Corresponding to a regular C™-manifold M, in E,,
there always exists a “‘countable family (5.3)” of presentations in 2 M,
covering | M, |.

Let w be the set of all positive integers. In the countable ensemble
of open r-balls in E, with rational radii and centers with rational
coordinates let (B;);c, be the subensemble of those r-balls whose
intersections with | M, | are included in some coordinate domain of
M,, . Corresponding to B, , let (F; : V;, X,) then be a presentation in
2PM,, such that X; D B, N | M, |. It is clear that the family

(Fi : Vi » Xi)iew

satisfies the theorem.

Differentiable Monge Presentations. Let E, be a coordinate n-
plane in a Euclidean r-space E, , with0 < n < r, and let v, ,..., v, be
the subset of the coordinates x, ,..., x, of E, which vary on E, . A
continuously differentiable homeomorphism

v—F): V—-X  (VopeninkE)
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of V onto a subspace X of E,, such that F-! is the restriction to X
of the orthogonal projection of E, onto E, , is called a differentiable
Monge presentation of X. It is clear that such a presentation is regular.

Monge Coverings. Let I' be a subspace of E, which is a topological
n-manifold. If I" is the carrier of a regular n-manifold M, , one sees
that there exists a family (F) of differentiable Monge presentations of
open subsets of I' whose union is I. We term (F)r a differentiable
Monge covering of I,

The Differentiability Index mr . If a presentation (F: V, X) is of
class C™, we term m a differentiability index of F. If I" admits a differ-
entiable Monge covering (F)r , let mr be the minimum of the “differ-
entiability indices” of presentations F € (F)r. One sees that my is
independent of the particular family (F), covering I". Taking account
of Theorem 5.1, one readily verifies the following theorem:

Theorem 5.3. If I'is a subspace of E, which is a topological n-manifold
for which a family (F)r of differentiable Monge presentations covering I'
exists, the following is true: Corresponding to each integer m such that
1 < m < mp, there exists a unique regular C™-manifold M3 with
carrier I, For each such m (F)r is a proper subset of the set of regular
Cm-presentations in DM,

In verifying this theorem, it should be understood that two regular
Cm™-manifolds in E, are identical if and only if they have the same
carriers and identical sets of regular C™-presentations.

Submanifolds of Regular Manifolds. 1f M,, is a regular C™-manifold
in E, and I', a nonempty open subspace of | M, |, then I', is the carrier
of a unique regular C™-manifold in E, , termed a submanifold of M, .
The set of Monge presentations of open subsets of I', is a subset of the
set of presentations 2M,, . These Monge presentations cover I, .

Sources of Regular n-Manifolds in E,. Let W be a nonempty open
subset of E,. With 0 < s < 7 let

x—Hyx): W—>R, j=1,.,s,

be s real-valued functions of class C™, m > 0, and let I" be the subspace
of E, of points x € E, such that

0 = Hy(x) = Hy(x) = - = H,(x).
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Set n = r — 5. If at each point of I' the functional matrix of the
s functions H; has the rank s, the classical theorems of implicit
function theory imply that I" is a topological #n-manifold admitting a
family (F)r of differentiable Monge presentations of open subsets of I'
whose union is I'. For each m such that 1 < m < m there then
exists a unique regular C™-manifold M{™ determined, in accord with
Theorem 5.3, by the family (F)r. .

Functions on M,. Let M, be a regular C™-manifold in E,,
0 <n<r Let

p—f(p): | My|—R

be a real-valued function on | M,, | and (F : V, X) a presentation in
DM, . The composite function (for composition in the extended
sense, see Appendix I)

v—(faF)v): V—R (5.11)

will be called the representation of f| X in F-coordinates v. The
representations f 5 F are used as follows to define properties of f.

Definition 5.5a. Differentiability of f on M, . We say that f is of
class C* on M, , if for each presentation (F:V, X) in M, , fs F
is of class C«.

Definition 5.5b. Critical points of f on M, . Suppose that f is of
class C#, p > 0, on M, . A point p° in a coordinate domain X of a
presentation (F : V, X) in 9M,, is termed a critical point of f if and
only if #® = F-1( p%) is a critical point of f5 Fon V.

Definition 5.5c. Nullity and Index of a Critical Point. Suppose
that M, and f are of class C™, m > 1, and that p° € M,, is a critical
point of f. Let (F : U, X) be a presentation in M, such that p, € X.
Then p° is said to have the nullity v and the index k if and only if the
critical point ¥ = F~1( p°) of f 5 F has the nullity » and index &.

Invariance of the above Properties of f. That the properties of f
and of its critical points characterized in Definition 5.5 are independent
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of the representations f5F used to characterize these properties
follows from Lemma 5.2 and Lemma 4.2.
The critical point p, is termed ND if its nullity is zero.

Lemma 5.2. Given presentations F and G in DM, of coordinate
domains in M, with a nonempty intersection X, let F and G be restrictions
of F and G, respectively, which present X. Then the “transition’ homeo-
morphism onto

A =G1oF: FYX)— GYX) (5.12)
[see (5.6)] s a C™-diff in the sense of § 1.

Proof. That X is a C™-diff follows from the C™-compatibility of F
and G.
To apply Lemma 5.2, note that

Gox=F (5.13)

as a consequence of (5.12), so that if f is any real-valued function
mapping | M,, | into R,

(fsG)oX = (fs F). (5.14)

This relation between the ‘“representation” fs G and fs F of f,
taken with Lemma 4.2, implies the “invariance” of the properties of f
and its critical points characterized in Definition 5.5.

Induced Mappings of Regular Manifolds. Diffs of abstract differ-
entiable manifolds onto other differentiable manifolds will be studied
in Part II. The mappings of regular manifolds M, in E, onto other
such manifolds in E, which occur most naturally are those induced by
diffs of open sets of E, onto open sets of E, . The following theorem is
concerned with such an “induced” mapping:

Theorem 5.4. Let M, be a regular C™-manifold in E,, 0 < n < r,
and :
x—>gx):Z—>W (ZopeninE,) (5.15)

a Cm-diff of Z onto an open subset W of E, .
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If | M, | CZ, then (| M, |) is the carrier of a regular C™-manifold
N, in E, whose presentations (G : V, Y) correspond biuniquely to the
presentations in DM, , with (F: V, X) in DM, corresponding to the
presentation

(G:V,Y)=(p3F: V, X)) (5.16)

in DN, . Thus G o (p 5 F) is the identity mapping of V onto V.

By hypothesis the functional matrix of F has the maximum rank n
at each point v € V. That the functional matrix of G = ¢ 3 F has
the rank # follows from the matrix equality

|52 A 2 e

where x = F(v) = F(vy,...,v,) and G = (G,,..., G,), F = (F,,...,F,),
P = (P10 Pr)-
The mapping of presentations,

(F:V,X)—>(psF: V,p(X)): DM, — DN,

is clearly biunique. It is onto the ensemble of C™-presentations in N,, ,
since the mapping of presentations,

(G: V,Y)—> (9725 G: V,¢YY)) : DN, — DM,

is its inverse.

Thus Theorem 5.4 is true.

We say that the manifold N,, of Theorem 5.4 is the image ¢(M,)
of M, under ¢.

Theorem 5.4 is supplemented by the following theorem.

Theorem 5.5. On the manifolds M, and N,, = ¢(M,,) of Theorem 5.4
let real-valued functions f and g, respectively, be given with

f(p)=2(q); peM,; qeN,; q=o(p) (5.17)

Then f is of class C* on M, if and only if g is of class C® on N, ,
and if f and g are of class C?, the critical points of f and g correspond
biuniquely under ¢, with preservation of nullity and indices.

Let (F: V, X) be a presentation 2M,, and (G : V, Y) the corre-
sponding presentation (5.16) in 2N, .
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Then f| X and g | Y are, respectively, of class C? by definition if
and only if f5 F and g 5 G are of class C2 on V. If  is the restriction
of ¢ to X then, by definition of g and G

g23G =(fsyM)o(foF)=f5F (onV), (5-18)

so that f| X is of class C2if and only if g | Y is of class C2.

By definition the critical points of f| X and g | Y are, respectively,
the F and G images of critical points ¢® of f5 F and g 5 G on V, with
nullity and indices determined by f s F and g 5 G. Since (5.18) holds
and since G(¢?) is the image of F(¢°) under ¢, the lemma follows.

Exercice 5.1. Making use of Definition 5.4 of C™-compatibility,
verify the following local characterization of C™-compatibility.
Let I', be a topological n-manifold and

(F,:U0,,X) and (Fp: Uy, X,) (Uy, Uyopenin E)) (5.19)

be presentations of intersecting open subsets X; and X, of I', . If
X, N X, # o, a necessary and sufficient condition (£) that F, and
F, be C™-compatible is as follows:

(é) Each point p,e X, N X, shall admit an open neighborhood N
relative to X, N X, such that the restrictions

#,:0,,N) and (Fy:0,,N), (5.20)

respectively, of the presentations (5.19) be presentations of N which are
C™-compatible.



§ 6
FIRST THEOREMS ON NONDEGENERACY

The +Volume Ratio Method.” Historical Review. Theorems
and lemmas preceding Lemma 6.3 are stated without proof. They are
presented to indicate the development of the theory from 1926 to 1932,
the year Morse’s Colloquium Lectures [13] were given.

The Role of Null Jordan Content. A bounded set 4 in E, has a
null Jordan content if, corresponding to a prescribed positive constant e,
there exists a finite set of n-rectangles in E, whose union includes 4
and whose total volume is less than e. A set of null Jordan content has
a null Lebesgue measure mA = 0, but the converse is not true. A set
of null Jordan content is nowhere dense in E,, , a property not implied
by null Lebesgue measure. The union

A=A4,V A4, - 6.1)

of a countable ensemble of bounded disjoint sets each with null
Jordan content has a Lebesgue measure mA = Q. However, to say
that mA = 0 does not imply that each set 4; has a null Jordan
content.

The first theorem in the 1927 abstract (Morse [2], p. 814) concerned
an arbitrary compact regular manifold X, of class C?in E, , and was
stated as follows.

Theorem 6.0. There exist on X, infinitely many ND functions of
class C2.

A first proof of this theorem in 1926 was by way of an elementary
principle which we shall term the gradient lemma. In this lemma we

39
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are concerned with an open subset X of E, and a closed n-cube Q
included in X. There is given a real-valued function f of class C?2
defined on X. The Hessian H(x) of f at a point x € X is the Jacobian
at x of grad f. That is,

D(f 411 fz,)

HE) = B )

(x), «xeX. (6.2)

We shall refer to points a = (a, ,..., 4,,) in a Euclidean space 4,, . The
“gradient lemma” follows.

Lemma 6.0. Under the preceding conditions on f the subset
{acA4,|(gradf)(x) = a forsome xecQ with H(x) =0} (6.3)
of A, has the Jordan content zero in A, .

The following lemma was recognized as an immediate consequence
of Lemma 6.0:

Lemma 6.1. Under the preceding conditions on f the subset
{acd,|(gradf)(x) =a forsome xeX with H(x) =0} (6.4)

of A, has the Lebesgue measure zero in E,, .

Lemma 6.1 is obviously equivalent to the following:

Lemma 6.2. Under the preceding conditions on f, for almost all
values of a € A, the mapping

x—>f(x) — (@ + -+ ap%,): X >R (6.5)
is ND.

Lemma 6.2 led at once to a proof of Theorem 6.0. However, the
truth of Theorem 6.0 was confirmed around 1930 in another way.
The Colloquium Lectures by Morse [12], given in 1932, contained
a general theorem, Theorem 14.1, p. 243, on focal points of extremals
transverse to a manifold. This theorem has the following special
corollary:
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Theorem 6.1. For0 < r < nlet M, be a regular C*-manifold in E,, .
For almost all points a € E, — M, the C?-function

x_)f(x)=”x_a”7 xeM,, (6'6)

ts NDon M, .
Theorem 6.1 will be extended in § 15 without reference to varia-
tional theory. It implies Theorem 6.0.

Although no explicit proof of the gradient lemma was published
by Morse, a proof of an analogous lemma on conjugate points (Lemma
16.1 by Morse [3], p. 625) gives, except for trivial changes of termi-
nology, a proof of Lemma 6.0. The essence of the proof, both in the
case of conjugate points and in the case of ordinary critical points, is
the use of infinitesimal “volume ratios.”

In 1931 it was noted that the proof of the gradient lemma by the use
of ‘“volume ratios” led, with at most trivial changes, to another
theorem in which grad f and the Jacobian of grad f were replaced by f
and the Jacobian of f. We shall formulate this modification of Lemma
6.0 as Lemma 6.3. Lemma 6.3 concerns a C!'-mapping,

£ = F(x) = (Fy(x),e, Fal®) 6.7)
of an open subset X of E,, into E, . The points x € X at which

_ D(F,,...,F,) , \
](x) - D(xl yorns x") (x) =0 (6'8)
are called singular points of F.

Lemma 6.3. If the open subset X of E, includes a closed unit n-cube
QO and if o is the subset of singular points of F in Q, then F(c) has the
Jordan content zero in E, .

It was found very recently that a lemma similar to Lemma 6.3 was
proved by Knopp and Schmidt [1] in 1926. A proof in case n = 2
was regarded as sufficient. Around 1932 proof of Lemma 6.3 by the
volume ratio method was suggested to Sard as a starting point of a
Harvard thesis on measure aspects of general differentiable mappings
of open subsets E, into E, . Sard’s results were published in 1942
(see Sard [1]).
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We shall resume our exposition by giving a detailed proof of Lemma
6.3 by the “‘volume ratio method.”

Proof of Lemma 6.3. For each integer r > 0 let O be divided by
a network of r" congruent nonoverlapping n-cubes with edges of
length 1/r. If Z, is such a cube and p the length of its diagonal, its
volume is found to be

V() = cap", € = nn, (6.9)

We shall apply Corollary 2.2, setting K = Q in Corollary 2.2. Let z*
be any one of the cubes z, which contains a point # € o. Since J(u) = 0,
by hypothesis, there is at least one unit vector A = (A, ,..., A,) such
that u is a critical point of the dot product A - F.

Let S, be the system of coordinate x,-axes. Let S, be a system
of coordinate y;-axes obtained from S, by a translation of the origin
in S, to the point F(u), followed by a rotation of the x,-axis into
the y,-axis, taken as the direction (A, ,..., A,;) in S, .

Suppose that the point F(x) with its coordinates (Fy(x),..., F,(x))
in S, is represented in S, by the point ( y, ,...,¥,). If x € 3%, the
orthogonal projection of the vector F(x) — F(u) onto a sensed straight
line with the direction A has an algebraic value y, = A« (F(x) — F(u))
such that, in terms of ¢ of Corollary 2.2 and in accord with (2.20)
and (2.25), | ¥, | < po(p). Recall that the mapping ¢ — ¢(t) depends
only on the values of F in an open convex neighborhood of Q and
not upon the choice of # € o.

The coordinate y;, £ = 1,..,n2 — 1, in S, of the point F(x) is
similarly obtained by projecting the vector F(x) — F(u) orthogonally
onto the y;-axis. If the direction of the y,-axis has the components
oy yeery O, Telative to S, , then

y; = o« (F(x) —F@)), i=1,u,n—1, (6.10)
and by virtue of (2.21) | y;| < pH,, where H, is a constant inde-
pendent of the choice of u € .

The image F(z¥) in E, of the cube 2* is thus contained in a rectangle
w, with center at the point F(x) in S, and with volume

V(wr) < 2p9(e)(20Ho)" (6.11)
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Recall that ¢ is continuous and that ¢(0) = 0. A comparison of (6.11)
and (6.9) shows that the “volume ratio,” V(w,) to V(z;¥), tends to zero
as p tends to zero, independently of the choice of % € o.

The sum of the volumes of the n-cubes z;¥ which contain points
u € o is at most the volume 1 of Q. The union of the corresponding
rectangles w, covers F(c). Let e > 0 be prescribed. It follows from
(6.11) that if  is sufficiently large, F(o) is coverable by a finite set of
rectangles w, whose total volume is less than e. Hence F(o) has null
Jordan content.

Thus Lemma 6.3 is true.

We state the following extension of Lemma 6.3:

Extended Lemma 63. Let x > F(x): X — E, be a Cl-mapping
of an open subset X of E, into R,, .

If o is the subset of singular points of F in X, and Y any relatively
compact subset of X, then

Jordan content F(c N Y) = 0.

The proof of the lemma depends upon the fact that the relatively
compact subset ¥ of X can be covered by a finite set of n-cubes each
included in X (see Appendix I).

ND Functions in Prescribed Families. Lemma 6.2 does not
guarantee the existence of a ND function in a prescribed family of
differentiable functions. If fis a function of the family, there may be no
function f' of the form

3 () — (@ + -+ + anta) = £'(3)

other than f in the given family. The following family of electrostatic
potentials f has this property:

Electrostatic Potentials. In Ejg let there be given p > 0 points

PO, p (6.12)

and v points
gV, g, (6.13)
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all distinct. Let x € Eq be distinct from each of the points (6.12) and
(6.13). Let 7,,..,7, be positive numbers and {;,...,, {, negative
numbers representing the magnitudes of electrostatic charges at the
respective points (6.12) and (6.13). Set

ri=p" —xl, py=1g"—xl;

i=Lwops §= Loy (6.14)

For fixed points (6.12) and (6.13) and corresponding charges the
function'

Ly b

- 6.15
1 Py ( )

% = V() =:’_:+ ..._|_‘_:’_:_+
is the associated electrostatic potential.
The parameters of this family are the points p‘?, ¢ and the
corresponding charges. The question arises: For fixed charges and
fixed integers p and v, are ND potentials of the form (6.15) dense
among all such potentials ? We shall answer this question affirmatively
by proving the following theorem:

Theorem 6.2.* If the p + v charges are fixed, as well as the points
P and ¢\, excepting one of these points, say pV = (a, , a, , a;), then
the resulting potential

x_’V(xl»xz»xa;apaz,as) (6.16)

is ND for almost all points (a, , a5, a3) in Eg .
We shall state a general theorem, Theorem 6.3, that implies
Theorem 6.2.

Notation for Theorem 6.3. Let A,, be a Euclidean space of points
a = (a, ,..., ay,). Let W be an open nonempty subset of the product
space E, x A,, . Let there be given a C2-mapping

(¢,a) > Ux,a): W—R, (6.17)

t The critical points of V,, are the points of equilibrium in the corresponding
field of electrostatic forces. In §3.2 of Part IV relations between these points of equilib-
rium will be obtained whenever V,, is ND.

¥ One could prove this theorem by having recourse to the general theory of real
analytic functions, However, such recourse would not be possible for similar families
of nonanalytic functions.
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Given a subset X of E, X A4, , let pr; X and pr, X denote the
orthogonal projections of X into E, and 4,, , respectively.

The Partial Mappings U¢. For each point a € pr, W we introduce
the open subset

W(a)={xekE,|(x,a)e W}
of pr; W and the partial mapping
x— U(x, a) = Us(x) : W(a)— R. (6.18)
We regard U as defining a family of mappings U®.

The x-Critical Ensemble Q2 of U. Let 2 denote the set of points
(%, @) € W such that

0 = Uy (x,a) = U,(x, a) = -+ = Up(x, a).

A point (x, @) is in 2 if and only if x € E, is a critical point of the
function Ue. The set £2 may be empty.

The x-Critical Matrix H(U). Setting U, = U, for i = 1,.., n,
let the n by n 4 m functional matrix of the n functions U,,..., U,
with respect to the » 4 m variables x, ,..., ¥, ; 4, ,..., a,,, evaluated
at (x, a) be denoted by

| Us(x, @)l = H(U)(x, a). (6.19)
We call H(U) the x-critical matrix of U.

Theorem 6.3. Let W be an open nonempty subset of E, X A, and
(»,a) > U(x,a): W—R (6.20)

a C%-mapping such that for each pair (x, a) in the “‘x-critical ensemble’
Qof U
rank || U;(x, @)l = n. (6.21)

Then for almost all a € pr, W, the partial mappings

x— U(x, a) = U(x) (6.22)
are ND.
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Theorem 6.3 will be established in § 7, together with Theorem 6.5.
Theorems 6.3 and 6.5 will be given extensions in Part II. In these
extensions the product space E,, X A4, will be replaced by the product
M, x A, of the above Euclidean space 4,, and an abstract differen-
tiable manifold M,, . In the remainder of this section we shall clarify
Theorem 6.3 by giving three applications.

First Application. Proof of Lemma 6.2. One sets
Ulx,a) = f(x) — (% + ** + %), %€ X, (6.23)
for each ae€ A4, . For such a U the last # columns of the n X 2n
matrix of (6.21) have the rank », so that (6.21) holds. In this application
w=X X A, and pr, W= A4, . Lemma 6.2 follows from Theorem 6.3.
Second Application. Proof of Theorem 6.2. We apply Theorem 6.3
taking n = m = 3, identifying U of Theorem 6.3 with V" of Theorem
6.2. One finds that

o (a4 —x) ﬂ_ (a3 — x,) oV (a5 — x5)
%a, Mlx—al®’ da, Mlx—alf’ day Mlx—alf"

A simple calculation shows that the 3-square determinant

%V (x, a)
Ox; oa; #0
for x distinct from the charged points. The 3 X 6 matrix in (6.21)
thus has the rank 3. Theorem 6.2 accordingly follows from Theo-
rem 6.3.

Third Application. ND boundary values. Let X be a regular
n-manifold in E,, , of class C¥, p > 1, bounding a compact subset Z
of E,,,. A real-valued function f of class C™, up = m > 1, defined
on an open neighborhood D, of Z, will be termed admissible relative
toZon 2 if f| Zis ND and if f is ordinary at each point of 2.

The deepest global study of critical points of f| Z is possible only
when f| 2 is ND (see § 10). That this is the general case is shown
by the following theorem:
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Theorem 6.4. If f is admissible relative to Z and if e; is a sufficiently
small positive constant, then for almost all points a = (a,,..., a, )
in E, | such that || a|| < e, ,the function

x—f(x) — agx; = g%x), xe€Dy, (6.24)

summing with respect to j has the following properties:

(i) The critical points of g* | Z are ND and may be made to corre-
spond biuniquely to those of f | Z with preservation of index, and so as to
tend uniformly to those of f | Z as || a || tends to zero.

(ii) The function g* | X' is ND.

Proof of (). For fixed points a the critical points of g¢ are solutions
x€E,,, of the n+ 1 equations 9g%/ox, = -+ = 9g*[0x,,; = 0.
Now, g* = fwhen @ = 0. By hypothesis

D(gla"-"g:-f—l)
A8 s Bnt1) 0
Dity o o) O 7

when || a|| = 0 and x is a critical point of f| Z. Statement (i) follows
on making use of the principle: the index of a ND quadratic form Q
with coefficients a@,;; remains constant as the coefficients a,; vary
continuously provided the determinant |a;| remains non-null
(cf. Theorem 3.4).

Proof of (ii). Let (F:V, X) be a presentation of a coordinate
domain of Z. Then g# | X has the representation

u— Uy, a) = f(F(u)) — a,F(u),

summing with respect to j, for j on the range 1,..,72 4 1 and
(u,a)e V x E,.;. We shall apply Theorem 6.3, identifying
(4y 5.y #,) With (xy ..., x,) of Theorem 6.3. The “u-critical matrix”
| Usi(u, a)|| of (6.21) is then 7 by 2z 4 1 and has as submatrix the
functional matrix of F ,..., F, ., with respect to the variables %, ,..., #,, ,
and so has rank #, since the presentation (F : V, X) is regular. Hence
by Theorem 6.3 g% | X is ND for almost all points a € E,,,, .

Now, X can be covered by a finite set of coordinate domains X.
Hence (ii) and Theorem 6.4 follow.

The following theorem is needed in § 16, where its counterpart for
an abstract differentiable manifold M, is established.
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Theorem 6.4'. Let X be a regular n-manifold of class C, p > 1,
in E,, 0 < n < r. There exist r real-valued functions

pop): Z—>R

of class C* on X such that the following is true: If p — f( p) is a real-
valued function of class C™, p > m > 1, on Z, the function

p—1(0) + 1}:1 api(P) = F%(p) (6.25)

is ND on Z for almost all points (a, ,..., a,) € E, .

Proof. We take ¢; as the restriction x; | Z, where x, ,..., x, are
coordinates in E,. The proof is completed by using Theorem 6.3
as in the proof of Theorem 6.4(ii). If (F : V, X) is one a of countable
set of presentations covering Z, f¢ | X has a representation

Uz, a) = fo(F(u)), (»,a)eX X E,,

to which Theorem 6.3 applies, showing that f2 | X is ND for almost
all points @ € E, . Since the union of a countable set of subsets of E,
of zero measure is a set of zero measure, Theorem 6.4’ follows.
The proof in § 7 of Theorem 6.3 will include a proof of Theorem
6.5 below. Theorem 6.5 implies Theorem 6.3, as we shall see in § 7.

Theorem 6.5. If under the hypotheses of Theorem 6.3 W, is an
arbitrary relatively compact subset of W of Theorem 6.3, the subsets of
points a € pry W, such that the partial mappings U® fail to be ND have
a Jordan content in A,, which is zero.

In particular, if W in Theorem 6.3 is a relatively compact subset of
E, x A, such that U of Theorem 6.3 admits an extension of class
C? over an open neighborhood of Win E, x A4,,, then the conclusion
of Theorem 6.3 can be given the form: the partial maps U? which fail
to be ND have parameters @ in a set of Jordan content zero. This
exceptional set is nowhere dense in 4,, .

Historical Note. In preparing “Functional topology and abstract
variational theory,” published in France in 1939, the following
conjecture was made by Morse around 1932:
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A Cr-mapping of an open subset of E,, n > 1, into E, for which
r = n is constant on any connected subset o of its critical set.

This theorem was not needed in treating the ND case, nor in the
abstract theory, but was desirable in treating degenerate mappings
from E, to E,, when n > m.

The problem was made known to interested graduate students and
colleagues at Harvard from 1932 on. A first response was the counter-
example of Whitney [1], which showed that f need not be constant
on o if » < n. The main problem remained unsolved until M. Morse
communicated it to A. Morse at Princeton in 1938. A. Morse [1]
verified the conjecture.

Exercise 6.1. Suppose that in Theorem 6.3 n=1, m =2,
W = El X Az ’ and

Ux,a) = 3(x, — 18 4+ a2, —a’% — %, (x,a)€E, X 4,.
Verify the following: The set 2 is the quadric in E; = E; X 4, on
which

Up(x,8) = (%, — 12 +a? —a? —1=0.
The matrix condition (6.21) is satisfied. The subsets 2* of points
(%, @) € £2 such that x is a degenerate x-critical point of U? is the plane

hyperbola on which x, = 1, a,2 — a,2 = 1, and meas pr, 2* = 0.
Theorem 6.5 holds for each open relatively compact subset W, of W.



§7
NONDEGENERACY : THEOREM 7.1

We shall show that Theorems 6.3 and 6.5 are implied by the follow-
ing more geometric theorem. This theorem is of general character,
with other applications. Following a statement of the theorem an
essential geometric interpretation of it will be given.

Theorem 7.1. Let n C-mappings
(x,a)—> Uyx,a): W—R, i=1,.,n, (7.1)

of an open subset W of E, X A,, be given, and let Q2 be the subset of
points (x, a) € W such that

Uy(x, @) = Uy, @) = =+ = Up(x,a) = 0. (7.2)

Suppose that at each point (x, a) € §2 the n by n + m functional matrix of
Uy,..., U, has the maximum rank n. Then the subset Q* of points
(%, @) € Q at which

D(U, ..., Uy)

D3 (0) = 0 (1.3)

(termed x-singular points of 2) has the following properties [of which
(n) implies ({)):

(1) There exists an open neighborhood N, in W of each point
p € W so small that

Jordan content pry(N, N 2*) = 0. (7.4)

() The measpry 2* =0in A4,,.
50
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Geometric Interpretation of Theorem 7.1. 'The set 2 can be regarded
as the carrier of a regular m-manifold in the Euclidean (# + m)-space
E, x A, of rectangular coordinates x, ,..., x,, ; 4, ,..., @,, . We denote
this manifold as well as its carrier by £.

We regard E, and 4,, as coordinate #- and m-planes of E, x 4, .
OnkE,,a =+ =a, =0 whileon 4, x,=-+=x, =0.Apoint
(%2, a°) of 2is in 2* if and only if there is at least one ray tangent to 2
at (x% a° and orthogonal to the coordinate m-plane, 4,, .

Choice of x; and a; Axes, Both the hypotheses and conclusions of
Theorem 7.1 will be unaffected if the x;-axes are permuted among
themselves and the g;-axes are similarly permuted. It is understood
that under any such change of coordinates the functions U, ,..., U,
are to remain invariant in value. We thus understand that the
manifold 2, as well as its subset 2%, remains invariant.

Statement () of Theorem 7.1, and not ({), is the principal con-
clusion of Theorem 7.1. Statement () implies ({) and has other
implications of importance for us.

Statement (A) will now be verified:

(A) Theorem 7.1 (n) implies Theorem 7.1 ({).
Proof of (A). Granting the truth of (), there exists a sequence
M1 5 7z »... Of open subsets of W covering W and such that the following

is true: For each positive integer % the set w, = pry(n;, N 2%*) has a
null measure mw, in 4,, . Moreover,

pr, 2% C Unign pry(n, N 2%), (1.5)

since the sets 7, cover . Hence
m(pry 2%) < mw, + mw, 4 -+ =0, (7.6)

so that ({) is true.

Proof of Theorem 7.1 (). We begin the proof of (3) by verifying
the truth of () in the trivial case in which the point p € W is not in
0%, Since 2* is a closed subset of W, there exists an open neighbor-
hood N, of p in W such that N, N 2* = @ whenever p ¢ Q*. In
this case () is accordingly true.
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The Case p = (x°, a°) € 2*. In this case there exist by hypothesis
integers » > 0 and s > 0 such that r 4 s = n and the Jacobian of
U,,..., U, with respect to r of the coordinates ¥, ,..., x, and with
respect to s of the coordinates a, ,..., a,, does not vanish at (x9, a°).
If use is made of our freedom to renumber the coordinates x; and the
coordinates @; , we can suppose that

D(Uy ..., Uy)

D(%y 000y X4 5 Gy yenes

SE @ #0 s>0. amn

As a special case 7 can vanish and s = n.

A Monge Representation of 2 mnear (x° a%). By hypothesis
Uy(x®, a®) = O for i = 1,..., m, and (7.7) holds. The classical implicit
function theorem accordingly implies the existence of solutions (x, a)
of the equations (7.2) near (%, a°). The notation involved in presenting
the implicit function theorem requires definition.

Notation for Lemma 7.1 Of the coordinates x, ,..., %, ; 4, ,..., @
of a point (, a) € E, x A4,, the subset

m

X3 geeey Xy § Ay yeeny By s r+s=mn s>0, (7.8)
has appeared in (7.7). There remains the complementary set
Koy seees X 3 By yersy Gm s 0<r <n, (7.9)

of m coordinates of (x, @). Let IT denote the coordinate m-plane of
E, x A, on which the coordinates (7.9) are variable and the coor-
dinates (7.8) vanish. Let = project E, X A,, orthogonally onto II,
so that

(%, @) = (Xy 1y yoeey X 3 Bgry soes ) = 2, (7.10)
introducing z.

The classical implicit function theorem, supplemented in (i) by
continuity considerations, gives the following:

Lemma 7.1. Let (%% a®) € 2* be such that (7.7) holds. Corresponding
to any sufficiently small open neighborhood w of m(x°, a) relative to the
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coordinate m-plane II there exists an e-neighborhood N(e) in W of
(x°, a®) so small that the following are true:

(?) =(N(e)) C w and
D(U,,..., U,)

D(%y yeeiy %, 5 8y 5.0,

SEDA0 ®ma)ENE), (7.11)

(ii) The m-manifold Q includes an open subset Q, which projects
homeomorphically under © onto w and has a Monge representation on w
of class C* giving the inverse of = | 2, ,

(i) N(e) N2 = N(e) N L2, .

By virtue of (ii) the points (x, @) € 2, have coordinates (x, ),
uniquely determined by their projections,

(%, @) = (Xppg yeeey X § Aoy seees Q) = 2 (7.12)
in w and by equations

% = ¢y(2) a; = y(2)
: . : : 2€w (7.13)

%, =gd3)  a, = a)

where 2 is arbitrary in w and the functions ¢, ,..., ¢, and ¢, ,..., ¢, are
of class C? on w.

Two additional lemmas are required to establish (3) of Theorem 7.1.
In Lemma 7.2 use is made of a neighborhood N(e) of a point (x°, a%,
as given in 2%, with N(e) conditioned as in Lemma 7.1. Reference is
made to the Monge representation of N(¢) N £, given by (7.13).
Recallthatr - s = nand 0 < r < n.

Lemma 7.2. A4 point (X, @) € N(e) N 2 such that
D(‘/‘l [ hddd) ‘/’a)

D(%p4y 5000y %)

(n(%, @) # 0 (1.14)

is not in 2%, the set of “x-singular’ points of £2.
Suppose the lemma false and that (¥, @) € 2%, that is, that (¥, @) € 2
and
D(Uy,..., Uy)
D(x, ,..., x,

(% a) = 0. (1.15)
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There then exists a ray A tangent to £ at (¥, @) and orthogonal to the
coordinate m-plane 4,, . Let g be a regular arc,

t—> (2,(2)000 X(2); @y()yeeny @(2)), —d <t <d, (7.16)

in N(e) N 2 meeting the point (%, @) when ¢t = 0, and having the
direction of A when ¢ = 0. Since A is orthogonal to 4, ,

&(0) = a3(0) = = an(0) =O. (7.17)

The coordinates of points on g satisfy the relations (7.13) for each
t € (—d, d). Hence

| %42(0)] + | %5.49(0)| + -+ + | %5(0)] # O. (7.18)
Otherwise (7.17) and (7.13) would imply that
| %1(0) + | %3(0) + - + [ #(0) =0, O<r<m,

and g would not be regular.
According to (7.13) for —d <t < d

a(t) = (@2 (B)yeres X (1)} Agi1(B)yenes an(t)), k= 1,5

We infer that when ¢ = 0, 2 = =(, @), and (7.17) holds
0 , 0 ,
0= ——éﬁ%—x,ﬂ(@ NI -'é"T(:’x,,(O), E=1ls (119

The relations (7.19) are impossible when (7.18) and (7.14) hold.
We infer the truth of the lemma.
Lemma 7.2 should be paired with Lemma 7.3:

Lemma 7.3. Let N(¢) be a neighborhood relative to W of the above
point (x°, a®) with N(e) conditioned as in Lemma 1.1, and let e be a
constant such that 0 < e < e.

Then the subset Z(e) of points (x, a) € N(e) N Q such that

D(‘/’l gerey '/‘s) (‘n‘(x, a)) — 0 (720)

D%,y yueey %)
has the property that in A,,
Jordan content pr, Z(e) = 0. (7.21)
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Proof of Lemma 7.3. Set Y(e) = N(e) N 2. Then Z(e) C Y(e).
We shall define a C'-mapping

22— 60(2) : 7(Y(e)) > A,

onto pr, Y(e), recalling that #(Y(e)) is an open neighborhood in IT
of m(x% a° by virtue of Lemma 7.1 (i) and (ii). We shall apply the
Extended Lemma 6.3 to 6. Set Y(e) = N(e) N Q.

The Mapping ®. Under © a point
Z = (Rpyy seees ¥ 3 Ggyq eeey ) € (Y (€)) (7.22)
shall go into the point
(04(2),-v0r O()) = ($(2)yoeer $o(2); Apsg yoorr ) € A (7.23)

In the m-plane I the domain =(Y(e)) is an open relatively compact
subset of #(Y(e)). Moreover, ® admits a C'-extension over n(Y(e))
defined by (7.23). The Jacobian of @,,..., @, with respect to the
m coordinates of 2 reduces to

Do) o) zenyie),

D(%,4q yeees %)

by virtue of (7.23), and vanishes by hypothesis when 2 = n(x, a)
and (x, a) € Z(e). It follows from Extended Lemma 6.3 that

Jordan content O(rZ(e)) = O. (1.24)

Relation (7.21) will follow once we have verified the equation
pry(x, @) = O(m(x,a)), (% a)e Y(e). (1.25)
Now, (7.25) is true since both sides of (7.25) are equal to (a, ,..., a,,).
The left side of (7.25) is equal to (4, ,..., a,,) by virtue of the definition

of pr, . The right side of (7.25) is equal to (4, ,..., a,,) by virtue of (7.23)
and the relations of (7.13)

a = lﬁl(z)!"'y a, = l/ls(Z)
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[when 2 = =(x, @) and (x, @) € Y(e)]. From (7.25) we infer that

8(m(Z(¢))) = pra Z(e),

[since Z(e) C Y(e)] so that (7.21) follows from (7.24).
Thus Lemma 7.3 is true.

Completion of Proof of (n). We have seen that (n) is true if p ¢ 2%,
If p = (29, a%) € Q%, let N, = N(e), where N(e) is conditioned as in
Lemma 7.3. According to Lemma 7.2, N, N 2* C the subset Z(e) of
N(e) N 2 introduced in Lemma 7.3. Lemma 7.3 implies that (7.4)
holds.

This completes the proof of Theorem 7.1.

Implications of Theorem 7.1. A theorem which is equivalent to
Theorem 7.1 (1) is equivalent to Theorem 7.1. Such a theorem follows.

Theorem 7.2. If, under the hypotheses of Theorem 7.1, W, is an
arbitrary, open, relatively compact subset of W, then

Jordan content pry( W, N 2*) = 0, (7.26)

where 2* is the set of *‘x-singular’ points of Q.

Theorem 7.2 implies Theorem 7.1(n), since for each p € W there
clearly exists a relatively compact open neighborhood of p € W.

Conversely, Theorem 7.1 (y) implies Theorem 7.2, since Cl W,
can be covered by a finite ensemble of neighborhoods N, C W for
each of which (7.4) holds, thereby implying (7.26).

Theorem 6.3 as Corollary of Theorem 7.1. To infer Theorem 6.3
from ({) of Theorem 7.1, we first identify the domain W of U of
Theorem 6.3 with the domain W of the functions U, ,..., U, of
Theorem 7.1. We then identify the functions U, ,..., U, of Theorem
7.1 with the partial derivatives Uz, yees Uz, of Theorem 6.3. The
set 2 of points (x, a) in W of Theorem 7.1 at which the functions
U, ,..., U, vanish is identified with the set 2 of points at which the
partxal derlvatlves U, y»+s U,, vanish. Theorems 6.3 and 7.1 have
the respective hypotheses that the functional matrices of the functions
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U,,..., U, and Uz »-y U, have rank = at points of their respective 2.
It follows from Theorcm 7.1 ({) that for almost all a € pr, 2 of
Theorem 6.3, the Hessian of U with respect to the variables x, ,..., x,,
fails to vanish, implying Theorem 6.3.

The Meaning of 2*. In the context of Theorem 7.1 2* is the subset
of x-singular points of the regular manifold 2, while in the context of
Theorem 6.3 £2* is the subset of £ of degenerate x-critical points of U.

Theorem 6.5 as Corollary of Theorem 7.2. One makes the identi-
fications of the preceding paragraphs and in addition identifies the
relatively compact sets W of Theorem 6.5 and Theorem 7.2. It follows
from (7.26) that the parameters a of partial mappings x — U%(x)
which fail to be ND are contained in a subset of pry, W, of 4,, of
Jordan content 0, implying Theorem 6.5.



§8
2-NORMAL ¢-COORDINATES

The Family of Normals v, to X. Let 2 be a regular compact
n-manifold of class C* in E, ,, . The strong hypothesis that X' be of
class C* is made for simplicity of exposition in dealing with the
family of normals to X' at points p. The results presented here are
effectively supplemented by the theorem on ‘‘elevating manifold
differentiability” in Appendix II.

We make a useful definition:

Definition 8.1. Strongly Extensible Presentations . A presentation
(p: U, X)in 92 of a coordinate domain X of 2 will be called strongly
extensible if  admits an extension as a presentation (¢’ : U’, X') in
2ZX such that U is relatively compact in U’ or, equivalently, X is
relatively compact in X',

Since 2' is compact, it can be covered by a finite set of coordinate
domains X each given by a strongly extensible presentation in 22.
A presentation (¢ : U, X) will be understood to be strongly extensible
unless otherwise stated.

Normals v, to Z. Let p be an arbitrary point in 2 with coordinates
P1seees Ppyr in E, o, . Let X be the boundary of a compact subset Z
of E,,,.Let

A(2) = A()sers Ansa(2)) (8.0)

be a sensed unit vector normal to X' at p, leaving Z at p. Let v, be the
normal to Z at p. Then v, is the ensemble of points

x=p+s\p), SER (8.1)
58
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The mapping
(2,8)>p+sAp): Z X R—>Epyy (8.2)
is continuous but not biunique.

Notation. Let e be a positive constant and set I(e) = (—e, ¢). Let
v,¢ be the subarc of the normal v, on which s € I(e). Given an arbitrary
subset W of | Z'|, set

we = | v (8.3)
peEW
In particular, | X' |¢ is written as 2¢. This notation is used throughout
Part I.
We shall prove the following:

Lemma 8.1. Let (p: U, X) be a presentation in DX of a coordinate
domain X of 2. If e is a sufficiently small positive constant, the mapping

(u, s) —> @(u) + sM@(u)) = P(u, s) : U X I(e) — X (8.4)
is a diffeomorphism of class C*, onto X¢in E,, _, .

Let 4° be a point of U. We shall show that the Jacobian

D(1 32005 P
H (%) %0  when & =0. (8.5)

To verify (8.5), recall that the first # columns of the determinant
(8.5) represent n vectors tangent to X' at the point p? = ¢(u?). These
vectors are linearly independent, since the functional matrix of
@1 5---» Pusa has rank n at #°, by hypothesis. The last column of the
determinant (8.5) represents the vector A( p°). Since A( p°) is orthogonal
to X' at p°, (8.5) follows.

With each point #° € U there can accordingly be associated a
constant e > 0 and an open neighborhood ¥V C U of 4® with e and V'
so small that ¢ [(V X I(e)) is a diff onto Y¢ and Y¢isopenin E, , .

A similar result holds if one replaces ( : U, X) by a strong extension
(¢ : U’, X’) and #° by any point in U’, including points «° e U.
Since U is compact, we infer that if e is sufficiently small, two arcs
5. , v5~ normal to X at distinct points p’ and p” are disjoint and the
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mapping (8.4) accordingly biunique. The mapping (8.4) is locally a
diff onto open subsets of E, , . It is accordingly a diff onto X¢,
The lemma follows.

Objectives of §8. We are concerned with relations between sets
of coordinates of points near | 2 |: the ordinary rectangular coordinates
Xy yooy Xpyq Of E, ., , the pairs ( p, s) introduced in (8.2) and termed
Z-normal parameters, and the pairs (1, s) introduced in Lemma 8.1 and
termed Z-normal @-coordinates. All conventions concerning the
existence, nondegeneracy, and indices of critical points are ultimately
to be referred to Z-normal p-coordinates. 2-normal parameters ( p, 5)
are used primarily to define functions globally near | Z'|.

Definition 8.2. Z-Normal ¢-Coordinates (u,s). Under the con-
ditions of Lemma 8.1 a pair (x, s) € U X I(e) will be called Z-normal
g-coordinates of the point

* = plu) + Np()) = ¥(x, 5). (8.6)

The set X* will be called the domain of points x represented by these
Z-normal g-coordinates.

A Representation of g. If x — g(x) is a real-valued function whose
domain in E, , includes the set X* of LLemma 8.1, the mapping

(4, ) > g(9(w) + Ap(w))) = h(w,s), (u,5)eU xI(e) (8.7

is called the representation of g | X in Z-normal g-coordinates (x, s).

Since ¢ is a diff of class C*, g | X¢ is of class C, if and only if A
is of class C* on its domain in (8.7). By Lemma 4.2 a point x° with
Z2-normal ¢-coordinates (49, s) will be critical and ND with index k
relative to g if and only if (49, s°) is respectively critical and ND with
index & relative to A.

Z-Normal Parameters ( p,s). These parameters enter by way
of the following lemma, a corollary of Lemma 8.1.

Lemma 8.2. If € s a sufficiently small positive constant, the mapping

(£,8) =P +5Np): Z X I(e) > 2* (8.8)



8. Z-NORMAL ¢-COORDINATES 61

is a homeomorphism onto X, and 2= is the union of a finite set of domains
X¢ of Z-normal @-coordinates.

In the remainder of Part I the number ¢ of Z¢ will always be so
small that X' satisfies Lemma 8.2.

Definition 8.3. (i) 2-Normal Parameters. Under the conditions
of Lemma 8.2 a pair ( p, s) € 2 X I(¢) will be called 2Z-normal param-
eters of the point x = p + sA(p) € 2=

(ii) The set 2« will be called the domain of points x represented by
these 2-normal parameters.

(iii) Given a presentation (¢ : U, X) in 22 and (v, s) € U X I(e),
the coordinates (u,s) will be called Z-normal @-coordinates of the
Z-normal parameters ( p, s) = (p(u), 5).

Mappings ( p, s) — H(p,s). Let there be given a real-valued
mapping
(p,5)— H(p,s): £ x I()— R. (8.9)

The mapping
(#,5) > H(g(u),s) = G(u,s),  (u,5)€ U x I(e), (8.10)

is called the representation of H in Z-normal ¢-coordinates (u, s).

Definition 8.4. Conventions Concerning H:

(i) The class C» of H. If (¢ : U, X) is a presentation in 2
of a coordinate domain X of 2 and if H is defined as in (8.9), the
restriction H (X X I(¢)) of H will be said to be of class C* if and only
if G of (8.10) is of class C+. The unrestricted mapping H will be said
to be of class C* if and only if each such restriction of H is of class C=.

(i) The Critical Points of H. A point (p°,s°) € X X I(e) with
Z-normal gp-coordinates (#°, s°) will be said to be critical and to be ND
with index k relative to H if and only if (4°, s°) is, respectively, critical
and ND with index k relative to G.
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Invariance Principle. 'The entities defined in the preceding two
paragraphs are independent of the particular presentations (¢ : U, X)
entering into these definitions. This follows from the ‘“‘compatibility”
of presentations of coordinate domains of 2 and from Lemma 4.2 (see
Lemma 5.2).

We state two lemmas concerning the use of X-normal parameters:

Lemma 83. (i) Let x — g(x) and ( p, s) — H( p, s) be real-valued
functions on X and X' X I(€), respectively. If

g(p +sMp) = H(p,5),  (p,5)€Z X I(e), (8.11)

then g is of class C* on its domain if and only if H is of class C* on its
domain.

(i) If x° € 2% has Z-normal parameters ( p°, s°), then x° is critical
and ND with index k relative to g if and only if (p°, s°) is, respectively,
critical and ND with index k relative to H.

Proof. Suppose that x° is in a domain X¢ of points x represented
by Z-normal ¢-coordinates (u,s). Reference to (8.7) and to (8.10)
shows that the representation both of g and H in terms of these
coordinates is the mapping

(4, ) = g(p(¥) + sM@(w))) = H(p(u),5),  (u,5)e U X I(e),
where the equality is a consequence of (8.11). Lemma 8.3 is now a
trivial consequence of the conventions on H preceding the lemma.

The Partial Mappings H®. Given a mapping
(p,8) > H(p,5): Z X I() > R, (8.12)
we shall refer to the partial mapping
p—H(p,s) =HY(p): Z—~>R (8.13)

and prove the following fundamental lemma:
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Lemma 8.4. If the mapping H of (8.12) is of class C, a point
(p°, 5°) e Z X I(€) is a critical point of H if and only if H, = 0 at
(2°, 5°), and p° is a critical point of H* on Z.

Let (¢ : U, X) be a presentation in 22 of a coordinate domain X
which contains p°. Then (° s°) is in X X I(¢) and H [(X X I(¢))
has a “representation” [see (8.10)]

(4, ) — H(p(u), ) = G(u,s),  (u,5)e U x I(¢) (8.14)

in Z-normal g-coordinates (x, s). By virtue of Definition 8.4 (2°, s°)
is a critical point of H, if and only if («°, s°) is a critical point of G,
that is, if and only if G, = 0 at (¥°, s°) and u° is a critical point of the
partial mapping u — G(u, s°). Since the critical points of H* on X
are understood in the sense of Definition 5.5, the lemma follows.



§9

NONDEGENERATE FUNCTIONS
UNDER BOUNDARY CONDITIONS A

Introduction. Global critical point theory begins with the study of
ND functions f on regular domains Z of a Euclidean space E,,, under
the simplest boundary conditions on f, namely boundary conditions A.
These conditions will now be defined.

Definition 9.1. Regular C“-Domains Z in E, ., . By such a domain
we mean a compact subset Z of E, ,, bounded by the carrier | Z'| of a
regular #-manifold 2’ of class C#, u > 1. By abuse of language we
refer to X as the boundary of Z. The interior of Z is denoted by Z.

We do not assume that | 2| or Z is connected. The number of
components of Z or | X' | is finite.

Definition 9.2. Functions f Admissible Relative to a Regular Domain Z.
We shall admit real-valued functions of class C™, m > 1, on some
open neighborhood D, of Z, ND on Z and without critical points on 2.

A non-null vector V at a point p € 2 is termed entrant or emergent
if V is not tangent to X at p and is directed into the interior or exterior,
respectively, of Z at p.

Definition 9.3. Boundary Conditions A. We shall say that a
function f which is admissible relative to a regular domain Z of E, ,
satisfies boundary conditions A, if grad f is emergent at each point of Z.
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Definition 9.4. The Type Numbers of f|Z. By the kth type
number m, of f|Z, k=0,1,..,n+ 1, we mean the number of
critical points of f | Z of index k.

The Connectivities of Z. Let X" be any commutative field (see
Appendix I). In Part III we shall review the foundations of singular
homology theory, taken in the sense of Eilenberg [1] (see also Eilenberg
and Steenrod [1] pp. 185-211). The connectivities

R(Z,X), k=01,.,n+1, 9.1)

are the dimensions of the homology groups of singular k-cycles on Z,
taking the coefficients from . When X is fixed, as is the case in
Part I, we shall denote the connectivities (9.1) by

Ry, Ry, Rupy s 9.2)

understanding that R, ; = 0, as will be shown to be the case in
Part III.

Theorem 9.1 below is a fundamental theorem. The theorem remains
true if the #n-manifold X bounding Z is merely of class C! instead of
class C* (see Appendix II for proof).

Theorem 9.1. Let f be a function of class C* admissible relative
to a regular C*-domain Z of E,,, . If my,m, ..., m,,, are the type
numbers of f | Z and

Ry, Ry, Ruyys  Ruyy =0, (9.3)

the connectivities of Z, then under boundary conditions A on f

(mg — Ry) 2 0,
(my — Ry) — (my — Ry) 20,

(my — Ry) — (my — Ry) + (my — Ry) = 0, 94)

(mpyy — Rpyy) — (m, — W) + o (=1)"(my — Rg) = 0.

Proof of Theorem 9.1. The proof of Theorem 9.1 is in two parts.
The first part involves homotopy considerations based on a proper use
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in §21 of f-trajectories of the level manifolds of f. It is postponed
until Riemannian geometry has been introduced in Part IT because
the complexities of ‘“homotopy equivalences” involved can be
dispensed with quickly by a suitable global change of Riemannian
metric which modifies this metric near each critical point of f. This
device was introduced by Morse, [9], § 6, in 1960 and has not yet
been widely understood.

The second part of the proof of Theorem 9.1 involves homology
theory as well as homotopy theory, and will be presented in Part III,
§ 30.

Boundary Conditions B. The statement of Theorem 9.1 has not
been postponed until Part III because its validity under boundary
conditions A implies Theorem 10.2, in which the condition that grad f
be emergent on Z'is relaxed. Theorem 10.2 is concerned with boundary
conditions B, conditions which are topologically consistent with much
more general distributions of critical points on Z than are boundary
conditions A.

Theorem 9.1 is stated here because the proof that Theorem 9.1
implies Theorem 10.2 involves neither homotopy nor homology, but
rather the redefinition of f near | 2| so as to reduce an f satisfying
boundary conditions B to an f satisfying boundary conditions A.

Boundary conditions B will be defined in § 10 and Theorem 10.1
will be related to Theorem 9.1 in an explicit way in § 11 by a construc-
tion of f of Theorem 10.1.

We shall devote the remainder of this section to remarks about
Theorem 9.1, beginning with two readily verified corollaries:

Corollary 9.1.  Under the conditions of Theorem 9.1
me>R,, k=01,.,n4+1. (9.5)

To state Corollary 9.2 we introduce the excess numbers &, = m;,— R, ,
k=0, 1,...,n + 1 and note the truth of the following:

Corollary 9.2. Under the conditions of Theorem 9.1
oy + By =6, k=1..n (9.6)
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We state an extension, Theorem 9.1’ of Theorem 9.1:
Theorem 9.1 reads as does Theorem 9.1, replacing C* by C2.

In Appendix II Theorem 9.1’ is shown to be a consequence of
Theorem 9.1 and of Theorem A on “elevating manifold differentia-
bility”’ (see Morse [9]).

In general, theorems involving regular domains Z in E,; will be
stated first under the assumption that the boundary 2 of Z is of
class C*. So stated, the proofs are simpler than would be the case if 2
were assumed to be in the minimum differentiability class for which
the proposed theorem is true. Theorem A on ‘“elevating manifold
differentiability”’ enables one, in most cases, to lower the differentia-
bility condition on X' as far as possible. What the final differentiability
assumption is will depend on the theorem (see Theorems 10.2, 10.3,
and 12.1°).

The Completeness of the Relations (9.4). The question arises:
Under the conditions of Theorem 9.1, are there relations other than
the relations (9.4) or implied by the relations (9.4) which always hold
between the type numbers and connectivities ? That the answer is no
is shown by the following theorem:

Theorem 9.2. Corresponding to nonnegative integers R, , R, ,..., R, »
R,.,, of which Ry =1 and R,,, = 0, and to nonnegative integers
My, My ..., m, ., satisfying relations (9.4) there exists a regular C*-
domain Z in E, , with the integers R; as connectivities and a function f
of class C*, admissible relative to Z, satisfying boundary conditions A
with the integers m; as type numbers of | Z.

A proof of Theorem 9.2 can be obtained by carrying out the
following exercises:

ExercisE 1. Show that if the relations (9.4) hold, integers
€y » €1 »---y €, are uniquely defined by the equations R, 4 e, = m, and

Rk + € + e = my , k= 1,..., n, (9.7)

and are nonnegative. Moreover, e, = m,,,, .



68 I. ANALYSIS OF NONDEGENERATE FUNCTIONS

Exercise 2. Given a ND function ¥ — ¢(x) of class C® on an
open domain D of E, , and an integer such that 0 <k < n, it is
possible to modify ¢ on an arbitrary small neighborhood N of an
ordinary point of ¢ in D so as to obtain a new function of class C®
on D identical with ¢ except on N and possessing just two critical
points in N with indices % and 2 + 1 (cf. John [1]).

Exercise 3. Given integers R;, as in Theorem 9.2, there exists a
regular C*-domain Z in E,, with the integers R; as connectivities
and, relative to Z, an admissible function ¢ of class C*, without
critical points on Z, assuming a value on 2 exceeding each value of ¢
on Z, and such that the type numbers of ¢ | Z are numbers

mg =Ry, mf=R,..mf=R,, m,=0. (9.8)

Exercise 4. If the relations (9.4) hold with Ry = 1 and R,,,;, = O,
if @ is defined as in Exercise 3, and if integers ¢, , ¢, ,..., ¢, are chosen
as in Exercise 1, it is possible to modify ¢ successively on Z as in
Exercise 2 so as to add e, critical points of index k and ¢, critical
points of index k& + 1 for each % on the range 0, 1,..., n and thereby
obtain a function f with type numbers m, satisfying relations (9.4)
with the prescribed connectivities R, .



§ 10

NONDEGENERATE FUNCTIONS
UNDER BOUNDARY CONDITIONS B

Let Z be a regular C*-domain of E, , and let f be of class C™,
m > 1, and admissible relative to Z in the sense of Definition 9.2.
By hypothesis f has no critical point on the boundary X' of Z. Conse-
quently, a point p € 2 is a critical point of f | 2 if and only if grad f
is orthogonal to X' at p.

The following example shows how the critical points of f| X can
condition the critical points of f| Z.

ExampLE 10.1. Let # + 1 = 2 and let Z be the disk in E, on
which x,2 4+ x,2 < 1. The function f with values f(x) = x,* — x,°
does not satisfy boundary conditions A but, as we shall see, satisfies
boundary conditions B. On Z, f has a critical point of index 1. The
existence of this critical point is implied by the connectivities of the
disk Z and the nature of f| Z, as Theorem 10.2 will show.

Objectives. We aim to reveal the conditions on the critical points
of f| Z implied by the connectivities of Z and the nature of f| Z.
In the absence of any simplifying assumption as to the nature of f| 2
our problem is prohibitively complex.

Definition 10.1. Boundary Conditions B. We shall say that a
function f which is admissible relative to Z (Definition 9.2) satisfies
boundary conditions B if f | 2'is ND.

In case f| 2 is degenerate, Theorem 6.4 shows how f can be
approximated arbitrarily closely so as to obtain a function g which
satisfies boundary conditions B while remaining admissible relative
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to Z and having critical points on Z which differ arbitrarily little in
position from those of f and not at all in index. Theorem 6.4 shows
in what sense the functions admissible relative to Z which satisfy
boundary conditions B represent the ‘‘general” case.

To present Theorem 10.1 two definitions are needed:

Definition 10.2. The Entrant and Emergent Portals of Z. 1If f is
admissible relative to a regular domain Z in E,, , , the open subsets of
| Z'| on which grad f is entrant and emergent, respectively, will be
denoted by | 2 |_ and | 2’|, . One of these sets may be empty, and
their union is in general not | X'|. Let 2_ and 2, denote the sub-
manifolds (see § 5) of 2 with carriers | 2 |_ and | 2’|, . We term X_
and 2, the entrant and emergent portals, respectively, of Z.

Definition 10.3. The Augmented Type Numbers of f| Z. If f is
admissible relative to Z and satisfies boundary conditions B, we shall
denote the type numbers of f| Z_ by

o s [y yeees Hon (10'1)
If the type numbers of f | Z are denoted by

Moy My yeeey Mpyy (10'2)
as previously, the # + 1 integers mq , m ,..., m, , defined by
Mo+ oo s My A oy yersy My + flg , My g (10.3)

will be called the augmented type numbers of f | Z.

The following theorem shows that a function f admissible relative
to Z and satisfying boundary conditions B can be modified in a well-
defined way so as to satisfy boundary conditions A. Theorem 10.1
is basic.

Theorem 10.1. Let f be of class C™, m > 1, and admissible relative
to a regular C*-domain Z of E, ,, ; suppose that f | X is ND and let N,
be an open neighborhood of X' which contains no critical points of f | Z.
There then exists a function f of class C™ on a neighborhood of Z,
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admissible relative to Z, with grad f now emergent on Z, identical with f
on Z — N, and such that the ordinary type numbers of f | Z are equal
to the augmented type numbers of f| Z.

In this section we present some of the implications of this theorem,
deferring a proof until § 11.

ExampLE 10.2. We refer to Example 10.1, where Z is the unit disk
in E, with center at the origin. If f(x) = x,2 — x,2 and if one sets

Z_={xeZ|f(x) <O} (10.4)

the f-entrant portal 2_ of Z has the carrier Z_ N | 2'|. The critical
points of f|Z_ are the points (41, 0), both of index zero. The
augmented type numbers of f| Z are 2, 1, 0.

Theorems 9.1 and 10.1 imply Theorem 10.2. Theorem 10.2 and its
extension, Theorem 10.2" below, are the principal theorems of § 10.

Theorem 10.2. If f is of class C* and admissible relative to a regular
C*-domain Z in E, | and satisfies boundary conditions B, the augmented
type numbers

mg, my ..., Myq (10.5)

of f| Z satisfy the relations (9.4) of Theorem 9.1, m; replacing m, for
each i.

In the notation of Definition 10.3 the relations of Theorem 9.1
can be put in the more explicit form

My — My + my_g — ++= (—1)*my
= (Ry — ) — (Remy — pag) + o (—1)¥(Ro — po),  (10.6)
where k has the range 0, 1,..., # 4 1 and the equality prevails in (10.6)
when & = n 4+ 1.

Theorem 10.2 implies Theorem 10.3. Theorem 10.3 in turn implies
Theorem 9.1.

Theorem 10.3. If f is of class C? and admissible relative to a regular
C®-domain Z in E, ., and if grad f is never both entrant and normal to X
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at points of Z, then the type numbers of f | Z satisfy the relations (9.4)
of Theorem 9.1.

Proof of Theorem 10.3. Observe first that the minimum angle
between inner normals to 2’ and grad f at a point p of X is bounded
from zero for p € 2. It follows then from Theorem 6.4 that there
exists a real-valued function g of class C? on a neighborhood of Z such
that the following are true:

(A,) grad g approximates grad f so closely at points of X that
grad g is never both entrant and normal to Z.

(A,) g is admissible relative to Z.

(A3) The type numbers of g | Z and f | Z are equal.

(A;) g satisfies boundary conditions B.

(A,) Because of (4,), £ | Z_ has no critical points.

(A;) The augmented type numbers of g | Z are equal to the type
numbers of g | Z and hence those of f | Z.

(Ag) Theorem 10.2 is applicable to g, implying that the type
numbers of f | Z satisfy the relations (9.4).

This establishes Theorem 10.3.
We state extensions of Theorems 10.2 and 10.3:

Theorem 10.2". This reads as does Theorem 10.2 with C* replaced
by C2.

Theorem 10.3". This reads as does Theorem 10.3 with C* replaced
by C2

Theorems 10.2' and 10.3' follow, respectively, from Theorems 10.2
and 10.3 with the aid of Theorem A of Appendix 11.

We have established Theorem 10.2’ in Appendix II. We leave to the
reader the relatively simple task of establishing Theorem 10.3" using
Theorem 10.3 and Theorem A of Appendix II.

The proof of Theorem 10.3’ is nearer to the proof of Theorem 9.1’
than to the proof of Theorem 10.2’, in that in the proof of Theorem
10.3’, as in the proof of Theorem 9.1, it is sufficient to use Theorem A
to modify Z and 2 but to leave f unmodified.
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Theorems 10.2 and 10.3 have had industrial applications. They can
be applied to determine the types of instability and the distribution
of points of equilibrium of “conservative fields of force” defined by
ND “functions of forces.”

The following is one of several applications to harmonic functions of
two variables (see Morse [6], p. 48):

Corollary 10.1. If f is a harmonic function of two variables admissible
relative to a regular C%-domain Z in E,, of the topological type of a
circular disk, with f satisfying boundary conditions B, then, in the
notation of Definition 10.3,

=2l p—m=m+L (10.7)

For harmonic functions of three variables the following corollary of
Theorem 10.2 is more novel. It is presented here for the first time.

Corollary 10.2. If f is a harmonic function of three wvariables,
admissible relative to a regular C*-domain Z in Eq of the topological type
of a solid 3-ball, with f satisfying boundary conditions B, then, in the
notation of Definition 10.3,

Mo = 1, Po —pp Sy + 1, Po — py + pg =my —my+ 1. (10.8)

Proof. Taking account of the nonexistence of isolated interior
points of relative maximum or minimum of harmonic functions,
relations (10.8) follow from relations (10.6), with R, =1 and
R, = R, = Ry = O therein.

Exercise 10.1 Suppose that the harmonic function f of Corol-
lary 10.2 has a finite number of isolated singularities in Z, at m, of
which f “becomes negatively infinite’’ and at mg of which f “becomes
positively infinite” (see Kellogg [1], p.271). Find the relations which
replace the relations (10.8) and involve the integers m, and m; as
well as the integers already appearing in (10.8).
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PROOF OF THEOREM 10.1
UNDER BOUNDARY CONDITIONS B

Notation Recalled. To establish Theorem 10.1, we must define the
function f which is to replace f in Theorem 10.1. Let D, D Z be the
open domain of f in E, ., , 2 the regular boundary of Z, and 2* the
neighborhood of Z, as defined in Lemma 8.2, The constant e shall
be so small that ¢ C D, and 2* contains no critical points of f. We
shall modify f at most on 2*. (see Morse and Van Schaack [1]).

To that end, we turn to Z-normal parameters ( p, ) on Z'* and set

f(p+sXp) = H(p,s), (p,5)eZ X I(e). (11.1)

So defined, H is of class C™, m > 1, with f, and has no critical points
on 2 X I(e) (see Lemma 8.3). Moreover, the partial mapping

p—HYp) = H(p,0) =f(p): Z—>R (11.2)
is ND, by the hypotheses of Theorem 10.1, and so has at most a
finite set [denoted by (¢)?] of critical points g € 2.
Definition 11.1. H*-Critical Arcs on . A C'-mapping
s—op():[—o0]>Z 0<o<e (11.3)

such that each point p(s) is a critical point of the corresponding partial
mapping H* will be called an H*-critical arc on .
We state a fundamental lemma concerning the existence of such arcs.

Lemma 11.1. If o < e is a sufficiently small positive constant, the
following are true:
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(A;) Corresponding to each point q < (q)° there is a unique H*-critical
arc y¥ on X of form

s—>pYs): [—o, 0] > &  with pY0) =q. (11.4)

(Ay) The He-critical arcs 2 are disjoint for distinct points q € (q)°.

(Ag) For s € [—a, a] each critical point of H® in X is a point p9(s)
in one of the arcs v2 of (A,).

(Ay) At each point g € (q)°, Hq, 0) # 0. If one sets

H(p%s), s) = hqs), —o < s<o, (11.5)

then h(s) is negative or positive depending on whether q € X is in the
f-entrant or f-emergent portal of Z (Definition 10.2).

(A;) As a critical point of H®, p%(s) is ND and has an index which
does not vary with s € [—o, o].

Proof of (A;). A critical point ¢ of H%in 2 is ND by hypothesis.
Let (p?: U, X) be a presentation in 22 of a coordinate domain X
of 2, such that ¢ € X and ¢%(u®) = ¢ for some #® € U. Set

H(g(u), s) = GYu, s), (u, s) e U x I(e). (11.6)

For s fixed in I(e) a point p = ¢%u) € X is a critical point of H*
if and only if u € U is a solution of the 7 equations

Gi(u,5) =0, i=l,m (11.7)
Since ¢ is a ND critical point of HY the n-square determinant
| Gopu (4, )| # O, when (%, 5) = (9, 0). (11.8)
If ¢ > 0 is sufficiently small, there accordingly exists a solution
s—>uls): [—o, 0] > U,  uo(0) = u, (11.9)
of (11.7). The C™ '-mapping
s = 1) = 99((s)) : [—0, 0] > Z (11.10)

defines an H*-critical arc 7 of form (11.4).
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Proof of (4,). For distinct points g € (g)° the corresponding arcs
2 will be disjoint if ¢ is sufficiently small, since p%(0) = ¢ and the
mappings s — p%(s) are continuous.

Proof of (4;). To establish (Ag), one uses appropriate Z-normal
@-coordinates (, s) to prove the following: There exists a covering of
Z by coordinate domains X? containing the respective points ¢ € (¢)°,
and a finite set of other coordinate domains Y1,..., Y7, together with
a value of o so small that the following is true: There are no Z-normal
parameters (p, s) in Y* X I(c), i = 1,..., 7, such that p is a critical
point of H? in Y% When Z-normal parameters (p,s) in X? X I(s)
are such that p is a critical point of H® then p = p¥(s).

Proof of (A,). Since H has no critical point in 2, and each point
g € (q)° is a critical point of HY, it follows from Lemma 8.4 that
H(q, 0) # O for g € (g)°. Hence £k, (0) # O, so that A, s) has one sign
on [—a, o] if o is sufficiently small. Since H,(q, 0) is positive or
negative depending on whether grad f at ¢ is emergent or entrant,
statement (A,) follows.

Proof of (Ag). The critical point p%(s) of H® in X is ND if and
only if the determinant
| Gi, ' #0, (11.11)

where the superscript s indicates evaluation for (u,s) = (u4(s), s).
Now, (11.11) holds for s = 0, by virtue of (11.8). Hence (11.11) holds
for s € [—o, o] if o is sufficiently small.

Finally, the index % of the point p4(s) € Z, as a critical point of H?,
varies continuously with s € [—a, o] provided (11.11) holds, since k
is the index of the quadratic form whose coefficients are the elements
of the determinant (11.11), and this index cannot change as s varies
on [—a, o], since (11.11) holds. This follows from Theorem 3.4.

The Constant o. We suppose ¢ < e chosen so that Lemma 11.1
is satisfied and fix o for the remainder of this section. We set ¢ = 2p.

Constants Involved in Defining the Replacement foff. To de-
fine the required modification f of f, we need to specify two constants
M and 7 associated with H. Of these constants, M depends in part
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on the Hessian of G? (written Hess G?) as ¢ ranges over the set (g)°.

Hess G? is obtained by bordering the n-square determinant | Gf, |
by an (z + 1)th column G,,..., (738, G% and an (n 4 1)th row
Gy, »-s Gy, G% with the element G ¢ in common. Each element in
Hess G‘l will be evaluated for (u, s) = (u%(s), s), and this evaluation
will be indicated by a superscript s as in (11.11).

