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PREFACE 

From its beginning critical point theory has been concerned with 
mutual relations between topology and geometric analysis, including 
differential geometry. Although it may have seemed to many to have 
been directed in its initial years toward applications of topology to 
analysis, one now sees that the road from topology to geometric 
analysis is a two-way street. Today the methods of critical point 
theory enter into the foundations of almost all studies of analysis 
or geometry “in the large.” 

Mathematicians are finding that the study of global analysis or 
differential topology requires a knowledge not only of the separate 
techniques of analysis, differential geometry, topology, and algebra, 
but also a deeper understanding of how these fields can join 
forces. 

I t  is the object of this book to add to this understanding in a new 
way, a way that lays rigorous and revealing foundations. 

The reader may be interested in diverse problems: in the Poincart 
problem when n = 3 or 4, in the existence of equilibria in conservative 
fields of forces, in the existence of periodic orbits, in global aspects 
of Lie theory, or even in the possibility of new approaches to homology 
or homotopy theory by way of critical point theory. 

In the Introduction we refer to notable recent discoveries by masters 
of global analysis. This book aims to reformulate and establish some 
of the first theorems underlying these advances. 

Among those who appear to have a major interest in the methods 
here presented are mathematical physicists. Our studies of focal 
points and of equilibrium points of Newtonian potentials contribute 
to geometric optics and dynamics. The possibility of new global 

vii 
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topological attacks on quantum mechanics has been sensed by many 
who are familiar with critical point theory. 

This book should be understandable to a mature first-year graduate 
student who has taken introductory courses in modern algebra, 
analysis, and general topology. The course in algebra should have 
familiarized the student with the elements of group theory and with 
fields and rings. In analysis a knowledge is needed of classical implicit 
function theorems and of existence theorems for ordinary differential 
equations. 

In an application of the theory to critical chords of compact 
differentiable manifolds, given late in the book, a knowledge of how 
a short minimizing geodesic arc varies with its end points is briefly 
outlined and used. There are many places in the literature where the 
student can find the geometric analysis needed to clarify this use of 
geodesic arcs. 

The reader will find the book a source of problems and fields of 
study. This is true both in analysis and topology. The student whose 
preference is for analysis will find, for example, several problems 
at the end of $32 on “Equilibrium Points of an Electrostatic Potential.” 
One whose major interest is topology will be challenged by our 
treatment of the homology of differentiable manifolds without any 
use of global triangulations of the manifolds. Our treatment must be 
supplemented in many ways. 

This book could be used for individual study or as a basis for a 
graduate course. There are four parts: 

Part I. 
Part 11. Abstract differentiable manifolds. 
Part 111. Singular homology theory. 
Part IV. 

Analysis of nondegenerate functions. 

Other applications of critical point theory. 

Part I is concerned with the existence of nondegenerate functions on 
regular manifolds in euclidean spaces. See Morse [2].* 

In Part I1 abstract differentiable manifolds M ,  are defined. Studies 
of focal points of regular manifolds and of dynamical systems on M ,  
are followed by the fundamental homotopy theorems of $23. 

* References will be indicated by giving the author’s name followed by a number, 
usually [l], giving the number of the paper as listed in our bibliography. 
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Part I11 starts with a development of singular homology theory 
over an arbitrary field, based on the original definitions of Eilenberg 
[l]. It continues with a determination of homology groups by an 
inductive process which avoids any use of a global triangulation 
of M ,  . 

Part IV applies the theory to the “critical chords” of an arbitrary 
compact regular manifold, to projective spaces both complex (Milnor 
[2]) and real, to Stein manifolds (Andreotti and Frankel [l]), and to 
electrostatic potentials. 

The first of three appendices contains preliminary definitions. 
The second supplements the analysis in Part I. The third appendix 
is described in the Introduction. 

The student who approaches critical point theory for the first time 
may find the Introduction a little formidable. We recommend that 
such a student make a first reading of the Introduction as a historical 
document and a later reading for a more complete understanding. 
For the less advanced student another recommendation will be 
helpful. Theorem 10.1 is basic among the “equilibrium” theorems 
and also leads to Theorem 12.4, a first theorem on “cobordism.” 
Theorem 10.1 is not otherwise needed. I t  is accordingly recommended 
that in a first reading the student omit $1 1, “Proof of Theorem 10.1 
under Boundary Conditions B.” 

This book is concerned with nondegenerate functions. The study 
of degenerate functions or integrals has a large history. One of the 
greatest contributions to this theory was made in 1929 by the Russian 
mathematicians Snirel’mann and Ljusternik [ 13. References to these 
mathematicians and to other distinguished Russian contributors will 
be found in our bibliography. In particular, see Ljusternik [l]. 

We are indebted to those mathematicians who have labored to 
clarify the field. The book by Seifert and Threlfall [l] has had and 
still has a large influence. One must also pay one’s respect to Munkres 
for his book [ 11 on Elementary Diferential Topology. 

The authors are indebted to Rev. John Blanton, S.J., and 
Dr. Gudrun Kalmbach for their painstaking analysis, criticism and 
correction of the manuscript of this book. 

The text of this book had its origin in lectures by Morse at the 
University of Rennes in the spring of 1965 and in lectures at the City 
University of New York in the academic year 1965-66. The authors, 
Cairns and Morse, began their collaboration in September of 1967. 
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INTRODUCTION 

This introduction to critical point theory covers finite-dimensional 
differentiable manifolds, and will be followed by an exposition of 
global variational theory. The distinction between global analysis and 
differential topology corresponds to the contrast between a theory of 
equilibria in analysis and the role of nondegenerate (ND) functions as 
a structural basis for homotopy or homology theory on differentiable 
manifolds. 

Equilibria. The theory of equilibria is concerned with the existence 
and classification with regard to stability of points of equilibrium of 
a “function of forces” such as a “Newtonian potential,” the existence 
and density of focal points of “regular” r-manifolds in (n + I)- 
Euclidean spaces, including the real manifolds defined by the complex- 
structured Stein manifolds (Andreotti and Frankel [l]), and the 
existence of extremal chords, arcs, orbits, and minimal surfaces under 
diverse boundary conditions. 

ND Functions on M.. The existence of infinitely many such 
functions was affirmed in the first theorem by Morse [2]. It  has been 
made clear by the notable applications and extensions of critical point 
theory by Bott, Milnor, Smale, and Thorn that the existence of ND 
functions on a differentiable manifold M ,  gives an initial topological 
structure on M ,  whose modiJication leads to the most fundamental 
results. We shall strengthen this conclusion by stating a major 
theorem. 

1 



2 INTRODUCTION 

The singular homology groups (Eilenberg [ 11) on M, over an arbitrary 
f i l d  can be determined up to an isomorphism by giving a suitable ND func- 
tion f on M,, without making use of any global triangulation of M, . 

A ND function f on M, is termed suitable if each of its critical 
values is assumed at just one critical point off. The homology groups 
of M, over a prescribed field are determined by the indices k of the 
respective critical points off and the homology characteristics of the 
(k - 1)-spheres bounding the universal k-caps, which we have 
associated with pa (see Appendix I11 for a definition of universal 
k-caps). 

A triangulation of a differentiable manifold M, exists, but is not 
needed or used. The motivation in dispensing with triangulations was 
simplicity and not abstract generality. 

A paper by the authors on “Singular homology theory over Z on an 
untriangulated manifold” will follow. 

Some Recent Advances. It is clearly impossible in a book of this 
size, intended as an introduction, to go deeply into the many fields 
of application of critical point theory. We shall nevertheless indicate 
how the works of some of the principal contributors are introduced. 

Bott [l] and Bott and Samelson [l] have shown how the critical 
point theory can be effectively applied in the homology theory of 
Lie groups. An introduction to these contributions is given in Bott’s 
lectures [3] at Bonn. In Theorem A by Bott [3] one finds a “homotopy 
equivalence” of basic importance. Inspired by Bott’s formulation of 
Theorem A, we have obtained a similar homotopy equivalence in 
Corollary 23.3. Our formulation makes use of “bowls” and of the 
theorems on retracting deformations of $23. We shall turn to the 
contributions of Bott and Samelson on “Symmetric Spaces” [l] in a 
later exposition of variational analysis. 

The discovery by Smale [2] of how to solve the Poincark problem 
when n > 4 was accompanied by major advances in the structural 
analysis of differentiable manifolds (Smale [3]). Smale makes use of 
handlebodies in his approach to the problem. At the end of 5 23 we 
recall how such handlebodies were introduced (but not named) 
by Morse [l]. 

One of the major auxiliary theorems used in solving the PoincarC 
problem for n > 4 is Theorem B of Smale [I]. Smale here affirms 
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that there exist ND functions on the given compact differentiable 
manifold whose critical values have the numerical order of the 
indices of the corresponding critical points. 

Somewhat later Morse [12, 161 made a detailed analysis of bowls, 
f-fiber-bundles, and the alteration of critical values. This analysis 
shows how the alteration of critical values off  and the domain of 
altered values can be made to depend on the nature of the “bowls” 
ascending and descending from the critical points off. The critical 
points remain invariant with their indices. Theorem 39.4 gives one 
of the theorems of Morse [12]. Corollary 39.1 of Theorem 39.4 
recovers Theorem B of Smale [l]. 

Milnor’s contributions and lectures are most illuminating. Our 
Theorem 16.8 comes from Milnor’s paper [l]. In $35 we follow 
Milnor in determining the homology groups of the complex projective 
n-space. 

In his 1965 lectures Milnor [3] presents his proof and extensions 
of Smale’s “h-cobordism theorem.” Milnor departs considerably 
from Smale’s mode of proof. The applications of the “h-cobordism 
theorem” by Smale and Milnor are of the greatest importance from 
the point of view of the critical point theory. 

The earlier studies of cobordism by Thom [l] are of continued 
interest both historically and mathematically. 

Theorem 12.4. In approaching the problem of the cobordism of 
two differentiable manifolds (see 9 12) critical point theory has entered 
naturally in the form of Theorem 12.4, stated as a first necessary 
condition for the cobordism of C’ and C” (see Wallace [l] and 
Milnor [3]). 

A proof of Theorem 12.4 can be modeled after our proof of 
Theorem 12.1. Such a proof of Theorem 12.4 depends in part on an 
existence theorem for ND functions with ND boundary value 
functions. Theorem 9.1 of Morse [15] is such a theorem. However, 
our proof of Theorem 12.4, as abstracted in 5 12, depends to a greater 
degree on an extension of Theorem 10.1, in which the underlying 
manifold En+, is replaced by a general differentiable manifold Mn+, . 

For the original proof of Theorem 10.1 see Morse and Van 
Schaack [ 13. Our proof of the extension of Theorem 10.1 when En+, is 
replaced by M,,, is modeled almost exactly on the proof of Theorem 
10.1 given in $ 11. 



4 INTRODUCTION 

Topologically ND Functions. A word must be added concerning 
the mathematical possibilities which may attend the development of 
singular homology theory without the use of any triangulation or 
block subdivision of CW type. This is both realistic and desirable, 
especially when one recalls that the spaces of analysis to which the 
critical point theory is naturally applied are often not even locally 
compact, and that nonisotopic deformations and retractions are 
natural instruments, particularly in variational theory. 

Morse’s [8] definition and use of topologically ND functions, 
together with the methods of Morse’s lectures [4] in 1947, make the 
following fairly evident: If a compact topological manifold M, is 
provided with a topologically ND function f, the determination, up 
to an isomorphism, of the singular homology groups of M, can be 
carried through and results in essentially the same homological 
relations as in the differentiable case. 

According to Kervaire [ 11 there are compact topological manifolds 
that are triangulable, but which admit no differentiable structure. 
To this we add the results of Eells and Kuiper [l] that a compact 
combinatorial manifold is the domain of a topologically ND function. 
A crucial question is then: Do there exist topological manifolds I‘, 
which neither admit a differentiable structure nor are known to be 
triangulable, but which are the domains of a topologically ND 
function f? The homology groups of any such manifolds are then 
determinable with an explicitness not previously known to be possible. 

Other Developments. An extension of part of the theory to Hilbert 
space has been made by Palais [l]. Other mathematicians, including 
Smale, have obtained results of a similar abstract nature. 

The paper of Eells and Kuiper [l] is a model of research on an 
inverse problem: On what manifolds are there ND functions with 
just three critical points? Many more such problems should be studied. 
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ANALYSIS OF NONDEGENERATE 

FUNCTIONS 
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DIFFERENTIABLE MAPPl NGS 

Let En and U,,, be Euclidean spaces of points x and u, respectively, 
with coordinates x1 ,..., x, and u1 ,..., urn.  A mapping t,b of an open 
subset X of En into a “subspace” Y of U, is said to be of class C*, 
t 2 0, if the mapping of X into Urn with the same values as t,b is of 
class C‘, in the sense of Appendix I. A mapping t,b of class C*, is of 
class @ for 0 < q < t. For brevity, we term a mapping of class 
C* a C*-mapping. A mapping t,b of an arbitrary nonempty subspace X 
of En into a subspace Y of U,,, is said to be of class C* if t,b admits an 
extension over an open neighborhood of X in En which is a mapping 
of class C* into a subspace of Urn.  

A 1-1 mapping is termed biunique; it may be discontinuous. We 
shall define a diffeomorphism (abbreviated “diff”) of a nonempty 
open subset X of En onto a subspace Y of U, in two ways and prove 
these two definitions equivalent. 

Definition 1.1. Dz#s. A biunique mapping t,b : X j .  Y of a non- 
empty open subset X of En onto a subspace Y of U, will be called a 
C*-dz# if both t,b and its inverse cp : Y + X are C*-mappings, t > 0. 

Definition 1.2. D#s. A biunique mapping t,b : X + Y of a non- 
empty open subset X of En onto a subspace Y of U, will be called a 
C*-dz#, t > 0, if t,b is of class C‘, and if its Jacobian vanishes at no point 
of x. 

There is no assumption that Y is open in either definition. However, 
the openness of Y follows from the second definition and the classical 
implicit function theory locally applied. We shall prove the following 
lemma: 

7 



8 I. ANALYSIS OF NONDEGENERATE FUNCTIONS 

Lemma 1.1. The above two dejnitions of a day of X onto Y are 
equivalent. 

It is trivial that a mapping which is a diff in the sense of Definition 
1.2 is a diff in the sense of Definition 1.1. It remains to show that a 
mapping I/J which satisfies the conditions of Definition 1.1 has a 
nonvanishing Jacobian at each point of X. 

If 'p is the inverse of 4, then if x is an arbitrary point of X, 

('p O M x )  = XI x E XI (1.1) 

(see Appendix I). By hypothesis, 'p admits an extension 'pe as a mapping 
of class C1 of an open neighborhood Ye of Y in Un into En . If one sets 

' p " 4  = ('pl"~),..., 'pn8(U)), 

4(x) = (h(x),...1 cd&)), 

l4 E ye, 

x E XI 

it follows from the identity (1.1) and the chain rule that at each point 
x E X, for k and p on the range 1,2 ,..., n 

where Sku is the Kronecker delta. 
We are following a convention of tensor algebra whereby the term 

inscribed on the left of (1,2), with index j repeated in both factors, is 
summed for j on its range 1, 2 ,..., n. 

If Jol and J& are the Jacobians of the mappings 'pe and 4, it follows 
from (1.2) that at each point x E X 

J W ( 4  J d X )  = 1, 24 = #(x). 

Hence J4(x) # 0 at each point x E X. 
Lemma 1.1 follows. 
A particular consequence of the equivalence of the two definitions 

is that under the conditions of either definition #(X) is an open subset 
of U, and that $-l is a diff of $(X) onto X. 

Let En , Ek , EL be Euclidean n-spaces. By means of either definition 
one readily proves the following: If 4 is a diff of an open subset X 
of En onto an open subspace Y of Ek and 'p is a diff of Y onto an open 
subspace Z of E i  , then y o 1,4 is a d 8  of X onto Z. 
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Definition 1.3. Critical Points. Given a real-valued function 
x + f ( x )  of class C1 defined in an open subset X of E n ,  a critical 
point off is a point x E X at which each of the first-order partial 
derivatives off vanishes. A point of X which is not critical is termed 
ordinary. 



LAWS OF THE MEAN 

We shall have need of integral laws of the mean in various forms. 

Lemma 2.1. Let x -+ f ( x )  be a real-valued function of class C1 

(2.1) 

defined on an open convex subset X of E,, . If u and x are in X ,  

f ( x )  -f(4 = (Xi - 4) 4% 4, 
summing with respect to i, where i has the range 1,2 ,..., n, and 

1 

0 
A&, u) = f& + t ( x  - u)) dt, (2.2) 

For an elementary proof of this lemma see Jordan [I], p. 251. 
One can represent the right side of (2.1) as the “product” 

(x - u) - A(x, u)  

of the vector 

and the vector 

The norm of a vector 2 in E,, is defined as its length and denoted 
by II 2 II. 

10 



2. LAWS OF THE MEAN 11 

It follows from (2.1) that 

If(.) -f(u)l < II X - II I 1  4% 411. (2.6) 

Corresponding to any compact subset K of X there accordingly 
exists a positive constant HK such that 

If(4 -f(.)l < IIX - I01 H K ,  X E K ,  U E K .  (2.7) 

The following is an important consequence of Lemma 2.1 : 

Corollary 2.1. Corresponding to any compact subset K of X and 
to the closed subset KO (supposed not empty) of critical points off in K ,  
there exists a monotone continuous mapping 

t - e v ( t ) : R + + R + ,  R+ = { t ~ R l t  >O}, (2.8) 

such that ~(0) = 0, v ( t )  > 0 for t > 0, and 

Dejnition of 'p. Let d be the diameter of K. It  will be sufficient 
to define v ( t )  for t E [0, d ]  and then set v ( t )  = v ( d )  for t > d. The 
relation (2.9) involves no values of y~ other than those for which 
t E [0, d ] .  

For u E KO and t E [0, d]  set 

So defined, M is uniformly continuous, and for fixed u E KO monotone 
increasing with respect to t .  For each t E [0, dl set 

and for t > d set p( t )  = 'p(d). 
So defined, v is continuous and monotone increasing. For 

each u E KO, A(u, u) = 0, in accord with (2.3)) so that M(u, 0) = 
~(0) = 0. It follows from (2.10) that 

(2.12) II 4% 411 < M(u, II X - u II), X K ,  24 E KO , 
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and from (2.1 1) that cp(t) > 0 for t > 0 and 

M(u, t )  < dt ) ,  u E KO ; t E [O, 4. (2.13) 

Relation (2.9) follows from (2.12) and (2.13). 
This establishes Corollary 2.1. 
The preceding lemma and corollary are concerned with a mapping 

of the set X of Lemma 2.1 into R, the axis of reals. We extend this 
lemma and corollary to a mapping into En as follows. 

Let S be the (n - 1)-sphere of directions a, that is, of points 
a = (a1, az ,..., a,) such that 11 all = 1. 

Lemma 2.2. Let there begiven a mapping 

x -+F(x) = (F,(x), ..., Fn(x)) : X - t  En (2.14) 

of class C' of an open convex subset X of En into En . If a is an arbitrary 
direction, x and u arbitrary points in X ,  then 

a * F ( x )  - a .F(u) = (x - u) * A(x, u, a), (2.15) 

where the vector-valued mapping 

(x, U, a) + A ( x ,  u, a) : X x X x S-+ En (2.16) 

is continuous and so chosen that 

aF aF 
A(u, u, a) = a * - (u) ,..., a - - (u)). ( ax, ax, 

(2.17) 

Lemma 2.2 results from setting f = a * F in Lemma 2.1. Relation 
(2.15) follows from (2. l), where 

1 aF 
A&, u, a) = a - (u + t ( x  - u)) dt, I,, axi 

in accord with (2.2), understanding that 

aF aF, aF, 
= (F ,...,=), i = 1 ,..., n. 

(2.18) 

(2.19) 

Relation (2.17) follows from (2.18). 
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A consequence of (2.15) is that 

I a .F(x) - a .F(U)l < II x - u II II 4% u, 411 (2.20) 

for each direction a and for x and u in X. It follows from (2.20) that 
corresponding to any compact subset K of X there exists a positive 
constant HK such that 

(2.21) I a - F ( x )  - a *F(u)l < II x - u 1 )  H K ,  x E K, u E K, U E  s. 

An Extension of Corollary 2.1, Given u E X, the n linear conditions 

(2.22) 

on (a1 ,..., an) are satisfied for some direction a and point u E X if 
and only if the Jacobian 

(2.23) 

(Goursat [I], p. 93). 

the subset 
The set ( K  x S),  . Given a compact subset K of X, we introduce 

u = {U E K I J(u) = 0} (2.24) 

of K, assuming that cr # 0 .  For each point u E cr there is at least one 
direction a such that conditions (2.22) are satisfied. Let [K x S], 
denote the ensemble of such pairs (u, a). For (u, a) E [K x S], , 
u is a critical point of a * F. 

We state the following extension of Corollary 2.1: 

Corollary 2.2. Corresponding to the compact subset K of the convex 
set X of Lemma 2.2 and to [K x S] ,  , supposed nonempty, there exists 
a continuous monotone mapping t + T(t )  of R, into R, such that 
~(0) = 0, v ( t )  > Ofor t > 0, and 

II A(x, .)I1 < d I I  x - u I I ) ,  (u, a) E [K  X S ] ,  ; x E K. (2.25) 

The proof is similar to the proof of Corollary 2.1, (u, a) E [K x S], 
replacing u E KO. 



14 I. ANALYSIS OF NONDEGENERATE FUNCTIONS 

The following lemma is essential in reducing f to its canonical form 
near a critical point (see Jordan [l], p. 251): 

Lemma 2.3. I f f  is a real-valued function of class Cr+8, I >, 0, in an 
open convex subset X of E,, and if the origin 0 is a critical point o f f ,  then 

f(4 - f ( O )  = a&) Xi% 9 x E x9 (2.26) 
where 

(2.27) 

We see that each coefficient function atj is of class C* on X. More- 

&(O) = fa,e,(O). (2.28) 

over, for i , j  on the range l,..,, n we have a&) = a,$(%) and 



§ 3  

REAL, SYMMETRIC, QUADRATIC FORMS 

We shall be concerned in this section with a symmetric quadratic 
form 

in n variables x1 )...) x, . The coefficients at, are assumed real. The 
matrix of coefficients will be denoted by a or by 11 aijll, and the 
determinant of this matrix by I ai, I. 

The rank r of a is called the rank of Q(x). The integer n - r is 
called the nullity of a and of Q(x). The following definition is particu- 
larly important: 

Definition 3.1. The Index of Q(x). By the index of Q(x) is meant 
the maximum integer K such that Q(x) is negative-definite on some 
k-plane 7rk meeting the origin. 

We shall state without detailed proof a number of fundamental 
theorems concerning Q(x), referring the reader to standard intro- 
ductory books on algebra for the proofs of these theorems. 

Theorem 3.1. If in the quadratic form (3.1) the coordinates are 
subjected to a homogeneous linear transformation 

i = l , . . . , %  x. c = c . .  C 3 Y 2 ,  . 

with n-square matrix c, there results a new symmetric quadratic form 
P ( y )  with matrix c'ac, where c' is the transpose of c (cf. BBcher [l], 
p. 129). 

15 
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Theorem 3.2. Under a real, nonsingular, linear transformation of the 
variables x the index, rank, and nullity of a quadratic form are invariant. 

The principal theorems of this section are concerned with the 
index of Q(x)  and reductions of Q(x)  by nonsingular linear trans- 
formations to canonical forms. These reductions are of three types: 
(1) The Lagrange method of reduction. (2)  Reduction by orthogonal 
transformations. (3)  The Kronecker method of reduction. 

The Lagrange method (1) will be extended in $ 4 to real-valued 
functions f no longer quadratic, but restricted to a neighborhood of a 
critical point o f f .  Orthogonal transformations (2)  are needed to reduce 
Q(x)  to a canonical form essential in defining centers of principal normal 
curvature of regular differentiable manifolds M,-l in E n .  We shall 
need only one of Kronecker’s theorems (3) and its corollary. I t  is 
essential in the study in 5 11 of the critical points under boundary 
conditions B. 

Theorem 3.3. There exists a real, nonsingular, linear transformation 
of the variables x to variables y by virtue of which Q(x)  is reduced to 
a form 

(3.2) - Y,” + Y;+l + .’. + y:, -yla - ... 

where k and r are, respectively, the index and rank of Q(x)  (see BBcher [l], 
p. 148). 

The Lagrange method, as presented in $45 of BBcher, suffices to 
prove Theorem 3.3. It is recommended that the reader familiarize 
himself with this method, inasmuch as this method will be extended 
in $ 4  to obtain the first fundamental “Reduction Theorem ” for f 
near a critical point. 

Orthogonal Transformations. Definition 3.2. Two n-square ma- 
trices a and b with real elements aij and b, are termed similar if there 
is a real, nonsingular, n-square matrix p such that 

b =pap-’. (3.3) 

We shall refer to the n-square diagonal matrix I ,  whose elements 
are the Kronecker deltas tiij. 
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Definition 3.3. By the characteristic values or roots of an n-square 
matrix a, is meant the n roots A, ,..., A, of the equation 

I Ui, - AS, I = (A, - A) * * .  (An - A) = 0. (3.4) 

Equation (3.4) is termed the characteristic equation of a. 

[l], p. 249): 
The following lemma is easily proved (see Birkhoff and Mac Lane 

Lemma 3.1. The characteristic values of similar n-square matrices are 
equal. 

Definition 3.4. Orthogonal Transformations. A linear transforma- 
tion of form (3.2) is termed orthogonal if for each point x E En and its 

For a proof of the following lemma see Birkhoff and Mac Lane [I], 
image Y ,  I I  x I I  = II Y II. 

p. 258: 

Lemma 3.2. A real n x n matrix a is the matrix of an orthogonal 

From the relation aa' = I, follows the relation a'a = I,, so that 

The following theorem is essential (see Birkhoff and Mac Lane [l], 

transformation T if and only if aa' = I, . 
a and a' are inverses and T is nonsingular. 

p. 314): 

Theorem 3.4. (i) The characteristic values of a real symmetric 

(ii) A quadratic form Q(x) with real symmetric 

(3.5) 

matrix are real. 

matrix a may be reduced by an orthogonal transformation to a form 

A~Y,' + Azyz + *.. + Anyn', 

where the coeficients A, are the roots of the characteristic equation of a. 
As a consequence, the index k of Q(x)  is the number of roots h( 

which are negative, counting each root with its multiplicity as a root, 
since Theorem 3.2 implies that the index of Q(x) is the index of the 
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form (3.9, while Definition 3.1 of the index of a quadratic form 
implies that the index of the form (3.5) is the number of roots h, 
which are negative. 

We add the following theorem: 

Theorem 3.5. A quadratic form Q(x)  and a quadratic form obtained 
from Q(x) by subjecting the variables x to an orthogonal transformation 
have matrices with the same characteristic values. 

If a is the matrix of Q(x) and c the matrix of the orthogonal trans- 
formation, the new form has the matrix 

c'ac = c-lac. 

The matrices of the two forms are thus similar and so have the same 
characteristic values. 

The following theorem will be useful in our study of Riemannian 
forms: 

Theorem 3.6. If a is a symmetric, nonsakgular, n-square matrix, the 

It follows from Theorem 3.4 that if c is a suitably chosen orthogonal 

c'ac = b, ( 3 4  

characteristic values of a and of a-l are reciprocals. 

matrix, 

where b is a diagonal matrix whose diagonal elements are the charac- 
teristic values of a. From (3.6) it follows that 

The characteristic values of b-' are the reciprocals of those of b, that 
is, of those of a. By Lemma 3.1 the characteristic values of b-1 and 
of a-l are equal. 

This establishes Theorem 3.6. 

Corollary 3.1. If Q(x)  is a positive-definite quadratic form with 
matrix a, the quadratic form whose matrix is a-l is also positive-definite. 
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A Kronecker Theorem 

Theorem 3.7. Let Q(x) be a quadratic form in variables x, ,..., x, 
with coeficients ai5 and with A,, the cofactor of a,, in I at5 1. If A,, # 0, 
variables y1 ,..., y ,  can be introduced by a nom'ngular linear transforma- 
tion T under which x, = y,, and 

For proof see Bacher [l], p. 141. 

Corollary 3.2. If I at5 I A,, > 0, the index of the form Q is the 
index of the form xrl a h k y h y k .  



§ 4  

THE REDUCTION THEOREM FOR f 

Introduction. The reduction theorem, presented here as Theorem 
4.1, was first stated as Lemma 10.1 by Morse [5], p. 44. The original 
proof assumed that f was of class Cs in a neighborhood of a non- 
degenerate critical point at the origin. For an extension to Hilbert 
space see Palais [I]. 

The theorem, as reformulated here, is valid even when f is of 
class C2. In  this extreme case we show that a composition off with 
an Lo-homeomorphism (see Definition 4.3) is a canonical quadratic 
form associated with f at the origin. Our method has the advantage 
that it “reduces” f in the sense of Theorem 4.2 even when the origin 
is a degenerate critical point, provided the rank of the quadratic form 
“underlying” f at the origin is not zero. 

Kuiper [l] has given a proof of the reduction theorem in the 
nondegenerate case which makes the reduction by a diff even when 
f is of class C2. We have not followed Kuiper’s interesting method 
for two reasons. His method does not seem applicable in the degenerate 
case, and in the nondegenerate case the theorem presented here aids in a 
verification of Kuiper’s proof which seems necessary for completeness. 

Definition 4.1. Nondegenerate Functions. A critical point x = a 
of a real-valued C2-function on an open subset X of En will be termed 
ND (nondegenerate) if the Jacobian 

If each critical point off is ND, f itself will be termed ND. 

We shall verify Lemmas 4.1 and 4.2. 
20 
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Lemma 4.1. Iff is of class C2 and N D ,  its critical points are isolated. 

Proof. If x = a is a critical point off, (4.1) holds by hypothesis, 
so that by the classical implicit function theorem the equations 

fi,(X) =f&) = ... =f&) = 0, 

have no solution other than x = a in a sufficiently small neighborhood 
of a. 

Definition 4.2. Let f be a real-valued function of class C2 defined 
in a neighborhood in En of a critical point xo. The index and nullity 
of xo as a critical point off are taken as the index and nullity of the 
quadratic form with matrix 

I1 fi‘,,(x”)ll. 

Lemma 4.2. Let f and F be real-valued functions of class C2 dejned 
respectively, on open subsets U and V of En . If there exists a C2-dzgeo- 
morphism 

x d x )  = (?J1(x>,..., v&)) 

of V onto U such that F = f 0 y ,  then: 

(i) The criticalpoints off andF correspond under rp in a 1-1 manner. 
(ii) The indices and nullities of corresponding criticalpoints are equal. 

Proof of (i). By hypothesis F(x )  = f (~ (x ) )  for x E V. Hence by the 

( 4 4  a ( P h ( 4  . 2 = 1 9 . Y  n; x E v. 

Since the Jacobian of rp never vanishes, by hypothesis, Cramer’s rule 
applied to (4.2) implies that grad f (cf. Appendix I )  vanishes at ~ ( x )  
if and only if grad F vanishes at x. Thus (i) is true. 

chain rule, for x E V 

&,(4 =f,,(?J(x)) ax, 9 

Proof of (ii). Suppose that a critical point xO of F corresponds 
under T to a critical point yo = rp(xo) off. Set 

a = Ilfi*i,(YO)II and b = l l ~ ~ i i ~ ( ~ ) l l  
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and let c be the Jacobian matrix of 9) at xo. If one differentiates both 
sides of (4.2) with respect to x,, one finds that at xo 

b = c'ac. 