The Constant M, . Let the element G% in Hess G? be replaced by
G% + M and the resulting (n 4+ 1)-determinant be denoted by
Hess™ G4 If M > M, > 0 and M, is sufficiently large,

sign(Hess™ G%* = sign| GZ, |*, —o s Ko (11.12)

(id]
We suppose M, so chosen.

A Constant M. Let M be a positive constant such that with
o = 2p the conditions

M > max M,, (11.13)
qe(q)?
Mp > max| H,(p,0), (11.14)
Mp > ;gﬁgﬁ[gl,a!(ﬂ k(0| + p| Ae(s)D))s (11.15)

[see (11.5)] are satisfied. Here I(c) = [—a, o].

A Constant y. A positive constant 7 such that

0 <7 < min[min| hys)(] (11.16)

¢c(q)® sel(o)

exists by virtue of Lemma 11.1 (A,).

An Auxiliary Function {. Given the constants p, 7, and M, there
exists a monotone increasing C®-mapping s — {(s) of R into R
such that

{s) =0, s < —2p, (11.17)
L'(s) <, —2p < s < —p, (11.18)

') =M, —p <8 (11.19)
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The Existence of {. Let e < p be a positive constant. A conven-
tional use of exponentials (Munkres [1], p. 6) suffices to define a
monotone increasing C*-mapping ¢ — u(t) of R into R such that

pt) =0, t<-—e—p
pt)=M —p<t.

If ¢ is so small that eM < 7, a mapping { such that

v =

u(t) dt

satisfies (11.18) and (11.19), and if {(—2p) = O, satisfies (11.17).
Lemma 11.2 presents essential properties of {.

Lemma 11.2. If for each q € (q)° one sets
hs) = hofs) + '(s), —o<s<o, (11.20)

then (1) and (ii) are true:
() If ge Z,, hs) vanishes for no value of s admitted in (11.20).

(i) If ge Z_, hs) = O for some value s = s, in (—p, 0) and for
no other value of s admitted in (11.20).

Proof of (i). Under the hypotheses of (i) A(s) > 0 in (11.20) by
Lemma 11.1 (A,). Since {(s) = 0 for every s, (i) follows from (11.20).

Proof of (ii). Under the hypothesis of (ii) we shall show that

his) <0, —2p<s< —p, (11.21)
h(0) >0, (11.22)
B(s) >0, —p<s<2p. (11.23)

These three relations trivially imply (ii).
Verification of (11.21). By (11.18) and (11.16)

sign(hy(s) + £'(5)) = sign(hy(s) + ) = sign hy(s)
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for s as in (11.21). For such an s and for ge Z_, hy(s) <O by
Lemma 11.1 (A,), implying (11.21).

Verification of (11.22). From (11.19) we infer that
0
(O = (=) + [ Mt > Mp > | h(0), (11.24)

since {'(—p) > 0 and (11.15) holds. Hence
0 < £'(0) + hy(0) = Ay (0).
Verification of (11.23). By (11.20), (11.19), and (11.15),
hi(s) = h(s) + L) = h(s) + M >0, —p <s<2p

Thus (ii) is true and Lemma 11.2 is established.

Definition 11.2. H-s-arcs I'%. Corresponding to each H*-critical
arc s — p%(s) on 2 we introduce the arc

s— (p%s), 5) € £ x I(0), (11.25)
calling this arc the H-s-arc I'.

The Hs-critical arcs 9? in X' may be regarded as the ‘“projections”
into Z of the corresponding H-s-arcs I'.

The Replacement f of f. We shall modify f on Z¢ by replacing the
representation ( p, s) — H( p, s) of f| Z¥, as defined in (11.1), by the

mapping
(5,)=>H(p,s) = H(p,s) + U(s), (p9)eZ xI(e). (11.26)
So defined, H is of class C™ with H. Since {(s) = 0 for s < —o,

Ap,s) = H(ps), —e<s<—o,pel, (11.27)
a relation to which we shall return.

H-s-arcs. Replacing H by H, partial mappings H® are defined
as in (8.13), Hs-critical arcs as in Definition 11.1, and H-s-arcs as in
Definition 11.2.
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The critical points of H® in Z are the critical points ¢ € (¢)° of
H®. For —o < s < o, He-critical arcs and H-s-arcs exist and are
identical, respectively, with Heé-critical arcs y? and H-s-arcs I'%.

Let an H-s-arc I'? for which ¢ is in Z_ be denoted by I"_¢.

Lemma 11.3. H has the following properties:

) B(p,0)>0, peZ

(i) The set of critical points ( p, s) of H for which —o < s <0
includes a point ( p%(s), s) on each arc I'_%, and no other critical points.
At the critical point of Hon I' 9, —p < s < 0.

(iil) The critical point ( p%(s), s) of H on I'_2is ND and has as index k,
the index of q as a critical point of H®.

Proof of (i). By (11.26), (11.14), and (11.24)
A(p,0) = H(p,0) +{'(0) > —Mp + Mp =0, pel.

Proof of (ii). Recall that the H*-critical arcs are the H*-critical arcs
s — p9(s), one for each g € (¢)°. By (11.26), (11.5), and (11.20)

B (p%s), ) = hofs) + L(s) = hfs), —2p <s<2. (11.28)

According to Lemma 8.4, ( p, 5) is a critical point of H if and only
if p € X is a critical point of H? and H( p, s) = 0. When s is restricted
to the interval [—a, o], (, 5) accordingly is a critical point of H
if and only if p = ps) (Lemma 11.1) and Ay(s) = 0 [(11.28)].
Statement (ii) now follows from Lemma 11.2.

Proof of (iii). To establish (iii), we must use suitable Z-normal
g-coordinates,

Notation. Following the proof of (4,) of Lemmall.1,let (¢?: U, X)
be a presentation of a coordinate domain X of 22X such that ¢ € X.
For (u, s) € U X I(e) set

H(g'(w), s) = G¥(u,5),  H(e*(u), s) = G(u, s),
[as in (11.6)] so that [using (11.26)]
G(u, s) = G%u, s) + {(s). (11.2%
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Since (11.10) holds, u%(s) is the “Z-normal @?-coordinate” of the
point p9(s) € 2. By virtue of (11.11)
|G, I°#0, —0<s<o, (11.30)
where the superscript s has the same meaning as in (11.11) and (11.12).
The Index k. 1t follows from (11.29) and (11.19) that (with 0 = 2p)
Giln,s) = Giu, 5) + 1) = Gow, ) + M, —p <s <0,
so that, with the notation of (11.12),
(Hess G9)* = (HessM G9)s, —p s <0
Since M > M, by (11.13), we infer from (11.12) that
sign(Hess G°)* =sign| GZ,,, |, —p <s<0. (11.31)

According to (ii), there is a critical point ( p%(s), s) of H in I"_? with
—p < s < 0. By virtue of (11.31) and (11.30) (Hess G9)* # 0, so
that this critical point is ND.

By virtue of (11.31) and the Kronecker Corollary 3.2 the index k& of
( p%s), s), as a critical point of H, is equal to the index of p%(s) € Z, as
a critical point of H® By (Ag) of Lemma 11.1 k is the index of
p%0) = q as a critical point of H°.

This establishes (iii) and completes the proof of Lemma 11.3.

Final Definition of f and Proof of Theorem 10.1. The domain
of definition of f shall be the subset D; = Z U Z¢ of E,, . We shall
define f separately on the overlapping open subsets

Z—Clze, 3¢ (11.32)

of D;, noting that the union of these two sets in D;. To this end we

set
f(&) =f(x), xeZ—Clze (11.33)

f(p+Xp) = Aprs),  (p5)eZ X I(). (11.34)

The definitions (11.33) and (11.34) are consistent on the intersection
of the sets (11.32), as one infers from (11.27) and (11.1). So defined,



82 I. ANALYSIS OF NONDEGENERATE FUNCTIONS

f is of class C™ on each of the sets (11.32). Since these sets are open,
f is of class C™ on D;.

That f satisfies Theorem 10.1 follows if we show that f has the
following additional properties:

Properties (), (), and (y) of f.

() Restricted to Z — Cl2Z°, f and f are identical and have in
common all critical points of f | Z.

(B) Grad fis emergent on Z, and f | Z is ND.

(y) The critical points of f | Z in excess of those of f| Z correspond
biuniquely to critical points of f | Z_, with preservation of index.

Verification of (). By choice of ¢, 2%, and hence 2°, excludes all
critical points of f | Z. Since (11.33) holds, («) follows.

Verification of (). Gradf is emergent on Z because of (i) of
Lemma 11.3. Moreover, f| Z is ND by hypothesis, and H ND at
critical points ( p, s) for which s < 0, in accord with Lemma 11.3.
Hence f | Z, as defined by (11.33) and (11.34), is ND.

Verification of (y). The critical points of f | Z in excess of those of
f1Z are those represented by critical points of H at which s < 0.
According to Lemma 11.3 the critical points ( p, s) of H at whichs < 0
correspond biuniquely to the critical points of f | X_ with preservation
of indices.

The properties of f are such that f is “admissible” in the sense of
Definition 9.2 relative to the regular subset Z of E,., because f
is of class C™ on D;, ND on Z, and grad f is emergent on Z.

The function f thus satisfies Theorem 10.1 as a replacement of f.

In § 12 we shall sketch two extensions of Theorem 10.1 fundamental
in embedding and in cobordism. To this end, we give another
definition of H(p, s), which was previously defined in (11.1). This
new definition is equivalent to the definition (11.1) in the context of
§ 11, but in the context of Theorems 12.3 and 12.4 it is much more
general.

Definition 11.2. The wvalue of H(p,s) in (11.1) at the point
(p,5) € 2 x I(€) is the value of f at the point x € 2* represented as
in § 8 by 2Z-normal parameters ( p, s).



§12
f-LEVEL BOUNDARIES

The proof of Theorem 9.1 is simplest if the boundary 2 of the
given regular C*-domain Z is a level manifold of f, that is, a manifold
on which f is constant. Theorem 12.2 shows that this is the only case
that need be considered in proving Theorem 9.1 (see final proof in
§ 30).

We shall conclude this section with a proof of the following
theorem. The proof makes essential use of Theorems 6.4 and 10.1
and follows a proof of Theorem 12.2.

Theorem 12.1. Let X be an arbitrary, regular, compact, differentiable
n-manifold in E, ., of class C* bounding a compact subset Z of E,, ., .
There then exists a ND function g of class C* on a neighborhood of
the compact domain Z bounded by 2 such that 2 is a level manifold of
g onwhich g is ordinary and assumes a value exceeding each value of g on Z.

We state an ultimate extension of Theorem 12.1.

Theorem 12.1°.  This reads as does Theorem 12.1 on replacing C*
by Cm,m > 1.

To prove Theorem 12.1°, use Theorem 12.1 and Theorem A of
Appendix II.

In formulating Theorem 12.2 the following definition is needed.

Definition 12.1. Functions f and g critically equivalent on Z. 'Two
real-valued functions f and g of the same class, admissible relative to
some regular domain Z in the sense of Definition 9.2, will be said to
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be critically equivalent on Z if the critical points of f and g on Z
correspond biuniquely with preservation of indices.

If f and g are critically equivalent on Z, the type numbers of f| Z
equal those of g | Z. If in addition grad f and grad g are emergent on X,
to verify Theorem 9.1 for f it is accordingly sufficient to verify
Theorem 9.1 for g. If g satisfies the conditions of the following
theorem, a verification of Theorem 9.1 will be simpler for g than for f.

Theorem 12.2. Let f be of class C™, m > 1, and admissible (Defini-
tion 9.2) relative to a regular C*-domain Z in E, ., , grad f emergent
on Z, the boundary of Z. There then exists a real-valued function g
of class C™ on an open neighborhood D, of Z “critically equivalent” to f
on Z and such that the boundary 2 of Z is a level manifold of g on which
gis Erdz'nary and assumes a value exceeding the value of g at each point
xXEZ.

We shall define a function g which satisfies Theorem 12.2 by altering
fin a neighborhood 2 of | 2' |, where € is so small that the conclusions
of Lemma 8.2 are valid, that 2¢ is included in the domain D, of f and
excludes the critical points of f| Z.

In the notation of Lemma 8.2, set

f(p+sA(p) = H(p,s),  (p,5)eZ X Ie), (12.1)

thereby defining a function H of class C™. Since grad f is emergent
on 2 by hypothesis, H(p,0) > Oforp e 2.

The Constants w and M. Let w < e be so small a positive constant
that

Hp,s) >0, (ps)eZ X I(w), 12.2)
and let M be a positive constant such that
M > r&azxf(x). (12.3)

A Modification K of H. We shall make use of a C*-mapping
s — £(s) of R into R such that §(1) = 1, &(s) = 0 for s < 0, and
£(s) > 0 for s > 0. We then introduce a modification K of H with
values

K(p.) = H(p,9) + (M — H(p, 0D € (“2),  (p,9)eZ x I(o).
(12.4)
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It is clear that K is of class C™ on its domain of definition, that
K(p,s) = H(p,s), —e<s<—w, peZ (12.5)
K(p,0)=M, peZ, (12.6)

and, making use of (12.2), that
K(p,$) >0, (P, eZ X I(w). (12.7)

Definition of g. The domain of g shall be the open subset
D,=Z VU Z¢ of E,,, . We shall define g separately but consistently
on the overlapping open subsets,

zZ—-Clze, X (12.8)

of D, , setting
gx) =f(x), xeZ—ClZs (12.9)
g(p +sAp)) = K(p,s),  (p,5)€Z X I(e). (12.10)

That (12.9) and (12.10) give the same value to g(x) when x is in
the intersection of the two sets (12.8) follows from (12.5) and (12.1).
Since f and K are of class C™, we infer that g is of class C™.

We shall verify the following additional properties of g:

() &(p)=M >g(x), (xe2,pel)
(ii) On Z N 2+, g is ordinary.
(iii) On Z, f and g are critically equivalent.

Verification of (i). For p € Z, g(p) = M by virtue of (12.6) and
(12.10). M is larger than any value of g on Z N Z« by virtue of (12.6),
(12.7), and (12.10), and larger than any value of g on Z — Z= by
virtue of (12.3) and (12.9). '

Verification of (ii). g is ordinary on Z N Z because of (12.7) and
(12.10) and at the remaining points of Z N 2* because (12.9) holds
and f is ordinary on 2.

Verification of (ii). On Z N X+ there are no critical points of g
by (ii), and of f by virtue of the choice of e. Since (12.9) holds, (iii)
follows.

The function g so defined on D, satisfies Theorem 12.2.
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Proof of Theorem 12.1. Let x — h(x): E,,; — R be any ND
function of class C* without critical points on 2. The restriction & | X'
may fail to be ND. However, one can infer from Theorem 6.4 that
there exists a function f of class C*®, “critically equivalent’ to & on Z,
and so admissible relative to Z, and in addition such that f| 2'is ND.
According to Theorem 10.1, f can be altered near Z so as to yield
a function f of class C*, admissible relative to Z, but with grad f
emergent on Z. Finally, given f, Theorem 12.2 implies that there is a
ND function g of class C®, on a neighborhood of Z, satisfying
Theorem 12.1.

Non-Euclidean Extensions. Theorem 12.1 has an extension for
abstract, compact, differentiable C*®-manifolds M, ., (Def 13.1)
which can be readily proved with the aid of extensions of theorems
in Part I. This extension can be used effectively in the theory of
embedding of differentiable manifolds in Euclidean spaces. We shall
state it, and associate with it the theorems of Part I, upon which its
proof depends. The reader will find Part II essential.

Introduction to Theorem 12.3. Let there be given a compact
subset Z* of M, ,,. Here Z* is to generalize the regular compact
domain Z of E, , introduced in Definition 9.1; one supposes that Z*
is bounded on M, by a compact manifold 2*, C*-embedded in M,, ,,
(Definition 16.2). Note that Z* is an open subset of M,,,, .

Theorem 12.3 extending Theorem 12.1. Let M,,,, Z* and its
boundary X* be given as in the preceding paragraph. We affirm that there
exists a real-valued function g which is of class C* and ND (see § 13)
on some open neighborhood N of Z* relative to M, ., and such that X*
is a level manifold on N of g on which g is ordinary and assumes a value
exceeding each value of g on 2*.

We shall indicate a mode of proof of Theorem 12.3. This proof is
modeled on the proof of Theorem 12.1.

The concepts and theorems of Part I and their extensions essential
to the proof of Theorem 12.3 are as follows.

Z-normal ¢-coordinates of §8. One must define Z*-normal
@-coordinates on M, ., near X*, the boundary of Z*. A simple
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generalization of Definition 8.2 suffices. In this extension short
geodesic arcs on M, ., normal to 2* replace the straight arcs in E, ,
normal to 2 as given in § 8.

Theorem 6.4. Theorem 6.4 is used in the concluding paragraph
of the proof of Theorem 12.1. It is easily generalized for a C*-function
[ * defined on an open neighborhood N of Z* relative to M,,_, under
the assumption that f* is ND on NN and ordinary at each point of Z'*,
The proof of Theorem 6.4 made use of Theorem 6.3, while the proof
of an extension of Theorem 6.4 makes similar use of Theorem 14.1;
an explicit formulation of an extension of Theorem 6.4 is given as
Theorem 9.1 of Morse [15].

Theorem 10.1. Theorem 10.1 is used in the concluding paragraph
of the proof of Theorem 12.1. Theorem 10.1 has an obvious extension
to the case of a ND f* of class C* on an open neighborhood of Z*
relative to M, ,, assuming that there are no critical points of f * on Z'*,
A proof of Theorem 10.1 is given in § 11; the proof of the extension,
Theorem 10.1’, of Theorem 10.1 is similar. One begins by replacing
the Z-normal g-coordinates and parametric points p € E, , near 2,
as introduced in § 8, by geodesically defined 2*-normal g-coordinates
and points p € M, ., near X*. Definition 11.2, rather than (11.1),
is used to define H( p, s) when Z*-normal parameters ( p, s) replace
the Z-normal parameters ( p, s) of §8. A proof of Theorem 10.1,
then follows the proof of Theorem 10.1 in § 11 in exact fashion.

With these generalizations of Theorems 6.4 and 10.1 at one’s
disposal, a proof of Theorem 12.3 can be trivially modeled on the
proof of Theorem 12.1.

«Cobordism.” Suppose that there is given a compact connected
subset Z* of a C®-manifold M, , bounded on M, by two disjoint
(n — 1)-manifolds 2’ and 2", “C*-embedded” in M, (see § 16). Then
2’ and X" are termed ‘“‘cobordant.”

Let compact (n — 1)-manifolds M, _, and M,_, of class C* be
given, with no mention of M, . Let (M, ;) and (M,_;) denote the
classes of compact (n — 1)-C*-manifolds respectively diffeomorphic
to M, , and M,,_, . A basic problem has been studied by Thom [1]:
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Under what conditions is there a pair of (# — 1)-manifolds 2’ e (M,,_,),

2" € (M,_,) which are cobordant on some C*-manifold M, ?
Theorem 12.4 gives a first necessary condition that X’ and 2" be

cobordant on some C*-manifold M, (see Wallace [1] and Milnor [3]).

Theorem 12.4. Let 2' and X" be compact disjoint (n — 1)-manifolds
of class C*,C®-embedded in a C*-manifold M, and bounding a compact
connected subset Z* of M, . There then exists a real-valued function g
of class C* on some open neighborhood N of Z* relative to M,, and such
that X' and X" are level manifolds on N of g on which g is ordinary and
assumes values 1 and 0, respectively, values greater than and less than
each value of g on 2*,

Our proof of Theorem 12.4 is a simple extension of the proof
of Theorem 12.3, making use of the extensions described above of
Theorem 6.4 and Theorem 10.1. One focuses first on 2’ and then on
2",

For a more complete study of the “cobordism’ theory see the
papers of Thom and particularly the recently published book by
Milnor [3].

In Part IT we return to details.



PART ” 1l

ABSTRACT DIFFERENTIABLE
MANIFOLDS
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§13
THE MANIFOLDS DEFINED

Abstract differentiable manifolds, as we shall define them, include
“regular’ manifolds in a Euclidean space E, as special cases. Among
the characteristic properties of regular manifolds in E, are the follow-
ing: A regular manifold M, in E, is a topological n-manifold I', given
as a “‘subspace’ of E, provided with a differentiable structure defined
by the set of all regular presentations of open subspaces of I', (Defini-
tion 5.3). These presentations satisfy a compatibility condition
(Lemma 5.1). The carrier I, of M, admits a countable covering by
regular presentations.

In defining an abstract differentiable manifold M,, a topological
n-manifold I', is again given, but in general not as a ‘“‘subspace”
of a Euclidean space E,. “Presentations’ of open subspaces of I,
are defined as before, but no definition of “regular” presentation is
required. M, is again a topological manifold I', provided with a
differentiable structure defined by a set of presentations of open
subspaces of I, , but these presentations are now required (formerly
proved) to be C™-compatible for some m (Definition 5.4) and to include
a countable subset covering I, (Definition 5.2). The precise definition
of M, follows.

Definition 13.1.  Abstract Differentiable C™-Manifolds M, . Let I',
be a topological n-manifold coverable by a countable set

Fr: Vi, Xikew (13.1)

of C™-compatible presentations (Definition 5.4). Then the set 2 of all
presentations of open subspaces of I', which are C™-compatible with the
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presentations of the covering (13.1) of I, is a set of pairwise C™-compatible
presentations of open subspaces of I', .

Granted D exists, I, , associated with 2, is called a C™-manifold M,
with carrier | M, | = I',, and set of presentations 2M, = 9.

This definition requires the following theorem [a consequence of
(A,) below]:

Theorem 13.1. Any two presentations in the set P introduced in
Definition 13.1 are C™-compatible presentations of open subspaces of I, .

Two C™-manifolds M, and N, are regarded as identical if | M, | =
| N, | and 2M, = 9N, . A C™manifold M, and a C+-manifold N,
such that u = m and | M, | = | N,, | can never have identical sets
DM, and ZN,, .

The proof of Theorem 13.1 will follow readily once we have verified
Propositions (A,)-(A,) on C™-compatibility as stated below.

Cm-Compatibility. Let I', be a topological manifold. Given a
presentation (F: U, X) of an open subspace of I',, a restriction
(F: U, X) of F which is a presentation of an open subspace X of I',
will be called an open restriction of F.

ProrosiTION (A;). Let there be given two presentations
(Fy: Uy, Xy), (Fy: Uy, Xy) (13.2)

of open subspaces X; and X, of I, . If X; N X, = X # @, F, and
F, will be C™-compatible in the sense of Definition 5.4 if and only if
the unique open restrictions, respectively of F; and F, with range X
are C™-compatible.

PRroOPOSITION (A,). If X; = X, = X 5 & in (13.2), the presen-
tations F, and F, are C™-compatible if and only if F3! o F; = X and
F! o F, = X7, where A is a C™-diff of U, onto U, .

ProPOSITION (A;). If the presentations F, and F, of (13.2) are
Cm-compatible, arbitrary open restrictions (F,: U,,X,) and
(Fy: 0,,X,) of F, and F,, respectively are C™-compatible.
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Proof of (Ag). If £, "X, = @, (A,) is trivially true. To verify
(A,) in case X, N X, # @, it will be sufficient to verify (Ag) in case
X, =X,=X#gadX, =X,=XRisa nonempty open sub-
space of X. In this special case it is a hypothesis that F;! o F, is a
Cm-diff A of U, onto U, . It follows that A maps U, onto U, and

MUy =(F,| O o(Fy| 0) =F3*F,. (13.3)

Hence (A,) is true.

Proposition (A,) is put in italics because of its special importance:

ProrosiTION (A,). Let K be a set of presentations of open subspaces
of I, that cover I',, . If the presentations Fy and F, , given in (13.2), are
Cm-compatible with each presentation in K, then F, and F, are C™-
compatible.

Proof of (Ay). If X; N X, = &, then (A,) is trivially true. It
follows from (A,;)-(A,) that (A,) will be true in any other case if true
when X; = X, . Assuming then that X, = X, = X # ¢, we wish
to show that F;? o F, is a C™-diff of U, onto U, .

To that end, let u, be an arbitrary point in U, , and set p, = F(%,).
There exists an open restriction (G : ¥, Y) of some presentation in K
such that p, € ¥ and Y C X. By hypothesis G and F;, i = 1, 2, are
Cm-compatible. Given Y C X, there exist open restrictions (£, : U,, Y)
and (F,: U,, Y), respectively, of F; and F, .

Then, by (A;) G is C™-compatible with F;, ¢ = 1, 2. Hence the
homeomorphisms

GloF, =):0,>V
GloFy=2: UV
are C7-diffs. It follows that

(onto V)

F71oF, =)to): 0, 0,
is a Cm-diff of U, onto U, . Moreover,
(F3'o 1)]01=F2—1°F1- (13.4)

Now, U, is an open neighborhood of the point %, prescribed in U, ,
and the restriction (13.4) is a C™-diff. Since F3! o F, is known a priori
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to be homeomorphism, we conclude that F3* o F, is a C™-diff of U,
onto U,.
This establishes (A,).

Theorem 13.1 is a consequence of (A,).
We state a theorem.

Theorem 13.2. A regular C™-manifold M, in E,, 0 <n <7,
is a C™-manifold in the sense of Definition 13.1.

Theorem 13.2 is a simple consequence of Theorems 5.1 and 5.2.

Terminology. Let M, be a C™-manifold. If (F: U, X)e 2M,,,
the range X of F is called a coordinate domain of the manifold M, ,
and the coordinates (#,..., 4™) of a point u € U are called F-coordinates

of the point F(u) € X or, more loosely, local coordinates on X. The
subset U of E,, is called the Euclidean domain of F.

It is to be noted that the indices of the coordinates of u are taken
here as superscripts, while in Part I they were taken as subscripts.
This is in conformity with the conventions of Riemannian geometry
which we shall presently follow.

Real-Valued Functions on M,. Asin §5, we are concerned with
real-valued functions p — f(p): | M, | > R. If (F:V, X)e 9M,,
the composite function v — (f s F)(v) : ¥ — R [cf. (5.11)] is called
a representation of f| X in F-coordinates ¢%,..., v*, as in § 5.

Definition 5.5 Recalled. Using representations f s F, f s G, etc. of
[, we take over Definition 5.5 verbatim, noting that there is no reference
in Definition 5.5 to the “regularity’’ of the presentations. Definition
5.5 characterizes the following: (i) The differentiability of f on M, .
(ii) Critical points of f on M, . (iii) Nondegeneracy of f, and indices of
critical points. Since an open subset ¥ of | M,, | may be included in the
coordinate domain X of infinitely many presentations (F:V, X) e 9M,,
there may be infinitely many representations fs F which serve to
define the characteristics (i)—(iii) of f| Y. That these characteristics
of f| Y are independent of the special representations f s F which
serve to define them follows, as in § 5, from Lemmas 5.2 and 4.2.
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Notation. The class of all real-valued C™-functions on M, will be
denoted hereafter by C™(M,,).

Products of Differentiable Manifolds. Let M, and N, be two
Cm-manifolds. The Cartesian product | M, | X | N, | of the carriers
of these manifolds with the usual product topology (Bourbaki [3],
p. 47) is a topological (#» 4 r)-manifold I',,,. We shall assign I, ,,
a “product” differentiable structure, termed znduced by M, and N, .
With this product differentiable structure I',,, becomes the carrier
of a C™-manifold M,,,, denoted by M, X N,.

Product Presentations. Let presentations

(F:U X)e9M,, (G:V,Y)eDN, (13.5)

be given. The homeomorphism
(u,9) >(Fu), G)) : U X V—>|M,| X |N,| (13.6)
into I, is onto the open subset X X Y of I', ... A presentation
(F,G): UX V,X x Y) =(F, G) (13.7)

of an open subspace X X Y of | M,, | X | N, |, termed a product of
presentations F and G, is thereby defined. As F and G range over the
presentations of ZM, and 2N, , respectively, the resultant presen-
tations (13.7) of open subspaces of I', ,, are C™-compatible.

To verify this C™-compatibility, it is sufficient, in accord with
Proposition (A,), to verify the C™-compatibility of a presentation (F, G)
of form (13.7) with an arbitrary presentation (F’, G’) of similar type
induced by presentations (F’' : U’, X)e M, and (G’ : V', Y)e 2N, ,
where X and Y are identical with the subspaces X and Y presented in
(13.7). The transition homeomorphism of the presentations (F', G')
and (F, G) is a mapping [see (5.12)] (onto)

(1, 0) = (F- o F)u), (GoG)o): U X V'—>U X V. (13.8)

By virtue of the C™-compatibility of G’ and G and that of F’ and F,
the homeomorphism (13.8) is a C™-diff of U’ X V' onto U x V.
Thus presentations in 2T, ,, of form (13.7) are C™-compatible.

Definition 13.2. Product Differentiable Structures. Since these
product presentations cover I, and are C™-compatible by Defini-
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tion 13.1, I',,, admits a differentiable structure defined by the set of
all presentations of open subspaces of I, C™-compatible with the
product presentations of open subspaces of I', ., . Hence I',,, taken
with this structure is a C™-manifold M, ,,. We denote this C™-
manifold by M, X N, and say that it has a “product’ differentiable
structure.

Countable Coverings. The hypothesis that the set (13.1) of
presentations covering the topological manifold I', is countable implies
that I', is coverable by a countable ensemble of open topological
n-balls. It follows that in any ensemble K of open subsets I',, there
exists a countable subset K, of sets of K such that K = | X|,.
If I',, 0 < s < n, is any topological manifold which is a subspace of
I',, then I', is coverable by a countable set of open topological
s-balls, and hence in any ensemble H of open subsets of I',, there
exists a countable subset H, of sets of H such that UH = | H,.

Submanifolds N, of M,. Given a C™-manifold M,, by a
Cm-submanifold of M, we mean a manifold N, whose carrier | N,, |
is an open nonempty subset of | N, | and for which 2N, is the set of
restrictions of the presentations in 2M,, whose coordinate domains
are open subsets of | N,, |. That a C™-manifold N, is thereby defined
is readily verified.

Carrier Problems. The “simple carrier problem,” as we understand
it, is to determine whether or not a prescribed topological manifold
T, is the carrier of a C™-manifold M, for a prescribed m > 0. In
§ 16 we shall be concerned with a variant of this “simple carrier
problem” in which I', is given as a subspace of a differentiable
manifold Q, for which 0 < n < r and one requires not only that
| M, | = T, , but that M, be “C™-embedded” in 0, in a sense there
defined.

In an approach to carrier problems the following notation is useful:

Definition 13.3. 9°I', . If I', is a topological z-manifold, the set
of all presentations (H : U, Z) of open subsets Z of I',, will be denoted
by 2°T, .
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A presentation in 9T, is subject to no differentiability condition,
as distinguished from a presentation in 9M,, , where M, is a C™-
manifold.

Existing differential topology can not solve the simple carrier
problem in any generality. However, there are cases in which the
simple carrier problem can be given a useful solution. One such is
indicated in the following lemma.

Lemma 131. If I', is a topological n-manifold, if (H: U, Z) is
given in D°T',, and if a positive integer m is prescribed, the subset Z of T,
is the carrier of a C™-manifold Z,, for which DZ,, consists of the presen-
tation (H : U, Z) and of all presentations of open subspaces of Z which
are C™-compatible with (H : U, Z).

This lemma is a direct consequence of Definition 13.1 on taking I',
of Definition 13.1 as Z and the set of presentations (13.1) as the
presentation (H : U, Z) and a countable set of its restrictions.

Definition 13.4. We shall term the C™-manifold Z, , with carrier
Z and presentations characterized in Lemma 13.1, the prime C™-mani-
fold Z,, differentiability structured by (H : U, Z) and m.

Definition 13.5. Euclidean Differentiable Structures. Let X be an
open nonempty subset of E,, . There exists a presentation of X of the
form (I : U, X), in which U = X and I is the identity mapping of U
onto X. We regard X as the carrier of a manifold X with a differentiable
C®-structure determined by the presentation (I : U, X) in accord
with Definition 13.1. We say then that X has a Euclidean differentiable
structure.

Exercise 13.1. Let I', be a topological #-manifold and 2°T", the
set of presentations of open subspaces of I', . Establish the following
principle of conditioned transitivity of C™-compatibility:

(A) IfF,,F,,and Fyarein D', , if F, and Fy are C™-compatible,
and if F, and Fy are C™-compatible, then if range F, C range F, or if
range F, O range F, , F, and Fy are C™-compatible.

In the absence of any condition on the ranges of F, , F,, and Fy,
(A) is false.



§14

FAMILIES OF
DIFFERENTIABLE FUNCTIONS ON M,

The manifold M, shall be an abstract differentiable manifold of
class C7, r > 1, as defined in § 13. We shall extend Theorems 6.3
and 6.5 on the existence of ND functions in a prescribed family G of
differentiable functions. As in § 6, the parameters of the family shall
be the coordinates al,..., a™ of a point a € 4,,, an m-dimensional
Euclidean space.

The Family G. The functions of the family will be the partial
mappings (14.1) for fixed ae 4,, of a real-valued C-mapping,
l<p<r,

(p,0)>G(p,a): Z—~R

defined on an open subset Z of the product M, X 4, . The first
theorem, Theorem 14.1, is an easy consequence of Theorem 6.3 or 6.5
and has numerous applications. A difficulty not met in § 6 is that the
“rank condition” in Theorem 14.1 is defined in terms of G and of
presentations in M, . This rank condition should accordingly be
shown to be independent of the choice of presentations in M, used
to define it, in so far as this choice is arbitrary. This is done in
Lemma 14.1.

Theorem 14.1. Introduction (a). Whenever we refer to a product
X X A of two spaces X and 4 of points p and g, respectively, we
shall understand that the “projections” pr, and pr, of X X 4 onto X
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and A, respectively, are mappings such that, for arbitrary
(ppa)e X x 4

pr(p,a) = p pryp, @) = a.
(b) G as a Family of Mappings G°. The sets £(G), 29%¢(G). The
domain Z of G is open in M, X A,,. For fixed a € pr, Z introduce

the open subset
Z(a) ={peM,|(p,a)e Z}

of M, . The partial mapping
p—>G(p, a) = G¥p): Z(a) > R (14.1)

is well-defined. The mappings G will be regarded as the family of
mappings G Let £(G) denote the set of pairs ( p, a) € Z such that p
is a critical point on M, of G°. Let 29%(G) be the subset of pairs
(P, @) € £(G) such that p is a degenerate critical point of G&.
Theorem 14.1 is concerned with the measure of pr, 24¢(G) in 4,, .

(c) Canonical Neighborhoods in Z. Each point ( p,, a,) € Z has a
neighborhood X X N relative to Z, where N is an open neighborhood
of a, relative to 4,, and X is a coordinate domain of M, given by a
presentation (F: V, X) e 9M,, . A neighborhood of ( p,, 4,) of this
character which is a relatively compact subset of another neighborhood
of this character, will be called canonical. We see that each point
(po» a9) € Z has an arbitrarily small canonical neighborhood. Since
M, is coverable by a countable set of presentations in 2M,, , it is clear
that if w is the set of positive integers, there exists a set

(X% X Nikew (14.2)

of canonical neighborhoods of points of Z whose union is Z.

(d) Local Representations U of G. The sets I'(U), I'*&(U). The
mapping G of (14.1) is assumed of “class C*” on Z in the following
sense. Corresponding to a prescribed point ( p,, @,) € Z there exists

a “canonical” neighborhood X X N of (p,, a,) in Z such that the
local representation

(v,a) > G(F(v),a) = U(v,a): V X N>R (14.3)

of Gis of class C#on V' X N for some presentation (F : V, X)e 2M,, .
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Let I'(U) be the set of pairs (v, a) € (V X N) such that
0=Up@,a) =" =U,{va =0. (14.4)

A pair (v, @) is in I'(U) if and only if v is a critical point of the partial
mapping v — U(v, a). Let the subset of pairs (v, a)e I'(U) for
which v is a degenerate critical point of the partial mapping v — U(v, a)
be denoted by I'teg(U).

(e) The Local Rank Condition. Given the ‘“local representation”
U of Gasin (14.3), we proceed asin § 6, setting Uy = U, , 2 =1,..., n,
and let || U;,(v, a)|| be the n by n + m functional matrix of U, ,..., U,
with respect to the » + m variables

..., 0" dl,..., a", (v,@)e V X N. (14.5)
The rank condition on || Uy; || requires that
rank|| Uy(v, a)| = n, (v, a)e (V). (14.6)
We shall refer to I'(U) as the v-critical ensemble of U and to
I Uy |l = H(U) (14.7)

as the v-critical matrix of U.
Theorem 14.1 extends Theorem 6.3. It concerns a manifold M,
of class C and presentations (F: V, X) e 9M,, .

Theorem 14.1. Let Z be a nonempty open subset of M, x A, and
(p, @) > G( p, a) a real-valued C*-function on Z, 1 < p < r, such
that for each “local representation’

(v, a)—>G(F(v),a) = U(w,a): ¥V x N—>R (14.8)
of G the corresponding v-critical matrix H(U) satisfies the rank condition
rank| Uy(v, @)l =n,  (v,a)e I'(U). (14.9)

Then meas pr, 29°8(G) = 0.

Proof of Theorem 14.1. As we have seen, there exists a countable
set (14.2) of “canonical” neighborhoods X; X N, in Z with union Z.
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Because the neighborhood X, X N, is canonical, it is the relatively
compact subset of another canonical neighborhood X, x N, in Z
such that X, and X, are coordinate domains of M,, given by presen-
tations (F, : V , X;) € 9M,,, and (F,,: V., X,) € DM, of which F,
is an extension of F), .

For F, and F,, we introduce the corresponding local representations

(v, @) > G(Fi(v), @) = U¥wv,a), (v,0)eV; X N, (14.10)
(v, @) > G(F(v), @) = U¥w,a), (v,a)eV,x N, (1411

of G. By hypothesis the critical matrices H(U¥) and H(U*) have the
rank 7 at each point ( p, @) in I'(U¥) and I'(U¥), respectively. We infer
from Theorem 6.5 that for each &k € w

Jordan content pr, I'i€8(U¥) = 0, (14.12)

There accordingly exists a subset o, of N, of measure zero in 4,,
such that for @ e N, — o, the partial mappings v — U¥(v, a),
ve V,, k€ w, are ND. By definition of U* we have

Uk(v, a) = Ga(F,(v)), veV,,

so that for a € N, — o5, G* | X, is ND. Now the domain Z(a) of G¢
is the union of a subset of the domains X, . If then ¢ = e, 04, @
function G® of the family G is ND on Z(a) for each a € pr,Z — o, that
is, for almost all a € pr,Z.

This establishes Theorem 14.1.

Theorem 14.1 is implied by Theorem 14.2 below, as Theorem 6.3
was implied by Theorem 6.5.

Theorem 14.2. If, under the hypothesis of Theorem 14.1 Z, is an
arbitrary, open, relatively compact subset of the set Z of Theorem 14.1,
then

Jordan content pry(Z, N 24¢8(G)) = 0. (14.13)

Proof. The set Z, is covered by a finite subset of the canonical
neighborhoods (14.2) covering Z. For each k € w (14.12) holds, or,
equivalently, (14.13) holds with Z, replaced by X; N N, . Hence
(14.13) holds as stated.
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Theorem 14.1 follows from Theorem 14.2; Theorem 14.1 is a
consequence of the validity of (14.12) for each k, and thus a conse-
quence of Theorem 14.2.

The Invariance of the Rank Conditions (14.6). The principal
condition of Theorem 14.1 is on the rank of the critical matrices H(U)
of local representations (14.3) of the family G. Because this condition
bears on each such local representation U, it would be difficult to verify
without the following lemma on the invariance of the rank condition
(14.6) under a change of local coordinates of M, .

Lemma 14.1. If the critical matrix H(U) of a local representation U
of G of the form (14.3) satisfies the associated rank condition (14.6),
then the critical matrix H(U’) of a local representation U’ of G of the
form

@,a)—>GF(@),a) = U, a): V"X N->R  (14.13)
also  satisfies the associated rank condition (14.6) whenever
(F:V,X)e 9M, and (F': V', X') € DM,, present the same domain
X=XnM,.

Proof of Lemma 14.1. Notation. By virtue of the C"-compatibility
of the presentations

(F:V,X), (F:V,X), X=X, (14.14)
in 2M,, there exists a CT-diff,
v —Y(v') = o, (14.15)
of V' onto V, where
W) = (@), y™(v')) = FY(F'(v)), veVl. (14.16)

Let the partial derivatives of U and U’ with respect to ¢,..., o and
v",..., v"" be denoted, respectively, by

Uy,,Uy and Ul,., Ul. (14.17)

By definition of U and U’ we have U(v, a) = U’(v', a), subject to
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(14.15), and, with integers s and ¢ on the range 1,..,n, we have
(summing with respect to #)

Ulv', a) = Uye, a)%l. (14.18)
v

From (14.18) we infer that the pair (v, @) € V' x N is in the “critical
ensemble” I'(U) of U if and only if, subject to (14.15), the corre-
sponding pair (2’, @) is in the critical ensemble I'(U’) of U".

Method of Proof of Lemma 14.1. Let (v, , a,) be an arbitrary pair
in I'(U) and (v, , a,) the corresponding pair in I'(U’). Our object is to
prove the following:

The condition
rank|| U, , ap)| = n (14.19)

implies the condition

rank|| U (vq , ap)l| = n. (14.20)

To thisend, forr = n 4+ 1, #n 4 2,..., n + m let linear functions U,
in the variables ¢1,..., ¥*; al,..., a™ be added to the set of n functions
U,,..., U, , choosing U, in such a way that each function U, vanishes
at (9, , 4,) and

DUy, Uy ey Upom

D(e,..., o"; al,..., am)(”o » ag) # 0. (14.21)

Such a choice of U, 4 ,..., U, ,,, is possible.
Let functions U, be defined on V' x N by the condition that

U,(v, a) = Uyv’, a), r=n+1,..,n+m, (14.22)

subject to (14.15). To show that (14.19) implies (14.20), it is sufficient
to show that (14.21) implies

A

DUy, U,y Up i)
1 n

D(@",...,v""; d4\,..., a™)

(@), ag) # 0, (14.23)

since the matrices in (14.19) and (14.20) are composed of the first n
rows of the determinants (14.21) and (14.23), respectively.
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Change of Notation. To establish (14.23) as a consequence of
(14.21) in a simple manner, we shall set

(2,..., ¥*; a,..., a™) = (&' «3,..., 2"P™) = x, (14.24)
(@"%..., 0" @l,..., ™) = (S, 32, YPHT) = 3, (14.25)

restricting x and y to the domains defined, respectively, by (14.24)
and (14.25) when (v,a) e V' X N and (v',a) € V' x N. With this
understood the diff (14.15) gives rise to a diff

Y= (@D 9™(y)) = % (14.26)

of the domain of y onto the domain of x¥ under which

() = ¢ s = Laan,
e(y)y=y", r=n+l.,n+m
Subject to (14.24) and to (14.25), we write
Ufv,a) = Uyx), p=1,,n+m,
Ui, @) = A9 b= lLn+m,
%= (vg,q), Yo = (25, a)

Proof of the Implication (14.21) = (14.23). Let p, », h, and k be
indices on the range 1, 2,..., # + m. With x and y corresponding under
the diff (14.26), Eqgs. (14.18) take the form (summing with respect to /)

(14.27)

Uit) = Une) 352 ) (14.28)

for p = 1,..,n, while Egs. (14.22) take the form (14.28) for
# = n+ 1,...,,n + m. Taking account of the conditions [cf. (14.4)]

0 = Uy(xo) = Uylxo) = - = Upym(%o) (14.29)
relations (14.28), subject to (14.26), imply that

0U(y) _ oUwx) 2p™y) og*(y)
oy’ oxk oy oy

-+ remainder, mov = 1,2,..,n+m,
(14.30)
where the remainder vanishes when x = x, and y = y,.
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Let 4 and C be the (» + m)-square matrices

X=xy V=v¢

6[7h(x)

I Al = | 2 1Cull = | 22

oy

¥ b

and A4, similarly the matrix of the Jacobian (14.23) evaluated when

= -

Then (14.30) with x = x, and y == y, implies the matrix equality
A, = C'AC, where C’ is the transpose of C. Hence the nonvanishing
of the determinants | C | and | 4 | implies that | 4, | 7 O or, equiv-
alently, that (14.23) holds. Thus (14.21) implies (14.23), and hence
(14.19) implies (14.20).

Lemma 14.1 follows.

Note. It follows from Lemma 14.1 that in verifying the rank
conditions of Theorem 14.1 or 14.2 it is by no means necessary to
examine each local representation U of G. It is sufficient to examine a
subset of local representations U of G of the form (14.3) so chosen that
the associated domains F(V) X N have Z as union. One can omit
each local representation U whose critical ensemble I'(U) is empty.



§15
FOCAL POINTS OF REGULAR MANIFOLDS

Let M, be a regular manifold of class C? in a Euclidean space E,, ,
0 < n < m. We are concerned in this section with two problems:
the explicit a priori existence of ND functions on M,, and the density
of focal points of M,, in E,, .

We shall begin with a proof of Theorem 6.1. Theorem 6.1 affirms
that for almost all points a € E,, — M, the function x — || x — a ||| M,
is ND on M,, . Theorem 6.1 can be proved very simply by proving
the following equivalent theorem:

Theorem 15.1. If M, is a regular C%-manifold in E,,,0 <n <m
then for almost all points a € E,, — M, the function

x—1/|x —a| (15.1)

restricted to M, is ND on M, .

We shall prove Theorem 15.1 by means of Theorem 14.1.

That Theorems 6.1 and 15.1 are equivalent is shown by the follow-
ing lemma:

Lemma 15.1. If v — f(v) #s a real-valued nonvanishing ND function
of class C? on an open subset V of E,, , then 1/fis ND on V.

Proof of Lemma 15.1. The critical points of f and 1/f are clearly
the same. A critical point v, of fis ND if the Jacobian

D(f,,.fn
J(vy) = —D((f;lﬁ,z{—:)z‘ (vo) # 0.
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As a critical point of 1/f, v, is then ND, since
f So
D L
1o g
( f f )(,vo) — ](‘vo) £ 0.
D(v,..., v™) SHvy)

The lemma follows.

The following lemma leads to a proof of Theorem 15.1:

Lemma 15.2. If for x # a one sets o(x,a) = || x — a ||~ then the
m-square determinant

| P59 20, xra (15.2)
Proof. Forp = 1,..., mset
<pu(x,a)=§%(x,a)=H, x # a.
We wish to show that
D@1 seees Pm) (x,@) #0, x +# a. (15.3)

D(x,..., x™)

To that end note that for a fixed point a the transformation x — y,
defined by setting

» = g.x, a), x # a, (15.4)
implies that ||y || = ||* — a|~% and hence that under the transfor-
mation (15.4)

xt = a* +y4|y 22, |yl #0. (15.5)

Thus the transformation (15.4) has a continuously differentiable
inverse and hence a nonvanishing Jacobian (15.3).
Thus (15.2) is true.

Proof of Theorem 15.1. We shall apply Theorem 14.1 to prove
Theorem 15.1, taking G of Theorem 14.1 as the mapping

(p,a)—>1/lip—al, peM,, a¢M,, (15.6)
identifying 4,, of Theorem 14.1 with E,, of Theorem 15.1.
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For fixed a, the partial mapping p — G( p, a,) has a point p, € M,,
as critical point if and only if the vector p, — 4, in E,, is orthogonal
to M, atp,.

The truth or falsity of Theorem 15.1 is independent of the choice
of the rectangular coordinate system in E,, among coordinate systems
obtained one from the other by translations or orthogonal transfor-
mations of the coordinate axes x1,..., x™. It is understood that the
coordinates al,..., a™ are subject to the same transformations as the
coordinates &1,..., ™ so that || x — a || is invariant,.

The Rank Conditions of Theorem 14.1. Suppose that p, is a point
of M, and that the non-null vector p, — 4, is orthogonal to M,, at p, .
Then p, is a critical point of G%. Suppose that the origin has been
chosen as p, and the #!,..., x™ axes as tangent to M,, at p, . Let IT be the
coordinate n-plane of the x,..., x* axes. Let (F: V, X) be a Monge
presentation of a neighborhood X of p, relative to M,,, so that F is
the inverse of the orthogonal projection of X into I1. If then p, = F(v,)
is the origin,

oF! ‘
—aii,,(vo) =8, i=l.,m h=1,.,n (15.7)

One introduces the local representation
(v, @) > p(F(v), a) = U(v, a), velV, aeN, (15.8)

of ¢, where N is an open neighborhood of a, not meeting M, . For

h = 1,...,n and i summed over the range 1,..., m and for v € ¥ and
ae N

o0U(v,a)  O¢(x, a) oFi(x)

ov* T Oxf ot

x = F(v). (15.9)

For h and i as in (15.7), for & on the range 1,..., m, (15.9) implies that

*U(v,a)  %p(x, a) OFi(x)
0% 0a*  ox' dak  ovh x = F(o). (15.10)

We shall indicate evaluation of the terms of (15.10) when v = v,
a = ay, x = p, by adding a superscript 0. Taking account of (15.7),
one arrives at the equality of the # by m matrices
2 2
' 4 U(v 2) H = ” 3q>(x a|° R h=1,2,...,n, k=1,2,...,m

(15.11)

Frxra ox* oak




15. FOCAL POINTS OF REGULAR MANIFOLDS 109

Since (15.2) holds, the matrices (15.11) have the rank »n. Thus the
v-critical matrix H(U) has the rank z at ( p, , ay).

It follows from the invariance of the rank condition (Lemma 14.1)
under admissible change of local parameters on M, that the rank
condition of Theorem 14.1 is satisfied for each local representation
U of G.

Theorem 15.1 accordingly follows from Theorem 14.1, and
Theorem 6.1 from Theorem 15.1.

Definition 15.1. Focal points of M, in E, . If a non-null vector
po — a, 1s orthogonal to M, at p, and if p, is a degenerate critical
point of the partial mapping

p—llp —apll: M,— R, (15.12)

then a, is called a focal point of M, with base point p, .

The following was proved by Morse in lectures at the City Univer-
sity of New York in 1965 (see Morse [15]):

Theorem 15.2.  There exists a noncompact regular manifold M, of
class C* in E, | whose focal points are everywhere dense in E,, , .
This theorem calls for the following supplement:

Theorem 15.3. The focal points of a compact regular manifold M,
of class C*in E,, , 0 < n < m, are nowhere dense in E,, .

A proof of Theorem 15.3 was given by Morse [13], p. 243 in the
analytic case without making use of properties of M, other than
differentiability. However, this theorem is implied by the following
corollary of Theorem 14.2:

Lemma 15.3. If M, is a compact regular C2-manifold in E, ,
0 < n < m, and X a relatively compact open subset of E,, bounded from
M, the set of focal points of M, in X has a Jordan content zero.

As we have just seen, the mapping ( p, a) — G( p, a), defined by
(15.6) on the open subdomain Z = M, x (E,, — M,)of M, X E, ,
satisfies the conditions of Theorem 14.1 when 4,, = E,,. An open
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relatively compact subset of Z is afforded by Z, = M, x X. It
follows from Theorem 14.2 that

Jordan content pry(Z, N 29¢(G)) = 0. (15.13)

Lemma 15.1 implies that for fixed a ¢ M, , the mappings
p—llp—alland p > | p —a|, pe M,, are both ND if one is
ND; Lemma 15.3 accordingly follows from (15.13).
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DIFFERENTIABLE MAPPINGS
OF MANIFOLDS INTO MANIFOLDS

Let M, and N, be manifolds of class at least C*; suppose m an
integer such that 0 < m < u. We shall define differentiable mappings
of M, into N, .

Definition 16.1. A Mapping ¢ : M,, & N, of Class C™. A mapping
p—o(p): M| —~|N,| (16.1)

will be said to define (or simply to be) a mapping of class C™ of M, into
N, if corresponding to a prescribed point p, € M,, there exist presen-
tations

(F:U X)eDM, and (G:V,Y)eDN, (16.2)

such that p, € X, ¢(X) C Y, and the mapping
Gls(psF): UV (16.3)
is of class C™.

Note. The parentheses cannot be removed from ¢ 5 F in (16.3),
since the range of ¢ may not be included in the domain Y of G—1.

Suppose that in the sense of Definition 16.1 ¢ is a C™-mapping of
M, into N, .

Definition 16.2. 'The mapping ¢ of (16.1) will be termed a C™-
immersion M, — N, if corresponding to each poe M, , F and G in
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(16.2) can be chosen so that p, € X, ¢(X) C Y, and the mapping (16.3)
is a C™m-immersion in the sense of Definition 5.1. A C™-immersion
¢ : M, — N, which is a homeomorphism into N, is termed a C™-
embedding of M, in N, (cf. Munkres [1], p. 10).

An immersion M, — N, is possible at most if » < r. This is
because dim U = nand dim V = r.

Remark. If ¢ is a C™-immersion (or embedding) M, — N,,
@ | M, is a C™immersion (or embedding) M, — N, of any C™-
submanifold M,, of M,, . In fact, if p, € M, , the condition of Defini-
tion 16.2 is satisfied by hypothesis by some F € ZM,, , and hence is
also satisfied by any restriction of F whose coordinate domain con-
tains py .

The following lemma frees Definitions 16.1 and 16.2 of their
dependence upon the choice of presentations (F: U, X) such that
po € X. However, one needs characterizations of immersions both
in the form of Definition 16.2 and in the form of Lemma 16.1.

In Lemma 16.1 the inclusion of the phrase ‘“‘(and an immersion)”
in parentheses is meant to imply that Lemma 16.1 is true if this
phrase is kept or deleted.

Lemma 16.1. A mapping ¢ of M, into N, is of class C™ (and an
immersion) if and only if the following is true: Corresponding to arbitrary
presentations

(F,: U, X)e?2M, and (G,:V,,Y,)eDN, (16.4)
such that (X,) C Y, , the mapping
Gl's(psFy): U~V (16.5)
is of class C™ (and an immersion).

It is clear that ¢ is of class C™ (and an immersion) if the condition
of the lemma is satisfied. We shall prove the converse (A):

(A) If @ is of class C™ (and an immersion), each mapping (16.5)
1s of class C™ (and an immersion).

It 1s sufficient to prove that if u, is a prescribed point of U, , the
restriction of G;' s (¢ 5 Fy) to some neighborhood of #, in U, is of
class C™ (and an immersion).
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The point p, = Fy(1,) is in X, and ¢( p) 1s in ¥, . Since ¢ is of
class C™ (and an immersion) by hypothesis, there exist presentations
(16.2) such that

2eXCX,, @X)CYCY,, (16.6)
and the mapping (16.3) is of class C™ (and an immersion). Corre-
sponding to these sets X and Y there then exist unique presentations

(F:0,X)edM, and (C:V,Y)e9N, (16.7)

which are restrictions, respectively, of the presentations (16.4). Since
o(X)C Y CY,, the mapping

Gla(psF): UV (16.8)

is well-defined and a restriction of the mapping (16.5) to a neigh-
borhood U in U of the point %, prescribed in U. The proof will
accordingly be complete if we prove the following:

(B) The mapping (16.8) is of class C™ (and an immersion). By
virtue of the C#-compatibility of F and F and of G and G, there exists
a C»-diff » of U onto U and a C»-diff { of ¥ onto ¥ such that

F=Foy G=0C-L (16.9)
It follows that

Gls(psF)={5(G'5(paF))on. (16.10)
Since 0 < m < p, the mapping (16.8) is then of class C™ (and an

immersion), with the mapping (16.3).
This completes the proof of (B) and thereby of the lemma.

Note. One can show that Lemma 16.1 is false if the condition
0 < m < pis omitted.

We state a theorem on the composition of C™-mappings of mani-
folds.

Theorem 16.1. For i = 1,2,3, let M, be differentiable manifolds
each of class C+. Suppose that 0 < m < p. If
p—@(p): My —> M, p—Y(p): Mo, —> M, (16.11)

n < my ng



114 II. ABSTRACT DIFFERENTIABLE MANIFOLDS

are C™-mappings (and immersions), the composite mapping O =
pog: M, — M, is of class C™ (and an immersion).

Proof. Let points p; € M, be defined by prescribing p, € M,
and setting p, = ¢( p,) and ps = Y( p,). Our hypotheses imply that
presentations

(F.; U,, X;) e DM, i=1,23, (16.12)

can be chosen in the order = 3, 2, | so that p, € X, the inclusions
X3 D Y(X,) and X, D ¢(X,) are valid, and the mappings

Fls@aFy): Uy Uy, Fi's(psF): Uy>U, (1613)

are of class C™ (and immersions).
It follows from the above inclusions that X O (4 o ¢)(X,), so that
the mapping

Fy's(@5F,) = (Fy's (b Fy)] o[F'o(poFy)] : Uy~ Uy (16.14)

is well-defined and the equality (16.14) valid. The mapping (16.14)
is of class C™ (and an immersion), with the mappings (16.13). Since
1 1s prescribed in M,, and is in X, @ = ¢ o ¢ is of class C™ (and an
immersion) in accord with Definition 16.1.

This establishes Theorem 16.1.

Definition 16.3. Diffs ¢. Let M, and N, be differentiable mani-
folds of at least class C. Suppose that 0 < m < p. We then term a
homeomorphism ¢ of | M, | onto | N, | a C™-diff of M, onto N, if
both ¢ and ¢! are mappings of class C™.

By virtue of this definition ¢ is a C™-diff of M, onto N, if and only
if ¢~ is a C™-diff of N,, onto M, .

The following is a corollary of Theorem 16.1.

Corollary 16.1. Let M, , N, , and Q, be C+-manifolds. Suppose that
0<m< p If p is a C-diff of M,, onto N,, and if ¢ is a C™-diff of
N, ontoQ, , then the composite mapping o @ is a C™-diff of M,, ontoQ,, .

We add two theorems.
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Theorem 16.2a. Let ¢ be a homeomorphism of | M, | onto | N, |.
A necessary and sufficient condition that ¢ be a C™-diff of M, onto N, ,
0 < m < p, is that for arbitrary presentations

(F:U,X)e2M, and (G:V,Y)e9N, (16.15)
such that o(X) = Y the homeomorphism
Go(psF): UV (16.16)
be a Cm-diff of U onto V.

A Convention. Presentations F and G in this order such that
®(X) = Y will be called g-paired. If i is the inverse of ¢, presen-
tations G and F are y-paired in that X = ().

Regardless of whether or not ¢ has any differentiability properties,
it is seen that if p, is prescribed in M, , there exist “‘p-paired”
presentations F and G such that p, € X. We can now prove (i):

(i) The condition of the theorem is sufficient that ¢ be a C™-diff.

Proof of (i). Given p, € M, , by hypothesis there exist ¢-paired
presentations /' and G such that p, € X and the homeomorphism
(16.16) is a C™-diff. Hence by Definition 16.1 ¢ is of class C™. When
the mapping (16.16) is a diff of class C™ its inverse,

F15(sG): VU, (16.17)

is of class C™ according to Definition 1.1. It follows then from Defini-
tion 16.1 that ¢ is of class C™, so that by Definition 16.3 ¢ is a C™-diff.
We now prove (ii):

(i) If ¢ is @ C™-diff, the condition of the theorem is satisfied.

Since ¢ is of class C™, it follows from Lemma 16.1 that the mapping
(16.16) is of class C™. Since ¢ is of class C™, it follows similarly from
Lemma 16.1 that the mapping (16.17) is of class C™. Since the map-
pings (16.16) and (16.17) are inverse homeomorphisms, both are diffs.

This establishes (ii) and completes the proof of the theorem.

Theorem 16.2b. A homeomorphism ¢ of M, onto N, is a C™-diff
if and only if ¢ is a C™-embedding M,, — N,, .
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The inverse  of a C™-embedding ¢ : M,, — N, onto N, , is both a
homeomorphism and an immersion and in particular of class C™.
Hence a C™-embedding ¢ is a C™-diff. Conversely, a C™-diff of M,
onto N, is a C™-embedding in the sense of Definition 16.2, as we now
verify.

If ¢ is a Cm-diff of M, onto N, , then by Theorem 16.2a each
homeomorphism (16.16) is a C™-diff of U onto V' and hence by
Lemma 1.1 an immersion. By Definition 16.2 ¢ is then a C™-embed-
ding M, - N, .

Theorem 16.3a. If M, and N, are C™-manifolds and ¢ a C™-diff
of M, onto N, , the implications

(F:U, X)e DM, = (¢psF: U ¢(X)) e 2N, , (16.18)
(G:V,Y)eDN, = (p15G: V,p (V) e DM,  (16.19)

are valid for arbitrary F € M, and G € IN,, .

Moreover, the biunique mapping of IM,, into DN, implied by (16.18)
is onto YN, , and equivalently the inverse biunique mapping of YN,
into DM, implied by (16.19) is onto IM,, .

Proof of (16.18). The homeomorphism
psF: U—g(X) (16.20)

is onto the open subspace ¢(X) of | N, |. This mapping is a presen-
tation in ZN,, by Definition 13.1 if and only if the presentations

(G:V,Y)e@N, and (p3F:U, ¢X)) (16.21)

of 2° N, | are C™-compatible for arbitrary choice of G € 2N, .

If the presentations (16.21) are nonoverlapping, they are trivially
C™-compatible. In any other case set ¥ = (V¥ N (X)) and set
X = ¢ (Y¥). Then, in accord with (A,) and (A,) of § 13, the presen-
tations (16.21) are Cm-compatible if restrictions (G : V7, ¥Y) and
(psF: U, (X)) of the respective presentations (16.21) are Cm-
compatible, that is, if the homeomorphism

Gls(esF): UV, Y =¢X), (16.22)
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of U onto V is a Cm-diff. On applying Theorem 16.2a, given the
diff ¢ and the presentations

(F:0,X)e9M, and (G:V,Y)e2N,, Y =¢X),

we conclude that the homeomorphism (16.22) is in fact a Cm-diff.
Hence the presentations (16.21) are C™-compatible and (16.18) is
valid.

The proof that the implication (16.19) is valid is similar.

That the mapping of ZM, into 2N, implied by (16.18) is onto
2N, , and that the mapping of N, into ZM, implied by (16.19) is
onto 2M,, follows from the fact that these two mappings are inverses.

Theorem 16.3b supplements Theorem 16.3a, and defines a C™-
manifold ¢(M,):

Theorem 16.3b. Let M, be a C™-manifold and ¢ a homeomorphism
of | M, | onto a topological manifold I', . The ensemble

K={psF:UqX)|(F:UX)e2M,} (16.23)

of presentations of open subsets of I', is a maximal set of pairwise C™-
compatible presentations of open subsets of I, and covers I', .

Moreover,  is a C™-diff of M, onto a C™-manifold, DENOTED BY
o(M,), whose carrier is o(| M,, |) and for which Dp(M,) = K. Finally,
@ is a C™-diff of M, onto no other C™-manifold than ¢(M,).

Proof. Any two presentations
(poFr: Uy, @(Xy) and  (p5F,: Uy, p(X,))
in the set K are C™-compatible, since the corresponding presentations
(F,: U, X)e@M, and (Fy: Uy, Xy e DM,

are C™-compatible. It follows from Definition 13.1 of a C™-manifold
and from Theorem 13.1 that there exists a C™-manifold N, whose
carrier is I', and for which 2N, D K.

We shall verify the following:

(i) The homeomorphism ¢ of | M, | onto I',, is a C™-embedding of
M, onto N, .
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Verification of (i). Corresponding to a prescribed point py e M,
there exist presentations

(F:U,X)e9M, and (G:V,Y)e9N, (16.24)
such that py € X and
(G:V,Y)=(p3F: U, p(X)). (16.25)

The resultant mapping G o (¢ 5 F) reduces to the identity mapping
of U onto U. It follows from Definition 16.2 that (i) is true.

We infer from Theorem 16.2b that ¢ is a C™-diff of M, onto N,
and from Theorem 16.3a that 2N, = K. Hence K is a maximal set
of pairwise C™-compatible presentations of open subsets of I, .

Thus ¢ is a C™-diff of M, onto the C™-manifold ¢(M,) whose
carrier is I', and whose presentation set is K. That ¢ is a C™-diff of M,
onto no other C™-manifold follows from Theorem 16.3a.

This completes the proof of Theorem 16.3b.

0O.-embedded Manifolds. The last four theorems have been
concerned with mapping a differentiable manifold M, onto a differen-
tiable manifold of the same dimension. We now turn to C™-embed-
dings ¢ (Definition 16.2) of a differentiable M, into a differentiable
manifold Q, with 0 < n < r. In this subsection we suppose that M,
and Q, are of class at least C# and that 0 << m < p.

Before going further it is essential to recall that two differentiable
manifolds are regarded as identical if and only if they have the same
carriers and the same set of presentations.

Embedding Terminology. A Cm™-embedding ¢ of M, into Q, is
understood in the sense of Definition 16.2. If ¢ is an arbitrary homeo-
morphism of | M, | onto a topological manifold ¢(| M, |), ¢(M,) has
been defined as an n-manifold with carrier ¢(| M,, |) and set of presen-
tations (16.23) (see Theorem 16.3b). If, in particular, ¢ is a homeo-
morphic mapping of | M,, | into | Q, |, ¢ is in general not an embedding
of M, into Q, . If, however, ¢ is a C™-embedding, we term N, = ¢(M,)
a Q,~embedded manifold.

The following theorem serves to simplify the problem of charac-
terizing Q,-embedded manifolds. In this theorem we understand
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that an inclusion mapping of a subset 4 of B into B maps each point
x € 4 into x € B. This is a conventional use of the term “inclusion

mapping.”

Theorem 16.4. Let N, and Q,, 0 < n < r, be manifolds of class
at least C+. Suppose that | N, | is a subspace of | Q, | and that 0 < m < p.
Then N, is a Q,~embedded manifold if and only if the inclusion mapping I
of | N, |into | Q, | is a C™ embedding, N,, — Q, .

Proof. 1f I is an embedding N, — O,, then by definition the
manifold I(N,) = N, , is a Q,-embedded manifold.

If ¢ is a C™-embedding M, — O, such that ¢(M,) = N, , it is
a trivial consequence of Definition 16.2 that the inclusion mapping
I: N, — 0, is a C™embedding [use the presentations (16.23) of N,].

Thus Theorem 16.4 is true.

A Q,-embedded C™-Manifold (I, , O, , m)). Let I, be a topological
n-manifold which is a subspace of O, , and m a positive integer. The
principal objective of this subsection is the proof of a uniqueness
theorem for a (,-embedded C™-manifold whose carrier is I',.
If I, is prescribed, such a manifold does not exist in general, but
if it does exist, it is uniquely determined by I', , Q,, and m, as we
shall see in Theorem 16.5, and will be denoted by (I, , Q, , m)).

Introduction to Theorem 16.5. Recall that a presentation (H : U, Z) e
2°T", (Definition 13.3) of an open subset Z of I, and an integer
m > 0 uniquely determine, in the sense of Definition 13.4, a C™-
manifold Z, with carrier Z. Note also the following consequence
of Definition 16.2: The inclusion map of Z = | Z, | into |Q, | is a
Cm-embedding Z, — O, if and only if each presentation (G : V, Y)eQ,
and each open restriction (H : U, Z) of (H : U, Z) for which G-'s H

is a well-defined composition yield a mapping
G'sH: U~V (16.26)

which is a Cm-embedding of U into V in the sense of Definition 5.1.
In Theorem 16.5 we pass from this simple case to the general case.

Theorem 16.5. For 0 <n < r let Q, be a Cv-manifold and I,
a topological n-manifold which is a subspace of |Q,|. Suppose that
0 < m < w and that conditions (o) and (B) are defined as follows:



120 II. ABSTRACT DIFFERENTIABLE MANIFOLDS

() Under condition («) there shall exist a Q,-embedded C™-manifold
P, with carrier I',, .

(B) Under condition (B) there shall exist a covering of I, by a
countable subset K of presentations (H : U, Z) € D°T', such that the
corresponding prime C™-mantfolds Z,, (Definition 13.4) are C™-embedded
nQ,.

Then :

(h) Conditions («) and (B) are equivalent.

(k) A Q,-embedded Cm™-manifold with carrier I, , if it exists, is
uniquely determined by (I',, , O, , m) and will be denoted by ((I", , O, , m)).

The uniqueness of P, (if P, exists) means its independence of
the different C™-embeddings ¢ : M, — O, (if any exist) which yield
a manifold ¢(M,) with carrier I', .

Proof that («) Implies (8). If the manifold P, of (a) exists, each
presentation (H : U, Z) in 2P, is a presentation in 2°T,, . Since each
open restriction of (H : U, Z) is in 2P, , the C™-manifold Z, defined
by (H: U, Z) in Definition 13.4 is a submanifold of P, . Since P,
is by hypothesis O,-embedded, its submanifold Z, is Q,-embedded.
(see Remark following Definition 16.2.) Condition (B) thus follows
from ().

Proof that (B) Implies (x). We begin this proof by verifying the
following lemma:

Lemma 16.2. Under the conditions of (B) the presentations in K are
mutually C™-compatible.
Let there be given two presentations
(H':U,Z)eK and (H":U"Z"eK (16.27)

such that Z' N Z" # . It follows from Definition 5.4 of Cm-
compatibility that H' and H” are C™-compatible if and only if the
following statement (i) is true:

(i) Each point p,e Z' N Z” admits an open neighborhood Z°
relative to Z’ N Z" such that the restrictions

(A:0,2° and (A": 0", 2% (16.28)
of the presentations (16.27) are C™-compatible.
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We shall show that the presentations (16.27) are C™-compatible
by showing that the presentations (16.28) are C™-compatible if Z° is
a sufficiently small open neighborhood of p_ in Z’' N 2.