Statement (ii) now follows from Theorems 3.1 and 3.2. 

Definition 4.3.a. L*-Homeomorphisms,' 720. A homeomorphism 

x + v(x) = (P&),".., v&)) : iv+ v (4.3) 

of an open neighborhood N in En of the origin 0 onto an open 
subspace V of En such that 

(4.4) 

where each mapping cij is of class Cr on N and 1 c&)l # 0, will be 
called an L*-homeomorphism. 

vi(x) = 4%) x, ; i = 1, ..., n; x E N, 

Definition 4.3.b With an L*-homeomorphism 9) we associate the 

i = 1, 2 ,..., n, (4.5) 

If 'p is an L*-homeomorphism for which r > 0, the Jacobian matrix 

nonsingular transformation 

vo : yi = ci,(0) x, , 
calling '90 the linear homeomo~phism underlying 'p. 

of 'p at the origin is the matrix 1 1  ct,(0)ll of (4.5). 

Lemma 4.3. (i) A CT+l-d#, r >, 0, 

x + y ( x ) :  X - t y ( X ) C E ,  (4.6) 

of a suflciently small open convex mghborhood X of the origin which 
leaves the origin $xed is an L*-homeomorphism in which (4.4) holds with 

(ii) For r 2 0 the inverse 1,4 of an Lr-homeomorphism 9) with domain 

(iii) If r > 0, an L*-homeomorphism 9) is a Cr-d#. 

Statement (i) follows with the aid of Lemma 2.1. 

N is an Lr-homeomorphism with domain v(N).  

+ The letter L is used here to connote a type of pseudolinearity. 
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T o  verify (ii), suppose that 'p has the form (4.4) and set Ilctj(x)ll = c(x) 
The matrix c-'(x) then exists for x E N. If one sets y = 'p(x) for 
x E N, then by hypothesis x = $( y) for x E 'p(N). Set 

c - w  = c-'($(y)) = II h,(Y)ll' Y E V ( W .  

By Cramer's rule the n equations yi = ci,(x)x, , with x E N, admit the 
solution 

xi = bt j (y )y j  = &(y), y E v(iV); i = 1,2, ..., n. 

Statement (ii) follows. 

inverse of class Cr. 
Statement (iii) is true, since 'p is of class Cr, r > 0, and has an 

This completes the proof of Lemma 4.3. 

If 'p and $ are inverse Lr-homeomorphisms, then 'p 0 $ is the identity 
map of a neighborhood of the origin. It follows that [for notation 
see (4.5)] 

qJ0 0 $0 = I (4.8) 

is the identity map of En onto En . 
An Lr-homeomorphism 'p 

whose underlying linear homeomorphism 'po has a matrix of diagonal 
type will be said to be of diagonal type. 

If g~ and $ are inverse Lr-homeomorphisms, it follows from (4.8) 
that 'p is of diagonal type if and only if a,5 is of diagonal type. 

Quadratic forms are generalized by 9-functions (quadratic func- 
tions) defined as follows: 

Lr-homeomorphisms of Diagonal Type. 

Definition 4.4a. p-Functions. A real-valued function 

x + F(x) = a&) xixi  , a&) = a,@); x E v, (4.9) 

defined on an open neighborhood V of the origin and such that each 
function ai, is of class Cr on V will be called a 9-function, Y 2 0. 

Definition 4.4b. Given the p-function r, the quadratic form 

P ( x )  = U i j ( 0 )  xixj , 

will be called the quadratic form underlying r. 
Lemmas 4.4 and 4.5 will be used in proving Theorem 4.1. 
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Lemma 4.4. Given an L*-homeomorphism p : N --+ V as in (4.3) 
and (4.4) and a &*-function r with domain V as in (4.9)) the composite 
function r o p is well-defined on N and is a &*-function whose underlying 
quadratic form is (FO o po)(x). 

Proof. One finds that 

(r 0 d ( x )  = b , ( 4  XP, 9 

where the coefficients b,(x) have a matrix 

x E v, 

II bid411 = II ct,(4ll' I I  att(dx))ll II c*,(x)ll. (4.10) 

Setting x = 0 in (4.10)) we see that the quadratic forms (I' 0 p)O(x) 
and (Po 0 yo)(%) have the same matrix, thereby establishing the lemma. 

Q'-Functions of Diagonal Type. A quadratic form Q(x) whose 
matrix is diagonal will be said to be of diagonal type. A Q'-function r 
for which the underlying quadratic ro(x) is of diagonal type will be 
said to be of diagonal type. 

With this understood, Lemma 4.4 implies the following: 

Lemma 4.5. A well-defined composition r 0 p of an Lr-homeo- 
morphism 9 and a Qt-function r, both of diagonal type, is a J?'-function 
of diagonal type. 

The following notion of dr-equivalent Q-functions is central in the 
proof of Theorem 4.1 : 

Definition 4.5. dr-Equivalent Q'-Functions. Two Q'-functions I" 
and r" will be said to be dr-equivalent if there exists an open neigh- 
borhood U of the origin and an Lr-homeomorphism p : U + p( U) C En 
such that 

r'(cp(x)) = I-"@), X E  u. 

The relation of dr-equivalence among &*-functions is seen to be 
symmetric, reflexive, and transitive. 

Theorem 4.1 is a form of the first Reduction Theorem, simplified 
by taking the critical point off at the origin and the corresponding 
critical value as zero. 
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Theorem 4.1. Let f be a real-valued function of class Cr+2, r 2 0, 
on an open neighborhood N of the origin in En . 

I f  the origin is an ND critical point o f f  of index k with critical value 
zero, there exists an Lr-homeomorphism q~ : X + cp(X) C En of an open 
neighborhood X C N of the origin such that ~ ( 0 )  = 0 and 

f(p(x))= -~18-...--Xk2+~ak+l+..'+~,', X E X .  (4.11) 

We shall establish this theorem by verifying statements (i)-(iii): 

(i) I f  U C N is an open convex neighborhood of the origin, then 

(ii) F is dr-equivalent to a 9-function 

f I U is a 9-function r. 

x .+ F,(x) = a&) x,xj , x E v, (4.12) 

with underlying quadratic form, 

elx: + + e,x,' = -x12 - * * *  - xkz + xE+l + .*. + x,', (4.13) 

where k is the index of the origin as a criticalpoint o f f .  

(iii) To is dr-equivalent to the quadratic form (4.13). 

Proof of (i). (i) follows at once from Lemma 2.3. 

Proof of (ii). Let A be a linear homeomorphism which reduces 
the quadratic form Fo(x) underlying r to the quadratic form (4.13). 
A exists by virtue of Theorem 3.3. Let h be the restriction of A to so 
small an open neighborhood V of the origin that r o h = r,, is a 
well-defined p-function on V. It follows from Lemma 4.4 that 

F&X) = (FO 0 A)@), x E v, (4.14) 

so that the 9-function r, has the form (4.13) as underlying quadratic 
form. 

This establishes (ii). 

Proof of (iii). By virtue of (ii) a,,(O) = e, for i = 1, ..., n and 
aij(0) = 0 if i # j. Following the Lagrange method of reduction of a 
quadratic form, we introduce the mapping 
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where Nl C V is an open convex neighborhood of the origin so small 
that all(%) # 0 for x E Nl . We note that 

(4.16) ad1 - (0) = el # 0. 
8x1 

The Lr-homeomorphism 8. Let 

be the Lr-homeomorphism of Nl in which 8, is given by (4.15). 
This Lr-homeomorphism has an inverse which is an Lr-homeomor- 
phism of the form 

x + (+i(x), x2 t** .? xn) = y ( x ) ,  x E @(Nl). (4.18) 

The Form of F,, o Y. The first step in determining To o Y is 
similar to the first step in the Lagrange reduction of a quadratic form. 
For x E Nl we see that 

summing terms in h, k over the range 2, 3,.,., n. We can write 

Since Y is the inverse of 8, (4.21) gives the identity 

n 

(To y)(x) = elx? $. &(x) xhx, 9 x E @(N1), (4.22) 
2 

where the mappings u# introduced here are of class Cr on 8(Nl). The 
identity (4.22) shows that Fo is &-equivalent to the p-function Fl(x), 
given by the right side of (4.22). 

Moreover, the quadratic form underlying Fl(x) is again the form 
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(4.13). This follows from the fact that the quadratic form underlying 
the IQ'-function Rl(x) of (4.20) is the form 

Vx,a + ... + enxna, (4.23) 

while Yo(x) = (elxl , x2 ,..., xn) [cf. (4.16) and (4.18)]. 

assume that Po is &-equivalent to a p-function with values 
The Induction. Given an integer s such that 1 < s < n + 1, we 

on some open neighborhood of the origin and with underlying 
quadratic form (4.13), and prove this statement true if s is replaced by 
s + 1. The assumption is valid if s = 2, as (4.22) shows. 

By hypothesis afi'(0) = e, , since the form (4.13) is assumed to 
underlie F,-l. 

Hence for suitable choice of an open neighborhood N, of the origin 
there exists an LI-homeomorphism, 

x + (4(4,..., dn(x)) = 

in which O,(x) = xi for i # s and 

Following the method used for s = 2, we find that r,-l is d'-equivalent 
to a IQ'-function r, with values r,(x) given by (4.24), with s + I 
replacing s, and with underlying quadratic form (4.13). 

By induction To is dr-equivalent to rn . But r, , as given by (4.24) 
when s = n + 1, is identical to the form (4.13), so that Theorem 4.1 
follows. 

The Degenerate Case. The method of proof of Theorem 4.1 
suffices, with trivial changes, to prove a theorem in which the origin 
is a critical point off which may be degenerate. 

Theorem 4.2. Let f be a real-valued function of class Cr+2, I 2 0, 
dejined on an open neighborhood N of the or2in in En , vanishing at the 
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origin. If the origin is a critical point of index k and rank v with 
0 < v Q n, there exists an L*-homeomorphism of form 

X 9J(4 = (9Jl(+, V U ( X ) ,  *u+1 9..., 4 

onto v ( X ) ,  of an open neighborhood X C N of the origin 0, leaving the 
origin jixed, and such that 

n 

f (q (~ ) )  = -x: - . * *  - X: + X:+I + * * *  + x," + C A h k ( ~ )  X D X ~ ,  x EX, 
u + l  

where each mapping A ,  is of class Cr on X and vanishes at the origin. 
Recall that rp is a Cr-diff if I > 0, but, as an Lr-homeomorphism, it 

is something more than a C*-diff. When v = n Theorem 4.2 reduces 
to Theorem 4.1. 



9 5  

REGULAR MANIFOLDS 
IN EUCLIDEAN SPACES 

In  Part I1 abstract differentiable manifolds will be defined, each 
with a differentiable structure. 

However, the differentiable manifolds most relevant to the develop- 
ments of Part I are differentiable manifolds in E, which are “regular” 
in E, . We shall define these manifolds in a manner which will show 
that they are differentiable manifolds in the sense of the general 
definition of Part 11. Our definition of regular manifolds will show 
that two of the conditions which must be imposed on the general 
manifolds of Part I1 are automatically satisfied by regular manifolds 
in E, . We refer to the “compatibility” and the “countability” 
conditions. 

Definition 5.0. Presentations. If V is an open subset of some 
Euclidean space En , a homeomorphism 

w + F ( w )  : V + X  

onto an open subspace? X of a topological n-manifold+ will be called a 
presentation (F : V ,  X )  of X .  

Definition 5.la. A Cm-Immersion in E, . Suppose that 0 < n < r. 
A Cm-mapping, m > 0, 

w +F(w) = (Fl(w), ..., F,(w)) : V+ E,  (V open in En), (5.1) 

t For definition see Appendix I. 

29 
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such that the r x n functional matrix 

aF,o I/ avj I1 
has the rank n at each point w = (wl ,..., v,) E V is called a Cm-immer- 
sion of V in E, . 

Definition 5.1 b. A Cm-embedding. A Cm-immersion (5.1) which 
is a homeomorphism onto a subspace X of E, is called a Cm-embedding 
of V and a regular Cm-presentation of X in E, . 

It is important to note that the above definition of a Cm-embedding 
in E, would be essentially changed in meaning if the phrase “a homeo- 
morphism onto X” were replaced by the phrase “a continuous 
biunique mapping onto X.” In  fact, F might then fail to be a homeo- 
morphism onto X ,  as simple examples when n = 1 and r = 2 
would show. 

Let r, be a topological n-manifold. 

Definition 5.2. Families of Presentations Cowering r, . A family 

(Fk : V k  9 ~k)kS. ( V k  open in En) (5.3) 

of presentations of open subspaces X ,  of I’, whose union is r, is 
termed a family of presentations cowering r, . 

Definition 5.3. Regular Cm-Manifolds in E, . Let I’, , 0 < n < r,  
be a topological n-manifold which is a subspace of E, and is coverable by 
a family (5.3) of regular Cm-presentations. 

The set of all regular Cm-presentations of open subspaces of r, defines 
a “di#erentiable structure” 9 on r, . r, prowided with the differentiable 
structure 9, is called a regular Cm-manifold M ,  in E, with “carrier” 
I M ,  I = I’, and set of presentations 9 M n  . 

If a presentation ( F :  V, X )  is in 9 M n ,  X is called a coordinate 
domain of M ,  and the coordinates (vl ,..., w,) of a point v E V the 
F-coordinates of the point F(w) E X .  
As indicated earlier, regular manifolds M ,  in E, possess properties 

which must be postulated for the abstract manifolds of Part 11. 
We shall define these properties and verify their possession by regular 
manifolds in E, . 
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Compatibility. Let r, be an arbitrary topological n-manifold and 

D -+ F(D) : V --f X (V open in En), 
(5.4) 

u-+G(u) :  U - + Y  (UopeninE,), 

be two homeomorphisms onto open subspaces X and Y of r,. If 
X n  Y # 0, let 

D +  P(D): P - x n  Y (Pc v), 
u - + € ( u ) : O - + x n Y  (OCU), (5.5) 

be the unique restrictions of F and GI respectively, such that 

Definition 5.4. Cm-Compatibility, m > 0. The homeomorphisms 
F and G introduced in (5.4) are termed Cm-compatible if X n Y = 0, 
or if the “transition” homeomorphism 

A = €-lop: P-+ O (onto 0) (5.6) 

is a Cm-diff. 
We shall prove the following “compatibility” lemma. 

Lemma 5.1. Let the topological n-manifold r, be a subspace of E,, 
which is the carrier of a regular Cm-manifold M ,  in E,  , 0 < n 9 I ,  and 
let F and G of (5.4) be presentations in 9 M n  of coordinate domains X 
and Y of M ,  . 

Then F and G are Cm-compatible. 
If X n Y = 0, there is nothing to prove. 
If X n Y # 0, we refer to the “transition” homeomorphism 

PI -+A(PI) defined in (5.6) (assuming that r, = 1 M ,  I). Subject to 
the relation u = A(w), one has G(u) = F(v) for D E P, or more 
explicitly 

G,(u) = F,(D), i = 1 ,..., r ;  D E P. (5.7) 

We shall show that both X and its inverse are of class Cm, thereby 
implying that X is a Cm-diff of P onto 0 (Definition 1.1). 
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If w0 is given in p, the point uo = A(wo) is in 0. Since G is a Cm- 
embedding in E, , there is a set w of n of the integers 1, ..., r such 
that the n mappings 

u+G,,(u), PEW, U E  U, (5.8) 

have a nonvanishing Jacobian Jo at u = uo. 
Now the n equations 

GJu) = F,,(w), p E w, w E P, u E O, (5.9) 

with w prescribed in p, have the solution u = h(w) with uo = h(wo) 
as an initial solution. Since the Jacobian Jo # 0, it follows from the 
classical implicit function theory that the mapping w + A(.) is of 
class C m  in some neighborhood of w0 in p. Since 00 is arbitrary in P, 
it follows that h is of class Cm on p. 

One shows, similarly, that the homeomorphism h-' of t) onto P 
is of class Cm. The compatibility lemma now follows from Defini- 
tion 1.1. 

The following theorem characterizes a regular Cm-manifold M ,  
in E, in a manner which shows that regular P-manifolds in E, are 
differentiable manifolds in the sense of the general definition in Part 11. 

Theorem 5.1. Let M ,  be a regular Cm-manifold in E, , 0 < n < r, 
and (5.3) a family of presentations in 9 M n  covering I M ,  I. Then 9 M n  
is the ensemble of those presentations (F : V, X )  of open subspaces X of 
I M, I which are Cffl-compatible with each presentation in the giwen 

family (5.3). 
9 M n  is given as the set of all regular Cm-presentations of open 

subspaces of I M ,  I, while I M ,  I is itself given as a topological 
n-space which is a subspace of E, . 

Taking Lemma 5.1 into account, it is sufficient to show that a 
presentation (F : V, X) of an open subspace X of I M ,  I such that F 
is Cm-compatible with each P-presentation of the family (5.3) 
is a regular Cm-presentation of X. 

By hypothesis, for w E V, F(w) is a point 

We must show that F is of class Cm on V, and that the corresponding 
functional matrix (5.2) has the rank n for w E V.  
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Given wo E V, set xO = F(wo). Let (G : U, Y) be a regular Cm- 
presentation of a coordinate domain Y of M, such that xO E Y. Such 
a presentation will be taken from the given family (5.3). In the notation 
of Definition 5.4, with r, = I M, I the transition homeomorphism h 
given by (5.6) is, by hypothesis, a Cm-diff. Moreover, (5.6) implies that 

P = c o x .  (5.10) 

Relation (5.10) shows that F is of class Cm on P and that the functional 
matrix (5.2) is of rank n for w E P. 

Since wo is an arbitrary point of V, it follows that (F : V, X) is a 
regular Cm-presentation of X, thereby establishing Theorem 5.1. 

Covering Countability. A second property of regular Cm-mani- 
folds M, in E , ,  which is postulated in the general definition of 
differentiable manifolds in Part 11, is characterized in Theorem 5.2. 

Theorem 5.2. Corresponding to a regular Cm-manifold M, in E,, 
there always exists a “countable family (5.3)” of presentations in 9 M n  
cowering I M,, I. 

Let w be the set of all positive integers. In the countable ensemble 
of open r-balls in E, with rational radii and centers with rational 
coordinates let (I?,),,, be the subensemble of those r-balls whose 
intersections with I M, I are included in some coordinate domain of 
M ,  . Corresponding to B, , let (F6 : V, , X i )  then be a presentation in 
9 M n  such that X ,  3 B, n I M,, 1. It is clear that the family 

satisfies the theorem. 

Differentiable Monge Presentations. Let E,, be a coordinate n- 
plane in a Euclidean r-space E,, , with 0 < n < I ,  and let w1 ,..., w, be 
the subset of the coordinates x1 ,..., x, of E, which vary on En. A 
continuously differentiable homeomorphism 

w - + F ( w ) :  V - X  (VopeninE,) 
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of V onto a subspace X of E, , such that F-l is the restriction to X 
of the orthogonal projection of E, onto En,  is called a differentiable 
Monge presentation of X .  It is clear that such a presentation is regular. 

Monge Coverings. Let r be a subspace of E, which is a topological 
n-manifold. If r is the carrier of a regular n-manifold M ,  , one sees 
that there exists a family (F)r of differentiable Monge presentations of 
open subsets of r whose union is r. We term (F),  a dzjkntiable 
Monge coveting of r. 

The Differentiability Index m r .  If a presentation (F : V, X) is of 
class Cm, we term m a differentiability index of F. If r admits a differ- 
entiable Monge covering ( F ) r ,  let mr be the minimum of the “differ- 
entiability indices” of presentations F E ( F ) r .  One sees that mr is 
independent of the particular family (F), covering r. Taking account 
of Theorem 5.1, one readily verifies the following theorem: 

Theorem 5.3. If r is a subspace of E, which is a topological n-manifold 
for which a family (F)r of diferentiable Monge presentations covering r 
exists, the following is true: Corresponding to each integer m such that 
1 < m < m r ,  there exists a unique regular Cm-manifold Mirn’ with 
carrier I’. For each such m (F)r is a proper subset of the set of regular 
Cm-presentations in QML?. 

In verifying this theorem, it should be understood that two regular 
Cm-manifolds in E, are identical if and only if they have the same 
carriers and identical sets of regular Cm-presentations. 

If M ,  is a regular Cm-manifold 
in E, and I’, a nonempty open subspace of I M ,  I, then r, is the carrier 
of a unique regular P-manifold in E, , termed a submanifold of M ,  . 
The set of Monge presentations of open subsets of F? is a subset of the 
set of presentations QM,, . These Monge presentations cover r, . 

Let W be a nonempty open 
subset of E, . With 0 < s < r let 

Submanifolds of Regular Manifolds. 

Sources of Regular n-Manifolds in E, . 

x + H , ( x ) :  W - t R ,  j = 1 ,..., s, 
be s real-valued functions of class Cm, m > 0, and let r be the subspace 
of E, of points x E E, such that 

0 = HI(%) = H*(x) = *’*  = H,(x). 
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Set n = r - s. If at each point of I' the functional matrix of the 
s functions Hi has the rank s, the classical theorems of implicit 
function theory imply that I' is a topological n-manifold admitting a 
family (F), of differentiable Monge presentations of open subsets of I' 
whose union is I'. For each m such that 1 < m < mr there then 
exists a unique regular Cm-manifold Mirn) determined, in accord with 
Theorem 5.3, by the family (F), . 

Functions on M,,. Let M ,  be a regular Cm-manifold in E,, 
0 < n \< r.  Let 

P + f ( P ) :  I w 3 I + R  

be a real-valued function on I M ,  1 and ( F  : V, X) a presentation in 
9 M n .  The composite function (for composition in the extended 
sense, see Appendix I) 

w - . ( f ~ F ) ( w ) :  V 4 R  (5.11) 

will be called the representation of f I X in F-coordinates w. The 
representations f E Fare  used as follows to define properties off. 

Definition 5.5a. Diferentiability off on M ,  . We say that f is of 
class Cu on M, , if for each presentation (F : V, X) in 9 M f l  , f 6 F 
is of class 0. 

Definition 5.5b. Critical points off on M ,  . Suppose that f is of 
class 0, p > 0, on M, . A point po in a coordinate domain X of a 
presentation (F : V, X) in QM, is termed a critical point off if and 
only if uo = F-l( po)  is a critical point off 6 F on V. 

Definition 5 . 5 ~ .  Nullity and Index of a Critical Point. Suppose 
that M ,  and f are of class Cm, m > 1, and that Po E M ,  is a critical 
point off. Let ( F  : U, X) be a presentation in 9 M f l  such that p, E X. 
Then p0 is said to have the nullity v and the index k if and only if the 
critical point uo = P I (  po)  off 5 F has the nullity v and index k. 

That the properties off  
and of its critical points characterized in Definition 5.5 are independent 

Invariance of the above Properties off. 
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of the representations f 6 F used to characterize these properties 
follows from Lemma 5.2 and Lemma 4.2. 

The critical point p ,  is termed N D  ;f its nullity is 2ero. 

Lemma 5.2. Given presentations F and G in BM,  of coordinate 
domains in M ,  with a nonempty intersection X ,  let P and be restrictions 
of F and G, respectively, which present X .  Then the “transition” homeo- 
morphism onto 

h = €-I 0 # : F-’(X) + G-l(X) (5.12) 

[see (5.6)] is a P - d z T  in the sense of 5 1. 

and G. 
Proof. 

To apply Lemma 5.2, note that 

That h is a Cm-difT follows from the Cm-compatibility of F 

€ o h  = P  (5.13) 

as a consequence of (5.12), so that i f f  is any real-valued function 
mapping I M ,  I into R, 

(fs €) o h  = (fsP). (5.14) 

This relation between the “representation” f s e and f aP of f, 
taken with Lemma 4.2, implies the “invariance” of the properties off 
and its critical points characterized in Definition 5.5. 

Induced Mappings of Regular Manifolds. Diffs of abstract differ- 
entiable manifolds onto other differentiable manifolds will be studied 
in Part 11. The mappings of regular manifolds M, in E, onto other 
such manifolds in E, which occur most naturally are those induced by 
diffs of open sets of E, onto open sets of E, . The following theorem is 
concerned with such an “induced” mapping: 

Theorem 5.4. Let M, be a regular Cm-manifold in E, , 0 < n < r ,  

x+&) : Z +  W (Zopen in E,) (5.15) 
and 

a Cm-dzT of Z onto an open subset W of E, . 
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If I M ,  I C 2, then ?(I M ,  I) is the carrier of a regular Cm-manifold 
N ,  in E,. whose presentations (G : V,  Y )  correspond biuniquely to the 
presentations in B M ,  , with (F  : V,  X )  in B M ,  corresponding to the 
presentation 

(G : V,  Y) = (p 6F : V ,  p(X)) (5.16) 

in 9 N n  . Thus G-l 0 (V 5 F )  is the identity mapping of V onto V. 
By hypothesis the functional matrix of F has the maximum rank n 

at each point w E V. That the functional matrix of G = q~ 6 F has 
the rank n follows from the matrix equality 

where x = F(w) = F(w, ,..., w,) and G = (G, ,..., G,.),F = (F, ,..., F,.), 
V = (Vl 9 . . * ,  V J .  

The mapping of presentations, 

(F : v, X)+(g ,  a F :  V,  p(X)) : 9 M n - + 9 N n ,  

is clearly biunique. It is onto the ensemble of Cm-presentations in N, , 
since the mapping of presentations, 

(G:  V,  Y)+(y - 'GG:  V , ~ I - ~ ( Y ) ) : ~ N , , - + ~ M , ,  

is its inverse. 
Thus Theorem 5.4 is true. 
We say that the manifold N, of Theorem 5.4 is the image cp(M,) 

Theorem 5.4 is supplemented by the following theorem. 
of M ,  under p 

Theorem 5.5. On the manifolds M ,  and N,  = tp(M,) of Theorem 5.4 
let real-valued functions f and g ,  respectively, be given with 

f(P) = g(q); P E M n  ; !?EN,, ; !? = dP>. (5.17) 

Then f is of class C* on M ,  if and only i f g  is of class C2 on N ,  , 
and iff and g are of class Ca, the critical points off and g correspond 
biuniquely under tp, with preserwation of nullity and indices. 

Let (F  : V, X) be a presentation B M ,  and (G : V, Y) the corre- 
sponding presentation (5.16) in BN, . 
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Then f I X and g I Y are, respectively, of class Ca by definition if 
and only iff 6 F and g 5 G are of class Ca on V.  If $ is the restriction 
of y to X then, by definition of g and G 

g 6 G = (f s I)-l) 0 (I) 0 F) = f 6 F 

so that f I X is of class Ca if and only ifg I Y is of class C2. 
By definition the critical points off I X and g I Y are, respectively, 

the F and G images of critical points w0 off 6 F and g 6 G on V ,  with 
nullity and indices determined by f 8 P and g 6 G. Since (5.18) holds 
and since G(wo) is the image of F(wo) under y ,  the lemma follows. 

(on V) ,  (5.18) 

EXERCICE 5.1. 

Let rn be a topological n-manifold and 

(F1: Ul , Xl) and (Fa : U s ,  X,)  (U,  , Ua open in En) (5.19) 

be presentations of intersecting open subsets XI and X ,  of l", . If 
X, n Xa # 0, a necessary and sufficient condition (6)  that F, and 
FB be Cm-compatible is as follows: 

( I )  Each point p ,  E XI n Xa shall admit an open neighborhood N 
relatiwe to X ,  n X ,  such that the restrictions 

(gl : Ol , N )  and ($2 : Oa, N ) ,  (5.20) 

respectiwely, of the presentations (5.19) be presentations of N which are 
Cm-compatible. 

Making use of Definition 5.4 of Cm-compatibility, 
verify the following local characterization of Cm-compatibility. 
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The $ 6  Volume Ratio Method." Historical Review. Theorems 
and lemmas preceding Lemma 6.3 are stated without proof. They are 
presented to indicate the development of the theory from 1926 to 1932, 
the year Morse's Colloquium Lectures [13] were given. 

The Role of Null Jordan Content. A bounded set A in En has a 
null Jordan content if, corresponding to a prescribed positive constant e, 
there exists a finite set of n-rectangles in En whose union includes A 
and whose total volume is less than e. A set of null Jordan content has 
a null Lebesgue measure mA = 0, but the converse is not true. A set 
of null Jordan content is nowhere dense in En , a property not implied 
by null Lebesgue measure. The union 

A = A , u A , u * . .  (6.1) 

of a countable ensemble of bounded disjoint sets each with null 
Jordan content has a Lebesgue measure mA = 0. However, to say 
that mA = 0 does not imply that each set A, has a null Jordan 
content. 

The first theorem in the 1927 abstract (Morse [2], p. 814) concerned 
an arbitrary compact regular manifold Zn of class C2 in En+, and was 
stated as follows. 

Theorem 6.0. There exist on Zn infinitely many ND functions of 

A first proof of this theorem in 1926 was by way of an elementary 
principle which we shall term the gradient lemma. In this lemma we 

39 

class C2. 
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are concerned with an open subset X of En and a closed n-cube Q 
included in X. There is given a real-valued function f of class Ca 
defined on X. The Hessian H(x)  off at a point x E X is the Jacobian 
at x of grad f. That is, 

We shall refer to points a = (a, ,..., a,) in a Euclidean space A, . The 
“gradient lemma” follows. 

Lemma 6.0. Under the preceding conditions on f the subset 

{a E A, I (gradf)(x) = a for some x EQ with H(x)  = 0) (6.3) 

of A, has the Jordan content 2ero in A , .  

The following lemma was recognized as an immediate consequence 
of Lemma 6.0: 

Lemma 6.1. Under the preceding conditions on f the subset 

{a E A, I (gradf)(x) = a for some x E X with H(x)  = 0) (6.4) 

of A, has the Lebesgue measure zero in En . 
Lemma 6.1 is obviously equivalent to the following: 

Lemma 6.2. Under the preceding conditions on f, for almost all 
values of a E A, the mapping 

x~f(x)-(~lxl+...+~x,):X~R (6.5) 
is ND. 

Lemma 6.2 led at once to a proof of Theorem 6.0. However, the 
truth of Theorem 6.0 was confirmed around 1930 in another way. 
The Colloquium Lectures by Morse [12], given in 1932, contained 
a general theorem, Theorem 14.1, p. 243, on focal points of extremals 
transverse to a manifold. This theorem has the following special 
corollary: 
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Theorem 6.1. For 0 < r < n let M,  be a regular Ce-manifold in En . 
For almost allpoints a E En - M, the Ca-function 

X + f ( 4  = I I X - - a l l ,  X E W ’  (6.6) 

is ND on M,  , 
Theorem 6.1 will be extended in 5 15 without reference to varia- 

tional theory. It implies Theorem 6.0. 

Although no explicit proof of the gradient lemma was published 
by Morse, a proof of an analogous lemma on conjugate points (Lemma 
16.1 by Morse [3], p. 625) gives, except for trivial changes of termi- 
nology, a proof of Lemma 6.0. The essence of the proof, both in the 
case of conjugate points and in the case of ordinary critical points, is 
the use of infinitesimal “volume ratios.” 

In 1931 it was noted that the proof of the gradient lemma by the use 
of “volume ratios” led, with at most trivial changes, to another 
theorem in which grad f and the Jacobian of grad f were replaced by f 
and the Jacobian off. We shall formulate this modification of Lemma 
6.0 as Lemma 6.3. Lemma 6.3 concerns a C1-mapping, 

x +F(x) = (F1(X)’--*’Fn(X)) (6.7) 

of an open subset X of En into En . The points x E X at which 

are called singular points of F. 

Lemma 6.3. If the open subset X of En includes a closed unit n-cube 
Q and i f  u is the subset of singular points of F in Q, then F(u) has the 
Jordan content zero in En . 

It  was found very recently that a lemma similar to Lemma 6.3 was 
proved by Knopp and Schmidt [l] in 1926. A proof in case n = 2 
was regarded as sufficient. Around 1932 proof of Lemma 6.3 by the 
volume ratio method was suggested to Sard as a starting point of a 
Harvard thesis on measure aspects of general differentiable mappings 
of open subsets En into Em. Sard’s results were published in 1942 
(see Sard [l]). 
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We shall resume our exposition by giving a detailed proof of Lemma 
6.3 by the “volume ratio method.” 

Proof of Lemma 6.3. For each integer Y > 0 let Q be divided by 
a network of congruent nonoverlapping n-cubes with edges of 
length l/r. If 2, is such a cube and p the length of its diagonal, its 
volume is found to be 

We shall apply Corollary 2.2, setting K = Q in Corollary 2.2. Let z,* 
be any one of the cubes 2; which contains a point u E Q. Since j ( u )  = 0, 
by hypothesis, there is at least one unit vector A = (A, ,..., A,) such 
that u is a critical point of the dot product A * F. 

Let S, be the system of coordinate xi-axes. Let S,, be a system 
of coordinate y,-axes obtained from S, by a translation of the origin 
in S, to the point F(u), followed by a rotation of the %,-axis into 
the y,-axis, taken as the direction (A, ,..., &) in S, , 

Suppose that the point F(x) with its coordinates (F,(x), ..., F,(x)) 
in S, is represented in S, by the point ( y, ,..., yn). If x E z,*, the 
orthogonal projection of the vector F(x) - F(u) onto a sensed straight 
line with the direction X has an algebraic value y, = A * (F(x) - F(u)) 
such that, in terms of Q of Corollary 2.2 and in accord with (2.20) 
and (2.25), I y, I < pdp) .  Recall that the mapping t --+ ~ ( t )  depends 
only on the values of F in an open convex neighborhood of Q and 
not upon the choice of u E u. 

The coordinate yc ,  i = I ,  ..., n - 1, in S,, of the point F(x)  is 
similarly obtained by projecting the vector F(x) - F(u) orthogonally 
onto the y,-axis. If the direction of the yt-axis has the components 
a1 ,..., an relative to S, , then 

yr  = a - (F(x)  - F(u)), i = 1 ,..., n - 1, (6.10) 

and by virtue of (2.21) I yr I < pH,, where H ,  is a constant inde- 
pendent of the choice of u E a. 

The imageF(x,*) in E, of the cube 2,* is thus contained in a rectangle 
w,, with center at the point F(u) in S, and with volume 
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Recall that q~ is continuous and that rp(0) = 0. A comparison of (6.11) 
and (6.9) shows that the “aolume ratio,” V(w,) to V(z,*), tends to zero 
as p tends to zero, independently of the choice of u E B. 

The sum of the volumes of the n-cubes 2: which contain points 
u E u is at most the volume 1 of Q. The union of the corresponding 
rectangles w, covers F(o). Let e > 0 be prescribed. I t  follows from 
(6.11) that if r is sufficiently large, F(a) is coverable by a finite set of 
rectangles w, whose total volume is less than e. HenceF(u) has null 
Jordan content. 

Thus Lemma 6.3 is true. 
We state the following extension of Lemma 6.3: 

Extended Lemma 6.3. Let x --f F(x)  : X ---t En be a C1-mapping 

If u is the subset of singular points of F in X, and Y any relatively 
of an open subset X of En into R, . 
compact subset of X ,  then 

Jordan content F(a n Y) = 0. 

The proof of the lemma depends upon the fact that the relatively 
compact subset Y of X can be covered by a finite set of n-cubes each 
included in X (see Appendix I). 

ND Functions in Prescribed Families. Lemma 6.2 does not 
guarantee the existence of a ND function in a prescribed family of 
differentiable functions. Iff is a function of the family, there may be no 
functionf‘ of the form 

x - + f ( x )  - ( w 1  + ... + an.%) = f ’ ( x )  

other than f in the given family. The following family of electrostatic 
potentials f has this property: 

Electrostatic Potentials. In E3 let there be given p > 0 points 

p ,  ... , p ( u )  (6.12) 

and v points 
q(1), ..., p, (6.13) 
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all distinct. Let x E E, be distinct from each of the points (6.12) and 
(6.13). Let r), ,..., r),, be positive numbers and 6,  ,..., 5, negative 
numbers representing the magnitudes of electrostatic charges at the 
respective points (6.12) and (6.13). Set 

ri = I1  per' - x II, PI = II q"' - X II; 
i = 1, ...,p; j = 1, ..., v. (6.14) 

For fixed points (6.12) and (6.13) and corresponding charges the 
function+ 

x+vV,(X)=7)1+...+I)l+fl+...+ v (6.15) 
r l  ru P1 P v  

is the associated electrostatic potential. 
The parameters of this family are the points ~ ( ~ 1 ,  q(5) and the 

corresponding charges. The question arises: For fixed charges and 
fixed integers p and v, are ND potentials of the form (6.15) dense 
among all such potentials ? We shall answer this question affirmatively 
by proving the following theorem: 

Theorem 6.2.* If the p + v charges are fixed, as well as the points 
pCi) and q"), excepting one of these points, say pcl) = (a, , a, , a,), then 
the resulting potential 

X +  v(~1, xg 9 ~3 ; a, 3 %) (6.16) 

is ND for almost all points (al , a, , a,) in E, . 
We shall state a general theorem, Theorem 6.3, that implies 

Theorem 6.2. 

Notation for Theorem 6.3. Let A, be a Euclidean space of points 
a = (a, ,..., a,). Let W be an open nonempty subset of the product 
space En x A, . Let there be given a C2-mapping 

(x, a) -+ U(X, a)  : W+ R. (6.17) 

t The critical points of V ,  are the points of equilibrium in the corresponding 
field of electrostatic forces. In $3.2 of Part IV relations between these points of equilib- 
rium will be obtained whenever Vw is ND. 

8 One could prove this theorem by having recourse to the general theory of real 
analytic functions. However, such recourse would not be possible for similar families 
of nonanalpic functions. 
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Given a subset X of En x A,, let prl X and pr, X denote the 

The Partial Mappings Ua. For each point a E pr, W we introduce 

orthogonal projections of X into En and A,, respectively. 

the open subset 
W(a) = {x E En I (x, a) E W }  

of prl Wand the partial mapping 

x-+ U(x, a)  = Ua(x) : W(a)-F R. 

We regard U as defining a family of mappings Ua. 

(x ,  a) E W such that 

(6.18) 

The x-Critical Ensemble D of U. Let D denote the set of points 

0 = UJx,  a )  = U&, a)  = .-. = U&, a). 

A point ( x ,  a) is in 9 if and only if x E En is a critical point of the 
function Ua. The set D may be empty. 

The x-Critical Matrix H(U). Setting Us, = U, for i = l,.., n, 
let the n by n + m functional matrix of the n functions Ul ,..., U,, 
with respect to the n + m variables x1 ,..., x, ; a, ,..., a,,, , evaluated 
at (x, a) be denoted by 

I1 U d x ,  411 = W W x ,  a). (6.19) 

We call H( U )  the x-critical matrix of U. 

Theorem 6.3. Let W be an open nonempty subset of En x A,,, and 

(x, a)  -F U(x, a) : W-F R (6.20) 

a C2-mapping such that for each pair (x ,  a) in the "x-critical ensemble" 
D of u 

rank 1) Uij (x ,  a)\l = n. (6.21) 

Then for almost all a E pr, W, the partial mappings 

x - F  U(x, a) = U"(x) 

are N D .  
(6.22) 
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Theorem 6.3 will be established in 8 7, together with Theorem 6.5. 
Theorems 6.3 and 6.5 will be given extensions in Part 11. In these 
extensions the product space En x A ,  will be replaced by the product 
M ,  x A,  of the above Euclidean space A, and an abstract differen- 
tiable manifold M, . In the remainder of this section we shall clarify 
Theorem 6.3 by giving three applications. 

First Application. Proof of Lemma 6.2. One sets 

for each a E A , .  For such a U the last n columns of the n x 2n 
matrix of (6.21) have the rank n, so that (6.21) holds. In this application 
w = X x A,  and pa W = A, . Lemma 6.2 follows from Theorem 6.3. 

Second Application. Proof of Theorem 6.2. We apply Theorem 6.3 
taking n = m = 3, identifying U of Theorem 6.3 with V of Theorem 
6.2. One finds that 

A simple calculation shows that the 3-square determinant 

for x distinct from the charged points. The 3 x 6 matrix in (6.21) 
thus has the rank 3. Theorem 6.2 accordingly follows from Theo- 
rem 6.3. 

Third Application. ND boundary values. Let Z be a regular 
n-manifold in En+, of class 0, p > 1, bounding a compact subset 2 
of En+, . A real-valued function f of class Cm, p > m > 1, defined 
on an open neighborhood D, of 2, will be termed admissible relative 
to 2 on Z iff I 2 is ND and iff is ordinary at each point of C. 

The deepest global study of critical points off I 2 is possible only 
when f I Z is ND (see 10). That this is the general case is shown 
by the following theorem: 
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Theorem 6.4. I f f  is admissible relative to 2 and if et is a suficiently 
small positive constant, then for almost all points a = (a, ,..., a,,,) 
in En+, such that 11 a I( < el ,the function 

(6.24) x + f ( x )  - ap,  = ga(x), x E D, , 

summing with respect to j has the following properties: 

The critical points of ga I 2 are ND and may be made to corre- 
spond biuniquely to those o f f  I Z with preservation of index, and so as to 
tend uniformly to those o f f  I 2 as 1 1  a 11 tends to zero. 

(i) 

(ii) 

Proof of (i). For fixed points a the critical points of g" are solutions 
x E En+, of the n + 1 equations aga/ax, = -.- = ag"/i3xn+, = 0. 
Now, ga = f when a = 0. By hypothesis 

The function ga 1 Z is ND. 

(4 f Q D(gla,...,g:+l) 
D(x, I . . .  , x,,,) 

when 1 1  a 1 1  = 0 and x is a critical point off I 2. Statement (i) follows 
on making use of the principle: the index of a ND quadratic form Q 
with coefficients aij remains constant as the coefficients ail vary 
continuously provided the determinant I atj 1 remains non-null 
(cf. Theorem 3.4). 

Proof of (ii). Let (F: V ,  X) be a presentation of a coordinate 
domain of Z. Then g" I X has the representation 

f4 - U(u, a )  = m u ) )  - a,F,(u), 

summing with respect to j, for j on the range I ,  ..., n + 1 and 
(u ,  a )  E V x En+, . We shall apply Theorem 6.3, identifying 
(ul ,..., u,) with (x, ,..., xn) of Theorem 6.3. The "u-critical matrix" 
(1 Uir(u, a)ll of (6.21) is then n by 2n + 1 and has as submatrix the 
functional matrix ofF, ,..., F,+, with respect to the variables u1 ,..., u, , 
and so has rank n, since the presentation (F : V ,  X) is regular. Hence 
by Theorem 6.3 ga I X is ND for almost all points a E En+, . 

Now, Z can be covered by a finite set of coordinate domains X. 
Hence (ii) and Theorem 6.4 follow. 

The following theorem is needed in $ 16, where its counterpart for 
an abstract differentiable manifold M, is established. 
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Theorem 6.4‘. Let Z be a regular n-manifold of class C@, p > 1, 
in E, , 0 < n < r. There exist r real-valued functions 

P - + w ( P )  : 2 - R  

of class Cu on Z such that the following is true: If p + f ( p )  is a real- 
valuedfunction of class P, p > m > 1, on Z, the function 

r 

P - f ( P )  + c ar%(P) = f W  (6.25) 
j-1 

is ND on Z f i x  almost allpoints (al ,..., a,) E E, . 
Proof. We take tpj as the restriction xj I Z, where x1 ,..., x, are 

coordinates in E,. The proof is completed by using Theorem 6.3 
as in the proof of Theorem 6.qii). If (F : V, X) is one a of countable 
set of presentations covering Z,,f” I X has a representation 

U(x, 0)  = fo(F(u)), (x, 0 )  E X x 8, 

to which Theorem 6.3 applies, showing that f a I X is ND for almost 
all points a E E, . Since the union of a countable set of subsets of E, 
of zero measure is a set of zero measure, Theorem 6.4‘ follows. 

The proof in 5 7 of Theorem 6.3 will include a proof of Theorem 
6.5 below. Theorem 6.5 implies Theorem 6.3, as we shall see in 5 7. 

Theorem 6.5. If under the hypotheses of Theorem 6.3 W, is an 
arbitrary relatively compact subset of W of Theorem 6.3, the subsets of 
points a E prs W, such that the partial mappings Ua fail to be N D  have 
a Jordan content in A, which is xero. 

In particular, if W in Theorem 6.3 is a relatively compact subset of 
En x A,,, such that U of Theorem 6.3 admits an extension of class 
C2 over an open neighborhood of w i n  En x A, , then the conclusion 
of Theorem 6.3 can be given the form: the partial maps Ua which fail 
to be ND have parameters a in a set of Jordan content zero. This 
exceptional set is nowhere dense in A,,, . 

Historical Note. In  preparing “Functional topology and abstract 
variational theory,” published in France in 1939, the following 
conjecture was made by Morse around 1932: 
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A C*-mapping of an open subset of En, n > 1, into El for which 
r = n is constant on any connected subset u of its critical set. 

This theorem was not needed in treating the ND case, nor in the 
abstract theory, but was desirable in treating degenerate mappings 
from E, to Em when n > m. 

The problem was made known to interested graduate students and 
colleagues at Harvard from 1932 on. A first response was the counter- 
example of Whitney [!], which showed that f need not be constant 
on u if I < n. The main problem remained unsolved until M. Morse 
communicated it to A. Morse at Princeton in 1938. A. Morse [l] 
verified the conjecture. 

EXERCISE 6.1. Suppose that in Theorem 6.3 n = 1, m = 2, 
W = El x A,, and 

U(x, a)  = &(xl - l)s + a,%, - a2xl - x1 , (x, a) E El x A , .  

Verify the following: The set rR is the quadric in E8 = El x A, on 
which 

U& a) = (XI - l), + a12 - a2 - 1 = 0. 

The matrix condition (6.21) is satisfied. The subsets 8* of points 
(x, a) E SZ such that x is a degenerate x-critical point of U' is the plane 
hyperbola on which x, = I, a,, - a: = 1, and meas pr, 8* = 0. 
Theorem 6.5 holds for each open relatively compact subset W,, of W. 



§ 7  

NONDEGENERACY: THEOREM 7.1 

We shall show that Theorems 6.3 and 6.5 are implied by the follow- 
ing more geometric theorem. This theorem is of general character, 
with other applications. Following a statement of the theorem an 
essential geometric interpretation of it will be given. 

Theorem 7.1. Let n C1-mappings 

(x,a)+U,(x,a): W-R, i = l ,  ..., n, (7.1) 

of an open subset W of E, x A,, be given, and let sd be the subset of 
points (x ,  a )  E W such that 

( 7 4  

Suppose that at each point (x ,  a) E Sa the n by n + m functional matrix of 
U, ,..., U, has the maximum rank n. Then the subset sd* of points 
(x ,  a) E sd at which 

Ul(x, a)  = U2(x, a)  = = Un(x, a) = 0. 

(termed x-singular points of Sa) has the following properties [of which 
(7) implies ([)I: 

There exists an open neighborhood Np in W of each point 
p E W so small that 

(7.4) 

(q)  

Jordan content pr,(N, n sZ*) = 0. 

(5) The meas pra Sa* = 0 in A, , 
50 
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Geometric Interpretation of Theorem 7.1. The set 8 can be regarded 
as the carrier of a regular m-manifold in the Euclidean (n + m)-space 
En x A, of rectangular coordinates x1 ,..., x, ; a, ,..., a,, . We denote 
this manifold as well as its carrier by Q. 

We regard En and A, as coordinate n- and m-planes of En x A,. 
On En , a, = = a, = 0, while on A,, x, = ..- = x, = 0. A point 
(xo, ao) of Q is in Q* if and only if there is at least one ray tangent to Q 
at (xo, ao) and orthogonal to the coordinate m-plane, A,. 

Both the hypotheses and conclusions of 
Theorem 7.1 will be unaffected if the x,-axes are permuted among 
themselves and the aj-axes are similarly permuted. It is understood 
that under any such change of coordinates the functions U, ,..., Un 
are to remain invariant in value. We thus understand that the 
manifold 52, as well as its subset Q*, remains invariant. 

Statement (7)  of Theorem 7.1, and not ([), is the principal con- 
clusion of Theorem 7.1. Statement (7)  implies ([) and has other 
implications of importance for us. 

Choice of xi and ar Axes, 

Statement (A) will now be verified: 

(A) 

Proof of (A). 

Theorem 7.1 (7) implies Theorem 7.1 (5). 

Granting the truth of (q), there exists a sequence 
yl , 7, ,... of open subsets of Wcovering Wand such that the following 
is true: For each positive integer k the set w k  = pr,(qk n Q*) has a 
null measure mwk in A, . Moreover, 

pr2 B* C U,n;l,n pr,(r], n a*), (7.5) 

since the sets qk cover W. Hence 

so that ([) is true. 

Proof of Theorem 7.1 (q). We begin the proof of (9) by verifying 
the truth of (7) in the trivial case in which the point p E W is not in 
Q*. Since 52* is a closed subset of W, there exists an open neighbor- 
hood N p  o f p  in W such that Np n Q* = 0 wheneverp$Q*. In 
this case (7)  is accordingly true. 
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The Casep = (xo, aO) E 9*. In this case there exist by hypothesis 
integers r 2 0 and s > 0 such that r + s = n and the Jacobian of 
U, ,..., Un with respect to r of the coordinates x, ,..., x, and with 
respect to s of the coordinates a, ,..., a,,, does not vanish at (9, a"). 
If use is made of our freedom to renumber the coordinates xi and the 
coordinates aj , we can suppose that 

As a special case r can vanish and s = n. 

A Monge Representation of IR near (xo, a")). By hypothesis 
Ui(xO, ao) = 0 for i = l,.,., n, and (7.7) holds. The classical implicit 
function theorem accordingly implies the existence of solutions (x, a)  
of the equations (7.2) near (xo, a"). The notation involved in presenting 
the implicit function theorem requires definition. 

Of the coordinates x1 ,..., x, ; a,  ,..., a,,, Notation for Lemma 7.1 
of a point (x, a)  E En x A,,, the subset 

xl ,  ..., x , ; u , , . , . , a , ,  Y + s  = n ,  s > O ,  (7.8) 

has appeared in (7.7). There remains the complementary set 

XIfl ,..., x, ; a,,, ,..., am , 0 < < n, (7.9) 

of m coordinates of (x, a).  Let 17 denote the coordinate m-plane of 
En x A,, on which the coordinates (7.9) are variable and the coor- 
dinates (7.8) vanish. Let 7r project En x A, orthogonally onto 17, 
so that 

4% a) = (x,+1,*.., xn ; a,,, ,..**a,) = 2, (7.10) 

introducing 2. 

continuity considerations, gives the following: 
The classical implicit function theorem, supplemented in (i) by 

Lemma 7.1. Let (xo, ao) E IR* be such that (7.7) holds. Corresponding 
to any suficiently small open nekhborhood o of 7r(xo, ao) relative to the 
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coordinate m-plane l7 there exists an +neighborhood N(E)  in W of 
(xo, aO) so small that the following are true: 

(i) a(N(r))  C w and 

D(ul )...’ un) (S, a) .# 0, (5, a) EN(€) ,  (7 .11 )  

The m-manifold Q includes an open subset 0, which projects 
homeomorphically under a onto w and has a Monge representation on w 
of class C1 giving the inverse of w I Q, , 

D(x1 i...) X r ;  a1 ’-*-i as) 

(ii) 

(iii) N(e) n 8 = N(e) n Q, . 
By virtue of (ii) the points ( x ,  a )  E Q, have coordinates ( x ,  a), 

uniquely determined by their projections, 

(7 .12 )  m(xi a)  = (xr+l t . . * i  xn ; as+, i***i am) = 2 

in w and by equations 

x1 = V l ( 4  a1 = $1(4 
2 E w  (7 .13 )  

i = &z) 6 s  = i s ( . )  
where z is arbitrary in w and the functions v1 ,..., v,. and $1 ,..., #8 are 
of class C1 on w. 

Two additional lemmas are required to establish (7) of Theorem 7.1. 
In Lemma 7.2 use is made of a neighborhood N(r)  of a point (xo, ao), 
as given in Q*, with N(r)  conditioned as in Lemma 7.1. Reference is 
made to the Monge representation of N(e) n Q, given by (7.13). 
Recall that r + s = n and 0 < r < n. 

Lemma 7.2. A point (3, a) E N(E) n Q such that 

(7 .14 )  

is not in Q*, the set of “x-singular” points of LR. 

and 
Suppose the lemma false and that (S, a) E .(a*, that is, that (5, a) E Q 

(7 .15 )  
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There then exists a ray h tangent to Q at (5, a) and orthogonal to the 
coordinate m-plane A, . Let g be a regular arc, 

t + ( x , ( t )  ,..., xn(t); ~ l ( t ) ,  ..., ~ ~ ( t ) ) ,  -d < t < d ,  (7.16) 

in N(E)  n 8 meeting the point (2, a) when t = 0, and having the 
direction of h when t = 0. Since h is orthogonal to A,, 

d(0) = a;(O) = ... = aL(0) = 0. (7.17) 

The coordinates of points on g satisfy the relations (7.13) for each 
t E ( - d ,  d ) .  Hence 

Ix;+l(o)I + I x;+dO)l + * * *  + I x m I  # 0. (7.18) 

Otherwise (7.17) and (7.13) would imply that 

I x;(o)I + I x;(o)I + .*. + I xX0)l = 0, 0 < -= n, 

and g would not be regular. 
According to (7.13) for -d < t < d 

adt )  = &(xr+l(t),***, xn(t); a8+1(t),*-*, am(t)), = l,*-*, s. 

We infer that when t = 0, z = +, a), and (7.17) holds 

o = -  x;+,(o) + ... + - xl(O), 
ax,+, axn 

k = 1, ..., s. (7.19) 

The relations (7.19) are impossible when (7.18) and (7.14) hold. 
We infer the truth of the lemma. 
Lemma 7.2 should be paired with Lemma 7.3: 

Lemma 7.3. Let N(c) be a neighborhood relative to W of the above 
point (xo, aO) with N(c) conditioned as in Lemma 7.1, and let e be a 
constant such that 0 < e < E .  

Then the subset Z(e)  ofpoints (x, a)  E N(e)  n Q such that 

has the property that in A ,  

Jordan content pr, Z(e) = 0. 

(7.20) 

(7.21) 
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Proof of Lemma 7.3. Set Y(e) =: N(e) n 9. Then Z(e) C Y(e). 
We shall define a C1-mapping 

z -+ @(z) : r ( Y ( e ) )  -+ A, 

onto pr2 Y(e), recalling that r(Y(e)) is an open neighborhood in I7 
of r (xo ,  ao) by virtue of Lemma 7.1 (i) and (ii). We shall apply the 
Extended Lemma 6.3 to 8. Set Y(E> = N ( E )  n 9. 

The Mapping 8. Under 8 a point 

shall go into the point 

In the m-plane I7 the domain n( Y(e)) is an open relatively compact 
subset of ~ ( Y ( E ) ) .  Moreover, 0 admits a C1-extension over ~ ( Y ( E ) )  
defined by (7.23). The Jacobian of 0, ,..., 8, with respect to the 
m coordinates of z reduces to 

by virtue of (7.23), and vanishes by hypothesis when 2 = n(x, a)  
and (x, a)  E Z(e). It  follows from Extended Lemma 6.3 that 

Jordan content @(rZ(e) )  = 0. (7.24) 

Relation (7.21) will follow once we have verified the equation 

Now, (7.25) is true since both sides of (7.25) are equal to (a ,  ,..., aJ. 
The left side of (7.25) is equal to (a, ,..., an,) by virtue of the definition 
of pr2 . The right side of (7.25) is equal to (a, ,..., a,) by virtue of (7.23) 
and the relations of (7.13) 
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[when 2 = n(x, a)  and (x ,  a) E Y(e) ] .  From (7.25) we infer that 

Q(r(Z(4))  = Prs z(4, 
[since Z(e) C Y(e)]  so that (7.21) follows from (7.24). 

Thus Lemma 7.3 is true. 

Completion of Proof of (7). We have seen that (q) is true if p 4 sd*. 
If p = (.”, ao) E sd*, let N p  = N(e),  where N(e)  is conditioned as in 
Lemma 7.3. According to Lemma 7.2, Np n sd* C the subset Z(e) of 
N(e) n sd introduced in Lemma 7.3. Lemma 7.3 implies that (7.4) 
holds. 

This completes the proof of Theorem 7.1. 

Implications of Theorem 7.1. A theorem which is equivalent to 
Theorem 7.1 (q) is equivalent to Theorem 7.1. Such a theorem follows. 

Theorem 7.2. If, under the hypotheses of Theorem 7.1, W, is an 
arbitrary, open, relatively compact subset of W, then 

Jordan content prs( W, n Q*) = 0, (7.26) 

where sd* is the set of “x-singular” points of 8. 

Theorem 7.2 implies Theorem 7.1(q), since for each p E W there 
clearly exists a relatively compact open neighborhood of p E W. 

Conversely, Theorem 7.1 (q)  implies Theorem 7.2, since C1 W, 
can be covered by a finite ensemble of neighborhoods N,, C W for 
each of which (7.4) holds, thereby implying (7.26). 

Theorem 6.3 as Corollary of Theorem 7.1. To infer Theorem 6.3 
from ( 5 )  of Theorem 7.1, we first identify the domain W of U of 
Theorem 6.3 with the domain W of the functions Ul ,..., U, of 
Theorem 7.1. We then identify the functions U, ,..., U, of Theorem 
7.1 with the partial derivatives Uz, ,..., Uzn of Theorem 6.3. The 
set sd of points (x ,  a) in W of Theorem 7.1 at which the functions 
Ul ,..., U, vanish is identified with the set sd of points at which the 
partial derivatives Uz, ,..., Uzn vanish. Theorems 6.3 and 7.1 have 
the respective hypotheses that the functional matrices of the functions 
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Ul ,..., U, and Ux, ,..., Uxn have rank n at points of their respective 8. 
It follows from Theorem 7.1 (t;) that for almost all a E pra Sa of 
Theorem 6.3, the Hessian of U with respect to the variables x1 ,..., x,, 
fails to vanish, implying Theorem 6.3. 

The Meaning of 8*. In the context of Theorem 7.1 Sa* is the subset 
of x-singular points of the regular manifold Q, while in the context of 
Theorem 6.3 Sa* is the subset of Sa of degenerate x-critical points of U. 

One makes the identi- 
fications of the preceding paragraphs and in addition identifies the 
relatively compact sets W, of Theorem 6.5 and Theorem 7.2. It follows 
from (7.26) that the parameters a of partial mappings x --* Ua(x) 
which fail to be ND are contained in a subset of pra W, of A, of 
Jordan content 0, implying Theorem 6.5. 

Theorem 6.5 as Corollary of Theorem 7.2. 



1-NORMAL v-COORDINATES 

The Family of Normah vp to Z. Let Z be a regular compact 
n-manifold of class C" in En+, . The strong hypothesis that Z be of 
class C" is made for simplicity of exposition in dealing with the 
family of normals to Z at points p. The results presented here are 
effectively supplemented by the theorem on "elevating manifold 
differentiability" in Appendix 11. 

We make a useful definition: 

Definition 8.1. Strongly Extensible Presentations p). A presentation 
(g~ : U, X) in 9Z of a coordinate domain X of Z will be called strongly 
extensible if y admits an extension as a presentation (p)' : U', X') in 
9Z such that U is relatively compact in U' or, equivalently, X is 
relatively compact in X'. 

Since Z is compact, it can be covered by a finite set of coordinate 
domains X each given by a strongly extensible presentation in 9Z. 
A presentation (p) : U, X )  will be understood to be strongly extensible 
unless otherwise stated. 

Normals up to Z. Let p be an arbitrary point in Z with coordinates 
p ,  ,...,pn+, in En+, . Let Z be the boundary of a compact subset 2 
of En+, . Let 

W) = ( ~ l ( P ) ~ ~ * * ~  h,+l(P)) (8.0) 

be a sensed unit vector normal to Z at p, leaving 2 at p. Let vp be the 
normal to Z at p. Then up is the ensemble of points 

x = p + $A@), s E R. 
58 
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The mapping 

(P, S) + P + sh(P) : 2 x R + En+, (8.2) 

is continuous but not biunique. 

Notation. Let e be a positive constant and set I(e) = (-e,  e). Let 
vpe be the subarc of the normal up on which s E I(e). Given an arbitrary 
subset W of I Z I, set 

we = u v9e. 
PE H' 

In  particular, I Z le is written as Z e .  This notation is used throughout 
Part I. 

We shall prove the following: 

Lemma 8.1. Let (9' : U, X )  be a presentation in 9.Z of a coordinate 
domain X of 27. If e is a suflciently small positive constant, the mapping 

(u, s )  + p(u) + sh(tp(u)) = $(u, s) : U x I(e) + X* (8.4) 

is a dajfeomorphism of class C", onto Xe  in En,, . 
Let uo be a point of U. We shall show that the Jacobian 

To verify (8.5), recall that the first n columns of the determinant 
(8.5) represent n vectors tangent to Z at the point po = p(uo). These 
vectors are linearly independent, since the functional matrix of 
v1 ,..., q ~ ~ + ~  has rank n at uo, by hypothesis. The last column of the 
determinant (8.5) represents the vector A( PO). Since A( Po) is orthogonal 
to Z at pO, (8 .5)  follows. 

With each point uo E U there can accordingly be associated a 
constant e > 0 and an open neighborhood V C U of uo with e and V 
so small that I) I( V x I(e)) is a diff onto Ye and Ye is open in En+, . 

A similar result holds if one replaces (v : U ,  X )  by a strong extension 
(v' : U', X )  and uo by any point in U', including points uo E 0. 
Since B is compact, we infer that if e is sufficiently small, two arcs 
I$. , v i e  normal to X at distinct points p' and p" are disjoint and the 
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mapping (8.4) accordingly biunique. The mapping (8.4) is locally a 
diff onto open subsets of En+, . It is accordingly a d 8  onto Xe. 

The lemma follows. 

Objectives of 5 8. We are concerned with relations between sets 
of coordinates of points near I Z I : the ordinary rectangular coordinates 
x1 ,..., x,+, of En+, , the pairs ( p ,  s) introduced in (8.2) and termed 
Z-normalparameters, and the pairs (u, s) introduced in Lemma 8.1 and 
termed Z-normal tp-coordinates. All conventions concerning the 
existence, nondegeneracy, and indices of critical points are ultimately 
to be referred to Z-normal tp-coordinates. Z-normal parameters ( p ,  s) 
are used primarily to define functions globally near I Z I. 