Turning to Definition 16.2, let (G : V, Y) € 20, be chosen so that
Po € Y, and suppose (as is possible) that Z° C Y. By hypothesis of (B)
the C™-manifolds defined by the presentations (16.27), namely, Z,
and Z,, are C™-embedded in Q,, so that by Theorem 16.4 the
inclusion mapping is an embedding of Z;, and Z, in Q,. Hence by
Definition 16.2 the mappings

G'sH .U >V (16.29)
Gl 0" >V (16.30)

are C™-embeddings in the sense of Definition 5.1. Since these two
mappings are onto the same topological manifold, G-1(Z°) in V, it
follows from Lemma 5.1 that they are C™-compatible. Hence the

mapping
(Gls Ay 15 (G1s Ay = (H)'s A" U > U (16.31)

is a Cm-diffeomorphism of U” onto U’. Thus A’ and H” are C™-com-
patible. It follows from (i) that the presentations (16.27) are C™-
compatible.

Thus Lemma 16.2 is true.

The presentations K cover I', by hypothesis of (8) and are C™-
compatible by Lemma 16.2. By Definition 13.1 I, is thus the carrier
of a C™-manifold P, such that 2P, contains the presentations in K.
That P, is C™-embedded in Q, by the inclusion mapping | P, | — | O, |
follows from the hypothesis of (8) that the submanifolds Z, of P,
defined by the respective presentations (H: U, Z)e K are also
Cm-embedded in Q, . Thus () implies ().

The equivalence of («) and (B) is established.

Proof of (k); the Uniqueness of P, . Let P, be an arbitrary n-mani-
fold satisfying (). We shall prove that P, = P, .

The proof that (o) implies (8) shows that (8) holds if K is taken as
the union of a countable subset of presentations 2P, covering I,
and a countable subset of presentations of 2P, covering I', . By
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Lemma 16.2 the presentations in this set K are mutually C™-com-
compatible implying that PP, = 2P, and hence P, = P, .
Thus (k) is true and the proof of Theorem 16.5 is complete.

We record the following corollary of Theorem 16.5:

Theorem 16.6. Let M, and Q., 0 < n < r, be manifolds of class
at least C», and for some positive m < p let ¢ be a C™-embedding
M, — Q, . If one sets | p(M,)} = I, , then

o(M,) = (I, Oy , m)). (16.32)

Relation (16.32) is a consequence of the uniqueness of P, of
Theorem 16.5 given I',, O,, and m. The C™-manifold (M) is
defined in Theorem 16.3b, while (I, , O, , m)) is defined in Theorem
16.5.

Corollary 16.2 will be needed:

Corollary 16.2. Let ¢: P, —>Q, be a Cm-diffeomorphism of a
Cm-manifold P, onto a C™-manifold Q, and M, , 0 <n <r, a C™-
manifold such that | M, | is a subspace of | P, |.

If M, is C™-embedded in P, , then ¢ | | M, | defines a C™-embedding
of M, in Q, as a manifold ¢(M,).

Whether or not M,, is embedded in Q, by ¢ | | M,, |, a C™-manifold
o(M,) with carrier I', = ¢(] M, |) is well-defined in accord with
Theorem 16.3b.

Since M, is C™-embedded in P,, it is C™-embedded in P, by the
inclusion mapping I of | M,, | into | P, | (Theorem 16.4). By Defini-
tion 16.2 corresponding to a prescribed point p,e | M, | there
accordingly exist presentations

(F:U X)e9M, and (G:V,Y)e9P, (16.33)
such that X C Y and the homeomorphism
GrsF:U->V (16.34)

of Uinto V is a C™-embedding of U into V in the sense of Defini-
tion 5.1. The mapping

(@5G)Ls(psF): U~V (16.35)
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reduces to the C™-embedding (16.34). Since
(¢5G: V,e(Y))€20,, (16.36)

in accord with Theorem 16.3b, mappings of the type (16.35) show
that ¢ | | M, | is a C™-embedding of M, in Q,, in accord with
Definition 16.2.

Regular Arcsgon M, . Let M, be a C™-manifold and I an interval
of the t-axis. There are special mappings

git—pt):I1—- | M,|

which are continuous and locally biunique and which are termed
regular arcs on M, . If g is a homeomorphism into | M,, |, the image
y of I in | M, | may be regarded as the carrier of the arc g. Let
(F:U,X)e 2M, be given. If g is a homeomorphism into X, a
mapping ¢t — u(t) : I — U such that p(t) = F(u(t)) is called a
representation of g in terms of F-coordinates u. In this case g is called
regular if the mapping t — u(t) is of class C' and if || 4(t)| never
vanishes.

Whether g is a2 homeomorphism or not, g will be called regular if
corresponding to each ¢, € I there exists a subinterval I, of 1, open in I,
which contains #; and is such that the mapping t — p(¢) : [, — | M, |
is a regular arc with carrier in the range of some presentation in M, .

One sees that the “regularity” of a simple arc g on M, is independent
of the coordinate domains in which this regularity is tested.

We shall make use of a fundamental theorem due to Whitney [2]:

Theorem 16.7. Whitney. An abstract differentiable manifold M,
of class C™ admits a C™-embedding in a Euclidean space of dimension
at most 2n + 1.

Whitney’s result can be formulated as follows. Corresponding
to an abstract C™-manifold M, there exists a C™-diff ¢ of M, onto a
regular C™-manifold N, in a Euclidean space of dimension at most
2n + 1.

In addition to Whitney’s proof [2] of this theorem and of related
theorems, there is a relatively short proof by de Rham appearing
early in his book [1]. There is also an introductory treatment by
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Munkres in [1], pp. 16-20. Because of the accessibility of these and
other expositions, we shall not give a proof of Whitney’s theorem.

This is perhaps the place to state a remarkable theorem due to
Milnor [1]. The terminology is ours.

Theorem 16.8. Milnor. There exist manifolds M, and N, of the
same class C™ with identical carriers | M, | = | N, | but such that M,
and N, are not diffeomorphic.

Milnor set up his first counterexample for the case » = 7. In this
connection there are many unanswered questions.

Functions Corresponding under a Diff ¢. We shall prove a theo-
rem concerning real-valued functions corresponding under a diff
p—o(p)of M, onto N, .

Theorem 16.9. Let p — ¢( p) = q be a C™-diff of a C™-manifold M,
onto a C™-manifold N, . Let p — f(p) and q — g(q) be real-valued
functions with values defined, respectively, for p € M, and g€ N, and
such that f(p) = g(q) when q = ¢(p). Suppose that 0 < p < m.
Then f is of class C+ on M, if and only if g is of class C* on N, . Moreover,
critical points of f and g correspond under @, with preservation of
nondegeneracy and indices when p > 1.

We recall conventions of § 13.

Given a presentation (F : U, X) e 9M,, , f| X is of class C* if and
only if f5F is of class C» on U. The critical points of f| X are
represented biuniquely under F by the critical points of f5 F on U.
If & > 1, a critical point p, of f| X is ND and has the index k& if and
only if the point u, = F-( p,) is a ND critical point of f5 F with
index k.

Given a presentation (F: U, X) e M, , Theorem 16.3a affirms
that (¢ 3 F : U, p(X)) is a presentation in M, . If g is an arbitrary
real-valued function on N, , then the conventions of the preceding
paragraph applied to N, in place of M, imply that the differentiability
of g | e(X), its critical points and their nondegeneracy and indices
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are determined by the representation g5 (p 5 F) of g | (X) on U.
In the special case in which g(g) = f( p) under the diff p — ¢(p) = g,

g5(psF) = (fop)o(psF) =fF (on U)

and the theorem follows.
Theorem 16.10 is an extension of Theorem 6.4a. It is a consequence
of Theorems 6.4a, 16.7, and 16.9.

Theorem 16.10. Let M, be an abstract manifold of class C#, u > 1,
which admits a C+-diff onto a regular C+-manifold N, inE, ,0 <n <r.
There then exist r real-valued functions by ,..., 4, of class C* on M,
with the following property:

Corresponding to a prescribed real-valued function g of class C™ on

M, , p = m > 1, the function

4—5(0) + :zlajsbf(q) — g qeM, (16.37)

is ND for almost all choices of points (a, ,...,a,) = a€ E, .

Proof. One identifies N, of this theorem with the regular manifold
2 of Theorem 6.4'. Let

p—Hp): 2~ M,

be a Cu-diff of 2 onto M, . Corresponding to the C*-functions
@15, @, o0 2 of Theorem 6.4" let 4 ,..., 4, be the respective C+-
functions on M, such that

¥i(@) = @(p) for g =hp) j=1..r

Corresponding to the C™-function ¢ — g(¢q) prescribed on M, ,
let p — f( p) be the C™-function on X' such that g(q) = f( p), subject
to the condition ¢ = A( p) for each p € 2. Then (16.37) and (6.25)
show that

fUp) =g%q) for g = Mkp)
According to Theorem 16.9 f¢ and g° are both nondegenerate or both

degenerate on 2 and M, , respectively.
Theorem 16.10 follows from Theorem 6.4'.
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Exercise 16.1. Let there be given a presentation
(F:U,X)e2M, (UopeninkE,) (16.38)

of a C™-manifold M,, . Let U be the regular submanifold of E, with
carrier U (see § 5). Let X be the C™-submanifold of M,, with carrier X.
Use Definition 16.2 for a trivial verification that F C™-embeds U in X
onto X. Then use Theorem 16.2b to verify the following lemma.

Lemma 16.3. The presentation F of (16.38) can be regarded as a
Cm-diff of the manifold U onto the manifold X.

We shall make use of this lemma,

Exercise 16.2. Prove the following lemma:

Lemma 16.4. Let there be given positive integers s < n < r and
C™-manifolds M, and N, in E, , of which N, is regular in E, in the sense
of Definition 5.3. If | M,| C | N,, |, then M, is C™-embedded in N, if
and only if M, is a regular C™-manifold in E, .

Verify the validity of the following abstract of a proof: Given a
point x, € | M, |, there exist presentations

(F:U,X)e2M, and (G:V,Y)e2N,, xcXCY

of which G is necessarily regular in E, . If the coordinates of x € E,
are x, ,..., x, , we can suppose thatforx € ¥, x;, = G(v)fori = 1,...,r
and suitable v € V. Since X C Y, there exists a homeomorphism
# — @(u) of U onto o(U) C V such that for each ¢

Ftty o ) = Ggy(0),..., pa()), ueU. (16.39)

Show that the homeomorphism ¢ is a C™-diff of U onto (U) C V
ifand only if Fisa regular C™-presentation of X in E, .

Show also that ¢ is a C™-diff if and only if the submamfold of M,
with carrier X is C™-embedded in N,, by the inclusion. Use Theorem
16.4 to finish the proof.



§17
DYNAMICAL SYSTEMS ON A MANIFOLD M,

As we have seen, a point g on a C™-manifold M, is represented by an
infinity of points in E, , namely, the antecedents of ¢ under those
presentations in 2 M, whose coordinate domains contain g. A vector ¢
“tangent” to M, at g will be determined by an infinity of vectors in
E, , one at each point in E, antecedent to ¢. It is an objective of this
section to make clear in the classical sense how the vectors in E,
which represent ¢ are defined and related.

A similar but somewhat more difficult problem is the proper
definition of a “dynamical system’ on M, . Such systems, if defined
on suitable open submanifolds of M, , are essential in defining the
homotopies necessary in proving the theorems of § 9.

The relevant relations of vectors in E, one to the other are of two
sorts, ““dual” in a special sense, and termed contravariant and covariant.
In this section we shall define the relation of contravariance and use
it to define “dynamical systems” on M, .

Notation. Given a point u € E, , n-tuples
(M@)o, 1™ (@) = () and ()., aw)) = c(u)  (17.1)

are called vectors in E, “‘at »”. It is classical usage to employ super-
scripts in denoting the components of vectors involved in relations of
contravariance and subscripts in denoting the components of vectors
involved in relations of covariance. The symbols »(u) and ¢(u) as used
to represent the vectors in (17.1) distinguish only by superscript
or subscript the kind of vector they represent. However, note that 5
is a Greek letter and ¢ a Roman letter. We make the convention that
vectors whose components are to be distinguished by superscripts
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will be represented by Greek letters and vectors whose components
are to be distinguished by subscripts will be represented by Roman
letters.

The Vector Space V,, over R. For a fixed point u € E,, the set of
vectors (y(#)) in E,, “at #” form a vector space V,, over the field of real
numbers R. One adds vectors at # by adding their components. If
p € R, we understand that

p(n(w)) = (pn'(@)s-.., pr™(w)).

One sees that the vectors in E, at # whose components are the rows
of the n-square unit matrix I form a base for V,, so that V, has the
dimension 7 (see Birkhoff and MacLane [1], p. 192). A vector space
V, in E, admits a natural isomorphism onto E, in which a vector
n € V, is mapped into the point in E, with coordinates 7!,..., ™.

We shall not always represent vectors in V, in the form
7 = (9%..., "), but at convenience shall represent a vector ge V,
in the form g = (g, ,..., g,)- The choice between these two ways of
representing a vector in V, will depend upon the potential use of the
vector (see Theorem 18.2).

Let M, be a C*-manifold and

(F:U,X)e9M, and (G:V,Y)e9M, (17.2)

be overlapping presentations, that is, presentations such that
XNY# . For ge XNY, points u = FY(g) and v = G~Y(g)
will be said to be M,-related by F and G. For such points a vector
7(u) € V,, will be symmetrically related by an isomorphism (denoted
by [F, G],) of V, onto V, to a vector {(v) € V,,. This isomorphism
and its inverse [G, F], will presently be defined.

ExampLE 17.1. Given the presentations (17.2)and ge X N Y, let
y : t — p(t) be a simple regular arc in X N Y meeting ¢ whent = ¢,.
Let

yE: t—u(t) and ye:t—o(t) (17.3)

be the arcs in U and V, respectively, antecedent to y under F and G.
Then y; meets 4, = F!(q) and y; meets v, = G~Y(q) when ¢t = ¢,.
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In the sense of a forthcoming definition, the vector #(%) € V, and
9(2,) € V,, are contravariantly related by F and G.
We shall recall the “transition diffs’’ associated with F and G:

The Transition Diffs Defined by F and G. Given the overlapping
presentations F and G of (17.2), set

FYYXNnY)=0U and GHXNnY)=TV. (17.4)
The C*-mapping
u—>v(u) = (G1sF)Yu): U—V (17.5)

is the transition diff of U onto V defined by F and G. The inverse of
this diff is the transition diff

v—>u(v) =F1:G)v): VT (17.6)

of V onto U. Points u € U and v € V are “M,-related” by F and G
if and only if u e U and v = v(u), or equivalently, if v € ¥ and
u = u(v).

Let J(v : u) and J(u : v) be, respectively, the Jacobian matrices of
the above transition diffs v and u evaluated at # and v. When # and
v are M ,-related by F and G one has the matrix relations

Jv: ) Ju:vy=1=Ju:0)J(v:u), 17.7)
where I is the n-square unit matrix. For 7, k on the range 1,..., n let
JEv:u) and  JH(u:9) (17.8)

be the elements in the kth row and ith column, respectively, of the
matrices J(v : %) and J(u : ).
We introduce two fundamental isomorphisms:

The Isomorphisms [F, G, and [G,F],. These isomorphisms are
defined for each ge X NY. If u = F-g) and v = G71(g), there
exists an isomorphism (onto)

[F,Glg:n—>L:V,—>V,
of the form
U= JHv i uynt, R =1n (17.9)
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with an inverse isomorphism

[G,.Flg: {—>7n:V,—V,

of the form

7* = J¥u:9)l, k=1.,n (17.10)

Definition 17.1. Contravariance. LetF and G be the overlapping
presentations given in (17.2). If u € U and v € V are M,-related by
F and G, a vector p € V, and a vector { € V, are said to be contra-
variantly related if (17.9) and (17.10) hold.

ExampLE 17.1 (continued). Under the conditions of Example 17.1
the relation F(u(t)) = G(v(t)) is an identity, implying the identities

u(t) = u(e(t)) and  ot) = v(u(t). (17.11)

Since the points u(t,) = u, and v(f,) = v, are M,-related by hy-
pothesis, differentiation of the identities (17.11) shows that the vectors
iu(ty) € V,,, and 9(t,) € V,, are contravariantly related by F and G.

For us the most important application of the notion of vectors in E,,
contravariantly related by presentations in 2M,, is in the definition of
a ““‘dynamical system on M, .” Such systems are a major source of
homotopies and isotopies on M, .

Dynamical Systems on M, . Before defining a dynamical system
on M, we introduce a convention belonging to Euclidean geometry:

Convention. Let W be a nonempty open subset of E, with rectan-
gular coordinates w, ,..., w, . A C™-mapping of Winto E, of the form

w— p(w) = (¢*(),..., P™(W)), weW (17.12)

will be termed (at convenience) a C™-family of vectors (p'(w),..., p™(w))
= @(w) in E, over W. We shall term ¢(w) the vector of the family
“at w.”” We understand that this vector is an element in the vector
space V,, .
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Definition 17.2. Contravariantly Related Vector Families in E, .
Let(F: U, X)and (G : V, Y) be overlapping presentations given as in
(17.2) and let

u—> () = (1*(®)..., ")), weU, (17.13)
v—{(v) = ({{v),..., {™(v)), veV, (17.14)

be C®-mappings, respectively, of U and V into E,. The vector
families “defined”’ by these mappings will be termed contravariantly
related by F and G if for each point g€ X N Y and corresponding
u = FYq) and v = G7Y(q) the vectors n(u) € V, and {(v) € V, are
contravariantly related by F and G in the sense of Definition 17.1.

Trivial Contravariance. Let F and G be two presentations in ZM,
which are nonoverlapping. Suppose vector families over U and V,
respectively, are defined as in (17.13) and (17.14). There are no points
u € Uand v € V which are M, -related by F and G. It is natural to say
that the families ¥ — 7(x) and v — {(v) are trivially contravariantly
related by F and G.

Definition 17.3. Dynamical Systems on M, . A dynamical sys-
tem of class C® on M, satisfies the three following conditions. In these
conditions the indexing subscript H, F, or G is a presentation in ZM,, .

Condition 1. On the Euclidean domain of each presentation
(H: Wy,Zy)e 2M, (Wyopenin E,) (17.15)
there is given a system of ordinary differential equations
dwildt = pgi(wt,...,w"), i=1,..,n weWy. (17.16)
Condition |l. For arbitrary w € Wy, the vector gg4(w) is the vector

“at w” of a “C*-family of vectors’ over Wy vanishing at no point
we Wy.

Condition Ill. If F and G are arbitrary presentations in 2M,, ,
the vector families ¢y and ¢ are contravariantly related by F and G.
(Definition 17.2).
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We shall indicate a sense in which Condition III is necessary if there
is to be one and only one ‘“trajectory” of a dynamical system on M,
meeting each point of M, .

Notation. Given He PM,, a system of differential equations
(17.16) in E, satisfying Condition II will be denoted by d/py. An
ensemble of systems d/p, indexed by H e 2M, will be denoted by
{d/py} and termed an ensemble {d/p,} over ZM, . An ensemble
{d/py} over M, upon whose members d/p, no Condition III is imposed
might be called a free ensemble over 2M,, . An ensemble {d/p,} whose
members d/py , taken pairwise satisfy Condition Il is called a dynamical
systemon M, .

We shall term a system d/gpy a local dynamical system to distinguish
it from the ensemble {d/p,} of which it is a member.

Theorem 17.1 below justifies the imposition of Condition III in
defining dynamical systems. In Theorem 17.1 we shall refer to
trajectory-wise compatible local systems d/p, and d/p; of differential
equations. We abbreviate ‘‘trajectory-wise compatible systems” as
T-comp systems. We define this term as follows:

Definition 17.4. 'T-Comp Systems d|py and d|p; . Let F and G be
overlapping presentations as given in (17.2). Given ge X N Y, set
uy, = F~Y(g) and vy, = G7Y(q). Given ¢,, let t — u(t) and ¢t — o(¢)
be solutions, respectively, of d/p, and d/p; whose graphs meet,
respectively, (2, , ) and (¢, , v,). Then d/pr and d/p; are said to be
T-comp at ¢ if for some e > 0

F(u(t) = G(t), |t —to] <e. (17.17)

More generally, d/p; and d/p; are termed T-comp if T-comp at each
pointge X NY.

If ¥ and G are nonoverlapping, d/p, and d/p, are considered
T-comp in a trivial sense.

Theorem 17.1. Let F and G be arbitrary presentations in IM,, .
A necessary and sufficient condition that local systems d|py and d|pg be
trajectorywise compatible is that the vector families @, and @ be contra-
variantly related by F and G (Definition 17.2).



17. DYNAMICAL SYSTEMS ON A MANIFOLD M, 133

The Condition is Necessary.  This is trivial when F and G are
nonoverlapping.

Suppose then that F and G are overlapping and given as in (17.2).
By hypothesis d/p; and d/p; are “T-comp’ at a prescribed point
g€ X N'Y, so that, in the notation of Definition 17.4, (17.17) holds.
It follows, as in Example 17.1, that the vectors #4(f,) € V, and
?9(ty) € V,, are contravariantly related by F and G. But i(t,) = @#(4)
and 9(t;) = pg(v,). Since g was prescribed in X N Y, we can infer
that the vector families ¢y and ¢; are contravariantly related by F
and G in the sense of Definition 17.2.

The Condition is Sufficient. Suppose that F and G are again given
as in (17.2). Let solutions ¢t — u(t) and t — o(¢) be defined as in
Definition 17.4. Assuming that the vector families ¢ and ¢, are
contravariantly related, we must prove that (17.17) holds for some
e > 0.

Let e be so small that the solutions  — u(¢) and ¢ — v(¢) are defined
for |t — t,| < e. In terms of the diff u — v(u) of (17.5), set o(t) =
v(u(t)) for | t — t, | < e. Then by virtue of (17.5)

G@@) = Fu(t)), |t—1,| <e. (17.18)
To show that (17.17) holds it is sufficient to show that &(¢) = o(¢)

when |t — 2| < e. Since ¥(t,) = v(uy) = v, by hypothesis, it is
sufficient to prove the following:

(x) The mapping t — ©(t) is a solution of the local system dfpg.
Since ¥(t) = v(u(t)) for |t — t,| < e, we infer that

) = JHV 2 (D) #(0) = JHv 2 ut) pe(u(t) = 9d@(0) k= Ly

where the last equality is valid because the vector families ¢, and ¢4
are by hypothesis contravariantly related by F and G. Thus ¢t — #(¢)
is a solution of d/gg , as affirmed in ().

It follows that (17.17) holds, so that the condition of the theorem is
sufficient.

This completes the proof of Theorem 17.1.

Definition 17.5. Solutions of a Dynamical System. A simple
regular arc y : ¢ — p(#) on M, whose t-domain is an open interval of



134 II. ABSTRACT DIFFERENTIABLE MANIFOLDS

the ¢-axis will be called a solution of a dynamical system {d/p,} on M,
if the following is true: Corresponding to a prescribed point ¢ of y
there exists a solution ¢ — u(t) of some local system d/p, € {d/pg}
whose F-image is a subarc of y meeting ¢.

We shall characterize the special dynamical systems most useful in
defining homotopies in the critical point theory.

f-Transverse Dynamical Systems on M, . Let f be a real-valued
ND C=-function on M, . Let M,’ denote the submanifold of M,
from which the critical points of f have been deleted. We suppose M,/
given the differentiable structure induced by that of M,, . That is, the
presentations in 2 M,/ shall be the subset of the presentations in M,
whose coordinate domains are open subspaces of | M,/ |.

A simple regular arc t — p(t), a < t < b, on M,/ will be termed
f-transverse if the t-derivative of f( p(t)) is positive for all ¢ € (a, b).
A dynamical system {d/pg} on M,/ will be termed f-transverse if each
simple arc t — p(t) on M,’ which is a solution of the dynamical
system is f-transverse.

Given a ND C*-function f on M, , we seek an f-transverse dyna-
mical system on M,’. By converting M, into a Riemannian manifold
of class C* as in § 19 this objective will be reached. The local system
d/py € {d/py} will be uniquely determined by f s H and the Rieman-
nian form to be associated with the presentation H.

The Second Reduction Theorem for f. The classical conversion
of M, into a Riemannian manifold in § 19 will be followed in § 22 by a
nonclassical modification of the resulting Riemannian metric of M,
as introduced by Morse [9] Lemma 6.1.

A presentation (F : U, X) in 2M,, such that the Euclidean length
of a regular arc g € U equals the Riemannian length of F(g) on M,
will be called an isometric presentation. Such presentations will exist
if the Riemannian metric on M,, is specially conditioned as in § 22.
However, Lemma 6.1 of Morse [9] can be formulated as follows:

Theorem 17.2. The Second Reduction Theorem for f. Given a C*-
real-valued ND function f on a C*-manifold M, , M, can be converted
into a Riemannian manifold in such a manner that the following is true:
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Corresponding to each critical point q of f of index k and critical value ¢
there exists in ZM, an isometric presentation (F: U, X) of a neigh-
borhood X of q on M, such that F(0) = q and

(FoF) ) —c = —w? — = —wld + oy + 5% wel. (I7.19)

The existence of these isometric presentations will simplify
problems of homology, homotopy, and ‘“‘surgery’’ related to the critical
points of f and their addition and elimination.

Program. f-Transverse dynamical systems have been defined in
this section. Once M, has been assigned a standard Riemannian
structure in § 19 f-transverse dynamical systems can be proved to
exist on M,/ that is, on M, with the critical points of f deleted.
But the standard Riemannian structure, namely the first Riemannian
structure assigned to M, in § 19, must be further modified in § 22 to
satisfy the Second Reduction Theorem. Theorem 22.2 serves this
purpose.



§18
TANGENT AND COTANGENT VECTORS OF M,

Let M, be a C®-manifold. We shall presently define a vector
tangent to M,, at a point g € M, . To motivate this definition we shall
examine tangents to a regular manifold in a Euclidean space E, .

Vectors Tangent to a Regular manifold M, in E,. Suppose presen-
tations F and G € 2M,, are given as in (17.2). For ue Uand ve V,
F(u) and G(v) are points

(FY(w),..., Fr(u)) and (G'(v),..., G"(v))

in E,. Suppose that ge X N'Y. Set u = F-Y(g). A non-null vector
[cf. (17.1)] n €V, may be associated with that non-null vector &,
in E, tangent to M,, at ¢, whose uth component in E, is

oF+ |
b =z, p=Ll.,r (18.1)

Set v = G~Y(¢). A non-null vector { € V, may be similarly associated
with the vector §; in E, tangent to M, at ¢ with components

oG+ ;
6(# — W_(-())g‘, § = 1,...,7. (182)

The following lemma serves as a partial justification of Definition 18.1
of a vector tangent to M, at ¢:

Lemma 18.1. Suppose that M, is a regular manifold in E, , that F
and G are the overlapping presentations in DM, given in (17.2), and that
ge X NY. Setuy = FY(q), vy, = GY(g).

136
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A necessary and sufficient condition that the vectors ¢, and £, tangent
to M, at q and defined respectively by (18.1) and (18.2) be equal is that
the vectors n eV, and { €V, be contravariantly related by F and G.

Prior to the proof proper recall the following: If y : # — p(2) is a
simple regular arc in X N Y meeting ¢ when t = ¢, and if ¢t — u(t)
and t — o(t) are the arcs in U and V antecedent to y under F and G,
respectively, then F(u(t)) = G(2(t)), and hence

i) = L) o), k= lear. (183)

Note that u, = u(ty) and vy = o(t,). According to Example 17.1 the
vectors i(t) eV, and 9(f) €V, are contravariantly related by
Fand G.

The Condition of the Lemma is Sufficient. We are assuming that
the vectors n € V,, and { €V, are contravariantly related by F and G
and wish to prove £, = §;.

The above arc y can be chosen in many ways so that » = #(¢,).
If y is so chosen, { = 9(t,), since ©(ty) is contravariantly related to
4(t,) and { is contravariantly related to %. Hence (18.3) holds with
4(t,) and o(t,) replaced, respectively, by n and . It follows that

én: ¢-

The Condition of the Lemma is Necessary. By hypothesis

oF . 8GH, .
b = Gl = S @) = & b= leur (18.4)

We wish to prove that » and { are contravariantly related.
Choose y as previously so that #(¢,) = n. We infer from (18.3) that

oF+ ) oG+ .
a—u{ (uo)'r;’ = %'— (‘Uo) v'(to), p = l,..., 7, (18-5)

and from (18.4) and (18.5) that { = 'v(to) Thus neV, and {eV,
are contravariantly related by ¥ and G, since #(t,) € V,, and ¥(2y) € V
are so related.

This establishes Lemma 18.1.
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Vectors Tangent to M, at g. The definition of a vector tangent to
M, at g calls for a notational introduction.

The Subset (2M,), of 2M, . Given ge M, , let (9M,), denote
the subset of the presentations H € 2M, whose coordinate domains
contain g.

The Product Space II,. Corresponding to a presentation
He(2M,),, for w = H™Y(q) denote V,, by V4% We introduce the
infinite formal set product

= 9, .
I, Sezg?g;:ct Vy (18.6)

An element z € Il, is an ensemble of vectors one, 2y, from each
“factor space” V4 of II,. The vector 2y will be represented as con-
venient in one of the two forms: ((z4)L,..., (24)"), and ()1 »-++» (Rar)n)-
The vector 2y will be termed the “factor” of z € I1, with presentation
index H. The word “factor” used in this connection has no con-
notation beyond the one just assigned to it. For us this terminology
is permanent. The set product II, can be converted into a vector
space over R as follows.

If z’ and z" are in II,, the sum z = z’' + z" is defined by the
condition that

2y = 2y + 24, He(2M,),. (18.7)

If pe Rand z € I, pz is defined by the condition
(b2 = prw, He(DM,),. (18.8)

Definition 18.1. A4 vector tangent to M, at q is a vector z € I, with
the following property: Whenever F and G are presentations in (2M,), ,
the “factors’ 2 and 2, of z are vectors in V2 and V47, respectively,
which are contravariantly related by F and G.

The Vector Space T, Tangent to M, at q. 'The vectors z € II, which
are ‘“tangent” to M, at ¢, form a subset T, of I, which is a ‘“‘vector
subspace” of I, over R, since the subset T, of II, is “‘closed” in II,
under the operations of addition and of multiplication by p € R, as

defined above over I1, . This is a consequence of the properties of the
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isomorphisms [F, G], defined in §17 for each pair of presentations
Fand G in (9M,), .
We add the following theorem:

Theorem 18.1. Let q be an arbitrary point in M, and H a presentation
in (9M,), . Then the vector space T, tangent to M, at q is isomorphic
to the vector space V9 under the linear homomorphism ¢, which maps
each vector z in T, into its “factor” zy in Vg,

Proof. The mapping ¢, is obviously biunique and onto. As a
linear homomorphism, it is then an isomorphism (see Birkhoff and
Mac Lane [1] p. 224).

Covariance. Let F and G be arbitrary overlapping presentations
in 2M,, as given in (17.2) and u € U and v € V be such that

Fu) = Gv) =qeM,. (18.9)

The relation of covariance, as it will be defined by F and G between
two vectors

b=, h)eV, and g = (g,ng)eV,, (18.10)

is regarded as “dual” to the relation of contravariance as defined by F
and G between two vectors n €V, and { = V, (Definition 17.1).
In defining this relation, the matrix J(u : v) of the transformation
(17.10) corresponds formally to the matrix J*(u: o) of the trans-
formation

&= Ji(u:oh, k=1..,n (18.11)

Vectors h €V, and g € V, which are related as in (18.11) are said
to be convariantly related by F and G.

Similarly, the matrix J(v : u) of the transformation (17.9) corre-
sponds to the matrix J¥*(v : u) of the transformation

b = Ji(v:iu)g;. k=1l..,n (18.12)

inverse to the transformation (18.11).
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Covariantly Related Gradients. Corresponding to a prescribed
fe C®(M,) (see §13) and to an arbitrary presentation He 9M, ,
f 3 H is the representation of f on the E,-domain of H. With gradients
understood in the classical sense, the vector (grad( f s H))(w), evaluated
at a point w in the E,-domain of H, will be regarded as a vectorin V,, .

We refer to the presentations F and G of (17.2) and to pointsue U,
v € V such that F(u) = G(v), and introduce the vectors

(grad(f5 F))(w) = (y ,..., ) €V, (18.13)
and
(grad(f 3 G))(©) = (815 8n) €V, . (18.14)
In the notation of (17.5) and (17.6) the identities
(fsF)w) = (f3G)v(w)), uel, (18.15)
and
(f3G)v) = (foF)u(), wveV, (18.16)

are valid. On differentiating the members of (18.15) with respect to u*
and the members of (18.16) with respect to ¢¥, one finds that

he = Jo(v:ug, k=l,.,n (18.17)
and
&= Jl(u:oh;, k=1l.,n (18.18)

We have thus proved the following:
Lemma 18.2. If F and G are the overlapping presentations given

in (17.2) and if ue U and ve V are such that F(u) = G(v), then the
gradients

(grad(fsF)w)eV, and  (grad(fs G eV,

are covariantly related by F and G.

The Cotangent Vector Space T at ge M,. We shall define a
vector space T, over R associated with a prescribed point ge M,
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and formed by using the notion of covariance as T, was formed by
using the dual notion of contravariance. Use will be made of the
product space I1, introduced in (18.6) with its “factors” V7 indexed
by the presentations H € (9M,), .

Definition 18.2. A Cotangent Vector at g€ M, . Such a vector is
an element z € 1, with the following property: Whenever F and G are
presentations in (ZM,), , the “‘factors” z; and 2; of z in V¢ and
V4, respectively, are covariantly related by F and G.

The Cotangent Vector Space Tj. The set of all cotangent
vectors z in I, form a vector subspace T of II, over R termed the
“dual” of T, . By a proof similar to that of Theorem 18.1 one shows
that if H € (2M,), , the vector space T is isomorphic to the vector
space V.9, “factoring” II,, under an isomorphism in which a
cotangent in T goes into its “factor” in V1.

The set of cotangent vectors (grad f)(¢g) now to be defined contains
all cotangent vectors in T,

Definition 18.3. The Cotangent Vector (grad f)(q). If g€ M, and
fe C*(M,), the cotangent vector at g € M whose “factor” with index
He(2M,), is the vector

(grad(fs H))(w)eVy* =V,  w = H7Yg),

will be denoted by (grad f)(q).
If a cotangent vector z is prescribed at ge M, , it is clear that for

infinitely many choices of fe C*(M), z = (grad f)(g).

We shall prove a fundamentatal theorem underlying the notion of
duality of contravariance and covariance:

Theorem 18.2. Given'y and z in 11, let the sum with respect to k
Sy = (ya)Guh, k=1.,mn (18.19)

be formed for each H € (9M.,,), . Then the following hold:

(i) IfyeT, and ze TS, Sy is independent of H, thus depending
only on q.
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(i) If for fixed z € Il,, Sy is independent of H for each choice of
yeT,, thenze TF.

(i) If for fixed y € I, , Sy is independent of H for each choice of
zeTf thenyeT,.

Proof of (i). Let F and G be overlapping presentations, given as
in (17.2), with ge X N Y. Set 4 = F-Y(q) and v = G~(gq). Then the
factors

yr.¥e  and  zp, 3G (18.20)
of y and z are, respectively, vectors
neV,, LeV, and heV,, geV,. (18.21)
By virtue of (17.9) and (18.11)
Uigy = (Jv 2 )i < o)hy) = Sk, = iy,
thereby establishing (i).

Proof of (i1). When the vectors (18.20) are the respective vectors
(18.21), it is given in (ii) that the relation

n'hy = [Fgy (18.22)

holds for fixed vectors eV, and geV,, and for arbitrary vectors
neV, and { € V, such that in accord with (17.9)

k= JHv:uy, k=l..,n (18.23)
It follows that
P[JHv: u)ge —h] =0 (18.24)
for an arbitary n-tuple 7l,..., n". We infer that
hy = JEv: ug, i=1,..n (18.25)

According to (18.12) 4 and g are covariantly related by F and G.
Now (ii) follows, and the proof (iii) is similar.



§19
M, AS RIEMANNIAN MANIFOLD

Let M, be a C*-manifold. With each presentation
(H: Wy, Zy)e 9M,, WyCE,, (19.1)

and each point w = (w!,..., w*) € Wy let there be associated a positive-
definite, symmetric, quadratic form

On®(e) = ay(H : w) oied, we Wy, (19.2)
in the n variables ol,..., a® subject to the condition that each mapping
w— a;(H : w) of Wy into R be of class C®. Then Q is a family of
quadratic forms over Wy, or as we shall say more briefly, a Q-family

over the E,-domain W of H.
Given the overlapping presentations F and G as in (17.2), let the

forms

Qr“(m) = by(w) '/, uel, (19.3)
and

06"(0) = cii(v) 'Y,  wvelV, (19.4)

define the Q-families O and Q; indexed by F and G.
We give a basic definition:

Definition 19.1. M, -Compatibility of Qp and Q;. When F and G
are arbitrary overlapping presentations in 2M,, given as in (17.2), the
corresponding O-families O, and Qg will be said to be M, -compatible
if for arbitrary g€ X N Y and for u = F!(g) and v = G7Y(q)

bi(u) n'’ = cif(v) LU (19.5)
for vectors n €V, and { eV, contravariantly related by F and G.
143
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A Convention. When F and G are in M, , but not overlapping,
the Q-families O and Qg will be regarded as M,-compatible in a trivial
sense.

In any case the relation of M,-compatibility of Q-families O and
Q. is symmetric, since the relation of contravariance between vectors
n€eV, and { € V, defined by F and G is symmetric.

When F and G are the overlapping presentations of (17.2) a
necessary and sufficient condition that O, and QO be M, -compatible
is that when F(1) = G(v) € X N Y the matrix equality

Il eis(@)l = J*(u 2 ) - [ by ()]l - J(u : ©) (19.6)

hold. This is a consequence of the classical law on the transformation
of a quadratic form, such as Q% when subjected to a linear trans-
formation, here the transformation (17.10) (Bocher [1], p. 129).

Since the relation of M,-compatibility of O and Qg is symmetric,
the relation (19.6) is equivalent to the matrix relation

I Ba(a)ll = J*(v : ) « |l eiy(@)l| - Jv + w), (19.7)
which is also directly derivable from (19.6).

A Riemannian manifold M, of class C* will now be defined. The
restriction to manifolds of class C*® is not necessary but is made for
simplicity.

Definition 19.2. Riemannian Manifolds and Forms. Let M, be a
C>*-manifold to each of whose presentations H there has been assigned
a O-family Q. If this assignment is such that for arbitrary presen-
tations F and G in M, , Oy and Qg are M,~-compatible, M, will be
said to admit a C*-Riemannian structure defined by these O-families.
In such a structure Qp will be termed the Riemannian form indexed
below by H. With such a structure M, will be termed a Riemannian
manifold.

On a Riemannian manifold the length of a regular arc y : t — p(¢)
a < t < badmits a classical definition. We shall limit ourselves to the
case in which | M, | is connected.

Length on M, . Suppose that M, is a Riemannian manifold of
class C*. Suppose that the above regular arc y on M, is included in
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the coordinate domain X of a presentation (F : U, X)e 2M,.On U,
y is represented by a regular arc yp: ¢t —u(t), a <t < b. If (19.3)
gives the form Q*(), we shall assign y the length

L) = [ (Gututt) #6e) i) dr. (19.8)

Returning to the overlapping presentations F and G of (17.2),
suppose that the carrier |y |C X N Y. Then y is represented by a
regular arc y5 : t — o(f), a <t < b, in V. We shall see that L(y), as
defined by (19.8), is also equal to the integral

[ tcutoten #0) oayrr an. (19.9)

The equality of the integrals (19.8) and (19.9) is a consequence of
the identity

biu(t) d(0) #(t) = (o)) F() F(), a<t<b (19.10)

Relation (19.10) is valid because F(u(t)) = G(v(t)), and hence the
vectors #(t) € V,( and 9(f) € V,(,) are contravariantly related by F
and G, as affirmed in Example 17.1.

A regular arc y:t—p(t), a <t < b, on M, not restricted to a
single coordinate domain is a finite sequence of regular arcs
Y15 V2 5.y ¥, Whose t-domains are successive subintervals of a partition
of [a, b] so chosen that each carrier |y, | has a closure included in
some coordinate domain of M, . The length of o can be defined as the
sum

L{y) = L(y,) + == + L(y,),

where L(y;) is evaluated as above on any coordinate domain which
includes C1| y; |.

One sees that L(y) so defined is independent of the partitions of
[a, 8] which are admissible for this purpose. In fact, if P, and P, are
two such partitions of [a, 4], there is a third partition of [a, ] which
is also a partition both of P, and of P, . If L (y), Ly(y), and Ly(y) are
the corresponding lengths assigned to y, one sees that

Ly(y) = Ly(y) = Lafy)-
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A Metric for M, . Given any two points p and ¢ of M, , let d(p, q)
denote the inferior limit of lengths of regular arcs on M, joining p
to ¢ on M, . A distance d(p, g) so defined satisfies the usual three
axioms on a metric space and gives back to | M,, | its original topology.
No variational theory is reguired to prove these elementary facts.

The Existence of Riemannian Structures.

We shall prove that each C®-manifold admits a Riemannian
structure. A first step in proving this is to verify Theorem 19.1:

Theorem 19.1. (i) If M, is a regular C*-manifold in a Euclidean
space E, , with the presentations H € M, , there can then be associated
pairwise M,-compatible Q-families Qy of quadratic forms.

(i1)  These forms can be chosen so that the resultant Riemannian length
of a regular arc t — p(t), a <t < b, on M, is its ordinary length in E, .

Definition of the O-Families Oy . 'The general definition is suffi-
ciently indicated by defining Qr and Q; when F and G are presen-
tations given as in (17.2). Given u € U and independent variables
dul,..., du™, we introduce the symmetric, positive-definite, quadratic
form

oF»
ouk

Op*(du) = b,(u) du' du? = i(dxu)2 - ( (v) du")2, (19.11)

u=1
where dx+ is the linear form in dul,..., du” given by the final parentheses
in (19.11). Given v e V and independent variables dvl,..., dv™, we
similarly introduce the quadratic form

Q6*(dv) = cy(v) dv? dv' = i (dx#)? = i (%gk: (v) dv")z. (19.12)

u=1 u=1
Proof of the M,-Compatibility of O and Qg. If u— v(u) is the
transition diff (17.5) defined by F and G, one has the r identities
Gu(v(1)) = F4(w), p=l,..,r;uel;
implying that
oG+
ovk

(v) dv* = %(u) duk, w=1..,7 (19.13)
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subject to the conditions

k
v=v), uel, dvt="C@yds,  k=l.,n (19.14)

Thus (19.13) holds subject to the condition that F(u) = G(v)e X N Y
and that the vectors du € V,, and dv € V, be contravariantly related by
F and G, as are the vectors in (17.9).

Subject to these same conditions, the right-hand sums in (19.11)
and (19.12) are equal, proving that Qr and Q; are M,,-compatible in
accord with Definition 19.1.

Thus (i) of Theorem 19.1 is true. That (ii) is true follows from the
middle equality in the definitions (19.11) and (19.12).

This completes the proof of Theorem 19.1.

Theorem 19.1 leads to the following:

Theorem 19.2.  Each C®-manifold N, admits a C®-Riemannian
Structure.

According to Theorem 16.7 there exists a C*-diff  : N, - M,
of N, onto a regular C*-manifold M, in some Euclidean space E,.
Let ¢ be the C¥-diff which is the inverse of . According to
Theorem 16.3a there is a 1-1 correspondence of the ensemble of
presentations M, with the ensemble 9N, , in which He 2M,
corresponds to ¢ 3 H in 2N, . According to Theorem 19.1 there
exists an ensemble {Qy}, indexed by He ZM, , of pairwise M,-
compatible Riemannian forms Q , where O is “over’’ the E,-domain
of H. To prove Theorem 19.2 it is accordingly sufficient to prove («):

(a) If to each presentation H € Y M, and corresponding presentation
¢ 5 H e ZN, one assigns a common Q-family over the common E,-domain
of H and ¢ 5 H, the resulting ensemble of Q-families is N, -compatible if
M, -compatible.

Proof of (). Let F and G be arbitrary overlapping presentations
in M, given as in (17.2). To F and G in 9M, correspond the
presentations

@sF:U X)) and (p3G:V,g(Y)) (19.15)
in ZN, . If ue U and v € V are such that F(u) = G(v), then
(p 3 F)u) = (¢35 G)(o). (19.16)
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The transition diff (17.5) defined by F and G over U is the transition
diff of ¢ 5 F and ¢ 5 G. Hence vectors n € V,, and { €V, which are
contravariantly related by the linear isomorphism (17.9) defined by F
and G are contravariantly related by the same linear isomorphism
regarded as defined by ¢ s Fand ¢ 5 G.

Suppose the quadratic form on the left of (19.5) has been assigned to
F and to ¢ 5 F, and the form on the right of (19.5) has been assigned to
G and to ¢ 5 G. If (19.5) holds when n eV, and { € V, are contra-
variantly related by F and G, then (19.5) holds when 5 €V, and
{ € V, are contravariantly related by ¢ s F and ¢ 5 G.

Statement («) is accordingly true and Theorem 19.2 follows.

The condition that O and Qg of Definition 19.1 be M, -compatible
can be usefully and equivalently stated in terms of the bilinear forms
defined by QO and Q.

Lemma 19.1. The equality (19.5) is valid subject to the conditions of
Definition 19.1 if and only if

bii(u) 7' = cyw) {30 (19.17)

for arbitrary wvectors w eV, and [ eV, contravariantly related by F
and G and arbitrary vectors 3 € V,, and { € V, simslarly contravariantly
related by F and G.

This is because the matrix equalities (19.6) and (19.7) are necessary
and sufficient conditions that (19.17) hold when 7 is the image of
and 4 the image of { under the linear transformation with matrix

J(u :v).

Riemannian Forms and Coforms. We began §19 by associating
with each presentation (H : Wy, Z,) € 2M,, a family Q of positive-
definite, symmetric, quadratic forms

Ou¥(e) = ay(H : w)obod, we Wy, (19.18)

in the n variables (al,..., «™). With H we now associate a dual family
OF of quadratic forms, termed coforms,

Q.,fe) = a¥(H : w)eie;, we Wy, (19.19)
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in the #n variables e, ,..., e, , where the matrix || a¥%(H : w)|| is the
inverse of the matrix || a,,(H : w)|. Each form Q, #(e) is symmetric.
It is positive-definite by virtue of Corollary 3.1.

We shall be concerned with pairs of families OF and Q¢ , indexed
above by presentations F and G given as in (17.2), with Q-families
Or and Qg represented, respectively, as in (19.3) and (19.4). The dual
families OF and Q% may be given the representations

Quf(h) = b¥(u) by,  uel, (19.20)
and
0.%(8) = ci(v) gig;, veV. (19.21)

The following definition is dual to the Definition 19.1.

Definition 19.3. M, ,-Compatibility of OF and O¢. When F and G
are arbitrary overlapping presentations in M, given as in (17.2) the
families OF and QF¢, as given respectively by (19.20) and (19.21), will
be termed M,,-compatible if for arbitrary ¢ € X N Y and for u = F-1(g)
and v = G7Y(q)

B by = c(0) g g5 (19.22)

for h € V, and g € V,, covariantly related by F and G.

We have found the conditions (19.6) and (19.7) necessary and
sufficient that the Q-families Q, and Q; be M, -compatible in the
sense of Definition 19.1. Referring to the linear transformations (18.17)
and (18.18) defining the relation of covariance between vectors
heV, and g e V,, we see that the matrix equalities

| (@)l = J(v : w) - || ¥iu)|| - J*(v : u) (19.23)
and
159 = Jua 2 0) - | @) - T2 ) (19:24)

are necessary and sufficient that the cofamilies QF and QF of
Definition 19.3 be M,-compatible.

A Convention. One must supplement Definition 19.3 by the
convention that when F and G are presentations in M, which
are not overlapping then OF and Q¢ are to be regarded as M, -com-
patible in a trival sense.
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The condition that QF and Q¢ of Definition 19.3 be M, -compatible
can be usefully and equivalently expressed in terms of the bilinear
forms defined by OF and Q6. The lemma is a dual of Lemma 19.1.

Lemma 19.2. The equality (19.22) is valid subject to the conditions
of Definition 19.3 if and only if

b(u) hihy = cHi(o) g (19.25)

for arbitrary vectors heV,, and g € V, covariantly related by F and G
and arbitrary vectors heV, and ¢ €V, similarly covariantly related
by F and G.

The proof is similar to that of Lemma 19.1.

Recall the matrix law that the inverse of the transpose of a non-
singular matrix is the transpose of the inverse. Using this law, one
finds that the matrix relation (19.23) is derivable from the matrix
relation (19.6) on equating the inverses of two members of (19.6).
One similarly derives (19.24) from (19.7), and, if one pleases, (19.6)
from (19.23) and (19.7) from (19.24).

We draw the following conclusion:

Theorem 19.3. When F and G are in DM, a necessary and sufficient
condition that Q-families Q. and Qg be M, -compatible is that the dual
O-families QF and QS be M,-compatible.

Riemannian Forms and Coforms. When the ensemble {Qg} of
O-families, indexed by He 2M,,, is such that its Q-families are
pairwise M, -compatible, we have said that M, admits a “Riemannian
structure” in which Qy is the Riemannian form over the E,-domain
of H. Under these conditions the Q-families of the dual ensemble
{OH} are pairwise M,-compatible in the dual sense, and we term
OH the Riemannian coform over the E,-domain of H.

We have seen that C®-manifold always admits a Riemannian
structure. From this point on we shall suppose that M, is provided
with such a structure and that O, and Q¥ are the corresponding
form and coform with presentation index H.

The Fundamental Tensors. Corresponding to an arbitrary presen-
tation H € 2M,, the matrices

lau(H : )| and  ||@H(H:w)l, weWy,  (19.26)



19. M, AS RIEMANNIAN MANIFOLD 151

of the Riemannian form Qy and coform Q¥ respectively represent at w
the fundamental covariant and contravariant tensors of second order
at the point ¢ = H(w) of the Riemannian manifold M, . In the context
of tensor algebra the distinction between the fundamental covariant
and contravariant tensors arises from the difference between the
transformations (19.6) and the transformation (19.23) of the respective
local representations.

«“Conjugacy’’ of Tangent Vectors and Cotangent Vectors. Given
g € M, , with the aid of the “fundamental” tensors of the Riemannian
structure of M,, one can define a unique isomorphism of the tangent
vector space T, onto the cotangent vector space Tg. We shall call this
isomorphism the conjugacy isomorphism. A tangent vector y € T, and
a cotangent vector z € T which correspond under this isomorphism
will be called conjugates one of the other, as will their “factors” in II,
with the same presentation index H [see (18.6) for definition of IT ].

Three lemmas are required to define and characterize the conjugacy
isomorphism.

Lemma 193. Given a tangent vector ye T,, the vector zell,
(termed the conjugate of y) whose ‘‘factor” zy , with index He(9M,,),,
has the n components

(zg); = ay(H : w)yu), i=1l,..,n w=HYqg), (19.27)

in V,, is a cotangent vector in T

Lemma 19.4. Given a cotangent vector z € T}, the vector yell,
(termed the conjugate of z) whose “‘factor” yy , with index H € (9M,),
in IT, has the n components

(vt = a¥(H : w)(zu)i, k= l,,n, w=H7g), (19.28)
in V,, is a tangent vector in T, .

Lemma 19.5 indicates precisely what it means for the conjugate of
the conjugate of a tangent vector or a cotangent vector at ¢ € M, to
be the original vector.
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Lemma 19.5. If y — I'(y) maps y € T, into its conjugate in T and
z — A (z) maps z € T} into its conjugate in T, , then 'y and A, are onto
and inverses one of the other.

Proof of Lemma 19.3. Giveny e T, if z € I], is defined by (19.27),
then for arbitrary tangent vector § € T, the sum (24){Jy) is inde-
pendent in value of He(2M,),, in accord with Lemma 19.1. It
follows from Theorem 18.2 (ii) that z is in Tj.

Proof of Lemma 19.4. This proof is similar, using Lemma 19.2
and Theorem 18.2(iii).

Proof of Lemma 19.5. Given ye T,, set z = I'(y). We wish to
show that A4,(z) = y. Given H € (ZM,), , set w = H-Y(g).

By definition of A, and I', the “factor” of A(z) with presentation
index H has a kth component in V,,,

a*(H : wY(zy); = a*(H : w) ay(H : w)yg) = 3 (ya) = (yr)%

showing that (4, o I'))(y) = y foryeT,.

One shows similarly that (I, o 4,)(z) = z for ze T, and the
lemma follows.

We summarize and complete these results as follows:

Theorem 19.4. The mapping of T, onto T} in which each tangent
vector y € T, goes tnto its “conjugate” cotangent vector in TS is an
isomorphism of T, onto T under whose inverse each cotangent vector
in T goes into its “‘conjugate” tangent vector in T, .

The Existence of f-Transverse Dynamical Systems in M,. The
fundamental theorem is Theorem 19.6.

Introduction to Theorem 19.5. Let a function fe C*(M,) be
“ordinary” on M, , that is, without critical points on M, . Corre-
sponding to each H € 2M,, Theorem 19.5 makes use of the represen-
tation f 5 H of f on the E,-domain W of H.

According to Definition 17.3 of a dynamical system {d/pg} on M,
such a system is determined by an ensemble {pg}, indexed by
He2M,, of C*-families ¢, of nonvanishing vectors pg(w) defined
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for w on the respective E,-domains Wy and subject to Condition IIT
of Definition 17.3, that the families ¢, be pairwise contravariantly
related by their indexing presentations.

Theorem 19.5. Given an ordinary function f € C*(M,), the system of
differential equations {d/py}, indexed by H € DM, , in which for each
He 9M,

prt®) = a*(H : w) (3(fs HYw)ew’), k =1,..,n, we Wy, (19.29)

is an f-transverse dynamical system on M, .

We shall show that the three conditions on a dynamical system in
Definition 17.3 are satisfied.

Condition I is trivially satisfied. Condition II is satisfied if the
vectors pgz(w) never vanish. This is the case because grad( fs H)(w)
never vanishes by hypothesis and the matrix || a*(H : w)|| is non-
singular,

Condition III is satisfied if for each q € M,, the vector y € II, whose
factors are the vectors gh(w) indexed by H €(29M,), is a tangent
vector in T, . This is the case since y as defined by (19.29) is the
conjugate of the cotangent vector (grad f)(¢) (see Definition 18.3).

The dynamical system {d/p4} thereby defined is f-transverse, as we
now verify.

Each nontrivial solution of the dynamical system on M, is a regular
arc, since the vectors pg(w) never vanish. If # — p(2) is a solution on
M, which has a representative ¢t — w(t) in Wy, then

f(2(2)) = (f3 H)w(®)).
The t-derivative of f(p(t)) is thus the dot product A(z) - @(t) of the
gradient, say h(t), of f5 H evaluated at w(¢) and the vector @(t) =
eu(w(t)). If @(t) is represented by the right member of (19.29), this
dot product reduces to

a'i(H : w(1)) hi(?) h(t)

and is positive, since each Riemannian coform is positive-definite.
This establishes the theorem.

Notation. The Submanifold M,! of M,,. Given a ND function f
on M, , let M,! denote the open submanifold of M,, from which the
critical points of f have been deleted.
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A final canonical form for an f-transverse dynamical system is given
by Theorem 19.6. The characteristic condition (19.31) is motivated
by the desire to make df/dt = 1 along the image in M, of solutions
of the corresponding local dynamical systems (19.30).

Theorem 19.6. If fis a ND function in C*(M,,), there exists on M, '
an f-transverse dynamical system {d[y5}, termed canonical, in which the
local system d|yy

dut/dt = yg¥(w), wedomainH, k=1,..,n,  (19.30)
indexed by H € DM,/, satisfies the condition
Put(w) %{i) (w) =1, wedomainH, (19.31)

Definition of Yg¥(w). With ¢ %(w) defined as in (19.29) we set
Uu(w) = pu(w) pr’(w),  w e domain H, k=1,.,n (19.32)

where py(w) is an “invariant” factor equal to the reciprocal of

o) a(fa;kH )(w),  we domain H. (19.33)

The sum (19.33) is “invariant” in the sense that its value depends only

on the point p = H(w) € M,, and not on the particular presentation

HePM,7 of p. This “invariance” follows from (i) of Theorem 18.2.
Moreover, the sum (19.33) equals

o : 0) WH) () T H) o)

w € domain H,

and so is positive. Because pg(w) is invariant the vector ¢ (w), like
@g(w), is transformed contravariantly. One verifies (19.31).
Thus Theorem 19.6 is true.

Jf-Trajectories on M,’. If t —w(t) is a solution of the local
dynamical system d/ify given by (19.30), then

d(f 5 H)(wy(t))/dt = 1 (19.34)
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by virtue of (19.31). On such a solution (fs H)(w,(t)) = ¢ + const.
Given such a solution, there exists another solution ¢ — w(t) with the
same carrier and such that

(f3 HY(w(t)) = t. (19.35)

Abbreviating “‘parameterized” by par, we say that ¢t — w(f) is an
(f3 H)-par solution of df,, when (19.35) holds.

Given an ( f& H)-par solution ¢ — w(t) of the local system d/yy ,
the corresponding “‘solution” ¢ — p(f) = H(w(f)) on M,’ of the
system {d/y:4} has the property that f(p(f)) = ¢, and will be termed an
arc of an f-trajectory on M,/ of {d/z}. Any simple regular arc of M,/
which is the union of open “‘arcs of f-trajectories’ of M, will be called
an f-trajectory of M,7.

The f-transverse dynamical system {d/yy}, conditioned as in
Theorem 19.6, has the local form

AH(H : w) 3(f ° H ) (w)

du*
duwt _ k=1,2..n (19.36)

where w is a point in the domain of H. The differential equations are
classically interpreted as differential equations of the orthogonal
trajectories of the f-level manifolds on M, /.

A Simplified Determination of Riemannian Structures. The fol-
lowing theorem is useful when it is necessary, as in §22, to modify a
given Riemannian structure:

Theorem 19.7. Let M, be a C®-manifold and K a subset of presen-
tations in DM, which cover | M,, |. With each presentation H € K let
there be associated a form Qy as in (19 2) in such a manner that when F
and G are overlapping presentations in K, Qr and Qg are M, -compatzble
in the sense of Definition 19.1.

There then exists a unique C®-Riemannian structure on M, whose
Riemannian forms Qy include those assigned to presentations H € K.

Theorem 19.7 will follow once we have verified Lemma 19.6.
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Lemma 19.6. In DM, let there be given presentations (F : U, X),
(G:V,X),and (H : W, X) with a common range X, of which F is in K
and has been admissibly assigned a form Qy with matrix || b (u)|. If G
and H are assigned forms Qg and Q4 with matrices respectively || c;;(v)|
and || e,(w)|| such that Qg and Qg are M, -compatible with Qr, then
O¢ and Qy are M ,-compatible.

Proof of Lemma 19.6. With the ordered pairs (H, F), (F, G), and
(H, G) there are associated, respectively, the transition diffs

w— u(w), u— vu), and  w— v(w), (19.36")

as in §17, with respective Jacobian matrices J(u : w), J(v : u), and
J(v: w).

By hypothesis O, and Q; have been so defined that subject to
(19.36")

Il e}l = Jir(u : w) || bys()ll J(us : w) (19.37)
[by (19.6)] and
| Bes@)ll = JE(v 2 ) || cgs(@)II J(v : u) (19.38)

[by (19.7)]. It follows from (19.37) and (19.38) and the relation
J(v:w) = J(v:u)J(u: w) that subject to (19.36")

Il ec(@)ll = J*(v : w) || exs(@)]| J(v : w),

so that O, and Qg are M, -compatible by (19.7).
This establishes Lemma 19.6.

Proof of Theorem 19.7. Let K' be a subset of presentations in
9M,, which includes K of Theorem 19.7 and contains each presen-
tation which is a restriction F of some presentation G € K. To such
a presentation F € K’ let a Q-family O, be assigned by restricting the
parameter of the family Q; to the domain of F. The families O, and Q,
are clearly M, -compatible. It follows from Lemma 19.6 that for each
F’' e K’ the families Q. are pairwise compatible.

If H is given in 2M, but is not in K’, the range of H can be
covered by the ranges of a countable set Fy , F,,... of presentations
in K’. A matrix || e;(w)]| of the required family Qg will be uniquely



19. M, AS RIEMANNIAN MANIFOLD 157

and consistently defined on the ranges of the respective presentations
F,,F,,... in accord with Lemma 19.6, by imposing the condition that
Oy be M,-compatible with the families Qr, , QO ,.... The resultant
families Q,, He 92M,, will be M,-compatible by virtue of
Lemma 19.6.

Thus Theorem 19.7 is true.



§20
f-PRESENTATIONS IN 2M,f

Having defined f-trajectories of the canonical f-transverse dynamical
system {d/if;}, we shall set up fields of such trajectories. Such fields
are required in all homotopy considerations dependent on f. Our
initial study is local. We begin by defining certain special presentations
in ZM,! termed f-presentations.

As in §19, there is given a C*®-manifold M, and a ND fe C*(M,,).
Again M,/ is the submanifold of M, obtained by deleting from M,
the critical points of f.

Topological Manifolds f¢. Corresponding to each value ¢ of f, set

fe={peM,1f(p) = ¢} (20.1)

(the c-level subset of M,) and let the set f¢ be topologized by | M, |.
If ¢ is an ordinary value of f, f¢ is a topological (n — 1)-manifold,
called an f-level manifold. In any case f°n M,/ is empty or a
topological (» — 1)-manifold.

Special Coordinates in E, . Let the Euclidean space E, of coor-
dinates x.,..., x™ be represented as a product E,,_; X R of a coordinate
subplane E, _; of coordinates y1,..., "1 and an axis R of coordinate 7.
We are thus setting

(KLene, &%) = (Per ™, 7). (20.2)

Let (o, B) be an open interval of R, and U a nonempty open subset
of the space E, _; of points y.

Definition 20.1. f-Presentations #. A presentation

(F: U x (0, 8), X)eDM,? (U open in E,_,) (20.3)
158
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will be called an f-presentation if

(fsFNy,7)=7, yeU; re(vp). (20.4)

We shall denote f-presentations by script letters %, ¥, etc. The
use of f-presentations depends upon the validity of Lemma 20.1.

Lemma 20.1. The subset of presentations in DM, which are
[-presentations covers | M7 |.

Proof of Lemma 20.1. Let p, be a point prescribed in M,’. To
prove Lemma 20.1, it is sufficient to show that there exists an
f-presentation F € 2M,/ of form (20.3) such that p, € X.

There exists a presentation (G : V, Y)e 2M,’ such that pye Y.
Since f is ordinary on M,/, grad(fs G)(v) # 0 for v € V. We shall
suppose the coordinates of points v € V' so numbered that the nth
component of grad( fs G)(¢v,) fails to vanish when v, = G~Y(p,). For
simplicity we shall suppose that v, is the origin in the Euclidean
n-plane of V.

We introduce a C*-mapping V' — E,_;, X R of the form

yo=vi, r=(fsG)v), i=l,.,n—L (20.5)

Under (20.5) v goes into the point (y, 7); v, in particular goes into a
point (¥, , 7), and

D(y*,...,y" 2, 1)

W (‘UO) # 0 (20-6)
because of the condition on grad( fs G). We can accordingly suppose
that V and the presentation (G : V, Y) have been so chosen that the
mapping (20.5) has an inverse A which is a C*-diff, (y, 7) — v, of
the form

(y,7)—=>ANy,1):UX (e, 8>V (onto V)

with a domainu U X («, B) which is the product of an open neighbor-
hood U of the origin y, in E,_, and an open interval («, 8) containing
7o . The image points are points A(y,7) = ve V.

If one sets # = G o A on the domain U X (o, B), then

F(U X (« B)) = GNU X (« B) = G(V).
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The presentation
(F:UX(xh),GV)ed| M,/

(for 29 see Definition 13.3) is C*-compatible with G because G and &
have the same range and are related by the transition diff A = G &,
One show readily (cf. Example 13.1) that & is C®-compatible with
each presentation in ZM,/. It follows that # € 2M, 7.

We now verify that & is an ‘‘f-presentation’ in the sense of
Definition 20.1. If (y,7) is prescribed in U X (a, B), then by
definition of # as G o A and of A,

(f3 &)y ) =(f3 )Ny ) =,

in accord with (20.5).

We have thus shown the existence of an f-presentation # € 2M,/
whose range G(V) contains the point p, prescribed in M,'.

This establishes Lemma 20.1.

Definition 20.2.  Partial Presentations #°. Corresponding to each
f-presentation

(F: U X (a, B), X) € DM,? (20.7a)

and ordinary value ¢ of f fixed in («, §) we introduce the partial
mapping

Fe:y>F(y,e): U->XnNnfe  (onto X Nfe).
This mapping defines a presentation
(Fe: U, X)eDfe, Xe=XnFfe (20.7b)

termed a partial presentation induced by % .

M,-Embedded Manifolds f. We shall prove the following theorem:

Theorem 20.1.  Corresponding to each ordinary value ¢ of a ND
feC*(M,) there exists a unique M,-embedded C -manifold f° of
dimension n — 1 whose carrier is f°. The set Df° for such a manifold
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contains the partial presentation F° of each f-presentation F whose
range meets f°.
We begin the proof of Theorem 20.1 by establishing (i):

(i) Corresponding to any two f-presentations (#, : U, X (o, By), X)
and (%, : Uy X (ag, Bs), Xp) in DM, whose ranges meet f°, #° and
Z,¢ are C*-compatible.

According to the definition of C*-compatibility it is sufficient to
prove (i) in the special case in which X, = X, = X # & and
(o s B1) = (o5 Bg) = (2, B). In this case there exists, by hypothesis
of C*-compatibility, a C*-diff (onto) of form

FitoF: Uy X (0, 8) > Uy X (, B). (20.8)

Because of the condition (20.4) on f-presentations the restriction of
the diff (20.8) to U; X {c} yields the C*-diff

(F e F U > U, (onto Uy),

thereby establishing (i).

Since the C*-presentations #° € 2% ¢ admitted in Theorem 20.1
cover f¢ there exists a C®-manifold f¢ whose carrier is f¢ and whose
set 2f¢ contains the presentations %°¢ admitted in Theorem 20.1.
We continue with a proof of (ii):

(ii) The inclusion mapping o of f ¢ into | M, | defines a C*-embedding
of fein M, .

To prove (ii) we apply the test of Definition 16.2 on an “embed-
ding.” Corresponding to a point p, prescribed in f¢ there exists by
Lemma 20.1 an f-presentation

(F : U X (2 B), X) e DM,/ (20.9)

such that p, e X. By definition of f¢ the partial presentation
(Fe: U, XNfe) is in Dfc. The test of Definition 16.2, associated
with p, and the inclusion g, is satisfied since the mapping

F1sFe: U U X (& B) (20.10)

induces the identity mapping of U x {c} onto U X {c}.
Hence (i) is true.
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That f¢ is an M,-embedded C*-manifold now follows from (ii).
By Theorem 16.5(k) f¢ is unique among M,-embedded C*-manifolds
with carrier f¢.

A System d\y, when H = %#. When & is an f-presentation in
PM,’ the f-transverse dynamical system of Theorem 19.6 takes a
special form in terms of F-coordinates (y,7). By hypothesis
(fs F)y,7) =7 and in terms of the coordinates ..., y""), =
condition (19.31) of Theorem 19.6 implies that y5(y, 7) = 1. Hence
the nth equation in the local system d/s takes the form

drjdt = y3(y,7) =1, (y,7)€U X (& B). (20.11)

ff-Presentations in 9M,’. Theorem 20.2 is the principal theorem
of §20. It requires the following definition:

Definition 20.3. ff-Presentations. An f-presentation F € IM,/,
of form (20.9), will be said to be an ff-presentation if each partial
mapping

t—>Fu,t): (0,)> X (20.12)

is an f-trajectory of the system {d[}y}.

Theorem 20.2. Given a ND fe C*(M,) and point p,€ M,’, there
exists an [f-presentation F in D2M,} of form (20.9) whose range X is an
open neighborhood of p, in M,

Notation for Lemma 20.2. Theorem 20.2 will follow from
Lemma 20.2 below. In Lemma 20.2 there is given an f-presentation
(“:V x(a,0),W)e2M,” (VopeninkE,_,) (20.13)

such that p,e W and a < f(p,) <b. We shall refer to points
u= (..., ur)eV and values 7€(a,d). Let (uy,7,) be the
%-coordinates of p, .

Lemma 20.2. If (o, B) is a sufficiently small open subinterval of
(a, b) such that o < 1y < B, and if U is a sufficiently small open neighbor-
hood in V of u, , there exists a C*-diff

(u,t) = O, t): U X (o, B) > N (20.14)
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onto a neighborhood N in V X (a, B) of (u, , 7o) such that the following
is true: For each u € U and for the given 7, the partial mapping

t—>0O(u,t): (o, p)— E, (20.15)
gives a t-parameterized trajectory
Y= OV, b,y y™ = O Y(u ), = O%u,t) =¢, (20.16)

of the local dynamical system d|s which is in N, satisfies the initial
conditions
O, 7o) = (u,7), wuel, (20.17)

and is identical with any trajectory in N which meets it at the same time t.

Proof of Lemma 20.2. Except for the affirmation that the mapping
0 is a C*-diff Lemma 20.2 is a classical theorem on ordinary differ-
ential equations (see Valiron [1], Vol. 2, pp. 308-313).

That O is a diff for U and (a, B) sufficiently restricted follows on
noting that the Jacobian

D(OY,..., 67, @) o0n
D(u,..., un, 1) (g, 70) = =55 (o, 7o) = 1

by virtue of the initial conditions
OVu, 1) = u,..., O Yu, 7o) = w1
of (20.17) and the identity @*(u,t) = t, valid for ¢€(«, B). This

identity is a consequence of the differential equation (20.11) and the
initial condition O™y, 7)) = 7,.

Proof of Theorem 20.2. Let p, be the point prescribed in M, /. In
the notation of Lemma 20.2 the presentation

F =(950:U x (»8), 9(N)) e 2°| M,/ |, (20.18)

is well-defined and p, = %(u,, 7o) € 9(N). We shall show that &

satisfies Theorem 20.2 by proving the following: (A;) & is in 2M,/;
(Ay) F is an f-presentation; (Az) & is an ff-presentation.

Verification of (A;). We shall compare # with the presentation
(9| N: N,9(N))e2M,/,
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noting first that  is defined in N, since NC V' X (a, 8) by virtue of
Lemma 20.2. Moreover, # and ¢ | N have the same range %(N)
and are C®-compatible, since

(F|NF1c(956)=8 on U x ().
Statement (A,) follows readily.
Verification of (A;). For (u, 7)€ U X (s, f)
(f5 (95 0)u, ) = (fs 9)O(w, 7)) = O(w,7) = 7. (20.19)

The second equality in (20.19) is valid because ¥ is an f-presentation,
and the third equality is valid in accord with (20.16) of Lemma 20.2.

Verification of (Ag). For each u € U the partial mappings
t— 9O, 1)) = F(u,t), te(xp), (20.20)

are solutions on M,/ of the dynamical system {d/if4}, since the partial
mappings ¢t — O(u, t) are solutions of df)y when H = ¥, in accord
with Lemma 20.2. The solutions (20.20) are f-parameterized by virtue
of (20.19).

This completes the proof of Theorem 20.2.

We note the following consequence of the unique determination
of the solutions of a sufficiently restricted local dynamical system
by each of their points, as implied by Lemma 20.2:

Two f-trajectories on M, of the system {d[fy} which intersect in a
point are overlapping.

Exercise 20.1. Establish the following lemma:

Lemma 20.3. If [f-presentations F and ¥ in DM,' have the same
range X C M,! and Euclidean domains

UxX(@B), Vx(up) in E, (20.21)

with & -coordinates (u,t) and G-coordinates (v, t), respectively, the
transition diff A [cf. (5.6)] of the first of the domains (20.21) onto the
second is represented by the identity mapping t = 7 of (v, B) onto («, )
and a C°-diff u— u(u) = v of U onto V.
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Exercise 20.2. Given a ND fe C°(M,), an ff-presentation
(F:UX(,B),X)e2M/, U openin E, (20.22)
and values ¢ and e in («, B), prove the following lemma:
Lemma 20.4. There exists a C*-diff of fcN X onto f£NX in

which points in f¢ N X and f¢ N X correspond which are on the same
f-trajectory.

Suggestion. Apply Lemma 16.3 to the partial presentations
(Fe:U X)eDf, Xe=Xnfe, and (F°:U, X e Df,
Xe = XnNfe



§ 21
f-TRAJECTORIES ON M,

The objective of this section is to prove Theorem 21.1. Theo-
rem 21.1 is one of two principal aids in proving the fundamental
homotopy theorem, Theorem 23.2.

Introduction to Theorem 21.1. As in §20 let there be given a
C®-manifold M, and a ND fe C°(M,).

The Manifold f,,) . Let (a, b) be an open interval of ordinary
values of f. Set

Jaw ={peM,|a <f(p) <b}. 2L.1)

We suppose f(, ;) topologized by | M, |. Let f, ;) be the C®-sub-
manifold of M, whose carrier is f(, ;) . Among the presentations in
D1, 1 are those ff-presentation # of §20 whose ranges are subsets
of f, ) - The manifold f, ;) is covered by such presentations by
virtue of Theorem 20.2.

We define a basic condition on M, and f:

Definition 21.1. Bounded f-Compactness of M, . Given a ND
feC*(M,), we say that M, is boundedly f-compact if whenever
[a, b] is a finite closed interval of values of f on M, , the subset

Jamy ={peM,la <f(p) < b} (21.2)
of M, is compact.

Let ¢ be a value of f. If M,, is boundedly f~compact, the level set f°
of | M, | is compact, as one readily proves. If M, is boundedly

166
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f-compact and if an arbitrary ND g e C*(M,) is given, then M, is
not necessarily boundedly g-compact. If, however, M, is compact,
then for each ND ge C*(M,) M, is boundedly g-compact. The
hypothesis of compactness for M, is too restrictive for many problems
in global analysis and differential topology. Bounded f-compactness
will be a principal hypothesis in Theorem 21.1.

The Product Manifold f¢ x (a, b). Let ¢ be an ordinary value of f
in the interval (a, b). According to Theorem 20.1 f¢ is the carrier of a
C~-manifold f¢ admitting a C*-embedding in M, and having a
differentiable structure thereby uniquely determined by M, . Let
(a, b) represent the one dimensional regular C*-manifold whose
carrier is the interval (a, b). In Theorem 21.1 we shall refer to the
product manifold f¢ X (a, b) with the product differentiable structure
defined in §13.

The principal theorem follows.

Theorem 21.1. Let (a, b) be an open interval, possibly infinite, of
ordinary values of f, and let ¢ be prescribed in (a, b). If M, is boundedly
[f-compact, there exists a homeomorphism'

(g, 8) > I'(g, t) : £ X (a,b) —> fu.1) (21.3)

onto the manifold £, y) such that for each point q € f © the partial mapping
t—I(q,t):(a,b)— fun (21.4)
is an f-trajectory on £, y) of the canonical dynamical system {d[\}}.

Note. Theorem 21.1, altered by affirming that the homeo-
morphism (21.3) is a C*-diff, is true. This extension of Theorem 21.1
is not needed and accordingly will not be proved.

Before coming to the proof proper of Theorem 21.1 we add the
following remarks on f-trajectories:

f-Trajectories on f,, . The symbols £, £, etc. will denote
-trajectories on f(,, of the canonical dynamical system {d/y}.
J (a, Y

tf¢ X (a, b) onto f» (Definition 16.1).
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On these trajectories the range of f is an open subinterval of (, b).
As noted at the end of §20, two f-trajectories £; and £, which intersect
in a point are overlapping. The f-trajectories are f-parameterized, and
consequently are simple curves. Because they are simple curves,
no difficulty will arise if ¢ denotes both a mapping ¢ — p(#) into
f(,» and the carrier of the image of this mapping.

Theorem 21.1 will follow from statements I-IV:

I. Corresponding to a prescribed point q € f° there exists a unique
f-trajectory t — n(t) on f(, ;) which meets q and admits an extension
for a <t <b.

Verification of 1. Let a point gef° be given. According to
Theorem 20.2 there is an ff-presentation # in 2f(,,; whose range
contains g. There then exists an f-trajectory £° which meets ¢. Of the
J-trajectories £ on £, ;) which contain £° as a subarc there is a unique
f-trajectory £, whose f-parameter ¢ has a maximal open domain
(h, k) C (a, b). We shall show that (&, k) = (a, b).

Assuming that k& < b, we shall arrive at a contradiction. If £ < b,
fiesa is by hypothesis a compact subset of f(, ;) and CI ¢, contains a
point p, € f*. By virtue of Theorem 20.2 there exists an ff-presentation
(F : U X (o, B), X) € Pf (s 1) with pye X and b < a < k < B. There
is clearly a point p, € £, N X. Since & is an ff-presentation, there is a
point u € U such that the partial mapping ¢t — F(u, t) : («, B) = fiu 1)
is an f-trajectory ¢’ meeting p, . The f-trajectories £, and ¢’ both meet
£, and thus overlap. If £, is continued by £, an f-trajectory £” is
formed on which the range of f is (h, B). Since § > k, the assumption
that B < b is false.

Hence & = b. One proves similarly that 2 = a, thereby completing
the proof of I.

The Point I'(q, t) Defined. For each point g €f€ and value of ¢ on
the interval (a, b) let I'(g, t) be the point 7,(f) on the f-trajectory £,
meeting ¢.

We continue with a proof of II.

II. The mapping

(@ 8) = T(g, 1) : /¢ X (4, 8) = fia,p) (21.5)

is onto fi, p) and biunique.
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Let p be prescribed in f, ;) with f(p) = y # ¢. On replacing the level
set f¢ in the formulation of I by the level set f* we are led to the
following conclusion: Of the f-trajectories on f(, ;) which meet p there
is one, say £, on which the range of values of fis (g, ). Since a < ¢ < b,
the f-trajectory £ must meet f¢, so that the mapping I' is onto fi, ;) .

The mapping I' is biunique, since f-trajectories meeting different
points of ¢ do not intersect. These f-trajectories thus form a “field.”

II1. If e is a value in the interval (a, b), the partial mapping

g—>I(g,e):fc—f° (21.6)

is a homeomorphism I'f of f¢ onto fe.

The mapping I'# is biunique and onto f¢ by virtue of I and II.
Since f¢ and f*¢ are compact, to prove that I' ¢ is a homeomorphism,
it is sufficient to verify (i):

(i) The mapping I'¢ is continuous at each point p, € f°.

Set p, = I'(p,, €). For simplicity we suppose that e > ¢, so that
p. 7 P, - Let £ be the closed arc of the f-trajectory joining p, to p, .
If e — c is so small that there exists an ff-presentation % whose open
range in f(,; includes £, statement (i) follows readily from the
properties of & as an ff-presentation.

In the general case £ is the union of successive closed subarcs

fl 3 52 yoeey §r+l (21.7)
bearing values of f on closed intervals separated by values
=60 << <Gy =

of f so chosen that the arc £;, i = 1,..., 7, is included in the range of
an ff-presentation %, . Let

Pl » Pz yeesy Pr+1 ’ Pr+1 = Po ) (218)
be the successive endpoints of the arcs (21.7). Mappings
v fu—fon,  i=l.,m (21.9)

defined as was I';? are continuous on sufficiently small open neigh-
borhoods N, in f¢ of p;.



170 II. ABSTRACT DIFFERENTIABLE MANIFOLDS

If N, is sufficiently small, and if one sets
Ny =TSN, i =l
then the restriction
TNy = (Tgt | Ny)o e o(Ig2| Ny, (21.10)

and so is continuous.

This establishes (i) and hence III.

We conclude the proof of Theorem 21.1 by verifying IV.

IV. The mapping I' of (21.3) is a homeomorphism of f¢ X (a, b)
onto fi, p) -

If [h, k] is a closed subinterval of (a, b), I' maps the compact subset
f¢ X [h, k] of f¢ X (a, b) onto the compact subset fi; 1) of fi, ) . It
follows that IV will be established if we show that I" is continuous at
each point (p, e) ef° X (a, b).

Notation for Proof. Set p, = I'(p,e). We wish to show that
corresponding to a prescribed open neighborhood W of p, in f(, 4
there exists an open neighborhood Z of (p, €) in f¢ X (a, b) so small
that

rzycw. (21.11)
To that end, let

(F : U x (& B), X) € Dy n) (21.12)
be an ff-presentation such that
ec(%B)C(ab), p,eXCW.

Such a presentation exists. Let N be so small an open neighborhood
in f¢ of pefe that

I'(N,e)Cfen X. (21.13)

N exists by virtue of III.

Let Z be the open neighborhood N X («, B) of (p, e) in f¢ X (a, b).
Each point ¢ € I'(Z) is on an arc of an f-trajectory bearing the interval
of f-values («, ) and meeting f* N X in accord with (21.13). The
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point ¢ is accordingly in the range X of the presentation (21.12).
Thus

r(Z)CXCW. (21.14)

The continuity of I" at (p, e) follows, implying the truth of IV.
This completes the proof of Theorem 21.1.

ExERrcisE 21.1. Show that the homeomorphism I'? of (21.6) is a
C>-diff of ¢ onto fe.

Suggestion. Parallel the proof of I1I(i), making use of Lemmas 20.3
and 20.4 to show that the homeomorphisms in the composition (21.10)
are C~-diffs.
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f-PREFERRED RIEMANNIAN STRUCTURES §'

Let M, be a C*-manifold with a C*-Riemannian structure denoted
by S. Given a ND fe C*(M,), the determination of f-trajectories of
the dynamical system of Theorem 19.6 near a critical point g, of f
can be very difficult unless this dynamical system is induced by a
structure S specially chosen near g, . In this section we shall show how
to modify S suitably in a prescribed neighborhood X of ¢, while
leaving M,, , 2M,, , and f unchanged and changing S at most on X.
The principal difficulty arises from the requirement that the new forms
Oy assigned to the presentations F € 2M, be M,-compatible in the
sense of Definition 19.1.

Theorem 22.1 is the principal theorem.

Introduction to Theorem 22.1. The simplest differential form Q
which can be assigned to a presentation (F: U, X)e PM, is one
whose matrix || g;()|| of coefficients is the unit matrix. We term such
a form canonmically Euclidean. Distances and angles defined on U by
such a form are Euclidean.

Two C®-Riemannian structures S and S* defined on M, are
understood to be identical on any open subset Z of | M, | if corre-
sponding to each presentation F € 2 M" whose range is included in Z
the forms Q assigned to F in S and S* are identical.

The following theorem was proved with a somewhat different
formulation by Morse [9] under Lemma 6.1:

Theorem 22.1. Let a point g, be prescribed in M, , together with a
presentation (F: U, X)e DM, , such that q,€ X. Corresponding to a
C®-Riemannian structure S given on M, there exists a C*-Riemannian
structure S* on M, with the following two properties:
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(i) On | M, | — X the two Riemannian structures are identical.

(ii) There is a restriction (Fy: Uy, Xy) of (F:U, X) such that
g€ Xy, that U, is a relatively compact subset of U, and that the
Riemannian form QF assigned to F, in S* is canonically euclidean.

We begin the proof of Theorem 22.1 by establishing Lemma 22.1.

Notation for Lemma 22.1. Let || c;5(u)|| be the matrix of coefficients
in the given C*-Riemannian form Q. For simplicity suppose that
F-1(q,) is the origin in UCE,. For each positive r set D, =
{ucE, || u] <r}. Let o be so small a positive constant that

C1D,,C U. (22.1)

Lemma 22.1. There exists a positive-definite, symmetric, quadratic
form QF with variable coefficients g, (u) of class C* on U such that
gl = llcsf(w)ll, ueU — D, (22.2)
and
[l gnrl@)ll = Il S Il ueD,. (22.3)

An Auxiliary Mapping . In proving Lemma 22.1 we shall make
use of a C*-mapping ¢ — 7(t) of the real axis of ¢ onto [0, 1] such that

7(t) =0, 0<|t|<]1, (22.4)
)=1, [t]|>2, (22.5)
O<qt)y <1, 1<|t|<2 (22.6)

Such a mapping exists, as is readily seen.

Definition of g,,(u). With & and & on the range 1,..., 7 set
o) = 1 (L) e + (1 = (L2L)) 60, we Dy, (227)
It follows from (22.7) and (22.4) that
Eniu) = O el <o (22.8)

A consequence of (22.8) and (22.7) is that g;,(«), as defined over D, ,
is of class C*,
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It follows from (22.7) and (22.5) that
1) = cn(w), 20 < | u]| < do. (22.9)

Taking account of (22.9), we can consistently extend g,,(x) so as to
be of class C* over U by requiring that

Eni8) = cn(u), u€ U — Dy,

The matrix || g,,(#)|| thereby defined over U satisfies the lemma
provided we show that || g;,(u)| is the matrix of a positive-definite
quadratic form. Since the matrices || ¢, ()| and || 8,;| are both
positive-definite over U, we have merely to show that || g,,(u)| is
positive-definite for ¢ < || u|| < 2o0.

Positive-Definiteness of || gni(v)|. By virtue of (22.6)
0 <nllulije) <1, o<[u| <20,

so that for these values of |||l the values A(u) = %(|| #||/o) and
p(u) = 1 — n(jj u||/o) are positive. According to (22.7)

| gra(@)li = AQ) || enn®)ll + () || Sar Il (22.10)

so that the matrix || g,,(u)| is positive-definite when ¢ < || #| < 20.
This establishes Lemma 22.1.

Completion of Proof of Theorem22.1. Referring to(F: U, X)e 2M,,
of Theorem 22.1 and to D, C U of Lemma 22.1, we shall show that
the restriction

(Fy: Uy, X)e 9M,, U, =D,, (2.11)

of F is a presentation such that Theorem 22.1 will be satisfied by F,
and a suitable choice of S*.

Set X; = F(D,,). We shall apply Theorem 19.7, letting K be the
subset of presentations in 2M, which contains the presentation F,
as given in Theorem 22.1, together with those presentations in M,
whose ranges do not meet X; . The presentations in K clearly cover
| M, |, and are M, -compatible since K C 2M,, .

To the presentations H € K we shall assign M, -compatible forms
OF . When H = F we assign to H the form QF of Lemma 22.1. To
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each other presentation H € K we assign the form Q% assigned to H
in the given Riemannian structure S.

For H € K these forms Q} are M, -compatible, since this com-
patibility is implied by the M, -compatibility of the forms O, of S
for He K. It follows from Theorem 19.7 that there exists a C*
Riemannian structure S* whose forms include the above forms O},
H e K. In particular, S* admits the forms QF of Lemma 22.1 and
hence a canonically Euclidean form assigned to the restriction F, of F.

This establishes Theorem 22.1.

The Reduction Theorem 4.1 and Theorem 22.1 imply the following
fundamental theorem on modifying a Riemannian structure on M, :

Theorem 22.2. Let q be a critical point of f of index k, N an open
neighborhood of q, and S a C*-Riemannian structure given on M, .
There then exists a presentation

(F:D,,X)e2M,, q=F(0) (22.12)
for which

(foF)u) = —u® — - —w’ +ugp + - + " +f(9),  |u| <o, (22.13)

and X C N, and with which there can be associated a modified C*-
Riemannian structure S’ on M, which differs from S at most on N and
in which the Riemannian form Qg .is canonically Euclidean.

A presentation F associated as in Theorem 22.2 with a critical
point ¢ and a Riemannian structure S’ will be termed preferred
relative to f.

Corollary 22.1. Given a ND fe C*(M,), it is possible to associate
presentations F, chosen from DM, biuniquely with the respective critical
points of f and to define a C*-Riemannian structure S' on M, in such a
manner that relative to f the presentations F, are of “preferred” type
and have disjoint range closures.

Definition 22.1. f-Preferred Riemannian Structures S’. Let a ND
fe C*(M,) be given. A C*-Riemannian structure on M, associated
as in Corollary 22.1 with a set of ‘“‘preferred” presentations of the
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respective critical points of f will be called an f-preferred Riemannian
structure S/.

In the remainder of this section and in §23 we shall assume that a
ND fe C*(M,,) is given and that M,, has an f-preferred Riemannian
structure S$/.

f-Trajectories near a Critical Point. We are concerned with
f-trajectories on M, of a canonical f-transverse dynamical system
{d/5} induced by an f-preferred Riemannian structure S/. We shall
examine the local representation in F-coordinates of f-trajectories in a
system df; in which F is a preferred presentation of a neighborhood
of a critical point g.

We are assuming that F has the form (22.12), that (22.13) holds,
and that the Riemannian form Q; is canonically Euclidean. The
differential equations of the local system d/isy have the form (19.36),
or here

dut —ut
=gt isleh 0<lul<q
(22.14)
W W ikt lenn 0<|u] <
& ~ape I TET b ”

in accord with Theorems 19.5 and 19.6 and the nature of Oy as
canonically Euclidean.

For simplicity in characterizing the ( f 5 F)-parameterized solutions
of (22.14) we shall here suppose that f(g) = 0. When f(q) = 0,
(f3F)u) is a quadratic function whose values will be denoted
by P,(u). When 0 < k < n we shall make use of the cone

P — {uc E, | Pyu) = 0},
When 0 < k < n we introduce the coordinate planes

T ={u€En|uk+1 = = u, =0}
(22.15)

Ty = MEE, |ty = = u, =0},
The solution arcs of (22.14) can be characterized as follows:

The Case k = 0. In this case each solution arc is radial and

(faF)(u) = llul
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The Case k = n. The solution arcs are again radial, with

(feF)u) = —llulP.

The Case 0 < k < n. Each solution arc which meets =, or m,_;
is radial, remaining in m;, and =,_; , respectively.

All other solution arcs in D, are arcs of equilateral hyperbolas explicitly
characterized as follows:

Let two sensed lines meeting the origin be prescribed in =, and
m,_x, respectively, and termed x- and y-axes. These lines are
mutually orthogonal. Relative to the (x, y)-plane = thereby defined
let x and y be rectangular coordinates chosen so as to define a metric
on 7 consistent with the metric on 7 induced by E,, .

Each solution arc of (22.14) which meets = remains in = and is a
solution arc of the differential equations

de  —x dy y
TSI &N (22.16)
on the domain 0 < x? 4+ y? < ¢%, as one readily sees. If not radial,
such a solution are, if extended without limit in =, is a branch of an
equilateral hyperbola with the x- and y-axes as asymptotes. There is
one and only one such hyperbolic arc meeting each point of 7 not on
the x- or y-axes. These arcs are orthogonal to the level arcs of
—x? 4 y2% and are to be parameterized by the values of —x? + y?
on these arcs.

We shall explicitly record certain important properties of solution
arcs of (22.14) in D, .

A Special Field of Solution Arcs. When 0 < k < n there is a
hyperbolic solution arc 4, meeting each point u € P,° N D, not the
origin. The point u bisects %, and is the nearest point to the origin
on h,. The solution arc h, varies continuously with a point
ue PN D, not the origin.

Entrance Properties of Solution Arcs in D,. Let Bd D, denote the
boundary of D, . If k < n, corresponding to each point # € Bd D, at
which P,(u) > O there is an extended ( f 5 F)-parameterized solution
arc which enters D, at «, with ¢ decreasing, and if not radial leaves D,
at a point v € Bd D, at which P,(v) < 0.
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Descending and Ascending Bowls. Suppose that fe C°(M,) is
ND and that M,, is provided with an f-preferred Riemannian structure
S/. With each critical point 2 of f of index 2 > 0 we shall associate a
descending k-bowl B_(z, k) and with each critical point 2 of index
k < n an ascending (n — k)-bowl B, (3, n — k) defined as follows:

Definition 22.2. If k > 0, B_(2, k) shall be the union of = and the
maximally extended f-trajectories which have z as an upper limiting
endpoint.

If k <mn, B,(3,n— k) shall be the union of 3 and the maximally
extended f-trafectories which have z as lower limiting endpoint.

The limit points to which reference is made in these definitions are
of points p(f) on f-trajectories as the f-parameter ¢ increases or
decreases to a limiting value. The bowls are to be topologized by
| M,, |. We term z the pole of B_(z, k) and of B,(z, n — k).

For the purposes of this book two introductory lemmas on bowls
will suffice and will proved. All results on bowls in this book presup-
pose the existence of an f-preferred Riemannian structure $/. In the
first of the following lemmas it is not assumed that M, is boundedly
f-compact. However, this assumption is necessary in Lemma 22.3.

In the exercises at the end of the section no assumption that M, is
boundedly f-compact is needed.

Lemma 22.2. (i) An ascending (n — k)-bowl is a topological
(n — k)-manifold.

(ii) A descending k-bowl is a topological k-manifold.

Proof of (). By the “manifold condition” on B, = B, (2, n — k)
at a point g of B, is meant the condition that there exist a neighbor-
hood of ¢ relative to B, which is a topological (» — k)-ball.

That this manifold condition is satisfied at the pole z of B, is seen
as follows. Let z be identified with the critical point ¢ for which
(F:D,,X) of (22.12) is a preferred presentation of a neighborhood
X of ¢g. As we have just seen, the f-trajectories which tend to z as a
lower limiting endpoint meet X in the topological (n — k)-ball
F(m,_, N D,).

Lemma 22.2(i) is trivial if n — k= 1. Setr =n— %k — 1 and
suppose that r > 0.
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With each point p on an f-trajectory ¢ in B, = B, (2, n — k) we
associate a condition K, defined as follows but not a priori satisfied:

The condition K,. Set f(p) = n. Under condition K,, there shall
exist on f7 an arbitrarily small neighborhood N, of p such that N, N B,
is a topological r-ball Af,r =n —k — 1.

The trajectory £ is an open arc with the critical point = as lower
limiting endpoint but not a point of £. The condition K, is satisfied
by all points p on ¢ sufficiently near z; it is obviously satisfied by all
points p € ¢ in the set F(D,) = X of Theorem 22.]1 associated with
the critical point ¢ = 2.

We continue with a proof of («):

() If £ is an f-trajectory in B, the condition K, is satisfied at
each point of €.

Let t — p(t) be a representation of ¢ in terms of the f-parameter .
Were (a) false, there would exist values a and b among the values of f
on £ such that the condition K,(, is satisfied when @ <t < b but
that the condition K, is not satisfied. Let

@: VX (hB)Y)eaM!, a<a<bh<p,

be an ff-presentation such that p(b) e Y.

Choose ¢ so that o < ¢ < b. The condition K, is satisfied by
hypothesis by an open neighborhood N, () of p(c) in f¢ and by an
open r-ball Aj., C N, . By hypothesis N, can be supposed
arbitrarily small. Since the presentation ¥ can be restricted by
restricting V as a neighborhood of ¥~(p(b)) without altering («, B),
we can suppose that N, = 4(V, ¢).

The condition K¢, can then be satisfied by taking N, as 9(V, d)
and A, as the homeomorph of A}, under the mapping in which
points in 474, and A}, correspond which are on the same f-trajectory.

This establishes (a).

Verification of Lemma 22.2(). Let p # z be an arbitrary point in
B, — zand set f(p) = 7 as in condition K, . By («) the condition K,
is satisfied. Let the topological r-ball 4, of condition K, be so small
a neighborhood of p on f7 that it is included in the range of an
ff-presentation in 2M, /. If e > 0 is sufficiently small, the union of the
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subarcs of f-trajectories that meet the above r-ball 4,7 and on which
the range of fis (¢ — e, 7 + ) will be a topological (= — k)-ball on
B, containing p.

Note. The process of proving () is called a continuation process.
Lemma 22.2(i) follows. The proof of Lemma 22.2(ii) is similar.

The following lemma is easily verified:

Lemma 22.3. Given an ascending bowl B, = B, (z,n — k), set
f(2) a. = Corresponding to an interval (a, c] of ordinary values of f set

Bi ={peB,.la <f(p) <¢. (22.17)

If M, is boundedly f-compact, B:T is the homeomorph of a closed
(n — R)-ball & of radius c — a under a mapping A in which z corresponds
to the center of # and each f-trajectory in Bai is mapped linearly with
respect to its f-parameter t onto an open radial arc of 4.

One shows first that a mapping 4 of BS onto an (# — k)-ball &

exists and is biunique, as in the proofs of I and IT under Theorem 21.1,
and then shows that 4 is a homeomorphism as in the proof of
Lemma 22.2.

Definition 22.3. Traces of Bowls. Under the conditions of
Lemma 22.3 the intersection B, N f¢ will be called the trace of the
bowl B, on f°. This trace is a topological sphere of dimension
(n—k)— 1.

Similarly, if a descending bowl B_ = B_(z, k) is given, set f(z) = b.
If [c, b) is an interval of ordinary values of f and if M, is boundedly
f-compact, the intersection B_ N f¢ is a topological (¢ — 1)-sphere
and will be called the trace of the bow! B_ on f°.

Modification of Critical Values of f. The following lemma is
needed in proving the homotopy theorem of §23 (a study in depth of
such modifications with the aid of bowls is given by Morse [16]):
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Lemma 22.4. Given a ND fe C°(M,), let = be a critical point of f
and N a compact neighborhood of z which contains no critical point of f
other than z. Corresponding to any sufficiently small open neighborhood
N, C N of z and sufficiently small positive constant e there exists a
ND g € C*(M,) such that z is the only critical point of g in N and

&(p) = f(p), peM, — N, (22.18)
and

&) =f(p) e, peN,. (22.19)

As a consequence the critical points of f and g are identical and have
tdentical indices, and if M, is boundedly f-compact, M, is boundedly
g-compact (see Morse [9] §2).

Notation for Proof. Let r be a positive constant. Let ¢ — A,(t) be
a C*-mapping of R onto [0, 1] such that 4,(t) = 1 when | ¢| < r and
h(t) =0 when | ¢| = 2r.
Let (F: U, X)e 2M, be such that ze X CN and F~Y(2) is the
origin in U. Set
ww) = (fsF)u), wuel. (22.20)

Then w is ND on U with the origin its only critical point. Let D,,
be an open, origin-centered n-ball in E, of radius 2r. Suppose that
D, CU.

A modification of w. Set

O(u) = w(u) + ek, (lu]), wueU, (22.21)
and note that

8(u) = w(u), ueU—D,, (22.22)
and

0(u) = w(u) + e, ueD,. (22.23)

The origin is a ND critical point of 6. Any other critical point of 8
must be in the closed set D,, — D, on which w has no critical point.
Hence if e > 0 is sufficiently small, 8 has no critical point other than
the origin. We suppose e so conditioned.

To prove the lemma, it is sufficient to show that for some sufficiently
small open neighborhood Ny C N of z the conclusion of Lemma 22.4
is true. We shall prove the lemma for N, = F(D,).
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Definition of g. 'The function g is overdefined by the conditions
(g5F)u) = 0(u), wueU, (22.24)
&p) =f(¢), peM, —F(D,). (22.25)

This overdefinition is consistent, since (22.24), (22.22), and (22.20)
imply that

(g3F)u) = (fsF)u), ueU—D,. (22.26)

Moreover, the sets F(U) and M,, — F(D,,) are open and have M, as
union. It follows from (22.24) and (22.25) that g is of class C* on M, .

In view of the definitions of g in (22.24) and N, as F(D,), (22.23)
implies (22.19). Since N D F(D,,), (22.25) implies (22.18). Since 6
has no critical point in U other than the origin and since (22.25)
holds, z is the only critical point of g in N.

That the critical points of f and g are identical and have the same
indices is now clear. Since f and g have different values at most on the
compact set N, we infer that M, is boundedly f-compact if and only
if boundedly g-compact.

This establishes the lemma for N, = F(D,).

Exercises on Bowlis

Open Radial Sets Defined. An open subset Z of E, which contains
the origin will be termed radial if whenever a point x is in Z, the
straight arc joining x to the origin is in Z. The boundary of such a
set is not in general a topological manifold or even bounded. Prove
the following:

Exercise 22.1. An open radial subset Z of E,, is the homeomorph
of an open n-ball.

Exercise 22.2. A bowl B (2,n — k) on M, is the homeomorph
of an open radial subset Z of E,_, under a mapping in which the
pole 2 corresponds to the origin in Z and each f-trajectory £ in B, is
mapped linearly with respect to its f~parameter ¢ onto an open radial
arc in Z.
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Exercisg 22.3. B, (z,n — k) is the carrier of an M, -embedded
C®-manifold N,,_,, .

Exercise 22.4. The manifold N,_, is the C*-diffeomorph of an
open radial subset of E,_, .

EXERCISE 22.5. An open radial subset Z of E, is a real analytic
diffeomorph of an open n-ball (see Morse [11] Part I, Bowls).

These exercises imply the following fundamental theorem (see
Morse [11]). No assumption that M, is boundedly f-compact is
needed.

Theorem 22.3. (i) An ascending (n — k)-bowl is the carrier of an
M, -embedded C=®-manifold and is the C -diffeomorph of an open
(n — k)-ball.

(i) A descending k-bowl is the carrier of an M, -embedded C*-
manifold and is the C*-diffeomorph of an open k-ball.



§23
THE BASIC HOMOTOPY THEOREM

Hypotheses and Notation. There is given a ND fe C°(M,) and a
closed interval [a, 8] of values of f of which @ and b alone are critical.
Taking account of Lemma 22.4, we suppose for the present that there
is just one critical point 2, on f¢ and just one critical point 3, on f°.
Suppose that k, < n and %, > 0 are, respectively, the indices of 2z,
and 3, . Let ¢ be a value fixed in (g, b) and let T and T3 be the
““traces” on f°¢, respectively, of the bowl ascending from 2, and the
bowl descending from 3,. The bow! traces T; and T, on f° play a
vital role (Definition 22.3.).

We shall regard the product space f¢ X [a, b] as a subspace of the
product space f¢ X R, terming f¢ X {a} the lower boundary of
f° X [a, b] and f¢ X {b} the upper boundary of f¢ X [a, b].

Geometric Homotopy. The type of homotopy developed in this
section will be termed geometric to distinguish it from the algebraic
homotopy involved in the chain homotopies of §27.

An Extension of Theorem 21.1. Our basic homotopy theorem is a
corollary of Theorem 23.1. Theorem 23.1 characterizes the family
of f-trajectories on fi, ;. In this family the parameter ¢ of an
f-trajectory £, will be taken as the point ¢ of intersection of ¢ with f¢.
Theorem 23.1 is an extension of Theorem 21.1 in the following sense:
The values a, b define an open interval (a, 8) of ordinary values of f
to which Theorem 21.1 applies. The mapping 2 of f¢ X [a, b] onto
Stap1» which Theorem 23.1 characterizes, is an extension of the
homeomorphism I' of f¢ X (a, b) onto f(, ) , which Theorem 21.1
affirms to exist. Theorem 23.1 is concerned with this extension, in
particular with its continuity and its biuniqueness (insofar as it is
biunique). We refer to Definition 21.1 of bounded f-compactness.

184
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The Mapping 2 of Theorem 23.1. Suppose that M, is boundedly
J-compact.
Under the conditions of the first paragraph of this section, a
mapping
(9. t) > g, 1) : f° X [a, b] = fram)

onto fi, ) is uniquely defined by requiring that for each gef* the
partial mapping into fi 1 = | iz I,

t— g, t): (4, 8] > fiam1 (23.1)

shall be an f-trajectory £,, which in particular shall be closed by z,
at t = a when ge 7; and shall be closed by z, at ¢ = b when
ge Ty .

It is clear that Q maps ¢ X [a, b] onto f, 57 . It is not clear a prior:
that 2 is continuous.

Theorem 23.1. Q is a mapping of f° X [a, b] onto fi, ) with the
following properties:

(1) The restriction 2 | (f¢ X (a, b)) is the homeomorphism I" onto
f(..5) of Theorem 21.1.

(ii) The antecedents of z, and =z, under Q2 are, respectively, the
subsets T, x {a} and T; X {b} of the lower and upper boundaries of
fe x [a, b).

(iii) The restriction of 27! to fi, 1 — 2, — 2 s a homeomorphism
onto

[ x [a,8] — (T3, x {a}) — (T3, X {B)). (23.2)
(iv) R is continuous.

Verification of (i). (i) follows immediately from the definition (21.5)
of I" and the above definition of £.

Verification of (ii). (ii) follows from the definition of £ and of the
traces 7, and T; on f¢, in view of Lemma 22.3.

Verification of (iii). Let
(Fs:D,,,X,)e2M, and (F,:D,,,X;)e2M, (23.3)
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be preferred presentations of neighborhoods, respectively, of 2, and
2, of form (22.12) with X, N X, = &. Since X, and X,, can be taken
as arbitrarily small neighborhoods of 2, and 3, , (iii) will follow if we
verify (o):

(«) The restriction of 27 to fi, 1 — X, — X, is a homeomorphism
into the set (23.2).

Proof of (x). To prove («) we shall modify f slightly near z, and 2,
in accord with Lemma 22.4.

Let N,CX, and N, C X, be compact neighborhoods of z,
and z, in M, — f¢. By virtue of Lemma 22.4 there exists a ND
function g € C*(M,) which differs from f at most on N, U N, and
for which [q, b] is an interval of ordinary values of g and M, is
boundedly g-compact. Note that f¢ = g°.

There accordingly exists an open interval («, B) of ordinary values
of g such that («, 8) D [a, b]. Let g-trajectories be defined in terms of
the g-transverse dynamical system determined by g and the f-preferred
Riemannian metric S/. By virtue of Theorem 21.1 there exists a
homeomorphism

(0.)—>¥gq.1): 8 X (B> 8an» &=/ (23.4)
onto g, g such that for each g € f ¢ the partial mapping
t—¥g1): (% B) > Bua (23.5)

is a g-trajectory on gy, p . The identity of g and fon M, — N, — N,
implies the set equality

Jani—Xo— Xy =gem —Xo — X, =W, (23.6)

introducing the subset W of | M, |. The set W is open relative to

a1 a0d gra 1 - ] . '
It follows that if £ and £, are, respectively, maximally extended

f- and g-trajectories meeting a common point g of f¢ = g€, then
(N W)= (W) (23.7)

and these subarcs have identical parameterizations. The validity of
(23.7) depends on the fact that (¢, N W) is a connected subarc of W,
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with a closure terminating at any intersection with Bd W (see
“Entrance Properties of Solution arcs in D,” in §22).

Statement (o) is true if read with g replacing f. It follows from the
equality (23.7) that («) holds as stated for f, and (iii) follows.

Vertfication of (iv). Because (ii) and (iii) are true, to establish the
continuity of £2 it is sufficient to establish (iv)a and (iv)b, unconditioned
by the parentheses (which are added because their conditions are
needed later in establishing the homotopy theorem):

(iv)a. Corresponding to a prescribed open neighborhood N, of =z, in
Sta,c1 the set w, = Q7Y(N,) is an open neighborhood of T; X {a} in
f¢ X [a, c] (arbitrarily small if N, is sufficiently small).

(iv)b. Corresponding to a prescribed open neighborhood N, of =, in
Sio,p) the set w, = Q7Y(N,) is an open neighborhood of Ty x {b} in
fe X [¢, b] (arbitrarily small if N, is sufficiently small).

Proof of (iv)a. Set Y = f¢ X [a, c] — (T5, X {a}).

Note that Z = fi, ) — N, is a compact subset of fi, o — 2.
It follows from (iii) that the subset £2-(Z) of Y is compact. Hence the
complement w, = 27YN,) of 2YZ) in f° X [a, c] is open.

To verify the parenthetical supplement of (iv)a, let w, be a
prescribed open neighborhood of 77 X {a} in f¢ X [a,c]. Then
Comp. w, in f¢ X [a, c] is compact. By virtue of (iii) £ (Comp. w,)
is compact and hence has an open complement N, in fi, . . Since
N, = £(w,) and 2,€ N, , (iv)a follows as supplemented.

The proof of (iv)b is similar.

Thus (iv) is true and the proof of Theorem 23.1 is complete.

Retracting Deformations. We shall establish the homotopy
theorem in the general setting of retracting deformations (see
Borsuk [1]). Several definitions are needed (see Crowell and Fox [1],
pp. 54-60).

Definition 23.1. A Retracting Deformation D. Let Z be a
topological space (Hausdorff) and B a nonempty subspace of Z.
Let 7 be a variable, termed the time, with domain [0, 1]. A continuous

mapping
(p,7)=>D(p,7): Zx[0,1] >2Z (23.8)
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will be called a deformation D retracting Z on itself onto B if the
following conditions are satisfied

(A):  D(p,0)=p pez,
(A): D(p,1)e B peZ, (23.9)

(A):  D(p,7)=p (p,7)€B Xx[0,1].
For each p € Z the partial mapping
r—=>D(p,7) =D*r): {0, 1] — Z, (23.10)

introducing D?, is called the deformation arc of p. For each = € [0, 1]
the partial mapping

?—=>D(p,7) =Dy(p): Z—Z, (23.11)

introducing D, , is called the r-mapping of Z into Z. A retracting
deformation D each of whose r-mappings D, is 2 homeomorphism
will be said to be fsotopic.

Condition (A,) requires that the “initial”” mapping D, of Z into Z
be the identity. Condition (A,) requires that the ‘“terminal’’ mapping
D, be into B. Condition (A;) requires that the deformation arc of a point
p € B have p as carrier.

Retracting deformations may have some, none, or all of the following
three properties:

Property P, . Each deformation arc of D is either simple or has a
point carrier on B.

Property P,. If the carriers of two deformation arcs intersect
other than in a point of B, one of these carriers is included in the other.

Property Py. Property Py is a property of D relative to a real-
valued continuous function f defined on Z. Deformations with this
property are such that if p, and p, are points in Z at the same f-level,
then

fD™r) =fD™7), O0<r<L (23.12)

We shall study deformations D retracting a subset of f, ;) onto f¢
assuming that (a, b) is an interval of ordinary values of f and that
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a and b are critical values. One could similarly study deformations
retracting subsets of f, ,; onto f®. Our homotopy theorem affirms the
existence of an ““|f-linear”” deformation D characterized as follows:

Definition 23.2. A deformation D retracting a subset Z of M, on
which f(p) > a onto f¢ will be called |f-linear if conditions (u) and (v)
are satisfied:

Condition (u). For each point peZ such that f(p) > a the
carrier of a deformation arc r—DP(r) is either an jf-trajectory
joining p to an ordinary point of f¢, or an f-trajectory joining p to a
limiting critical point of f on f2.

Condition (v). On each deformation arc r— DP?(r) of a point
P € Z, fis a nonincreasing linear function of =, constant if p € f4,

An {f-linear deformation retracting a subset Z of M, on which
f(p) < a onto f? is similarly defined.

The | Homotopy Theorem. The hypotheses of the | homotopy
theorem are as follows: There is given a ND fe C*(M,) and a closed
interval [a, b] of values of f of which @ and b alone are critical values,
taken on, respectively, by critical points 2, and 2z, with indices k, < n
and k, > 0. We assume that M, is boundedly f-compact.

Theorem 23.2.  Under these conditions there exists a unique |f-linear
deformation D retracting the set Z = fi, ,) — 2, on itself onto ¢ in
such a manner that just one f-trajectory is retracted onto each point
of f@, excepting the critical point z,, onto which the intersection with
Slap) — 2 of the bowl ascending from z, is retracted.

Note. The affirmation of uniqueness of an | f-linear deformation D
presupposes a unique ‘‘preferred” Riemannian structure S/ on M, .

In proving Theorem 23.2 use will be made of the projections pr,
and pr, of f¢ X [a, b] onto f¢ and [a, b]. If w = (¢, t) ef°¢ X [a, b],
pr; w and pr,w are defined by setting pr,w = ¢ and pryw = .
Referring to the mapping £ of Theorem 23.1, we shall verify the
following lemma.
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Lemma 231 (A) A mapping D satisfying the homotopy theorem must
have as values the points in Z

D(p,7) = QApr, 2 (p), (1 —)f(p) + 7)., (p,7)€Z x[0,1). (23.13)

(n) Conversely, a mapping D with values given by (23.13) defines a
deformation D which satisfies the first homotopy theorem.

Proof of (A). Suppose that D is an |f-linear deformation satisfying
Theorem 23.2. If a point p € Z is ordinary, that is, if p #* 2,, a point
QYp)efe X [a, b] is uniquely determined with projections

prndi(p)efe and  pr,X7N(p) =f(p)e[ab]. (23.14)

The antecedent under £ in f° X [a, b] of the deformation subarc
7— D?(7) on which 0 < 7 < 1 must then be an arc

7> QD7) = (pr; 27(p), (1 — )f(P) + ra)ef° X [a,8], O0<~ <1,

in accord with the conditions of Definition 23.2 on an |f-linear
deformation D. The formula (23.13) follows when p € Z is ordinary.

When D satisfies Theorem 23.2, (23.13) remains valid when p = 2, .
In this case we note that

QT;, x {a}) =2,, Qz,)=T; x{a}. (23.15)
Since f(z,) = a, both sides of (23.13) reduce to 2, when p = z,.

Proof of (1). Conversely, a mapping D of Z X [0, 1] into Z whose
values D(p, 7) are given by (23.13) defines a deformation satisfying
Theorem 23.2 provided the mapping D so defined is continuous.
This continuity follows at once from (iii) of Theorem 23.1, except at
pairs (p, 7) at which p = 3, . To establish the continuity of D at pairs
(2, , 7), one notes that D(2, , 1) = 2, and confirms statments 1-4:

1. The real-valued function

()= (1 —7f(p) +ra, (p,7)€Z X[0,1], (23.16)

is continuous and takes on the value @ when (p, 7) = (3, , 7).

2. The set-valued function p — pr, 2-1(p) takes on the set value
T, Cfewhenp =z2,.
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3. According to (iv)a of the proof of Theorem 23.1 the following
is true: Corresponding to a prescribed open neighborhood N, of z,
in fi,. the set pr; 27Y(N,) is an open neighborhood of 773 in f¢
arbitrarily small if N, is sufficiently small.

4. The mapping Q2 is continuous and (23.15) holds.

It follows that a neighborhood N in Z x [0, 1] of a pair (3, , 7) is
mapped by D, as defined by (23.13), into a neighborhood of 2z, in Z,
arbitrarily small if & is sufficiently small.

Thus () is true and the proof of Lemma 23.1 is complete.

Theorem 23.2 follows from Lemma 23.1 and Theorem 23.1.

Note. An |f-linear deformation D retracting fi, ,) — 3, onto f° has
properties P, and P, and property P, relative to f.
If for an arbitrary value o of f one sets

fo={peM, | f(P) < o}, (23.17)

one obtains a basic corollary:

Corollary 23.1.  Under the hypotheses of homotopy Theorem 23.2
there exists a unique deformation D' (termed |f-linear) retracting
fo — =, onto f, , under which f, y1 — 3, is deformed as in Theorem 23.2
and points in f, remain fixed.

It is clear that in the homotopy theorem and its corollary the roles
of a and b can be interchanged. If one sets

fu+ ={peM,|f(p) = o}, (2318)

one is lead to a deformation (termed 1f-linear) retracting f,+ — 2,
onto f,+ and similar to the |f-linear deformation of Corollary 23.1.

The Sequence of Critical Values. We are assuming that there is
given a ND fe C*(M,) and that M, is boundedly f-compact.
The case in which M, is compact is included. There are two other
conditions on M, less restrictive than compactness but more restrictive
than bounded f-compactness. These conditions are defined as follows:
If for each value a of f, f, is compact, M, is termed f-compact below.
If for each value « of f, f,+ is compact, M, is termed f-compact above.
If M, is f-compact below and above, M, is compact.
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We shall suppose for the present that each critical value a of f is
taken on at just one critical point z, (cf. Lemma 22.4).

If M, is compact, the critical values of f form a finite sequence
ay < a; < *+ < a, with at least two critical values. If M, is f-compact
below, the critical values form a sequence

a < a <a; < - (23.19)

which may be finite but has at least one critical value. If M, is
f-compact above, a similar descending sequence of critical values
exists. If f is boundedly f-compact, the critical values (if any exist)
form a sequence

e < a_g < a.y < a, < a < a, < vy (23.20)

which may terminate on the right or on the left. The sequence (23.20)
may be empty or have just one critical value.

A Supplement to Corollary 23.1. In the sequence (23.20) of
critical values of f there can be a maximum (or minimum) critical
value @ which is not a maximum (or minimum) value of f on M,, .
Consider the case in which @ is a maximum critical value. In this
case M, can be retracted down onto f,, but not by means of
Corollary 23.1.

Hypotheses of Theorem 23.3. To cover the above case, suppose
that [a, b) is an interval of values of f of which a alone is critical and
is taken on by a single critical point 2, . The number b may or may
not be a value of f. As in Theorem 21.1, b may be equal to + co.
One assumes that M, is boundedly f-compact, and for simplicity
that index 2, < .

Theorem 23.3 supplements Theorem 23.2:

Theorem 23.3. Under the hypotheses of the preceding paragraph
there exists a unique |f-linear deformation D retracting fi, ;) onto f* in
such a manner that there is just one f-trajectory in fi, ,) retracted onto
each point of f°, excepting the point z, , onto which the intersection with
fta.p) Of the bowl ascending from 3, is retracted.

To prove Theorem 23.3, one replaces the mapping 2 of
Theorem 23.1 by a mapping

@) —>q.1):f X [4,8)—>fun, celab), (2321)
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onto fi, ;) uniquely determined by requiring that for each g&f¢ the
partial mapping
t— (¢, ) : [4,8) > fram (23.22)

shall be an f-trajectory £, which in particular shall be closed by 2, at
t =awhengeT; .

The properties of £ were enumerated in Theorem 23.1. A similar
enumeration of characteristics of 2 follows.

Lemma 23.2. The above mapping £2 of f* X [a, b) onto fi, ;) has the
Jollowing properties:

(i) The restriction @ | (f¢ X (a, b)) is the homeomorphism I' onto
faw of Theorem 21.1.
(ii) The antecedent of z, under Q is the subset T;, X {a} of f° X {a}.
(iii) The restriction of 2 to Sta,p) — 2, is @ homeomorphism onto

f° X [a,8) — (TS, x {a}). (23.23)
(iv) The mapping Q is continuous.
The proof is similar to that of Theorem 23.1.

Proof of Theorem 23.3.  As in the proof of Theorem 23.2, a mapping
D satisfying Theorem 23.3 must have values given by the formula
(23.13) with Q in place of 2 and

(p 7) € fray X [0,1].

Conversely, a mapping D so defined will satisfy the conditions on D
of Theorem 23.3, as one shows by a similar proof.

Theorem 23.3 follows readily.

Theorem 23.3 was stated and proved as a supplement to Theorem
23.2 largely for the sake of the following corollary:

Corollary 23.2. Let a be a maximum critical value of a ND f € C*(M)
which has no absolute maximum on M, . If M, is boundedly f-compact,
there exists a unique |f-linear deformation retracting M, onto f, in such
a manner that f,. isretracted onto f* (cf. Theorem 23.3) with b = sup f,
and points of f, are fixed.
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There is a similar corollary in which minimum and inf f, respec-
tively, replace maximum and sup f, while f, and f,+ are interchanged.
The retraction is {f-linear.

The Determination of Homology Groups of M, . As will be seen
in Part III, if there is a deformation retracting a topological space Z
onto a subspace B, the singular homology groups on Z of the
different dimensions are isomorphic to the singular homology groups
on B of the corresponding dimensions. In the terminology of
Corollary 23.1, the gth singular homology group on f, is isomorphic
to the ¢th singular homology group of f, — 2, . Hence to determine
the homology groups on f; , up to an isomorphism, from those of f,
it is merely necessary to determine the effect on the homology groups
of adding the critical point 2, to f, — 2, . This problem will be
solved in Part III.

Suppose that a ND fe C*(M,) is given and that M,, is ‘“‘f-compact
below.” There is then a sequence of critical values ¢, < @, < a, < **
of f which may be finite or infinite in number. Let 2, be the critical
point at the f-level a, . It will be seen in Part III that the homology
groups of f, — 2, are isomorphic to those of an n-ball. Bases for the
homology groups of

fal - ’fal vfa, — 2y rfa, vfa, — 23 »fa, yees

are then successively determined, making use of Corollary 23.1 and
theorems of Part III on the effect of adding 2, to f, — 2,.If a, is a
maximum critical value but not a maximum value of f on M,, , then,
up to an isomorphism, the homology groups of f, are those of M,
by virtue of Corollary 23.2.

The condition in the theorems of this section that a critical value a
of a ND f e C*(M,) be assumed at just one critical point was imposed
for simplicity of statement and proof and not at all for logical neces-
sity. In fact, the mechanism preceding this section is admirably
adapted for a treatment of the case where this condition is not
imposed. Corresponding to an M, which is boundedly f-compact
and to a critical value a of f we now denote by z, the finite set of
critical points at the f-level a. The Homotopy Theorem 23.2 is replaced
by Theorem 23.4.
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Hypotheses of Theorem 23.4. There is given a ND fe C*(M,)
with M, boundedly f-compact and an interval [a, b] of values of f
of which a and b alone are critical.

Theorem 23.4.  Under these conditions there exists a unique |f-linear
deformation D retracting the set Z = fi, ;) — 2z, on itself onto f* in
such a manner that just one f-trajectory is retracted onto each point of
@ excepting the points of z, . Onto z, € z,, the intersection with fi, ,) — z,
of the bowl ascending from z, is retracted.

A Substitute for Manifold Triangulation. The scope of theorems
of this section is greatly enlarged by the following theorem:

Theorem 23.5. Corresponding to a prescribed, connected, noncompact
C®-manifold M, there exists a ND fe C°(M,) with the following
properties:

(1) For each value a of f, f, is compact.

(ii) The function f has a point of absolute minimum and no other
critical point of index 0.

(iii)  The function f has no critical point of index n.

Whitney’s theorem in an extended form (Whitney [3], p. 113) states
that M, can be C*-embedded as a closed subset of some Euclidean
space E,, . It is accordingly sufficient to establish Theorem 23.5 for
the case in which M, is a closed regular C*-manifold M, in a
Euclidean space E,, . By Theorem 6.1 there exists a point a€ E,,
which is neither on M, nor a focal point of M, . The function

x_)q’(x)::”a_x“) .‘X’EM”,

satisfies the conditions of Theorem 23.5 except at most for conditions
(ii) and (iii).

By the methods of Morse [9] used to establish the existence of
polar ND functions, ¢ can be modified by the elimination of critical
points so that each condition of Theorem 23.5 is satisfied.

The set f, affirmed to exist in Theorem 23.5 has no other boundary
in M, than f¢, and if a is an ordinary value of f, this boundary is a
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compact C*-manifold of dimension » — 1. Although the homology
groups of M, may have infinite connectivities, each subspace f, will
have finite connectivities, as we shall see,

The representation of M,, by means of the subsets £, of M,, in which
a takes on the successive critical values of f is useful in the general
study of homotopy and homology on M, . It naturally replaces the
classical representation of M,, as a “triangulated” complex.

Homotopy Types. The Homotopy Theorem 23.2 has as corollary
an illuminating interpretation in terms of “homotopy types.”” We were
led to this interpretation by Theorem A of Bott [3]. Our statement
of Corollary 23.3 differs from Bott’s Theorem A in that the closed
k-cell “attached” by Bott to the sublevel set f,_, is here taken as the
(e, k)-dome of the k-bowl descending from the critical point p, .
This (e, k)-dome will be defined, together with other terms which
are needed.

Definition 23.3. Homotopy Type. Inaccord with Hilton ([1], p. 3),
let X and Y be two nonempty Hausdorff spaces and 4 : X — Y and
g : Y — X be two continuous maps into Y and X, respectively, such
that go s : X — X is deformable on X into the identity map of X
onto X and Aog: Y — Y is deformable on Y into the identity map
of Y onto Y. Such maps, & and g, are termed homotopy equivalences,
and spaces X and Y so related are said to have the same homotopy type.
When X and Y have the same homotopy type one writes X ~ Y.

The relation ~ is reflexive, symmetric, and transitive (see
Hilton [1]).

If ¥ C X and if there exists a deformation D (Definition 23.1) whose
“terminal”’ mapping D, retracts X on X onto Y, it is trivial that
X ~ Y. Homotopy equivalences sufficient to establish the relation
X ~ Y can be taken, respectively, as D, and the inclusion map of ¥
into X.

Notation. Let f be given on M, , as throughout this section.
The value a of f is assumed critical, and p, the only critical point
at the f-level a. Suppose that the index & of p, is such that 0 < k2 < n.
Suppose e > 0 and that with a — e < a < ¢ the interval [a — e, ]
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contains no critical values other than «. It follows from Theorem 23.2
that there exists a deformation retracting f, onto f, , so that

fo~f. (23.24)

Definition 23.4. The (e, k)-Dome with Summit p,. 'Turning to
Definition 22.2, let B_(p,, k) be the k-bow!l descending from p, .
This bow! has a subspace

N =B, (ps, k) ={geB(pa, k) |a = f(q) = a—e}, (23.25)

which will be called the (e, k)-dome with summit p, . The (e, k)-dome
with summit p,, is a topological k-ball  on which f assumes an absolute
maximum a at p, . The topological (¢ — 1)-sphere By which is the
geometric boundary of 7 is the set

Bn =nnf (23.26)
One terms the set

Jae U (23.27)

the sublevel set f,_, with the (e, k)-dome 7 ““‘attached” to f,_, along By
by the inclusion map of By into f,_, (see Bott [3]).

Corollary 23.3. Let the constants a — e < a < ¢, the critical point
Pa» and the index k of p, be conditioned as above. One then has the
homotopy relation

fa—a v nek zfc s 0<k< n, (23.28)

where % is the (e, k)-dome with summit p, .

Proof. The relation (23.24) holds as a consequence of Theo-
rem 23.2. Because of the transitivity of the relation ~, (23.28) will
follow if (23.24) is supplemented by the relation

Joe UnF =1y (23.29)

We shall see that in a proper notational context (23.29) is an elementary
consequence of Theorem 21.1.
The relation (23.29) may be inferred from the following lemma:
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Lemma 23.3. If constants a — e < a < c are conditioned as above,
and if 0 < € < e, then the following is true.

(i) There exists a deformation D’ retracting f, . JnF*ontof, .\ k.

(it) If € > O is sufficiently small there exists a deformation D" retract-
lng fa onto fa—c v ntk'

Notation for the proof of Lemma 23.3 (ii). Use will be made of the
special local coordinates %, ,..., %, introduced in Theorem 22.2. The
critical point ¢ of Theorem 22.2 is identified with the point p, of
Lemma 23.3. We refer to the presentation (from (22.12))

(F:D,,X)e 2M, (23.30)
of the neighborhood X on M, of p, = ¢, and to the quadratic form
OWw) = —u® — - —w2 +ud, + - +u,’ (23.31)

on the right of (22.13). For simplicity we suppose that f(¢) = 0, so
that for ue D, , (f 3 F)(u) = O(u).
In the n-plane E,, of the coordinates #, ,..., #,, we introduce the solid
n-cone A on which
_u12 —_ - uk2 + 2(“§+1 + b + unz) < 0- (23-32)

On the (n — 1)-cone A’ bounding 4,

—u? = — w2y + o+ 0 =0. (23.33)

For arbitrary positive e the sets
A, ={ueA|0=0() > —e (23.34)
A, ={ued |10 =2Q(u) > —¢ (23.35)

are well-defined.

The geometric boundary BA, of A,. Let O—¢ be the nonsingular
(n — 1)-dimensional quadric manifold on which Q(x) = —e. We
introduce the subset,

A =ANnQ* (23.36)

of O~*. One then has
BA, = ALu AL, (23.37)
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An ample conception of these sets can be obtained by diagramming
these sets in the special cases in whichn = 3and k = 1 or 2.

A First Retracting Deformation. Let m, be the coordinate k-plane
of E, on which u,,, = -+ = u, = 0. We introduce the origin-
centered k-disk

d} =fuem 0 >0 > —¢ (23.38)
on m, . There exists a retracting deformation
A, —>Avdf (23.39)

of 4, onto the right side of (23.39). The trajectories of this deformation
can be taken as subarcs of straight lines orthogonal to 7, . Under the
deformation (23.39) each point of 4, U d,* is fixed, while each point
of A,, not on A; U d¥, moves on its trajectory to a point of A, U d,¥
at a velocity equal to the distance to be traversed.

If ¢ > 0 is sufficiently small,

A.CD, (23.40)
[D, from (23.30)]. As a consequence F(d/*) is well-defined, and
7 = F(d*). (23.41)
It follows then from (23.39) that there exists a retracting deformation
F(A) = F(A) vt (23.42)
of F(A,) onto the right side of (23.42).

A Second Retracting Deformation. We affirm that there exists a
retracting deformation D*

Jo— fae VF(A,) (23.43)

of f, onto the right side of (23.43).

Under D* the point p, is fixed. Apart from this condition the
deformation D* is definable in terms of f-trajectories. The definition
is rendered simple by the fact that the only arcs of f-trajectories in X
with initial points on f¢ — p, and which meet the boundary of F(A4,)
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are those whose images under F-! are hyperbolas orthogonal to the
level manifolds of Q (see §22).

Since F(A;) in (23.42) is a subset of f*—* and so is pointwise fixed
under the deformations (23.42) and (23.43), the existence of the
deformation D" of Lemma 23.3(ii) may be inferred from the existence
of the deformations (23.42) and (23.43). The figure when 7 =2 and
k =1 is helpful.

This completes the proof of Lemma 23.3(ii).

Proof of Lemma 23.3(i). A deformation D’ retracting the first of
the sets

A =fHU")ek, B=fa—aU1hk

onto the second will now be defined. One should refer to Theorem 21.1
for essential background.

The value of f at an ordinary point p of f will be called the f-
coordinate of p. Under D’ the point p, = ¢ shall remain fixed. A point
p €f._. shall be deformed on the f-trajectory A, meeting p, moving
in the sense of decreasing f. Let p, be the point in which A, meets
fa—e - As the time 7 increases from 0 to 1 the f~coordinate of the deform
of p shall decrease at a constant rate such that the deform of p reaches
p, when the time r = 1.

A point penk at which f(p) = O(—e) is in f,_,, so that the
deformation arc of p is already defined. A point p € 9% such that f(p)
divides the interval [Q(—e¢), 0] in a ratio p between 0 and 1 shall be
deformed on the f-trajectory A, meeting p into the point p, on A,
whose f-coordinate divides the interval [Q(—e), 0] in the above ratio p.
The rate of decrease of the f-coordinate of the deform of p on A, shall
be constant and such that p, is reached when » = 1.

It is seen that D’ is a continuous deformation retracting 4 onto B.

The proof of Lemma 23.3 is complete.

Corollary 23.3 follows.

«Handlebodies.” This is a term associated with a process P used
in §13 of Morse [1] in 1925 to pass from f,_, to f,,, when e >0 is
sufficiently small and p, is the only critical point of f with critical
value on the interval [a — ¢, a + ¢]. We shall show how the process P
is related to the process P, of attachment of the (e, k)-dome 7 of (23.25)
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to f,_, to form f, , U 5 in (23.27). Briefly, P attaches a ‘‘thickened”
7, say n*, to f,_, along f2—¢ N n*. We shall be more explicit.

Recall that in the process P, n was attached to f,_, along the
boundary Bn = n N fo* of n. To “thicken” the (e, k)-dome the
process P replaces n by a cellular neighborhood N of p, relative to
Cl( fo+e — fae) as follows. The neighborhood N is the image on M,
under a homeomorphism @ into M, of a product X* x Yn* of
closed Euclidean balls of dimensions % and n — &, respectively. Thus

N = ®(X* x Y*¥),  d(origin) = p, .
If 0 is the center of Y”—*, @ is to be such that
5 = O(X* x {0}) C N.
N is to be “‘attached” to f,_, along the set
Zn1 = N foe = G(BXE x Y™ ¥)
by the inclusion map of Z*! into f,_,, and be such that
fn = BEX* X {0}) C 21,

The boundary of f,_,U N is an (n — l)-manifold. Without
modifying f,_, and without altering N or f,_, U N topologically one
can so choose N that the boundary of f,_, U N is a differentiable
manifold and f,,, admits an isotopic deformation whose deformation
arcs are f-trajectories and which retracts f,,, onto its homeomorph
fae U N.

In Morse [1], Section 13, on “Incidence relations between the boundary
of D, and the remainder of the complex f < ¢ + €% e® replaces the
above e and there is a detailed definition of the above cells and their
incidence relations. In the abstract case which concerns us here the
incidence relations are the same. The special coordinates %, ,..., u, of
Theorem 22.2 and the isometry between the domain D, of these coor-
dinates and the range X of the presentation (F : D, , X) of Theorem
22.2 make the above process P particularly simple.

One can extend the above construction.

Suppose that there are » ND critical points at the f-level a (cf. §39)
each with index k. If e > 0 is sufficiently small, disjoint neighborhoods
N, ,..., N, of the respective critical points can be defined as above
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and attached to f,_, along disjoint ‘“‘thickened’ topological (¢ — 1)-
spheres, Z77,..., Z7), of fo- to form what is termed a handlebody

Jars W (N U U N;) Cfate

of index k based on f,_, .

Smale ([1], p. 374) introduced handlebodies based on an n-ball D",
He uses such handlebodies in deriving his penetrating solution of the
Poincaré problem, n > 4.

Exercise 23.1. If a ND fe C*°(M,) has just one critical value a
and if M,, is boundedly f-compact, show that there exists a deformation
D retracting M,, onto f°.

Exercise 23.2. Give a direct proof of Theorem 23.5 in the special
case in which # = 2 and the carrier of M, is an arbitrary, open,
connected subset of E, .
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§ 24
INTRODUCTION

Vector Spaces. Let ) be a commutative field with a unit element
e. An Abelian group G is called a vector space,’ G over X', if for each
re X and each g€ G an element rg € G is defined such that for
& &1 )gzeGand 7 '2Ef

(6 + &) =18, + 185, (r1 +72)g =118 + 128,
rirg) = (rra)g,  eg =g

(24.1)

Given a vector space G over X, we admit only those subgroups H
of G which are linear subspaces of G, that is, are such that rge H
whenever r€ " and g€ H.

A mapping ¢ of G into another vector space G’ over J¢ is called a
homomorphism if

Pl +28)=9(g) + (&), ££&€G, (24.2)
and is called linear if in addition
plrg) = rep(g), reld. (24.3)

The Quotient Group G/L. Let G be a vector space over a field ¢
and L a subgroup of G. Corresponding to each g € G the subset g + L
of G is called the coset L, of g in G. The cosets of G partition G. If
g €L,,then L, = L,. The disjoint cosets of G are the elements of a
group G/L, termed the guotient of G by L.

tSee Birkhoff and Mac Lane [1], Chapter VII for a detailed treatment of vector
spaces.
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Addition in G/L and multiplication by € " are defined in accord
with the respective set relations

(&a +L)+ (g +L)=(g1+ga +L, r(g+L)y=rg+L, reX.

The null element is 0 + L = L. With this understood the following
three lemmas are readily verified:

Lemma 24.0. If G is a vector space over a field X" and L a linear
subgroup of G, then G[L is a vector space over X.
Unless otherwise stated a vector space will be understood as over X",

Lemma 24.1. If o is a linear homomorphism of a vector space G into
a vector space G’ that maps a subspace L of G into a subspace L' of G’,
a linear homomorphism o, : G|L — G'[L’ is thereby induced under which
a coset L, of G goes into the coset L., of G'.

Lemma 24.2. If o and y are linear homomorphisms, o« : G — G’ and
y: G' — G", of vector spaces G and G’ into vector spaces G' and G”,
respectively, and if restrictions of « and vy, respectively, define linear
homomorphisms L — L' and L' —L", where L, L', and L" are vector
subspaces, respectively, of G, G’, and G”, there s thereby induced a linear
homomorphism

(vo)x = yso4 1 GIL > G"JL".

Proof. Lemma 24.1 implies that for g € G the coset L, of G goes
into the coset of G” of form (ya),L, = L,y = vsLuy = yxoxl,.

Generators. A set (u) of non-null elements in G is called linearly
independent or free if no element v € (#) equals a finite linear com-
bination with coefficients in J¢" of elements in (), v deleted. If each
element of G is a finite linear combination over " of elements of (),
then the elements of (u) are called generators of g. If in addition the
elements of (u) are free, (u) is said to be a base for G.

One proves readily that if G has two finite bases (x4, ,..., #,) and
(v1 5.y v,), then 7 = m. One terms the number of elements in a
finite base for G the dimension of G. If G is not trivial and has no finite
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base, the dimension of G is said to be infinite. If G is trivial, its
dimension is said to be zero and it is said to have an empty base.

If there is a biunique linear homomorphism « of one vector space G,
onto another G, , a base of G, is mapped by « onto a base of G, .
The inverse o~ is then a biunique linear homomorphism of G, onto G,
and G, and G, are termed isomorphic. Trivial vector spaces are
regarded as isomorphic. Vector spaces over ¢~ with finite dimensions
are isomorphic if and only if their dimensions are equal.

We record a definition:

Definition 24.0. Reduced Representations. A representation
g=nru+ - +ru,, reX, weG, (24.4)

of a non-null element g € G will be called reduced if no r, = 0 and if
the elements , ,..., #, are linearly independent over J¢".

The Existence of Bases. A vector space G may be defined by giving
a base for G. More generally, it can be shown by Zorn’s lemma that
every vector space has a base (see Bourbaki [2], p. 147). In the most
important cases bases are finite and their existence follows from the
definition of G. The following lemma is needed in the singular
homology theory:

Lemma 24.3. Let G be a vector space generated by a base u and g a
non-null element of G. There then exists a base for G which contains g.
By hypothesis g has a reduced representation of form (24.4) in
which the elements u, ,..., %, belong to the base u. The elements of u,
with u, replaced by g, then form a base for G, as one readily verifies.
The following definition is needed:

Definition 24.1. Direct Sums of Vector Spaces. Let G, and G, be
vector spaces with no element in common other than the null element:

(i) A vector space G with a base which is the union of bases of G,
and G, is called the direct sum

G=0G, oG, (24.5)
of G, and G, .
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(ii) Equivalently, a vector space G is the direct sum of vector
subspaces G, and G, if each element 2 € G has a unique representation

3=2+23, =26, 2cG,. (24.6)

We turn to an abstract homology theory with a generality sufficient
for our purposes:

An Abstract Homology Theory. Let K be a collection of formally
distinct elements o2, called g-cells, each assigned an integer ¢ > 0
called its dimension. The cells of dimension g serve as generators over
A of a vector space denoted by C(K, X'). These generators are
supposed free in that each finite subset of cells o2 of the same dimension
is supposed free. For us the field J¢, although arbitrary, is
invariable unless otherwise stated, and we shall denote C (K, X") by
C/K). Elements in C(K) are called g-chains of K. For ¢ <0 we
understand that C(K) is the trivial Abelian group.