Definition 8.2. Z-Normal tp-Coordinates (u, s). Under the con- 
ditions of Lemma 8.1 a pair (u, s) E U x I(e)  will be called Z-normal 
tp-coordinates of the point 

x = v ( 4  + s~(v(u)) = #(u, s). (8.6) 

The set Xe will be called the domain of points x represented by these 
Z-normal tp-coordinates. 

A Representation of g .  If x --t g(x) is a real-valued function whose 
domain in En+, includes the set Xe of Lemma 8.1, the mapping 

(u, 4 -+g(v(u) + 4cp(u))) = Nu, 4, (u, 4 E u x 44 (8.7) 

is called the representation of g I Xe in Z-normal v-coordinates (u, s). 
Since 1,4 is a diff of class C", g I Xe is of class Cu, if and only if h 

is of class Cu on its domain in (8.7). By Lemma 4.2 a point xo with 
Z-normal tp-coordinates (uo, so) will be critical and ND with index k 
relative to g if and only if (uo, So) is respectively critical and ND with 
index R relative to h. 

%Normal Parameters ( p ,  s). These parameters enter by way 
of the following lemma, a corollary of Lemma 8.1. 

Lemma 8.2. If z is a suficiently small positive constant, the mapping 

(8.8) ( p , s ) - t p  + s h ( p ) :  2 x Z(€)+D 
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is a homeomorphism onto 0, and 23 is the union of aJinite set of domains 
Z of Z-normal cp-coordinates. 

In the remainder of Part I the number E of 23 will always be so 
small that 23 satisfies Lemma 8.2. 

Definition 8.3. (i) 2-Normal Parameters. Under the conditions 
of Lemma 8.2 a pair ( p ,  s)  E Z x I (€ )  will be called Z-nmmalparam- 
eters of the point x 5 p + sh( p )  E 0. 

(ii) The set Z c  will be called the domain of points x represented by 
these Z-normal parameters. 

(iii) Given a presentation (cp : U, X) in 9Z and (u, s) E U x I(€),  
the coordinates (u, s) will be called Z-normal cp-coordinates of the 
Z-normal parameters ( p ,  s )  = (cp(u), s). 

Mappings ( p ,  s)  + H( p ,  s). Let there be given a real-valued 
mapping 

( p , ~ ) + H ( p , s ) : Z  x I ( e ) + R .  (8.9) 

The mapping 

is called the representation of H in Z-normal cp-coordinates (u, s). 

Definition 8.4. Conventions Concerning H :  

(i) The class Cu of H. If (cp : U, X) is a presentation in 922 
of a coordinate domain X of C and if H is defined as in (8.9), the 
restriction H I(X x I (€ ) )  of H will be said to be of class C" if and only 
if G of (8.10) is of class Cu. The unrestricted mapping H will be said 
to be of class Cu if and only if each such restriction of H is of class 0. 

A point ( p " ,  so) E X x I (€)  with 
Z-normal cp-coordinates (u", so) will be said to be critical and to be ND 
with index k relative to H if and only if (u", so) is, respectively, critical 
and ND with index k relative to G. 

(ii) The Critical Points of H .  
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Invariance Principle. The entities defined in the preceding two 
paragraphs are independent of the particular presentations (9' : U, X) 
entering into these definitions. This follows from the "compatibility" 
of presentations of coordinate domains of Z and from Lemma 4.2 (see 
Lemma 5.2). 

We state two lemmas concerning the use of Z-normal parameters: 

Lemma 8.3. ( i )  Let x --t g(x)  and ( p ,  s) + H( p ,  s) be real-valued 
functions on 0 and Z x I(€) ,  respectively. I f  

then g is of class Cu on its domain if and only if H is of class Cu on its 
domain. 

(ii) If x" E 0 has Z-normal parameters ( p", so), then x" is critical 
and N D  with index k relative to g if and only if ( p", so) is, respectively, 
critical and N D  with index k relative to H. 

Proof. Suppose that x" is in a domain X c  of points x represented 
by Z-normal tp-coordinates (u, s). Reference to (8.7) and to (8.10) 
shows that the representation both of g and H in terms of these 
coordinates is the mapping 

where the equality is a consequence of (8.11). Lemma 8.3 is now a 
trivial consequence of the conventions on H preceding the lemma. 

The Partial Mappings H8. Given a mapping 

we shall refer to the partial mapping 

p + H ( p ,  S) = H Q )  : Z -+ R 

(8.12) 

(8.13) 

and prove the following fundamental lemma: 



8. CNORMAL  COORDINATES 63 

Lemma 8.4. If the mapping H of (8.12) is of class C1, a point 
( p " ,  so) E Z x I (€ )  is a critical point of H if and only i f  H,  = 0 at 
( p", so), and p" is a critical point of HB0 on Z. 

Let (tp : U,  X) be a presentation in 9Z of a coordinate domain X 
which contains p". Then (p" ,  so) is in X x I (€)  and H I(X x I (€) )  
has a "representation" [see (8.10)] 

(u, 4 -+ q?@),s) = G(u, 4, (u, 4 E lJ x &) (8.14) 

in 2-normal tp-coordinates (u, s). By virtue of Definition 8.4 (p", so) 
is a critical point of H, if and only if (u", so) is a critical point of G, 
that is, if and only if G, = 0 at (u", so) and uo is a critical point of the 
partial mapping u + G(u, so). Since the critical points of H8 on Z 
are understood in the sense of Definition 5.5, the lemma follows. 



§ 9  

NONDEGENERATE FUNCTIONS 
UNDER BOUNDARY CONDITIONS A 

Introduction. Global critical point theory begins with the study of 
ND functions f on regular domains 2 of a Euclidean space En+, under 
the simplest boundary conditions on f, namely boundary conditions A. 
These conditions will now be defined. 

Definition 9.1. Regular 0-Domains 2 in En+, . By such a domain 
we mean a compact subset 2 of En+, bounded by the carrier I Z I of a 
regular n-manifold C of class 0, p > 1. By abuse of language we 
refer to Z as the boundary of 2. The interior of 2 is denoted by 2. 

We do not assume that 122 I or 2 is connected. The number of 
components of 2 or I Z I is finite. 

Definition 9.2. Functions f Admissible Relative to a Regular Domain 2. 
We shall admit real-valued functions of class Cm, m > 1, on some 
open neighborhood D, of 2, ND on 2 and without critical points on Z. 

A non-null vector V at a point p E 2 is termed entrant or emergent 
if V is not tangent to Z at p and is directed into the interior or exterior, 
respectively, of 2 at p. 

Definition 9.3. Boundary Conditions A. We shall say that a 
function f which is admissible relative to a regular domain 2 of En+, 
satisfies boundary conditions A, if grad f is emergent at each point of 2. 

64 
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Definition 9.4. The Type Numbers of f 12. By the kth type 
number mk of f 12, k = 0, 1 ,..., n + 1, we mean the number of 
critical points off I 2 of index k. 

The Connectivities of 2. Let X be any commutative field (see 
Appendix I). In Part I11 we shall review the foundations of singular 
homology theory, taken in the sense of Eilenberg [l] (see also Eilenberg 
and Steenrod [l] pp. 185-21 1). The connectivities 

K = 0, 1, ..., n + 1, (9.1) 

are the dimensions of the homology groups of singular k-cycles on 2, 
taking the coefficients from X.  When X is fixed, as is the case in 
Part I, we shall denote the connectivities (9.1) by 

Ro 9 Rl ,"., R,,, , (9.2) 

understanding that = 0, as will be shown to be the case in 
Part 111. 

Theorem 9.1 below is a fundamental theorem. The theorem remains 
true if the n-manifold Z bounding 2 is merely of class C1 instead of 
class C" (see Appendix I1 for proof). 

Rk(Z, X) ,  

Theorem 9.1. Let f be a function of class C 2  admissible relative 
to a regular C"-domain 2 of En+, . If mo , m1 ,..., m,,, are the type 
numbers o f f  I 2 and 

Ro 9 Rl,. ' . ,  R,+1 , R,,, = 0, (9.3) 

the connectivities of 2, then under boundary conditions A on f 

Proof of Theorem 9.1. The proof of Theorem 9.1 is in two parts. 
The first part involves homotopy considerations based on a proper use 
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in Q 21 of f-trajectories of the level manifolds off. It is postponed 
until Riemannian geometry has been introduced in Part I1 because 
the complexities of “homotopy equivalences” involved can be 
dispensed with quickly by a suitable global change of Riemannian 
metric which modifies this metric near each critical point off. This 
device was introduced by Morse, [9], 5 6, in 1960 and has not yet 
been widely understood. 

The second part of the proof of Theorem 9.1 involves homology 
theory as well as homotopy theory, and will be presented in Part 111, 
5 30. 

The statement of Theorem 9.1 has not 
been postponed until Part I11 because its validity under boundary 
conditions A implies Theorem 10.2, in which the condition that gradf 
be emergent on Z is relaxed. Theorem 10.2 is concerned with boundary 
conditions B, conditions which are topologically consistent with much 
more general distributions of critical points on 2 than are boundary 
conditions A. 

Theorem 9.1 is stated here because the proof that Theorem 9.1 
implies Theorem 10.2 involves neither homotopy nor homology, but 
rather the redefinition off near I Z 1 so as to reduce an f satisfying 
boundary conditions B to an f satisfying boundary conditions A. 

Boundary conditions B will be defined in Q 10 and Theorem 10.1 
will be related to Theorem 9.1 in an explicit way in Q 11 by a construc- 
tion off of Theorem 10.1. 

We shall devote the remainder of this section to remarks about 
Theorem 9.1, beginning with two readily verified corollaries: 

Boundary Conditions B. 

Corollary 9.1. Under the conditions of Theorem 9. I 

To  state Corollary 9.2 we introduce the excess numbers 8, = m, - R, , 
k = 0, 1, ..., n + 1 and note the truth of the following: 

Corollary 9.2. Under the conditions of Theorem 9.1 

+ 8k-1 2 8, , k = 1,---, 11. 
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We state an extension, Theorem 9.1’ of Theorem 9.1 : 

Theorem 9.1 ’ reads as does Theorem 9.1, replacing C“ by Ca. 

In Appendix I1 Theorem 9.1’ is shown to be a consequence of 
Theorem 9.1 and of Theorem A on “elevating manifold differentia- 
bility” (see Morse [9]). 

In general, theorems involving regular domains 2 in En+, will be 
stated first under the assumption that the boundary C of 2 is of 
class C”’. So stated, the proofs are simpler than would be the case if C 
were assumed to be in the minimum differentiability class for which 
the proposed theorem is true. Theorem A on “elevating manifold 
differentiability” enables one, in most cases, to lower the differentia- 
bility condition on 2 as far as possible. What the final differentiability 
assumption is will depend on the theorem (see Theorems 10.2, 10.3, 
and 12.1‘). 

The Completeness of the Relations (9.4). The question arises: 
Under the conditions of Theorem 9.1, are there relations other than 
the relations (9.4) or implied by the relations (9.4) which always hold 
between the type numbers and connectivities? That the answer is no 
is shown by the following theorem: 

Theorem 9.2. Corresponding to nonnegative integers R, , R, ,..., R, , 
Rnfl ,  of which R, = 1 and Rn+, = 0, and to nonnegative integers 
m, , m, ,..., m,,, satisfying relations (9.4) there exists a regular C”- 
domain 2 in En+, with the integers R, as connectivities and a function f 
of class C“, admissible relative to 2, satisfying boundary conditions A 
with the integers mi as type numbers o f f  I 2. 

A proof of Theorem 9.2 can be obtained by carrying out the 
following exercises: 

EXERCISE 1. Show that if the relations (9.4) hold, integers 
e, , el ,..., en are uniquely defined by the equations R, + e, = m, and 

R k + e k - l + e k = ? ? l k ,  k = l ,  ..., n,  (9.7) 

and are nonnegative. Moreover, en = m,,, . 
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EXERCISE 2. Given a ND function x --t Q(X) of class C" on an 
open domain D of En+, and an integer such that 0 < k < n, it is 
possible to modify Q on an arbitrary small neighborhood N of an 
ordinary point of Q in D so as to obtain a new function of class C" 
on D identical with q~ except on N and possessing just two critical 
points in N with indices k and k + 1 (cf. John [l]). 

EXERCISE 3. Given integers R$ , as in Theorem 9.2, there exists a 
regular C"-domain 2 in Em+, with the integers Ri as connectivities 
and, relative to 2, an admissible function Q of class C", without 
critical points on Z, assuming a value on Z exceeding each value of Q 

on 2, and such that the type numbers of Q I 2 are numbers 

* * * m, = R , ,  m, = Rl ,  ..., m: = R , ,  m,,, = 0. (9.8) 

EXERCISE 4. If the relations (9.4) hold with R, = 1 and Rn+l = 0, 
if Q is defined as in Exercise 3, and if integers e, , e, ,..., en are chosen 
as in Exercise 1, it is possible to modify Q successively on 8 as in 
Exercise 2 so as to add ek critical points of index k and ek critical 
points of index k + 1 for each k on the range 0, 1, ..., n and thereby 
obtain a function f with type numbers m, satisfying relations (9.4) 
with the prescribed connectivities Ri . 
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UNDER BOUNDARY CONDITIONS B 

Let Z be a regular C"-domain of En+, and let f be of class Cm, 
m > 1, and admissible relative to Z in the sense of Definition 9.2. 
By hypothesis f has no critical point on the boundary Z of 2. Conse- 
quently, a point p E C is a critical point off I .Z if and only if gradf 
is orthogonal to Z at p. 

The following example shows how the critical points off I Z can 
condition the critical points off I 2. 

EXAMPLE 10.1. Let n + 1 = 2 and let 2 be the disk in E, on 
which x12 + xZ2 < 1. The function f with values f (x) = x 2  - xla 
does not satisfy boundary conditions A but, as we shall see, satisfies 
boundary conditions B. On Z, f has a critical point of index 1. The 
existence of this critical point is implied by the connectivities of the 
disk Z and the nature off I Z, as Theorem 10.2 will show. 

We aim to reveal the conditions on the critical points 
off  I Z implied by the connectivities of Z and the nature of f l  Z. 
In the absence of any simplifying assumption as to the nature off I Z 
our problem is prohibitively complex. 

Objectives. 

Definition 10.1. Boundary Conditions B. We shall say that a 
function f which is admissible relative to 2 (Definition 9.2) satisfies 
boundary conditions B iff I .Z is ND. 

In case f I .Z is degenerate, Theorem 6.4 shows how f can be 
approximated arbitrarily closely so as to obtain a function g which 
satisfies boundary conditions B while remaining admissible relative 
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to 2 and having critical points on 2 which differ arbitrarily little in 
position from those off and not at all in index. Theorem 6.4 shows 
in what sense the functions admissible relative to 2 which satisfy 
boundary conditions B represent the “general” case. 

To present Theorem 10.1 two definitions are needed: 

Definition 10.2. The Entrant and Emergent Portals of 2. I f f  is 
admissible relative to a regular domain 2 in En+, , the open subsets of 
I Z I on which grad f is entrant and emergent, respectively, will be 
denoted by I Z I_  and I Z I + .  One of these sets may be empty, and 
their union is in general not I C I. Let 2- and Z+ denote the sub- 
manifolds (see § 5 )  of Z with carriers I Z I _  and I Z I+ . We term Z- 
and Z+ the entrant and emergent portals, respectively, of 2. 

Definition 10.3. The Augmented Type Numbers off I Z.  I f f  is 
admissible relative to 2 and satisfies boundary conditions B, we shall 
denote the type numbers off I C- by 

If the type numbers off I 2 are denoted by 

mo 9 m, ,‘**, m,,, (10.2) 

as previously, the n + 1 integers mi , mi ,..., mk, defined by 

mo + Po 9 ml + 11.1 9... 9 *, + P, 9 m,,, (10.3) 

will be called the augmented type numbers off I 2. 
The following theorem shows that a function f admissible relative 

to 2 and satisfying boundary conditions B can be modified in a well- 
defined way so as to satisfy boundary conditions A. Theorem 10.1 
is basic. 

Theorem 10.1. Let f be of class Cm, m > 1, and admissible relative 
to a regular C“-domain Z of En+, ; suppose that f I Z is ND and let N,  
be an open neighborhood of Z which contains no critical points off I 2. 
There then exists a function f of class Cm on a neighborhood of 2, 
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admissible relative to Z, with grad f now emergent on Z, identical with f 
on Z - N, and such that the ordinary type numbers off I Z are equal 
to the augmented type numbers off I Z. 

In this section we present some of the implications of this theorem, 
deferring a proof until 5 11. 

EXAMPLE 10.2. We refer to Example 10.1, where Z is the unit disk 
in E, with center at the origin. Iff  (x) = xZ2 - x12 and if one sets 

2 = {x E 2 I f ( x )  < O}, (10.4) 

the f-entrant portal Z- of 2 has the carrier 2- n I Z 1. The critical 
points of f I Z- are the points (& 1 , 0), both of index zero. The 
augmented type numbers off 1 Z are 2, 1,O. 

Theorems 9.1 and 10.1 imply Theorem 10.2. Theorem 10.2 and its 
extension, Theorem 10.2' below, are the principal theorems of 5 10. 

Theorem 10.2. Iff is of class C2 and admissible relative to a regular 
C"-domain 2 in En,, and satisjies boundary conditions B, the augmented 
type numbers 

m; $ m; , . - . 3  m;,, (10.5) 

off I Z satisfy the relations (9.4) of Theorem 9.1, mi replacing mi for 
each i. 

In  the notation of Definition 10.3 the relations of Theorem 9.1 
can be put in the more explicit form 

m k  - mk-l + mk-2  - " *  ( - l ) ~ m o  

3 (Rk - p k )  - (Rk-l - p k - 1 )  + "' (-l)k(R~ - Po), (10.6) 

where k has the range 0, 1, ..., n + 1 and the equality prevails in (10.6) 
when k = n + 1. 

Theorem 10.2 implies Theorem 10.3. Theorem 10.3 in turn implies 
Theorem 9.1. 

Theorem 10.3. Iff is of class C2 and admissible relative to a regular 
grad f is never both entrant and normal to Z Cm-domain 2 in En+, and 
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at points of Z, then the type numbers off I 2 satisfy the relations (9.4) 
of Theorem 9.1. 

Proof of Theorem 10.3. Observe first that the minimum angle 
between inner normals to C and grad f at a point p of Z is bounded 
from zero for p E Z. It follows then from Theorem 6.4 that there 
exists a real-valued function g of class C8 on a neighborhood of 2 such 
that the following are true: 

(A,,) gradg approximates grad f so closely at points of C that 
gradg is never both entrant and normal to Z. 

(A,) g is admissible relative to 2. 
(A2) The type numbers of g I 2 and f I 2 are equal. 
(A,) g satisfies boundary conditions B. 
(A4) Because of (Ao), g I C- has no critical points. 
(A,) The augmented type numbers of g I 2 are equal to the type 

(4) Theorem 10.2 is applicable to g, implying that the type 

This establishes Theorem 10.3. 

We state extensions of Theorems 10.2 and 10.3: 

numbers of g I 2 and hence those off I 2. 

numbers off I 2 satisfy the relations (9.4). 

Theorem 10.2'. This reads as does Theorem 10.2 with C" replaced 
by C2. 

Theorem 10.3'. This reads as does Theorem 10.3 with C" replaced 
by C2. 

Theorems 10.2' and 10.3' follow, respectively, from Theorems 10.2 
and 10.3 with the aid of Theorem A of Appendix 11. 

We have established Theorem 10.2' in Appendix 11. We leave to the 
reader the relatively simple task of establishing Theorem 10.3' using 
Theorem 10.3 and Theorem A of Appendix 11. 

The proof of Theorem 10.3' is nearer to the proof of Theorem 9.1' 
than to the proof of Theorem 10.2') in that in the proof of Theorem 
10.3') as in the proof of Theorem 9.1', it is sufficient to use Theorem A 
to modify 2 and Z but to leave f unmodified. 
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Theorems 10.2 and 10.3 have had industrial applications. They can 
be applied to determine the types of instability and the distribution 
of points of equilibrium of “conservative fields of force” defined by 
ND “functions of forces.” 

The following is one of several applications to harmonic functions of 
two variables (see Morse [6] ,  p. 48): 

Corollary 10.1. I f f  is a harmonic function of two variables admissible 
relative to a regular C2-domain Z in E, , of the topological type of a 
circular disk, with f satisfying boundary conditions B, then, in the 
notation of Definition 10.3, 

p0 2 1, cl0 - p1 = ml + 1. (10.7) 

For harmonic functions of three variables the following corollary of 
Theorem 10.2 is more novel. I t  is presented here for the first time. 

Corollary 10.2. I f  f is a harmonic function of three variables, 
admissible relative to a regular C2-domain Z in E, of the topological type 
of a solid 3-ball, with f satisfying boundary conditions B, then, in the 
notation of Dejinition 10.3, 

PO 2 1, PO - 111 < m1 + 1, PO - + /+ = m, - ma + 1. (10.8) 

Proof. Taking account of the nonexistence of isolated interior 
points of relative maximum or minimum of harmonic functions, 
relations (10.8) follow from relations (10.6), with R, = 1 and 
R, = R, = R, = 0 therein. 

EXERCISE 10.1 Suppose that the harmonic function f of Corol- 
lary 10.2 has a finite number of isolated singularities in Z, at mo of 
which f “becomes negatively infinite’’ and at m, of which f “becomes 
positively infinite” (see Kellogg [l], p.271). Find the relations which 
replace the relations (10.8) and involve the integers m,, and m, as 
well as the integers already appearing in (10.8). 
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Notation Recalled. To establish Theorem 10.1, we must define the 
function f which is to replace f in Theorem 10.1. Let D, 3 2 be the 
open domain off in En+, , C the regular boundary of 2, and 23 the 
neighborhood of Z, as defined in Lemma 8.2. The constant E shall 
be so small that 0 C D, and 23 contains no critical points off. We 
shall modifyf at most on D. (see Morse and Van Schaack [l]). 

To that end, we turn to C-normal parameters ( p ,  s) on 0 and set 

f(P + 4 P ) )  = H ( P ,  $1, ( P I  s) E z x w. (11.1) 

So defined, H is of class Cm, m > 1, with f, and has no critical points 
on Z x I (€ )  (see Lemma 8.3). Moreover, the partial mapping 

p - t H O ( p )  = H ( p , O )  =f(p): 2 - R  (11.2) 

is ND, by the hypotheses of Theorem 10.1, and so has at most a 
finite set [denoted by ( q ) O ]  of critical points q E Z, 

Definition I 1  .l. HWritical Arcs on Z. A C1-mapping 

s+p(s):[-ulu]-Z1 0 < a  <€, (11.3) 

such that each point p(s) is a critical point of the corresponding partial 
mapping H8 will be called an H8-crz*tical arc on 2. 

We state a fundamental lemma concerning the existence of such arcs. 

Lemma 11.1. If u < E is a suflciently small positive constant, the 
following are true: 
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(A,) Corresponding to each point q E ( q ) O  there is a unique H8-critical 
arc rp on Z of form 

s -+ pg(s) : [ -u, u] + Z with pg(0) = q. (11 .4)  

(A,) The H8-critical arcs yq are dzsjoint for distinct points q E ( q ) O .  

(A,) For s E [-a, u] each critical point of H8 in Z is a point pq(s) 

(A4) A t  each point q E ( q ) O ,  H8(q, 0) # 0. If one sets 

in one of the arcs rp of (Al). 

H,(pq(s), S) = hg(s), --o < s < 0, (11 .5)  

then hq(s) is negative or positive depending on whether q E Z is in the 
f-entrant or f-emergent portal of 2 (Definition 10.2). 

(A,) As a critical point of H8, pq(s) is N D  and has an index which 
does not vary with s E [-a, u]. 

Proof of (Al). A critical point q of H o  in Z is ND by hypothesis. 
Let (tp : U, X )  be a presentation in 9Z of a coordinate domain X 
of Z, such that q E X and vq(uo) = q for some uo E U. Set 

H(pg(~), S) = GQ(u, s), (u, S) E U x I(€).  (11 .6)  

For s fixed in I ( € )  a point p = p ( u )  E X is a critical point of H8 
if and only if u E U is a solution of the n equations 

G:,(u, s) = 0, i = 1 ,..., n. (11 .7)  

Since q is a ND critical point of HO, the n-square determinant 

I GIU,(U, s)I # 0, when (U, s) = (UO, 0). (11 .8 )  

If u > 0 is sufficiently small, there accordingly exists a solution 

s -+ U q s )  : [-a, u] -+ u, uqo) = UO, (11 .9)  

of (1 1.7). The C"-'-mapping 

s -+ p"s) = lp"(u"s)) :: [-0, u] --c z (11 .10 )  

defines an H"-critical arc y'J of form (1 1.4). 
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Proof of (Aa). For distinct points q E (4)" the corresponding arcs 
p will be disjoint if u is sufficiently small, since pq(0) = q and the 
mappings s --+ pq(s) are continuous. 

To establish (A3), one uses appropriate Z-normal 
tp-coordinates (u, s) to prove the following: There exists a covering of 
Z by coordinate domains Xq containing the respective points q E ( q ) O ,  

and a finite set of other coordinate domains Y1, ..., Y', together with 
a value of u so small that the following is true: There are no Z-normal 
parameters (p, s) in P x f(u), i = 1, ..., r,  such that p is a critical 
point of H8 in Y*. When C-normal parameters (p, s) in Xg x I($) 
are such that p is a critical point of H8 then p = pg(s). 

Proof of (As). 

Proof of (A4). Since H has no critical point in C, and each point 
q E ( q ) O  is a critical point of HO, it follows from Lemma 8.4 that 
H8(q, 0) # 0 for q E ( q ) O .  Hence hq(0) # 0, so that hp(s) has one sign 
on [-a, u] if u is sufficiently small. Since H8(q, 0) is positive or 
negative depending on whether grad f at q is emergent or entrant, 
statement (A4) follows. 

Proof of (A6). The critical point p"s) of H8 in Z is ND if and 
only if the determinant 

I G ' U ,  I S  # 0, (11.11) 

where the superscript s indicates evaluation for (u, s) = (uQ(s), s). 
Now, (11.11) holdsfors = O,byvirtueof(11.8). Hence(ll.11) holds 
for s E [-a, u] if u is sufficiently small. 

Finally, the index k of the point pq(s) E Z, as a critical point of H8, 
varies continuously with s E [-u, u] provided (1 1.1 1) holds, since k 
is the index of the quadratic form whose coefficients are the elements 
of the determinant (1 1 .I I), and this index cannot change as s varies 
on [-u, a], since (11.11) holds. This follows from Theorem 3.4. 

The Constant u. We suppose u < E chosen so that Lemma 11.1 
is satisfied and fix u for the remainder of this section. We set u = 2p. 

Constants Involved in Defining the Replacement f off .  To de- 
fine the required modification f of f, we need to specify two constants 
M and r] associated with H. Of these constants, M depends in part 
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on the Hessian of GP (written Hess Gq) as q ranges over the set ( q ) O .  
Hess GP is obtained by bordering the n-square determinant I G&, I 

by an (n + 1)th column Gila ,..., G&, G& and an (n + 1)th row 
G& ,..., GL, , G& with the element G,", in common. Each element in 
Hess Gq will be evaluated for (u, s) = (uQ(s), s), and this evaluation 
will be indicated by a superscript s as in (1 1.1 1). 

The Constant Mq . Let the element G,", in Hess GP be replaced by 
G,", + M and the resulting (n + 1)-determinant be denoted by 
HessM GP. If M > Mq > 0 and Mq is sufficiently large, 

sign(HessMGU)' = sign1 G& Is, -u < s < u. (11.12) 

We suppose Mg so chosen. 

A Constant M .  
u = 2p the conditions 

Let M be a positive constant such that with 

M > max M u ,  (11.13) 

(1 1.14) 

U € ( U P  

MP > 2yI I f s ( P ,  011, 

[see (1 1.5)] are satisfied. Here f ( a )  = [-u, 03. 

A Constant q. A positive constant q such that 

(11.15) 

(11.16) 

exists by virtue of Lemma 11.1 (A4). 

Given the constants p, q, and M, there 
exists a monotone increasing C"-mapping s --+ [(s) of R into R 
such that 

5(4 = 0, s < -2P ,  (11.17) 

< 7, -2p < s < -p,  (11.18) 

An Auxiliary Function 5. 

("(4 = M ,  -p < s. (11.19) 
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The Existence of 5. Let e < p be a positive constant. A conven- 
tional use of exponentials (Munkres [l], p. 6) suffices to define a 
monotone increasing C"-mapping t + p(t) of R into R such that 

p(t) = 0, t < -e - p 

p(t) = M -p < t. 
If e is so small that eM < 7, a mapping 5 such that 

satisfies (11.18) and (11.19), and if 5(-2p) = 0, satisfies (11.17). 
Lemma 11.2 presents essential properties of 5. 

Lemma 11.2. If f w  each q E ( q ) O  one sets 

then (i) and (ii) are true: 

(i) If q E Z+ , hq(s) sanishes for no value of s admitted in (1 1.20). 
(ii) If q E Z- , h&s) = 0 for some oalue s = sq in (-p, 0) and for 

Under the hypotheses of (i) hq(s) > 0 in (11.20) by 
Lemma 11.1 (A4). Since ['(s) 2 0 for every s, (i) follows from (1 1.20). 

Under the hypothesis of (ii) we shall show that 

no other oalue of s admitted in (1 1.20). 

Proof of (i). 

Proof of (ii). 

&s) < 0, -2p < s < -p, (11.21) 

h,(O) > 0, (1 1.22) 

&s) > 0, -p < s < 2p. (11.23) 

These three relations trivially imply (ii). 

VeriJcation of (11.21). By (11.18) and (11.16) 

sign(h,(s) + ['(s)) = sign(h,(s) + 7) = sign h,(s) 
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for s as in (1 1.21). For such an s and for q E Z- , h&s) < 0 by 
Lemma 1 1.1 (A4), implying (1 1.21). 

VeriJcation of (1 1.22). From (1 1.19) we infer that 

since ('( -p) > 0 and (1 1.15) holds. Hence 

o < "(0) + ha(()) = f;a(O)- 

VeriJcation of(11.23). By (11.20), (11.19), and (11.15), 

&(s) = hi($) + {Z (s )  = h&(s) + M > 0, -p < s < 2p. 

Thus (ii) is true and Lemma 11.2 is established. 

Definition 11.2. H-s-arcs P. Corresponding to each Hs-critical 

(1 1.25) 

arc s -+ p*(s) on 2 we introduce the arc 

s + (p"s), s) E 2 x I(.), 

calling this arc the N-s-arc P. 

into Z of the corresponding H-s-arcs P. 
The Ha-critical arcs rp in Z may be regarded as the "projections" 

The Replacement 3 of f. We shall modify f on 23 by replacing the 
representation ( p, s) + H (  p, s) off I 23, as defined in (1 l.l), by the 
mapping 

(11.26) (P, 4 + R(P, s) = H ( p ,  s) + ((4, (P, s) E 22 x I (€) .  

So defined, fi is of class C" with H. Since ((s) = 0 for s < -0, 

A(p,s) = H ( p , s ) ,  --B < s < - U , P € Z ,  (11.27) 

a relation to which we shall return. 