The Boundary Operator . For each nonnegative integer ¢ there
is given a linear homomorphism

0 : C(K) = Co4(K), (24.7)
more explicitly denoted by 9, . It is required that
8,4(0%) =0, xeC/K). (24.8)

One writes (24.8) in the form d(dx) = 0, and one refers to the
collection of conditions (24.8) as the condition 89 = 0.
If o is a O-cell, 9o is the null element in C_,(K).

Definition 24.2. Admissible Complexes K. A collection of abstract
cells 02 and an operator 9 satisfying the preceding conditions will be
called a o-structured complex K over X" and termed admissible.

We now define certain subgroups of C,(K) essential for a homology
theory, admitting only those subgroups of C,(K) which are ‘“‘sub-
spaces” of C(K).

Definition 24.3. The Subspace Z,(K) of g-Cycles. A g-chain
x € C)(K) is termed a g-cycle if éx = 0. Since the homomorphism &
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is linear by hypothesis, 7(9x) = 9(rx) for eachr € ", so that d(rx) = 0
if ox = 0. It follows that the ensemble of g-cycles is a linear subspace
Z(K) of C(K). Each 0O-chain is a 0-cycle.

Definition 24.4. The Subspace B,(K) of Bounding q-Cycles.
A g-cycle x? is termed bounding or homologous to 0, written x2 ~ 0,
if x2 = 0x**! for some (¢ + 1)-chain x¢*1, The subgroup of Z(K)
of bounding g-cycles is linear and is denoted by By(K). If g-cycles
x? and y? are such that x2 — y? ~ 0, one writes ¥ ~ 7, and says that
x? is homologous to y2.

Definition 24.5. The Homology Group H,(K). The quotient group
H(K) = Z(K)|B(K) (24.9)

is a vector space over ¢ (Lemma 24.0) and is called the gth homology
group of K. For ¢ < 0, H(K) is trivial. The cosets of Z (K) are called
homology classes.

Definition 24.6. The qth Connectivity R, of K. If a homology
group H,(K) has a finite dimension, this dimension is called the
gth connectivity R (K) of K. If the dimension of H(K) is not finite,
one says that R (K) = oo.

Definition 24.7. Homology Prebases for K. Any subset of Z(K)
which contains just one g-cycle from each homology class of some
base for H (K will be termed a homology prebase for K of q-cycles.

If b,(K) is a homology prebase for K of g-cycles, no proper linear
combination over X~ of g-cycles of by(K) is homologous to zero, or,
as we shall say, b(K) is free homology-wise. Moreover, each g-cycle
is homologous to a linear combination over X" of g-cycles of by(K),
or, as we shall say, by(K) is generating homology-wise.

Any subset of Z(K) which is both ‘‘free” and ‘‘generating”
homology-wise contains just one g-cycle in each homology class of
a uniquely determined base for H (K) and so is a homology prebase
for K of g-cycles. If R(K) is finite, the number of elements in a
homology prebase for K of g-cycles is R (K).
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Homology prebases should not be confused with bases for homology
groups.

Induced Homomorphisms «,. Let there be given two admissible
complexes K’ and K.

Definition 24.8. 0-Permutable Chain-Transformation. A set of
linear homomorphisms

a: CK') > C{K"), q=0,1,.., (24.10)
such that 9 = du or, more explicitly,
0gr® = B0y, g =0,1,.., (24.11)

will be called a d-permutable chain-transformationt K' — K". For
brevity, the set of mappings (24.10) will be referred to as the chain-
transformation « : K’ — K",

When (24.11) holds « maps a g-cycle x of K’ into a g-cycle of K".
Thus « defines a linear homomorphism Z(K') — Z(K") for each g.
Moreover, « defines a linear homomorphism B (K') — B,(K") for
each ¢, since whenever a ¢g-cycle x of K’ is bounding ax is bounding,
as (24.11) implies, From Lemma 24.1 one can thus infer the following:

Theorem 24.1. A 0-permutable chain-transformation o : K' —K"
induces linear homomorphisms

ay: H(K') - H(K"), ¢=0,1,., (24.12)
under which a homology class of a g-cycle x of K' goes into the homology
class of the g-cycle oux of K".

We point out a consequence (24.13) of Lemma 24.2.
Let K’, K” and K” be three ‘‘O-structured abstract complexes”
and let

a: C{K')— C{K"), q=0,1,..,
and
y: C(K") — C(K"), q=0,1,..,

1 See Eilenberg [1], p. 411. Strictly, « should bear a subscript ¢ in (24.10).
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be 0-permutable chain-transformations. Then the composite mapping
yo is 0-permutable, since d(ya) = yda = (ya)0. There are induced
linear homomorphisms,

ay : H(K') = H(K"), yx: H{K")—> H(K"), (yo)y: H(K")— H(K").
Moreover, it follows from Lemma 24.2 that
(Yo)x = Vaox « (24.13)

It should be observed that an identity chain-transformation
a: K — K induces an identity homomorphism o, of H(K).

Definition 24.9. Geometric Simplices a°. Let

20, 20 30 g >0, (24.14)

be ¢ + 1 points in E, with ¢ < n. If these points do not lie in a
(g — 1)-plane, the set of points x € E,, with vectorial representations

% = pgx® 4 patD e o xt0) (24.15)
where the parameters y, , y, ..., g, are subject to the conditions
Botm+ +p=1 0<p<l, (24.16)

is called a geometric simplex a? with vertices (24.14). The simplex a?
is independent of the order in which its “vertices” (24.14) are given
and is to be distinguished from an ordered simplex presently to be
defined.

Any subset of r 4 1 distinct vertices of a?, 0 < r < ¢, determines
a geometric r-simplex, called an r-face of a?. If v is any integer in the
range 0, 1,..., ¢ and if

xO p)#0 xl@) q >0, (24.17)

denotes the subset of the vertices (24.14) of a? with x deleted, the
geometric simplex with vertices (24.17) is called the (¢ — 1)-face of a?
opposite the vertex x*). As a polyhedron (see §25), an n-simplex shall
be regarded as including all of its faces.
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Definition 24.10. Ordered Simplices. When ¢ > 0 a geometric
simplex a? whose vertices p; have been assigned a definite order (see
Eilenberg [1], p. 420) py < p; < *** < p, will be termed an ordered
g-simplex and denoted by

$ = popy " by = 5. (24.18)

For notational reasons we do not ordinarily write s as 9, although s is
understood as having the dimension g. We term a? the carrier of s
and write |s| = a% Wheng =0 wesets = |s| =p,.

When ¢ > 0 the ordered simplex

@) =po PPy, 0<i<yg, (24.19)

obtained by deleting the vertex p; from s is called the ith face of s.
The symbol s(7) is used for no purpose other than to represent the ith
face of s.

To give a definition of the algebraic boundary s of an ordered
simplex s, let I, ¢ >0, denote the Abelian group (with integral
coefficients) generated by the set of all distinct ordered g-simplices
in all Euclidean spaces E, of all dimensions, subject to the following
convention as to distinctness: A g-simplex given in E, shall be
identified with a simplex s’ in a Euclidean space E,- for which n’ > n
when s’ is the image of s under the mapping

(%1 yerey Xp) = (%1 4000y %, 3 0,..,,0) : E, - E,- .
With I, so defined, when dim s = ¢ > 0 set*
o = (=1y s(j)e oy, (24.20)

and when dim s = 0 set 0s = 0. Let @ so defined be extended
linearly to define a homomorphism

8:T,—T,,, ¢=01,., (24.21)
understanding that I',, is the trivial group when m < 0.

A classical lemma can now be verified.

t Here as elsewhere a repeated index in a term indicates summation of the term
over the range of the index.
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Lemma 24.4. If s is an ordered simplex of dimension q = 0, then
0(0s) is the null element in I'y_, .

Proof. The lemma is trivial when dim s is 1 or 0. Suppose then
that dim s = ¢ > 1. Let 7 and % be restricted to the range 0, 1,..., ¢.
For fixed ¢

os(§) = ). (=1)*po - Bi By b
k<i
+ X (D gy B B b (24.22)
k>4

by virtue of (24.19) and the definition (24.20) of 0s. Applying 0 to
both sides of (24.20), one finds that

q q
oos) =2 Y (—1)s(i) = ¥ (—1 asGi). (24.23)
i-0 i=0

If one replaces 2s(¢) in the right side of (24.23) by the chain on the
right of (24.22), the lemma follows.

Barycentric Coordinates. Let s be an ordered simplex with
vertices

0 W oxtd 0K g <n, (24.24)

in E, in their given order in s. A point x € | s | = a? of the form (24.15)
with parameters p conditioned as in (24.16) will be said to have
barycentric coordinates p relative to s. An induction relative to ¢
suffices to prove the following lemma:

Lemma 24.5. Pointsin|s| = a? with different barycentric coordinates
relative to s are different.

Theorem 24.2 below requires the following definition: A mapping
H of a subset X of a Euclidean space E,, onto a subset Y of a Euclidean
space E,, will be termed A-linear if whenever H maps points x and x’
in X, respectively, onto points y and y’ in E, , H maps the point'

t We are representing a point by a vector whose components are the coordinates
of the point.
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Ax + (1 — X)x’ onto the point Ay + (1 — A)y" for every choice of A
in the interval [0, 1].

Theorem 24.2. Let a? and b%, q > 1, be geometric simplices in E,
and E,, which are carriers of ordered simplices s, and s, , respectively.

A mapping of a® onto b? in which points of a? and b¢ correspond if
they have the same barycentric coordinates is a A-linear homeomorphism
of a% onto b2 .

That this mapping is biunique follows from Lemma 24.5. That it is
A-linear is formally verified without difficulty.

To show that this mapping is bicontinuous, we introduce a model
geometric simplex ¢? in E,,, which is the carrier of an ordered simplex
s, whose vertices have coordinates #, ,..., ¥,,, in E,,, given by the
successive rows of the unit (¢ + 1)-square matrix. The representation
of points y € ¢? in terms of their barycentric coordinates relative to s,
takes the special form

y= (P1100sYar1) = (o s 11 5000 He)-

The theorem is true if a? is replaced by ¢2. This follows from the
fact that the mapping of ¢%, onto b of the theorem, is biunique and
continuous and ¢? is compact. Since there is a similar A-linear homeo-
morphism of ¢? onto 4%, Theorem 24.2 follows as stated.

We term the mapping of a? onto 4? affirmed to exist in Theorem 24.2
a barycentric homeomorphism.
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MODEL POLYHEDRAL COMPLEXES P

Singular simplexes and complexes will presently be defined. This
section is concerned with certain model polyhedral complexes whose
continuous images in a Hausdorff space y will be useful in singular
homology theory. Among polyhedra are prisms with the aid of which
model chain homotopies will be defined.

One starts with a simplicial #-polyhedron P in E,_, m > n >0,
defined as the union of a finite set of geometric #-simplices in E,, no
two of which intersect other than in a common face of dimension
less than n. Recall the convention that a geometric simplex, as a
polyhedron, includes each of its faces.

Given an n-polyhedron P we shall define a d-structured complex P
over X', based, as we shall say, on P, terming P a model polyhedral
complex. To that end, we must define the cells of P, and on P a
boundary operator @ such that 96 = 0.

Definition 25.1a. The Cells p? of P. A g-cell of P is any ordered
g-simplex p? whose carrier is a geometric simplex a2 of P. Two g-cells
of P are regarded as identical if and only if their carriers are the same
geometric simplex a? and their vertices have identical orderings.

Definition 25.1b. The Boundary Operator & on P. For each g¢-cell
p? = s of P 0p? is defined as was 9s in §24, with 41 = fe in X,
as an element in C,_,(P). The operator 0 is extended as a linear
homomorphism

0:CP)—> Coy(P) over X,
215
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It follows from Lemma 24.4 that 9(éx) = O for each g-chain of
C,P). This completes the definition of P as an admissible o-struc-
tured #-complex ‘“based” on the n-polyhedron P.

Carriers of Chains of P. A non-null g-chain #? in C,(P) admits a
unique “reduced representation” (Definition 24.0)

ul = ryp, 0 + 0+ 7,09, p acellof P.

When 9 is so represented the carrier | 42| of #? is defined as the set
(see Example 25.1):

lut] =g |V -V lp?] (25.1)

Definition 25.2. The Geometric Boundary B8P of P. By BP weshall
mean the (# — 1)-polyhedron which is the union of those geometric
(n — 1)-simplices of P which are faces of an odd number of
n-simplices of P.

Definition 25.3. The Star P, of a Vertex v of P. Given a vertex
v of an n-polyhedron, n > 0, let P, be the closed subpolyhedron of P
which is the union of the geometric simplices (closed by definition)
which are incident with v. Let P, be the subcomplex of P based on P, .

Definition 25.4. The Outer Complex of P,. The union of the
geometric simplices of P,, not incident with v, is an (n — I)-
polyhedron called the outer boundary P, of P,. The complex based
on P, is termed the outer complex of P, . The outer complex of P, is a
subcomplex of P of dimension n — 1.

Definition 25.5. Vertex- Joins in P. Let p?, 0 < ¢ < n, be a g-cell
of the “outer complex” of P,. Let Join v p? denote the (¢ + 1)-cell
of P whose ordered set of vertices are those of p? preceded by v.
If ¢ = 7,0, is a chain of the outer complex of P, , set

Join v ¢ = r; Join v p4, 0<g<n (25.2)

Join v cis a (¢ + 1)-chain of the complex based on P, .
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Lemma 25.1. If P, is the star of a vertex v of P and ¢ a g-chain of
the outer complex of P, , then for 0 < g <n

9 Join v ¢ = ¢ — Join v dc. (25.3)

Formula (25.3) is clearly valid if ¢ is a g-cell of the outer complex
of P,. Relation (25.3) follows when ¢ is a g-chain 7,02 of the outer
complex of P, , on taking account of the permutability of 7, with & and
with Join o regarded as a linear operator.

We draw the following conclusion:

Lemma 25.2. Any g-cycle of the outer complex of P, for which
0 < q < n is bounding in the complex based on P, .

Barycentric Subdivision. A geometric g-simplex is a simplicial
g-polyhedron. Its barycentric subdivision b(a?), as we shall define it,
is another simplicial g-polyhedron, essential as a model in building
the singular homology theory.

Definition 25.6 b(a™). Set b(a®) = a®. Proceeding inductively,
suppose that » >0 and that for each integer m on the range
0,1,2,.,n— 1 b(a™) has been so defined that the new vertices in
b(a™) when m > 0 are the barycenters of the respective faces of a™
of positive dimensions. The induction from the case m =n — 1 to
the case m = n is as follows.

Let fy, /1, [ be the faces of a® of dimension n — 1. We are
assuming that the polyhedra

b(fo), 6(f1)seers B(f), 7 >0, @54

have been defined. Let p, = bary a® be the barycenter of a® and let
4" ! be an arbitrary one of the (» — 1)-simplices of the polyhedra
(25.4). Let | p,u"! | be the geometric simplex whose vertices are p,,
and the vertices of #"~1. The polyhedron 5(a") shall be the union of
all geometric simplices obtained in this way as #™~! ranges over the
(n — 1)-simplices of the polyhedra (25.4). One sees that this union
is a simplicial #-polyhedron and is identical as a set with a™.
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The geometric operations a? — b(a%) have algebraic counterparts
which involve complexes Join v ¢ with v a barycenter.

The Barycentric Operator B. Let a™ be a geometric n-simplex and
b(a™) its barycentric subdivision. Both 4™ and b(a™) determine
simplicial polyhedra. Complexes a” and b(4") are “‘based” on these
polyhedra. Of the linear homomorphisms of the form

Cfa”) > Cob@), ¢ =0,1,..,m, (25.5)

there is one, denoted by B, which we call a barycentric operator. The
barycentric operator B is the algebraic counterpart of the geometric
operation a™ — b(a").

Definition 25.7. The Operator B. If u® is a O-chain of a®, set
By® = u®, Proceeding inductively, when g > 0 set

Bp = Join ©(Bdp), v = bary|p]|, (25.6)

for each g-cell p of a®, assuming that Bu?-! has already been defined
for chains u9~! of a". This definition for g-cells of a® will be extended
linearly over g-chains of a”, The completion of this inductive definition
of B yields linear homomorphisms of the form (25.5).

We continue with the following lemma:

Lemma 25.3. The operator B defines a set of linear homomorphisms
of form (25.5) such that for each g-cell p of the complex a™

oBp = Bop, (25.7)
|Bp| =1pl, (25.8)

and (cf. Definition 25.2)
|Bop| =8lp| (25.9)

Verification of (25.7). When dimp = 0 (25.7) is trivially true.
When dim p = ¢ > 0 it follows from (25.6) and (25.3) that

oBp = Bop — Joinv(6B dp), v = baryp. (25.10)
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Proceeding inductively, we assume that 0Bz — Bdz when z is a
(g — 1)-chain of a™, so that in (25.10) 9B(dp) = B&(dp) = 0. Thus
(25.10) implies (25.7).

Verification of (25.8) and (25.9). When dim p = 0 (25.8) and (25.9)
are trivially true.

When dim p = ¢ > 0, 9p = (—1)%p(¢), in accord with the definition
(24.20) of os. Because of the linearity of B

Bap = (—1)t Bp(i). (25.11)

We proceed inductively. From (25.11), from (25.1), and from the
truth of (25.8) when dim p = ¢ — 1 > 0, it follows that

| Bép | =L‘)IBP(1')I=(‘)IP(1')I=I3IPI,

confirming (25.9). Note that | p | and | Bp | are convex sets.
From the definition of Bp and from (25.9) we find that in case
dimp >0

|Bp| =|JoinvBop| =|pl|, ©=bharyp,

confirming (25.8) and completing the proof of the lemma.

Prisms. Among the simplicial polyhedra which are most useful as
models in singular homology theory are simplicially subdivided
prisms.

To present such prisms properly, let «, ,..., x,,, t be rectangular
coordinates of a point (x,¢t) in E, Xx R=E,,, . Corresponding to
each nonempty subset w of E,, introduce the set

wee = {(x,t)e E, X R|xew,t =1} (25.12)

(co = congruent) in the m-plane of E,, on which ¢ = 1. The set
w® is congruent by orthogonal projection to w in E,, . To an ordered
simplex s in E,, there corresponds a congruent ordered simplex
s in E;?. Congruent chains and complexes with carriers in E,,
and E;? are similarly defined.

We shall consider prisms given as products @ X I, where w is a
geometric n-simplex in E,, , n << m, I the interval [0, 1], and

wXxI={xteE, X R|xew,tel).
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To the lower base w of the prism corresponds the upper base we°
projecting onto w. If a is a ¢g-face of w with ¢ <=, weterma X I a
lateral face of the prism w X I. The lateral face a X I has its lower
base a and its upper base a*°.

A First Subdivision P'(w) of w X I. Given the prism w x I,
neither of the bases w and w is to be subdivided. The lateral faces
a X I of w x I are to be simplicially subdivided in the order of their
dimensions, beginning with 1-faces. Each lateral 1-face is to be divided
into two geometric l-simplices by its barycenter. Thereafter the
lateral faces @ X I are to be simplicially divided in the order of their
dimensions by adding a barycenter p to each face a X I and dividing
a X I into simplices which are radial joins of p with the already
subdivided lateral faces of @ X I. This process extends to w X I, so
that P’'(w), the subdivided prism, is a union of n-simplices joining
the barycenter of w X I to the (n — 1)-simplices of the subdivided
boundary of w x I. Neither a nor a°® has been subdivided.

Another Subdivision P"(w) of w X I. To define P"(w), lateral faces
of w X I, including their upper bases but not their lower bases, are
to be subdivided in the order of their dimensions, taking the bary-
centers of the lateral faces and their upper bases as new vertices.
Finally, the upper base w< is to be replaced by its subdivision
(b(w))° = b(w*°) and the barycenter of w X I joined to each (n — 1)-
simplex on the already subdivided boundary of w X I.

Corresponding to the (n + 1)-polyhedra P'(w) and P"(w) the
complexes P'(w) and P"(w) are well-defined, and special linear homo-
morphisms 8 and 4, respectively, of the form

8: Cyw) = Copy(P'(@)), g =0,1,.., (25.13)
4: Cfw) > Co(P"®@)), ¢ =0,1,.., (25.14)

are to be defined.
To define a homomorphism ¢ of either of these types, one defines ¢
for g-cells p € w and extends this definition linearly over chains in w.

The Operator 8. One defines 8§ inductively by setting

8 =vp® —vp, v =bary(p| x ), (25.152)
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for each 0-cell p of w and
8 = Joino(y®® —p — 80p), v =bary(lp| xI), (25.15b)
for each cell p € w with dim p > 0.
The Operator 4. One defines 4 inductively by setting
dp = p® —vp, v =bary(p| x 1), (25.162)
for each O-cell p of w and
dp = Join o((Bp)® — p — Adp), v = bary(|p| x I), (25.16b)

for each cell p € w with dim p > 0.

The meaning of the above linear homomorphisms & and 4 is
indicated by the following fundamental theorem (cf. Eilenberg [1]):

Theorem 25.1. Corresponding to an arbitrary geometric n-simplex w
in E, , there exist linear homomorphisms 8 and 4, respectively, of types
(25.13) and (25.14), such that for each cell p in the complex w

08p = p® — p — 80p, (25.17)
04p = (Bp)e® — p — 4dp, (25.18)
1801 = lp| x I =14pl, (25.19)

and, if B(| p | X I) denotes the union of the lateral faces and upper and
lower bases of | p| X I, then

|88 = B(lp| x 1) = | odp . (25.20)
We begin by establishing (25.17). The proof of (25.18) is formally
similar, 4 replacing 8, and (Bp)°° replacing p°°.

Proof of (25.17). In case dim p = 0 the definition of & in (25.15a)
implies that
&%) = (p* — v) — (p — v) = p® —p,
as affirmed by (25.17). Proceeding inductively, we assume that

(25.17) is true for dim p =0, 1, 2,...,, # — 1 < » and prove its truth
for 0 <dimp =7 < n
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It follows from the formula (25.3) for @ Join v ¢ that when 8p is
defined by (25.15b) and dim p =7 >0

9p = (p® — p — 80p) — Join v B(p® — p — 83p).  (25.21)

By virtue of our inductive hypothesis, (25.17) is valid when p is
replaced by a chain in w of dimension on the range 0, 1,...,# — 1.
It follows that

88(3p) = (9p)e® — Bp — 88(2p) = Bp® — p (25.22)
when dim p = #, or, equivalently,
(p® — p — 80p) = 0,
so that (25.21) reduces to (25.17).

Proof of (25.19) and (25.20). We refer to the definition in (25.1) of
the carrier of a chain. Using this definition and proceeding inductively
with respect to dim p, one can establish (25.19) as a consequence of
(25.15) and (25.16). One similarly establishes (25.20) as a consequence
of (25.17)—(25.19).

In anticipation of the use of the relations (25.17) and (25.18) in
defining ‘“‘singular chain homotopies,” we term the relations (25.17)
and (25.18) elementary chain-homotopies.

Barycentric Homeomorphisms of Prisms. In applying the ele-
mentary chain homotopies of Theorem 25.1 to define singular chain
homotopies in §27, we shall make use of the barycentric homeo-
morphism H of one ordered n-simplex s onto another s*, as defined
at the end of §24.

As a matter of permanent notation we shall set s = |s| and
o* = | s* |. The homeomorphism H of s onto s* then admits an
extension which maps the subdivided prism P’(s) in E, X R onto the
subdivided prism P’(a*). In this extension the points (x, t) € P'(s) and
(x*, t*) € P'(s*) shall correspond if ¢t = t* and x* = H(x).

So extended, H maps an ordered simplex p of the complex P’(s)
onto a unique ordered simplex p* = H(p) of the complex P'(s%*).
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For each ¢ on the range 0, 1,.., 7 H thus determines a biunique
mapping (onto)

CdP'(9)) > CoP'(6¥)), o= |sl; o*=]s*].  (2523)

It is important to note that H||p| is the barycentric homeo-
morphism of p onto p* determined by the mapping by H of the
vertices of p onto those of p*.

Exercise 25.1. Prove the following: If #2 and v? are chains in P,
then |u? + o2 | C|u?| U | 22|,
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SINGULAR COMPLEXES S(x). EILENBERG

Singular ¢-Cells. Following Eilenberg [1, p. 420], we start with
vertex-ordered simplices (Definition 24.10)

$=pop1 Py ¢=01... (26.1)

We distinguish between singular simplices + and singular g-cells #, the
latter being equivalence classes of the former.

Definition 26.1. Singular q-Simplices. Let x be a Hausdorff space.
By a singular g-simplex ¢ > 0 on y is meant a continuous mapping
7 :5—> x of an ordered g-simplex s into x. Two singular g-simplices,
q=0,

7>y and ">y (26.2)

are termed equivalent, written v’ = 7”, if
T'(x') = "(x") (26.3)

whenever x’ and x” are points of s’ and s”, respectively, with the same
barycentric coordinates relative to s’ and s”.

One verifies readily that the relation 7' = +" is reflexive, symmetric,
and transitive in the class of singular g-simplices. Consequently, the
class of singular simplices in x is partitioned into disjoint equivalence
classes.

Definition 26.2a. Singular ¢-Cells. Given a singular ¢g-simplex ,
the equivalence class that contains = will be denoted by + and termed
a singular g-cell.

224
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Carriers. Given a singular ¢g-simplex 7 : s — y, we shall term the
corresponding subset 7(| s |) of x the carrier | 7| of =. Noting that
equivalent g-simplices of a singular g-cell # have the same carriers,
we shall denote this common set by | #| or | 7|, and term it the
carrier of +.

Definition 26.2b. Simply Carried Singular g-Cells. Given a sin-
gular g-simplex in yx defined by a mapping 7:s—x which is a
homeomorphism onto | T | as a subspace of y, the corresponding singular
g-cell + will be said to be simply carried.

The Ensemble S(x). Following Eilenberg, the complex of singular
g-cells with carriers on y will be denoted by S(x).

The Group C,(S(x)). For g > 0the vector spaces over ¢ generated
by the singular g-cells of S(x) will be denoted by C,(S(x)). For a
negative integer g, C,(S(x)) shall be the trivial Abelian group.

Definition 26.3. The Boundary Operator on S(x). Given the
ordered g¢-simplex s of (26.1) with ¢ > 0, recall that

S(i) = PO ot ﬁi Pq ’ Pt’ deleted) (26'4)

is the ordered face of s opposite p;, 0 < i < ¢. Given a singular
g-simplex 7 : s — y, ¢ > 0, we introduce the singular (¢ — 1)-simplices*

re=rlsG), i=0,1,2,.,¢q. (26.5)
The algebraic boundary of the singular g-cell # shall be the (¢ — 1)-
chain?

ot = (—1)#, in Coy(S(x))- (26.6)

When ¢ = 0, 9% shall be the null chain in C_y(S(x)).
It is clear that if ' = 7", then for each ¢ on the range 0, 1,..., ¢

() = i(x"), (26.7)

t The symbols s(i) and 7; of Definition 26.3 will be used exclusively in the sense
of Definition 26.3. We have set 4 = |s|.
t A repeated index ¢ here as elsewhere indicates summation of the term over the

range of 1.
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where x’ and x” are points of s'(f) and s"() with the same barycentric
coordinates relative to " and s” and hence relative to s'() and s"(i).
Hence #; = #;, so that &¢, as defined by (26.6), is independent of the
choice of 7 in its equivalence class.

The definition of the operator

9: CS() = Coa(SK), 920, (26.8)

is completed by linear extension of o as defined on the singular
g-cells # of S(x).
We shall verify a classical theorem:

Theorem 26.1.  The boundary operator acting on the chains of S(x) is
such that 00 = 0.
The theorem is trivial when ¢ = 0 or 1.

Suppose ¢ > 1. If the g-cell # is denoted by {7}, (26.6) takes the
form

ot = (=07 lpo-bi- b ¢>0.
Following the proof of Lemma 24.4 as a model, we find that
ot = T (~¥Hrelpo B By 2

k<t

+ Y (=1 Mg po o By o Pr *+ ol

k>4

By virtue of (26.6)
8(0%) = (—1y o4, dim+ > 1.

Proceeding formally as in the proof of Lemma 24.4, we infer
Theorem 26.1.

Carriers of Singular Chains. A g-chain w? of the complex S(x) over
X" admits a “‘reduced” representation

w? = 1,00 4+ + 1,09, rieX,

in terms of cells of S(x) (cf. Definition 24.0). The carrier | w? | of w2 so
represented shall be the set

|| = oy |V U [g0]. (26.9)

We shall verify the following:
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Theorem 26.2. When y reduces to a point p the connectivity
R(Sk) = 8% k=0,1,.. (26.10)

Proof. When y = p each singular k-simplex is equivalent to each
other singular k-simplex, so that for each & there is just one singular
k-cell o, If n is a positive integer, it follows then from (26.6) that
00®" = 0?1, There are accordingly no nontrivial singular 2n-cycles,
while each singular (22 — 1)-cycle is bounding. We infer the truth
of (26.10) when k& > 0.

On observing that dim Zy(S(x)) = 1 and dim By(S(x)) = 0 when
x = p, we infer the truth of (26.10) when & = 0.

This establishes Theorem 26.2.

Induced Chain-Transformations ¢ and . If P is a simplicial
n-polyhedron in E, , m > n, and y and ' Hausdorff spaces, we shall
show how continuous mappings

g:P—>y and e¢:x—%, (26.11)
respectively, induce d-permutable chain-transformations
§:P—>S(x) and ¢:Skx)— Sk) (26.12)

(cf. Definition 24.8). This notation is permanent.

Definition 26.4. g. If s is an ordered simplex of the complex P
based on P, g | s is a singular simplex on y. Its equivalence class is
denoted by [g | s]°. We set

g =[glsl (26.13)

and extend this definition of ¢ for g-cells of P linearly over the
g-chains of P, thereby defining £ in (26.12).

For each ordered simplex s € P the carrier | #s | = g(| s |) by virtue
of (26.13). For each chain u of the complex P we shall show that

| $u | Cg(lul). (26.14)

Verification of (26.14). We shall assume that the reader has
confirmed the result of Example 26.2 below.
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Suppose that the chain # of P given in (26.14) has a “reduced”
representation

u=rp + - +rp, nEX,
in accord with (25.0) in terms of g¢-cells p; of P, so that by (25.1)
lul =[p |V Vlp, ]
It follows from Example 26.2 that
[ u|Clrdpy |V VU rdpl,
so that by virtue of (26.9)
|8uiCelp NV - Velipl) =2(lul)

thereby confirming (26.14).
An equality in (26.14) would be incorrect, as examples would show.

We shall verify the following theorem:

Theorem 26.3a. The set of linear homomorphisms
§:CP) > C(SK), ¢=01L,..,

is a O-permutable chain-transformation § : P — S(x).

Let s be a cell of P. If dim s = 0, by definition &s = 0 and 8gs = 0,
so that 9gs = gos. If dim s > 0, by the definition of gs as [g | s]° and
of 9% in (26.6),

ofs = (—1)[g | ()",
(summing with respect to 7), so that
ogs = §((—1) s(i)) = 8o, (26.15)
thereby completing the proof of Theorem 26.3a.

Definition 26.5. @. Let p begivenasin(26.11). Let7:s—ybea
singular g-simplex. We set

Pt =[por) (26.16)

and extend § linearly over the vector spaces Cy(S(x)) for ¢ > 0.
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It follows from (26.16) that the carrier of @+ is g(7(| s |)), so that if u
is a g-chain of S(x)

|Pu| Coflul) (26.17)

[using (26.9) and Example 26.2].
Definition 26.5 of ¢ requires the following justification:

Lemma 26.1. The equivalence class of a singular simplex ¢ ot is
independent of the choice of 7 in +.

Proof. There are given equivalent singular simplices 7' :s" — x
and 7" : s" — x. By hypothesis 7'(x") = 7"(x") for ' €5’ and x" €5’
provided x" and x” have the same barycentric coordinates relative,
respectively, to s’ and s”. Hence (¢ o 7')(x") = (¢ o 7")(*") and the
lemma follows.

We verify a basic theorem:

Theorem 26.3b. The linear homomorphisms
?: CSK)) —~ CSKX"),  ¢=0,1,..,

induced by a continuous map ¢ :x — x" are O-permutable chain-
transformations.

To establish this theorem, it will be sufficient to show that if
T 15— y is a singular g-simplex, ¢ > 0, then dp# = @d%. To verify
this relation recall that ¢# = [p o 7]° by definition, and note that in
accord with (26.6)

opt = (—1)(p o) | s()]° = (—1)[per]°
= (=1) gt = p((—1)' ;) = pot.
The theorem follows.

The Composition of Induced Homomorphisms. Let x', x”, x” be
three Hausdorff spaces and ¢ : x' — x” and ¢ : x" — ¥ continuous
maps.
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The induced 9-permutable chain-transformations
§: CS() > CSK"),  ¢=0,1,...,
b1 CSHN) = CASH, 4 =01

o : CASG) > CASK™), ¢ =0, Lo,
are well-defined. We shall verify the lemma:

m ~
Lemma 26.2. yp = Y.
Proof. If # is a singular cell of S(x’), then by definition (26.16)

$eH) = o lpon]” = (o) ol = foh (26.18)

establishing the lemma.
Turning to singular homology groups, it follows from Lemmas 26.2
and 24.2 that

B0)x = @D)x = PaBr - (26.19)

Hausdorff spaces which are homeomorphic images of one another
are said to be topologically equivalent. Topologically equivalent
Hausdorff spaces have isomorphic homology groups. This is a
consequence of the following theorem:

Theorem 26.4. Given a homeomorphism @ : x' — x" of a Hausdorff
space x' onto a Hausdorff space x", let ® be the inverse of ®. The induced
chain-transformations

B : CLS(K) > CSK),  q="0,1,...

~ (26.20)
6: Cq(’S(X”))_> Co(SK'), qg=0,1,.,
are then inverses, as are the homomorphisms
B)e: HSG) ~ HASKD: 4 =0 L ey

O)s : H(SK')— H{SK), g ="0,1,....

Proof. ©¢ and PO are by hypothesis identity maps of x’ and x”,
respectively. It follows from Lemma 26.2 that 6P and B define
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identity homomorphisms of the chain groups of S(x’) and S(x"),

respectively. From (26.19) we then infer that (8), (), and (3),(8),
define identity homomorphisms of the homology groups of S(x') and
S(x"), respectively (cf. Exercise 26.1).

Theorem 26.4 follows.

Note. The chain-transformations § and @ induced by the mappings
g and ¢ of (26.11) are aids in deriving the chain-homotopies on S(x)
so essential in singular homology theory and its applications.

Chain-Homotopies on an Abstract Complex K. In the next para-
graphs we shall introduce concepts to be applied in the singular
theory, in particular when K is a singular complex S(x).

Let there be given an abstract d-structured complex K and a
d-permutable chain-transformation w defined by homomorphisms

w : C(K) — C(K), g=0,1,.., (26.22)
together with linear homomorphisms

Q:CK)—> Coi(K), g=0,1,... (26.23)

Definition 26.6. Chain-Homotopies on K. We say that the above
chain-homomorphisms w are chain-homotopic to the identity under 2
if for each ¢ and for arbitrary g-chains z € C(K)

Q2 = wz — 2z — 02, (26.24)

For each g we term £2 the homotopy mapping of the chain-homotopy
(26.24) and w the terminal homomorphism.
If z is a cycle and w is chain-homotopic to the identity, (26.24)

shows that
wz — 2 = 80z, (26.25)

thus implying the homology wz ~ 2.

Definition 26.7. Carriers of Chain-Homotopies. In case K is a
singular complex S(x) the carrier | Qz| of Qz is well-defined
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[see (26.9)], and we say that the chain-homotopy (26.24) is on | 2z |
or carried by | Qz |. If z is a cycle so that wz ~ 2z, we say that this
homology is on | 22 |. The carriers of chain-homotopies are of basic
importance in the topology of ND functions.

Arc-Wise Separate Spaces. If y is a Hausdorff space of the form
X=x1Vxs with 3Ny =g, (26.26)

where x; and y, are proper subspaces of y such that no point of y, is
arc-wise connected to a point of x, , we say that y is the union of
arc-wise separate subspaces y, and y,. We shall show how the
homology groups of S(x) over X" are determined by the homology
groups of S(y,) and S(xy).

Referring to Definition 24.1 of a ““direct sum” of two vector spaces,
one finds that for ¢ >0

CSx)) = Co(S(xa)) @ ColS(xa))
Z{S(x) = Z{S(x)) @ ZoS(x2)) (26.27)
By(S(x)) = By(S(x1)) ® Bo(S(x2))

(see Definitions 24.3 and 24.4) when y is the union of arc-wise
separate subspaces x, and x, . One verifies these relations in the order
written, making use of each relation to prove its successors.

The gth homology group H(S(x)) is not in general the direct sum
of the corresponding groups of S(x;) and S(x,) because the latter
homology groups are not strictly subgroups of H (S(x)). However,
on making use of the relations (26.27) and Definition 24.7 of homology
prebases of g-cycles, one has the following theorem:

Theorem 26.5. If x is a Hausdorff space which is the union of arc-wise
separate Hausdorff spaces y, and y, , then for each integer q = 0 the
union of homology prebases for S(x,) and S(x.) of q-cycles is a homology
prebase for S(x) of g-cycles.

Theorem 26.5 has a corollary of importance. It affirms that under
the hypotheses of Theorem 26.5 there exists an isomorphism

Hy(S(x)) =~ Hy(S(x1)) @ Ho(S(x2))- (26.28)
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Statement (ii) of Theorem 26.6 is a consequence of statement (i)
of Theorem 26.6 and of Theorem 26.5. A proof of Theorem 26.6
is left to the reader.

Theorem 26.6. (i) If x is an arc-wise connected Hausdorff space,
a homology prebase of singular O-cells for S(x) is provided by an arbitrary
0-cell of S(x).

(ii) If in Theorem 26.5 x, and x, are each arc-wise connected,
a homology prebase of singular O-cells for S(x) is provided by the union
of an arbitrary 0-cell in S(x,) and an arbitrary O-cell in S(x,).

Exercise 26.1. Show that the identity map ¢ of a Hausdorff
space y onto x induces the identity isomorphism ¢ of S(x) onto S(x).

Exercise 26.2. Using (26.9) show that if x? and y? are g-chains
of S(x), then

&9+ | Clat| U]y,

Exercise 26.3. Let y be a Hausdorff space which is the union of
r subspaces y; ..., x, €ach of which is arc-wise connected, but which
are pair-wise arc-wise separate. Show that Ry(S(x)) = r.
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CHAIN-HOMOTOPIES ON S(x)

In §26 we have introduced an abstract complex K and on K have
defined an abstract chain-homotopy

00z = wz — 3 — Q02, 2eC(K), ¢=0,1,.., (21.0)

of the terminal chain-transformation w into the identity chain-
transformation of K under a ‘“homotopy mapping” £.

If the complex K is S(x), there are two types of chain-homotopies
of importance for us. One is induced by deformations d of y on y
and the other by algebraic subdivisions of the chains of S(x).

Chain-Homotopies Induced by Deformations. Let d be a con-
tinuous deformation

(p,t)y > d(p,t):x xI—>x, I=[0,1], (27.1)
of x on x, with an initial mapping

p—d(p,0) =dyp):x—>x, d(p) =P,
which reduces to the identity, and a terminal mapping

p—>d(p,1) = dy(p): x —>x (27.2)

denoted by d, .
Given d, and thereby d, , a terminal chain-transformation w = 21
(cf. Definition 26.5), given by the set of homomorphisms

dy: C(S()) = CuS(), 7 =0, 1,..., (27.3)
234
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is chain-homotopic, as we shall see, to the identity chain-trans-
formation under a homotopy mapping £ = d, where each homo-
morphism

d: CSK)) > Con(SK)), ¢ =0,1,.., (27.4)

is uniquely determined by d.

We shall defined d in terms of d, and verify the corresponding
chain-homotopy (27.0). We start with a continuous mapping of a
prism into y.

A mapping d, : ¢ X I - y. Given an arbitrary singular n-simplex
1 :5—y, to define d it is sufficient to define d+ for each # € S(x).
To that end, set ¢+ = | s | and introduce the continuous mapping

(x, 2) = d (%, 1) = d(r(x), ) : ((x, £) € s X I) (27.5)

of the prism o X I into y. Let P(s) be the first subdivision (see §25)
of the prism s X I. The mapping d, induces a chain-transformation

d, : P'(s) > S(x) (27.5")

(cf. Definition 26.4 of *).

In the equivalence class of singular #n-simplices of #, let
7¥ : s* — S(x) be a second singular simplex. Let the barycentric
homeomorphism H of s onto s* be extended, as at the end of §25, toa
barycentric homeomorphism of P'(s) onto P'(¢*), where o* = | s* |.
As shown in §25, a barycentric homeomorphism of each ordered
g-simplex p € P'(s) onto a corresponding ordered simplex p* € P'(s*)
is defined by H. If p and p* so correspond,

d.\p = du|p* e Coun(SG), (27.6)
in accord with the definition of ~.
Definition 27.1. The Operator d. Given a singular n-simplex
7 : 5 — x defining the singular n-cell # € C,(S(x)), we set
d+# = d,(5s), (21.7)
where the linear homomorphisms

8:Cow) > Coy(P'®)),  ¢=0,1,...,m, w=]s]
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are defined in §25. It follows from (27.6) that d#, as defined by (27.7),
is a singular (# + 1)-chain of S(y), a chain independent of the choice
of the singular n-cell 7 € 7.

With d so defined for n-cells + of S(x), d is extended linearly over
Co(SK).

Heuristically, one can regard the chain d+ as a “singular prism”
with a “singular base” +. We are led to a chain-homotopy.

Theorem 27.1. Given the deformation d as in (27.1), the resultant
linear operator A and the terminal chain-transformation 21 of (27.3)
satisfy the chain-homotopy

odz = dyz — 3 — ddz,  2e Cy(Skx)), (27.8)
forn=20,1,...

Proof. To prove (27.8), it will be sufficient to establish (27.8) in
the case in which 2z is the equivalence class # of a singular z#-simplex
TIS— .

By virtue of Theorem 25.1
08s = s°0 — 5 — 80, (27.9)

where it is understood that | s | is in E,, and s is the congruent image
of s in the product E, X {l}. In the notation of §25, with s = ||,
the chains in (27.9) are in the model complex P’(s), so that if one sets
g = d,, the 0-permutable chain-transformation ¢ of (27.5)' can be
applied to the terms of (27.9), giving the relation

03(8s) = gseo — gs — §(60s), g=d,. (27.10)

The proof of Theorem 27.1 will be completed by showing that (27.10)
reduces, term by term, to the form

odt = d# — ¢ — doz. 27.11)
Proof of (27.11). The chains on the left of (27.10) and (27.11) are

equal by virtue of the definition of d# in (27.7) and the notation
g=d,.
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Evaluation of $s®°. 'This chain equals

[g] s = [(d,o7) | s]° = dy

by virtue, respectively, of Definition 26.4 of *, by definition of d, in
(27.5) and by Definition 26.5 of .

Evaluation of gs. This term is equal to [(dyo7)|s]® by the
definition of d, in (27.5), and so reduces to .

Evaluation of $80s. With ¢ summed on the range O, 1,..,n,
§80s equals

(—1) §65(0)) = (1) d#, = do#

by virtue, respectively, of the definition of 9s in (24.20), by Definition
27.1 of d, and by definition of &+ in (26.6).

Thus (27.11) holds and Theorem 27.1 follows.

To apply Theorem 27.1, the following analysis of carriers of its
chains is necessary.

For each subset 7 of ¥ we introduce the subset

d-trajq = %2’32'1‘ d(n, t) (27.12)

of x and verify the following lemma:

Lemma 27.1. Given the deformation d of (27.1) and a chain z of
S(x), one has the following inclusions:

| dz |Cd-traj | z|, |dyz|Cdy(|2]). (27.13)

Proof. Turning to the definition (27.7) of d#, recall that
|[8s| =|s| x I by (25.19). It follows from (27.5), (26.14) and
(27.12) that

| d#1Cd(ls| x I) = d-traj | #|. (27.14)

The first inclusion in (27.13) is implied. The second inclusion follows
from (26.17).

The following corollary of Theorem 27.1 is fundamental. Its proof
with the aid of Lemma 27.] is immediate.
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Corollary 27.1. Corresponding to the deformation d of (27.1), a
g-cycle z of S(x) is homologous on d-traj| 2 | to the terminal cycle d\z
ondy(| z|).

Corollary 27.1 and Theorems 26.2 and 26.6(i) imply the following:

Corollary 27.2. If a Hausdorff space x can be deformed on itself into
some one of its points, then

R(S(x)) = &, g=01,....

Chain-Homotopies Induced by Subdivisions. Given y, we shall
define a subdivision inducing a d-permutable chain-transformation

z—75: C(S(x) > CS(x))y ¢=0,1,2,...

By abuse of language, w2 is called the “singular barycentric sub-
division” of z. One also defines a set of linear homomorphisms

z—1lz: CG(S(X)) g CG+1(S(X))’ q= 0,1,2,., (27'15)

such that the homotopy
ofls = max —z — Moz, 3 € Cy(S(x)), (27.16)

is valid.

The mappings = and IT are singular counterparts, respectively,
of the operators B and 4 of Theorem 25.1. We shall set up the chain
homotopy (27.16) with the aid of the elementary homotopy (25.18).
The chain-homotopy (27.16) has the following fundamental con-
sequence:

Corollary 27.3. Each singular q-cycle z of S(x) is homologous on its
carrier | z | to its singular barycentric subdivision wz.
This corollary will be established after the proof of (27.16).

Definition 27.2. The “Singular Barycentric Subdivision” =z of 2.
Let 7 : s — y be a singular simplex. To the ordered g-simplex s there
corresponds a g-chain Bs, defined in §25, barycentrically subdividing
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s when ¢ > 0. According to Lemma 25.3 | Bs|=|s|. On | Bs|,
7 is thus defined. We can accordingly define ## by setting

m# = #(Bs) @217.17)

(see Definition 26.4 of ) and extend = linearly over C(S(x)) for each
integer ¢ = 0.

We affirm that ##, as defined in (27.17), is independent of the choice
of 7 €. This affirmation is implied by the following: If s and s’ are
ordered g-simplices and if H is the corresponding barycentric
homeomorphism of s onto s, then H maps each ordered simplex u
of Bs onto a unique ordered simplex #’ of Bs’ and H | u is the unique
barycentric homeomorphism of u onto u'.

That 7 is 0-permutable is seen as follows. One starts with (27.17) and
shows that

ont = 7B0s = mot,

using Theorem 26.3a and (25.7) to justify the first equality. The
relation (25.11), with the Definitions (27.17) and (26.6), imply the

second equality.

Notation for the Definition of II. Let (x,t) be rectangular coor-
dinates in E, X R. Let 7: s — y be a singular g-simplex with s in E,
and suppose that, as in §25,

axI={xteE, X R|xestel} s =|s], (27.18)
Let = be given an extension 7, over | s | X I defined by setting
7%, t) = 7(x), (%, 2)e|s| x 1,

mapping | s | x I into x. Recall the inductively defined linear homo-
morphisms
4:Cfw)— C,y(P"(w)), 7 =0,1,.,

of Theorem 25.1. One takes w as ¢. The carrier | ds| = o X L

Definition 27.3. II. We begin by setting
I3 = #,(ds) (27.19)
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(* applied to 7,) obtaining thereby a ‘“‘singular prismatic chain” in
Co1(S(x)). So defined on g-cells # of Cy(S(x)), II shall be linearly
extended over Cy(S(x)) to define a homomorphism of form (27.15).
As in the definition of ##, one can readily verify the fact that I1#
as defined, is independent of the choice of = € #. [use (25.23)]. -
Theorem 27.2, supplemented by the carrier inclusions below, shows
how 7=z and Iz are related for an arbitrary chain z of S(x).

Theorem 27.2. The mapping z— nz and the identity mapping
3 — 2 of C(S(x)) admit the chain-homotopy

olls =nz —3— oz, q=0,1,.; 3eC{(Sk). (27.20)

Proof. It is sufficient to show that

oIl = m# — + — I10% (27.21)

where # is given as above. To that end, we start with the *“‘elementary
homotopy”

04s = (Bs)eo — s — A0s (27.22)

of Theorem 25.1. It follows from Lemma 25.3 and Theorem 25.1 that
each term of (27.22) is a chain of P"(¢). Since | s | X [ is the domain
of 7,, a o-permutable chain-transformation #, is applicable to the
complex P"(s). Hence

8%,(ds) = #,(Bs)e — #,5 — +,(40s) (27.23)

(* applied to 7,). The proof of (27.20) will be completed by showing
that (27.23) reduces, term by term, to (27.21).

The chains on the left of (27.21) and (27.23) are equal, in accord
with the definition (27.19) of IT7.

Evaluation of +#,(Bs)°. By virtue of the relation
7o, 1) = 7(x), xels],

this term is equal to #(Bs), and so is equal to ## by definition of =+
in (27.17).
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Evaluation of #,5. By definition of 7, this chain is equal to #s and
so is equal to #, by definition of #.

Evaluation of #,(40s). This chain equals
(— 1)t #(4s(8)) = (—1)t [1#; = Ilo+

by virtue of the definitions of ds, I1, and 8+ in (24.20), (27.19), and
(26.6) respectively.
Thus (27.21) holds, establishing Theorem 27.2.

Proof of Corollary 27.3. This corollary follows from the chain-
homotopy (27.20) once the basic inclusions

|72 |C |2 and |1z | C| 2], 2eCy(S(x)), (27.29)

have been established. These inclusions cannot be replaced by
equalities, as examples show.

Proof of (27.24). Starting with the definition (27.17) of ##, recall
that | Bs | = | s |. It follows from (27.17) that | =# | C | # | and hence
| 7z | C | 2| [use (26.9) and Example 26.2].

Similarly, starting with the definition (27.19) of II#, recall that
| ds | = | s| x I. It follows from (27.19) that | IT# | C | # | and hence
[Tz | C |z

Corollary 27.3 now follows from (27.20) making use of (27.24).

Iterated Subdivisions of Chains. As defined, = is a 9-permutable
chain-transformation applicable to each singular chain z of S(x).
In particular, = is applicable to =z. This leads us to write 7 as
#1) and for each positive integer n > 1 to define #'® inductively by
setting

aMz = p(ntn-llz), (27.25)

We see that #® is a o©-permutable chain-transformation, that
| w2z | C | 2 |, and that when 2 is a cycle

Mz ~z  on |z, (27.26)

by virtue of Corollary 27.3.
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The principal lemmas to be associated with the operator =™
concern its effect on the “mesh” of a singular chain.

Definition 27.4. Mesh z. Let x be a metric space, 2 a non-null
chain of S(x) of positive dimension, and

g=no + " +rg0,, 0#r,eX,

a “reduced” representation of 2. The maximum of the diameters in y
of the carriers | o, | is called the mesk of 2. If 2 is a null chain, one sets
mesh z = 0.

The following lemma will be verified:

Lemma 27.2. If 2 is a singular chain of S(x) of positive dimension,
then
l#g mesh 7"z = 0. (27.27)

Proof. Let P be a simplicial polyhedron in a Euclidean space.
By mesh P we mean the maximum of the diameters of the simplices
of P. Let a be a geometric simplex, and for n > 0 let 4*(a) be the
nth barycentric subdivision of . By an induction with respect to
dim a = m one readily proves that

m
mesh b(a) < P meshae, m>0. (27.28)

Hence for a given m-simplex a
lim mesh b%(a) = 0. (27.29)

Lemma 27.2 follows.

The following lemma prepares for the fundamental “Excision
Theorem” of §28 (cf. Eilenberg and Steenrod (1}, p. 11). In
Lemma 27.3 we make use of the following principle: Let G be a
vector space over X", If a set H of free generators of G is given a
partition H = H’ U H" into disjoint subsets, then G is a direct sum
G = G’ @ G", where the elements of H’ generate G’ and the elements
of H" generate G”.

Let C(S(x)) denote the vector subspace of C,(S(x)) generated by
the g-cells of S(x) of mesh less than e,
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Lemma 27.3. Let x be a metric space, A a proper subspace of x, and
A* a subspace of A such that for some positive e

(x —A4).Cx— 4% (27.30)
where (y — A), is the open e-neighborhood of x — A in .
Let C5(S(x)) be represented (as is possible) by a direct sum
CoSx) =G DG, (27.31)

where G' is generated by the g-cells on x — A* of mesh <e. The chains
of G” are then on A.

The vector space G” is generated by the g-cells of S(x) of mesh < e
which meet A*. These generators do not meet y — A by virtue of
(27.30). Hence the chains of G” are on 4.



§28
RELATIVE HOMOLOGIES

Relative cycles and homologies, as we shall define them, are needed
in studying a ND fe C*(M,). In particular, we shall compare the
singular homology groups of a subset

fo={peM,1f(p) < a} (28.1)

of M, with the homology groups of f, — p,, where p, is a critical
point f at the f-level a.

Let there be given a Hausdorff space y and a subspace 4 of y.
If 4 # x, we term (x, A) an admissible set pair and A a modulus for y.
We admit the possibility that 4 may be empty. For ¢-chains # and v
of S(x) we write ¥ = v mod 4 if u — v is a g-chain of S(4).

Definition 28.1. (i) Cpycles on x mod 4. A chain u? of S(x) will
be called a ¢g-cycle, mod 4 on y, if

ou? = 0 mod A. (28.2)

(i) Cycles Bounding on y mod A. A q-cycle #? on y mod 4 will
be said to bound mod A on y if there exists a chain 2! of S(x) such
that

%! — 2uttl = 0 mod 4. (28.3)
(iii) Homologies on y mod A. When (28.3) holds we write
#~0 on ymodA (28.4)

and say that ¥ is homologous to zero on y mod A4.
244
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Definition 28.2. Relative Homology Groups. The set of g-cycles
on x mod 4 form a vector space over the field 4 and will be denoted
by Z,(S(x), S(A4)). The set of g-cycles, on y mod 4, which are
bounding on y mod 4, is a vector subspace of Z,(S(x), S(4)) and will
be denoted by B, (S(x), S(4)). The quotient group

Z(S(x) S(A4))/B(S(x), S(4)) (28.5)

will be called the singular homology group H(S(x), S(A)) of S(x) on
x mod 4. '
The use of the following terms will abbreviate the exposition:

Ordinary cycles of S(x) will be called absolute cycles on y.
Cycles on y mod 4 will be called relative cycles on x.
Bounding on y mod 4 will be called relative bounding on .

Conditions (28.2) and (28.3), respectively, define “‘relative’ cycles
and bounding. The same conditions respectively define absolute
cycles and bounding if 4 is empty.

Definition 28.3. Homology Classes on y mod A. Two relative
k-cycles u* and o% are said to be in the same relative homology class
on xy mod 4 if

u* — o € By(S(x), S(4)), (28.6)
that is, if there exists a chain c*+! of S(x) such that
u* — v* = ac**! mod 4. (28.7)

When (28.7) holds we write
¢ ~ovt  on xmodA. (28.8)

We shall use rel. to mean relative or relatively, depending on the
context.

The elements of Hy(S(x), S(4)) are rel. homology classes. The
null element is the class of rel. bounding k-cycles. The property of
two rel. k-cycles on y of being in the same rel. homology class is
reflexive, symmetric, and transitive.
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Definition 28.4a. Connectivities of x mod A. The dimension, if
finite, of the rel. homology group H(S(x), S(4)) is called the con-
nectivity R(x, 4) of x mod 4.

Definition 28.4b. Homology Prebases of Rel. g-Cycles. Paralleling
Definition 24.7 of “homology prebases of g-cycles,” any subset of
Z(S(x), S(4)) which contains just one rel. g-cycle in each rel.
homology class in a base for H(S(x), S(A4)) will be termed a homology
prebase b (x, A) on x mod A.

Such homology prebases of rel. cycles have properties analogous to
those enumerated following Definition 24.7 of homology prebases of
absolute ¢-cycles.

The following lemma is a consequence of the definition of Ry(x, A).

Lemma 28.1. If each point of x is arc-wise connected on x to some
point of the modulus A, then the connectivity Ry(x, A) = 0.

Induced Homomorphisms a_ of Rel. Singular Homology Groups.
Let x’' and x" be Hausdorff spaces with moduli, respectively, A4’
and A". Let « be a 0-permutable chain-transformation of S(x’) into
S(x") that induces such a transformation of S(A4’) into S(4"). One
sees that « defines linear homomorphisms

ZAS(x), S(4) = Z(S(x"), $(4")), ¢=0,1,.,
and
B{(S(x'), S(4")) = B(S(x"), $(4")), ¢=0,1,..,,

and hence by Lemma 24.1 induces linear homomorphisms
oy : Hy(S(x), S(4')) > H{S(x"), S(4"), ¢=0,1... (28.9)
Change of Notation. For brevity we shall in the future write
Hy(S(x), S(A4)) as  Hfx, 4).
In accord with this we shall write (28.9) in the form
ay s Hy(x', A') = H(x", 4), qg=0,1,.., (28.9")

reading and interpreting (28.9)’ exactly as (28.9).
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Let @ now be a continuous mapping of x’ into x” that maps A’ into

A". There is thereby induced a d-permutable chain-transformation @
(see §26) with the properties ascribed to « in the preceding paragraph.

There is accordingly induced a linear homomorphism (), of the
nature of a, in (28.9).

The following theorem concerns topologically equivalent pairs
(x'» 4') and (x", 4):

Theorem 28.1. Suppose that a Hausdorff space x' is topologically
equivalent to a Hausdorff space x" under a homeomorphism @ of y' onto
x" that maps A’ onto A". There are then induced isomorphisms

(6)* PH(x', A") = Hy(x", A7), ¢=0,1,.., (28.10)

onto, under which a rel. homology class on x' of a rel. q-cycle z goes into

the rel. homology class on x" of Pz.

This theorem follows from an obvious extension of Theorem 26.4.
As in the proof of Theorem 26.4, let © be the inverse of the homeo-
morphism @. Then, as in the proof of Theorem 26.4, one sees that

@* and 6* are inverse linear homomorphisms onto.
Theorem 28.1 follows.

Coset-Contracting Isomorphisms. We shall prove a theorem
which has several important theorems as corollaries:

Theorem 28.2. Let (x, A) and (x', A') be two admissible set pairs
with x' Cx, A’ C A. Let U be an arbitrary rel.' homology class (possibly
trivial) on y and U’ the subclass of rel.* cycles on y'. If for each non-
negative integer q: (a) each rel. g-cycle on y is rel. homologous* on x
to a rel.* g-cycle on y', and if (b) each rel. g-cycle on y' which is rel.
bounding® on x is rel. bounding* on x' then each set U’ is a rel. homology
class* on x' and the mapping

U—U':Hyx, 4)— H(x', 4') (28.11)
is an isomorphism onto.

t That is, mod A.
# That is, mod A",
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The theorem follows from statements 1-5:

The class U’ is not empty.

Chains in U’ are in the same rel. homology class on ¥'.
U’ is a rel. homology class on y'.

The class mapping U — U’ is biunique and onto.

If V is a second rel. homology class on y, then

U+v=U+Vvy (28.12a)
U =(U)y, reX. (28.12b)
Proof of 1. The class U’ is not empty, since (a) holds.

Proof of 2. Let x and y be chains in U’. Then x and y are in U
and x — y is rel. bounding on x by definition of U. By virtue of
(b) x — y is also rel. bounding on x’, so that 2 follows.

vk W -

Proof of 3. 1If a chain x € U’ and a chain 2 on y' are in the same
rel. homology class on y', then x — z is rel. bounding on x" and hence
rel. bounding on y, since y' C y and 4’ C 4. Thus zis in U and a rel.
cycle on x’, and accordingly in U’ by definition of U’.

Proof of 4. The class U’ cannot be a subclass of two different
classes U. That the class mapping U — U’ is onto is trivial.

Proof of 5. 'The right and left sides of (28.12a) are rel. homology
classes of H(x’, A"). It remains to show that they are the same rel.
homology class. It is sufficient to show that these two classes of
H/(x', A') have a rel. cycle on x' in common.

Let x and y be rel. cycles in U’ and V', respectively. Then by
definition of addition in H,(x', 4'), x 4+ y is a rel. cycle in U’ + V",
But xe Uand ye V, so that x + ye U + V. Now, x + y is a rel.
cycle on y', so that x + ye(U + V)’ by definition of (U + V).
Thus (28.12a) is true.

The proof of (28.12b) is similar.

This establishes Theorem 28.2.

We shall call the isomorphism of Theorem 28.2 a coset-contracting
isomorphism. With us an isomorphism of vector spaces is linear.

Note on Theorem 28.2. When a coset-contracting isomorphism
(28.11) exists a “homology prebase” for H(x', A") is a homology
prebase for H (x, A), but in general not vice versa.
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We continue with a lemma needed in applying Theorem 28.2:

Lemma 28.2. Corresponding to a prescribed g-cycle z on x mod A
and a prescribed positive integer p.

z~m¥ly  on ymod A. (28.13)

Proof. On applying 0 to the terms of the chain-homotopy (27.20)
and using the inclusions (27.24), one sees that =z is a g-cycle on
x mod A. The chain-homotopy (27.20) then implies (28.13) when
p = 1. Proceeding inductively with respect to u, one infers the truth
of (28.13) for an arbitrary positive integer p.

A first application of Theorem 28.2 is a simplified ‘‘Excision”
Theorem (cf. Eilenberg and Steenrod [1], p. 11):

Theorem 28.3. Let x be a metric space, A a proper subspace of x, and
A* a subspace of A such that for some positive e

(x —A4).Cx — 4% (28.14)

where (x — A), is the open e-neighborhood of x — A on .
There then exist coset-contracting isomorphisms*

Hx, A) ~ Hfy — A* A — 4%, q=0,1,... (28.15)

Method of Proof. It is sufficient to show that statements (a) and (b)
of Theorem 28.2 are valid under the conditions of Theorem 28.3
provided (x’, 4’) of Theorem 28.2 is taken as the pair

(,4)=(x—4%4—4%. (28.16)

We shall employ Lemma 27.3, noting that its hypotheses are satisfied
under the conditions of Theorem 28.3.

Notation. In the proofs of Theorems 28.3 and 28.4 a singular chain
carried by one of the spaces y, x’, 4, 4’ will be denoted by a letter
u, v, 3, etc., with a subscript denoting the space. Note that y' N 4 = 4’
by virtue of (28.16), so that a chain carried by x’ and A is carried by 4’.

t 4% is “excised” from x and A in the right side of (28.15).
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Verification of (a) of Theorem 28.2. Let 2, be a g-cycle on y mod 4.
To verify (a), we shall show that

3, ~y+ on ymodA (28.17)

for a suitable cycle y,- on ¥’ mod 4'.
For each positive integer u, by Lemma 28.2

3, ~7¥z, on ymod A4, (28.18a)

Let p be so large that mesh #®3, < e. Then by Lemma 27.3 nt#z,
is the sum of an element in G’ and an element in G”, that is, of an
element on ¥’ = y — 4* and an element on 4. Equivalently,

malz, =y mod 4 (28.18b)

for some chain y,- . From this relation we infer that y,- is a cycle
mod 4, and hence mod 4’, since ' N 4 = A’. The homology (28.17)
follows from the relations (28.18).

Verification of (b) of Theorem 28.2. There is given a g-cycle z,- on
x’ mod A’ which is rel. bounding on x. To establish (b), we must
prove that 2. is rel. bounding on x’ mod A4'.

By hypothesis 3, = 94, mod 4 for some chain u,. Thus dx, is a
g-cycle on ¥’ mod 4. By Lemma 28.2 and the relation 79 = 97 one
infers for each p > Q that

Bu, ~ 7 du, = dx'Wu, on y mod A. (28.19)
Let p be so large that mesh #'#u, < e on y. Then by Lemma 27.3
mlvly, = v, mod 4 (28.20)
[cf. (28.18Db)], so that by (28.19) and (28.20)
ou,~0 on x modA4.
Since 2, = du, mod 4, we infer that

z,~0 on y modA

(since y' N A = A'), thereby verifying (b).
Theorem 28.3 follows from Theorem 28.2.
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A second application of Theorem 28.2 concerns an isomorphism
induced by a deformation retracting x onto x’ (see Definition 23.1).

Theorem 28.4. Let (x, A) and (x', A') be admissible set pairs with
x' Cx and A’ C A, and let d be a deformation retracting x onto x' and
A onto A'. There then exist coset-contracting isomorphisms

HG(X’ A) N Ha(X’: A’)’ = 0) l)'"y (28-21)

under which the rel. homology class on x of a rel. g-cycle z, goes into
the rel. homology class on x' of dlzx , where d, is the terminal mappmg of d.

We shall show that under the hypotheses of the theorem conditions
(a) and (b) of Theorem 28.2 are satisfied. The rel. g-cycle 2, is given.

Verification of (a). That dlz is a g-cycle on x’ mod A’ follows
from the inclusions | dlz |Cx' and | dlaz |C A" implied by
Definition 26.5 of ", and from the 9-permutability of the operator d; .
(Theorem 26.3b).

To establish a homology d,2, ~ 2, on x mod 4, we turn to the
chain-homotopy (27.8) induced by d. Recall that [see (27.13)]

| dz, | C d-traj 12, |Cy and | doz, | C d-traj | 0z, | C 4.

The chain homotopy (27.8) is accordingly on x and takes the form
dds, = dyz, — z,, mod 4, (28.22)

thereby establishing (a) for the rel. g-cycle z, .

Verification of (b). By hypothesis of (b) there is given a g-cycle
u,, mod A’ and a (¢ + l)-chain ¥, such that 9y, = u,- mod 4. We
shall show that v,y ~0 on x' mod 4'.

By hypothes1s Byx = u, + v,, introducing the chain v, . Recall
that d, is &- permutable, that d, reduces to the identity on x’, and
that 4,4 C A', so that flu = u, and J;vA is on A'. It follows that

a(glyx) = 21 oy, = 21(“,,’ + v,) = u,, mod A4'.

Thus u,, ~ 0 mod A4’, thereby verifying (b).
Theorem 28.4 follows from Theorem 28.2.
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Basic Isomorphisms in the Critical Point Theory. The preceding
theorems imply basic isomorphisms in the critical point theory.

Let a ND fe C*(M,) be given with a critical value @ assumed at a
critical point p, . In §28 and §29 it is not necessary to assume that p,
is the only critical point at the f-level a.

Let D be an open n-ball in E, with center at the origin 0 and with
radius o. If p, has the index k, there exists (Theorem 22.2) a presen-
tation (F : D°, X) € M, such that F(0) = p,, and for u e D°

FoF)8) = a — wf — - — w3 + by + = + w7 = OH(w), (28.23)
introducing ®*. When (28.23) holds set
Dy = &t D°CE, (28.24)
and
X, =f,nXCM,. (28.25)

Let D, denote D,° with the origin deleted. If ¥ is any subset of M,
which contains p,, Y shall denote Y — p,, except as noted.
Theorem 28.1 has the following corollary:

Theorem 28.1’.  The topological equivalence under F of the set pairs
(D2, Do) and (X, , X,) implies the isomorphisms (onto)
Hq(Xk N Xk) ~ Hq(Dko, Dko), q = 0, 1,... . (28-26)

Theorem 28.3’ is a corollary of Theorem 28.3 and concerns the
subset f, of M,, defined in (28.1):

Theorem 28.3'.  There exist coset-contracting isomorphisms

Ha(fa afa) ] Hq(Xk ’ Xk)’ q = o 1,.., (2827)
wherefa = fo — Po and Xk =Xy — Pa-

Proof. One identifies (x, 4) of Theorem 28.3 with (f, , £,) and sets
fo— X, = A*,sothat A*C 4,and X; = y — A*and X, = 4 — A*.
The Excision Condition (28.14) of Theorem 28.3 is satisfied; if e > 0
is sufficiently small, an e-neighborhood on f, of y — 4 =p, is
included in y — 4* = X, .

Theorem 28.3' follows from Theorem 28.3.
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Note. The proof is valid even in the special case in which the
index & = 0. In this case X, = p,, X, = &, p, is an isolated point
of f,, and the right member of (28.27) reduces to H(p,).

To apply Theorem 28.4, new notation is required.

Let E;, be the coordinate plane of E, on whichu;,;, = -+ = u, = 0.
For 0 < k < n we introduce the k-disk (closed)
4, =E,NCID° = E,NCID, k>0, (28.28a)

and remove the origin 0 from 4, to form the “centerless” disk 4, .
Note that ®%(0) = a and that on 4, P*(u) < a.
One denotes the geometric boundary of 4, by S,_; and notes that

IntAk =Ak_Sk—1! IntAk=Ak——Sk_l.

The Excision Theorem 28.3 leads to the following lemma:

Lemma 28.3. There exist coset-contracting isomorphisms

Hfd,4,) ~ H(Int 4, , Int 4,) ¢ =0,1,... (28.28b)

Proof. One identifies (x, 4) of Theorem 28.3 with (4, , 4,) and
sets A* = S,_, , the geometric boundary of 4, . Then

Intd, =y — 4%,  Intd, = A — A*.