Replacing H by A, partial mappings A'. are defined 
as in (8.13), &-critical arcs as in Definition 1 1.1, and fi-s-arcs as in 
Definition 1 1.2. 

A-s-arcs. 
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The critical points of go in Z are the critical points q E ( q ) O  of 
HO. For -u < s < u, @-critical arcs and I?-s-arcs exist and are 
identical, respectively, with Hs-critical arcs yQ and H-s-arcs l'? 

Let an H-s-arc P for which q is in Z- be denoted by r-*. 

Lemma 11.3. A has the following properties: 

(i) f i s ( P , O )  > 0, P E Z  

(ii) The set of critical points ( p ,  s) of I? for which -u Q s Q 0 
includes a point ( pq(s), s) on each arc C a ,  and no other critical points. 
At the critical point of fi on r-q, -p < s < 0. 

The critical point ( pp(s), s) of I? on C p  is N D  and has as index K, 
the index of q as a critical point of HO. 

(iii) 

Proof of (i). By (11.26), (11.14), and (11.24) 

%(p, 0) = H,(P, 0) + 5'(0) > -Mf + M f  = 0, P E 2 

s --+ p p ( s ) ,  one for each q E ( q ) O .  By (1 1.26), (1 1.5), and (1 1.20) 
Proof of (ii). Recall that the &-critical arcs are the H8-critical arcs 

l?,(pQ(~),  S) = h&) + C(S) = I&), -2p < s < 2p. (11.28) 

According to Lemma 8.4, ( p ,  s) is a critical point of fi if and only 
if p E Z is a critical point of and as( p ,  s) = 0. When s is restricted 
to the interval [-u, u], ( p ,  s) accordingly is a critical point of A 
if and only if p = pa($) (Lemma 11.1) and &(s) = 0 [(11.28)]. 
Statement (ii) now follows from Lemma 11.2. 

Proof of (iii). To establish (iii), we must use suitable Z-normal 
tp-coordinates. 

Notation. Following the proof of (A,) of Lemma 1 1.1, let (cp" : U, X) 
be a presentation of a coordinate domain X of BZ such that q E X. 
For (u ,  s) E U x I (€ )  set 

H(qJQ(u), S) = GQ(u, S), fi(qJQ(u), 4 = GQ(% 4, 

[as in (1 1.6)] so that [using (1 1.26)] 

GQ(u, S) = GQ(u, S) + {(s). (11.29' 



11. PROOF OF THEOREM 10.1 UNDER BOUNDARY CONDITIONS B 81 

Since (1 1 .lo) holds, @(s) is the "Z-normal tp-coordinate" of the 
point p"s) E Z. By virtue of (1 1.11) 

I Gp, I S  # 0, --(J < s < 0, (1 1.30) 

where the superscript s has the same meaning as in (1 1.1 1) and (1 1.12). 

The Index k. It follows from (1 1.29) and (1 1.19) that (with u = 2p) 

G:s(u, S) = G:s(u, s) + ("(S) = G:8(u, 8) + M, -p < S < 0, 

so that, with the notation of (1 1.12), 

(Hess &)s = (He& G*)8, 

Since M > Mq by (1 1,13), we infer from (1 1.12) that 

sign(Hess eq)(l = sign1 G&, I d ,  

-p < s < 0. 

-p < s < 0. (11.31) 

According to (ii), there is a critical point ( p*(s), s) of fi in F-g with 
-p < s < 0. By virtue of (11.31) and (11.30) (Hess &>B # 0, so 
that this critical point is ND. 

By virtue of (1 1.31) and the Kronecker Corollary 3.2 the index k of 
( pq(s), s), as a critical point of fi, is equal to the index of p"s) E C, as 
a critical point of H8. By (A,) of Lemma 11.1 k is the index of 
pq(0) = q as a critical point of HO. 

This establishes (iii) and completes the proof of Lemma 11.3. 

Final Definition o f f  and Proof of Theorem 10.1. The domain 
of definition off shall be the subset Di = 2 u Z c  of En+, . We shall 
define f separately on the overlapping open subsets 

2 - C I P ,  2 (1 1.32) 

of Di , noting that the union of these two sets in Dp . To this end we 
set 

f(.) =f(.), ;r E 2 - c1 co (1 1.33) 

( 1 1.34) 

The definitions (1 1.33) and (1 1.34) are consistent on the intersection 
of the sets (1 1.32), as one infers from (1 1.27) and (1 1.1). So defined, 

4 ( P  + 4P)) = f i ( P ,  4, (P, S) E c x &). 
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f is of class Cm on each of the sets (11.32). Since these sets are open, 
f is of class C m  on Dp. 

That f satisfies Theorem 10.1 follows if we show that f has the 
following additional properties: 

Properties (a), (P), and ( y )  off. 

(a) 
common all critical points off I 2. 

(p) 
(y )  

Restricted to 2 - CIZu, f and f are identical and have in 

Grad f is emergent on Z, and f 1 2 is ND. 
The critical points off I 8 in excess of those off I 8 correspond 

biuniquely to critical points off I Z-, with preservation of index. 

Verijication of (a). By choice of Q, Zc, and hence Zu, excludes all 

Grad f is emergent on Z because of (i) of 
Lemma 11.3. Moreover, f l  2 is ND by hypothesis, and ND at 
critical oints ( p ,  s) for which s < 0, in accord with Lemma 11.3. 
Hence 2, as defined by (1 1.33) and (1 1.34), is ND. 

The critical points off I 8 in excess of those of 
f I,?? are those represented by critical points of E? at which s < 0. 
According to Lemma 11.3 the critical points ( p ,  s)  of E? at which s < 0 
correspond biuniquely to the critical points off I Z- with preservation 
of indices. 

The properties off  are such that f is “admissible” in the sense of 
Definition 9.2 relative to the regular subset 2 of Em+, because f 
is of class Cm on Dp , ND on 2, and gradf is emergent on Z. 

critical points off I 2. Since (1 1.33) holds, (a) follows. 

VeriJication of (8). 

Verification of (y) .  

The function f thus satisfies Theorem 10.1 as a replacement off. 
In 4 12 we shall sketch two extensions of Theorem 10.1 fundamental 

in embedding and in cobordism. T o  this end, we give another 
definition of H( p ,  s), which was previously defined in (1 1.1). This 
new definition is equivalent to the definition (11.1) in the context of 
4 11, but in the context of Theorems 12.3 and 12.4 it is much more 
general. 

Definition 11.2. The value of H ( p , s )  in (11.1) at the point 
( p ,  s )  E Z x I ( € )  is the value off  at the point x E 0 represented as 
in $ 8 by Z-normal parameters ( p ,  s) .  
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The proof of Theorem 9.1 is simplest if the boundary 22 of the 
given regular C"-domain Z is a level manifold off, that is, a manifold 
on which f is constant. Theorem 12.2 shows that this is the only case 
that need-be considered in proving Theorem 9.1 (see final proof in 
6 30). 

We shall conclude this section with a proof of the following 
theorem. The proof makes essential use of Theorems 6.4 and 10.1 
and follows a proof of Theorem 12.2. 

Theorem 12.1. Let Z be an arbitrary, regular, compact, dzyerentiable 
n-manifold in En,, of class C" bounding a compact subset Z of En,, . 
There then exists a N D  function g of class C" on a neighborhood of 
the compact domain Z bounded by Z such that Z is a level manifold of 
g on which g is ordinary and assumes a value exceeding each value of g on 2. 

We state an ultimate extension of Theorem 12.1. 

Theorem 12.1'. This reads as does Theorem 12.1 on replacing C" 

To prove Theorem 12.1') use Theorem 12.1 and Theorem A of 

In formulating Theorem 12.2 the following definition is needed. 

by Cm, m > 1. 

Appendix 11. 

Definition 12.1. Functions f and g critically equivalent on 2. Two 
real-valued functions f and g of the same class, admissible relative to 
some regular domain Z in the sense of Definition 9.2, will be said to 
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be critically equivalent on Z if the critical points o f f  and g on Z 
correspond biuniquely with preservation of indices. 

Iff and g are critically equivalent on 2, the type numbers off I 2 
equal those of g I 2. If in addition grad f and grad g are emergent on 2, 
to verify Theorem 9.1 for f it is accordingly sufficient to verify 
Theorem 9.1 for g. If g satisfies the conditions of the following 
theorem, a verification of Theorem 9.1 will be simpler for g than for f. 

Theorem 12.2. Let f be of class 0, m > 1, and admissible (Defini- 
tion 9.2) relative to a regular C"-domain Z in En+, , grad f emergent 
on Z, the boundary of Z. There then exists a real-valued function g 
of class Cm on an open neighborhood D, of Z "critically equivalent" to f 
on 2 and such that the boundary Z of Z is a level manifold of g on which 
g is ordinary and assumes a value exceeding the value of g at each point 
x E 8. 

We shall define a function g which satisfies Theorem 12.2 by altering 
f i n  a neighborhood 0 of I Z I, where E is so small that the conclusions 
of Lemma 8.2 are valid, that 0 is included in the domain D, off and 
excludes the critical points off 1 2. 

In the notation of Lemma 8.2, set 

f(p + WJ)) = m, 4, ( P I  4 E 22 x I&), (12.1) 

thereby defining a function H of class C*. Since grad f is emergent 
on C by hypothesis, Ha( p ,  0) > 0 for p E 2. 

Let w < E be so small a positive constant 
that 

(12.2) 

and let M be a positive constant such that 

The Constants w and M. 

H d p ,  4 > 09 ( p ,  s) E 22 x 44, 

(12.3) 

A ModGcation K of H. We shall make use of a C"-mapping 
s + t ( s )  of R into R such that ((1) = 1, ((s) = 0 for s < 0, and 
f ( s )  > 0 for s > 0. We then introduce a modification K of H with 
values 

s + w  WJ, 4 = H ( P ,  4 + ( M  - H(p9 0)) 4 (-), w ( p ,  s) E 22 x I (€) .  
(12.4) 
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It is clear that K is of class C" on its domain of definition, that 

K(p,  s) = H ( p ,  s), -e < s < -w, p E z (12.5) 

K(P,O) = M ,  P E E ,  (12.6) 

and, making use of (12.2), that 

KdP, 4 > 0, (P, 4 E 2 x 44. (12.7) 

Definition of g. The domain of g shall be the open subset 
Dg = Z u 2 of En+, . We shall define g separately but consistently 
on the overlapping open subsets, 

2 - ClZW, 27 (12.8) 
of Dg , setting 

g(x) = f (x), x E 2 - c1 P, (1 2.9) 

g ( p  + S 4 P ) )  = K(P, 4, (P, 4 E z x 44. (1 2.10) 

That (12.9) and (12.10) give the same value to g(x)  when x is in 
the intersection of the two sets (12.8) follows from (12.5) and (12.1). 
Since f and K are of class Cm, we infer that g is of class C". 

We shall verify the following additional properties of g :  

(i) g ( p )  = M >Ax), (x E 8, p E q. 
(ii) 
(iii) 
Verification of (i). For p E 2, g( p )  = M by virtue of (12.6) and 

(12.10). M is larger than any value of g on 8 n Zu by virtue of (12.6), 
(12.7), and (12.10), and larger than any value of g on - 270 by 
virtue of (12.3) and (12.9). 

Verification of (ii). g is ordinary on Z n ZW because of (12.7) and 
(12.10) and at the remaining points of Z n 23 because (12.9) holds 
and f is ordinary on 2. 

Verification of (iii). On Z'n 23 there are no critical points of g 
by (ii), and off by virtue of the choice of e. Since (12.9) holds, (iii) 
follows. 

On Z n 0, g is ordinary. 
On 2, f and g are critically equivalent. 

The function g so defined on Dp satisfies Theorem 12.2. 
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Proof of Theorem 12.1. Let x + h(x) : En,, .--f R be any ND 
function of class C" without critical points on Z. The restriction h I Z 
may fail to be ND. However, one can infer from Theorem 6.4 that 
there exists a function f of class C", "critically equivalent'' to h on Z, 
and so admissible relative to 2, and in addition such that f I Z is ND. 
According to Theorem 10.1, f can be altered near Z so as to yield 
a function f of class C", admissible relative to 2, but with gradf 
emergent on Z. Finally, givenf, Theorem 12.2 implies that there is a 
ND function g of class C", on a neighborhood of 2, satisfying 
Theorem 12.1. 

Non-Euclidean Extensions, Theorem 12.1 has an extension for 
abstract, compact, differentiable C"-manifolds M,,, (Def 13.1) 
which can be readily proved with the aid of extensions of theorems 
in Part I. This extension can be used effectively in the theory of 
embedding of differentiable manifolds in Euclidean spaces. We shall 
state it, and associate with it the theorems of Part I, upon which its 
proof depends. The reader will find Part I1 essential. 

Introduction to Theorem 12.3. Let there be given a compact 
subset Z* of M,,, . Here Z* is to generalize the regular compact 
domain Z of En,, introduced in Definition 9.1; one supposes that Z* 
is bounded on M,,, by a compact manifold Z*, C"-embedded in M,,, 
(Definition 16.2). Note that 8* is an open subset of M,,, . 

Theorem 12.3 extending Theorem 12.1. Let Mn+,, Z* and its 
boundary Z* be given as in the preceding paragraph. We ajirm that there 
exists a real-valued function g which is of class C" and ND (see 5 13) 
on some open neighborhood N of Z* relative to M,,, and such that Z* 
is a level manifold on N of g on which g is ordinary and assumes a value 
exceeding each value of g on 8*. 

We shall indicate a mode of proof of Theorem 12.3. This proof is 
modeled on the proof of Theorem 12.1. 

The concepts and theorems of Part I and their extensions essential 
to the proof of Theorem 12.3 are as follows. 

Z-normal q-coordinates of 5 8. One must define Z*-normal 
cp-coordinates on M,,, near Z*, the boundary of Z*. A simple 
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generalization of Definition 8.2 suffices. In  this extension short 
geodesic arcs on M,,, normal to Z* replace the straight arcs in En+, 
normal to Z as given in 5 8. 

Theorem 6.4. Theorem 6.4 is used in the concluding paragraph 
of the proof of Theorem 12.1. It is easily generalized for a C”-function 
f * defined on an open neighborhood AT of Z* relative to M,+, under 
the assumption that f * is ND on N and ordinary at each point of Z*. 
The proof of Theorem 6.4 made use of Theorem 6.3, while the proof 
of an extension of Theorem 6.4 makes similar use of Theorem 14.1; 
an explicit formulation of an extension of Theorem 6.4 is given as 
Theorem 9.1 of Morse [lS]. 

Theorem 10.1. Theorem 10.1 is used in the concluding paragraph 
of the proof of Theorem 12.1. Theorem 10.1 has an obvious extension 
to the case of a ND f * of class C“ on an open neighborhood of Z* 
relative to M,+,, assuming that there are no critical points off * on Z*. 
A proof of Theorem 10.1 is given in 5 I1 ; the proof of the extension, 
Theorem lO.l’, of Theorem 10.1 is similar. One begins by replacing 
the Z-normal q-coordinates and parametric points p E En+, near 2, 
as introduced in 5 8, by geodesically defined Z*-normal tp-coordinates 
and points p E M,+, near Z*. Definition 11.2, rather than (1 l.l),  
is used to define H (  p, s) when Z*-normal parameters ( p, s) replace 
the Z-normal parameters ( p, s) of 8 8. A proof of Theorem lO.l’, 
then follows the proof of Theorem 10.1 in 1 1 in exact fashion. 

With these generalizations of Theorems 6.4 and 10.1 at one’s 
disposal, a proof of Theorem 12.3 cart be trivially modeled on the 
proof of Theorem 12.1. 

(6Cobordism.” Suppose that there is given a compact connected 
subset Z* of a C”-manifold M,, bounded on M ,  by two disjoint 
(n - 1)-manifolds 2‘ and Z”, “(2“-embedded” in M ,  (see 5 16). Then 
Z’ and Z” are termed “cobordunt.” 

Let compact (n - I)-manifolds Mh--l and Mi-, of class C“ be 
given, with no mention of M,. Let (Mk- , )  and (Mi - l )  denote the 
classes of compact (n - 1)-C”-manifolds respectively diffeomorphic 
to Mk-l and Mi-l  . A basic problem has been studied by Thom [l]: 
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Under what conditions is there a pair of (n - 1)-manifolds 2' E ( M L 1 ) ,  
Z" E (MLl) which are cobordant on some C"-manifold M ,  ? 

Theorem 12.4 gives a first necessary condition that 8' and C" be 
cobordant on some C"-manifold M ,  (see Wallace [l] and Milnor [3]). 

Theorem 12.4. Let C' and C" be compact disjoint (n  - 1)-manifolds 
of class C",Cw-embedded in a C"-manifold M ,  and bounding a compact 
connected subset Z* of M ,  . There then exists a real-valued function g 
of class C" on some open neighborhood N of Z* relative to M ,  and such 
that 2' and Z" are level manifolds on N of g on which g is ordinary and 
assumes values 1 and 0, respectively, values greater than and less than 
each value of g on 8*. 

Our proof of Theorem 12.4 is a simple extension of the proof 
of Theorem 12.3, making use of the extensions described above of 
Theorem 6.4 and Theorem 10.1. One focuses first on C' and then on 
Z". 

For a more complete study of the "cobordism" theory see the 
papers of Thom and particularly the recently published book by 
Milnor [3]. 

In Part I1 we return to details. 
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§ ’3 

THE MANIFOLDS DEFINED 

Abstract differentiable manifolds, as we shall define them, include 
“regular” manifolds in a Euclidean space E, as special cases. Among 
the characteristic properties of regular manifolds in E, are the follow- 
ing: A regular manifold M, in E, is a topological n-manifold r, given 
as a “subspace” of E, provided with a dzyerentiable structure defined 
by the set of all regular presentations of open subspaces of r, (Defini- 
tion 5.3). These presentations satisfy a compatibility condition 
(Lemma 5.1). The carrier r, of M ,  admits a countable covering by 
regular presentations. 

In defining an abstract differentiable manifold M ,  a topological 
n-manifold r, is again given, but in general not as a “subspace” 
of a Euclidean space E,. “Presentations” of open subspaces of r, 
are defined as before, but no definition of “regular” presentation is 
required. M ,  is again a topological manifold I‘, provided with a 
differentiable structure defined by a set of presentations of open 
subspaces of r, , but these presentations are now required (formerly 
proved) to be Cm-compatible for some m (Definition 5.4) and to include 
a countable subset covering r, (Definition 5.2). The precise definition 
of M ,  follows. 

Definition 13.1. Abstract Differentiable Cm-Manifold-s M ,  . Let r, 
be a topological n-manqold coverable by u countable set 

of Cm-compatible presentations (Definition 5.4). Then the set 9 of all 
presentations of open subspaces of I’, which are Cm-compatible with the 
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presentations ofthe covering (13.1) of r, is a set ofpairwise Cm-compatible 
presentations of open subspaces of r, . 

Granted 9 exists, r, , associated with 9, is called a Cm-manifold M ,  
with carrier 1 M ,  1 = r, and set of presentations 9 M n  = 9. 

This definition requires the following theorem [a consequence of 
(A,) below]: 

Theorem 13.1. Any two presentations in the set 9 introduced in 
Dejinition 13.1 are Cm-compatible presentations of open subspaces of I', . 

Two Cm-manifolds M ,  and N, are regarded as identical if I M ,  1 = 
I N ,  [ and 9 M n  = 9 N , .  A Cm-manifold M ,  and a 0-manifold N ,  
such that p # m and I M ,  1 = 1 N ,  I can never have identical sets 
9Mn and 9 N n .  

The proof of Theorem 13.1 will follow readily once we have verified 
Propositions (Al)-(A4) on Cm-compatibility as stated below. 

Let r, be a topological manifold. Given a 
presentation (F: U, X) of an open subspace of I',, a restriction 
(P : f),g) of F which is a presentation of an open subspace 9 of r, 
will be called an open restriction of F. 

Cm-Compatibility. 

PROPOSITION (Al). Let there be given two presentations 

(1 3.2) 

of open subspaces X, and Xa of r, . If X ,  n X ,  = X # 0, F, and 
Fa will be Cm-compatible in the sense of Definition 5.4 if and only if 
the unique open restrictions, respectively of F, and Fa with range X 
are Cm-compatible. 

PROPOSITION (Aa). If Xl = Xa = X # 0 in (13.2)) the presen- 
tations Fl and Fa are Cm-compatible if and only if 6' o F, = h and 
F;-l 0 Fa = A-l, where A is a Cm-diff of U, onto Ua . 

PROPOSITION (Aa). If the presentations FL and Fa of (13.2) are 
Cm-compatible, arbitrary open restrictions (p, : 0, , 9,) and 
(Pa : 0, , 9,) of Fl and Fa, respectively are Cm-compatible. 
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Proof of (A,). If xl n 8, = 0 ,  (A,) is trivially true. T o  verify 
(A,) in case 8, n 8, # 0 ,  it will be sufficient to verify (A,) in case 
X, = X ,  = X # 0 and gl = g - 8 is a nonempty open sub- 
space of X. In this special case it is a hypothesis that q1 o F, is a 
Cm-diff h of U, onto U, . It follows that h maps 0, onto 0 2  and 

A /  0, =(Fa1 O2)-1o(FJ 0,) =I+&. 

? -  

(13.3) 

Hence (A,) is true. 

Proposition (A4) is put in italics because of its special importance: 

PROPOSITION (A4). Let K be a set of presentations of open subspaces 
of I'n that cover rn . If the presentations F, and Fa , given in (13.2), are 
Cm-compatible with each presentation in K ,  then F, and F, are Cm- 
compatible. 

Proof of (A4). If X ,  n X, = 0 ,  then (A4) is trivially true. I t  
follows from (Aik(A3) that (A4) will be true in any other case if true 
when XI = X, . Assuming then that X ,  = X ,  = X # 0 ,  we wish 
to show that K1 o Fl is a Cm-diff of U, onto U, . 

T o  that end, let uo be an arbitrary point in U, , and set po = F (u ). 
There exists an open restriction (G : V, Y) of some presentation in K 
such that p ,  E Y and Y C X. By hypothesis G and Fi , i = 1,2, are 
Cm-compatible. Given Y C X, there exist open restrictions (&', : O1 , Y) 
and (&', : 0, , Y), respectively, of Fl and Fa . 

Then, by (A,) G is Cm-compatible with pi, i = 1,2. Hence the 
homeomorphisms 

? O  

G-'oP, = A 1 :  O p v  
G-1 "Pa = A,: 02+ v 

(onto V )  

are Cm-diffs. It follows that 

F ; 1 o F 1 = A ; 1 o h , :  01-02 

is a Cm-diff of 0, onto 0,. Moreover, 

F,) I 0, = P;1 0 Pl . (1 3.4) 

Now, 0, is an open neighborhood of the point uo prescribed in U, , 
and the restriction (13.4) is a Cm-diff. Since 5, o Fl is known a priori 
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to be homeomorphism, we conclude that c1 o Fl is a P-diff of U, 
onto U,. 

This establishes (A4). 

Theorem 13.1 is a consequence of (A4). 
We state a theorem. 

Theorem 13.2. A regular P-manifold M ,  in E, , 0 < n < I ,  

is a Cm-manifold in the sense of Dejiilu’tion 13.1. 

Theorem 13.2 is a simple consequence of Theorems 5.1 and 5.2. 

Terminology. Let M, be a Cm-manifold. If (F : U, X) E 9Mn, 
the range X of F is called a coordinate domain of the manifold M, , 
and the coordinates (ul, ..., un) of a point u E U are called F-coordinates 
of the point F(u) E X or, more loosely, local coordinates on X .  The 
subset U of En is called the Euclidean domain of F. 

It is to be noted that the indices of the coordinates of u are taken 
here as superscripts, while in Part I they were taken as subscripts. 
This is in conformity with the conventions of Riemannian geometry 
which we shall presently follow. 

Real-Valued Functions on M,, . As in Q 5, we are concerned with 
real-valued functions p + f ( p )  : I M ,  I + R. If (F : V, X )  E 9 M n  , 
the composite function v + (f 5 F ) ( w )  : V + R [cf. (5.1 I)] is called 
a representation off I X in F-coordinates vl, ..., vn, as in Q 5 .  

Using representations f ii F, f :  G, etc. of 
f, we take over Definition 5.5 verbatim, noting that there is no reference 
in Definition 5.5 to the “regularity” of the presentations. Definition 
5.5 characterizes the following: (i) The dflerentiability off on M ,  . 
(ii) Critical points off on M ,  . (iii) Nondegeneracy off, and indices of 
criticalpoints. Since an open subset Y of I M ,  I may be included in the 
coordinate domain Xof infinitely many presentations (F: V ,  X) E 9 M n ,  
there may be infinitely many representations f 5 F which serve to 
define the characteristics (i)-(iii) off  I Y. That these characteristics 
o f f  1 Y are independent of the special representations f 6 F which 
serve to define them follows, as in Q 5, from Lemmas 5.2 and 4.2. 

Definition 5.5 Recalled. 
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Notation. The class of all real-salued Cm-functions on M ,  will be 
denoted hereafter by Cm(M,), 

Products of Differentiable Manifolds. Let M ,  and N, be two 
Cm-manifolds. The Cartesian product 1 M ,  1 x I N, 1 of the carriers 
of these manifolds with the usual product topology (Bourbaki [3], 
p. 47) is a topological (n + +manifold r,,, . We shall assign r,,, 
a ‘(product” differentiable structure, termed induced by M ,  and N, . 
With this product differentiable structure r,,, becomes the carrier 
of a Cm-manifold M,+, denoted by M ,  x N, . 

Product Presentations. Let presentations 

( F :  U , X ) E 9 M , ,  ( (7 :  V ,  Y ) E m v r  (1 3.5) 

be given. The homeomorphism 

(us 0)4(F(u), G(v)) : u x vv-+ I M n  I x I Nr I ( 13.6) 

into r,,, is onto the open subset X x Y of r,,,. A presentation 

((F, G) : U x V ,  X x Y )  = (F, G) (13.7) 

of an open subspace X x Y of 1 M ,  1 x 1 N, I ,  termed a product of 
presentations F and G, is thereby defined. As F and G range over the 
presentations of 9 M n  and g N ,  , respectively, the resultant presen- 
tations (13.7) of open subspaces of r,,, are Cm-compatible. 

T o  verify this Cm-compatibility, it is sufficient, in accord with 
Proposition (Aa), to verify the Cm-compatibility of a presentation (F, G) 
of form (13.7) with an arbitrary presentation (F’, G’) of similar type 
induced by presentations (8” : U’, X) E 9 M n  and (G‘ : V‘, Y) E 9 N n  , 
where X and Y are identical with the subspaces X and Y presented in 
(13.7). The transition homeomorphism of the presentations (F’, G’) 
and (F, G) is a mapping [see (5.12)] (onto) 

(13.8) 

By virtue of the Cm-compatibility of G’ and G and that of F‘ and F, 
the homeomorphism (13.8) is a Cm-diff of U’ x V‘ onto U x V. 
Thus presentations in 9rn+r of form (13.7) are Cm-compatible. 

(u, s) 4((F-l  o F ’ ) ( u ) ,  (G-l 0 G’)(w)) : U‘ x V ’ - t  U x V. 

Definition 13.2. Product Dtyerentiuble Structures. Since these 
product presentations cover r,,, and are Cm-compatible by Defini- 
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tion 13.1, I’,, admits a differentiable structure defined by the set of 
all presentations of open subspaces of r,, Cm-compatible with the 
product presentations of open subspaces of r,,, . Hence r,,,, taken 
with this structure is a Cm-manifold M,,. We denote this Cm- 
manifold by M ,  x N,, and say that it has a “product” differentiable 
structure. 

Countable Coeerings. The hypothesis that the set (13.1) of 
presentations covering the topological manifold I’, is countable implies 
that I’, is coverable by a countable ensemble of open topological 
n-balls. It follows that in any ensemble K of open subsets r, there 
exists a countable subset KO of sets of K such that (J K = u KO. 
If r, , 0 < s Q n, is any topological manifold which is a subspace of 
r,, then r, is coverable by a countable set of open topological 
s-balls, and hence in any ensemble H of open subsets of F a ,  there 
exists a countable subset Ho of sets of H such that u H = U H , .  

Submanifolds N .  of M.. Given a Cm-manifold M ,  , by a 
Cm-submanifold of M ,  we mean a manifold N,  whose carrier I N ,  I 
is an open nonempty subset of I N ,  I and for which 9Nn is the set of 
restrictions of the presentations in 9Mn whose coordinate domains 
are open subsets of I N ,  I. That a Cm-manifold N ,  is thereby defined 
is readily verified. 

Carrier Problems. The “simple carrier problem,” as we understand 
it, is to determine whether or not a prescribed topological manifold 
I’, is the carrier of a Cm-manifold M ,  for a prescribed m > 0. In 
5 16 we shall be concerned with a variant of this “simple carrier 
problem” in which r, is given as a subspace of a differentiable 
manifold Qr for which 0 < n < I and one requires not only that 
I M ,  I = I’, , but that M ,  be “Cm-embedded” in Q,, in a sense there 
defined. 

In an approach to carrier problems the following notation is useful: 

Definition 13.3. g0I‘,. If r, is a topological n-manifold, the set 
of all presentations (H : U, 2) of open subsets 2 of I‘, will be denoted 
by SOI’,, . 
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A presentation in 90rn is subject to no differentiability condition, 
as distinguished from a presentation in 9 M , ,  where M ,  is a Cm- 
manifold. 

Existing differential topology can not solve the simple carrier 
problem in any generality. However, there are cases in which the 
simple carrier problem can be given a useful solution. One such is 
indicated in the following lemma. 

Lemma 13.1. I f  I', is a topological n-manifold, i f  ( H :  U, 2) is 
given in g0Fn and i f  a positive integer nt is prescribed, the subset 2 of I', 
is the carrier of a Cm-manifold 2, for which 92, consists of the presen- 
tation ( H  : U,  2) and of all presentations of open subspaces of 2 which 
are Cm-compatible with ( H  : U, 2). 

This lemma is a direct consequence of Definition 13.1 on taking I', 
of Definition 13.1 as 2 and the set of presentations (13.1) as the 
presentation (H : U, 2) and a countable set of its restrictions. 

Definition 13.4. We shall term the Cm-manifold 2, , with carrier 
2 and presentations characterized in Lemma 13.1, the prime Cm-mani- 
fold Z, differentiability structured by ( H  : U ,  2) and m. 

Definition 13.5. Euclidean DiSferentiable Structures. Let X be an 
open nonempty subset of En . There exists a presentation of X of the 
form (I : U, X), in which U = X and I is the identity mapping of U 
onto X. We regard X as the carrier of a manifold X with a differentiable 
Coo-structure determined by the presentation (I : U, X) in accord 
with Definition 13. I .  We say then that X has a Euclidean differentiable 
structure. 

EXERCISE 13.1. Let I', be a topological n-manifold and 90rn the 
set of presentations of open subspaces of r, . Establish the following 
principle of conditioned transitivity of Cm-compatibility: 

(A) If Fl , F, , and F3 are in g0Fn , ifFl and F, are Cm-compatible, 
and if F2 and F3 are Cm-compatible, then i f  range Fl C range F, or if 
range F2 3 range F, , Fl and F, are Cm,-compatible. 

In the absence of any condition on the ranges of Fl , F, , and Fs , 
(A) is false. 
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FAMILIES OF 
DIFFERENTIABLE FUNCTIONS ON M, 

The manifold M,, shall be an abstract differentiable manifold of 
class C‘, r > 1, as defined in 5 13. We shall extend Theorems 6.3 
and 6.5 on the existence of ND functions in a prescribed family G of 
differentiable functions. As in 5 6, the parameters of the family shall 
be the coordinates d,.,,, am of a point a E A,, an m-dimensional 
Euclidean space. 

The Family G. The functions of the family will be the partial 
mappings (14.1) for fixed a E A,,, of a real-valued Cu-mapping, 

( ~ , a ) + G ( p , a ) :  2-R 

l < c L < r ,  

defined on an open subset Z of the product M ,  x A,,, . The first 
theorem, Theorem 14.1, is an easy consequence of Theorem 6.3 or 6.5 
and has numerous applications. A difficulty not met in 5 6 is that the 
“rank condition” in Theorem 14.1 is defined in terms of G and of 
presentations in M ,  . This rank condition should accordingly be 
shown to be independent of the choice of presentations in M,, used 
to define it, in so far as this choice is arbitrary. This is done in 
Lemma 14.1. 

Theorem 14.1. Introduction (a). Whenever we refer to a product 
X x A of two spaces X and A of points p and a, respectively, we 
shall understand that the “projections” prl and pra of X x A onto X 
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and A, respectively, are mappings such that, for arbitrary 
( P , a ) E X  x A 

PdP, a)  = P Pr,(P, a )  = a* 

(b) G as a Family of Mappings GO. The sets Q(G), Qdeg(G). The 
domain 2 of G is open in M ,  x A,. For fixed a E prz 2 introduce 
the open subset 

Z(a) = {P E M n  I (P, a)  E z> 
of M a .  The partial mapping 

p + G( p ,  U )  = G“( ,b) : Z(U) -+ R (14.1)  

is well-defined. The mappings G will be regarded as the family of 
mappings G”. Let Q(G) denote the set of pairs ( p ,  a)  E 2 such that p 
is a critical point on M ,  of G“. Let Qdeg(G) be the subset of pairs 
( p ,  a )  E Q(G) such that p is a degenerate critical point of G”. 

Theorem 14.1 is concerned with the measure of prz Qdeg(G) in A, . 
(c) Each point ( p ,  , a,) E 2 has a 

neighborhood X x N relative to 2, where N is an open neighborhood 
of a, relative to A,,, and X is a coordinate domain of M, given by a 
presentation (F : V ,  X )  E 9 M n  . A neighborhood of (p, , a,) of this 
character which is a relatively compact subset of another neighborhood 
of this character, will be called canonical. We see that each point 
( p ,  , a,) E 2 has an arbitrarily small canonical neighborhood. Since 
M ,  is coverable by a countable set of presentations in gM, ,  , it is clear 
that if w is the set of positive integers, there exists a set 

(Xk x Nk:l!€ew (14 .2 )  

Canonical Neighborhoods in 2. 

of canonical neighborhoods of points of 2 whose union is 2. 

(d) Local Representations U of G. The sets I‘( U),  rdeg(  U). The 
mapping G of (14.1) is assumed of “class 0” on 2 in the following 
sense. Corresponding to a prescribed point ( p, , a,) E 2 there exists 
a “canonical” neighborhood X x N of ( p ,  , a,) in 2 such that the 
local representation 

(0, a)  + G(F(w), U )  = U(V, U )  : V x N --+ R 

of G is of class C’ on V x N for some presentation (F : V ,  X )  E 9 M n  

(14 .3 )  
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Let F( U )  be the set of pairs ( w ,  a) E (V x N) such that 

0 = Uul(w, n)  = ... = Uun(w, a) = 0. (14.4) 

A pair (0, a) is in I‘( U )  if and only if w is a critical point of the partial 
mapping w -+ U(v,  a) .  Let the subset of pairs ( w ,  a) E r ( U )  for 
which w is a degenerate critical point of the partial mapping w + U ( v ,  a )  
be denoted by rdeg( U). 

(e) The Local Rank Condition. Given the “local representation” 
U of G as in (14.3), we proceed as in 5 6, setting U,, = U, , i = 1 ,..., n, 
and let 11 Ua,(w, a)ll be the n by n + m functional matrix of U, ,..., U, 
with respect to the n + m variables 

w* ,..., w”; u1 ,..., urn, (0, a)  E V x N. (14.5) 

The rank condition on 1 1  U,, 1 1  requires that 

rank11 U d W ,  411 = n,  (w ,  a) E W). (14.6) 

We shall refer to r( U )  as the w-critical ensemble of U and to 

I1 Ui, II = H(U) (14.7) 

Theorem 14.1 extends Theorem 6.3. It concerns a manifold M ,  
as the v-critical matrix of U. 

of class Cf and presentations (F : V ,  X) E 9 M n  . 

Theorem 14.1. Let 2 be a nonempty open subset of M ,  x A ,  and 
( p ,  a) + G( p ,  a)  a real-valued 0-function on 2, 1 < p < I ,  such 
that for each “local representation” 

(w, U )  -+ G(F(w), U )  = U(W, U )  : V x N -+ R (14.8) 

of G the corresponding w-critical matrix H( U )  satisjies the rank condition 

(14.9) rank([ Uij(w, a)ll = 11, ( w ,  a) E I‘( U).  

Then meas prz.Rdeg(G) = 0. 

Proof of Theorem 14.1. As we have seen, there exists a countable 
set (14.2) of “canonical” neighborhoods X ,  x Nk in 2 with union 2. 
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Because the neighborhood x k  x Nk is canonical, it is the relatively 
compact subset of another canonical neighborhood 8, x 8, in Z 
such that x k  and 8 k  are coordinate domains of M ,  given by presen- 

is an extension of Fk . 
tations ( F k  : v k  , x k )  E gMn, and ( P k  t r k  , X k )  E gMn Of which p k  

For Fk and f l k  we introduce the corresponding local representations 

(0, a) + G(Fk(w), a) = Uk(W, a), (0, a) E V k  X Nk , (14.10) 

(0, a) +G(Pk(W), U )  = Ok(W, U ) ,  (0, a) E P k  X 8, (14.11) 

of G. By hypothesis the critical matrices H( Uk) and H( Ok) have the 
rank n at each point ( p ,  a)  in I"( Uk) and r( ok), respectively. We infer 
from Theorem 6.5 that for each k E w 

Jordan content pr2 Pdeg( Uk)  = 0. (14.12) 

There accordingly exists a subset c k  of Nk of measure zero in A,  
such that for a E N k  - "k the partial mappings v --t Uk(v, a), 
v E V,  , k E w,  are ND. By definition of Uk we have 

U k ( V ,  a)  = G'(Fk(V)), V E vk, 

so that for a E Nk - (Tk , Gu I x k  is ND. Now the domain Z(a) of G' 
is the union of a subset of the domains x k  . If then u = UkE,,, u k  , a 
function Ga of the family G is N D  on Z(a) for each a E przZ - u, that 
is, for almost all a E pr2Z. 

This establishes Theorem 14.1. 
Theorem 14.1 is implied by Theorem 14.2 below, as Theorem 6.3 

was implied by Theorem 6.5. 

Theorem 14.2. I f ,  under the hypothesis of Theorem 14.1 Z, is an 
arbitrary, open, relatively compact subset of the set Z of Theorem 14.1, 
then 

Jordan content pr2(Zo t'r SZdeg(G)) = 0. (14.13) 

Proof. The set 2, is covered by a finite subset of the canonical 
neighborhoods (14.2) covering Z. For each k E w (14.12) holds, or, 
equivalently, (14.13) holds with 2, replaced by X ,  n Nk . Hence 
(14.13) holds as stated. 
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Theorem 14.1 follows from Theorem 14.2; Theorem 14.1 is a 
consequence of the validity of (14.12) for each k, and thus a conse- 
quence of Theorem 14.2. 

The Invariance of the Rank Conditions (14.6). The principal 
condition of Theorem 14.1 is on the rank of the critical matrices H( U) 
of local representations (14.3) of the family G. Because this condition 
bears on each such local representation U, it would be difficult to verify 
without the following lemma on the invariance of the rank condition 
(14.6) under a change of local coordinates of M, . 

Lemma 14.1. If the critical matrix H( U )  of a local representation U 
of G of the form (14.3) satisfies the associated rank condition (14.6), 
then the critical matrix H( U') of a local representation U' of G of the 

(w ' ,  a)-+G(F'(w'), a) = U'(o', a)  : V' x N - +  R (14.13') 

also satisfies the associated rank condition (14.6) whenever 
(F : V ,  X )  E 9 M n  and (F' : V', X )  E 9 M n  present the same domain 
X = X' in M, . 

form 

Proof of Lemma 14. I .  Notation. By virtue of the C'-compatibility 
of the presentations 

(P  : v, X ) ,  (F' : V', X),  x = X', ( 14.14) 

in 9 M n  there exists a Cr-diff, 

w' -+ $(o') = 0,  

of V' onto V ,  where 

( 14.1 5) 

$(d) = ($l(d), ..., $"(d)) = P1(F'(d)), W' E V'. (14.16) 

Let the partial derivatives of U and U' with respect to vl,  ..., vn and 
w", ..., 0'" be denoted, respectively, by 

U, ,..., U,, and U; ,..., Uh . (14.17) 

By definition of U and U' we have U(v,  a )  = U'(v', a),  subject to 
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(14.15), and, with integers s and f on the range 1, ..., n, we have 
(summing with respect to t )  

u:(o’, a) = U,(q a) - a!&‘) . (14.18) 
awl4 

From (14.18) we infer that the pair (0, a) E V x N is in the “critical 
ensemble” r ( U )  of U if and only if, subject to (14.15), the corre- 
sponding pair (w’,  a) is in the critical ensemble r( U’) of U’. 

Method of Proof of Lemma 14.1. Let (wo , a,) be an arbitrary pair 
in r( U )  and (w; , a,) the corresponding pair in I‘( U’). Our object is to 
prove the following: 

The condition 

rank11 ui j (w0  1 a0)ll = 12 

implies the condition 

(14.19) 

rank11 Uij(wi, tzO)ll = n. (1 4.20) 

T o  this end, for r = n + 1, n + 2, ..., n + m let linear functions U, 
in the variables wl, ..., w”; al,  ..., am be: added to the set of n functions 
U, ,..., U, , choosing U, in such a way that each function U, vanishes 
at (wo , ao) and 

(14.21) 

Such a choice of U,+, ,..., Un+m is possible. 
Let functions Ui be defined on I/’ x N by the condition that 

U,(w, a)  = U:(w’, a) ,  r = n + 1 ,..., n + m, (14.22) 

subject to (14.15). To show that (14.19) implies (14.20), it is sufficient 
to show that (14.21) implies 

(14.23) 

since the matrices in (14.19) and (14.20) are composed of the first n 
rows of the determinants (14.21) and (14.23), respectively. 
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Change of Notation. To establish (14.23) as a consequence of 
(14.21) in a simple manner, we shall set 

(o', ..., on; a1 ,..., am) = (x' x2 ,..., X"+") = x, (14.24) 

(W'l, ..., orn; a', ..., am)  = (y', y2 ,..., yn+m) = y, (14.25) 

restricting x and y to the domains defined, respectively, by (14.24) 
and (14.25) when (o, a)  E V x N and (w', a )  E V x N. With this 
understood the diff (14.15) gives rise to a diff 

Y -+ (P1(Y),..., Pn+m(Y)) = x (14.26) 

of the domain of y onto the domain of x under which 

s = 1 ,..., n, 
Y = n + 1 ,..., n + m. 

rpS(y) = @(y', ..., y"), 

~ ' ( y )  =yr, 

Subject to (14.24) and to (14.29, we write 

U,,(o, u)  = Vu(x), 

VL(o', a) = Qy), 

xo = ( 0 0  1 4 ,  

p = 1 ,..., n + m, 

p = 1, ..., n + m, 

Yo = (oh 1 4. 

(14.27) 

Proof of the Implication (14.21) e- (14.23). Let p, u, h, and K be 
indices on the range 1,2, ..., n + m. With x and y corresponding under 
the diff (14.26), Eqs. (14.18) take the form (summing with respect to h)  

(14.28) 

for p = 1, ..., n, while Eqs. (14.22) take the form (14.28) for 
p = n + 1, ..., n + m. Taking account of the conditions [cf. (14.4)] 

(14.29) 

relations (14.28), subject to (14.26), imply that 

where the remainder vanishes when x = x,, and y = y o .  
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Let A and C be the (n + m)-square matrices 

and A, similarly the matrix of the Jacobian (14.23) evaluated when 
Y = Y o -  

Then (14.30) with x = xo and y == yo implies the matrix equality 
A, = C'AC, where C' is the transpose of C. Hence the nonvanishing 
of the determinants I C I and I A I implies that I A, I # 0 or, equiv- 
alently, that (14.23) holds. Thus (14.21) implies (14.23), and hence 
(14.19) implies (14.20). 

Lemma 14.1 follows. 

Note. It follows from Lemma 14.1 that in verifying the rank 
conditions of Theorem 14.1 or 14.2 it is by no means necessary to 
examine each local representation U of G. It is sufficient to examine a 
subset of local representations U of G of the form (14.3) so chosen that 
the associated domains F ( V )  x N have 2 as union. One can omit 
each local representation U whose critical ensemble r( U) is empty. 
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FOCAL POINTS OF REGULAR MANIFOLDS 

Let M ,  be a regular manifold of class C2 in a Euclidean space En, , 
0 < n < m. We are concerned in this section with two problems: 
the explicit a priori existence of ND functions on Mn and the density 
of focal points of M ,  in E m .  

We shall begin with a proof of Theorem 6.1. Theorem 6.1 affirms 
that for almost all points a E Em - M ,  the function x -+ ( 1  x - a 11 I Mn 
is ND on M ,  . Theorem 6.1 can be proved very simply by proving 
the following equivalent theorem: 

Theorem 15.1. If M ,  is a regular C2-manifold in Em , 0 < n < m 
then for almost allpoints a E Em - Mn the function 

x + 1/11 x - a II (15.1) 

restricted to Mn is ND on M ,  . 
We shall prove Theorem 15.1 by means of Theorem 14.1. 
That Theorems 6.1 and 15.1 are equivalent is shown by the follow- 

ing lemma: 

Lemma 15.1. If v + f (v) is a real-valued nonvanishing ND function 
of class C2 on an open subset V of En , then 1 If is ND on V .  

Proof of Lemma 15.1. The critical points o f f  and l/f are clearly 
the same. A critical point a, off is ND if the Jacobian 
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As a critical point of l/f, v,, is then ND, since 

The  lemma follows. 

The  following lemma leads to a proof of Theorem 15.1 : 

Lemma 15.2. If for x # a one sets ~ ( x ,  u)  = )I x - a then the 
m-square determinant 

Proof. For p = 1, ..., m set 

We wish to show that 

(1 5.2) 

(1  5.3) 

T o  that end note that for a fixed point a the transformation x -+y ,  
defined by setting 

Y” = a,&, a), x # a, (1 5.4) 

implies that 1 1  y 1 1  = 1 1  x - a and hence that under the transfor- 
mation ( 15.4) 

xu = a” +Y”llY 11-3’2, IIY I1 # 0. (15.5) 

Thus the transformation (1 5.4) has a continuously differentiable 
inverse and hence a nonvanishing Jacobian (15.3). 

Thus (15.2) is true. 

Proof of Theorem 15.1. We shall apply Theorem 14.1 to prove 

( P , 4 ~ l / l I P - ~ l L  P E M , ,  a $ w l ,  ( 1  5.6) 

Theorem 15. I ,  taking G of Theorem 14.1 as the mapping 

identifying A, of Theorem 14.1 with E,n of Theorem 15.1. 
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For fixed a, the partial mapping p -+ G( p ,  a,) has a point p, E M ,  
as critical point if and only if the vector p, - a, in Em is orthogonal 
to M ,  at p, . 

The truth or falsity of Theorem 15.1 is independent of the choice 
of the rectangular coordinate system in Em among coordinate systems 
obtained one from the other by translations or orthogonal transfor- 
mations of the coordinate axes xl, ..., xm. I t  is understood that the 
coordinates ul, ..., am are subject to the same transformations as the 
coordinates xl, ..., xm so that 1 1  x - a 1 1  is invariant. 

Suppose that p, is a point 
of M ,  and that the non-null vector p ,  - a, is orthogonal to M ,  at p, . 
Then p, is a critical point of Gao. Suppose that the origin has been 
chosen asp, and the xl, ..., xn axes as tangent to M ,  atp, . Let 17 be the 
coordinate n-plane of the xl, ..., xn axes. Let (F : V ,  X )  be a Monge 
presentation of a neighborhood X of p, relative to M ,  , so that F is 
the inverse of the orthogonal projection of X into 17. If then p, = F(u,) 
is the origin, 

The Rank Conditions of Theorem 14.1. 

(1 5.7) 
a F i  
- (v,) = ahi ,  i = 1, ..., m; h = 1 ,..., n. av* 

One introduces the local representation 

(v, Q) + q(F(v),  U )  = U(O, a), v E V ,  Q E N ,  (15.8) 

of F, where N is an open neighborhood of a, not meeting M,, . For 
h = 1 ,..., n and i summed over the range 1 ,..., m and for v E V and 
a E N  

( 1  5.9) 

For h and i as in (15.7), for k on the range I,..,, m, (15.9) implies that 

We shall indicate evaluation of the terms of (15.10) when v = uo , 
a = a, , x = p, by adding a superscript 0. Taking account of (1 5.7), 
one arrives at the equality of the n by m matrices 

(15.11) 
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Since (15.2) holds, the matrices ( I  5.1 1) have the rank n. Thus the 
v-critical matrix H( U )  has the rank n at ( p ,  , a,), 

I t  follows from the invariance of the rank condition (Lemma 14.1) 
under admissible change of local parameters on M, that the rank 
condition of Theorem 14.1 is satisfied for each local representation 
U of G. 

Theorem 15.1 accordingly follows from Theorem 14.1, and 
Theorem 6.1 from Theorem 15.1. 

Definition 15.1. Focal points of M ,  in Em . If a non-null vector 
p ,  - a, is orthogonal to M ,  at p ,  and if p ,  is a degenerate critical 
point of the partial mapping 

P-llp - 0, II : Mn-+R, (15.12) 

then a, is called a focalpoint of M ,  with base point p ,  . 

sity of New York in 1965 (see Morse [ls]): 
The  following was proved by Morse in lectures at the City Univer- 

Theorem 15.2. 

This theorem calls for the following supplement: 

There exists a noncompact regular manifold M ,  of 
class C" in EIL+l whose focal points are everywhere dense in En,, . 

Theorem 15.3. The focal points of a compact regular manifold M ,  
of class C2 in E,, , 0 < n < m,  are nowhere dense in Em . 

A proof of Theorem 15.3 was given by Morse [13], p. 243 in the 
analytic case without making use of properties of M, other than 
differentiability. However, this theorem is implied by the following 
corollary of Theorem 14.2: 

Lemma 15.3. I f  M ,  is a compact regular C2-manifold in E , ,  
0 < n < m, and X a relatively compact open subset of Em bounded from 
M ,  the set of focal points of M ,  in X has a Jordan content zero. 

As we have just seen, the mapping ( p ,  a )  4 G( p ,  a ) ,  defined by 
(15.6) on the open subdomain Z = ill, x (E,,L - M,) of M ,  x E,l, ,  
satisfies the conditions of Theorem 14.1 when A,, = E,, . An open 
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relatively compact subset of 2 is afforded by 2, = M ,  x X .  It 
follows from Theorem 14.2 that 

Jordan content pr,(Z, n Qdeg(G)) = 0. ( 1  5.13) 

Lemma 15.1 implies that for fixed a $ M ,  , the mappings 
p E M ,  , are both ND if one is p --f 1 1  p - a 1 1  and p --+ IIp - a 

ND; Lemma 15.3 accordingly follows from (15.13). 



DIFFERENTIABLE MAPPINGS 
OF MANIFOLDS INTO MANIFOLDS 

Let M ,  and N,  be manifolds of class at least C'; suppose m an 
integer such that 0 < m < p. We shall define differentiable mappings 
of M ,  into N,  . 

Definition 16.1. A Mapping v : M ,  --f N,  of Class Cm. Amapping 

(16.1) P + P(P) : I M ,  I + I N ,  I 

will be said to define (or simply to be) a mapping of class C m  of M ,  into 
N,  if corresponding to a prescribed point p ,  E M ,  there exist presen- 
tations 

( F  : U, X )  E 9 M n  and (G : V ,  Y )  E 9iV, (1 6.2) 

such that p ,  E X, v ( X )  C Y, and the mapping 

G - ' F , ( ~ , ~ F ) :  U +  V 

is of class C". 
( I  6.3) 

Note. The parentheses cannot be removed from rp 5 P in (16.3), 

Suppose that in the sense of Definition 16.1 v is a Cm-mapping of 

since the range of y may not be included in the domain Y of G-l. 

M ,  into N ,  . 

Definition 16.2. The mapping y of (16.1) will be termed a Cm- 
N ,  if corresponding to each p ,  E M ,  , F and G in immersion M,, 

111 
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(16.2) can be chosen so thatp, E X ,  v ( X )  C Y ,  and the mapping (16.3) 
is a Cm-immersion in the sense of Definition 5.1. A Cm-immersion 
e, : M ,  --t N,  which is a homeomorphism into N,  is termed a Cm- 
embedding of M ,  in N, (cf. Munkres [l], p. 10). 

An immersion M ,  + N,  is possible at most if n < r .  This is 
because dim U = n and dim V = r.  

Remark. If v is a Cm-immersion (or embedding) M ,  -+ N,, , 
e, I MA is a Cm-immersion (or embedding) Mk -+ N,  of any Cm- 
submanifold MA of M ,  . In fact, if p ,  E Mk , the condition of Defini- 
tion 16.2 is satisfied by hypothesis by some F E 9 M n ,  and hence is 
also satisfied by any restriction of F whose coordinate domain con- 
tains p ,  . 

The following lemma frees Definitions 16.1 and 16.2 of their 
dependence upon the choice of presentations ( F :  U ,  X )  such that 
p ,  E X .  However, one needs characterizations of immersions both 
in the form of Definition 16.2 and in the form of Lemma 16.1. 

In Lemma 16.1 the inclusion of the phrase “(and an immersion)” 
in parentheses is meant to imply that Lemma 16.1 is true if this 
phrase is kept or deleted. 

Lemma 16.1. A mapping q~ of M ,  into N,  is of class Cm (and an 
immersion) if and only if the following is true: Corresponding to arbitrary 
presentations 

and (16.4) (F,  : U, , X,) E QM,, (G, : V ,  , Y,) E QNT 

such that e,(Xl) C Yl , the mapping 

GL1c(v~BF1): Ul+ V ,  (16.5) 

is of class Cm (and an immersion). 

It is clear that v is of class Cm (and an immersion) if the condition 
of the lemma is satisfied. We shall prove the converse (A): 

(A) If q~ is of class Cm (and an immersion), each mapping (16.5) 
is of class Cm (and an immersion). 

It is sufficient to prove that if uo is a prescribed point of U,  , the 
restriction of G:’ o (q 6 Fl)  to some neighborhood of u, in U,  is of 
class Cm (and an immersion). 
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The  point p ,  = F,(u,) is in X ,  and cp( p,) is in Yl . Since cp is of 
class Cm (and an immersion) by hypothesis, there exist presentations 
(16.2) such that 

p o E X C X 1 ,  rp(X)C Y c Y l ,  (16.6) 

and the mapping (16.3) is of class C" (and an immersion). Corre- 
sponding to these sets X and Y there then exist unique presentations 

(F: 0, X ) E ~ M ,  and (c : p, Y ) E ~ N ~  (16.7) 

which are restrictions, respectively, of the presentations (1 6.4). Since 
v ( X )  C Y C Yl , the mapping 

e - 1 0  (q OP) :: 0- P (16.8) 

is well-defined and a restriction of the mapping (16.5) to a neigh- 
borhood 0 in U of the point u, prescribed in U. T h e  proof will 
accordingly be complete if we prove the following: 

The mapping (16.8) is of class Cm (and an immersion). By 
virtue of the Cu-compatibility of F and P and of G and e, there exists 
a 0-diff  7 of 0 onto U and a 0-diff  5 of V onto P such that 

F = F o q ,  G = € 0 5 .  (16.9) 
It follows that 

c-1 o (rp aP) = 6 o (G-1 6 (v E F ) )  o 7. ( 1 6.10) 

Since 0 < m < p, the mapping (16.8) is then of class C" (and an 
immersion), with the mapping (16.3). 

One can show that Lemma 16.1 is false if the condition 

(B) 

This completes the proof of (B) and thereby of the lemma. 

Note. 
0 < m < p is omitted. 

folds. 
We state a theorem on the composition of Cm-mappings of mani- 

Theorem 16.1. For i = 1, 2,  3 ,  let M., be dt$?rentiable manifolds 
each of class C u .  Suppose that 0 < m :G p. If 

P 4 V( P) : Mn, 3 Mn, 1' - 44 P) : Mn, + Mn, (16.11) 

n, < n2 5: n3 
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are Cm-mappings (and immersions), the composite mapping 0 = 
$I o q~ : M,, + M,, is of class Cm (and an immersion). 

Let points p ,  E M,, be defined by prescribing p ,  E M,, 
and setting p ,  = ?( p , )  and p ,  = $I( p,).  Our hypotheses imply that 
presentations 

Proof. 

can be chosen in the order i = 3,2,  1 so that p ,  E X, , the inclusions 
X ,  3 4(X,) and X ,  3 v(X,) are valid, and the mappings 

Fi15(+6F2): U 2 - + U 3 ,  G'C(p'CFl): U 1 + U z  (16.13) 

are of class Cm (and immersions). 

the mapping 
It follows from the above inclusions that X ,  3 (I,L o v)(X,) ,  so that 

Fl' 5 (0 6 Fl) = [Fil 6 (+ 6 F,)] 0 [F,' 5 (p' 6 Fl)] : Ul ---+ U, (16.14) 

is well-defined and the equality (16.14) valid. The mapping (16.14) 
is of class Cm (and an immersion), with the mappings (16.13). Since 
p ,  is prescribed in M,, and is in X ,  , 0 = $I o rp is of class Cm (and an 
immersion) in accord with Definition 16.1. 

This establishes Theorem 16.1. 

Definition 16.3. Diffs cp. Let M ,  and N ,  be differentiable mani- 
folds of at least class c ~ .  Suppose that 0 < m < p. We then term a 
homeomorphism rp of I M ,  I onto I N ,  I a Cm-diff of M ,  onto N ,  if 
both q~ and v-l are mappings of class Cm. 

By virtue of this definition tp is a Cm-diff of M ,  onto N ,  if and only 
if v-l is a Cm-diff of N ,  onto M ,  . 

The following is a corollary of Theorem 16.1, 

Corollary 16.1. Let M ,  , N ,  , and Q, be 0-manifolds.  Suppose that 
0 < m < p. If cp is a Cm-d# of M ,  onto N ,  and ;f $I is a Cm-diSJ of 
N ,  onto Q, , then the composite mapping $I o q~ is a Cm-d#of M ,  onto Q, . 

We add two theorems. 
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Theorem 16.2a. Let y be a homeomorphism of I M, 1 onto 1 N,  I .  
A necessary and suficient condition that y be a Cm-d@ of M ,  onto N ,  , 
0 < m < p, is that for arbitrary presentations 

( F  : U ,  X ) E  9 M n  and (G : V ,  Y)ELBN, ( 16.15) 

such that y ( X )  = Y the homeomorphism 

G-' 6 (cp S F )  : U +  V (16.16) 

be a Cm-d.zflof U onto V. 

A Convention. Presentations F and G in this order such that 
y ( X )  = Y will be called y-paired. If 1+4 is the inverse of y ,  presen- 
tations G and F are +paired in that X = #( Y).  

Regardless of whether or not y has any differentiability properties, 
it is seen that if p ,  is prescribed in M , ,  there exist "y-paired" 
presentations F and G such that p ,  E X. We can now prove (i): 

The condition of the theorem is suficient that y be a Cm-d@. (i) 

Proof of (i). Given p ,  E M ,  , by hypothesis there exist y-paired 
presentations F and G such that p ,  E X and the homeomorphism 
(16.16) is a Cm-diff. Hence by Definition 16.1 y is of class C". When 
the mapping (1 6.16) is a diff of class C" its inverse, 

F - ' z ( + z G ) :  V + U ,  ( 16.17) 

is of class Cm according to Definition 1.1. It follows then from Defini- 
tion 16.1 that # is of class Cm, so that by Definition 16.3 is a Cm-diff. 

We now prove (ii): 

(ii) If q is a Cm-di$f, the condition of the theorem is satisfied. 

Since y is of class C", it follows from Lemma 16.1 that the mapping 
(1 6.16) is of class C". Since # is of class C", it follows similarly from 
Lemma 16.1 that the mapping (1 6.17) is of class Cm. Since the map- 
pings ( 16.16) and ( 16.17) are inverse homeomorphisms, both are diffs. 

This establishes ( i i )  and completes the proof of the theorem. 

Theorem 16.2b. A homeomorphism y of M,, onto N ,  is a Cm-d iy  
if and only if q is a C"-embedding M ,  + N ,  . 
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The  inverse t,L of a Cm-embedding cp : M ,  --+ N ,  onto N ,  , is both a 
homeomorphism and an immersion and in particular of class Cm. 
Hence a Cm-embedding cp is a Cm-diff. Conversely, a Cm-diff of M ,  
onto N,, is a @-embedding in the sense of Definition 16.2, as we now 
verify. 

If tp is a P -d i f f  of M ,  onto N , ,  then by Theorem 16.2a each 
homeomorphism (16.16) is a Cm-diff of U onto V and hence by 
Lemma 1.1 an immersion, By Definition 16.2 cp is then a Cm-embed- 
ding M,, --t N ,  . 

Theorem 16.3a. If M ,  and N ,  are Cm-manifolds and cp a Cm-d@ 
of M ,  onto N ,  , the implications 

( F :  U,  X ) € 9 M n  => (qcF : U,  p'(X)) E ~ N , ,  

(G : V ,  Y )  E 9N,, 

(16.18) 

(16.19) (q-l 6 G : V ,  p-l( Y ) )  E 9M,,  

are valid for arbitrary F E 9 M n  and G E 9 N ,  . 
Moreover, the biunique mapping of O M ,  into 9 N n  implied by (1 6.18) 

is onto 9 N n ,  and equivalently the inverse biunique mapping of 9 N n  
into 9 M n  implied by (16.19) is onto 9 M n .  

Proof of (16.18). The  homeomorphism 

q c F :  U+p'(X) (16.20) 

is onto the open subspace y ( X )  of I N ,  I. This mapping is a presen- 
tation in 9 N n  by Definition 13.1 if and only if the presentations 

(G : V ,  Y ) e 9 N n  and (p' EF : U,  q ( X ) )  (16.21) 

of go[ N ,  I are Cm-compatible for arbitrary choice of G E 9 N n ,  
If the presentations (1 6.21) are nonoverlapping, they are trivially 

Cm-compatible. In  any other case set P = (Y  n cp(X)) and set 
g = tp--l(P). Then, in accord with (A,) and (A,) of Q 13, the presen- 
tations (16.21) are Cm-compatible if restrictions (G : P, P) and 
(QI 6 P : 0, ~(2))  of the respective presentations (16.21) are Cm- 
compatible, that is, if the homeomorphism 

G - y p ' 5 P ) :  0-P, P=p'(X), (16.22) 
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of 0 onto P is a Cm-diff. On applying Theorem 16.2a, given the 
diff v and the presentations 

(I@: 8 , 2 ) ~ g l M ,  and (G:  P , ~ ) E ~ N , ,  P=QI(*), 

we conclude that the homeomorphism (16.22) is in fact a Cm-diff. 
Hence the presentations (16.21) are Cm-compatible and (16.18) is 
valid. 