Moreover, condition (28.14) is satisfied, so that (28.15) implies
(28.28b).

Theorem 28.4'. If the index k of p, is positive, there exists a defor-
mation d, retracting D, onto Int 4, and thereby D,7 onto Int 4,
implying coset-contracting isomorphisms

H(Dyo, D) ~ H(Int 4, , Int 4,) ~ Hy4y,4,), ¢=0,1,.... (28.29)

The deformation d,, is taken as a mapping of D;° X I onto D,° of
the form
(s 1) = dy(tt, £) = (g yooer th s (1 — 8) gy yoons (1 — Bty (28.29)

where u is in D;” and 0 < ¢ < 1. One replaces ‘'d of Theorem 28.4
by 4, .
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Theorem 28.4' follows from Theorem 28.4 and Lemma 28.3.
We record a corollary of Theorems 28.1°, 28.3', 28.4’ obtained by
an appropriate composition of their isomorphisms:

Corollary 28.1. When the index k of the critical point p, is positive
H{f..f) ~ H(4,,4y), q=0,1,... (28.30)

We shall give a second basic application of Theorem 28.4.

Theorem 28.4". Let fe C°(M,) be ND and M, boundedly
f-compact (Definition 21.1). Let (a, b) be an open interval of ordinary
values of f, with a and b critical values of which b is taken on at a unique
critical point p, . There then exist coset-contracting isomorphisms

He(fb’fa) R Hq(fa ’fa)v g=0,1,.; fb =fb — D

The isomorphisms of Theorem 28.4” exist in accord with
Theorem 28.4 because there exists (Corollary 23.1) a deformation
retracting f, onto f, .

Exercise 28.1. Verify the following:

Corollary 28.2. Let d be a deformation rectracting a Hausdorff space
x onto a Hausdorff subspace x'. A g-cycle 2% on x' which is bounding
on x ts bounding on x'.

Suggestion. Apply Theorem 28.4, taking 4 and 4’ as empty
sets, and observe that d,27 = 24,



§ 29

COMPARISON OF THE
HOMOLOGY GROUPS ON f, AND ON f, — p,

Asin §28,a ND fe C*(M,) is given with a critical value a assumed
at a critical point p,. To make the desired comparisons, the iso-
morphisms established in §28 are utilized. To that end, it is necessary
to determine the singular homology groups on a k-disk 4, , the
centerless k-disk 4, , and the k-sphere S, .

It is understood that 4, is a closed Euclidean k-disk in E,, , reducing
to a point when k& = 0. The set 4, is defined only when & > 0, and is
4, with its center removed. S, is a Euclidean k-sphere. We understand
that S, is a pair of distinct points. The geometric boundary of 4,
when k > 0 is identified with a sphere S;,_; .

Change of Notation. As in the relative homology theory, we shall
make the replacements: H,(S(x)) by H,(x) and R(S(x)) by R,(x) for a
Hausdorff space .

For k > 0, 4, admits a deformation retracting 4, onto its center.
It follows from Corollary 27.2 that for ¢ and k nonnegative integers

R(4y) = 8. (29.1)

We shall show that the connectivities
R(S,) (k=0,1,...; ¢ =0,1,..; S, a k-sphere) (29.2)
are given as in Table I, properly extended, while the connectivities

R4y (k=1,2,..;9 =0,1,..; 4; a k-disk) (29.3)
255
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TABLE I. R(Sy)

k
0 1 2 3 4
q9

0
1
2
3
4

ocCOoOOoON
OO O -
OO = O =
O = O O =
-0 0 -

are given as in Table II, properly extended. In these tables the rows
and diagonals of 1’s are to be extended indefinitely to the right.

TABLE IL R/(4y)

=
LB S R ] .
(=]
—
[ 5]
w
E -3

A
COoOOoON
CO O m =
OO = O -
O = OO =

The entries not otherwise defined are to be 0. There are no entries
in the column of Table II headed by & = 0.

Notation. Let the tables consisting of the columns headed by
k=0,1,2,.., pin Tables I and II be termed, respectively, Tables I(x)
and Tables II(y).

Before turning to the verification of these tables we prove an
essential lemma.

Lemma 29.0. Given a rel. g-cycle y2 on 4, mod 4, , k > 0, 9y ~ 0
on 4, if and only if y2 ~ 0 on 4, mod 4, .

If &2 ~0 on 4, , then dy? = du? for some chain u? of S(4,), so
that y2 — 2 is an absolute g-cycle on 4, . Such a cycle is bounding
on 4, , implying ¥2 ~ 0 on 4,, mod 4, .
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A homology 32 ~ 0 on 4, mod 4, implies the existence of a chain
w1 on 4, and a chain »? on 4, such that y7 = dw?*! 4 4% and hence
implies that 9y? ~ 0 on 4, .

The First Row and Column of Table I. 'That the entry 2 in Table I
is correct follows from Theorem 26.6(ii). That the entries 1 in the
first row (g = 0) are correct follows from Theorem 26.6(i).

The 0-entries in Table I(0), that is, in the column 2 = 0 of Table I,
and correct, since S, is the union of a pair of points p, and p, , so that

by (26.28)

HG(SO) ~ H(p) @ H(ps), g=01,.. (29'4)
The groups on the right of (29.4) are trivial when ¢ > 0, in accord
with Theorem 26.2, so that Table I(0) is correct.

That Table I as extended is correct will be proved by a mathematical
induction with the following inductive hypotheses:

For some integer m > 0 Table I(m — 1) is correct.

We have already shown that this hypothesis is valid when m = 1.
At the end of this section we shall conclude that the validity of
Table I(m — 1) implies the validity of Table I(m). We continue
with a lemma.

Lemma 29.1m. If Table I(m — 1) is correct, Table II(m) is
correct.

Proof. For k >0 4, admits a radial deformation retracting 4,
onto the outer geometric boundary S;_; of 4, , so that by Theo-
rem 28.4, with the moduli 4 and 4’ empty sets,

H(d) ~ H(S;), ¢=0,1,..
Thus the validity of Table II(m) follows from the validity of

Table I(m — 1).
We state a key theorem:

Theorem 29.1m. If Table I(m — 1) is correct,
R4, 4) =8} k=1,.,m;q>0. (29.5)
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Proof of (29.5) when k # q. Were (29.5) false when & # g, then
for some rel. g-cycle 249, 22 ¢ 0 on 4, mod 4,,, implying 827 0 on
4, (Lemma 29.0). It would follow from Table II(m) that dim 822 is 0
or k — 1. The second alternative is contrary to the hypothesis & + ¢.
The first alternative, ¢ = 1 and 92! ~ 0 on 4, , implies k£ = 1, since
4, is connected for & > 1. Thus both alternatives are contrary to the
hypothesis & # q.

Proof of (29.5) when 1 <k < m and ¢ = k. Under these con-
ditions Table II(m) shows that there exists an absolute (¢ — 1)-cycle
w*1 on 4, which is a “homology prebase” for (k — 1)-cycles on 4, .

Let y* be a k-chain on 4, such that dy* = «*-1, in accord with
(29.1). Since 9y* 0 on 4, , y* ¢ 0 on 4; mod 4,, by Lemma 29.0.
If u, is an arbitrary rel. k-cycle on 4, mod 4, , then for some 7 in the
field X, by Table Table II(m),

ouk ~rw*1 =rdy*  on 4. (29.6)

Hence by Lemma 29.0 u* ~ ry* on 4, mod 4, , completing the proof
of (29.5) when 1 <k < m and g =4

Proof of (29.5) when ¢ = k = 1. The preceding paragraph gives the
proof for this case provided one takes «° as #® — ¢°, with #° and ¢°
O-cells on 4, whose carriers are the two endpoints of 4, . Relations
(29.6) hold for some r when & = 1, even though «° is not a “‘homology
prebase” for O-cycles on 4, .

This completes the proof of Theorem 29.1m.

By virtue of the isomorphism of Corollary 28.1, Theorem 29.1m
has the following corollary [see (28.1) for definition of f,]:

Corollary 29.1m. If Table I(m — 1) is correct and the index k of
the critical point p, is on the range 1,..., m, then if one sets f, = f, — p,

R{farf) =84 ¢=0,1,.. (29.7)

Linking and Nonlinking Critical Points p,. Asin §28, p,isa ND
critical point at the f-level a. The index of p, is denoted by k. We
have set f, — p, = f, . It is not assumed that p, is the only critical
point at the f-level a or that f, is compact.
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Definition 29.1. k-Caps of p,. A rel. g-cycle (on f, mod f,) which
is nonbounding on f, mod f, will be called a g-cap of p, . Under the
conditions* of Corollary 29.1'm (29.7) holds and there are no g-caps
of p, other than k-caps, and any such k-cap of p, is a “homology
prebase” on f, mod f, for rel. k-cycles on f,modf,. If k=0, a
0O-cell with carrier p, is a 0-cap.

Among critical points p, of index k& we distinguish three types,
of which the third will be proved to be nonexistent. The third type is
introduced in order that we can say, a priori, that each critical point p,
is of one of these three types.

Linking Type. The class of k-caps of p, is not empty, and each
k-cap ¥ of p, is linkable, that is, 8¢* is null or bounding on £, .

Nonlinking Type. The class of k-caps of p, is not empty and each
k-cap (¥ of p, is nonlinkable, that is, d¢* is neither 0 nor bounding on f, .

Neutral Type. The point p, is not of linking or nonlinking type.

We note that a critical p, of index 0 is of linking type.

At the end of the inductive process of this section we can conclude
that there are no critical points of neutral type. At the present stage of
the induction we are limited to the following lemma:

Lemma 29.2m. Under the conditions of Corollary 29.1m, including
the condition that the index k of p, is on the range 1,..., m, there are no
critical points p,, of neutral type.

For each critical point p, here admitted there exist k-caps because
of (29.7). If one such k-cap (¥ is linkable, each such k-cap 7* is
linkable; when & is on the range 1,..., m it follows from (29.7) that
for some non-null re X", ¥ ~rp* on f, modf,, implying that
dL* ~ rom* on f, . We conclude that if ¥ is linkable (or nonlinkable),
then 7 is linkable (or nonlinkable).

Lemma 29.2m follows.

The following lemma gives an essential characterization of critical
points p, of linking type:
Lemma 29.3m. Under the conditions of Corollary 29.1 m a neces-

sary and sufficient condition that p, be of linking type is that the rel.

t Including the condition that & be on the range 1, 2,..., m.
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homology class on f, mod f, of each k-cap of p, (k on the range 1,..., m)
contain a nonempty class of k-caps which are absolute k-cycles X on f, .

The condition of the lemma is sufficient in accord with the charac-
terization of critical points p, of linking type.

The condition of the lemma is also necessary. Given a k-cap (¥ of
a critical point p, of linking type, there exists, by hypothesis, a k-chain
u® on f, such that 0¥ = du*. The k-chain {¥ — u* is a k-cap of p, and
an absolute k-cycle A on f, . Moreover, {¥ ~ X* on f, mod f, , since
[k — X = yk,

Definition 29.2. Linking k-Cycles of p,. If p, has the index %, a
k-cap of p, which is an absolute k-cycle A*¥ will be called a linking
k-cycle of p, .

We note that a linking k-cycle A*¥ of p, is nonbounding on f,,
since a homology A* ~ 0 on f, would be interpretable as a rel. homology
Xe ~ 0 on f, mod f, ,

With a critical point p, we associate the differences

4R, = R(fa) — R«(fa) g=0,1,., (29.8)

whenever the numbers differenced in (29.8) are finite, and state a basic
theorem:

Theorem 29.2. Corresponding to a critical point p, of index k for
which the differences (29.8) exist, the differences AR, are all zero except
that

4R, =1 when p, is of linking type
4R, , = —1 when p, is of nonlinking type.

Hypotheses Reviewed. There is no assumption in Theorem 29.2
that the manifold M,, is “boundedly f-compact’ (Definition 21.1). The
assumption that the numbers differenced in (29.8) are finite is implied
(as we shall see in §30) by the hypothesis that f, is a compact subset
of the manifold M, .

Theorem 29.2m. The first step in the proof of Theorem 29.2 will
be to prove Theorem 29.2m, that is, Theorem 29.2 under the con-
ditions of Corollary 29.1 m. Theorem 29.2m is a corollary of a much



29. COMPARISON OF THE HOMOLOGY GROUPS ON f, AND ON f, —p, 261

stronger theorem, Theorem 29.3m. Theorem 29.3m compares
homology groups on f, and on f, rather than dimensions of such
groups, and is valid regardless of whether or not these dimensions
are finite. However, the comparison of dimensions continues to play
a fundamental role.

Comparison of Homology Prebases on f, and on f,. Referring
to Definition 24.7, for each integer ¢ > 0 let

b(fa) and  by(f), (29.9)

respectively, denote ‘“homology prebases” (possibly empty) of
g-cycles on f, and on f, . The existence of such prebases follows from
the existence of bases for the homology groups H,(f,) and H,(f,)
over .X". Such existence will be verified directly in case f, is a compact
subset of M, .

The principal theorem follows.

Theorem 29.3. (i) If the critical point p, has the index k and if
one sets f, = f, — p,, then a homology prebase by( f,) is a homology
prebase b ( f,) except in the following two cases: Case 1. ¢ = k and p,
is of linking type. Case2. ¢ = k — 1 and p,, is of nonlinking type, k > 0.

(ii) In case 1 any set of absolute k-cycles of the form

bi(fa) U A* (29.10)

(where N* is a linking k-cycle of p,) is a homology prebase b( f,).
(iii) In case 2 any set of absolute (k — 1)-cycles, k > 0, of the form

bey(fa) — w? (29.11)

(in which w*- is the boundary of a k-cap of p, and b,_,( f,) contains
w*~1) is a homology prebase b,_,( f,)-

Continuing our induction with respect to m, let Theorem 29.3
subject to the conditions of Corollary 29.1m on m and %k be denoted
by Theorem 29.3m. We shall prove Theorem 29.3m. It will then follow
that Table I(m) is correct and hence Tables I and II are correct.
Theorems 29.2 and 29.3 are final consequences.
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Proof of Theorem 29.3m. Before coming to the proof proper of
Theorem 29.3m we shall verify that the construction of the set (29.11)
is possible for k on the range 1, 2,..., m.

It follows from Corollary 29.1m that a k-cap of p, exists. The
boundary w*~! of this k-cap is on f, and nonbounding on f, , since,
by hypothesis of (iii) p, is not of linking type. By virtue of Lemma 24.3
there then exists a homology prebase b,_,( f,) which contains wt-1,
so that the set (29.11) exists.

To prove that a given set of absolute g-cycles on f, is a homology
prebase by( f,), it is sufficient to show that the g-cycles of the given set
are both ‘“homology-wise generating” and ‘“homology-wise free”
among absolute ¢-cycles on f, .

Proof' of (i)m. In (i) p, comes under neither case 1 nor case 2.
To prove that a prebase b,(f,) is then homology-wise generating
among g¢-cycles on f, is to prove that when 37 is an absolute g-cycle
on f, then 2 ~ 0 on f, mod f, , or, equivalently, that y7 is homologous
on f, to an absolute ¢g-cycle on f, .

Were y? «¢ 0 on f, mod f, , then y? would be a g-cap, implying that
g =k by (29.7) and that y* is a linking k-cycle, contrary to the
exclusion of case 1 from (i).

To show that b (f,) is homology-wise free* on f, under the con-
ditions of (i) it is sufficient to show that an absolute g-cycle 37 on f,
which is nonbounding on f, is nonbounding on f, .

Were 92 = du?t! on f,, then w?*'~ 0 on f, modf,, since
92 0 on f, . This would imply that w?+! is a k-cap by (29.7) and p,
nonlinking, since y? ~ 0 on f, . This is contrary to the exclusion of
case 2 from (i).

Prooft of (ii)m. The set (29.10) of k-cycles is homology-wise
generating on f, , since when an absolute k-cycle y* on f, is prescribed,
an 7 € X exists such that y* ~ rA, on f, mod £, [by (29.7)].

We shall show that the set of k-cycles (29.10) is homology-wise free
onf,, ]l <k m

The set by( f,) of k-cycles is homology-wise free on f, . Otherwise
there would exist a k-cycle u* on f, such that u* ~ 0 on f, and
uk = dy*+! for some chain y*+! on f, . Then y¥*1 ~£ 0 on f, mod £, ,
contrary to (29.7).

t When the index % of p, is on the range 1, 2,..., m and (29.7) is true.
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Finally, M* satisfies no relation A¥ ~ u* on f, with «* on £, , since
such a relation would imply that & ~ 0 on f, mod f,, contrary to
the fact that A* is a k-cap.

Thus (ii)m of Theorem 29.3m is true.

Proof* of (ili)m. The set of absolute (k — 1)-cycles of the set
(29.11) is homology-wise generating on f,, as we now verify. Since
there are no (k — 1)-caps,' each (k — 1)-cycle y*~! on f, is homologous
to zero on f, modf,. It follows that y*~! is included among the
(k — 1)-cycles on f, homology-wise generated by the set (29.11).

The (¢ — 1)-cycles of the set (29.11) are homology-wise free on f, ,
as we now verify. We are assuming that k is on the range 1, 2,...,m.

Were the cycles of the set (29.11) not free, there would exist a
“reduced” form #*-! in the (k — 1)-cycles of the set (29.11) such
that for some chain y* on f, , #*~! = 9y* on f, . Such a chain y* would
be a k-cap, since dy* 4 0 on f,. By hypotheses of (iii), w*~! is the
boundary of a k-cap ¢*. Since (29.7) holds, y* ~ rv* on f, mod f,
for some r € #". Hence dy* — r 8vF ~ 0 on £, , or, explicitly,

bl ~ gkl on f,,

contrary to the nature of by_;( f,).
This completes the proof of Theorem 29.3m.

We can now complete the verification of Table I by proving the
following theorem:

Theorem 29.4m. If TableI(m — 1) is correct Table I(m) is correct.
Set n = m. To prove this theorem, it is sufficient to show that if
Table I(m — 1) is correct and » = m, then

R(S.) =1  n>0, (29.12)

and
R(S,) = 8,9, g=12,... (29.13)

Relation (29.12) has already been established. To establish (29.13),
suppose that S, is an n-sphere in a Euclidean (7 4 1)-space of

t When the index k& is on the range 1, ..., m and (29.7) is true.
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coordinates X, X, ,...,, ¥, and let p —f(p) be the ND C®-function
defined on S, by assigning the value x, to the point p. One sees that f
has two critical values, a and b, taken on by f at critical points p, and p,
with indices, respectively, 0 and #. The set f, = Z,. The set
f» = f» — b has the connectivities of the point p, , since f, admits a
deformation retracting f, onto p, (Corollary 27.2).

Since n = m, Corollary 29.1m (with p, replacing p,) implies that
there exists an n-cap v® of p,. The boundary dv” is on f, and is
bounding on f, . The critical point p, is accordingly of linking type.
It follows from (i) and (ii) of Theorem 29.3m that with f, = 2,

R{f) =R{f) +8.2=89 q¢=12,.., (29.14)

thereby verifying (29.13).

Thus Theorem 29.4m is true.

Hence the extended Tables 1 and 11 are correct. It follows that
Theorem 29.3 and its corollary, Theorem 29.2, are true.

A Comparison of Relative Homology Groups. In the preceding
part of this section we have determined the effect on the homology
groups on f, of deleting from f, the critical point p, at the f-level a.
If 5 is a value of f, » < 4, there are applications in which one needs
similarly to determine the effect on the homology groups on f, mod f,
of deleting p, from f, . We shall state modifications of Theorems 29.2
and 29.3 and indicate how the proofs of Theorems 29.2 and 29.3
lead to proofs of these modified theorems. These extensions are not
used until they are applied in §33 in the study of critical chords and
symmetric products.

Among critical points p, of index k& we here distinguish three types:

Linking Types mod f,. Characterized by the condition that for
each k-cap (¥ of p, , 9¢* is null or bounding on f, mod £, .

Nonlinking Types mod f,. Characterized by the condition that for
each k-cap {* of p,, & is neither null nor bounding on f, mod f, .

Neutral Types mod f,. With the point p, of neither linking nor
nonlinking types mod f,; proved nonexistent (cf. Lemma 29.2m).
Departing from the notation of (29.9), let

b(fa.f) and  b(fa.f)), >0, (29.15)
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denote homology prebases of g-cycles, respectively, on f, mod f, and
on f,modf, (cf. Definition 28.4b). Similarly, departing from the
notation of (29.8), with each critical point p, and integer ¢ > 0 we
associate the difference

Ag?a = Ra(fa vJa) — Ra(fa s Ja) (29.16)

(cf. Definition 28.4a) whenever the numbers differenced are finite,
and state the following modification of Theorem 29.2:

Theorem 29.2*, Corresponding to a critical point p, of index k for
which the differences (29.16) exist, the differences A R, are all zero
except that

A2, = 1 when p, is of linking type, mod f, , 29,17
A%, = —1 when p, is of nonlinking type, mod f, . 17

Theorem 29.2* follows from a modification of Theorem 29.3 which
will be stated below. The proofs of the two modified theorems are
given by the proofs of Theorems 29.2 and 29.3 read with the following
replacements:

“cycles” or “absolute cycles” by ‘‘cycles modf,”

“onf,” and “on f,” by ‘“onf, modf,” and “on
fa modf,,” respectively
“linking” by “linking mod f,”
“nonlinking” by “nonlinking mod f,”
“by(fa)” and “by(f,)” by “by(fa,fn)” and “by( £z, fo),”
respectively.

One should leave *“on f, modf,” unchanged. Reference to the
induction with respect to the integer m can be deleted because the
inductive verification of Tables I and II has been completed.

The modification of Theorem 29.3 takes the following form:

Theorem 29.3*%. (i) If the critical point p, has the index k, a
homology prebase b( f, , f,) is a homology prebase by( f, , f.) provided
there occurs neither: Case 1. ¢ = k with p, linking mod f, , nor case 2,
g = k — 1 with p, nonlinking mod f, (k > 0).
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(i) Incasel any set of k-cycles mod f, of the form

bi(fa, fo) U A¥

is a homology prebase by f, , f,) (where X* is a linking k-cycle mod f,
of pa)-
(iii) In case 2 any set of (k — 1)-cycles mod f, of the form
bk—l(fa v Jo) — Wbl

is @ homology prebase by_(f, ,f,) (where w*~ is the boundary of a
k-cap of p, and b,_y( f, , f,) contains w*-1),



§30
TYPE NUMBERS AND CONNECTIVITIES

The Compact Case. Let M, be a compact C®-manifold. Given
a ND fe C*(M,), for each nonnegative integer £ we introduce the
following symbols: m,, is the number of critical points of f of index k;
a; is the number of critical points of f of index k of linking type;
b, is the number of critical points of f of index & of nonlinking type;
R, is the kth connectivity of M, .

We shall prove a basic theorem:

Theorem 30.1. (i) The connectivities R, of M, are finite and for
k > n, Rk == O.

(ii) Between the numbers m; and R, there exist the relations

my = R,
m —my >R — Ry
my—m +my =R, — R, + R, (30.1)

My — My g + Mg (=1)"my = Ry — Ryy + Ryg »* (—1)"R,y
(i)  The relations (30.1) imply the inequalities
m>R,, k=01,.n. (30.2)
(iv) If| M, | is connected, R, = 1 or 0.

t Depending on the choice of the field X” for some manifolds.
267
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(v) If| M, | is connected and if 2™ is an n-cycle on | M,, | which is
nonbounding on | M, |, then | 2* | = | M, |.

Without loss of generality in proving this theorem we can suppose
that each critical value of f is assumed at just one critical point. Let
€ < ¢ < ** < ¢, be the critical values of f. Note that b, = 0, since
each crmcal point of index O is of linking type. Let f denote the
subset f, of M, with the critical point of f at the f-level c deleted.

Proof of (i) As a subset X of | M, | becomes the successive sets

fco 'fcl ;fc, »fc, ;fc, :fc, A ;fc,_l ,fc, ;fc, (303)

we shall see by an inductive procedure that R (X) takes on integral
values terminating with the value R, = Rq(Mn) There is no change
in Ry(X) as X changes from f,  to f'c , by virtue of the retraction of
fc, onto f, . (Corollary 23.1) and the resultant isomorphisms

H{f,) ~ H{f,,_,) (30.4)
(see Theorem 28.4).
Understanding that b, = 0 and setting a; = b; = 0 for j > n, we
shall verify the equalities

R,=a,— by, ¢q=01,... (30.5)
Relations (30.5) follow on evaluating the differences
Ra(fc,) - Ra(fc,)r =127 (30.6)

by means of Theorem 29.2. This evaluation is made in the order of
the integers j and shows that the numbers differenced in (30.6) are
finite and that the relations (30.5) hold.

Statement (i) follows from (30.5).

Proof of (ii). For each k on the range 0, 1,..., nset §, = m;, — R, .
The relations

my = a; + b, k=01,.,n, (30.7)
and (30.5), with b, = 0, imply that &, = b, + b, and
& — s+ gy (=1 = by, k=0,1.,n (30.8)
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The inequalities in (30.1) follow from the relations (30.8). The final
equality of (30.1) is a consequence of the final equality in (30.8) and
the vanishing of b, ,, .

Proof of (iii). The relations (30.2) are a trivial consequence
of (30.1).

Proof of (iv). To establish (iv), we shall make use of a result
established by Morse [9] using methods of the character of those
used in this book. We refer to the theorem that there exists a ND f in
C*(M,) which is “polar-nondegenerate,” i.e., which possesses just one
critical point of index 0 and just one critical point of index #. According
to (30.5) R, = a, , and, since M, admits a polar-ND f, a, = 1 or
0 depending on whether the point ¢ of absolute maximum of f on
| M, | is of linking or nonlinking type.

Proof of (v). Let 2™ be an n-cycle on | M, | which is nonbounding
but whose carrier | 2 | is not equal to | M, |. We shall arrive at a
contradiction.

By hypothesis there exists a point g € | M,, | which is not in | 2" |.
The theorem on the existence of a polar-ND f on | M, | can be
strengthened by the affirmation that the absolute maximum of f can
be prescribed in position on | M,, |. We suppose then that the absolute
maximum of f occurs at the above point g.

We have seen in (iv) that R, = 1 or 0. Since 2™ is nonbounding on
| M, | by hypotheses of (v), we conclude that R, = 1 in (v), and hence
that @, = 1 in (30.5).

Because a, = 1 there is associated with the critical point ¢ a linking
n-cycle A*, Hence for some constant p € X~

A"~ pzt 4 Q™ wml on | M, | (30.9)

By hypothesis pz” is on | M, | — q. Hence (30.9) implies that A" ~ 0
on | M, |, mod(| M, | — g), so that A" cannot be an n-cap of ¢
(Definition 29.1). Hence A" cannot be a linking n-cycle of ¢ (Defi-
nition 29.2).

From this contradiction we infer that the point g does not exist and
that (v) is true.

This completes the proof of Theorem 30.1.

We shall derive a special consequence (30.10) of the relations (30.1).
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Given f as in Theorem 30.1, set f' = —f. The type numbers of '
are then the respective numbers m,, m,_,,..,m,. Hence the
relations (30.1) hold if m,, is replaced by m,_, for each % on the range
0,..., n. A special consequence is that when # is odd

Ry — R, + Ry — - (—1)°R, =0. (30.10a)

The Noncompact Case. Let M, be a C*-manifold and g a ND
function in C*(M,). Suppose that for some ordinary value B of g
the subset

g ={pe|M,||&(p) < B} (30.10b)

of M, is compact. We shall verify the following concerning g :

Theorem 30.2. (i) The connectivities R, of the singular complex
S(gp) are finite and vanish for k > n.

(ii) If my denotes the number of critical points of g | g of index k,
the relations (30.1) hold.

(i) The inequalities (30.1), affirmed to hold in (ii), imply the
relations m;,, > R, .

The proof of this theorem is similar to the proof of (i)-(iii) of
Theorem 30.1.

Proof of Theorem 9.1. We shall show that Theorem 9.1 is a
corollary of Theorem 30.2.

In Theorem 9.1 there is given a ‘“‘regular” C*-domain Z in E, ;
bounded by a “regular” n-manifold 2 of class C* (Definition 9.1).
On some open neighborhood D; of Z there is given a real-valued
function f of class C? which is ND on Z and ordinary on Z. The
function f of Theorem 9.1 is “admissible” relative to Z and grad f is
emergent at each point of Z.

The reader will recall that once Theorem 9.1 is established its
variants in §9, §10, and Appendix IT admit the supplementary proofs
given in Part I.

To apply Theorem 30.2 to prove Theorem 9.1, an introductory
lemma is required.
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Approximation Lemma 30.1. Corresponding to a function f admissible
in Theorem 9.1 there exists a real-valued function f' of class C*, defined
on the domain D, of f, with first and second partial derivatives approxi-
mating the first and second partial derivatives of f so closely on Z that
grad f' is emergent on X and the critical points of f' | Z are ND and
correspond biuniquely to those of f | Z with preservation of indices.

A classical analytic or trigonometric approximation of f will suffice.
The domain D, of f' is open and the approximation is on the compact
subset Z of D, .

The Modification g of f'. We cannot apply Theorem 30.2 directly
to f'. A modification g of f' is called for.

By virtue of Theorem 12.2 there exists a ND function g of class C*
defined on an open neighborhood D, of Z and such that the following
are true:

1. The function g | Z is “critically equivalent” to f'| Z in the
sense of Definition 12.1.

2. The boundary 2 of Z is a level manifold of g at each point of
which g is ordinary.

3. The value 8 of g on X exceeds the value of g at each point x € Z.

4. The neighborhood D, of Z is so small that g is less than the
value of g at each point of D, — Z.

We apply Theorem 30.2 to g. The function g is defined on the
C>-manifold M,, with carrier D, and with the Euclidean differentiable
structure (Definition 13.5). As defined above g|Z is “critically
equivalent” to f | Z. Since the set gy = Z is compact, Theorem 30.2
applies and yields Theorem 9.1.

We verify a corollary of Theorem 30.2.

Corollary 30.1. The connectivities R,, r = n, of a connected non-
compact C*-manifold M, are zero.

Proof. Let f be a ND fe C®(M,) with the properties (i)-(iii) of
Theorem 23.5. Corresponding to each ordinary value a of f one has
the relations

Rff) =0, r>n, (30.11)
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by virtue of Theorem 30.2. Moreover, (30.11) holds when r = n,
as we now verify.

The number m, of critical points of f| f, of index z is equal to 0,
as implied by (iii) of Theorem 23.5. According to Theorem 30.2
m, > R,(f,) [cf. (30.2)], so that (30.11) holds when r = .

Since (30.11) holds for each ordinary value a of f, Corollary 30.1
follows.

We shall characterize an important special situation.

Definition 30.1. A Lacunary Index of f. Let M, be a compact
C=-manifold and f ND in C*(M,,). If the type numbers of f are such
that for some ¢ on the range 0, 1,..., » the type numbers m,,, and

m,_, adjacent to m, vanish, ¢ will be called a lacunary index of f (see
Morse [7], p. 151).

Corollary 30.2. Let M, be a compact C*-manifold and f ND in
C>(M,). If i is a lacunary index of f, thenm, = R;and R, ; = R, = 0.

Under the conditions of Theorem 30.1 it follows from the relations
(30.1) that

(m,ﬂ - Rj+1) + (mf—l - Rj—l) > m; — Rf ’ 0 gj < n, (30'12)

with the understanding that m; and R, vanish when k2 <0 or 2 > n.
By the lacunary hypothesis m,,, = m, ; = 0. It follows from (30.2)
that R;,, = R,_, =0 and m; > R,. We infer from (30.12) that
m, = R, for the given .

This establishes Corollary 30.2.

As we shall see, the case arises in which each of the nonvanishing
type numbers of f has an even index. In such cases for each index ¢
R‘i = mt .

The result of Corollary 30.2 will be referred to as the Lacunary
Principle.

The Case of Relative Connectivities. The connectivities R, en-
tering into the relations of Theorem 30.1 and 30.2 have been
“absolute” connectivities. With the aid of Theorem 29.3* a similar
set of relations may be derived involving the relative connectivities
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introduced in Theorem 29.3*. These relations are needed in studying
“symmetric products” and “critical chords” of differentiable manifolds
in §33.

Hypotheses of Theorem 30.3. 'There is given a C*-manifold M,, ,
a function fe C*(M,), and an ordinary value 7 of f such that the
subset

{pel M, | 1f(p) = n} = fur (30.13)

of | M, | is compact. We assume that f is ND on f,. . There are thus
three conditions on the value 7 of f:

v is ordinary;  f,+is compact;  fis ND on f+. (30.14)

Theorem 30.2 is replaced by the following theorem:

Theorem 30.3. Given a C®-manifold M, , an fe C*(M,), and a
value n of f such that conditions (30.14) are satisfied, the following
are true:

(i) The connectivities R} of | M, | mod f, are finite and vanish
for i >n.

(ii) Between the type numbers my, of the critical points p of f at which
f(p) > n and the connectivities Ry, the relations (30.1) hold.

Affirmations (iii}(v) of Theorem 30.1 are also true under the
hypotheses of Theorem 30.3 provided R, is replaced by Rj and (v) is
appropriately modified. We shall not need these modifications of
(iii)~(v) of Theorem 30.1.

Proof of Theorem 30.3(i). This proof is similar to the proof of
Theorem 30.1(i) except for minor modifications due to the presence
of the modulus f, . We proceed with the proof following the logical
order of the proof of Theorem 30.1(i).

In addition to the numbers m, and R}, already defined we redefine
two symbols: &, , the number of critical points of f on f,+ of index k&
and of “linking type modf,” (see §29); and b,, the number of
critical points of f on f,+ of index & and of ‘“‘nonlinking type mod f,”
(see §29).
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Without loss of generality we can suppose that each critical value
a > 7 is assumed at just one critical point. Let ¢y, < ¢; < *-* < ¢, be
the critical values of f which exceed 7. For each critical value a = ¢,
let p, be the critical point at the f-level a. As previously, set
fo=fa— Pa- Let b f,,f,) and by £, , f,) be homology prebases of
g-cycles mod f, , respectively, on f, and f,, as in Theorem 29.3*,

Departing from the proof of Theorem 30.1, note that when a = ¢,,
fa can be retracted by a deformation onto f,. It follows from
Theorem 28.4 that for each ¢, by( fc., )= 2.

As in the proof of Theorem 30.1, the integer b, = 0, since each
critical point of index O carries a 0-cycle and so is of linking type and,
in particular, of linking type mod f, .

As a subset X of | M, | takes on the successive sets listed in (30.3),
taken with present connotations, we shall see by an inductive proce-
dure that R (X, f,) takes on finite integral values, terminating with
the value R;. There is no change in Ry(X, f,) as X changes from
fo,_ 10 fc’ , by virtue of the retraction of f:_., onto f, _ (cf. Theorem 28.4).

We understand that b, = 0 and that @, = b; = O for j > n, since
there are no critical points of index exceeding #. We shall verify the
equalities

R, =a,— by, g=0,1,... (30.15)

Relations (30.15) follow on evaluating the differences
Ra(fc, oJa) — Ra(fc, Joh =121,

by means of Theorem 29.3* (or Theorem 29.2*). Theorem 30.3(i) is
implied by (30.15) and the vanishing of a; and b, for j > n.

Proof of Theorem 30.3(ii). This proof is identical in form with
the proof of Theorem 30.1(ii).
Thus Theorem 30.3 is true.

Simply-Carried Separate k-Cells. We shall present a lemma on
nonbounding k-cycles on a topological k-sphere. This lemma has
important applications. It is based on the following definitions,

Definition 30.2. Simply-Carried Singular k-Cells. Let y be a
Hausdorff space. A singular k-simplex on x which is defined by a
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homeomorphism 7 : s — x of an ordered k-simplex s into x will be
said to be simply-carried by y, as will the corresponding singular
k-cell #,

Simply-Carried n-Cells of I',, . Let I, be a topological n-manifold,
and let o™ be a singular n-cell simply-carried by I', . The cell o” is the
equivalence class of a singular simplex 7:s— I, where s is an
ordered n-simplex in E, (see Definition 26.1). Hence | o™ | = (| s |).

A Convention. We understand that E, is a point and I’ a finite set
of points, both with a discrete topology.

We shall make use of a classical theorem affirming that a homeo-
morphism of an open subset 4 of E, into E,, is onto an open subset 4’
of E, (see Hurewicz and Wallman [1}, p. 97). By virtue of this
theorem and the definition of a topological manifold the subset
7(Int | s |) of I', is open in I, , and

«(Int|s|) = Int| o™ |, (30.16)

where Int | o® | is the maximal open subset of | o” | relative to I, .
If n = 0, the set (30.16) is a point.

Definition 30.3. A Simply-Carried Separate n-Cell of an n-Chain.
Let 2™ be a singular n-chain on I, with a reduced form

2" = eo" + - + eno,", m>1, e = -+1. (30.17)

If a cell of this form, say o,", is simply-carried and if Int | 3™ | is not
included in the subset

X=|o|U-U|on| (30.18)

of I, , then oy™ will be called a simply-carried separate n-cell of 2*.

Lemma 30.2. Let 2™ be a nontrivial n-cycle on a topological n-sphere
T, . If there exists a simply-carried separate n-cell o,™ of 2™, then 2™ ~ 0
onl, and |2"|=1T,.

We understand that I'; is a pair of distinct points.

Without loss of generality in proving the lemma we can suppose
that I', is an origin-centered n-sphere S, in E, ., . The proof is by
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induction with respect to #n. The lemma is trivial when » = 0. We
shall accordingly prove the theorem true for a prescribed n» > 0,
assuming the lemma true when % is replaced by n — 1.

A first consequence of the hypotheses is that when n > 0 there
exists a point p in Int | oy | which is not included in the set X of
(30.18) and which has an open neighborhood, relative to I, , which
does not meet X.

Suppose that the coordinate ¥,-axis in E,,, is orthogonal to S,, at p,
and that on S, , x, assumes a proper maximum a at p. Let f be the
ND function on S, defined by the values of x, on S, . Denote p
by p, . The point p, is in the open subset Int | o, | of ', .

By virtue of our inductive hypothesis do,™ ¢ 0 on the topological
(n — 1)-sphere | do,™ |. As the homeomorph of a geometric n-simplex
| 04" | is the homeomorph of the n-disk 4, (of Lemma 29.0 if % of
Lemma 29.0 is equal to #) under a mapping in which p, can be taken
as the image of the center of 4, and | 90, | as the image of the
geometric boundary 4, of 4,, . Now, | 04" | is the closure of Int | o,® |,
an open neighborhood of p,, relative to I',. It follows from
Lemma 29.0 that o, is an #-cap associated with the critical point
P of f

Now, 2" = ¢;0," mod f, , so that 2" is an #n-cap associated with p,, .
Since 2" is both an n-cap associated with p, and an absolute #n-cycle
on S,, it is a “linking” #m-cycle on S, associated with p,. By
Theorem 29.3 2» 40 on S, .

That | 2* | = S,, when n > 0 follows from Theorem 30.1(v).

We continue with a topological #n-manifold I, .

Definition 30.4. n-Chains Simply-Carried on I', . An n-chain 2"
on I', with a reduced form (30.17) will be said to be simply-carried
by I, if each cell o;* of the reduced form for 2" is simply-carried by
T, and if for each pair of distinct integers 7 and j on the range 1,..., m

Int|e | NInt|o"| = &. (30.19)

The following is a corollary of Lemma 30.2:

Lemma 30.3. If I, is a topological n-sphere and 2™ a simply-carried
n-cycle on I', , then 2* ~0Qon I', and | 2" | =T, .

2

o3
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In §37 it will be seen that there exists a simply-carried n-cycle on
each topological n-sphere.

Exercise 30.1. Let M, and Q,, be two compact C*-manifolds of
even dimension such that there exist real-valued ND functions
e € C°(M,) and ¢ € C*(Q,,) whose nonvanishing type numbers (for
a given field 2#") have even indices. Spheres of even dimensions serve
as examples.

Show that on the product C*-manifold M, X Q,, there exists a
ND function fe C*(M, x Q,) each of whose non-vanishing type
numbers has an even index and whose type numbers are then the
respective connectivities of M, X Q,, .

Suggestion. Let p and ¢ be arbitrary points of | M, | and |Q,, |
and (p, ¢) €| M, X O,, |. Choose ¢ and i, as is possible, so as to be
positive-valued and show that the function (p, ¢) = ¢(p) + ¥(q) is a
ND function on | M,, X Q,, | which satisfies the exercise.
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§ 31
NORMALS FROM A POINT TO A MANIFOLD

Let M, be a regular compact C*-manifold in E,, with0 < n < m.
In Theorem 15.3 we have seen that the focal points of M,, in E,, are
nowhere dense in E, . Let ¢ be a point fixed in E,, — M, and p an
arbitrary point in M, . We term the mapping

plp—qll =fd#): My >R (L.1)

the distance function f, with pole ¢ and domain M,, . By definition of a
focal point the function f, is ND if and only if ¢ is not a focal point
of M, .

Let (g, {) be a straight arc orthogonal to M, at a point { € M,, . We
term (g, ) an arc normal to M, at { and assign this arc an index equal
to the index of { as a critical point of f, . Theorem 30.1 then yields the
following:

Theorem 31.1. Let g be a point of E,, — M, not a focal point of M, ,
and for i on the range 0, 1,..., n let m; be the number of normal arcs (g, {)
of index i, counting arcs (q, {) as different if their base points { are
different.

If R, is the ith connectivity of M,, , the relations (30.1) are satisfied,
as are the relations

m" 2 R" y i = 0,..., n. (31-2)

An Example. Let M, be a torus in E; . The focal points of M, are
the points on the axis of the torus and on the central circle I' of the
corresponding solid torus. For the torus R, = R, = 1 and R, = 2,

281
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as we shall see. If ¢ is not a focal point of the torus, nor on the torus,
there are four straight arcs (g, {), normal to M, at points { of M, .
If ¢ is in the plane of I" and exterior to the circle of M, of maximum
length, each of these normal arcs is a subarc of the longest of these arcs.

Given a normal arc (g, {), we shall evaluate the index of { as a critical
point of the distance function f, , beginning with the case in which
m=mn+1.

In making this evaluation we shall admit translations or orthogonal
transformations of the rectangular coordinates of E,, . It is understood
that a point p € M,, and the pole ¢ in (31.1) undergo the same changes
of coordinates, so that if x = (x, ,..., x,) and @ = (a, ,..., @,) represent,
respectively, p and g, then || ¥ — a|| is invariant under any admissible
change of coordinates.

The Case m = n + 1. Centers of Curvatureof M,. Whenm=n 41
we shall evaluate the index of a critical point { € M, of the distance
function f, in terms of the centers of principal normal curvature of M,
on the normal to M, at {. Such centers must be defined.

Given a straight arc (¢, {) normal to M, at {, let a system of rectan-
gular coordinates x be chosen in E,, such that { € M, is represented
by the origin, and the pole g is represented by the point (0,..., 0, ¢) € E,,
with (7 4 1)st coordinate ¢ = | ¢ — {||. Setting (x,,...,%,) =
(91 ..., 9,), there will exist for || v || sufficiently small a Monge presen-
tation

%np1 = (ay/2) viv; ++ (31.3)

of a neighborhood of the point { on M,, , in which a,;v,9, is a symmetric
quadratic form and the remainder (indicated by + + throughout this
proof) is a function v — L(v) of class C®, vanishing with its first and
second partial derivatives at the origin.

Let p;, pa ..., p, be the characteristic roots of the matrix || g ||.
There then exists an orthogonal transformation of the coordinates
) ..., Uy, into coordinates u, ,..., 4, , by virtue of which a neighborhood
of { on M, has a Monge presentation

Fnin = Hp® + -0 + potta®) ++ (31.4)

for || u|| < e and e sufficiently small.
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If the coordinates u; are properly numbered and the roots p;
correspondingly numbered,.then for some 7 on the range 0, 1,..., n

pn F 0: =1,2,.,r,

(31.5)
pr =0, k=r+1,r+42,..,n

Corresponding to each characteristic root p, 7% 0 we set &, = 1/p,
and term %, a radius of principal normal curvature belonging to the
point { on M, . The point P, on the normal A; to M, at { whose
coordinate x,,, = %, will be called a center of principal normal
curvature of M, belonging to {. Such a center will be counted with a
multiplicity equal to the multiplicity of p, as a characteristic root of
| a;;]l. One sees that the centers P, ,..., P, of principal normal cur-
vature on the normal A; to M,, at { are uniquely determined, except for
order, by M, and { e M, .

We shall prove the following theorem:

Theorem 31.2. Suppose that m = n + 1 and that (q, {) is a straight
arcjoiming g E,, — M, to { € M,, , orthogonal to M,, at {, with { a ND
critical point of the distance function f, .

The index of { as a critical point of f, is then the number of centers of
principal normal curvature of M,, belonging to [ on the open arc (g, {),
counting these centers with their multiplicities.

To determine the index of { as a critical point of the distance
function f, , we make use of the representation (31.4) of M, near [,
denoting the right side of (31.4) by ¢(). In terms of the coordinates
(%1 3005 Xpy1) = (%1 50y Uy, , X, 1) employed in (31.4) the pole ¢ has a
representation (ay ,..., 4,4;) = (0,...,0,¢), with ¢ > 0. Hence for
points x € M, with coordinates

(%1 yeees Bnyr) = (g 5., 4y, (), (31.6)
[ —alf —c=lul?+ |pu) —c®—c

=0 —p)u?+ -+ —pou®+uly,+ - +u:++. (LT

The critical point { of f, is also a critical point of ;2 on M,, . Since
f/8) # 0O, one sees that f, and f,? have the same index at their common
critical point {.
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The index of the quadratic form (31.7) is thus the index of { as a
critical point of f, . This index is clearly the number of the charac-
teristic roots p, 7 0 for which 1 — pyc < 0, or, equivalently, the
number of the positive radii %, < c.

Finally, no #, = ¢, since, by hypothesis ¢ is not a focal point of
M, , so that { is a ND critical point of f,, or, equivalently, (31.7) is
a ND quadratic form. Hence 1 — p,¢ # O for & = 1, 2,..., r, implying
that no %, = c.

Theorem 31.2 follows.

Remark. Suppose, contrary to the hypothesis of Theorem 31.2,
that the pole ¢ is a center of principal normal curvature based on the
point { € M, . Then, for some % on the range 1,...,7, 1 — pc =0
and the multiplicity of the center g, as defined above, is the multi-
plicity of pj as a characteristic root. One sees that this multiplicity of

pn is the nullity of the form (31.7), or, equivalently, the nullity u of
the critical point {.

The Case m >n. An Extension of Theorem 31.2. A point
ge E,, — M, has been called a focal point of M, based on a point
{ € M, if { is a degenerate critical point of the distance function f, .

Definition 31.1.  The nullity p. of a focal point g of M, based on a
point { of M, is by definition the nullity of { as a critical point of f, .

The following theorem extends Theorem 31.2. It concerns the
general case m > n as distinguished from the special case m = n + 1.

Theorem 31.3.  Suppose that m > n and that (g, {) is a straight arc
fromqeE, — M, to{e M, , with { a ND critical point of f, .
The index of { as a critical point of f, is then the number of focal points

of M, belonging to [ on the open arc (q, {), counting these focal points
with their nullities.

Proof whenm = n + 1. In this case Theorem 31.3 is no more
than a reinterpretation of Theorem 31.2 taking account of Definition
31.1 of the nullity of a focal point ¢ of M, . In fact, the Remark
following the proof of Theorem 31.2 has the following consequence:
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When m = n + 1 a center g€ E, , — M, of principal normal cur-
vature of M, is “‘based’ on a degenerate critical point { in M,, and so
is a focal point of M, based on {. The multiplicity of ¢ as a center of
principal normal curvature based on { is by Definition 31.1 the nullity
of g as a focal point of M,, based on {.

Thus when m = n + 1 Theorems 31.2 and 31.3 are equivalent.

Method of Proof of Theorem 31.3 in the General Case. 'Theorem 31.3
belongs to a class of theorems in global variational theory (Morse [13])
capable of a proof by special methods involving “broken primary and
secondary extremals.” It will be proved in a sequel to the present book
concerned with this variational theory. The proof involves an exami-
nation of the variation of the “index” of a “‘critical extremal” [here
the arc (g, {)] as the endpoints of the extremal vary.

A Second Proof of Theorem 31.3 Consider the case in which
m>n+ 1.

Notation. Suppose that the critical point { is at the origin of
coordinates in E,, and that the n-plane E, of coordinates x, ,..., x,,
is tangent to M,, at {. Suppose further that the pole ¢ is on the x, -
axis with x,,, = ¢ > 0.

For || v | sufficiently small a neighborhood N of { relative to M,
admits a Monge presentation

(%1 y0ees X5) = (D1 y0eey V) (31.8)

Xpye = (a5/2) v0; +4, a=1,..,m—n

Let the coordinates (%, ,..., x,) = (v, ,..., ¥,;) be orthogonally trans-
formed into coordinates (¥ ,..., #,) such that (31.4) holds as before.
We adopt the notation of (31.5).

In terms of the new rectangular coordinates u, ,..., %, the neighbor-
hood N of the origin, relative to M, , admits a Monge presentation
replacing the Monge presentation (31.8). With only a slight additional
complexity of reasoning one finds that at a point p(u) € N, represented
by u, f,%(p(u)) — ¢*is equal to the form (31.7) plus a remainder R(u)
of the same character as in the case m = n 4 1. The index of {, as a
critical point of f, or f2, is the number of roots p, 7 0 for which
1 — ¢py < 0, counting these roots with their multiplicities as charac-
teristic roots of the matrix || a}; ||
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An Interpretation. Let ¢’ be a positive number and let ¢’ be the
point on the x,,,, axis at which x,, ., = ¢’. If | — p;¢’ = 0 for some A
on the range 1,..., 7, the form (31.7), with ¢’ replaced by ¢, is degen-
erate. That is, by Definition 15.1 the point ¢’ is a focal point of M,
belonging to {. If p, has the multiplicity x as a characteristic root
of || a}; 1|, we see that the form (31.7), with ¢ replaced by ¢’, has the
nullity u, since just p of the # terms in (31.7) would then vanish.
By virtue of Definition 31.1 the focal point ¢’ is “counted’’ with a
nullity p.

The index of the form 31.7 is thus the number of focal points of M,
“belonging to {’ on the open arc (g, {), counting these focal points
with their nullities.

The interpretation of focal points in the variational theory is nearer
their interpretation in geometric optics.



§32

EQUILIBRIUM POINTS OF
AN ELECTROSTATIC POTENTIAL

We return to the electrostatic potential
¢

T Mu 4L v )
% V(x) = (71_ Foe T) + (Z 4o +?), xe By, (32.1)
introduced in (6.15). The positive numbers 7, ,...,7, represent
positive charges of electricity at the respective points p1,..., p#) in Eg ,
while the negative numbers {, ,..., {, represent negative charges of
electricity at the points ¢‘V,..., ¢* in E; . Given a point x € E; distinct
from each of the points p¥) or ¢'), we have set

o=lp9 =%l py=lg® =%l i = L = Ly ne (32.2)

We seek the points of equilibrium of the electrostatic force defined by V,
that is, the critical points of V (see Kiang [1]).

An Example. 'The potential V' can have degenerate critical points.
This is the case when u = 4, v = 0, and the points p¥), p(®, p3) p)
are the respective points

(1,0,0;; (=1,0,0% (0,1,0); (0, —1,0).  (32.3)

Take charges n, = 7, = 53 = n, = 1. The only critical point of V'
is then the origin, and this point is degenerate, as one readily verifies,

The Hypothesis of Nondegeneracy. We shall assume that the
potential V is ND. This assumption is valid for almost all choices of
the charged points, in accord with Theorem 6.2.

287
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With the aid of Theorem 6.5 the reader can verify the following.
If the charges and each of the charged points are fixed, excepting one
such point, say g, then the points g € Eg for which V is degenerate are
nowhere dense.

V a Harmonic Function. That the potential V' satisfies Laplace’s
equation

4 2V 22V
0%, 0%, | Ox 0%y ' 0%y O%3 0 (32:4)

at points x at which V is defined is readily verified. It is a classical
property of a nonconstant harmonic function that it assumes no
relative minimum or maximum at an interior point of its domain of
definition (see Kellogg [1], p. 223). A particular consequence is that
there are no ND critical points of index 0 or 3.

The principal theorem of this section follows.

Theorem 32.1. Let there be given a ND electrostatic potential V of
form (32.1) such that

G+L++8)+ (")1 + 7+ +1,) <O. (32~5)

Let m, be the number of critical points of V of index 2 and m, the number
of index 1. Then

my = p; m=2v—1; m —my=v—p—1 (32.6)

Proof of Theorem 32.1. The proof makes use of Theorem 9.1
and of two lemmas, of which the first follows:

Lemma 32.1. If o is a sufficiently large positive constant, then under
the conditions of Theorem 32.1 || x || < o at each charged point pV and
¢'"" and at each critical point of V, while grad V is emergent at each point
of the 2-sphere X, on which || x|| = o.

A first condition on o is that it be so large that || x| < o at each
charged point p) or ¢). At each point x at which || x| = o,
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grad V = g(x) = (gy(x), g4(), gs(x)) is well-defined. Grad V is emer-
gent at each point of Z, if and only if the “dot-product”

g*) x =g(*) 4 >0, |x]i=0, (32.7)

summing with respect to & on the range 1, 2, 3. If in addition
g(x) - x > 0 whenever || x| > o, the critical points of V are interior
to the 2-sphere Z, .

It will be convenient to write V(x) in the form

Vi) = 2 4 5 32.8
® =7 T oo (328)
summing with respect to ¢ and j for 7 and j on the ranges 1,..., x and
1,..., v, respectively. If the terms indexed by % on the range 1,..., n are
summed as in (32.7) and terms indexed by 7 and j are summed as in
(32.8), then (32.7) takes the form
i ¢

B x = ol (o, — A0, — S (e, — g, (329)

It follows from (32.9) that
lim [ x| (g(*) * %) = —(m + = +n) — (& + - +§) >0, (32.10)

lizliteo
in accord with (32.5).

It follows from (32.10) that if ¢ is sufficiently large, g(x) *x > 0
for || x|| > o, and the lemma follows,

The Auxiliary Function f. The proof of Theorem 32.1 depends
upon the replacement of V by a function f conditioned as in Lemma
32.2. Theorem 9.1 is applicable to f restricted to the closed n-ball D,
bounded by Z, .

Lemma 32.2. Corresponding to a potential V of form (32.1) there
exists a real-valued function f of class C* in E4 such that:

(Ay) f(x) = V(x) except at most in sufficiently small open disjoint
spherical neighborhoods
Ny,..N,: Nj,..,N. (32.11)

of the respective points pV,..., p#); g),..., g™,
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(Ap) fisordinary at each point in the respective neighborhoods (32.11)
except for ND critical points of index 3 at the points pV,..., p» and of
index O at the points ¢'V,..., g».

We suppose that the spherical neighborhoods (32.11) are so small
that V is ordinary at each point of these neighborhoods at which it is
defined.

To define f of Lemma 32.2, we shall define f separately on each of
the open neighborhoods (32.11). At each point x not in one of the
neighborhoods (32.11) we set f(x) = V(x).

Definition of f| N, . Let e be a positive constant so small that the
following is true: Each point x for which 0 < || x — pV)|| < e shall be
in N, and be such that ¥(x) > 0 and V have a negative directional
derivative on the ray emanating from p'V). Let 5 then be a constant
such that 0 < 7 < ¢, and set

w= Tﬁﬁx{V(x) + €%, where A4,={xeE;|||x—pV| =¢e}. (32.12)
The choices of ¢, 1, and w are such that
w—VE)—|lx—pVEZw—V(x)—e2 20, n<|lx—pY <e (32.13)

The Auxiliary Function . ‘To define f | N, , we shall make use of
an even mapping ¢ of class C* of the real axis onto the interval [0, 1]
such that

P(?) =1, 0<t<,
P(t) =0, t>e (32.14)
Py <0, g<t<e

N

V

With ¢ so defined set r(x) = || x — pV)|| and define f | N, by setting
f(pP) = w and

f(x) = (@) w — r*(x)) + (1 — ¢(r¥(x)) V(x), xeN, —p. (32.15)
So defined, f | NV, is such that

f(x) = V(x), xeNy,llx—pH) =e  (32.16)
f@)=w—|lx—pWE, |z —pW) <9, (32.17)
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and is of class C, It follows from (32.17) that f has a critical point of
index 3 at p") and has no other critical point on the n-ball on which
% —p) <.

We continue by proving the following:

(e) In N, fis ordinary except at the critical point p1V).

To establish (), it is sufficient to show that the directional derivative
df |[ds < 0 on each ray A issuing from p!) at points x on A at which
s = r(x) and » < s < e. To that end, we note that on such a ray

dflds = A(s) + B(s), 7 <s<e (32.18)

where, in accord with (32.15),
A(S) = —2sp() + (1 — @) dVlds, n<s<e (3219

and
B(s) = 2s¢/ (2w — 2 — V(x)). (32.20)

The choice of e implies that dV/ds < 0in (32.19). On using (32.14)
we see that A(s) < 0if » < s < e. By virtue of (32.13) and (32.14)
B(s) < 0, so that df [ds < 0 for y < s < e. This establishes ().

We define f | N, for i = 1,..., p in the same manner as f | N, .

The definition of f | Nj for j = 1,..., v must be made so that (A,) of
Lemma 32.2 holds. This means that the definition f| N; will differ
from that of f| N, . One way to give the definition of f | N is first to
replace ¥V by V’, where V' = —V, and then to replace V' on a
sufficiently small N;j by an f’ related to V' | Nj as f was related to
V| N, .If one sets f = —f' on Nj for each j, one obtains a function f
satisfying Lemma 32.2.

That f so defined over Ej is of class C* follows from the fact that f
is of class C* on the union U of the neighborhoods (32.11) and that
f(x) = V(x) not only on E; — U but also on an open neighborhood
of E, — U, in accord with the relations of the type of (32.16).

This completes the proof of Lemma 32.2.

Completion of Proof of Theorem 32.1. Given V, let o be con-
ditioned as in Lemma 32.1, and let f be the function of class C* on E,
replacing ¥ in accord with Lemma 32.2. Let my, m, , m, , and m; be
the type numbers of the critical points of f. Of these type numbers
my, = v and m; = p, while m, and m, are the type numbers of V.
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We can suppose o so large that X, of Lemma 32.1 is included in the
subset of Eg on which f(x) = V(x). According to Lemma 32.1 grad V
is emergent on 2, . Hence grad f is emergent on X, . Theorem 9.1 is
applicable to f, with Z, serving as the boundary of the region Z of
Theorem 9.1. The connectivities of Z are zero except that Ry = 1.
Applying Theorem 9.1 to f| Z, the second relation of (9.4) takes the
form m, > v — 1, while the last of the equations (9.4), withn + 1 = 3,
gives the relation m; — my = v — p — 1. These two relations imply
the third relation, my > pu, of Theorem 32.1.

This completes the proof of Theorem 32.1.

Minimal Sets of Equilibrium Points of V. Given a ND elec-
trostatic potential V' conditioned as in Theorem 32.1, the resultant
configuration of equilibrium points will be called minimal if

m=v—1, m=uy, (32.21)

and nonminimal if
mg+my >p+v—1. (32.22)

It follows from the last relation in (32.6) that
mo——1)=m—p, (32.23)

that is, the excess over the minimum possible number of critical points
of type 1 is equal to the excess of type 2.

It is not a priori clear that there exist both minimal and nonminimal
equilibrium configurations.

A minimal configuration of equilibrium points is afforded by an
arbitrary finite set of negative charges on a straight line, as one readily
verifies.

A special nonminimal configuration of equilibrium points can be
set up as in the following example:

Example. Let unit charges of positive electricity be placed at each
of the six points

(£1,0,0), (0, £1,0), (0,0, £1), (32.24)

and let a charge of { = —5 units of electricity be placed at a point ¢
near the origin. Let the resultant potential have values denoted by
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V(x, q). For almost all values of ¢ near the origin this potential will be
ND. The number of critical points in a minimal configuration (if any
existed) would be six. We shall prove the following:

(1) For almost all positions of q sufficiently near the origin the
potential x — V(x, q) is ND and has more than six critical points.

In each coordinate 2-plane of E, there are four open quadrants, In
the three coordinate 2-planes there are thus 12 disjoint open quadrants.
Corresponding to a preferred one of these quadrants, say Q, let 2 be an
open ray bisecting O and tending to the origin. We shall verify the
following:

(ii) The potential x — V(x, 0) has a unique ND critical point on h.

To establish (ii), let new rectangular coordinates (y,,y,,y;) be
taken with %4 the positive y,-axis and with the y,-axis orthogonal to the
2-plane of the quadrant Q. There will then be unit charges at the unit
points on the y;-axis. The four remaining charges will be in the (y,, y,)
plane at the points (+a, Fa) and (4a, +-4a), where a = v/2/2.

Let y — U(y) be the potential into which the potential x — V(x, 0)
goes in terms of the new coordinates. Taking account of the symmetry
of the problem and the hypothesis that { = —35, simple calculations
will show that there is just one critical point of U on the y,-axis.
Further calculation will show that the quadratic form underlying this
critical point is of ND diagonal type.

The potential U thus has at least 12 ND critical points. Although
it can be shown that U has other critical points of degenerate type, this
fact can be disregarded. In any case, for almost all values of ¢ near the
origin the potential x — V(x, g) will be ND and have ND critical
points near the 12 critical points of U on the respective 12 rays k.

This establishes (ii) and hence (i).

Equilibrium Problems. There are many questions concerning the
nature of equilibrium configurations which would be of interest if
answered. Among these questions are the following:

1. What is the maximum (if any) of the number of points in an
equilibrium configuration of a ND potential V' for which p + v is
given and (32.5) is satisfied ?



294 IV. OTHER APPLICATIONS OF CRITICAL POINT THEORY

2. Isit possible for a degenerate electrostatic potential defined by
a finite number of charges to have an analytic arc of critical points ?

3. Among ND electrostatic potentials conditioned as is V in
Theorem 32.1, are there potentials all of whose charges are on a
straight line and whose equilibrium configurations are nonminimal ?

4. Given a degenerate electrostatic potential V for which (32.5)
holds and a ND potential U which approximates V and differs from V'
only in the position of one charge, what is the simplest way to charac-
terize topologically the degenerate critical points of ¥ in order to
condition topologically, as far as possible, the ND critical points of U ?
(see “Neighborhood functions” by Morse [13] pp. 154-156).



§33

SYMMETRIC SQUARES OF
MANIFOLDS AND CRITICAL CHORDS

Given a regular compact C*®-manifold M, in E,, 0 < n <, the
chords of M, orthogonal to M,, at both endpoints are called “critical
chords” of M, . Such chords are represented, as we shall see, by
critical points of a function 2 whose domain is the set of unordered
pairs of distinct points x and y in M,, and whose value, given x and y,
is the distance || x — y|| = ||y — x|l. The domain of % is an open
subset of the so-called ‘“‘symmetric square” | M, % | of M, . We shall
topologize | M2 |.

Let | S,2? | be the symmetric square of an n-sphere. The problem of
determining the connectivities of | S,?| mod diag | S,%| (to be
defined) was first solved by the methods of critical point theory. These
methods are here extended (see Morse [13], pp. 183-191, Richardson
[1], p. 528).

The spaces x of this section will be metric. Open subsets will be
defined in the usual way in terms of the metrics, that is, each nonempty
open set shall be the union of e-neighborhoods of points of .

The metric on M, will be defined by taking the ““distance’’ between
two points ¥ and y in M, as|| x — y|, where || x — y|| is the ordinary
distance between x and y in E, . The metric on the Cartesian product
| M, x M, | will be defined by taking the “‘distance’ between points
(x,y) and (x,¥') in | M, X M, | as

e —x"ll +y =yl

The Involution ¢ of | M, x M,|. To a point P = (x,y)€
| M, X M, | corresponds the point P* = (y,x)e| M, X M, |
295
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termed the mate of P. The mapping P — ¢(P) = P* is a homeo-
morphism of | M, X M, | onto | M,, X M, | which is an “involution.”
A point P = (x, y) is equal to &(P) if and only if x = y, that is, if P
is on the “‘diagonal” of | M, x M, |.

We shall make important uses of the following definition:

Definition 33.0. Prime Subsets of | M, X M, |. An open subset Z
of | M, x M, | such that

IN¢(Z =g

will be termed a prime subset of | M, X M, |.

The Symmetric Square | M,*|. Given M, , we shall define a set
| M,2 |, and continue by defining a metric on this set.

The Set | M,%|. To define the set | M,2 |, let points (x,y) and
(3 %) in | M, x M, | be identified to yield a “point in | M2 |”
denoted by T'(x,y) or T(y, x). The set | M,?| is the ensemble of
points T(x, y) = T(y, x) for arbitrary choices of x and y in | M,, |.
We have thus introduced a mapping

(*,3) = T(x,y) : | My X M, | — | M2 | (33.1)

onto | M,?|. Let diag | M, 2 | denote the subset of points T'(x, x) of
| M, 2 | for x arbitrary in | M,, |. The set mapping T, if restricted to
sets {p}, with p € diag | M,.2 |, maps {p} onto {p}. Set

| M2 | — diag | M, | = | My, |. (33.2)
The set mapping 71 is such that for (x, y) € | My, | and p = T(x, y)
T{p}) = {(= )}V {(3, x)}. (33.3)

Continuity of T as yet has no meaning,.
The Set | M, ? | Metricized. Let p and p, be points in | M, 2 | with

representations

p=Txy)=T(y,%), po=T(%,5) = T(y,%), (33.4)
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where ¥, y, x,, and y, are points in | M, |. The distance d(p, p,) in
| M2 | between p and p, will be defined by setting

d(p, po) = min(|| x — %ol + 11y — ol | * — 3o ll + 11y — %)) (33.5)

This distance function has the usual three properties. If p, , p, and ¢
are points in | M2 |:

(A): d(p, o) = d(po s P)

(Ag:  d(p,p)) =0 ifandonlyif p=p,

(Ao):  d(p, po) < d(p, q) + d(g, Po)-

The verification of these three properties is trivial except for (Ag).

To verify (Ag), suppose that ¢ = T(x, , y,). Given p, p, as in (33.4) and
(%1 » ¥1), one can choose (x, y) and (x, , y,) so that (33.4) holds and

dp,g) =lx—=l+1y —mnl
a(g, po) = 1% — 21 [l + | Yo — 31 1I-

(33.6)

By virtue of the definition (33.5)
d(p,po) < |l — x|l + |y — ¥olls
so that (A;) follows from (33.6).
Properties of the Mapping T. We shall verify the following lemma:
Lemma 33.1. Let (%,y,) be a point of |M, x M,| and
po = T(%g, yo) its image in | M2 |. If N, is the open e-neighborhood of
(%9, o) in | M,, X M, | and U, the open e-neighborhood of pyin | M2 |,

then
T(N) =U,; T-YU,)=N,uU &N,). (33.7)

Proof. By definition of the metricon | M,, X M, |
N, ={xy)e|M, x My |le>|x— %l +ly—l}
If u and v are points in | M, |, then

U ={T@v )| M:|le>min(|u-x| +[lv-oll | o= %[l + [l #=20)}-
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From these representations of N, and U, it follows that
TWN)CU,; THU)CN,VEN,) (33.8)

[using (33.3)]. On applying T-! to the first of these inclusions and T'
to the second, we find that

N,U¥N)CTYU); UCTWN,), (33.9)

where use has been made of (33.3) and (33.1). Relations (33.7) follow
trivially from (33.8) and (33.9).

Thus Lemma 33.1 is true.

It is a corollary of Lemma 33.1 that T and T-! are open mappings.
That is, an open set of | M,, X M, | is mapped onto an open subset of
| M2 |, and conversely an open subset w of | M,2 | is mapped by T!
onto an open subset of | M, 2 |.

We shall need the following lemma:

Lemma 33.2. The compactness of | M, | implies the compactness of
| M2 |.

Recall that a Hausdorff space y is compact if each collection of open
subsets of y which covers x includes a finite subcollection which
covers .

Let there be given a covering of | M,%| by a collection (w,),, of
open subsets w; of | M, 2 |. For each i € a set 2; = T w,). Then, by
Lemma 33.1 2z, is open in | M,, X M,, |. Thus (2,),, is a collection of
open subsets 2; of | M, x M, | covering | M, X M, |. Since
| M, x M, | is compact if | M, | is compact, there exists a finite
subcollection, w, , w, ,..., ®,, , of the sets 2, which covers | M, X M, |.
The sets T(w,), T(w,),..., T(w,,) are in the collection (w,),., and have
| M2 | as union.

Since | M, 2 | is a Hausdorff space, Lemma 33.2 follows.

Lemma 33.2 has the following consequence:

Lemma 33.3. If Z is a “prime” subset of | M,, X M, | (Definition
33.0), the restriction T | Z is biunique and bicontinuous, and hence a
homeomorphism of Z onto T(Z)C | M2 |.

Taking account of the relation (33.3), with (x,y)e| M, X M, |
and the hypothesis Z N §(Z) = &, we see that the restriction T'| Z
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is biunique. That T | Z is bicontinuous follows from the fact that
T(Z) is an open subset of | M2 |, that T | Z is biunique, and T-1is an
“open” mapping in accord with Lemma 33.1.