The  proof that the implication (16.19) is valid is similar. 
That the mapping of g M ,  into QN,  implied by (16.18) is onto 

9 N n ,  and that the mapping of 9 N n  into 9 M ,  implied by (16.19) is 
onto 9 M ,  follows from the fact that these two mappings are inverses. 

Theorem 16.3b supplements Theorem 16.3a, and defines a Cm- 
manifold y(M,): 

Theorem 16.3b. Let M ,  be a Cm-manifold and y a homeomorphism 
of 1 M ,  I onto a topological manifold r, . The ensemble 

K = {(QI .j F : U ,  QI(X) )  I ( F  : U, X )  E 9 M n }  (16.23) 

of presentations of open subsets of r, is a maximal set of pairwise Cm- 
compatible presentations of open subsets of r, and covers r, . 

Moreover, + is a C’”-d@ of M ,  onto a Cm-manifold, DENOTED BY 

y(M,), whose carrier is y( I M,  I )  and for which %p(M,) = K. Finally, 
y is a Cm-diSf of M ,  onto no other Cm-manifold than y(Mn). 

Proof. Any two presentations 

(QI 0 Fl : u, 1 QI(X1)) and 

in the set K are Cm-compatible, since the corresponding presentations 

and 

are C’*L-compatible. It follows from Definition 13.1 of a Cm-manifold 
and from Theorem 13.1 that there exists a Cm-manifold Nn whose 
carrier is r,, and for which QN, 3 K. 

(rP 0 F, : u, I QI(X2)) 

(F,  : U, , X,)  E 9Mn (F ,  : U ,  , X,) E g M , ,  

We shall verify the following: 

(i) The homeomorphism of I M ,  I onto r, is a Cm-embedding of 
M ,  onto N7L . 



118 11. ABSTRACT DIFFERENTIABLE MANIFOLDS 

VeyiJication of (i). 
there exist presentations 

Corresponding to a prescribed point p ,  E M ,  

( F  : U ,  X ) E ~ M ,  and (G : V ,  Y ) € 9 f l n  (16.24) 

such that p ,  E X and 

(G : V ,  Y )  = ( q a F  : U ,  cp(X)). (16.25) 

The  resultant mapping G-' o (cp a F) reduces to the identity mapping 
of U onto U. I t  follows from Definition 16.2 that (i) is true. 

We infer from Theorem 16.2b that cp is a Cm-diff of M ,  onto Nn 
and from Theorem 16.3a that 9&', = K .  Hence K is a maximal set 
of pairwise Cm-compatible presentations of open subsets of r, . 

Thus cp is a Cm-diff of M, onto the @-manifold p(M,) whose 
carrier is r, and whose presentation set is K .  That p is a Cm-diff of M ,  
onto no other Cm-manifold follows from Theorem 16.3a. 

This completes the proof of Theorem 16.3b. 

Q,-embedded Manifolds. The last four theorems have been 
concerned with mapping a differentiable manifold M ,  onto a differen- 
tiable manifold of the same dimension. We now turn to Cm-embed- 
dings cp (Definition 16.2) of a differentiable M ,  into a differentiable 
manifold Qr with 0 < n < r. In  this subsection we suppose that M ,  
and Qr are of class at least C' and that 0 < m < p. 

Before going further it is essential to recall that two differentiable 
manifolds are regarded as identical if and only if they have the same 
carriers and the same set of presentations. 

Embedding Terminology. A Cm-embedding p of M ,  into Qr is 
understood in the sense of Definition 16.2. If p is an arbitrary homeo- 
morphism of j M ,  I onto a topological manifold F( I M ,  I), cp(Mn) has 
been defined as an n-manifold with carrier q ~ (  I M ,  I) and set of presen- 
tations (16.23) (see Theorem 16.3b). If, in particular, p is a homeo- 
morphic mapping of I M ,  I into I Q,, I, q is in general not an embedding 
of M ,  into Q, . If, however, q~ is a Cm-embedding, we term N ,  = p(Mn) 
a Q,-embedded manifold. 

The  following theorem serves to simplify the problem of charac- 
terizing Q,-embedded manifolds. In  this theorem we understand 
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that an inclusion mapping of a subset A of B into B maps each point 
x E A into x E B. This is a conventional use of the term “inclusion 
mapping.” 

Theorem 16.4. Let N,  and Q, , 0 < n < r ,  be manifolds of class 
at least Cu. Suppose that 1 N ,  1 is a subspace of 1 Q, 1 and that 0 < m < p. 
Then N ,  is a Q,-embedded manifold i f  and only i f  the inclusion mapping I 
of I N ,  I into I Qr I is a C m  embedding, N ,  + Q, . 

Proof. If I is an embedding N ,  -+ Q, , then by definition the 
manifold I (N, )  = N ,  , is a Q,-embedded manifold. 

If rp is a Cm-embedding M ,  -+ Q, such that (p(Mn) = N ,  , it is 
a trivial consequence of Definition 16.2 that the inclusion mapping 
I : N ,  + Q, is a Cm-embedding [use the presentations (16.23) of N,] .  

Thus Theorem 16.4 is true. 

A Q,-embedded Cm-Manifold ((r, , Q, , m)) .  Let r, be a topological 
n-manifold which is a subspace of Q, , and m a positive integer. The  
principal objective of this subsection is the proof of a uniqueness 
theorem for a Q,-embedded Cm-manifold whose carrier is r, . 
If T, is prescribed, such a manifold does not exist in general, but 
if it does exist, it is uniquely determined by r, , Q, , and m, as we 
shall see in Theorem 16.5, and will be denoted by ((r, , Qr , m)) .  

Introduction to Theorem 16.5. Recall that a presentation ( H  : U ,  2) E 

gar, (Definition 13.3) of an open subset Z of r, and an integer 
m > 0 uniquely determine, in the sense of Definition 13.4, a Cm- 
manifold 2, with carrier 2. Note also the following consequence 
of Definition 16.2: The  inclusion map of 2 = I Z, I into I Q, I is a 
Cm-embedding Z, + Q, if and only if each presentation (G : V ,  Y )  EQ, 
and each open restriction (A : 0,z) of ( H  : U ,  2) for which G-’ o fi 
is a well-defined composition yield a mapping 

G - 1 0 f i :  0-t V (16.26) 

which is a Cm-embedding of U into V in the sense of Definition 5.1. 
In Theorem 16.5 we pass from this simple case to the general case. 

Theorem 16.5. For 0 < n < r let Q, be a Cu-manifold and r, 
a topological n-manifold which is a subspace of 1 Q, I. Suppose that 
0 < m < p and that conditions ( a )  and (8) are dejned as follows: 
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(a )  

(8) 

Under condition ( a )  there shall exist a Q,-embedded Cm-manifold 
P, with carrier r, . 

Under condition (8) there shall exist a covering of I’, by a 
countable subset K of presentations ( H  : U, 2) E gorn such that the 
corresponding prime Cm-manifolds Z, (Definition 1 3.4) are Cm-embedded 
in Qr . 

Then : 

(h) Conditions (a) and (8) are equivalent. 
(k) A Q,-embedded Cm-manifold with carrier r,, if it exists, is 

uniquely determined by (r, , Q, , m) and will be denoted by ((r, , Q, , m)).  

The uniqueness of P, (if P, exists) means its independence of 
the different Cm-embeddings tp : M ,  -+ Qr (if any exist) which yield 
a manifold tp(M,) with carrier r, . 

If the manifold P, of (a) exists, each 
presentation (H : U, 2) in 9 P n  is a presentation in gar, . Since each 
open restriction of (H : U,  2) is in 9 P n ,  the Cm-manifold Z, defined 
by (H : U,  2) in Definition 13.4 is a submanifold of P, . Since P, 
is by hypothesis Q,.-embedded, its submanifold Z, is Q,-embedded. 
(see Remark following Definition 16.2.) Condition (8) thus follows 
from (a). 

We begin this proof by verifying the 
following lemma: 

Proof that ( a )  Implies (8). 

Proof that (8) Implies (a). 

Lemma 16.2. 

Let there be given two presentations 

Under the conditions of (8) the presentations in K are 
mutually Cm-compatible. 

( H ’  : U’, 2’) E K and (H” : U”, Z’) E K (16.27) 

such that 2’ n 2” # 0 .  It follows from Definition 5.4 of Cm- 
compatibility that H‘ and H” are Cm-compatible if and only if the 
following statement (i) is true: 

(i) Each point p o € Z ’ n  2” admits an open neighborhood 2” 
relative to 2’ n 2” such that the restrictions 

(A’ : Z?‘, 2’) and (A” : Z?”, 2’) (16.28) 

of the presentations (16.27) are Cm-compatible. 
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We shall show that the presentations (16.27) are Cm-compatible 
by showing that the presentations (16.28) are Cm-compatible if 2" is 
a sufficiently small open neighborhood of p ,  in 2' n 2 .  

Turning to Definition 16.2, let (G : V ,  Y )  E 9QT be chosen so that 
p ,  E Y ,  and suppose (as is possible) that 2" C Y.  By hypothesis of (8) 
the Cm-manifolds defined by the presentations (16.27), namely, Zk 
and Z i  , are Cm-embedded in Q,. , so that by Theorem 16.4 the 
inclusion mapping is an embedding of Zk and Z i  in Q,, . Hence by 
Definition 16.2 the mappings 

G- la f l ' :  U ' + V  (16.29) 

G-laA":  6 " + V  (16.30) 

are Cm-embeddings in the sense of Definition 5.1. Since these two 
mappings are onto the same topological manifold, G-'(Z") in V ,  it 
follows from Lemma 5.1 that they are Cm-compatible. Hence the 
mapping 

(G-1 6 fl')-l 6 (G-1 6 fl") = (fi')-l 5 A" : 0"- 0' (16.31) 

is a Cm-diffeomorphism of t? onto 0'. Thus I? and I?' are Cm-com- 
patible. It follows from (i) that the presentations (16.27) are Cm- 
compatible. 

Thus Lemma 16.2 is true. 

The  presentations K cover r, by hypothesis of (p )  and are Cm- 
compatible by Lemma 16.2. By Definition 13. I r, is thus the carrier 
of a Cm-manifold P, such that 9 P n  contains the presentations in K. 
That P, is C"-embedded in Q,, by the inclusion mapping I P, I -+ I Q,, I 
follows from the hypothesis of ( p )  that the submanifolds Z, of P, 
defined by the respective presentations ( H  : U ,  2) E K are also 
Cm-embedded in Q,. . Thus (18) implies (a) .  

T h e  equivalence of ( a )  and (p )  is established. 

Proof of (k); the Uniqueness of P, . Let PA be an arbitrary n-mani- 
fold satisfying (a) .  We shall prove that P, = Pk . 

T h e  proof that ( a )  implies ( p )  shows that ( p )  holds if K is taken as 
the union of a countable subset of presentations 9 P n  covering r, 
and a countable subset of presentations of 9 P L  covering r,. By 
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Lemma 16.2 the presentations in this set K are mutually Cm-com- 
compatible implying that 9 P n  = 9PA and hence P, = PA. 

Thus (k) is true and the proof of Theorem 16.5 is complete. 

We record the following corollary of Theorem 16.5: 

Theorem 16.6. Let M ,  and Qr , 0 < n < Y, be manifolds of class 
at least 0, and for some positive m < p let cp be a Cm-embedding 
M ,  + Q, . If one sets I tp(A4,)I = r, , then 

Relation (16.32) is a consequence of the uniqueness of P, of 
Theorem 16.5 given I', , Qr , and m. The Cm-manifold cp(M,) is 
defined in Theorem 16.3b, while ( (F,  , Q, , m)) is defined in Theorem 
16.5. 

Corollary 16.2 will be needed: 

Corollary 16.2. Let cp : P, + Q, be a Cm-dtJeomorphism of a 
Cm-manifold Pr onto a Cm-manifoZd Qr and M ,  , 0 < n < I ,  a C m -  
manifold such that I M ,  I is a subspace of I P, I. 

If M ,  is Cm-embedded in P, , then 'p I I M ,  I defines a Cm-embedding 
of M ,  in Q, as a manifold cp(M,). 

Whether or not M, is embedded in Q, by cp I I M ,  I, a Cm-manifold 
cp(M,) with carrier I', = cp(1 M ,  I) is well-defined in accord with 
Theorem 16.3b. 

Since M ,  is Cm-embedded in P, , it is Cm-embedded in P, by the 
inclusion mapping I of I M ,  I into I Pr 1 (Theorem 16.4). By Defini- 
tion 16.2 corresponding to a prescribed point po  E I M ,  1 there 
accordingly exist presentations 

(F : U, X ) E . ~ M , ,  and (G : V ,  Y ) E . ~ P ,  (16.33) 

such that X C Y and the homeomorphism 

G - l z F :  U+ V (16.34) 

of U into V is a Cm-embedding of U into V in the sense of Defini- 
tion 5.1. The mapping 

(p' 6 G)-l6 (p' 5 F )  : U + V ( 1  6.35) 
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reduces to the Cm-embedding (16.34). Since 

(‘P 6 G : v, dy)) E gQr, (16.36) 

in accord with Theorem 16.3b, mappings of the type (16.35) show 
that tp I I M ,  I is a Cm-embedding of M ,  in Q?, in accord with 
Definition 16.2. 

Regular Arcsg on M ,  . Let M ,  be a Cm-manifold and I an interval 
of the t-axis. There are special mappings 

g : t + p ( t )  : I - +  I M ,  I 

which are continuous and locally biunique and which are termed 
regular arcs on M ,  . If g is a homeomorphism into I M ,  1, the image 
y of I in I M ,  I may be regarded as the carrier of the arc g. Let 
(F : U ,  X) E 9 M n  be given. If g is a homeomorphism into X ,  a 
mapping t ---f u(t)  : I ---f U such that p ( t )  = F(u(t))  is called a 
representation of g in terms of F-coordinates u. In  this case g is called 
regular if the mapping t --+ u(t)  is of class C1 and if 1 1  ri(t)ll never 
vanishes. 

Whether g is a homeomorphism or not, g will be called regular if 
corresponding to each to E I there exists a subinterval I, of I, open in I, 
which contains to and is such that the mapping t + p ( t )  : I ,  --+ I M ,  I 
is a regular arc with carrier in the range of some presentation in 9 M n  . 

One sees that the “regularity” of a simple arcg on M ,  is independent 
of the coordinate domains in which this regularity is tested. 

We shall make use of a fundamental theorem due to Whitney [2]: 

Theorem 16.7. Whitney. An abstract differentiable manifold M ,  
of class Cm admits a Cm-embedding in a Euclidean space of dimension 
at most 2n + 1. 

Whitney’s result can be formulated as follows. Corresponding 
to an abstract Cm-manifold M ,  there exists a Cm-diff cp of M ,  onto a 
regular Cm-manifold Nn in a Euclidean space of dimension at most 
2 n +  1. 

In  addition to Whitney’s proof [2] of this theorem and of related 
theorems, there is a relatively short proof by de Rham appearing 
early in his book [l]. There is also an introductory treatment by 
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Munkres in [l], pp. 16-20. Because of the accessibility of these and 
other expositions, we shall not give a proof of Whitney’s theorem. 

This is perhaps the place to state a remarkable theorem due to 
Milnor [l]. The terminology is ours. 

Theorem 16.8. Milnor. There exist manifolds M ,  and N ,  of the 
same class Cm with identical carriers I M ,  I = I N ,  I but such that M ,  
and N ,  are not diyeomorphic. 

Milnor set up his first counterexample for the case n = 7. In this 
connection there are many unanswered questions. 

Functions Corresponding under a Diff cp. We shall prove a theo- 
rem concerning real-valued functions corresponding under a diff 
p -+ cp( p )  of M ,  onto N ,  . 

Theorem 16.9. Let p ---t tp( p )  = q be a Cm-d#of a Cm-manifold M ,  
onto a Cm-manifold N ,  . Let p --t f ( p )  and q + g(q) be real-valued 
functions with values defined, respectively, for p E M ,  and q E N ,  and 
such that f( p )  = g(q) when q = cp( p ) .  Suppose that 0 < p < m. 
Then f is of class Cu on M ,  if and only i fg  is of class Cfi on N ,  . Moreover, 
critical points of f and g correspond under cp, with preservation of 
nondegeneracy and indices when p > 1. 

We recall conventions of 13. 
Given a presentation (F : U,  X )  E 9 M n  ) f I X is of class Cu if and 

only if f 6 F is of class Cp on U. The critical points of f 1 X are 
represented biuniquely under F by the critical points off  5 F on U .  
If p > 1, a critical point p ,  off I X is N D  and has the index k if and 
only if the point uo = F-l( p,) is a N D  critical point o f f  6 F with 
index k. 

Given a presentation (F : U ,  X )  E 9 M n  , Theorem 16.3a affirms 
that (cp 5 F : U,  cp(X)) is a presentation in 9 M n .  If g is an arbitrary 
real-valued function on N ,  , then the conventions of the preceding 
paragraph applied to N ,  in place of M ,  imply that the differentiability 
of g I cp(X), its critical points and their nondegeneracy and indices 
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are determined by the representation g 6 (p o F )  of g I p(X) on U. 
In  the special case in which g(q) = f ( p )  under the diff p ---+ p(p) = q, 

gz(p,oF) = ( f o p , p - ' ) ~ ( g , ~ F )  = f o F  (on U )  

and the theorem follows. 

of Theorems 6.4a, 16.7, and 16.9. 
Theorem 16.10 is an extension of Theorem 6.4a. It is a consequence 

Theorem 16.1 0. Let M ,  be an abstract manifold of class C u ,  p > 1, 
which admits a Cu-dzjf onto a regular C'-manifold N ,  in E, , 0 < n < r .  
There then exist r real-valued functions +1 ,..., +, of class C u  on M ,  
with the following property: 

Corresponding to  a prescribed real-valued function g of class C m  on 
M ,  , p >, m > 1, the function 

7 

4 -&) + c ailClj(4) = g"(4h 

is N D  for almost all choices of points (a ,  ,..., a,) = a E E, . 

4 E Mn (16.37) 
j=1 

Proof. One identifies N ,  of this theorem with the regular manifold 
Z of Theorem 6.4'. Let 

fJ -+ h ( p )  : Z- M ,  

be a Cu-diff of .E onto M,. Corresponding to the Cu-functions 
q1 ,..., yr  on Z of Theorem 6.4' let I,!J, ,..., be the respective C u -  
functions on M ,  such that 

A ( 4 )  = %(P) for 4 = N p ) ;  i = 1,...,r. 

Corresponding to the Cm-function q + g(q) prescribed on M ,  , 
let p +f( p )  be the Cm-function on Z such that g(q) = f ( p ) ,  subject 
to the condition q = h( p )  for each p E Z. Then (16.37) and (6.25) 
show that 

f V )  = g"(4) for 4 = w. 
According to Theorem 16.9 f a  and g" are both nondegenerate or both 
degenerate on Z and M ,  , respectively. 

Theorem 16.10 follows from Theorem 6.4'. 
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EXERCISE 16.1. Let there be given a presentation 

( U  open in En) ( F  : U,  X )  E 9 M n  (16.38) 

of a Cm-manifold M ,  . Let U be the regular submanifold of En with 
carrier U (see 5 5). Let X be the Cm-submanifold of M ,  with carrier X. 
Use Definition 16.2 for a trivial verification that F Cm-embeds U in X 
onto X. Then use Theorem 16.2b to verify the following lemma. 

Lemma 16.3. The presentation F of (16.38) can be regarded as a 
Cm-dtjf of the manifold U onto the manifold X. 

We shall make use of this lemma. 

EXERCISE 16.2. Prove the following lemma: 

Lemma 16.4. Let there be given positive integers s < n < r and 
Cm-manifolds M ,  and N ,  in E, ) of which N ,  is regular in E, in the sense 
of Definition 5.3. If I M, I C I Nn 1 )  then M ,  is Cm-embedded in Nn if 
and only if M, is a regular Cm-manijold in E, . 

Verify the validity of the following abstract of a proof: Given a 
point xo E I M, 1 )  there exist presentations 

( F :  U , X ) E ~ M ,  and ( G :  V ,  Y ) e 9 N n ,  x , E X C Y  

of which G is necessarily regular in E, . If the coordinates of x E E, 
are x1 ,...) x, ) we can suppose that for x E Y, xi = G,(v) for i = I ,..., r 
and suitable v E V .  Since X C Y, there exists a homeomorphism 
u --t y(u) of U onto y(  U )  C V such that for each i 

Fi(u, v - . . ,  us) = Gi(vl(u),***, ~n(u)), 21 E u. (16.39) 

Show that the homeomorphism y is a P-d i f f  of U onto y ( U )  C V 
if and only if F is a regular Cm-presentation of X in E, . 

Show also that y is a Cm-diff if and only if the submanifold of M ,  
with carrier X is Cm-embedded in N ,  by the inclusion. Use Theorem 
16.4 to finish the proof. 



4 ’7 

DYNAMICAL SYSTEMS ON A MANIFOLD M,, 

As we have seen, a point q on a Cm-manifold M ,  is represented by an 
infinity of points in En, namely, the antecedents of q under those 
presentations in 9 M n  whose coordinate domains contain q. A vector 5 
“tangent” to Mn at q will be determined by an infinity of vectors in 
E n ,  one at each point in En antecedent to q. It is an objective of this 
section to make clear in the classical sense how the vectors in En 
which represent 4 are defined and related. 

A similar but somewhat more difficult problem is the proper 
definition of a “dynamical system” on M ,  . Such systems, if defined 
on suitable open submanifolds of M ,  , are essential in defining the 
homotopies necessary in proving the theorems of 4 9. 

The  relevant relations of vectors in En one to the other are of two 
sorts, “dual” in a special sense, and termed contruvariunt and covuriunt. 
In  this section we shall define the relation of contravariance and use 
it to define “dynamical systems” on M ,  . 

Notation. Given a point u E En, n-tuples 

are called vectors in En “at u”. I t  is classical usage to employ super- 
scripts in denoting the components of vectors involved in relations of 
contravariance and subscripts in denoting the components of vectors 
involved in relations of covariance. The  symbols ~ ( u )  and c(u) as used 
to represent the vectors in (17.1) distinguish only by superscript 
or subscript the kind of vector they represent. However, note that 7 
is a Greek letter and c a Roman letter. We make the convention that 
vectors whose components are to be distinguished by superscripts 

127 
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will be represented by Greek letters and vectors whose components 
are to be distinguished by subscripts will be represented by Roman 
letters. 

The Vector Space V, over R. For a fixed point u E En the set of 
vectors ( ~ ( u ) )  in En "at u" form a vector space V, over the field of real 
numbers R. One adds vectors at u by adding their components. If 
p E R, we understand that 

One sees that the vectors in En at u whose components are the rows 
of the n-square unit matrix I form a base for V, , so that V, has the 
dimension n (see Birkhoff and MacLane [I], p. 192). A vector space 
V, in En admits a natural isomorphism onto En in which a vector 
r ]  E V, is mapped into the point in En with coordinates q',..., vn. 

We shall not always represent vectors in V, in the form 
r ]  = (+, ..., yn), but at convenience shall represent a vector g E V, 
in the form g = (g, ,..., gn). The choice between these two ways of 
representing a vector in V, will depend upon the potential use of the 
vector (see Theorem 18.2). 

Let M ,  be a C"-manifold and 

(F: U , X ) E ~ M , ,  and ( G :  V, Y ) E ~ M , ,  (17.2) 

be overlapping presentations, that is, presentations such that 
X n Y # 0. For q E X n Y, points u = F-'(q) and v = G-'(q) 
will be said to be Mn-related by F and G .  For such points a vector 
q(u) E V, will be symmetrically related by an isomorphism (denoted 
by [F, GI,) of V, onto V, to a vector c(v) E V, . This isomorphism 
and its inverse [G, F], will presently be defined. 

EXAMPLE 17.1. Given the presentations (17.2) and q E X n Y, let 
y : t + p(t)  be a simple regular arc in X n Y meeting q when t = to . 
Let 

YF: t -+u( t )  and YG : t--t ~ ( t )  (1 7.3) 

be the arcs in U and V, respectively, antecedent to y under F and G. 
Then yF meets uo = F-'(q) and yc meets vo = G-'(q) when t = t o .  



17. DYNAMICAL SYSTEMS ON A MANIFOLD M, 129 

In  the sense of a forthcoming definition, the vector zi(to) E Vu, and 
ei(to) E V., are contravariantly related by F and G. 

We shall recall the "transition diffs" associated with F and G: 

The Transition Days Defined by F and G. Given the overlapping 

F - l ( X n  Y )  = 0 and G - l ( X n  Y )  = v. (17.4) 

presentations F and G of (17.2), set 

The  C"-mapping 

U - b V ( U )  = (G-'aF)(u): 0- P (17.5) 

is the transition d# of 0 onto P defined by F and G. The  inverse of 
this diff is the transition diff 

v-+  U(V) = ( P 1 6  G)(v) : P- 0 (17.6) 

of P onto 0. Points u E U and v E V are I'M,-related" by F and G 
if and only if u E 0 and v = v(u), or equivalently, if v E P and 

Let J(v : u)  and J(u : v) be, respectively, the Jacobian matrices of 
the above transition diffs v and u evaluated at u and v. When u and 
v are M,-related by F and G one has the matrix relations 

u = u(v). 

J(v : U) J(u : V )  = I = J(u : W )  J(v : u), (17.7) 

where I is the n-square unit matrix. For i, k on the range I ,  ..., n let 

Jt(v : u )  and Jik(u : v )  (17.8) 

be the elements in the kth row and ith column, respectively, of the 
matrices J(v : u) and J(u : v). 

We introduce two fundamental isomorphisms: 

The Isomorphisms [F, GI, and [G, FIq . These isomorphisms are 
defined for each q E X n Y. If u = F-'(q) and v = G-l(q), there 
exists an isomorphism (onto) 

[F,  GI, : 7 + 5 : V,, -b V, 
of the form 

t k  = J ~ ( v  : u)?', k = 1 ,  . . . , t t  (17.9) 
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with an inverse isomorphism 

[G,Fl,: 5 - 7 :  v,-+vu 

of the form 

@ = p ( U  : w )  5‘, k = l,..., n. (17.10) 

Definition 17.1. Contravariance. Let F and G be the overlapping 
presentations given in (17.2). If u E U and er E V are M,-related by 
F and G, a vector E V, and a vector 5 E V, are said to be contra- 
variuntly related if (17.9) and (17.10) hold. 

EXAMPLE 17.1 (continued). Under the conditions of Example 17.1 
the relation F(u(t))  = G(er(t)) is an identity, implying the identities 

u(t) = u(o(t)) and w ( t )  = v(u(t)) .  (17.1 1) 

Since the points u(to) = uo and er(to) = wo are M,-related by hy- 
pothesis, differentiation of the identities (17.1 1) shows that the vectors 
zi(to) E Vuo and d(to) E V,,, are contravariantly related by F and G. 

For us the most important application of the notion of vectors in En 
contravariantly related by presentations in 9 M ,  is in the definition of 
a “dynamical system on M ,  .” Such systems are a major source of 
homotopies and isotopies on M ,  . 

Dynamical Systems on M,, . Before defining a dynamical system 
on M, we introduce a convention belonging to Euclidean geometry: 

Let W be a nonempty open subset of En with rectan- 
gular coordinates w1 ,..., w, . A Cm-mapping of Winto En of the form 

Convention. 

will be termed (at convenience) a Cm-famiZy of erectors ( ~ ‘ ( w ) ,  ..., vn(w))  
= ~ ( w )  in En over W. We shall term rp(w) the wector of the fumii) 
at w.” We understand that this vector is an element in the vector 

space V, . 
( 6  
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Definition 17.2. Contrawariantly Related Vector Families in En . 
Let (F : U ,  X) and (G : V ,  Y) be overlapping presentations given as in 
(17.2) and let 

11 - T(” )  = (q’(u),..., q*(u)), 11 E u, (17.13) 

tJ - “4 = (W),..., P ( 4 ,  (1 7.14) 

be C“-mappings, respectively, of U and V into E n .  T h e  vector 
families “defined” by these mappings will be termed contravariantly 
related by F and G if for each point q E X n Y and corresponding 
u = F-l(q) and v = G-’(q) the vectors ~ ( u )  E V, and ( ( w )  E V, are 
contravariantly related by F and G in the sense of Definition 17.1. 

0 E v, 

Trivial Contravariance. Let F and G be two presentations in OMn 
which are nonoverlapping. Suppose vector families over U and V, 
respectively, are defined as in (17.13) and (17.14). There are no points 
u E U and v E V which are Mn-related by F and G. It is natural to say 
that the families u + q(u) and ZI + { ( w )  are trivially contravariantly 
related by F and G. 

Definition 17.3. Dynamical Systems on Mn . A dynamical sys- 
tem of class C“ on Mn satisfies the three following conditions. In  these 
conditions the indexing subscript H, F, or G is a presentation in OM, . 

Condition I. On the Euclidean domain of each presentation 

( H  : W ,  , 2,) E 9Mn ( W, open in En) (17.15) 

there is given a system of ordinary differential equations 

dw’ldt = cp$( w’,..., wn), i = 1 ,..., n; w E W H .  (17.16) 

Condition II. For arbitrary w E W, the vector c~,(w) is the vector 
“at w” of a “C“-family of vectors” over W, vanishing at no point 
W E  w,. 

Condition Ill. If F and G are arbitrary presentations in 9 M n ,  
the vector families vF and tpG are contravariantly related by F and G. 
(Definition 17.2). 
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We shall indicate a sense in which Condition I11 is necessary if there 
is to be one and only one “trajectory” of a dynamical system on M ,  
meeting each point of M ,  . 

Notation. Given H E QM, , a system of differential equations 
(17.16) in En satisfying Condition I1 will be denoted by d/cpH. An 
ensemble of systems d / v H  indexed by H E  QMn will be denoted by 
{ d / y H }  and termed an ensemble (d/cpH} over QM7&. An ensemble 
{d/cpH} over M ,  upon whose members d/cpH no Condition I11 is imposed 
might be called a free ensemble over 9 M n  . An ensemble {d/rpH} whose 
members d/cpH, taken pairwise satisfy Condition I11 is called a dynamical 
system on M ,  . 

We shall term a system d/cpH a local dynamical system to distinguish 
it from the ensemble {d/cpH} of which it is a member. 