The Compact Subset diag | M,%| of | M,?|. Diag| M,%| is by
definition the subset of points T(x, x) € | M,?|. Making use of the
metrics on | M,, X M, | and | M,? |, one sees that the mapping

(%, x) > T(», x): diag | M,, X M, | — diag | M,2? | (33.10)

onto diag | M,2 | is a homeomorphism. The manifold | M, X M, |is
compact, since | M, | is compact. The subspace diag | M,, X M, | of
|M, x M, | is closed in | M, X M, | and hence compact. Its
homeomorph, diag | M,2 |, is accordingly compact.

The following lemma greatly simplifies the problem of determining
the homology characteristics of | M,2 | — diag | M,2 |:

Lemma 33.4. A homeomorphism ¢ of the manifold | M, | onto a
similarly conditioned manifold | N, | induces a homeomorphism 6, of
| M,%| onto | N,%| that maps diag| M,2| homeomorphically onto
diag | N2 |.

The homeomorphism ¢ induces the homeomorphism @ of
| M, x M, | onto | N, X N, |, in which (x,y)e| M, x M, | goes
into the point

D(x, y) = (9(x), P(y)) € | Ny X Ny |.

We shall define 6, at each point p € | M2 |. To that end, let T be the
mapping of | M,, X M, | onto | M,? | defined above, and let T', be the
corresponding mapping of | N, X N, | onto | N,2|. Introduce the
point 6,(p) € | N,2 | by setting

{8.(0)} = TO(T({2})), P M2 (33.11)

Recall that T-1({p}) is given by (33.3), where (x, y) and (y, x) are
mated points in | M, X M, |, coincident if p € diag | M2 |. Under &
these mated points of | M, X M, | go, respectively, into mated points
(p(x), (¥)) and (¢(¥), ¢(*)) in | N, X N, |. Under T, these mated
points in | N,, X N, | go into the point @,(p) of | N,.2 |, so that (33.11)

is true.
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That the mapping p — O,(p) is biunique and onto | N,2 | follows
from the existence of the inverse of (33.11),

{g} > T@TV({g), gl N’

6, maps an open subset of | M,?| onto an open subset of | N,? |
because each of the mappings T, @, T* is an open mapping. Since 6!
also maps open sets onto open sets, &, is a homeomorphism.

One sees that &, maps diag | M,,? | onto diag | N, |, thus completing
the proof of Lemma 33.4.

It is a corollary of the preceding lemma and of Theorem 28.1 that
the ¢g-th homology groups of the spaces

| M,2|mod diag | M,2] and | N,?|moddiag|N,2| (33.12)

(see §28) are isomorphic for each integer ¢ provided | M, | and | N, |
are topologically equivalent.

Notation. To relate the connectivities %, of | M, 2 | mod diag | M2 |
to the “critical chords” of M,, , we introduce open subspaces

| M2 | — diag | M2 | = | M,, |
IMﬂanl_diagananl=‘Mn>‘2Mnla

respectively, of | M,%| and | M,, x M, | [see (33.2)]. It should be
understood that | M, X M, | is not a symbol for a product. The
notation (33.13) is permanent.

(33.13)

Lemma 33.5. The open subspace | M,, | of | M,2| is a topological
2n-manifold.

To verify this lemma, let p, be an arbltrary point of | Mm | Then
Do = T(ac0 ) yo) for some point (x,,y,) in | M, X M,|. Since
| M, X M, | is a topological 2z-manifold, there exists an open
nexghborhood N of (%, y,) relative to | M, X M, | which is a topo-
logical 2n-ball. Since (xy , ¥o) # (Yo 5 %), N can be chosen as so small
a neighborhood of (x, , y,) in | M,, X M,, | that it is a “prime” subset
of | M, X M,|. According to Lemma 33.3 7'| Nis a homeomorphism
of N onto the open subspace T(N) of | M,, |. Thus T(XN) is an open
topological 2n-ball serving as a neighborhood relative to | M,, | of
Po = T(%g, ¥o)-

Thus Lemma 33.5 is true.
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An Extension of the Preceding. The theory of symmetric squares
extends readily to symmetric squares of Hausdorff spaces x. The
preceding definitions and lemmas have their purely topological
counterparts. In particular, one can define an open subset of the sym-
metric square x? as the image of an open subset of y X x under the
mapping T, where T carries a point (x, y) € x X x into the unordered
pair T'(x, y) in x%. When one comes to the study of critical chords the
purely topological theory ends. It was because our principal objective
was the study of critical chords of differentiable manifolds that
metric rather than nonmetric Hausdorff spaces were used.

We turn mow to the differential aspects of the theory, with special
reference to critical chords of M, .

M, as a Differentiable 2n-Manifold. M, is given as a regular
compact C*-manifold in E,, 7 > n. We shall show that the differen-
tiable structure on | M, | induces a differentiable structure on | M,, |
in much the same way as that in which the differentiable structure on
| M,, | induces a product differentiable structure on | M, | X | M, |
(see §13).

Presentations in DM, Defined. Let p, be an arbitrary point in
| M,, | and (»,, y,) a point in | M, X M, | such that p, = T(x,, yy).
By hypothesis there exist presentations

(F,: Uy, X)eDM, and (G,:V,,Y)eDM, (33.14)

of open neighborhoods X; and Y, , respectively, of x; and y, so small
that X; x Y, is a “prime” subset of | M,, x M, |. It follows from
Lemma 33.3 that the mapping

(u, v) — T(Fy(u), Gy(%)) : Uy X V; — T(X; X Y,) (33.15)

is a homeomorphism of U; X ¥V, onto the open subset T(X,; X Y,)
of | M,, |.

Definition 33.1. Prime Presentations in 9°M,,. We denote the
homeomorphism (33.15) by T(F,, G,) = T 5 (Fy, G,;). This homeo-
morphism is a presentation [cf. (13.6)]

(T(F,, Gy : Uy X Vy, T(X; X Yy)) € D°M,, (33.16)
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termed a prime presentation in 2°M,, . It is characterized by the fact
that X; X Y, is a prime subset of | M,, X M, |.

We shall prove Lemma 33.6:

Lemma 33.6. “Prime” presentations in D°M,, are C®-compatible
and cover | M,,, |.

It is clear that prime presentations in 2°M,, cover | M,, |.

To show that such presentations are C*-compatible, we fall back on
Proposition (A;) of §13. By virtue of Proposition (A,) it is
sufficient to verify the C®-compatibility of an arbitrary prime
presentation T(F, , G,) € 2°M,, with each other prime presentation
T(F,, G,) € 9°M,, for which the presentations

(Fo: Uy, X)eDM, and (G,:V,,Y)eDM, (33.17)

have the same ranges X and Y on | M, |, respectively, as F, and G, .
The “transition’” homeomorphism defined by the presentations
T(F,, Gy) and T(F,, G,), taken in that order, is a homeomorphism

(T(Fy, Go)) " o T(Fy, G)) = (Fy, G o(Fy, Gy [cf. (13.7)]
=(F;'oF,,G*oG): Uy x Vi > Uy x V,  [cf. (13.8)]

of U, X V; onto U, X V. Since F, and F, are C®-compatible by
hypothesis, as are G, and G, , it follows from the form of (33.18) that
the mapping(33.18) is a C*-diffeomorphism of U, X V,onto U, X V,.

Thus Lemma 33.6 is true.

Since a suitably chosen countable subset of prime presentations in
2°M,,, covers | I&an |, a C*-differentiable structure is thereby defined
on | My, | in accord with Definition 13.1. So differentiably structured,
M,,, will be termed the diagonal-free symmetric square of M,, .

In view of Lemma 33.6, prime presentations in 2°M,, will be
termed prime presentations in DM, .

We can regard M, X M, as a differentiable submanifold of
M, xM,.

(33.18)

Lemma 33.7. The mapping
*9) > T(x,9): | My X My| | My |  onto | My, |
defines a C>-immersion M, X M, — M,, .
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This lemma will be established by the test of Definition 16.2,
where ¢, Fe2M, , and G € YN, of Definition 16.2 are replaced,
respectively, [in the terms of (33.14) and (33.15)] by T and the
presentations

(Fy,G): Uy x Vi, X, x Y)e DM, X M) [cf. (13.7)]
(T(F,, Gy : Uy x Vy, T(X, X Y))) e DM,, [cf. (33.16)].
The test of Definition 16.2 is satisfied if the mapping (16.3), namely
Gls(psF): U—>V

is a C*-diffeomorphism. In the case at hand this test is satisfied, since
the mapping

T(F,,G)?5(Ts(F,,G)): Uy x V= U, x V;

is the identity mapping of U; X ¥V onto U; X V.

The Chord Function k on M,,. Let xand y be distinct points in
| M, |, and p = T(x, y) the corresponding point in | My, |. The real-
valued function

pohp)=llx—yl, pe|My,]

is called the chord function on M,, . Given a prime presentation
T(F,, G,) € 2M,, , as in (33.16), k has a representation in the local
T(F,, G,)-coordinates (u, , v;) of the form

(0, 0) = (B35 T(Fy, G))(y, vy) = | Fy(wy) — Gy(@)l, (4, 00)e Uy X V),
(33.19)

with Fy(u,) # Gy(7;) (cf. Definition 5.5 and §13).

This representation shows that 4 is of class C* on M,, and that a
point T(x, ¥) € M,, is a critical point of % if and only if the chord ¥,y
in E, with endpoints x = Fy(¢;)and y = Gy(v,)in | M,, | is orthogonal
to M, at x and y.

The lower bound of values of % is zero, but A(p) > 0 without
exception for p € | My, |. The critical values of / are the lengths of the
critical chords, and are bounded from zero. The set of critical points
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of hon | M,, | is closed on | M,? | and hence compact. It is bounded
from diag | M, 2 |.

ND Chord Functions h. 'The chord function 4 on M,, may be ND
or degenerate. It is ND if M,, is an n-dimensional ellipsoid in E, ,; .
It is degenerate if M, is an n-sphere.

Morse has proved the following:

A. An Unpublished Theorem. Corresponding to a regular, compact,
connected C*-manifold M,, in E,, n < r, there exists a similarly con-
ditioned manifold Q,, in E, with | Q, | homeomorphic to | M,, | and such
that the chord function h on O, is ND and has just one critical point p,
corresponding to each critical value of h.

The proof of the theorem shows that O, can be chosen so as to
approximate M, in various senses, but this fact is not used in the
present study.

It follows from Lemma 33.4 that the manifolds | M,, | and | Q,, | of
Theorem A are homeomorphic, a fact of great importance.

If the chord function & on M,, is ND, its critical points are finite in
number. This is because the set of critical points of % on | M,, | is
compact and the critical points of a ND function are isolated.

The Extended Chord Function h. The chord function 4 is defined on
the open subset | M,, | of | M,2 |. We shall extend % over all of | M, ? |
by setting h(p) = 0 when p € diag | M, |. So defined, h is continuous
on | M,2|

The Principal Theorem.

Theorem 33.1. (i) If M,, is a regular, compact, connected, C*-manifold
in E,, 0 < n <7, the connectivities, ®; of | M2 | mod diag | M, 2 |,
are finite and vanish, excepting at most the connectivities

Ry, Ry vy R - (33.20)

(ii) If the chord function h on My, is ND, the type numbers
My, my ..., Mg, Oof the critical points of h and the connectivities
Ry, R, ..., Ry, satisfy the relations (30.1) and (30.2), with 2n replacing
n in these relations.
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It is not affirmed that the connectivities (33.20) are the connectivities
of the domain | My, | on which % is defined. However, Theorem 30.3
will be shown to imply Theorem 33.1 once the following lemma is
established:

Lemma 33.8. If, corresponding to the manifold M, given in Theorem
33.1, 0 is a positive constant less than any critical value of the chord
Junction h on M,,, , the isomorphisms

Ha(| Mna |’ dlag l Mna |) ad HG(I M‘m Iv h’n) (33‘21)

are valid for each integer q.

In Theorem 33.1(i) and in this lemma it is not assumed that the
chord function is ND.

To prove Lemma 33.8, it will be sufficient to verify the four fol-
lowing propositions. We shall refer therein to the extension h of &
over | M, 2 | defined above. The proofs depend upon a deformation D,
of | M,%| on | M,?| near diag | M,%| and a second deformation D,
of | M,2 | which is global in character.

Proposition |. Definition of D,. If e is a sufficiently small positive
constant, the subspace h, of | M,% | admits a deformation D, retracting h,
onto diag | M2 | in such a manner that for each constant ¢ for which
0 < ¢ < e h,is retracted onto diag | M2 |.

Proposition |l. Definition of D,. If, corresponding to e of
Proposition 1, 2c = e, | M2 | admits a deformation D, deforming | M,? |
on itself onto itself in such a manner that h, is retracted onto diag | M2 |.

Proposition lll. If 2c = e, as in Proposition 11, then

H(I M2, diag | M2 |) ~ H(] M,2|,h,), ¢=0,1,... (33.22)

Proposition V. For each ordinary value c > 0 of h
H( M2, h) ~ H( My |, k), ¢=0,1,... (33.23)
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Proof of Proposition I. In establishing Proposition I we shall make
use of well-known properties of short geodesic arcs on M,, . We review
these properties.

Corresponding to a sufficiently small positive constant e, statements
(A,)—(Ay) are true:

(A;) If x and y are points in | M, | such that 0 < | x — y|| <o,
there is a unique geodesic arc g(x, y), joining x to y on | M, | and
absolutely minimizing length on M, , with a length L(x, y) on M,
which varies continuously with (x,y)e|M, X M,| when
0 <||*— y|| <e Thenorm| x — y | is the length of the chord ¥, y.
The point P(s : x, y) on g(x, y) at a distance s from x measured along
g(x, y) varies continuously with s, x, y for

O<lx—yll<e 0<s<L(xy).

In particular, the midpoint,
z(x, y) = P(3L(x,y) : %, ),

of the arc g(x, y) varies continuously with (x, y).

(A;) A point (x,y)e| M, X M, | for which 0 <|x—y| <e
admits a continuous deformation on g(x,y) into the point
(=(=, ¥), 2(», y)) in diag | M,, X M, |. This deformation is defined by
replacing ¥ and y by points x, and y, which move continuously on
g(x, y) toward z(x, y) at a velocity L(x, y)/2 along g(x, y) as ¢ increases
from O to 1.

(A;) During this deformation of (x, y) on | M,, X M, | the chord
length || ¥, — y,|| shall strictly decrease.

A Deformation D, of the Seth,. Given a constant e subject to the
above conditions, let p be an arbitrary point on h, — diag | M2 |.
There then exist points (x, y) and (y, x) in | M,, X M,, | such that

p=T(xy) = T(y, x). (33.24)
The geodesic arcs g(x, y) and g(y, x) are identical except in sense.
Under the deformation of the points (x,y) and (y,x) into

(2(x, ¥), 2(x, ¥)) = (2(y, x), 3(y, x)), as defined in (A,), (», y) is replaced
at the time ¢ by a point (»,, y,) and (¥, ») by the point (y,, »,), so that

T(x;,y) = T(y:, %), 0<t<L (33.25)
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We subject the point p € h, given by (33.24) to a deformation on | M, 2 |
in which p is replaced at the time # by the point (33.25) of | M2 |.

Let h, be subject to a deformation D, on | M,2| in which each
point pe€h, — diag | M, 2| is deformed as above and each point
pediag| M,2| remains fixed. That the deformation D, thereby
defined satisfies Proposition I is readily verified.

Proof of Proposition 11. Let e and the deformation D, of h, be
conditioned as in Proposition I. We shall show that there exists a
deformation D, of | M,? | satisfying Proposition II with 2¢ = e.

The trajectory under D, of a point p € | M2 | will be defined differ-
ently depending on whether p comes under: cask 1, 0 < h(p) < ¢;
or CASE 2, ¢ < h(p) < 2¢; or cask 3, 2¢ < h(p).

In case 1 the trajectory of p under D, shall be the trajectory of p
under D,,. The set h, then undergoes a deformation retracting h,
onto diag | M,2 |. In case 3 the trajectory of p under D, shall reduce
to p.

The deformation arcs in case 2 will interpolate between the defor-
mation arcs in cases 1 and 3 as follows: Corresponding to a point p
coming under case 2, let the time ¢, be determined by the condition
h(p) = 2c — t,c. One sees that ¢, = 0 or 1 depending on whether
h(p) = 2c or c. In case 2 the trajectory of p under D, shall be that of p
under D,, until the time z, is reached. For ¢ on the interval £, < ¢ < 1
the trajectory of p shall remain fixed as the point into which p has been
deformed when ¢t = ¢,,.

This completes the definition of a deformation D, of | M,2|. One
sees that D, , with 2¢ = e, satisfies Proposition II.

Proof of Proposition II1. The existence of the deformation D, of
| M2 | implies that for each integer ¢ > 0 (33.22) holds in accord
with Theorem 28.4. In this application of Theorem 28.4 (x, 4),
(x', A'), and d of Theorem 28.4 are taken, respectively, as

(I M2,h,), (I M2 diag| Ms2]), D,. (33.26)

Proof of Proposition IV. To verify Proposition IV, we shall make
use of the “Excision” Theorem 28.3. We wish to excise diag | M2 |
from | M,2| and from its modulus h,, understanding that ¢ is an
ordinary value of h. We accordingly set x, 4, and 4* of Theorem 28.3
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equal to | M, |, h,, and diag | M,? |, respectively. The excision of
diag | M,2 | yields the sets

x—A*=|M,,| ad A—A*=h,, (33.27)

so that once the excision hypothesis is confirmed the isomorphism
(28.15)
H(x, 4) ~ Hx — A*, A — A*), g=01,..,

will yield the isomorphism (33.23).

Vertfication of the Excision Hypothesis (28.14). The excision
hypothesis here takes the form

(M2 —h,)C| M2 — diag | M2 | for some € >0, (33.28)

where (] M,2 | — h,), means the e-neighborhood of | M,%2| — h, in
| M2 |. Equivalently, (33.28) is the condition that for some € > 0 the
e-neighborhood in M, 2 of the set X = | M, 2| — h, does not meet
diag | M2 |.

To show that this condition is satisfied, let h¢ be the subset of | M,2 |
at the h-level ¢. Taking closures in | M,2 |, C1 X = X U h®. The set
Cl X accordingly does not meet diag| M,2|. Now, diag | M,2?| is
compact by Lemma 33.2. Moreover, Cl X is compact, since Cl X is
closed in the compact space | M,? |. Hence some e-neighborhood of
Cl X does not meet diag | M2 |. For this € (33.28) is satisfied. Excision
Theorem 28.3 thus implies (33.23) and thereby Proposition IV.

Completion of Proof of Lemma 33.8. If (0,¢] is an interval of
ordinary values of A, and if in addition 2¢ = e is conditioned as in
Propositions I, II, and III, the isomorphisms of Propositions III and IV
imply the isomorphisms

H| M|, diag | M,2|) ~ Ho(| My |, h), g =0,1,.... (33.29)

The constant > 0 of Lemma 33.8 is less than the minimum a of
the critical values of A. It follows, as we shall see, that with ¢ < a,
as in (33.29),

H{| My |, h) ~ Hf| My |, k), g=0,1,...  (33.30)
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Verification of (33.30). That (33.30) is true will follow if we show
that there exists a homeomorphism @ of | M,, | onto | M,, | that
maps h, onto k,. To this end, one can define @ so as to leave
| My, | — h, pointwise fixed and map &, onto 4, , leaving A* pointwise
fixed while mapping &, onto %, . That this is possible follows, since
there are no critical points of & below the k-level a. Appropriate details
can be supplied by using k-trajectories on 4, .

The isomorphism (33.21) follows from the isomorphisms (33.29)
and (33.30).

This establishes Lemma 33.8.

Proof of Theorem 33.1(1). We first prove Theorem 33.1(i) under
the assumption that the chord function & of M,, is ND.

We shall apply Theorem 30.3(i).

We identify M,, of Theorem 33.1(i) with M, of Theorem 30.3.
The chord function % on M,, will be identified with the ND function f
on M, of Theorem 30.3 and the value % of % with the value 5 of f. The
latter identification is permissible because the conditions (30.14) on
the value 7 of f, namely, that

n be ordinary,  f,+ be compact, fbeNDonf+ (33.31)

are satisfied by the value % of A, understanding that
hn"' = {Pe | Mzu | Ih(P) = n}-

Theorem 30.3(i) can accordingly be applied if 4, M,, , and 2n of
Theorem 33.1(1) are taken, respectively, as f, M, , and n of Theorem
30.3.

We infer from Theorem 30.3(]) that the connectivities of
| M,, | mod h, are finite and vanish for i > 2n. The isomor-
phisms (33.21) imply that these connectivities are those of
| M2 | mod diag | M,2|. Finally, #, = 0, since | M, | is arcwise
connected by hypothesis, so that each point of | M,?| is arcwise
connected on | M,2 | to the modulus diag | M, 2 |.

Thus Theorem 33.1(i) is true when the chord function & of M,,
is ND.

Proof of Theorem 33.1(i) when the Chord Function h is Degenerate. It
follows from the above unpublished theorem of Morse that there
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exists a manifold NN, , homeomorphic to M, , conditioned as is M, ,
and such that the chord function # on N,, is ND. Accord-
ing to Lemma 334 the spaces | M,?|mod diag| M,2| and
| N,,2 | mod diag | N,,2| are topologically equivalent, and hence by
Theorem 28.1 have isomorphic homology groups.

Theorem 33.1(i) is accordingly true without exception.

Proof of Theorem 33.1(ii). By hypothesis the chord function % on
M,, is ND. If M,, , h, 5, and 2n of Theorem 33.1(ii) replace M, , f, 1,
n, respectively, of Theorem 30.3(ii), then Theorem 33.1(ii) follows
from Theorem 30.3(ii) provided the connectivities of | My, | mod &,
are understood to be the connectivities %, of | M2 | mod diag | M,.? |
in accord with (33.21).

This establishes Theorem 33.1.

Chord Functions of Linking Type. A chord function %2 which
satisfies the conditions of the following theorem will be said to be of
linking type. These conditions are satisfied in particular by the chord
function associated with an ellipsoid with unequal axes when X" is the
field of integers mod 2. (see §34).

Let & be a ND chord function on M,, with disjoint critical values.
Let m, be the gth type number of h, that is, the number of critical
points of & of index ¢. Let a be the minimum of the lengths of critical

chords of M, and 75 any positive constant < a. As previously, for a
fixed field " set

R, = R(I M2 |, diag | M2 ]), ¢=0,1,.. (33.32)

Theorem 33.2. If under the conditions of the preceding paragraph
each critical point of the chord function h is linking mod h, , then

Ry=m,, ¢=0,1,.. (33.33)
Proof. 1t follows from formula (30.15) that for each ¢ > 0
RA| My, |, b,) = m,, (33.34)

and then from the isomorphisms (33.21) that #, = m, .
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Index Determination. Given a critical point p, of the chord
function & of M,, , the problem of determining whether or not p, is
ND and, if p, is ND, of determining the index of p, is equivalent to
a similar problem that can be formulated in terms of the chord function

(x!y) - H(x,y) =z —yl, (x’y)e | M, X M, | (33'35)

Recall that | M,, X M, | was defined in (33.13). We understand that
M, X M, is a differentiable manifold with a differentiable structure
induced by the differentiable structure of M, X M, , of which
M, X M, is an open submanifold.

We shall prove the following lemma:

Lemma 33.9. 4 point (%o, ¥o) in | M, X M, |is a ND critical point
of the chord function H on M, X M, of index k if and only if the point
po = T(xy, ) in My, is a ND critical point of index k of the chord
function h on M,, .

Let presentations (F : U, X) and (G : V, Y) be given in 9M,, such
that xo€ X, y,€ Y, and X N Y = @. Then presentations
(F,G): U X V,X X Y)e DM, X M,)
and
(T(F,G): U x V,T(X x Y))e DM,,

exist.
The critical points of H | (X X Y)and of 2| T(X X Y) are deter-
mined, respectively, by the local representation

(u,9) — (H5(F, GYu,v) = | Fw) — C@),  (w9)e U x V,
of H and the local representation
(4, 9) — (h 5 T(F, G))(u, v) = | Fu) — G@)l, (u,0)eU x V,

of h. The identity of these two local representation of H and A implies
Lemma 33.9.



§ 34
THE SYMMETRIC SQUARE OF AN n-SPHERE

In the terminology of §33 the connectivities %, of
| M,2 | mod diag | M,2 |

over X~ will be called the relative connectivities of | M, 2 | over ). The
connectivities #; may vary with the field >#". A particular choice of
the field " is the field Z, of integers mod p, where p is a prime.
When the field is Z,, we shall refer to the numbers %; as the relative
connectivities #,(p) of | M, 2| mod p. Morse [13], pp. 183-191,
proved the following.

Theorem 34.1. The nonvanishing relative connectivities mod 2 of the
symmetric product of an n-sphere are

Ro(2) = Roa2) = = = R3u(2) = 1. (34.1)

In the proof of this theorem by Morse use was made of the singular
homology theory in vogue around 1930. We are here concerned with
a proof of this theorem by the methods of this book.

We shall explain why the connectivities mod 2 are preferred to those
mod an odd prime p. A historical reason is that the difficulties in
computing the relative connectivities mod 2 in Theorem 34.1 were
first surmounted by the methods of the critical point theory. A more
cogent reason, which the reader is asked to take on faith, is that
Z(p) < #,2), and when p > 2 the sum of the relative connectivities
A, p) is less than their sum when p = 2.

These relations imply the following: Given a regular C*-manifold
M, in E., 0 < n < r, homeomorphic to an n-sphere, the connect-
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ivities %,(2) together imply more concerning the existence of critical
chords of M, than do the connectivities Z,( p), at least when the chord
function on M,, is ND.

In §34 we shall give a proof of Theorem 34.1, omitting, however,
a proof of Lemma 34.2. This lemma affirms that the critical points
of the chord function of the elliptical manifold &, are of linking type
when diag | &,2 | is a modulus. The proof of this lemma is relatively
long, and it has seemed desirable to limit the pages spent on symmetric
products. However, a complete proof of this lemma will be published
separately, further extending the theory of symmetric products.

The Ellipsoid. Let &, be the regular analytic manifold in E,
with a carrier | &, | defined by the condition

4x,® | 4wy’ 43,

IR RN E (342
where

0 <l) <e2) < <en+1). (34.3)

We distinguish &, from its carrier by calling &, an elliptical manifold.
The critical chords of &, on the respective coordinate axes of E, .,
will be denoted by

8(1), 8(2),-.., g(n + 1). (34.4)

With p on the range 1, 2,..., # 4 1 the length of g(u) is c(u).

S, shall denote the n-sphere structured as a regular differentiable
manifold in E,,, . Lemma 33.4 implies that | £,% | is homeomorphic
to | S,2| and | &, | to | Sy, |. The relative connectivities %, of | S,? |
are accordingly those of | &,2 | regardless of the field J¢".

The following elementary proposition requires verification:

(i) &, has no critical chords other than its principal axes
8(1),.., g(m 4 1).

To prove (i), it is sufficient to verify the following two propositions:
A straight line meeting &, orthogonally in two points meets the origin.
The only critical ‘chords of &, which meet the origin are the principal
axes of &, .
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Notation for Theorem 34.1. Differentiable manifolds &, X &, ,
&, X &,,and &, , are understood in the senses defined in §33. For
on its range 1, 2,..., n 4 1 let a(u) and —ofw) be the endpoints of the
chord g(u), supposing that x, > 0 at a(p) and x, < 0 at —o(p). The
chord function H on &, X &, and the chord function % on &), both
have the critical values ¢(1), ¢(2),..., ¢() and no other critical values.
This follows from proposition (i).

These critical values are taken on by H at the critical points (x, y)
in the set

(1), —a(1))yen., (o + 1), —af + 1)), (34.5)
as well as those in the complementary set
(—o(1), «(1))seesy (—aln + 1), a(n + 1)). (34.5)

The critical points of  are the images on &}, under T of the points
(34.5), or, equivalently, of the points (34.5') (for T see §33). These
critical points of /4 will be denoted by

Pc(l) yerey Po(n+1) ’ (34'6)

where the subscripts give the respective critical values.

Theorem 342, The critical points (34.5) of H and (34.6) of k are
ND, and have the respective indices

n,n+1,..,2n (34.7)

According to Lemma 33.9, to prove Theorem 34.2, it is sufficient
to prove the theorem for the chord function H on &, X &, . To this
end, we shall prove the following lemma:

Lemma 34.1. For each integer p. on the range 1,...,n + 1 the critical
point ((u), —ofu)) of the chord function H is ND and has the index

kp)=n+p—1. (34.8)

The presentations in 24, to be used in proving the lemma will be
taken as Monge presentations (see §5).
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A Monge Presentation (F, : U, X,)e 26, . Given p on its range
1, 2,...,7n 4+ 1 and the endpoint o(u) of g(u), we shall define a Monge
presentation

(F.: U, X.,) e D&, (34.9)

of an open subset X, of &, that contains o(u).

The domain U of F, will be taken in the coordinate n-plane of E, ,,
on which x, = 0. Let x — P,(x) project E, ,; orthogonally onto this
n-plane. For arbitrary x € E, , it is convenient to set

(xl yooey Xyop s iu » Xt serey xn+l) = (x)u )

where the sign ¥ above a symbol indicates deletion of the symbol.

Supposing that ||u| < ¢(1)/2 for ue U, we shall set (x), =
(4 y..., u,) = u for points x € E, ; such that P,(x)e U. With U so
conditioned there exists a unique open subset X, of &, such that the
endpoint ofu) is in X, , and X, has a real analytic Monge presentation
of form (34.9).

Notation. It will be convenient to set

11 i 11 ) =
(c(l) g —1)"e(p) ep+ 1) Cen+1) = (@ .., @),
(34.10)

noting that a; > ay > -+ > a, . Products such as az? will be
summed for ¢ on the range 1,..., #. It should be noted that (34.2) and
(34.10) imply that

4atul < 1 when (x), =uel. (34.11)
If u e U and x = F,(u), (34.2) implies that
x, = de(p)1 — da2uBP2,  (x), =u, for uelU. (34.12)

The condition || # || < ¢(1)/2 on u € U implies (34.11), and hence that
x, in (34.12) is given by an absolutely convergent power series in the
variables , ,..., %, , so that for # € U and x € F,(u)

x, = 3e(p)(1 — 2022+ ), (x),=u, for ueU, (34.13)

up to terms of the third order in the series for x, .
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A Second Monge Presentation G, € 9&,. The mapping
x—>px)=—x:E,,,—~E,, onto E_

is a reflection of E,, , in the origin. Given the Monge presentation F,
as in (34.9), a second Monge presentation in 24, is defined by setting

(Gu:V,Y) =(p3F,: U, p(X).), (34.14)

so that ¥V = U and G, = —F, . It follows from the preceding para-
graph that for ve U and y = G,(v)

Y= —be(@)1 — 28272+ ), (=0 velU (34.15)

Note that F,(0) = ofu), G.(0) = —ofp).
The product presentation

{(F,,G): UXV, X, xY}eDE, X &,) (34.16)
is well-defined, as is the representation
(4, 2) > | Fu(w) — Gu(o)| = ll* —y || = H(x,5)
of H when x = F,(u) and y = G,(v). Note that
e =3l = (1) — (PP + (2 — 3PP/ (34.17)

It follows from (34.17), (34.13), and (34.15) that when ue U, ve U,
and x = F,(u) and y = G,(v),

H(x,y) = {lu — v|P + )l — a(x® + o) + T}
= c(p) (1 + _1_” u—v|? —2a2up + v2) + ...)Uz,
) A
so that for the given u, H(x, y)/c(u) has the value
1 1
145 [(F(,‘J — agt) (g — v — 4%ty + o]+ (3418)
where the bracket is summed for ¢ on its range 1,..., n.

The index of the uth critical point («(u), —a(u)) of H is the index of
the quadratic form Q in the series (34.18). One sees that the un-
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summed form Q,,, in #, and v, in the series (34.18) is ND and has
the index 2 or 1 depending on whether a, is greater or less than 1/c(w).
It follows that Q is a ND quadratic form in its 2» variables and has the
index 2(u — 1)+ (n —p + 1) = n+ p — 1, establishing Lemma
34.1.

Theorem 34.2 follows from Lemmas 34.1 and 33.9.

We state a lemma whose truth is implied by the analysis of Morse
[13], pp. 186-191, and which, as stated previously, will be proved by
the methods of this book in a later paper.

Lemma 34.2. If v is a positive constant less than the minimum length
of critical chords of &, , then each of the critical points of the chord
function h is of linking type mod h, over the field Z, (see §29).

Proof of Theorem 34.1, Granting Lemma 34.2. By virtue of
Lemma 34.2 the condition of Theorem 33.2 that the critical points of
the chord function 4 be of linking type mod 4, is satisfied. Theorem
33.2 then affirms that each connectivity £, is equal to m,, the gth
type number of h. According to Theorem 34.2 the nonvanishing type
numbers of 4 are

My = My = =My, = 1,

so that Theorem 34.1 follows, assuming, as in Theorem 34.1, that
X‘ = 22 .



§35
THE COMPLEX PROJECTIVE n-SPACE CP,

Introduction. The complex projective n-space CP,,, as defined
below, has a complex dimension 7. With the definition of a suitable
structure CP, becomes a compact differentiable manifold M,, of
class C*. Milnor ([2], pp. 25-27) has defined a real-valued ND
function g on M,, with the following properties. The critical points
of g are n + 1 in number with indices

0,2,...,2(n — 1), 2n (35.1)

and critical values which increase with the indices of the critical point.
We shall term such a function a Milnor function g.

Granting the existence of a Milnor function g on M,,, , the “lacunary
theorem” of Morse ([7], p. 151) or Corollary 30.2 implies the following:

Theorem 35.1. The connectivities R,, q = 0, over X" of M,, are
independent of the choice of the field, and in order of their dimensions are
alternatingly 1 or O for ¢ < 2n, with R, = 0 for ¢ > 2n.

To establish Theorem 35.1, we shall define and topologize CP,, .
The topologized CP, will be shown to be a compact, connected,
topological manifold | CP,, | which admits a differentiable structure
as a C*-manifold M,, . On M,, a C*-function g will then be defined
and shown to be a Milnor function.

CP,, Defined. Let CE,,, be the Cartesian product of n 4 1
complex planes of points 2, , 2, ,..., %, respectively. Let CE},; denote
CE,,,, with the origin deleted from CE,,, . Let z = (2,, 21 ,..., 3p)
denote an arbitrary point of CEf,; (cf. Chern [1], pp. 1, 2).
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Two points z’ and z” in CE}; are termed projectively equivalent if
there exist nonvanishing complex numbers p' and p” such that
p'z" = p"z". This relation of equivalence is reflexive, symmetric, and
transitive.

Let ¢(z) denote the projective equivalence class of an arbitrary
z € CEY,, . The set CP,, of equivalence classes ¢(z) is defined by the
mapping

z — ¢(z) : CE;,, - CP,, (35.2)

regarded as onto. The space CE,,,; has a well-defined product topology.
Taken as a subspace of CE,, , CEY,, has an induced topology. One
topologizes CP,, by requiring that a subset X of CP,, be open if and
only if it is the image under ¢ of an open subset Y of CE3,,, . The set
@ %(X) will then be the ensemble of points in CE},; projectively
equivalent to points in Y, and will be open in CE}, , . It follows that ¢
is continuous. CP,,, so topologized, is a Hausdorff space | CP,, |.

Lemma 351. The space | CP,, | is a connected, compact, topological
2n-manifold which can be differentiably structured so as to be a C*-
manifold M,, .

| CP,, | is connected, since it is the continuous image under ¢ of the
connected space CE;, ; .

The Compactness of | CP, |. Given z € CEj_, set
lzll=(21*+ + 2 5% K={zeCEy,llz| =1} (353)

Topologized by CE},, , K is compact. The mapping ¢ | K of K is
onto | CP,, | and continuous. Hence | CP,, | is compact.

|CP, | as a Topological Manifold. Let U, X V, be the real
2n-plane of points

(#,0) = (1,01 38y, g ; *** 5 Uy, Vy) (35.4)
We shall define #» + 1 presentations
(FF: U, XV, XP), k=0,1,.,n, (35.5)

of open subspaces X°, X,..., X of | CP,, | whose union is | CP,, |.
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For each & on the range 0, 1,..., # and each point (v, v)e U, X V,,
a point Z = (% , 2y ,...» %) in CE}; of the form

z(u, v; k) = (4y + 10y yooe, U + 005, b, Uy + 0psy oo, 4y +0)  (35.6)
is introduced with 2, = 1. We then set
Fu,v) = p(z(y, v; R))eCP,, (u,v)eU, XV, (35.7)
and FYU, x V,) = X*. The set

G* ={z2€CEny | 2 # 0}

is open in CE},; and X* = ¢(G*). Hence X* is open in | CP, | by
definition of open sets in | CP,, |.

The mapping F* is biunique, since distinct points (%, v) and («, ')
in U, X V, yield points z(, v; k) and z(«’, ¢'; k) in CE}, which are
projectively nonequivalent.

The mapping F* of U, X V, into the Hausdorff space | CP,, | is
continuous, since ¢ is continuous and F¥(u, v) defined by (35.7). The
mapping F* is bicontinuous, since the restriction of F* to a compact
2n-ball in U, X V, is both biunique and continuous. Hence F* is a
homeomorphism onto X, . Moreover,

|CP, | = X°U X1U - U X", (35.8)

Thus | CP,, | is a topological 2n-manifold covered by the presen-

tations
PO FL .. Fe, (35.9)

The C>-Compatibility of the Presentations F¥. Let h and k be
distinct integers on the range 0, 1,..., # with A > k. We shall establish
the C*-compatibility of F* and F*.

To that end, let (¥, v) e U, X V, be F¥-parameters on X* and let
(#',v") e U, X V, be Fh-parameters on X*. Set

Zo =(FYY (X N XY, Zip =(FYWY(X*Nn XY, (35.10)
We wish to show that the transition homeomorphism
Nen = (F*| Z3n) ™ o (F*| Zgy) : Zg — Zgn  (onto) (35.11)

associated with F* and F* is a C*-diffeomorphism.
Points (1, v) € Zy, and (¥, v') € Z;,, correspond under the transition
homeomorphism A, if and only if the corresponding points z(x, v; k)
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and z(u', v’; k) in CEJ,, are projectively equivalent, that is, if and
only if

(un + 0) (41 + Wkpa) = 1 (35.12)
and
. ()
2w, o' h) = 3 0 (%, 9) € Z,, , (35.13a)
2, v k) = 2R ez, (35.13b)

! A 5
Ui T Wi

One could omit (35.13a) or (35.13b) and the preceding statement
would remain true. One sees that A, is a real analytic diffeomorphism
of Z,, onto Z;, uniquely determined by the relations (35.13) between
(u, ¢) and (', 2').

It follows that the n 4 1 presentations F* of open subsets of | CP, |
are C*-compatible.

Hence | CP,, | is the carrier of a C*-manifold M,, , in accord with
Definition 13.1.

This completes the proof of Lemma 35.1.

Milnor’s Function g on CP, . Corresponding to an arbitrary
point z € CE} ,; and to any set of real constants ¢, < ¢; < ** < ¢,,
a real-valued function g on CP,,, or, equivalently, on M,, , will be
defined by setting

&@(z) = ¢; | =z Pl z % (35.14)

(summing with respect to ¢ on the range 0, 1,..., n). We shall prove
that g is a Milnor function on M,, with critical values ¢, , ¢, ,..., ¢, .

Note first that g is real-valued. It is uniquely defined at each point
of CP,, , since the right side of (35.14) is the same for any two points
z € CE} ., which are projectively equivalent.

The Critical Points of g on M,, . The critical points of ¢ on X*
(if any exist) are the images under F¥ of the critical points
(4g , vo) € U, X V, of the function

(#, v) — (g 5 F¥)(u, v) = g(o(z(u, v; k) = gilw, v), (W, 0)e Up X V,,

(35.15)
introducing g, (see Definition 5.5).
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Note that
I 2(s, 03 B)F =1 + o, 0), (n,0)elU, X Vy,
where w¥(u, v) is the quadratic form
o, o) =[xl +vlF, uel,; veV,.
From (35.14) and (35.15) it follows that for (v, v)e U, X V,

(1 + ¥, 0) o ©) — e
= co(ty® + 95%) + 4 cea(® + )
+ el + %) + 0+ G’ +0a7). (35.16)
Subtracting c,w?(u, v) from both sides of (35.16), we find that

(1 + w¥u, V)X gx(%, v) — cx)
= (o — x)® + %) + -+ + (Cr — r)wa? + v4F)
+ (crepn — ck)(uzﬂ + 0%_,.1) + ot (e — ‘—'k:)(“ﬂ2 + vuz)- (35.17)

Thus g, is real-analyticon U, X V.

A straightforward computation, using both (35.14) and (35.17),
shows that the only critical point of g; on U, X V, occurs at the
origin in U, X V, and that the corresponding critical value is ¢, .
The quadratic terms in the Taylor’s expansion of g, about the origin
are the terms on the right of (35.17). Taking into account the ordering
€ < ¢ <+ < ¢, , one sees that the origin is a ND critical point of
& of index 2k.

Thus g is a Milnor function on M,, with critical values
€ <6 <+ <c¢,, assumed respectively at unique ND critical
points with indices 0, 2, 4,..., 2n.

Theorem 35.1 follows from the ‘‘lacunary principle” enunciated in
Corollary 30.2.

The critical point of g on CP, with index 2% is the projective
equivalence class of the point z(0, 0; k) € CE] ., , that is, the point in
CE!,, whose ith complex coordinate z; is 5;*.

From Appendix III and Theorem 35.1 we infer that the Betti
numbers of CP, are equal to the corresponding connectivities, and
there are no torsion coefficients. The homology groups H,(CP,, , Z)
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over the ring Z of integers are thus trivial for 7 odd, and for 7 on the
range 0, 2, 4,..., 2n are cyclic, isomorphic with Z.

Remark. The problem of determining whether or not a critical
point of a Milnor function g is of linking type has not entered because
the “lacunary” nature of the sequence of indices of the critical points
of g implies that each critical point is of linking type. In problems of
more general type the set of indices of the critical points will not in
general be of lacunary type. In these more general problems it is
necessary to associate a definite k-cap 2* with each critical point of
positive index k in order to determine whether or not this k-cap is
linkable (see §29).

The next section is concerned with this problem.



§ 36
CAPS AND SADDLES

Objective of §36. Let a ND fe C*(M,) be given such that f, is
compact for each value ¢ of f. As affirmed in Theorem 23.5, such an f
exists on a prescribed C*-manifold M, .

Given a field U7, the critical points of f, with their indices and their
linking characteristics, determine, up to an isomorphism, the homology
groups over £~ of each sublevel set f, of M,, , in accord with Theorem
29.3. The importance of simple criteria as to whether or not a critical
point p, of f is of linking type is clear.

A critical point p, at the f-level a, of positive index &, is of linking
type by definition in §29 if and only if given a k-cap 2* associated with
Pa> 02 ~0 on f, . A problem of first importance is accordingly to
find or recognize a k-cap belonging to a prescribed critical point p, .
The characterization of a k-cap 2* belonging to p, should be in-
dependent of the particular presentations in 2M, used to find or
recognize a k-cap.

The two main theorems of this section meet these objectives. The
first theorem, termed the Saddle Theorem, applies in case 0 < k < n
and reduces the problem of characterizing a k-cap of p, to the problem
when k& = n. The second theorem, termed the Carrier Theorem, gives
an effective characterization of a k-cap of p, when 2 = n. The case
k = O is trivial.

Notation. Corresponding to a prescribed positive dimension and a
number p > 0, let B/ be an origin-centered open j-ball of radius p in
any Euclidean space of dimension j, and let B,” be the C*-manifold
with carrier B,” and with a Euclidean differentiable structure.

Our first lemma shows the essentially local character of a k-cap of a
critical point p, of f.
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Lemma 36.0. («) Given a presentation (F : U, X) € DM, such that
Do € X, then p, is a critical point of f | X and has the same index relative
tof| Xastof.

(B) Moreover, a k-cap of p, relative to f | X is a k-cap of p,, relative
to f.

The truth of («) is clear.

Proof of (B). We shall make use of a coset-contracting isomorphism

Hk(fa !fa) R Hk(fanX:fanX)' (36'1)

This isomorphism is a consequence of the Excision Theorem 28.3 on
setting y =f,, 4 =f,, A* = f, n (M, — X), and noting that
Pa=x—4

By virtue of (29.7) there is just one element in a “prebase’ for the
homology group of either member of (36.1). A k-cap 2* of p, relative
to f | X is such an element for the group on the right of (36.1). Since
(36.1).is a coset-contracting isomorphism, 2* is a k-cap of p, relative
to f.

Thus Lemma 36.0 is true.

Canonical Coordinates near P,. Before defining saddle manifolds
and stating the Saddle Theorem we shall define a special presentation
in 2M,, , termed f-canonical, of a neighborhood of the critical point p,
of f. Such a presentation is defined with the aid of Theorem 22.2. We
suppose 0 < &k < n.

Let E, be regarded as a Cartesian product, U, X V,_;, of
Euclidian spaces U, and V,,_, of dimensions & and n — k, respectively.
Let u = (uy ..., ;) be an arbitrary point in U, and v = (vy ..., Up4)
an arbitrary point in V,_, . Let O, and O, denote the origin in U, and
V._x , respectively.

It follows from Theorem 22.2 that if o is a sufficiently small positive
constant, there exists a presentation

(G: By’ X BL,,Y°)e DM, (36.2)
such that G(O,,, O,) = p, and
(feGYu,v) =a—|ul®+|v|% (sv)eBy X Bi_. (36.3)
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Definition 36.1. G and Y°. Weterm G an f-canonical presentation
of a canonical neighborhood Y° of p, relative to M, and term the
G-coordinates (u, v) canonical f-coordinates on Y°.

Having shown in Lemma 36.0 that the determination of a k-cap of p,,
is a local matter, we shall narrow the determination of a k-cap 2* of p, ,
0 < k < n, still further by the use of k-dimensional ‘“‘saddles” on M,
associated with p, . As previously, p, is a critical point of f at the
f-level a.

Definition 36.2. An f-Saddle L, of M, at p,. A C>®-manifold
L., 0 < k < n, which is the C®-diffeomorph of an open Euclidean
k-ball B,? and which is C*-embedded in M, so as to meet p, will be
termed an f-saddle of M, at p, if, together with |L, | = |L, — p, |,
it has the properties:

(1) The point p, is a ND critical point of f | L, of index k.
(i) [Ly|Cf,.

We can suppose that B,f is in a k-plane of Cartesian coordinates
0y yeeey 0 and that there is a homeomorphism onto | L, | of form

a—F(a): B, —|[Ly|, F(O0)=p,, (36.4)

which C*-embeds B,? in M,, . Then F is in 9L, and determines ZL,, .
If an f-saddle L, exists at p,, there exists a submanifold L} of L,
with carrier included in a prescribed neighborhood of p,, relative to M,
and with L} again an f-saddle of M, at p,. We term L} a subsaddle
of L, .

That f-saddles exist is shown by the following lemma:

Lemma 36.1. The restriction, both of domain and range, of form
(#,0) > G(u,0): B —~L, onto L, (36.4")

of the canonical presentation G € DM, , given by (36.2), defines an
f-saddle L. of M, at p, .

Let ¢ be the inclusion mapping of L, into M, . The inclusion
defines a C®-embedding of L, in M, . The test (16.3) for such an
embedding is satisfied on taking ¢, G, and F of (16.3), respectively, as
¥, G of (36.2), and the presentation (36.4’). That conditions (i) and (ii)
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of Definition 36.2 are satisfied by L, follows from (36.3) and the
relation G(O,, O,) = p, .

Most of the remainder of this section will be spent in proving the
following fundamental theorem:

Saddle Theorem 36.1. IfL, is an f-saddle of M, at a critical point p,
of f of positive index k < n, then a k-cap 2* of p, , relative to f| L, ,
is a k-cap of p, on M, relative to f.

The following lemma both motivates and simplifies the proof of
Theorem 36.1:

Lemma 36.2. If the conclusion of Theorem 36.1, modified by
replacing L, by some subsaddle L¥ of L, , is true, then Theorem 36.1 is
true as stated.

Proof. Given the k-cap 2* of p, relative to f | L, , as in Theorem
36.1, we must prove under the hypothesis of Lemma 36.2 that

20 on f,modf,. (36.5)

Let u* be a k-cap of p, relative to f | Li . By virtue of Lemma 36.0
u* is a k-cap relative to f | L, . Since u* and 2* are both k-caps relative
to f | L, it follows from (29.7) that on | L, | mod | L, |, for some non-
null r; and ry in 7,

Tk ~ 1,2k, (36.6)

and hence that (36.6) holds on f, mod f, . By hypothesis of Lemma
36.2 u* ~ 0 on f, mod f, , so that (36.5) follows from the validity of
(36.6) on f, mod f, .

This establishes Lemma 36.2.

Presentations F of f-Saddles L,, .  Of the presentations F of f-saddles
of form (36.4) there are some essentially simpler than others. If | L, | is
in a sufficiently small neighborhood of p, relative to | M, |, L, admits
a special presentation which we shall term simple and presently define.
It will be seen that for f-saddles L, which are “simply”’ presented,
the Saddle Theorem can be readily proved. We shall also see that each
f-saddle has a “‘simply”’ presented f-subsaddle, so that by Lemma 36.2
the Saddle Theorem is true for arbitrary f-saddles.
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In order to define simple presentations of f-saddles, “canonical”
coordinates (u, v) near p, are needed. Recall that Y~ is the open
neighborhood of p, on M, represented by canonical coordinates (u, v).

f-Saddles L, Carried by Y°. The C*-embedding by F in (36.4) of
B,’ in M, as L, satisfies the embedding condition of Definition 16.2.
If | L, | is included in the range Y* of the f-canonical presentation G
given by (36.2), the mapping

G'sF:B,’—~ B’ x B, (36.7)

is well-defined, and by the embedding condition on F is a biunique
C*-mapping into the domain of G of the form

o — (¥(«), v(a)) : B, — By’ X By_,. (36.8)
It implies a C*-representation
F(e) = G(#(a), (o)), € By, (36.9)

of the presentation F of L, . In particular, it can happen that the local
F-coordinates (a, ,..., o;) have been so chosen that (36.9) takes the
form

F(a) = G(a, v(a)), a€B, (36.10)

where « — v(«) is a C®-mapping of B,’ into B;_; . This leads to a
definition.

Definition 36.3. Simply Presented f-Saddles L, . If an f-saddle L,
at p, is so small in diameter that | L;, | is included in the open neighbor-
hood Y° of p, and if a presentation F of L, of form (36.4) admits a
representation of form (36.10), then L, will be said to be simply
presented by F.

The following lemma, taken with Lemma 36.2, enables us to prove
the Saddle Theorem 36.1:

Lemma 36.3. Each f-saddle L, of M, at p, has a subsaddle L} at p,
which admits a “simple’ presentation F*,

Proof. According to (36.3) and (36.9) if F is the presentation (36.4)
of L, , then

(f3F)e) = a — [|u(@)® + | o()®, «€ B’ (36.11)
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By Condition (i) on L, of Definition 36.2 p, is a critical point of f | L,
of index k. This implies that the quadratic form in the Taylor’s
development about the origin of the right side of (36.11) in terms of
the variables a, ,..., o is a negative definite quadratic formin o ,..., oy, .
This is possible only if the quadratic form in a similar Taylor’s
development of —|| u(«)||? is a negative-definite quadratic form. From
this we infer that
D(uy(),..., up())
Dl 2 (0.) #0. (36.12)
When (36.12) holds the mapping « — #(«) of B, into Ej, if
restricted in domain to a suitable open neighborhood N of the origin
in B,’, can be restricted in range so as to have an inverse

u—06(u): B -~ NCE,, (36.13)

which, for suitable positive p, is a C®-diff of B,” onto N. From the
presentation F of L, given in (36.4) one obtains a presentation

u — F*(u) = F(6(u)) : B, = L} (36.14)
in DL, of an f-subsaddle L} of M,, at p, with carrier F*(B,”). By virtue
of (36.14) and (36.9)

F*u) = G(u(6(x)), v(0(w))) = G(u, v(¥)), wueB,’,  (36.15)

where we have set v(8(u)) = v(x). Thus the subsaddle L¥ of L; is
“simply”’ presented by F*.

Proof of the Saddle Theorem 36.1. According to Lemmas 36.2
and 36.3 we can assume without loss of generality in proving Theorem
36.1 that the f-saddle L, given in Theorem 36.1 is “‘simply’’ presented
in the sense of Definition 36.3. We accordingly assume that L, is an
f-saddle on M, at p, with a presentation € ZL,,

u—F(u): By —|L,|, F(0)=p,, (36.16)
such that
Fu) = G(u,v(s)), ueB,°CB,’, (36.17)

where u — v(u) is a C*-mapping of B, into B?_,.
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We shall make use of the subset
GBS X Byp)=Y (36.18)

of Y* [cf. (36.2)]. To prove Theorem 36.1, we shall show that there
exist coset-contracting isomorphisms

Hfa vfa) ~ Hy(| Ly |, | Lk D, g=01,.., (36.19)

since the validity of (36.19) when ¢ = k& implies that a k-cap of p,
relative to f | L, is also a k-cap of p, relative to f.

Method of Proof of (36.19). The isomorphism (36.19) will be
verified by establishing the coset-contracting isomorphisms [Y from
(36.18)]

H{faf) » H{fi 0 Y, [N Y) (36.20)

and
H{fan Y, funY)~ Hf L |, | Ly ) (36.21)

and then composing these isomorphisms to obtain (36.19).

Verification of (36.20). 'This isomorphism follows from the Excision
Theorem 28.3 in the usual way on taking (x, A) of Theorem 28.3 as
(fa »£.) and noting that y — 4 = p, .

Verification of (36.21). This isomorphism follows from Theorem
28.4 once we have established Propositions 36.1 and 36.2.

Proposition 36.1.  There exists a deformation d retracting f, N\'Y onto
|L, | and f, N Y onto | L, |.

The deformation d, to be defined, is a deformation of a subset of Y
on itself. We can define d by suitably defining a deformation & in the
domain of the canonical coordinates (u, v) representing Y.

The image of f, N Y C Y under G! is the set

W={uv)eB x Bis|l —llul’ +lv|? <0},  (36.22)

in accord with (36.3) and (36.18). The image of | L, | C Y under G-!
is the set,

w = {(u, v) € By* X By |v = v(u), u€ B, (36.22)
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in accord with (36.16) and (36.17). Let W, and w, denote the sets W
and w, respectively, with the origin in E, deleted.
Proposition 36.1 will follow from proposition 36.2.

Proposition 36.2. The deformation

(#,v,t) > 8, v, t) = (u, (1 — t)v + tv(u)), u,)eW,0<t <1,

(36.23)
continuously retracts W onto w and W onto w, .
To establish Proposition 36.2, it will be sufficient to verify the
following relations in accord with Definition 23.1 of a retracting
deformation:

(Ay): 8(u, v, 0) = (u, v), (u,v)e W,

(Ap):  O(u, v, 1) = (u, v(u)), (u,v)e W,

(Ag):  B(u,v(u),t) =, v(w), ueB’0<t<],
(A): 804, 0,,8) =(0,4,0,), 0t <],

(A  S(u, v, t)eW, (v, v)eW;, 0 <t <1,
(Ay): (u,v,t)e W, (v, v)eW,; 0 <t < 1.

That relations (A,)—(A,) are true follows immediately from (36.23).

Proof of (A;). Since the points 8(u, v, 0) = (», v) and &(u, v, 1) =
(u, v(u)) are in W and W is convex in E,, , (A;) follows. -

Proof of (Ag). We must prove that if (u,, 9) # (O, , O,), then
8(“0 » Yo s t) # (Ou ’ O'u)

Note first that when (4, , v,) # (O, , O,) thenu, # O, ; otherwise,
by (36.22)', (u, , vo) = (O, , O,). In case uy # O, (36.23) implies that

8(“0100rt)‘7é(ouaov)v 0<t<lo
Proposition 36.2 follows from relations (A,)~(Ag).

Verification of Proposition 36.1. Proposition 36.2 implies the
following: Corresponding to an arbitrary point pef, NY, let
(#(p), 7(p)) be canonical coordinates of p; then p = G(u(p), 7(p))
and the mapping

(p, t) — d(p,t) = G(@(p), (p) 1)), pefenY,0<t <1, (36.24)
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defines a deformation satisfying Proposition 36.1. This follows from
the relations (A,)«(Aq) and the character of G as a homeomorphism.

Conclusion of Proof of Theorem 36.1. Proposition 36.2 implies
Proposition 36.1, while Proposition 36.1 implies the isomorphism
(36.21). Isomorphisms (36.20) and (36.21) compose to yield the coset-
contracting isomorphism (36.19). Theorem 36.1 follows from the
isomorphism (36.19) when ¢ = &.

Thus Saddle Theorem 36.1 is true.

A k-cycle 4* on f, mod f, will be a k-cap of p, relative to f if and
only if the barycentric subdivisions of u* are k-caps of p, relative to f
(cf. Lemma 28.2). From this we infer the following useful corollary
of the Saddle Theorem:

Corollary 36.1. A k-cycle u* on f, mod f, which admits a subdivision
2%+ w* such that | w* | C f, and 3* is a k-cap of p, relative to f| L,
ts a k-cap of p, on M, .

Proof. By Theorem 36.1 2* is a k-cap relative to f, so that 3% 4 w*
is a k-cap relative to f.

The Carrier Theorem. When the index % of the given critical
point p, of the ND f on M, is such that 0 < & <z the Saddle
Theorem reduces the problem of associating a k-cap with p, to the
problem when k& = n. The Carrier Theorem gives an effective suffi-
cient condition that an n-cycle y* on f, mod f, be an n-cap of p, by
conditioning the way | y* | is carried on | M,, | arbitrarily near p, .

Barycentric Subdivision. Recall that if y* is an n-cycle on f, mod £, ,
the first barycentric subdivision my® of y* is also an n-cycle on
f,modf, because dm = md. Moreover, Lemma 28.2 implies that
7Y™ ~ y™ on f, mod f, , so that y" is an n-cap associated with p, if and
only if wy™ is an n-cap associated with p, .

Before coming to the Carrier Theorem two definitions are needed:

Definition 36.4. Subchains Meeting a Point. Let y be a Hausdorff
space, ¢ a point of x, and y® a singular n-chain # > 0 on y such that
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ge|y™|. If y* has a reduced form r,0,* over X', the deletion of the
terms of this sum for which | o, | does not meet ¢ will leave a subchain
of y*, termed the subchain of y™ meeting q.

Definition 36.5. n-Chains on M, Simply-carried atq. Let M, bea
C*®-manifold and g a point of M,, . An n-chain y* on M,, whose carrier
meets ¢ will be said to be simply-carried by M, at q if the following
two conditions are satisfied:

Condition (m,). The subchain u™ of y» which “meets” ¢ has for
carrier a closed topological n-disk 4, on M,, in which ¢ is an interior
point.

Condition (my). ou™ is carried by B4,, , the geometric boundary of
4, , and in the sense of Definition 30.3 has at least one simply-carried
separate (n — 1)-cell.

The second principal theorem of this section follows:

Carrier Theorem 36.2 (i) Let there be given a C*-manifold M, ,
a ND fe C*(M,), a critical point p, of f of index n at the f-level a,
and a cycle y* on f, mod f, such that

|| = 2aCfa. (36.25)

(ii) A sufficient condition that y" be an n-cap associated with p, is
that for some integer u > O the u-fold barycentric subdivision of y™ be
simply-carried by M, at p, .

We shall prove the theorem in case (ii) holds for x = 0. It will then
follow in case (ii) holds for some u > 0.

Let u” be the “subchain of ™ meeting p, .”” We identify p, with the
point ¢ of Definition 36.5 and introduce the topological n-disk 4,, as in
Condition (m,). Under Condition (m,) Lemma 30.2 implies that
du™ ~ 0 on B4, . If we understand that 4, = 4, — p,, it follows
from Lemma 29.0 that 4™ ~ 0 on 4, mod 4, . We see from (36.25)
that 4, Cf,. The Excision Theorem 28.3 then implies that there
exists a coset-contracting isomorphism

H(fa ’fa) ~ Hy(4,, A,,),
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so that the condition u® ~ 0 on 4, mod 4, implies that 4™ ~¢ 0 on

f, mod f, . Hence y® ¢ 0 on f, mod £, .
This establishes the Carrier Theorem.

Remark. 'The Carrier Theorem is false if the condition on y* of
the second paragraph of the theorem is deleted.



§ 37
THE REAL PROJECTIVE n-SPACE P,

The homology groups of P, are well known. However, the derivation
of these homology groups of P, by the study of a suitably chosen ND
function f on P, will reveal much concerning critical point theory,
and, incidentally, disclose the nature of the homology groups in
question.

Notation. Let E,,, be the Euclidean space of points
x = (%9, Xy ,..., X,) and Ep ; the space E, ., with the origin deleted.
Two points #' and x” in Ej ; are termed projectively equivalent if there
exist real nonzero numbers 7’ and 7" such that 'x" = r"x". Let (x)
denote the projective equivalence class of an arbitrary point x € Ep,; .
Let P, denote the set of equivalence classes y(x) into which Ej ; is
partitioned. One has the mapping

x—(x): Ey,,—~ P, onto P,. (37.1)

The space Ej ., has a standard topology. One topologizes P, by
requiring that a subset X of P, be open if and only if X is the image
under ¢ of an open subset Y of E}_, . With P, so topologized, i is
continuous and P, becomes a Hausdorff space | P, |.

That | P, | is compact and connected is proved when n > 0, as in
the case of CP,, , and is trivial when n = 0.

| P, | as a Topological Manifold. To give | P, | a differentiable
structure, let U, be a Cartesian n-plane of points ¥ = (u, ,..., #,).
We shall define presentations

(Fc: U,,Y®, k=0,1,.,n (37.2)

t P, is defined above, but no differentiable structure is to be defined on P, nor
any function f. Similarly, | S, | is a pair of points, but no differentiable structure is
to be defined on | S, | nor any function similar to f.

335
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of open subsets Y* of | P, | whose union is | P, |.
For each & on the range 0, 1,..., 7 and each point % € U, a point

X(u 2 R) = (1, g ooy Uy 1, Uy yoens ) € Epyy (37.3)
is introduced. We then set
FHu) = y(x(u: k) e|P,|, wueU,, n>0, (37.4)

and F¥(U,) = Y*. The lemma that Y* is open in| P, | and that F* is
biunique and continuous follows as in the case of CP,, . Thus | P, | is
a topological manifold covered by the presentations /9, F,..., F™.

The C=-Compatibility of the Presentations F¥. Let h and k be
distinct integers on the range 0, 1,..., n, with 2 > k. The proof of the
C®-compability of F* and F* is essentially as in the case of CP,,
u replacing (u, v) and «' replacing (¥, ¢'). In particular, the com-
patibility condition (35.12) here takes the form w,uz,, = 1, and real
analytic transition homeomorphisms are defined by analytic relations
similar to (35.13a) and (35.13b).

One concludes that the » 4+ 1 presentations F©, F1,.,., F* are pair-
wise C®-compatible, so that when #» > 0 | P, | becomes the carrier of
a C”-manifold M, whose differentiable structure is determined by
these # 4 1 presentations.

A ND Function f on P,, n > 0. Corresponding to an arbitrary
point x = (%9, ¥y ,.., x,) EEn,; and a set of real constants
0<e < < <e¢,, areal-valued function f on P, , or, equiv-
alently, on M, , can be defined by setting

F@() = coxf)| | (37.5)

(summing with respect to 7 for 7 on the range 0, 1,..., n). The function f
is thereby uniquely defined at each point of P, .

The critical points of f on Y* are the images under F¥ of the critical
points (if any exist) of the mapping

u— (f3F)(u) = f(b(x(u: K)) = fi(u)y ueU,, n>0, (37.6)
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introducing f;.. It follows from (37.5) and (37.6) that (1 +||u|[2) f,(%) — ¢,
is equal to

Cotty® + 0+ Gt + Cpatlian + 0+ Cath’ (37.7)

One sees that f;, is real and analytic on U, . It follows, as in the case
of CP,, , that the only critical point of f;, on U, is a ND critical point
u = 0. The corresponding point p, = F¥(0) is a critical point of f on
Y* of index k. We draw the following conclusion:

Theorem 37.0. The critical points of f are the n + 1 points p, ,
k = 0,..., n, of which p, is in the projective equivalence class on E3 ., of
the point x, whose real coordinates x, are 8%, i = 0, 1,..., n, whose
critical value is ¢, and whose index is k.

The indices of the critical points of f on M, do not form a “lacunary
sequence.” As a consequence, the linking characteristics of these
critical points are a priori dependent upon the field X", To clarify this
dependence we shall make use of the classical representation of P, in
which diametrically opposite points of an n-sphere .S, represent the
same point of P, .

The Sphere S,. In the Cartesian plane E,,, of points
x = (%4, %1 ..y X,) let S, be the regularly structured C®-manifold
whose carrier is the origin-centered n-sphere | S, | of unit radius.
Among the presentations in 2.5, are 2n -+ 2 Monge presentations

(Gy: By, W), k=0,1,..,n 6=+l (37.8)

of open subsets of S, which we now define.

W, shall be the open hemisphere of S, on which sign x;, = sign e.
The domain B,, shall be an origin-centered open unit n-ball of coor-
dinates

(X » %1 yees g » X » Xyt 9eees Xp) = (0 yeeey OUn)s (37.9a)

deleting x;, . We complete the definition of the Monge presentation
(37.8) of W, by setting
v =€l —og? — - — o8, a€B,. (37.9b)

The 2n 4 2 presentations in 28, thereby defined cover | S, |, and
are C*-compatible, in accord with Theorem 5.1.
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A Function{on S, . A real-valued C*-function x — {(x) is defined
on S, by setting
C(x) = cix", X € Sn y (37. 10)

(summing with respect to i), where ¢, < ¢; < - <¢, are the
constants introduced in (37.5). Note that {(x) = f((x)) for x € S,, .

The critical points, if any, of { on the hemisphere W;* are the
images under G,¢ of the critical points of the mapping

o — ({3 Gi) o) = L), «€B,, (37.11)
introducing {; . One finds that {(«) — ¢, is equal to
(6o — ) o + »* + (e — &) ® + (€rsr — €x) oka + = + (6n — 1) o’

for « € B, . It follows that the only critical point of { in the open
hemisphere W,* of | S, | is the point g,¢ at the intersection of W, with
the x;-axis. One sees that ¢, is ND and has the critical value ¢; and
index k.

The Chain Transformation :,Z Induced by .  As defined, ¢ maps Ej ,,
onto | P, |. According to Definition 26.5 ¢ induces the chain trans-
formation ¢ of the singular complex S(E;.;) into the singular
complex S(| P, |).

On | S, | the most useful chains are the unitary chains, which we
shall now define.

Unitary k-Chains on | S, |. The point
@ k=0,1,.,n =41, (37.12)

is that point of intersection of the x,-axis with | S,, | at which x;, = e.
The points ¢, will be called the unitary points of | S, |. An ordered
subset of £ 4 1 distinct unitary points, no two of which are antipodal
on | S, |, determine an ordered Euclidean k-simplex a* in E} ;. The
projection 7 from the origin of &* into | S, | defines a singular k-
simplex on { S, |. The corresponding singular k-cell o* on | S, | will
be called unitary. The unitary singular n-cells on | S, | are *“simply-
carried” by | S, | (Definition 30.2).



37. THE REAL PROJECTIVE n-SPACE P, 339

A “‘reduced” k-chain (Definition 24.0)
u* = e,0,* + -+ + e,0,F, e; = +1, (37.13)

in which each k-cell ¢;* is unitary and no two cells o;* have the same
carrier, will be called a unitary k-chain on | S, |. We say that | «* | is
simply-covered.

The Operator ®. Given a point g € | S, |, let 6g denote the point on
| S, | antipodal to ¢. If guq, *-* ¢, is an ordered unitary simplex, let
(90 » 41 »-+» ;) denote the corresponding singular unitary k-cell o* on
| S, |. We term the singular unitary k-cell (0g, ,..., 0¢;) the k-cell Bo*
opposite o*. If u* = e,0.%, with e, = 41, is a unitary k-chainon | S,, |,
we introduce the unitary k-chain Guk = ¢;00.* and term Ouk opposite
u*. Note that

O(Ou¥) = uk,  (Ou*) = Odu*. (37.14)

Some Special Unitary k-Cycles on | S, |. Given S, , a sequence of
spheres

815 Saserer Sucyy S (37.15)
carried by | S, | is introduced, where
| Sel ={xe|Sallxy =20y = =2, =0}

for each k on the range 1, 2,..., n — 1.
We refer to a corresponding sequence of closed hemispheres

H ,H,,.. H,_  H, (37.16)
of which
H,={xe|S;||x =0}, k=1,2,.,n (37.17)

It is convenient to denote by E,°,..., E,° the respective subspaces
Ely ={xebpy oy = %0y = =2,y =0}

of Ej , for p on the range 1,2,.,7n — 1, and to denote by
P, P,,..., P,_, the real projective subspaces P, of P, of dimension u
defined in terms of El,; as P, is defined in terms of E},,, and
correspondingly structured both topologically and differentiably.
Theorem 37.0 holds if one replaces f by f | P, and n by u.
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In preparation for Theorem 37.1 we introduce the unitary 1-chain,

o' = (%" &) + (@' @) (37.18)

as a sum of two unitary 1-cells. On | S; | there exists a unitary singular
1-cycle
P = w! + Buwl, (37.19)

Taking w? as the singular O-cell (g,!), we find that
awl — (qol) — (q;l) = w? — @wo B 'yo’ (37-20)

introducing the 0-cycle »°.
The definitions of w?, !, and y° are the initial steps in an induction
from which the following basic theorem results:

Theorem 37.1 () There exists a sequence w', wi,..., w™ of unitary
chains on | S, | whose carriers are the respective simply-covered hemi-
spheres H, ..., H, , and a sequence y\,..., y™ of unitary cycles whose
carriers are the respective simply-covered spheres | S, |,..., | S, |, where
the chains «* and cycles y* are such that the following is true:

(B) If the chains wt, y', and y° are defined as above, then for k on the
range 1, 2,...,n

y* = ¥ + @w*  when k is odd, (37.21)
y* = w* — @w*  when & is even, (37.22)
O = yk-1 k=12,.,n. (37.23)

The theorem is true for = 1. We assume that the theorem is true
when 7 is replaced by a positive integer m < n, and prove it true when
n is replaced by m + 1.

By hypothesis y™ is a unitary m-cycle whose carrier simply covers
| Sy 1. If

y" = o™ + ** + e0™, e = +1, 7 =2mil (37.24)
is the reduced form of y™, one defines w™+t! by setting

o™ = £,0™ 4 oo 4 g0, (37.25)
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where o' is the umtary (m + 1)-cellon | S, | whose deﬁmng vertices
are the vertlces of o,/™ in their given order, preceded by gh1 - One sees
that | @™ | simply covers H,,,,. Setting & = m + 1, one then
defines a unitary chain y™+! by (37.21) or (37.22), depending on
whether (m + 1) is odd or even. One sees that | y™*! | simply covers
| Sppsa |- For m + 1 odd

Oyl = fumil 4 §B@™tl = ™ + Ey™,

By our inductive hypothesis (37.21) and (37.22) are valid when k2 = m,
so that

a,ym+1 = o™ — Qo™ + @(wm - @wm) = 0. (37.26)

Thus y™t! is a cycle. The proof that y™*! is a cycle when m 4- 1 is
even is similar.
It follows from the definition (37.25) of w™*! that (37.23) holds.

The k-Caps of f on | P, |. Theorem 37.1 leads to Theorem 37.2
below. In Theorem 37.2 we shall refer to the unitary chains w* of
Theorem 37.1.

Theorem 37.2. For k on the range 1,2,..., n, Juw* is a k-cap of Py,
relative to f | Py, as well as to f. Moreover,

&Zwk = 2@(»"‘1 when & is even, (37.27)
Bt =0 when £ is odd, (37.28)
gt L0 on |P,| when kis odd. (37.29)

That !//w is a k-cap of py relative to f | P, follows from Theorem
36.2; in fact, the first barycentric subdivision of Jew is the i image under
.p of the first barycentrlc subdivision of w*, and, as such, is seen to
be “sxmply-carned at p,”’ in the sense of Deﬁmtlon 36.5. By Theorem
36.2 fw* is then a k-cap of by relative to f| Py

One shows as follows that ¢vw is a k-cap of p,, , relative to f:

There exists an open neighborhood N of p, relative to | P, | which
is an f-saddle on | P, | of p; . Among the barycentric subdivisions of
gt of sufficiently hxgh order there exists one of the form z* + wk,
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where | 2% | C N and | w* | Cf, . Since 2* is “simply carried at p,,,”
2* is a k-cap of p, relative to f| L, , in accord with Carrier Theorem
36.2. By Saddle Theorem 36.1 2* is a k-cap of p,, relative to f. It follows
that 2% + w*, and hence $w*, is a k-cap of p, relative to f

Verification of (37.27) and (37.28). Note that

fw* = w* 1 4+ Buw*!  when kis even (37.30)
Ow* = w*1 — Ow*1  when kis odd (37.31)

by virtue of Theorem 37.1. Relations (37.27) and (37.28) follow on
applying x/J to_the terms of (37. 30) and (37. 31), recalling that &/v
and 04’ = Ju for any unitary j-chain o/, j = 0, 1,..., n.

Verification of (37.29). Suppose k odd. Then fo* i isa k-cycle by
(37.28). The first conclusion of Theorem 37.2 is that :/;w" is a k-cap
of p, relative to f | P, . By definition of a linking k-cycle $w* is then a
linking k-cycle associated with the critical point p,, of f | P, . Theorem
29.3(ii) applied to f | P, gives (37.29).

Thus Theorem 37.2 is true.

Retracting Deformations on | P, |. To determine the linking
characteristics of the critical points p, of f on P, , a set of retracting
deformations will be needed. These deformations will be the products
of deformations, taking ‘“‘products” in a sense which we shall now
define.

A Deformation D. A deformation D of a subset ¢ of a Hausdorff
space y is defined by a continuous mapping

() >D(p,t): £ x[0,1] >x intoy.

For each point p € ¢, D(p,0) = p by hypothesis, and the partial
mapping t — D(p, t) of [0, 1] into x is called the D-trajectory of p.
We term £ the initial set of D and D(€, 1) the terminal set of D. A
deformation D is termed continuable by a deformation D’ if the
terminal set of D is included in the initial set of D', If X C £, by the
restriction of D to X is meant the deformation defined by the mapping

D (X x [0, 1]).
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In defining products of deformations the following terminology will
be used. Let [4, b] and [¢, d] be intervals of the real axis and ¢ — 6(¢) the
sense-preserving linear mapping of [¢, d] onto [a, b]. If an arc & in y of
form t — h(t) : [a, b] — x is given, then the arc t — h(6(2)) : [¢, d] - x
is termed the arc h retaken over [c, d]. Let the terminal point of % be
denoted by Ter k. It is not assumed that a mapping ¢ — h(z) is
biunique.

Definition 37.1. Product Deformations. For some integerr > 0 let
DY, D', D?,..., D" be a sequence of r + 1 deformations of subsets of y
such that each deformation of the sequence except the last is “con-
tinuable” by its successor. Let the interval [0, 1] be partitioned into
r + 1 successive intervals of equal length whose closures are denoted
by ly,1,,1,,..,1, . The product deformation

D = Dr --- D*D'D°® (37.32)
of the initial set £ of D is inductively defined as follows: If p is a
prescribed point of £, the D-traj of p is an arc t —g(¢) : [0, 1] — ¥
such that
g | I, = the D°traj of p, retaken over I,

g | I, = the D-traj of Ter(g | ), retaken over I , (37.33)
g | I, = the Dr-traj of Ter(g | I,_,), retaken over I,.

One readily verifies that the resultant mapping (p, £) — D(p, t) of
¢ x [0, 1] into x is continuous.

Our deformation lemma will refer to the subset fc,, = fo, — Pi of
| P, |, and in the proof to the subsets | P; | = | P; — p,; | of | P, | forj
on the range 1,..., n.

Lemma 37.1. For k= 1,2,....,n there exists a deformation d,
retracting fc,‘ onto | P,_, |.

Before starting the formal proof of Lemma 37.1 we shall describe
the subset f, of | P, | in terms of the subset {, of | S, |.

For k on the range 1,..., , {, is the intersection with | S, | of the
solid (n + 1)-dimensional ellipsoid in E, ., on which

oyl oyttt eyt <o (37.34)
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Moreover, fo, = ¥(L,,)- Of the unitary points g of | S, | those for
which 7 > k i =k, *and { < k are on the exterior, boundary, and
interior, respectively, of {, relative to | S, |, provided k& < n. The
corrapondmg critical pomts p; of fon | P, | are, respectively, on the
exterior, boundary, and interior of f,, relatlve to| P, |.

We continue with a definition:

The Deformatzon & Retracting | P | onto | Py_,|. Let ¢ be
prescnbed in H, , and thereby y(q) in P, . Correspondlng to g, let A,
be the unique quarter circle on H,, which issues from g;!, meets g, and
terminates at a point ¢' on the boundary | S;._, | of H; . The point ¢
may coincide with ¢’. Under &* the point y(¢) shall be deformed on
| P, | into the point ¢(g’) on | P,_, | by moving g along A_, and thereby
¥(g) along (), at a velocity (possibly zero) equal to the length of the
subarc g¢’ of A, .

Remark. A simple calculation shows that the value {(p), and hence
the value f((p)) = {(p), decreases whenever ¢ moves along A, so
that y, decreases.

The Deformation d, defined, k = 1, 2,...,n. Set k = n —r. The
restrictions of the deformations

on gn-1 gn-2 . on-r (37.35)
to the respective subsets
T Pal fou V1 Py ey fo, O [ Py | (37.36)
of f,k are well-defined deformations
Do, DA,..., D, (37.37)
Let the sets (37.36) be denoted, respectively, by
Eg, &y eenr &r

We shall verify statement (A):
(A) For 0 < i < r the deformation D¢ retracts ¢, onto £, .
Recall that f(p,_s_4) = oy 1 = ¢ .
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The deformation D either leaves a point p € £, fixed or deforms p
so that on the Di-traj of p, f strictly decreases as ¢ increases. It follows
that D* deforms £; on £, . The least upper bound of f on the sets £
is c,, Hence there is no Di-trajectory terminating at the point p,_;_,
of | P,_;_; |. The set £, is a proper subset of £; and is fixed under the
deformation D¢, These facts imply (A).

A product deformation

dy =D DD, r=n—k, (37.38)

of f, is well-defined. The set £, = | P, |. The deformation Dr is then
o, and retracts | 2| onto | P;_, |. The deformation d,, accordingly
retracts f, onto | P_, |.

Thus Lemma 37.1 is true.

Linking Characteristics of Critical Points of f. The following
theorem is a consequence of Theorem 37.2 and Deformation Lemma
37.1. Let Q be the field of rational numbers.

Theorem 37.3. For a choice of the field A as Q or as Z,,, with p
a prime, the classification of the critical points p, of f on P, for positive
index k as of linking or nonlinking types is in accord with the Table I11.

TABLE III
Field Index & Classification
Z,,p=2 1,2,..,n Linking
Z, , p arbitrary Odd Linking
Z,,p7=2 Even Nonlinking
Q Odd Linking
Q Even Nonlinking

According to Theorem 37.2, for any field /" and any critical point p,
of positive index, gw* is a k-cap of p,, relative to f. The point p,, will be
of linking type over X if

6:/)«»" ~0, onf, overX. (37.39)



346 IV. OTHER APPLICATIONS OF CRITICAL POINT THEORY

The first line of the table follows from (37.27) and (37.28), the second
and fourth from (37.28). The third and fifth lines of the table are valid
by (37.27) if

go* 10 on f, overX (37.40)

for an even index %k and an arbitrary field 2¢". We shall verify (37.40)
for k even.

By virtue of the Deformation Lemma 37.1 and Theorem 28.4 there
exists a coset-contracting isomorphism

H, fc,,) ~ Hy_(Py,) over X (37.41)
Moreover, (37.29) implies that over any field X
Jotl L0 on | Py (37.42)

for & — 1 even, or, equivalently, for 2 odd. From (37.41) and (37.42)
we infer the truth of (37.40), so that the third and fifth lines of the
table are valid.

This establishes Theorem 37.3.

It is an immediate consequence of Theorems 37.3 and 29.3 that
when the field is Q or Z, , with p a prime, the nonvanishing con-
nectivities of | P, | are given by the Table IV,

TABLE IV
Field X° Dimension n Nonvanishing connectivities
Z,,p=2 n>0 RR=1,R=1L,R=1.,R, =1
Z,,pF~2 Odd » Ry,=1,R,=1

Z,,pF2 Evenn > 0 Ry =1

Q Odd n
Q Evenn >0

LR, =1
1

Ry
R,

The results of this section yield all of the homology characteristics
of P, over the ring Z of integers, in particular, the Betti numbers of P,
and the torsion coefficients of the different dimensions. This will be
shown in detail in the paper which presents the results abstracted in
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Appendix III. The theorem that the gth Betti number of P, is equal to
the gth connectivity of P, over Q, taken with the above table, gives the
Betti numbers of P, .

The space P, , provided with the ND function f of this section, is
easily seen to come under the prime-simple case of Appendix III.
The determination of the torsion subgroups of the respective homology
groups is particularly simple in the case of prime-simple spaces.

A Unitary n-Cycle on S, . In §30 a singular n-chain which is
“simply-carried” on a topological #n-manifold has been defined and
Lemma 30.3 established. Theorem 37.1(«) has (i) of the following
theorem as by-product. Statement (ii) follows from Lemma 30.3.

Theorem 374. (i) On an origin-centered n-sphere S, in E, ., there
exists a simply-carried n-cycle y™ the n-cells of whose reduced form are
unitary.

(i) Such an n-cycle on S, is nonbounding in S, with | y*| = | S, |.



§ 38

STEIN MANIFOLDS.
A THEOREM OF LEFSCHETZ

Andreotti and Frankel (AF) have given a proof [1] of what is
known as the Lefschetz Theorem on ‘“hyperplane sections” of a
nonsingular projective algebraic variety of complex dimension 7.
They refer to an unpublished proof by Thom as ‘‘the first to use Morse’s
theory of critical points” in proving the Lefschetz Theorem. See AF
for a formulation of the Lefschetz Theorem (see also Lefschetz [1]).

The proof as given by AF is based on a theorem on ‘‘Stein mani-
folds” stated and proved by AF. This theorem on Stein manifolds is
more general than what is required to prove the theorem of Lefschetz.
We restrict ourselves to this theorem because Stein manifolds, in the
sense of AF, can be readily defined, and because the application to
algebraic geometry is relatively simple for one familiar with the
terminology of algebraic geometry.

As we shall see, the theorem of AF on Stein manifolds of complex
dimension 7 is a theorem on a ND function, defined on a real differ-
entiable manifold M,, of dimension 2n, where f is endowed with
certain special properties because of a special complex analytic origin.

The Spaces CE,, and E,,,. CE,, is a space of m complex variables,
the Cartesian product of m complex planes of complex variables

Wy ey Wy« (38.1)

Let E,, be a real Euclidean space of 2m variables, the Cartesian
product of m real 2-planes with coordinates

X153 YV13%2, Vg iees ¥my Ymsy (38.2)
respectively.

348
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There is an analytic homeomorphism ¢ of CE,, onto E,,, defined by
setting
x, tiy,=w,, p=Il,.,m (38.3)

One can review the early abstract definition of a Stein manifold as
found, for example, in Séminaire Henri Cartan, 1951-52, Chapters
VII-IX, containing lectures by Cartan.

Remmert [1] has shown that a Stein #-manifold, as originally defined,
can be biholomorphically embedded as a Stein manifold 2, in a
space CE,, of sufficiently high dimension m. With AF we are thus
concerned with a Stein manifold 2, in CE,, , as now to be defined.

Definition 38.1. A Stein Manifold 2, in CE,,. Here 0 <n <m,
and 2, shall have for carrier a closed subset of points in CE,, whose
real image in E,, under ¢ is a topological manifold in E,,, , and shall
satisfy the following conditions.

Properties of 2, in CE,,. Corresponding to a prescribed point
w? € X, the complex coordinates of CE,, shall admit a reordering such
that the following is true. Set

2 = w, —wl..., 2, = w, — ), (38.4)
2 = (2y yeeey Zp)y (38.5)
Izl = (24 + |2 2 (38.6)

Let e be a prescribed positive constant. We shall restrict z, by the
condition || 2| < e, to an open neighborhood N, of the origin in the
space CE,, of the points 2. If e > 0 is sufficiently small and | 2| < e,
there shall exist absolutely convergent power series

P (2.0, 20) p=1lu.,m—n, (38.7)

in the complex variables (2, ,..., 2,) with complex coefficients such
that for each p, P,(0) = w}, and the mapping

(21 1000y 20) = (W 5e0es W) : N, = CE,, (38.8)
in which
w,-i = z" y j = l, 2,-.., n,

(38.9)

Wntp = n(zl yerey zn); P = lye.,,m—mn,
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defines an analytic homeomorphism of N, onto an open neighborhood
X of w? relative to Z, .

We term the above mapping of N, onto X a complex Monge presentation
of XC2Z, based on N, .

Each complex Monge presentation such as (38.9) of an open
neighborhood X relative to 2, of a point #° € Z, gives rise to a unique
real analytic Monge presentation of the real neighborhood X = £(X)
relative to M, = §(Z,) of the real point p% = £(w?) of M, .

To verify this affirmation, let the complex conjugate of a complex
number ¢ be denoted by conj c. We can suppose that «? is the origin,
and in accord with (38.3) and (38.4) set

=%+, fj=1Ll.,n (38.10)
where x; and y; are real. For convenience we set
(%1 seees X 3 V1 0eees V) = (U 4000y 0gy) = . (38.11)

Corresponding to the complex Monge presentation (38.9) of X, a real
analytic Monge presentation of X = §(X) is given as follows.

The coordinates of a point in E,,, are given by (38.2). Of these
coordinates the 2z coordinates in (38.11) can be supposed given, as in
(38.11), by the parameters v, ,..., v,, , subject to the condition || v || <.
One obtains the remaining 2m — 2n coordinates of a point on M,, by
setting

24 = Py(2) + conj P(3) = ¢,(v),
p=1..,m—mn, (38.12)
2Ynsp = i conj Py(z) — iPy(3) = y,(v),

introducing ¢, and ¢, . One observes that ¢, and ¢, so defined for
l#|l < e are real and analytic. The equations (38.11) and (38.12) give
a real analytic Monge presentation of the real neighborhood X = £(X)
of the origin in M,,, .

Focal Points of M,,. It follows from Theorem 6.1 that the
points g € E,, which are neither on M,, nor focal points of M,, are
everywhere dense in E,,. With this fact as a starting point the
following theorem can be proved:
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Theorem 38.1. Let 2, in CE,,, n < m, be a Stein manifold with
a real image §(2,) = M,, in E,, . If q is a fixed point of E,,, which
is neither a point of M,, nor a focal point of M,, , the real-valued
distance function

p—llp—qll =fdp): Mgn >R (g fixed) (38.13)
is ND on M,, and has no critical point with an index k > n.

The Index Forms. 'The first part of the proof makes no essential use
of the fact that the real image M,, of the Stein manifold Z,, is anything
more than an arbitrary differentiable manifold which is regular and
analytic in E,,, . Corresponding to a critical point p° of f, on M,, one
obtains a representation such as (31.7) of a quadratic form determining
the index of p°.

We term the point ¢ of Theorem 38.1 the pole of the distance
function f, .

As in the proof of Theorem 31.3, suppose that p° is the origin of
coordinates in E,, and that the 2n-plane, say V,,, of coordinates
(38.11) is tangent to M,, at the origin p° Suppose further that the
pole g is on the x, ,-axis and that x, ., = ¢ > 0 at ¢.

If || v || < e and if e is sufficiently small, the points

(%1 yeeey X 3 V1 seres Ym) € By (38.14)

in the neighborhood X of p? relative to M,, , as presented by (38.11)
and (38.12), are such that the following is true: For | v || < e (38.12)
holds and can be given the form

Xnpo = $b05 00, ++
p=1,...,m—n, (38.15)
Ynio = $6500; ++

where the quadratic forms on the right of (38.15) are real and sym-
metric, and the remainders (indicated by 4+ +) are real and analytic
in the variables v, ,..., vy, for || #|| < e and vanish with their first and
second partial derivatives at the origin v = 0.

Let the coordinates v, ,..., vy, be subjected to an orthogonal trans-
formation T into coordinates u, ,..., %y, such that under T

biww; = oyy® + 0 + og, . (38.16)
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As in the proof of Theorem 31.2, it follows that if p(v) € X is a point
with the local coordinates v = (v, ,..., vy,), the square f,%(p(v)) of the
distance from ¢ to p(v) is equal to ¢2 plus

lol* — cblyoy ++  for Joll <e (38.17)
[cf. (31.6)] and in terms of the coordinates u, ,..., #,, is equal to ¢? plus
(1 —eody® + = 4 (1 — cogn)ti3n , (38.18)

omitting terms of order higher than the second. The index % of the
quadratic form (38.18) is the index of the critical point p° of the
distance function f, . This form is ND by virtue of our choice of ¢.

We shall now make our first use of the hypothesis that M,, is the
real image of a Stein manifold 2, . The basic lemma follows.

Lemma 38.1. Let o,,..., 03, be the characteristic roots of the matrix
| B35 ). If 05 y..., O34 15 a suitable reordering of these roots, then

(01 30001 Tn) = (—0y yuery —0Ogp). (38.19)

Notation. We suppose that (38.9) gives a complex Monge
presentation of a neighborhood X relative to Z,, of the origin w°
and that (38.12) and (38.11) give the corresponding real Monge
presentation of X = §(X), with the 2n-plane of coordinates
(%1 3eees Xy 3 V1 5000y Yn) = (%, y) tangent to M, at the origin p°. From
the first equation in (38.12) we infer that

Py(3) -+ conj Py(2) = @y(%y 1ueey X 3 Y1300 Yy (38.20)
subject to the conditions
Z=x+1dy;, J=1,.,n (38.21)

Suppose that Q(z, ,..., 3,) is the quadratic form that gives the second
order terms in the series for 2P (), and that Q(x, ,..., X, ; ¥1 yeees Vn)
is the real, symmetric, quadratic form that gives the second order
terms in the power series for 2¢, . Then (38.20) implies that

Q(2) + conj Q(2) = O(x; ,..., Xy ; Y1 yves V) (38.22)
subject to (38.21).
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The relation (38.22) is an identity in the variables (xy,...,%,; ¥1,.., ¥5)
subject to the conditions 2; = x; 4 ¢y; of (38.21). If in (38.22) one
substitutes (—y; , x;) for (x;, ;) and in accord with (38.21) substitutes
iz; for 2; and —i conj 2; for conj 2;, then the left side of (38.22), so
evaluated, is equal to

—(Q(3) + conj Q(2)),
while the right side of (38.22) is equal to

Q(—yl yeees T Vn 3 X peeny x,,,)_
This evaluation accordingly gives the identity

—O(®y yeees Xy 3 Yy peees In) = O(—Y1 seees —Vn 3 Xy yeeey Xp). (38.23)

The right side of (38.23) is a quadratic form Q'(x; ,..., X, } ¥1 yees Yn)»
which reduces to O(x, ,..., X, ; ¥ ..., ¥,) after a suitable orthogonal
transformation. Hence the forms Q' and Q have the same set of charac-
teristic roots, in different orders. On the other hand, the quadratic form
O"(%y 50y X 3 Y1 5ees V) given by the left side of (38.23) has a set of
characteristic roots which are the negatives of the characteristic roots
of Q. The roots of Q' are equal to those of Q" because of the identity
(38.23), and in some order are equal to the roots of Q.

The function v — ¢,(v) originated in (38.12). Subject to (38.11)
the terms of second order in 2¢, in an expansion about the origin are
the forms

BLvw; = O(%y yeues Xn 3 Y1 seees V) (38.24)

Lemma 38.1 accordingly follows from the above properties of the
characteristic roots of Q.

The Proof of Theorem 38.1 Concluded. To verify that the index k of
the critical point p® of the distance function p — f(p) satisfies the
condition & < n, we make use of the fact that k& is the number of
coefficients in the quadratic form (38.18) which are negative.

If a coefficient 1 — cg; in the form (38.18) is negative, o; must be
positive, and hence by Lemma 38.1 some other characteristic root o}
of Q must be equal to —a;, and hence yield a positive coefficient of
the quadratic form (38.18). Lemma 38.1 thus implies that & < ».

Theorem 38.1 follows.

We state a first corollary of Theorem 38.1:
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Corollary 38.1. No component of the Stein manifold X, is compact.

Were a component of 2, compact, the real image under £ of this
component would be a compact, regular, analytic, real manifold N, ,
a submanifold of M,, . The distance function p — f,(p) would then
have a critical point of index 2# on N,,, , contrary to Theorem 38.1.

Corollary 38.2. The singular rth homology groups of the Stein
manifold X, are trivial over each field for r > n.

This is a consequence of Theorem 38.1 and Theorem 29.3.

Corollary 38.3. The homology groups H.(Z, , Z) of X, over the ring
Z of integers are trivial for r > n, and their torsion groups vanish for
r>n—1

Propositions concerning the homology theory over Z are summarized
in Appendix III. The homology theory over Z presented in Appendix
III will be given a full exposition in a paper supplementary to this book
without making any use of a triangulation of the underlying differ-
entiable manifold M,, . The proposition implying Corollary 38.3 is as
follows:

Proposition 38.1. If M, is a C*-manifold on which there exists a ND
function f € C°(M,,) such that f, is compact for each value of f and the
indices k of critical points of f are at most m, then the homology groups
H.(M, ,Z) vanish for r > m and the torsion subgroups vanish for
r>m—1.



§39
SUPPLEMENTARY CONCEPTS AND THEOREMS

A. Bowls and Special Homotopies. We shall supplement the
homotopy theorems of §23. Singular chain-homotopies were intro-
duced in §27 with the aid of continuous deformations (27.1) of a
Hausdorff space x on itself. We shall define continuous singular
chain families by first defining continuous deformations of singular
cells on y rather than of points of y.

Continuous Families of Singular q-Simplices. Singular g-simplices
are defined, following Eilenberg, as in §26. In the sense of Definition
26.1, a singular g-simplex on y is a continuous mapping

x—>7(x):s—>x (39.1)

into x of a vertex-ordered Euclidean simplex s = p,p, -** p, . Let I be
the unit interval on the t-axis. We understand that a continuous
family of singular simplices with the initial singular simplex = is
defined by a continuous map

(0, 1) > T(x,t):s x >y,  with T(x0)=1x). (39.2)
The partial maps
x> T(xt) =Hx), 0<t<I, (39.3)

introducing r¥(x), are the singular simplices v* defined, as we shall say,
by 7.

Continuous Families of Singular g-cells. Let “equivalent” singular
g-simplices
i -y (39.4a)

355
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and
iy (39.4b)

be defined as in §26. We understand, as in §26, that s’ and s” are two
vertex-ordered Euclidean simplices barycentrically mapped one onto
the other with preservation of vertex order. Let continuous mappings

(xt)>T'(xt):s xXI—>x (39.5a)
and
(%, 1) >T"(x,8): " X I > (39.5b)
be given such that
T'(x,0) =1(x), «xe¢s, (39.6a)
and
I’(x,0) =1"(x), xes’, (39.6b)

and such that for each ¢ the partial mappings

x—>T'(x,t):5 —>x (39.7a)
and
x—>T"(x,1):8—>yx (39.7b)

define “equivalent” singular simplices 7' and =”* on y. The “initial”
equivalent singular simplices of 7' and J " are given, respectively, by
(39.4a) and (39.4b).

The singular g-cells ¢%(f) which are the equivalence classes of the
respective singular simplices 7¢, 0 < ¢ < 1, of the continuous family 7
will be said to define a continuous family * of singular g-cells o*(t).

Families of Singular Boundary Cells. We refer to the vertex-ordered
(g — 1)-simplex, ¢ > 0,

S(y =po Py Py, i deleted, (39.8)

of (26.4) and to 7, = 7| 5(i) of (26.5), where 7 is given by (39.1). The
mapping J of (39.2), if restricted to s(f) X I, defines a continuous
family of singular (¢ — 1)-simplices 7.}, with 7; as an initial singular
(¢ — 1)-simplex. For each ¢t € [0, 1] the relation (26.6) has the formal
extension

80%(2) = (—1)' o?7Y(2), (39.9)

introducing the singular (g — 1)-cells o§~(t) = #,, where 0 <t < 1
and 7 is on the range 0, 1,..., ¢.
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Continuous Families of Singular ¢-Chains. Let
=10+ + 10,9 O0Fr,ed, m>0, (39.10)

be a “reduced” representation on y of the g-chain 2¢ (Definition 24.0).
Suppose that each ¢-cell 0,9 is the initial g-cell in a continuous family
0,%(t) of g-cells subject to the following compatibility conditions. These
conditions are satisfied only exceptionally. We shall give an example
in the critical point theory.

Compatibility Conditions. For p and v on the range 1,..., m with
@ # v let 6771 be a singular (¢ — 1)-cell which appears formally in a
representation (39.9) of 90,%0) and of 9¢,%0), with coefficients on the
right of (39.9) which are ¢, and e, , respectively, on the range +1.
The compatibility condition requires that the two continuous families
o2 Yt), 0 <t < 1, of singular boundary (¢ — 1)-cells with initial
(g — 1)-cell 02 associated as above with the families 0,%) and ¢,%(2),
0 <t < 1 be identical. For each ¢ the cell 04-1(¢) will then appear
in the formulas (39.9) for 90,9(¢) and 90,%(¢) with coefficients ¢, and ¢, ,
respectively.

Let the reduced g-chain (39.10) be given as an initial chain, and let
mutually compatible continuous families of cells 6,%(t) be defined with
initial g-chains 0,%0) = 0,9, p = 1, 2,..., m. The family of chains
defined by setting

2(t) = 1o ¥(t) + - +raond(t), 0<t<1, (39.11)
will be termed an admissible continuous family of singular g-chains 24(t),

with initial chain 27 = 29(0) and terminal chain 29(1). It is clear that
if 27 is a g-cycle on y, then 29(¢) is a g-cycle on x for each 2.

The following theorem connects the preceding special homotopy
theory with homology theory:

Theorem 39.1. If the chain (39.10) is a cycle, so that the family
(39.11) is a family of cycles, then for each value t, of t on the interval
0 < t; < 1 the initial cycle 29(0) is homologous to 2%(t,) on

Union | #4(1)l (39.12)

We prove no theorems in this section.
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Deformations through a Critical Level. Let M, be a C*-manifold
and f a ND function in C*(M,). We suppose f, compact for each
value ¢ of f. Let a be a critical value of f, assumed at a single critical
point p, , and set f, = f, — p, .

If a reduced chain (39.10) is given, the maximum diameter on M, of
carriers | ¢,2 | will be called the mesh of the chain 2¢. We are supposing
that M, has been metricized, so that such a mesh is well-defined.

The following theorems, taken with the homotopy theorems of §23,
give a basis for the homotopical aspects of the theory of critical points
onM, .

Theorem 39.2. Corresponding to the critical point p, of f there
exists a positive constant e so small that the following is true: Suppose
that the index k of the critical point p,, is such that 0 < k < n and let r
be an integer such that 0 < r < k. Corresponding to any r-cycle 3" on f,
with mesh < e there exists an admissible continuous family of r-cycles
on f, whose initial cycle is z* and whose terminal cycle is on f,, .

Comments on Theorem 39.2 The condition in Theorem 39.2 that
the mesh of 2" be less than e is not restrictive as far as homology theory
is concerned, since a suitable subdivision of 2" on f, will be homologous
to 2" on f, and satisfy this mesh condition.

Three aids are invoked in proving Theorem 39.2. The theorems on
deformation retractions into f, are useful. The concept of “simply
carried” g¢-cells of §30 is employed. When & < 7 the fact that the
bowl ‘““ascending from p,” has the dimension n — k is what makes the
condition r < k effective.

Extensions. 'The preceding theorems can be extended to the case
in which the ring Z of integers replaces a field. One can also include
the case in which in Theorem 39.2 there is given a relative r-cycle 2”
on f, mod f, with mesh < e. One can then prove the existence of an
admissible continuous family of relative 7-cycles 2*() on f, mod f,
whose initial relative cycle is 27, whose boundaries 9z7(¢) are in-
dependent of ¢, and whose terminal cycle vanishes mod £, .

B. Global Alteration of Critical Values. Givena ND fe C*(M,,),
we seek modifications of fas a ND function in C*(M,,) which leave the
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critical points of f invariant, together with their indices. That f can be
modified so that its replacement £ has distinct critical values at distinct
critical points has been seen in Lemma 22.4. We seek alterations of
critical values which are more than the infinitesimal modifications of
Lemma 22.4.

Let a ND f be given, and a particular critical point z of f. A ND
function f € C*(M,,) replacing f will be termed admissible relative to z
if the critical points of f and f are identical and have the same indices
and if f is identical with f in some neighborhood of each critical point
of f other than 2.

Definition 39.1. A Replacement Interval for f and z. Given a ND
fe C=(M,) and a critical point z of f, an open interval I,/ of real values
will be termed a replacement interval for f and z if for each value a € I/
there exists a ND f € C*(M,) which replaces f admissibly relative to z
and has the critical value f(2) = a at 2.

We shall show how the bowls ascending and descending from =z
determine a replacement interval for f and 2. To that end, two
definitions are needed. For simplicity we assume that M,, is connected
and compact.

Definition 39.2. The k-Dome B~(z). If k > 0, each f-arc of the
descending bowl B_(z2, k) of Definition 22.2 has a critical point 2’ as
lower limiting endpoint. Given 2, these critical points 2’ are finite in
number, and so have a maximum f-value M(2). The differentiable
k-manifold B~(z) with carrier

| B=(3)] = {g€ B_(2, k) | f(g) > M(=)} (39.13)

C»-embedded in M, will be called the k-dome with zenith 2.

Definition 39.3. The Inverted (n — k)-Dome B*(z). If k <nm, each
f-arc of the ascending bowl B.(2, n — k) has a critical point 2" as
upper limiting endpoint. Given z, these critical points 2" are finite in
number, and so have a minimum f-value m(2). The differentiable
(n — k)-manifold B+(z) with carrier

| B(@)] = {g€ Bu(z,n — R) |f(g) < m(z)} (39.14)
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C~-embedded in M, will be called the inverted (n — k)-dome with
nadir 3.

The following theorem is a consequence of Theorems 4.1 and 4.2
of Morse [16] and Morse [12], pp. 249-259:

Theorem 39.3. Let M, be a compact connected C*-manifold and z a
prescribed critical point of f. The open interval of values of f assumed by f
on the union of the domes B(3) is a replacement interval 1} for f and x.

On referring to Definitions 39.2 and 39.3 we see that the replacement
interval affirmed to exist in Theorem 39.3 has the form

I = (f#) ") (&) <f(3) <f(z"), (39.15)
where 2’ and 2" are critical points of f.

Modifying a Riemannian Structure S on M, . We admit modifi-
cations of the Riemannian structure S on M, that leave M, and f
invariant. It is desirable to preserve the character of S as “‘f-preferred”
by leaving invariant the Riemannian structure in sufficiently small
open neighborhoods of each critical point of f. To this end, let ¢ be an
ordinary value of f and N, an open neighborhood of f¢ relative to M,,
such that Cl N, contains no critical point of f. A replacement of an
Jf-preferred Riemannian structure S on M, by a Riemannian structure
S on M, identical with that of S on the submanifold M, with carrier
| M, — CIN, | will be called a sectional modification of S. The new
Riemannian structure § will be f-preferred because S is f-preferred.

Each “‘sectional” modification of a Riemannian structure S on M,
presumably will modify the k- or (» — k)-domes whose f-trajectories
meet f°. On exploiting this fact we are led by a simple proof to the
following theorem:

Theorem 39.4. Let M, , f, and a critical point z of f be given as in
Theorem 39.3, together with an f-preferred Riemannian structure S on
M,.

It ts then possible to make a finite number of successive sectional
modifications of S such that the replacement interval (39.15) defined by
the resultant domes B(2) is such that

index ' < index 3 < index 2", (39.16)
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The reader can readily verify the theorem for = 2 and k = 1.
The general case will then become transparent by virtue of the elemen-
tary nature of trajectories orthogonal to the level manifolds of a ND
quadratic form.

One can illuminate the nature of the proof still further.

Suppose that some of the f-trajectories emanating from the zenith
of the original k-dome B—(2) were obstructed in their downward
continuation by a critical point w with index & > k. Let ¢ be a value
on the open interval ( f(w), f(2)). The original k-dome B~(z) meets f°
in a differentiable (k% — 1)-sphere. The inverted (# — k)-dome of
B+*(w) meets f¢ in a differentiable (n — k& — 1)-sphere. Since

mn—h—1D+k—-1D)<n—1 when h >k,

it is clear that after a suitable sectional modification of the original
Riemannian structure the f-trajectories of B~(z) will bypass w. Similar
arguments apply to the ascending f-trajectories of B+(z).

Theorem 39.4 follows.

Theorems 39.3 and 39.4 have the following corollary:

Corollary 39.1. Corresponding to a compact connected C®-manifold
there exists a ND F € C°(M,,) such that at each critical point z of index k
F(z) = k.

By virtue of Morse [9], p. 383, there exists a ND fe C*(M,)) with
just one point p of index 0 and just one point ¢ of index .

It follows from Theorems 39.3 and 39.4 that a finite sequence of
“sectional modifications” of preferred Riemannian structures S,
S, ,-..» S, on M,, and suitable modifications of critical values of f and
of its replacements will lead to a ND F satisfying Corollary 39.1.

Smale. Corollary 39.1 is Theorem B of Smale [1] and is used by
Smale in deriving his solution of the Poincaré problem when n > 5.

C. Orientability without Triangulation. Let M, be a compact
connected C*-manifold. In the absence of a triangulation of M,, the
homological characterization of the ‘‘orientability’” of M, requires
study. We shall give a definition of orientability of M, very similar to
the classical definition of the orientability of a surface and supplement
this definition by two equivalent characterizations belonging to
homology theory:
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Sense-Compatible Presentations. Two overlapping presentations F
and G in 2M,, will be said to be sense-compatible if the corresponding
transition diff A given by (5.6) has a positive Jacobian.

Test Sequences of Presentations. A finite sequence of presentations
(F,: U, X)e2M,, i=1,..,m>2, (39.17)

will be termed a test sequence if it has the following properties: (1) Each
U, is an open Euclidean n-ball; 2) X; N X, ; # &,i = 1,..,m —1;
3) X;nX,, # o; (4) for i = 1,..., m — 1 the presentations F; and
F,, are sense-compatible.

Definition 39.4. Orientability. A connected C*-manifold will be
said to be geometrically orientable if the first and last presentations of
each test sequence of presentations in 9 M,, are sense-compatible.

Corresponding to an arbitrary, simple, regular arc y joining a point
g € M, to itself it is easily shown that there exists a partition of y into
a finite sequence of arcs y; , ¢ = 1,..., m, corresponding to which there
exists a test sequence (39.17) of presentations F; such that | y; | C X
for each i.

The fundamental theorem follows:

Theorem 39.4. A compact connected C*°-manifold is orientable in the
geometric sense if and only if either one of the following two equivalent
conditions is satisfied:

Condition 1. Corresponding to a ND f for which p is the sole point
of maximum of f on M, , Condition | requires that p be of linking type
(Definition 29.2).

Condition 2. The nth connectivity of M,, over the field Q of rational
numbers s 1.

The existence of a ND f for which p is the sole point of maximum
of f follows from the work of Morse [9]. The equivalence of Conditions
1 and 2 follows from Theorem 29.3. A proof that geometric orien-
tability of M,, is equivalent to Condition 2 will be published separately.

Geometric orientability is well-defined for C*-manifolds which are
not compact. Equivalent homological conditions in the noncompact
case will be studied separately.
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PRELIMINARY DEFINITIONS

This book presupposes mathematical knowledge at the level of a
good first-year graduate student. The object of Appendix I is to recall,
or clarify, a number of terms which are used without definition in the
text, or are used in different senses by current mathematical writers.

In general our use of terms is in accord with that of Bourbaki.

A Hausdorff space is a topological space X in which distinct points
have disjoint neighborhoods.

A topological n-manifold is a Hausdorff space in which each point has
an open neighborhood homeomorphic to Euclidean n-space.

A subspace of a topological space X is a subset of X whose topology
is “induced” by that of X. The terms “a subspace of X’ and “a
subset of X"’ are by no means synonymous.

A relatively compact subset U of a topological space X is a subset U
of X whose closure in X is compact.

Mappings into E, of class C'. Let E,, n > 0, be a Euclidean
space of points y = (¥, ,..., ¥,). Let X be a nonempty open subset of
E, ,0 < m, of points x = (xy,..., %,,). A mapping

x = (@) pa(%)) : X — E, (L.1)

will be said to be of class C, 0 < r, on X if for 7 on the range 1,..., »,
the partial derivatives of ¢; of orders at least  exist and, together with
@; , are continuous. A mapping ¢ of class C” for each > 0 is said to be
of class C.

Grad g. If a mapping

x> g(x) = g%y 000y X)) : X > R 1.2)
363
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of a nonempty open subset X of E,, into R is of at least class C?, the
vector

38()/0%, ... ()0 13)
will be termed the gradient of g at x and will be denoted by (grad g)(x).

Domain, Range, Image Set. 1f F: U— X is a mapping of a set U
into a set X, then U is termed the domain of F and X the range of F.
The subset F(U) of X is termed the image set of U under F.

Composition g o f. Let two functions
ftU=V ad g:X->Y (L4)
be given such that V' = X. A composite function
gof: U—>Y L.5)
is then defined with values
(g°/)w) =e(f(w)), uel. (1.6)
Such composition is associative; if three functions
[:U->V, g:Vo>W, kW2 (L7
are given, the composite functions
ho(gef) and  (hog)ef (L8)
mapping U into Z are defined and equal.

Extended Compositions g5 f. Let functions f and g be given as in
(I.4) subject to the conditions f(U)C X. An extended composite
function

gsf:U—Y (1.9)
is then defined with values

(e3f)w) = g(flw)), wuel. (1.10)
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Extended composition of functions is not in general associative, as
simple examples show. If fo g is well-defined, then it is always true
that

feg=fsg (L.11)

Note. An extended composition g 5 f of functions fand g is equal to
a composition

goisof’, (L12)

where f' is a mapping of U onto f(U) with the same values as f and ¢
is the inclusion mapping of f(U) into X. It seems notationally simpler
for our purposes to use g 5 f rather than the composition (1.12).

A field X is a nontrivial commutative ring in which each nonzero
element has a multiplicative inverse.
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ON ELEVATING MANIFOLD DIFFERENTIABILITY

We shall make use of the following theorem (see Morse [10]):

Theorem A. Let M, be a regular, compact, differentiable n-manifold
in E, ., of class C4, u > 0.
There then exists a sense-preserving C*-diff,

x = (py(%),ees Ppya(®)) : By > E,;y  onto E,, (1L.1)

such that o(M,) is a regular n-manifold of class C* in E, , .
Corresponding to an arbitrary neighborhood N of M, relative to E,, ,,
and to an arbitrary positive constant e the diff ¢ can be chosen so that

lpfx) — ;| <e, j=1l,n+1, (IL2)

and

| a‘pd(x) _ sij | <e, i = l,..., n + 1, (11'3)
0%,

for each x€ E, ., , and ¢ reduces to the identity for x€ E, ., — N, so
that p(N) = N.

Proof of Theorem 9.1'. We take M, of Theorem A as 2 of
Theorem 9.1°, so that p = 2 in Theorem A. By hypothesis | X' |
bounds the compact set Z. In terms of the diff ¢ of Theorem A, set
@(2) = 2* and p(Z) = Z*. Then Z* is a regular manifold of class C®
and | 2* | bounds Z*,

366
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Choice of N in Theorem A. Let N be so small a neighborhood of
| Z'| = | M, | that Z* is included in the open domain of f of Theorem
9.1’ and the critical points of f| Z are those of f | Z*,

Choice of e of Theorem A. Let e be so small that grad f is emergent
on 2*, This is possible, since (2) and (3) hold.

With e and N so chosen f is admissible relative to the regular
C*®-domain Z* bounded by Z*, and grad f is emergent on 2*,

Theorem 9.1 implies that the type numbers of f| Z* and the
connectivities of Z* satisfy the relations (9.4). Since the type numbers
of f| Z* are equal to those of f | Z and the connectivities of Z are equal
to those of Z* (see Part III), Theorem 9.1’ follows.

Proof of Theorem 10.2°. Let M, of Theorem A be taken as X of
Theorem 10.2, so that p = 2 in Theorem A. By hypothesis of
Theorem 10.2° 2 bounds Z of Theorem 10.2. If ¢ is the diff of
Theorem A, set () = 2* and ¢(Z) = Z*. Then Z* is a regular
manifold of class C* and | 2* | bounds Z*.

The Functions f and f*. Let D be an open neighborhood of Z on
which f is of class C2. Set (D) = D* and let f * be defined on D* by
setting f *(y) = f(x) for x € D subject to the condition y = ¢(x). Then
f* is of class C% on D¥*, ND on Z*, and ordinary on 2*, with the
critical points of f | Z and of f* | Z* corresponding biuniquely with
preservation of indices. Thus the type numbers of f | Z will be equal to
the corresponding numbers of f * | Z*.

The restrictions f| 2 and f* | 2*. These functions have equal
values at points p € 2' and ¢ € 2* when ¢ = ¢(p). It follows from
Theorem 5.5 that the critical points of f| 2 and f| Z* correspond
biuniquely under ¢ with preservation of indices. If the constant e of
Theorem A is sufficiently small, the critical points of f| Z_ and f| Z*
(Definition 10.2) will in particular correspond under .

One concludes that the augmented type numbers of f| Z are equal
to those of f* | Z*. But the augmented type numbers of f* | Z*
satisfy the relations (9.4) of Theorem 9.1 by virtue of Theorem 10.2.
Since the connectivities of Z are equal to those of Z*, the augmented
type numbers of f | Z likewise satisfy the relations (9.4).

This establishes Theorem 10.2’.
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SINGULAR HOMOLOGY THEORY ON M, OVER Z

Such a homology theory has been developed by the authors without
making any use of a global “triangulation” of M,, and will be presented
in the near future. Appendix III is an introduction to this theory.

Hypotheses. For simplicity let the manifold M,, be of class C* and
connected. As has been seen in Theorem 23.5 there then exists a ND
f€ C*(M,) such that for each value ¢ of £, f, is compact and has just
one critical point of index 0. One can suppose, in accordance with
Lemma 22.4, that each critical value a of f is assumed at just one
critical point p, of f. The principal theorems concern the singular
homology groups of f, over Z. Our theorems are proved by an in-
duction with respect to the increasing values of a in {a},, where {a},
is the set of critical values @ < ¢ of f other than the absolute minimum
a, of f.

We shall state a number of principal theorems, omitting proofs.
Unless otherwise stated all chains, cycles, and homology groups will
be singular chains, cycles, and homology groups over Z. A first major
theorem follows.

Theorem 1. For each value ¢ of f and each integer q = O the qth
homology group of f, over Z is “‘finitely generated.”

Theorem 1 is implied by the following lemma. If @ > a, and if the
gth homology group H,® of f, over Z is finitely generated, then the
gth homology group H ¢ of f is finitely generated. A proof of this
lemma and of Theorem 1 without any global triangulation of £, , f,, , or
f.» is a major departure from classical methods.

368
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A Finitely Generated Abelian Group 4. For Abelian group
theory see Ledermann [1]and Mac Lane and Birkhoff [2], pp. 344-355.

The group 4 is a direct sum B @ T of its torsion subgroup T and a
free Abelian subgroup B. We term B a Betti subgroup of A and term
dim B the Betti number B of A. The torsion subgroup T of 4 is
uniquely determined by 4. This is not true of Betti subgroups of 4
if T is nontrivial. Given a base

Uy youer g (I1L.1)

of B, one obtains a base of a second Betti subgroup B’ of A4 by adding
an arbitrary element ¢; of T to u; in (IIL.1) for each . Now, B’ # B
unless each t; = 0. However, 4 = B’ @ T and dim B = dim B’.

One can obtain an arbitrary base for B by subjecting the base (III.1)
of B to a ‘“‘unimodular” transformation.

Torsion Subgroups T. 'The torsion subgroup of a finitely generated
Abelian group 4 has a finite number of elements. It may be regarded
as a Z-module. The group T, if nontrivial, admits a “cyclic primary
decomposition” (CPD) (see MacLane and Birkoff [2], pp. 353-354).
Such a CPD of T is by definition a direct sum

8 Pe® - ®g  (nog, =0) (I1L.2)

of “primary subgroups” of T which are cyclic.
The order of a summand g; of a CPD of T of form (I11.2) is a power
p2 of a prime p, with exponent ¢; > 1. One thus has a list

Pl B (I11.3)

of “prime powers,”’ the orders of the respective summands in (III.2).
Moreover, a second CPD of T is isomorphic to the first CPD of T and
so (after a suitable reordering of its direct sumnmands) yields the same
list (II1.3) of prime power orders. The prime powers listed in (IIL.3)
are termed elementary divisors of T, or, if one pleases, of the Abelian
group A4 of which T is the torsion subgroup. Elementary divisors in
the list (II1.3) are regarded as distinct if they have distinct indices ¢
even if they are numerically equal.

The indexed elementary divisors of T uniquely determine (by
elementary algebraic processes) the classical ordered set of “torsion
coefficients” of T with their respective multiplicities. Conversely, the
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“torsion coefficients” of T, if given with their multiplicities, determine
(except for order) a list of indexed elementary divisors of T

The prime-simple case. An important and, in homology theory, a
very general case, occurs if T is nontrivial and if the exponents in
(IT1.3) are equal to 1. Then T and A are termed prime-simple. In the
case of projective spaces each homology group with a nontrivial
torsion subgroup comes under the prime-simple case.

We add a definition to Abelian group theory.

Definition 1. The Free Index of w e A. With an arbitrary element
w in a finitely generated Abelian group 4 we shall associate a unique
integer 8 > 0 termed the free index of w. We define s as follows.

The free index s of w shall be zero if w is of finite order.

If w has an infinite order the free index s of w shall be a positive
integer 8 with the following property: Corresponding to each Betti
subgroup B of 4 there is a base for B containing an element u, such
that

W = Slp + T, Tp€E T. (III.4)

Such a positive integer s exists and is independent of the choice of the
Betti group B of 4. One terms s the free index of w.

Program. We turn now to the problem of determining the gth
homology group HF, ¢ > 0, of f, , up to an isomorphism.

A group HJ°, as we have shown, is a finitely generated Abelian
group, and as such is determined, up to an isomorphism, by the
dimension of a Betti subgroup B, and the elementary divisors of the
unique torsion subgroup T,° of He. It follows from the retracting
deformations of §23 that these homology characteristics of H are
equal to the corresponding characteristics of H*, where o is the largest
value of a in {a}, . These characteristics of H* are the terminal result
of an inductive determination of the corresponding characteristics of
H 2 from those of H_® as a takes on successive increasing values in {a}, .

Our principal problem is then to determine H.® from H_?, up to an
isomorphism, for each a € {a},, making use of the index %, of the
critical point p, at the f-level @ and the homological characteristics of
0-boundaries of universal k-caps r* associated with p, as follows.
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The Role of #-Caps. In §29 we have seen that the homology
groups of f, over a prescribed field X" are determined, up to an
isomorphism, by the indices &, of the critical points p, at the respective
critical levels a € {a}, and the characterization of each critical point p,
as being of “linking” or “non-linking” type. This character-
ization was in terms of k-caps associated in §29 with p, . This asso-
ciation depended upon the choice of the field ', so that the k-caps of
P, defined in §29 should in the present context be termed k-caps of p,
over A,

Universal k-Caps. 'The k-caps of p, over Z, as we shall define them,
will be called universal k-caps because they satisfy the definition in §29
of a k-cap of p, over every field X"

An “f-saddle L, of M, at p,,” as introduced in Definition 36.2,
will satisfy the isomorphisms (36.19) (here understood as between
homology groups over Z) provided the f-saddle L, is a sufficiently
small “‘subsaddle’ of a prescribed f-saddle of M,, at p, .

Definition 2. A Universal k-Cap of p,. Given an f-saddle L, ,
restricted as in the preceding paragraph, a universal k-cap x* of p,, shall
be any singular k-cell which is ‘‘simply carried” by | L, | and such that
Do €| k¥ | and | &x,* | C f, (see Definition 30.2 of simply carried).

The universal k-caps «,* associated with the critical point p,
enter our homology theory by way of the following fundamental
lemma:

A Lemma on w%, If wk! denotes the homology class on f, of a
preferred universal k-cap «,P, then the homology class on f, of the
d-boundary of any other universal k-cap of p, is ewt™, where e = +1.

Definition 3. The Free Index s, of wt='. The first of the essential
homological characteristics of w%! is its invariant free index s, as an
element in the Abelian group Hy_, .

The distinction between the cases s, = 0,8, =1, and s, > 1 is
fundamental in our program of determination (up to an isomorphism)
of He from H,* The determination of the Betti numbers of f, from
those of f, is as follows:
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Theorem 2. For an arbitrary integer r > 0 and value a € {a}, the
Jollowing relations hold:

dimB,* —dim B, =1, dimB’, —dimB’, =0, (r =k,;s, =0),
dimB,” —dim B, =0, dimB?, —dimB?, =-1, (r=*%k,;s, > 0),

while dim B = dim B® when g # k,or k, — 1.

Elementary Divisors of H2?. Our program includes the deter-
mination of the elementary divisors of the torsion subgroup T2 of H ®
given the Betti numbers of f,, the elementary divisors of 72, the
index &, of p, , and homological characteristics of w¥~* on £, , such as
the free index s, and linking index t, of p, , presently to be defined.

The simplest cases occur when ¢ # k, — 1. In each such case the
elementary divisors of T,® are equal to those of T,0. The same is true if
g=4k,—lands, = 1.

We introduce another homological characteristic of w¥=!:

The linking index t, of p, . By virtue of relation (II1.4) applied to
w1 as an element in HY ,

Wi = sup® 4+ 1% Tpte TP, (IIL.5)
where we have added the superscript a to u, and 7 of (II1.4). Set
t, = mgn(order 75%), (11IL.6)
where B ranges over all Betti subgroups of Hj_; . The integer t, is at
least 1. We term t, the linking index of p, relative to f.

The above determination of the elementary divisors of H,* is
complete except in the case in which ¢ = k, — 1 and s, # 1.

The following theorem is of interest:
Theorem 3. A necessary and sufficient condition that each nontrivial

torsion group T2 for which a € {a}, be prime-simple is that each linking
index t, = 1 and each free index s, > O be the product of distinct primes.
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In the paper to which Appendix III is an introduction the deter-
mination of the elementary divisors will be made more explicit in
accord with the program outlined above.

It should be noted that the carriers of the universal k-cap o-
boundaries are topological (k — 1)-spheres, so that the determination
(up to an isomorphism) of the homology groups of f, has been reduced
to the determination of the indices of the critical points p, of f and
homological properties on f, of the spherically carried (¢ — 1)-cycles
or k.

We shall close Appendix III by stating two theorems useful in
interpreting results on homology groups over the field Q in terms of
homology groups over Z.

Given the above sublevel set f, of M, , let N, be the set of all indices
of critical points of f on f,. We say that f, is of lacunary type if there
are no two positive integers in N, which differ by 1. If f is 2 Milnor
function of a complex projective space, each f, is of lacunary type.

Theorem 4. The homology groups of a sublevel set f, of lacunary
type are torsion free.

Another theorem of general use follows.

Theorem 5. Let x be a Hausdorff space for which finitely generated
singular homology groups over Z and over Q exist. Then

Ry(x, Q) = Bx), g=0,1,..,
where B(x) s the qth Betti number of x.
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E,
Chr>0
poy
ap

=1l
D(F, ..., Fa)

D(xl ERAAd ] xn)

I} ags It
| ay |

grad f

(F:V,X)
T,

M,

| M, |

FUNDAMENTAL SYMBOLS

Meaning

PART I

SecrioN 1

a Euclidean n-space

types of differentiability, see Appendix I
composition of ¢ and ¢

Kronecker delta

SecTION 2
norm of vector 2
Jacobian

SectioN 3
matrix
determinant

SecTiON 4

the gradient vector of f

SECTION §

a presentation F of X

a topological #-manifold

a differentiable manifold

the carrier of M,

the set of presentations of M,
a differentiable function on M,

composition in the larger sense, see Appendix I
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(%, @) = Ulx, a)

RN

Ry(Z, X)

(9, 2) -+ G(p, a)
(v,a) > U(v, a)
)

res(U)

H(U)

o(M,)
(T, Qr,m)

(2'(),..., 7"(u))
(cl(u)v * cn(u))

FUNDAMENTAL SYMBOLS

Meaning

SECTION 6

a family of mappings U® into R

SecTioN 7

the regular manifold defined by (7.2); in Theorem 6.3 the set

of x-critical points of U

the set of x-singular points in 2; in §6 the set of degenerate

x-critical points of U
SecTION 9

a commutative field, see §24
a regular domain in E,
interior of Z

the kth type number of f | Z
the kth connectivity of Z

SectioN 10

the entrant portal of Z
the emergent portal of Z
the kth augmented type number of f| Z

PART II

SecTiOoN 13

class of C™-functions on M,

product of manifolds M, and N,

product of presentations F and G

set of homeomorphic presentations of open subsets of I',

SEcTION 14

a family of differentiable mappings into R
a local representation of G

the set of v-critical points of U

the set of degenerate v-critical points of U
the v-critical matrix of U

SECTION 16
a C™-manifold defined in Theorem 16.3b
a Q,-embedded C™-manifold

SecTION 17

a vector at u € E,, transformed contravariantly
a vector at u € E, transformed covariantly
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Symbol

(F:U,X)
(G:V,Y)
u — v(u)
v — u(v)
J(v, )
J(u,v)
{d/on}

Ji (a.b)
Slan
f(a.b)

S

S’

B_(z, k)
By(z,n — k)

ky
ky
T:B
T:b

Q

FUNDAMENTAL SYMBOLS
Meaning

the vector space over Ratu in E,

a presentation in 2M,,

a presentation in 2M,,

transition diffeomorphism defined by F and G
transition diffeomorphism defined by Gand F
Jacobian matrix of v at u

Jacobian matrix of u at v

a dynamical system on M,

SectioN 18

an infinite set product at g € M,
the vector space tangent to M, at ¢
the vector space cotangent to M, at g

SecTION 19

a Riemannian form indexed by a presentation H € 2M,,

a regular arc on M,
length of y on M,
a Riemannian coform dual to Qy

the submanifold of M, with the critical points of f deleted

SectioN 20

the ¢-level subset of M,
an f-presentation in 2M,’

a partial presentation in 2%° induced by F for ¢ ordinary
an M,-embedded C®-manifold with | f¢| = f°, ¢ ordinary

Section 21

an open subset of M,, defined by (21.1)
a closed subset of M, defined by (21.2)
the “submanifold” of M, with carrier f(, 3

SectioN 22

a designation of a Riemannian structure on M,
an f-preferred Riemannian structure

a k-bowl descending from a critical point =

an (n — k)-bowl ascending from a critical point z

SectioN 23

index of the critical point 2,
index of the critical point 2,
trace of By (z,,n — k) on f¢
trace of B_(z,, ky) on f°¢

a mapping of Theorem 23.1
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128
129
129
129
129
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138
138
140

143
145
145
148
153

158
158
160
160

166
166
166

172
175
178
178

184
184
184
184
184
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Symbol Meaning Page
D a retracting deformation 187
Jfa a sublevel set defined in (23.17) 191
Jat a superlevel set defined in (23.18) and (30.13) 191
Je) a modification of £2 defined in (23.21) 192
o is of the same homotopy type 196
PART III
SECTION 24
G a vector space over X~ 205
a linear subspace of G 205
G/L a quotient group 205
o the linear homomorphism of Lemma 24.1 206
oy the linear homomorphism induced by « (Lemma 24.1) 206
G, @G, the direct sum of vector spaces G, and G, 207
K a o-structured complex over X~ 208
C(K) the vector space over X of g-chains of K 208
9 the boundary operator of K 208
~ is homologous to 209
H(K) the gth homology group of K over X~ 209
R{(K) the gth connectivity of K over X~ 209
b(K) homology prebase for K of g-cycles 209
a? a geometric simplex 211
s=4 an ordered g-simplex pop, *** P, 212
| 5| the carrier of s 212
s(2) the ith face of s 212
SecrioN 25
P a simplicial n-polyhedron in E,, 215
P a d-structured complex based on P 215
| ue ] carrier of a chain w? on P 216
b(a™) an n-polyhedron, the barycentric subdivision of a geometric
simplex a” 217
B the barycentric operator on C,(a") 218
wXx 7 the product of a geometric simplex and an interval I = [0, 1] 219
P'(w) a simplicial polyhedron subdividing the prism w X I 220
P (w) another simplicial polyhedron subdividing w x I 220
SecTiON 26
X a Hausdorff space 224
T a singular g-simplex, a mapping s = §¢ — x 224

7 a singular g-cell, the class of singular g-simplices equivalent to = 224
| %] =1|7]| the carrier of 7 and + 225
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Symbol

S(x)
ot
||

-0

Z{(S(x), S(4)
B{(S(x), 8(4))
H(S(x), S(4))
Ryx, 4)

by(x, A)

Hyx, 4)

ba

£

FUNDAMENTAL SYMBOLS
Meaning

the complex of singular cells on x
the algebraic boundary of #
the carrier of a singular g-chain u?

a chain transformation g : P — S(x) induced by a mapping

g:P—x

a chain transformation $ : S(x) — S(x") induced by a mapping

pix—>x
SectioN 27

a continuous deformation (p, t) — d(p, t)

the terminal mapping p —d(p, 1) of d

the terminal chain-transformation induced by d;

the operator of the chain-homotopy (27.8) induced by d
the trajectory under d of a subset 7 of x

the singular barycentric subdivision of the chain 2

the linear operator of the chain homotopy (27.20)

the mesh of the singular chain z

the n-fold iterate of »z

SectioN 28

the vector space over X of g-cycles on x mod A

the vector space over X~ of bounding g-cycles on x mod 4
the singular gth homology group on x mod 4 over X°
the gth connectivity of x mod 4 over X

a homology prebase on ¥ mod 4

a notational abbreviation for H(S(x), S(A4))

a critical point at the f-level a

origin-centered open n-ball of radius o

Y — p,, where Y is a subset of M, containing p,

an origin-centered k-disk (closed)

4, with the origin deleted

PART IV

SectioN 33

an involution of M, X M,

diag | M, x M, | the diagonal of | M, X M, |

M,

T

diag | M,*|
My

M, X M,
h

h

the symmetric square of M,

a mapping of | M,, X M, | onto | M,2|

the diagonal of | M,? |

M,? with diag | M,3 | deleted

M, x M, with diagonal | M, x M, | deleted
the chord function on M,,

the extended chord function on M,?

Page

225

226

227

227

234
234
234
235
237
238
238

241

245
245

246

252
252
252
253
253

295
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Symbol Meaning Page

H the chord function on M, X M, , (33.35) 311

R, the ith connectivity of | M, * | mod(diag | M, |) 304
SkcTiON 34

Z, the field of integers mod p, p a prime 312

é, an n-dimensional ellipsoid in E,,, 313
SecTION 35

CcpP, the complex projective n-space 318
SecTION 36

By an origin-centered open j-ball of radius p in E; 324

Ye the range of a presentation G of canonical coordinates 326

L, an f-saddle of M, at a critical point of index % 326
SecrioN 37

P, the real projective n-space 335
SecTiON 38

wy, a complex variable x, + iy, 349

CE,. the Cartesian product of m complex planes 349

¢:CE, — E;, a homeomorphism defined by setting w, = x, + iy, 349

Z, a Stein manifold in CE,,,n < m 349
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Barycentric coordinates, 213
Barycentric homeomorphisms, 214
Barycentric operator B on a® 218,
see “Complex, polyhedral” for a®

Boundary conditions, 64

A, on regular domain Z, 64

B, on regular domain Z, 69
Boundary operator @

on an ordered simplex, 212

on polyhedral complexes, 215

on singular complexes, 226
Bowls, 178

ascending, 178

descending, 178
Bowl traces on f°¢, 180

Cr-mappings, 363

Caps of critical points p,, 259
caps over a field X, 259
caps over Z, universal, 371
linkable over X", 259

Carriers of
abstract manifolds, 92
chain homotopies, 231
ordered simplices, 212
polyhedral chains, 216
regular manifolds, 30
singular cells, 225
singular chains, 226

Cells, singular, 224
algebraic boundary of, 225
carrier of, 225

INDEX OF TERMS

continuous families of, 355
simply carried, 225
Chain transformations, singular, 210
4, induced by g: P — yx, see “Complex,
polyhedral” for P, 227
o-permutable chain transformations,
210
=, induced by a subdivision, 238
¢, induced by ¢: x — x’, 228
Characteristic roots of a matrix, 17
Chord function k on M,,, 303
Compactness, 166
bounded f-compactness, 166
f-compact above, 191
J-compact below, 191
Compatibility, 31
C™-, of presentations, 31
of coforms QF and Q6 relative to M, ,
149
of families of cells, 357
of forms Qf and Qg relative to M,,, 143
Complex, polyhedral, P, based on
polyhedron P, 215
a", based on geometric simplex a”®, 215
b(a"), based on subdivision b(a"), 217
boundary operator & on P, 215
carriers of chains of P, 216
cells of P, 215
Complexes K, abstract, over a field X',
208
boundary operator @ on K, 208
cells of K, 208

387



388

chains of K, 208
cycles of K, 208
Complexes S(x), singular over a field )¢,
on a Hausdorff space y, 225
boundary operator 9, 225
carriers of cells, 225
carriers of chains, 226
of singular cells, 224
Compositions, 364
composition in the extended sense, 364
composition of induced homomor-
phisms, 229
Conjugate tangent and cotangent vectors,
151
Connectivity numbers, 65
Critical chords of M,, see ‘“Chord
function & on M,,”, 295
Critical points, 9
of a nondegenerate f, 35
x-critical ensemble of U, 45

Deformations, 187

arcs of, 188

J-linear deformations, 189

initial mapping of, 188

retracting deformations, 187

terminal mapping of, 188
Diffeomorphisms, 7

of Euclidean spaces, 7

of manifolds, 114
Differentiable structures, 91

mutually compatible, 31

of open subspaces of E,, 97

on products M, X N,, 95

regular, on manifolds in E, , 30
Direct sums of vector spaces, 207

arc-wise separate spaces, 232
Domain, range, and image set, 364
Dynamical systems, 131

canonical dynamical systems, 154

S-trajectories of, 154

JS-transverse systems, 134

solutions of a system, 133

Embedded manifolds, 119
Embeddings, Whitney, 112. 123
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Excision Theorem, 249

f-Saddles L, , of M, at P,, 326
Focal points, 109
as centers of normal curvature, 283
general definition, 109
measure and density, 109
relation to nondegenerate functions,
106
relation to Stein manifolds, 351

Gradient of f, 363

Homologies on y mod 4, 244
connectivities of x mod 4, 246
homology groups Hy(x, 4), relative,

245
prebases of H,(x, A), 246

Homology group H,, abstract, over X,
208

Homology prebases for
abstract homology groups, 209
singular relative homology groups, 246

Homotopies, chain, 231
d, induced by a deformation d, 234
IT, induced by prism subdivisions, 238

Homotopies, geometric, 184
bowls and homotopies, 355
homotopy theorems, 189

Immersions, C™-, 29, 111
Index, 21
of a critical point, 35, 94
of a quadratic form, 15
Isomorphisms of homology groups, 207
coset-contracting, 247
induced by excisions, 249
induced by homeomorphisms, 247
induced by retracting deformations,
251
induced by subdivisions, 249

Jordan content, null, 39

Lacunary principle, applications, 272,
322, 3713
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Manifolds, 363
differentiable, 91
Jf-level, f¢, 83, 158
product manifolds, 95
regular manifolds, 30
Stein manifolds, 349
submanifolds of manifolds, 96
topological manifolds, 363

Nondegeneracy

of critical points, 20

of differentiable functions, 94
Nullity

of a critical point, 35

of a quadratic form, 1§

Ordinary points of f, 9

Presentations, 29
Cm-compatible, 31, 92
Jf-presentations, 158
[f-presentations, 162
Monge presentations, 33, 350
partial presentations, 160
prime presentations, 301
product presentations, 95
regular presentations, 30
strongly extensible presentations, 58

Range, domain, and image set, 364
Rank of quadratic form, 15
Regular arcs on M, , length of regular
arc, 123, 145
Regular domains Z in E,,, 64
boundary conditions A, 64
boundary conditions B, 69
entrant and emergent portals of Z, 70
Relatively compact sets, 363
Riemannian forms, 144
canonical f-coordinates (u, v), 326
canonically Euclidean forms, 173
form Oy and coform Q#, 144, 148
Riemannian structures S, 172
definition, general, 144
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existence, general, 146
existence of f-preferred structures, 175

Sigma-normal parameters (p, s), 61
Sigma-normal g-coordinates (x, 5), 60
Simplices
equivalence classes of singular sim-
plices, 224
geometric simplices in E,, , 211
singular simplices on y, 224
vertex-ordered geometric simplices,
212
Stein manifolds, 349
Subdivision, barycentric, 217
b(a"), of geometric simplex a®, 217
=z of singular chain 2, 238
Symmetric square M,3 of M,, 296
chord function % on M,,,, 303
critical points of &, 304
diagonal-free symmetric square M,,, s
302

Transition diff defined by overlapping
presentations F and G, 36, 129
Type numbers m, of f|Z, 65
augmented type numbers m’ of f|Z,
70

Vector spaces G, 205
bases, 206
dimensions, 206
direct sums, 207
reduced representations of g € G, 207
vector space V, over Ratuin E,, 128
Vectors, 127
contravariantly related, 130
cotangent to M, at q, 140
covariantly related, 139
gradients, covariantly related, 140
tangent to M, at ¢, 138

x2-Critical matrix H(U) of U, 45
x-Singular points of 2, 50
as degenerate critical points of U, 57
forming subset 2* of &2, 50
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