Theorem 17.1 below justifies the imposition of Condition I11 in 
defining dynamical systems. In  Theorem 17.1 we shall refer to 
trajectory-wise compatible local systems d / v F  and d/cpc of differential 
equations. We abbreviate “trajectory-wise compatible systems” as 
T-comp systems. We define this term as follows: 

Definition 17.4. T-Comp Systems d/cpF and d/cpc . Let F and G be 
overlapping presentations as given in (17.2). Given q E X n Y, set 
uo = F-’(q) and vo = G-l(q). Given t o ,  let t -+ u(t)  and t --t u(t)  
be solutions, respectively, of d/FF and d/cpc whose graphs meet, 
respectively, ( t o ,  uo) and ( t o ,  uo). Then d/cpF and d/cpc are said to be 
T-comp at q if for some e > 0 

F(u(t)) = G(v(t)), I t - to I < e. (17.17) 

More generally, d/cpF and d/qC are termed T-comp if T-comp at each 
point q E X n Y. 

If F and G are nonoverlapping, d/cpF and d/cpG are considered 
T-comp in a trivial sense. 

Theorem 17.1. Let F and G be arbitrary presentations in QM, . 
A necessary and suficient condition that local systems d / y F  and d/rpc be 
trajectorywise compatible is that the vector families cpF and vG be contra- 
variantly related by F and G (Definition 17.2). 
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The Condition is Necessary. This is trivial when F and G are 
nonoverlapping. 

Suppose then that F and G are overlapping and given as in (17.2). 
By hypothesis d / y F  and d/yc  are “T-comp” at a prescribed point 
q E X n Y, so that, in the notation of Definition 17.4, (17.17) holds. 
It follows, as in Example 17.1, that the vectors zi(to) E V% and 
d(to) E V., are contravariantly related by F and G. But zi(to) = vF(u0) 
and d(to) = yc(vo). Since q was prescribed in X n Y, we can infer 
that the vector families yF and yc are contravariantly related by F 
and G in the sense of Definition 17.2. 

The Condition is Suflcient. Suppose that F and G are again given 
as in (17.2). Let solutions t -+ u(t)  and t -+ v ( t )  be defined as in 
Definition 17.4. Assuming that the vector families yF and vc are 
contravariantly related, we must prove that (17.17) holds for some 
e > 0. 

Let e be so small that the solutions t -+ u(t)  and t -+ w(t) are defined 
for I t - to I < e. In  terms of the diff u -+ v ( u )  of (17.5), set V(t)  = 
v(u( t ) )  for I t - to 1 < e. Then by virtue of (17.5) 

G(v(t))  = F(u(t)) ,  1 t - to I < e. (17.18) 

To show that (17.17) holds it is sufficient to show that a ( t )  = v ( t )  
when I t - to 1 < e. Since E ( t o )  = v(uo) = vo by hypothesis, it is 
sufficient to prove the following: 

(a) 

Since a ( t )  = v(u( t ) )  for 1 t - to I < e,  we infer that 

The mapping t -+ G(t )  is a solution of the focal system dlvG.  

.“((t) = jF(v : u(t) )  ci(t) = /ik((. : u(t) )  VFi (u( t ) )  = vck(U(t)), k = l , . . . ,  ?8 

where the last equality is valid because the vector families vF and vc 
are by hypothesis contravariantly related by F and G. Thus  t -+ a( t )  
is a solution of d / v c ,  as affirmed in (a).  

It follows that (17.17) holds, so that the condition of the theorem is 
sufficient. 

This completes the proof of Theorem 17.1. 

Definition 17.5. Solutions of a Dynamical System. A simple 
regular arc y : t -+ p ( t )  on M ,  whose t-domain is an open interval of 
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the t-axis will be called a solution of a dynamical system {d/cpH} on M ,  
if the following is true: Corresponding to a prescribed point q of y 
there exists a solution t --f u(t) of some local system d/cpF E {d/cpH} 
whose F-image is a subarc of y meeting q. 

We shall characterize the special dynamical systems most useful in 
defining homotopies in the critical point theory. 

f-Transverse Dynamical Systems on M,' . Let f be a real-valued 
ND C"-function on M , .  Let M,f denote the submanifold of M ,  
from which the critical points off have been deleted. We suppose M,f 
given the differentiable structure induced by that of M ,  . That  is, the 
presentations in 9 M , f  shall be the subset of the presentations in 9 M n  
whose coordinate domains are open subspaces of I M,f I. 

A simple regular arc t -+p(t), a < t < b, on M,f will be termed 
f-transverse if the t-derivative o f f (  p(t)) is positive for all t E (a, b). 
A dynamical system {d/cpH} on M,f will be termed f-transverse if each 
simple arc t +p(t) on M,f which is a solution of the dynamical 
system is f-transverse. 

Given a ND C"-function f on M ,  , we seek an f-transverse dyna- 
mica1 system on Mnf.  By converting M ,  into a Riemannian manifold 
of class C" as in 3 19 this objective will be reached. The  local system 
d /pH E {d/vH} will be uniquely determined by f 6 H and the Rieman- 
nian form to be associated with the presentation H. 

The Second Reduction Theorem for f. T h e  classical conversion 
of M ,  into a Riemannian manifold in 19 will be followed in 0 22 by a 
nonclassical modification of the resulting Riemannian metric of M ,  
as introduced by Morse [9] Lemma 6.1. 

A presentation (F : U,  X) in B M ,  such that the Euclidean length 
of a regular arc g E U equals the Riemannian length of F( g) on M ,  
will be called an isometric presentation. Such presentations will exist 
if the Riemannian metric on M ,  is specially conditioned as in 3 22. 
However, Lemma 6.1 of Morse [9] can be formulated as follows: 

Theorem 17.2. The Second Reduction Theorem for f. Given a C"- 
real-valued ND function f on a C"-manifold M ,  , M ,  can be converted 
into a Riemannian manifold in such a manner that the following is true: 
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Corresponding to each critical point q off of index k and critical value c 
there exists in 9 M n  an isometric presentation (F : U,  X )  of a neigh- 
borhood X of q on M ,  such that F(0) = q and 

( f z F ) ( U )  - c = -U: - * * *  - U k 2  + + * a *  + U,’, u E U- (17.19) 

The existence of these isometric presentations will simplify 
problems of homology, homotopy, and “surgery” related to the critical 
points off and their addition and elimination. 

Program. f-Transverse dynamical systems have been defined in 
this section. Once M ,  has been assigned a standard Riemannian 
structure in 5 19 f-transverse dynamical systems can be proved to 
exist on M,f, that is, on M ,  with the critical points o f f  deleted. 
But the standard Riemannian structure, namely the first Riemannian 
structure assigned to M ,  in 5 19, must be further modified in 5 22 to 
satisfy the Second Reduction Theorem. Theorem 22.2 serves this 
purpose. 



TANGENT AND COTANGENT VECTORS OF M, 

Let M ,  be a C"-manifold. We shall presently define a vector 
tangent to M ,  at a point q E: M ,  . To motivate this definition we shall 
examine tangents to a regular manifold in a Euclidean space E, . 

Suppose presen- 
tations F and G E .9Mn are given as in (17.2). For u E U and w E V ,  
F(u) and G(w) are points 

Vectors Tangent to a Regular manifold M ,  in E, . 

(F1(u) ,..., Fr(u)) and (G'(w) ,..., GT(w)) 

in E, . Suppose that q E X n Y. Set u = F-'(q). A non-null vector 
[cf. (17.1)] 7 E V, may be associated with that non-null vector & 
in E, tangent to M ,  at q, whose pth component in E, is 

aFu 
g,e = (u)$, p = 1 ,..., 1. (18.1) 

Set w = G-l(q). A non-null vector 5 E V, may be similarly associated 
with the vector & in E, tangent to M ,  at q with components 

aGe 
t c ~  = aoi ( w ) P ,  p = 1 ,..., r. (18.2) 

The following lemma serves as a partial justification of Definition 18.1 
of a vector tangent to M ,  at q: 

Lemma 18.1. Suppose that M ,  is a regular manifold in E , ,  that F 
and G are the overlapping presentations in .9Mn given in (17.2), and that 
q E X n Y .  Set u,, = F-'(q), vo = G-'(q). 

136 
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A necessary and suflcient condition that the vectors [,, and & tangent 
to M ,  at q and defined respectively by (18.1) and (18.2) be equal is that 
the vectors r] E Vu0 and 5 E Vvo be contravariantly related by F and G. 

Prior to the proof proper recall the following: If y : t -+p(t)  is a 
simple regular arc in X n Y meeting q when t = to and if t + u(t)  
and t + v( t )  are the arcs in U and V antecedent to y under F and G, 
respectively, then F(u(t)) = G(v(t)), and hence 

Note that uo = u(to) and vo = v(to). According to Example 17.1 the 
vectors zi(to) E Vu0 and d( to )  E Vvo are contravariantly related by 
F and G. 

The Condition of the Lemma is Suflcient. We are assuming that 
the vectors r ]  E Vu0 and 5 E Vv0 are contravariantly related by F and G 
and wish to prove 4, = & . 

The above arc y can be chosen in many ways so that r ]  = zi(to). 
If y is so chosen, 5 = d(to) ,  since d(to)  is contravariantly related to 
zi(to) and 5 is contravariantly related to r] .  Hence (18.3) holds with 
zi(to) and d(to) replaced, respectively, by r] and 5. It follows that 
f,, = & . 

The Condition of the Lemma is Necessary. By hypothesis 

We wish to prove that r ]  and 5 are contravariantly related. 
Choose y as previously so that zi(to) = r ] .  We infer from (18.3) that 

and from (18.4) and (18.5) that 5 = d(to). Thus r] E Vuo and 5 E Vvo 
are contravariantly related by F and G, since zi(to) E Vuo and $(to) E Vv0 
are so related. 

This establishes Lemma 18.1. 
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Vectors Tangent to M,, at q. The definition of a vector tangent to 
M ,  at q calls for a notational introduction. 

The Subset ( 9 M f l ) q  of 9 M ,  . Given q E M ,  , let (9Mn)q  denote 
the subset of the presentations H E  9 M n  whose coordinate domains 
contain q. 

The Product Space nq. Corresponding to a presentation 
H E  ( 9 M f l ) q ,  for w = H-l(q) denote V, by VHQ. We introduce the 
infinite formal set product 

If, = Set product VHQ. 
H € ( 9 M ) ,  

(18.6) 

An element z d 7 ,  is an ensemble of vectors one, z H ,  from each 
“factor space” VHq of l7,. The vector Z, will be represented as con- 
venient in one of the two forms: ((zH)l, ..., ( z ~ ) ~ ) ,  and ( ( z ~ ) ~  ,..., (z,,),). 
The vector zH will be termed the “factor” of z E l7, with presentation 
index H. The word “factor” used in this connection has no con- 
notation beyond the one just assigned to it. For us this terminology 
is permanent. The set product nq can be converted into a vector 
space over R as follows. 

If z‘ and z“ are in l7,, the sum z = z’ + z” is defined by the 
condition that 

2 H  = .;I + H E  (9Mn)q .  (18.7) 

If p E R and z E l7,, pz is defined by the condition 

Definition 18.1. A oector tangent to M ,  at q is a oector z E l7, with 
the following property: Whenever F and G are presentations in ( 9 M , ) q  , 
the “factors” Z, and z, of z are vectors in V,‘J and V,q , respectively, 
which are contravariantly related by F and G. 

The Vector Space Tq Tangent to M ,  at q. The vectors z E l7, which 
are “tangent” to M ,  at q, form a subset Tq of l7, which is a “vector 
subspace” of l7, over R, since the subset Tq of l7, is “closed” in If, 
under the operations of addition and of multiplication by p E R, as 
defined above over nq. This is a consequence of the properties of the 
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isomorphisms [F, GI, defined in $17 for each pair of presentations 
F and G in (9Mn)q. 

We add the following theorem: 

Theorem 18.1. Let q be an arbitrary point in M ,  and H apresentation 
in (9Mn)q, Then the vector space Tq tangent to M ,  at q is isomorphic 
to the vector space VHQ under the linear homomorphism vq which maps 
each vector z in Tq into its ‘yactor” zH in VHq. 

Proof. The mapping vq is obviously biunique and onto. As a 
linear homomorphism, it is then an isomorphism (see Birkhoff and 
Mac Lane [l] p. 224). 

Covariance. Let F and G be arbitrary overlapping presentations 
in 9 M n  as given in (17.2) and u E U and v E V be such that 

F(u) = G(v) = E M,, . (18.9) 

The relation of covariance, as it will be defined by F and G between 
two vectors 

h = (h, ,..., h,,) E V, and g = (g, ,..., g,,) E V, , (18.10) 

is regarded as “dual” to the relation of contravariance as defined by F 
and G between two vectors E V, and 6 = V, (Definition 17.1). 
In  defining this relation, the matrix J(u : v )  of the transformation 
(17.10) corresponds formally to the matrix Jtr(u : v )  of the trans- 
formation 

(18.11) g, = Jki(U : V)hj , K = 1 ,..., n. 

Vectors h E V, and g E V, which are related as in (18.1 1) are said 

Similarly, the matrix J(v : u )  of the transformation (17.9) corre- 
to be convariantly related by F and G. 

sponds to the matrix Jtr(v : u) of the transformation 

h, = Jkj(V : u)gj * K = 1 ,..., n, ( 1 8.1 2) 

inverse to the transformation (1 8.1 1). 
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Covariantly Related Gradients. Corresponding to a prescribed 
f E Cm(Mn) (see $13) and to an arbitrary presentation H E  9 M n  , 
f 5 H is the representation off on the En-domain of H .  With gradients 
understood in the classical sense, the vector (grad( f 5 H))(w),  evaluated 
at a point w in  the En-domain of H ,  will be regarded as a vector in V, . 

We refer to the presentations F and G of (17.2) and to points u E U ,  
v E V such that F(u) = G(v) ,  and introduce the vectors 

( g M f  5 F))(u) = (A, ,*.*, An) E v, 

(grad(f ii G))(v) = (E l  , . . . I  8,) E V" * 

( 18.13) 

( 1 8.14) 

and 

In  the notation of (17.5) and (17.6) the identities 

(f 6 F)(4 = (f 5 G)(v(u)), l.4 E 0, (18.15) 

and 

(f 6 G)(v) = (f 6 F)(u(v)), v E p, (18.16) 

are valid. On differentiating the members of (18.15) with respect to uk 
and the members of (18.16) with respect to vk, one finds that 

h k  = ]ki(V : U ) g j  , k = 1 ,..., n, (18.17) 

an d 

g k  = ]k'(u : v )h j ,  = 1j.a.j n. ( 18.1 8) 

We have thus proved the following: 

Lemma 18.2. If F and G are the overlapping presentations given 
in (17.2) and if u E U and o E V are such that F(u) = G(v), then the 
gradients 

(grad(f F))(u) E V, and (grad(! 6 G))(v) E V, 

are covariantly related by F and G .  

The Cotangent Vector Space T,* at q E M , .  We shall define a 
vector space Tp* over R associated with a prescribed point q E M ,  
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and formed by using the notion of covariance as Tq was formed by 
using the dual notion of contravariance. Use will be made of the 
product space I7, introduced in (18.6) with its “factors” VHq indexed 
by the presentations H E ( 9 M n ) q  . 

Definition 18.2. A Cotangent Vector at q E M ,  . Such a vector is 
an element z E L’, with the following property: Whenever F and G are 
presentations in (2@MJq,  the “factors” z, and zG of z in V$ and 
VGQ, respectively, are covariantly related by F and G. 

The Cotangent Vector Space T:. The  set of all cotangent 
vectors z in I7, form a vector subspace T$ of LIq over R termed the 
“dual” of Tq . By a proof similar to that of Theorem 18.1 one shows 
that if H E (L3Mn)q ! the vector space T$ is isomorphic to the vector 
space VHq, ‘‘factoring” L’,, under an isomorphism in which a 
cotangent in TZ goes into its “factor” in V,Q. 

The set of cotangent vectors (gradf)(q) now to be defined contains 
all cotangent vectors in T$. 

Definition 18.3. The Cotangent Vector (gradf)(q). If q E M ,  and 
f E Cm(M,), the cotangent vector at q E M whose “factor” with index 
H E  ( 9 M J q  is the vector 

(grad(f5 H ) ) ( w )  E VHQ = V, , w = H-’ (Q), 

will be denoted by (gradf)(q). 

infinitely many choices off  E Cm(M), z = (gradf)(q). 

duality of contravariance and covariance: 

If a cotangent vector z is prescribed at q E M ,  , it is clear that for 

We shall prove a fundamentatal theorem underlying the notion of 

Theorem 18.2. Given y and z in IIq , let the sum with respect to k 

sH = ( y H ) k ( z H ) k  9 z= 1 ~ * * . , ~ ,  ( 1 8.1 9) 

be formed for each H E  (L3MJq . Then the following hold: 

(i) If y E Tq and z E TZ, S, is independent of H ,  thus depending 
only on q. 
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(ii) If for fixed z E If,, S,  is independent of H for each choice of 

(iii) If for fixed y E If, , S ,  is independent of H for each choice of 

y E Tp , then z E Tp*. 

z E T,f, then y E Tp . 
Let F and G be overlapping presentations, given as 

in (17.2), with q E X n Y. Set u = F-'(q) and v = G-'(q). Then the 
factors 

YF,YG and ZF,ZG (1 8.20) 

Proof of (i). 

of y and z are, respectively, vectors 

~ E V , ,  [EV, and h E V , ,  g E V , .  (18.21) 

By virtue of (17.9) and (18.11) 

tkgg, = (Jik(V : U)7*)(Jk'(U : .)hj) = 827'hj = 7'h,, 

thereby establishing (i). 

Proof of (ii). When the vectors (18.20) are the respective vectors 
(18.21), it is given in (ii) that the relation 

Tihi = [ k g k  ( 1 8.22) 

holds for fixed vectors h E V, and g E V, , and for arbitrary vectors 
r )  E V, and 5 E V, such that in accord with (17.9) 

k = 1 ,...) n. p = p ( V  : 47', (18.23) 

It follows that 

7'[Jik(V : U ) g k  - hi] = 0 ( 1 8.24) 

for an arbitary n-tuple $,..., 7". We infer that 

hi = Jt(v : u ) g k ,  i = 1 ,..., n. ( 1 8.25) 

According to (18.12) h and g are covariantly related by F and G. 
Now (ii) follows, and the proof (iii) is similar. 
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M, AS RIEMANNIAN MANIFOLD 

Let Mn be a C"-manifold. With each presentation 

( H :  WHY z H ) ~ g M n ,  WHC E n ,  (19.1) 

and each point w = (wl, ..., w") E WH let there be associated a positive- 
definite, symmetric, quadratic form 

QH"(oL)  = aij(H : W )  aid,  w E W H ,  (19.2) 

in the n variables al, ..., an subject to the condition that each mapping 
w -+ aij(H : w )  of W, into R be of class C". Then Q H  is a family of 
quadratic forms over W,, , or as we shall say more briefly, a Q-family 
over the En-domain W,, of H. 

Given the overlapping presentations F and G as in (17.2), let the 
forms 

Q F ~ ( T )  = M u )  vi+, I( E u, (19.3) 
and 

Qc"(5) = 44 "5j, -zl E v, (19.4) 

define the Q-families QF and QG indexed by F and G. 
We give a basic definition: 

Definition 19.1. M,-Compatibility of QF and QG . When F and G 
are arbitrary overlapping presentations in 9 M n  given as in (17.2), the 
corresponding Q-families QF and QG will be said to be M,-compatible 
if for arbitrary q E X n Y and for u = F-'(q) and ZI = G-l(q) 

b&) = Cij(.) ["j (19.5) 

for vectors q E V, and 5 E V, contravariantly related by F and G. 
143 
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A Convention. When F and G are in B M ,  , but not overlapping, 
the Q-families QF and QG will be regarded as M,-compatible in a trivial 
sense. 

In  any case the relation of M,-compatibility of Q-families QF and 
Q G  is symmetric, since the relation of contravariance between vectors 
77 E V, and 5 E V, defined by F and G is symmetric. 

When F and G are the overlapping presentations of (17.2) a 
necessary and sufficient condition that QF and Q G  be Mn-compatible 
is that whenF(u) = G(v) E X n Y the matrix equality 

I1 cij(.)ll = Jt'(u : v )  * I I  b i j (~) l l  * J(u : v )  (19.6) 

hold. This is a consequence of the classical law on the transformation 
of a quadratic form, such as QFU, when subjected to a linear trans- 
formation, here the transformation (17.10) (BBcher [l], p. 129). 

Since the relation of M,-compatibility of QF and Q G  is symmetric, 
the relation (19.6) is equivalent to the matrix relation 

I1 bij(~)ll = JYv : U) * I1 cu(v)ll * J(v : u), (19.7) 

which is also directly derivable from (19.6). 

A Riemannian manifold M ,  of class C" will now be defined. The  
restriction to manifolds of class C" is not necessary but is made for 
simplicity. 

Definition 19.2. Riemannian Manifolds and Forms. Let M ,  be a 
C"-manifold to each of whose presentations H there has been assigned 
a Q-family QH . If this assignment is such that for arbitrary presen- 
tations F and G in 9Mn , QF and QG are M,-compatible, M ,  will be 
said to admit a C"-Riemannian structure defined by these Q-families. 
In  such a structure QH will be termed the Riemannian form indexed 
below by H. With such a structure M, will be termed a Riemannian 
manifold. 

On a Riemannian manifold the length of a regular arc y : t +p(t) 
a < t < b admits a classical definition. We shall limit ourselves to the 
case in which 1 M, 1 is connected. 

Length on M,. Suppose that M ,  is a Riemannian manifold of 
class C". Suppose that the above regular arc y on M, is included in 



19 .  M,, AS RIEMANNIAN MANIFOLD 145 

the coordinate domain X of a presentation (F : U, X) E 9 M n  . On U, 
y is represented by a regular arc yF : t -+ u(t), a < t < b. If (19.3) 
gives the form Q F U ( ~ ) ,  we shall assign y the length 

b 

L ( y )  = (bij(u(t))  zii(t) 1 2 ( t ) ) l / ~  dt. (19 .8 )  
a 

Returning to the overlapping presentations F and G of (17.2), 
suppose that the carrier I y I C X n Y. Then y is represented by a 
regular arc yc : t -+ a(t) ,  a < t < b, in V.  We shall see that L(y) ,  as 
defined by ( 1 9 4 ,  is also equal to the integral 

(cij(v(t)) zji(t) zj5(t))1/2 dt. (19 .9 )  

The  equality of the integrals (19.8) and (19.9) is a consequence of 
the identity 

b,j(u(t)) zii(t) li’(t) = ~ i j ( ~ ( t ) )  Wi(t) Wii(t), a < t < b. ( 1 9 . 1 0 )  

Relation (19.10) is valid because F(u(t))  = G(a(t)), and hence the 
vectors zi(t) E VU(I)  and z’(t) E Vv(l) are contravariantly related by F 
and G, as affirmed in Example 17.1. 

A regular arc y : t -+p(t) ,  a < t < b, on M ,  not restricted to a 
single coordinate domain is a finite sequence of regular arcs 
y1 , yz ,..., yr whose t-domains are successive subintervals of a partition 
of [a, b] so chosen that each carrier 1 y+ I has a closure included in 
some coordinate domain of M ,  . The length of y can be defined as the 
sum 

L(Y) = L(YJ + * . *  + L(Y,), 

where L(y,) is evaluated as above on any coordinate domain which 
includes C1 I yi I. 

One sees that L ( y )  so defined is independent of the partitions of 
[a, b] which are admissible for this purpose. I n  fact, if Pl and Pz are 
two such partitions of [a, b], there is a third partition of [a, b] which 
is also a partition both of PI and of Pz . If Ll(y) ,  L,(y), and L3(y) are 
the corresponding lengths assigned to y, one sees that 

LlW = LdY) = LdY). 
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A Metric for Mn . Given any two pointsp and q of Mn , let d(p, q) 
denote the inferior limit of lengths of regular arcs on M ,  joining p 
to q on Mn . A distance d(p,  q) so defined satisfies the usual three 
axioms on a metric space and gives back to I M ,  1 its original topology. 
No variational theory is reguired to prove these elementary facts. 

The Existence of Riemannian Structures. 

We shall prove that each C"-manifold admits a Riemannian 
structure. A first step in proving this is to verify Theorem 19.1: 

Theorem 19.1. (i) If M ,  is a regular C"-manifold in a Euclidean 
space E, , with the presentations H E 9 M n  , there can then be associated 
pairwise Mn-compatible Q-families QH of quadratic forms. 

These forms can be chosen so that the resultant Riemannian length 
of a regular arc t +p(t) ,  a < t < b, on M ,  is its ordinary length in E, . 

The general definition is suffi- 
ciently indicated by defining QF and QG when F and G are presen- 
tations given as in (17.2). Given u E U and independent variables 
dul, ..., dun, we introduce the symmetric, positive-definite, quadratic 
form 

(ii) 

Definition of the Q-Families QH . 

a F u  2 

QF"(du) = b i j ( ~ )  d d  d d  = i ( d ~ " ) ~  = 1 ( w ( u ) d u ' c ) ,  (19.11) 
lA=l u=l  

where dxp is the linear form in dul, ..., dur given by the final parentheses 
in (19.11). Given v E V and independent variables dwl, ..., dv", we 
similarly introduce the quadratic form 

aGu 2 
Qcu(dv) = cU(v) dvi dwj = i ( d x ~ ) ~  = ( w )  dwk) . (19.12) 

u=l u=l 

Proof of the Mn-Compatibility of Q F  and Qc . If u + v(u) is the 
transition diff (17.5) defined by F and G, one has the r identities 

G"(v(u)) =FU(u), p = 1, ..., r ;  u E U ;  
implying that 

( 1 9.1 3) 
aFu 

__(PI) dw'c = - (u) du'c, 
auk a u k  

p = 1 ,..., r ,  
aGu 
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subject to the conditions 

avk 

auf v = v(u), u E 0, dvk = - (u)  dui, K = 1 ,..., n. (19.14) 

Thus (19.13) holds subject to the condition that F(u) = G(v) E X n Y 
and that the vectors du E V,, and d v  E V, be contravariantly related by 
F and G, as are the vectors in (17.9). 

Subject to these same conditions, the right-hand sums in (19.1 1) 
and (19.12) are equal, proving that QF and Qc are M,-compatible in 
accord with Definition 19.1. 

Thus (i) of Theorem 19.1 is true. That (ii) is true follows from the 
middle equality in the definitions (19.1 1) and (19.12). 

This completes the proof of Theorem 19.1. 
Theorem 19.1 leads to the following: 

Theorem 19.2. Each C"-manifold N ,  admits a (?-Riemannian 

According to Theorem 16.7 there exists a C"-diff $ : N ,  + Mn 
of N ,  onto a regular C"-manifold M n  in some Euclidean space E, . 
Let q~ be the C"-diff which is the inverse of +. According to 
Theorem 16.3a there is a 1-1 correspondence of the ensemble of 
presentations 9 M n  with the ensemble 9 N n  ) in which H E ~ M ,  
corresponds to cp 6 H in 9 N n .  According to Theorem 19.1 there 
exists an ensemble {QH}, indexed by H E  9 M n ,  of pairwise Mn- 
compatible Riemannian forms QH , where Q H  is "over" the En-domain 
of H .  T o  prove Theorem 19.2 it is accordingly sufficient to prove (a): 

( a )  If to each presentation H E = 9 M n  and corresponding presentation 
q~ 6 H E g N ,  one assigns a common Q-family ove~ the common En-domain 
of H and 6 H ,  the resulting ensemble of Q-families is N,-compatible if 
M,-compatible. 

Proof of (a). Let F and G be arbitrary overlapping presentations 
in 9 M ,  given as in (17.2). To F and G in 9 M n  correspond the 
presentations 

(v 6 F : U,  p'(X)) and (p' 6 G : V ,  p'(Y)) (19.15) 

structure. 

in 3 N ,  . If u E U and v E V are such that F(u) = G(v), then 

(v aF)(u)  = (p' G ) W  ( I 9.1 6) 
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The transition diff (17.5) defined by F and G over 0 is the transition 
diff of p 5 F and p 6 G. Hence vectors 7 E V, and 5 E V, which are 
contravariantly related by the linear isomorphism (17.9) defined by F 
and G are contravariantly related by the same linear isomorphism 
regarded as defined by p 5 F and 5 G. 

Suppose the quadratic form on the left of (19.5) has been assigned to 
F and to p 5 F, and the form on the right of (19.5) has been assigned to  
G and to p 6 G. If (19.5) holds when 7 E V, and 5 E V, are contra- 
variantly related by F and G, then (19.5) holds when 7 E V, and 
5 E V, are contravariantly related by q~ 5 F and 9) 6 G. 

Statement (a) is accordingly true and Theorem 19.2 follows. 
The  condition that QF and QG of Definition 19.1 be M,-compatible 

can be usefully and equivalently stated in terms of the bilinear forms 
defined by QF and Qc . 

Lemma 19.1. The equality (19.5) is valid subject to the conditions of 
Dejnition 19.1 if and on(y if 

b i j ( U )  $rj' = c&) t ; q j  ( 19.17) 

for arbitrary vectors 7 E V, and 5 E V, contravariantly related by F 
and G and arbitrary vectors 4 E V ,  and s E V, similarly contravariantly 
related by F and G. 

This is because the matrix equalities (19.6) and (19.7) are necessary 
and sufficient conditions that (19.17) hold when 7 is the image of 5 
and 4 the image of g under the linear transformation with matrix 
J(u : v).  

Riemannian Forms and Coforms. We began g19 by associating 
with each presentation ( H  : W, , 2,) E 9 M ,  a family QH of positive- 
definite, symmetric, quadratic forms 

QHW(a) = aij(H : W )  Orid, w E W,, (19.18) 

in the n variables (a1, ..., a"). With H we now associate a dual family 
QH of quadratic forms, termed coforms, 

QWH(e) = a"(H : w )  eiej , w E W,, ( 1 9.1 9) 
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in the n variables el ,..., e n ,  where the matrix )I aii(H : w)ll is the 
inverse of the matrix )I aij(H : w)ll. Each form QWH(e) is symmetric. 
It is positive-definite by virtue of Corollary 3.1. 

We shall be concerned with pairs of families QF and QG , indexed 
above by presentations F and G given as in (17.2), with Q-families 
QF and QG represented, respectively, as in (19.3) and (19.4). The  dual 
families QF and QG may be given the representations 

QUF(h) = baj(u) hihj , u E U ,  (19.20) 

QvG(g) = c'j(W)gigj , W E v. (19.21) 

and 

The  following definition is dual to the Definition 19.1. 

Definition 19.3. Mn-Compatibility of QF and QG. When F and G 
are arbitrary overlapping presentations in 9 M n  given as in (17.2) the 
families QF and QG, as given respectively by (19.20) and (19.21), will 
be termed M,-compatible if for arbitrary q E X n Y and for u = F-l(q) 
and z, = G-l(q) 

b"(u) h,hj = C y v )  gz gj ( 1  9.22) 

for h E V, and g E V, covariantly related by F and G. 
We have found the conditions (19.6) and (19.7) necessary and 

sufficient that the Q-families QF and QG be Mn-compatible in the 
sense of Definition 19.1. Referring to the linear transformations (18.17) 
and (1 8.18) defining the relation of covariance between vectors 
h E V, and g E V, , we see that the matrix equalities 

11 c"'(~)ll = J(v : U) * 11 bij(u)ll * J~'(v : U) 

11 b"(u)ll = J(u : W) * 11 c " ( v ) I ~  * Jt'(u : U) (19.24) 

are necessary and sufficient that the cofamilies QF and QG of 
Definition 19.3 be M,-compatible. 

A Convention. One must supplement Definition 19.3 by the 
convention that when F and G are presentations in 9 M n  which 
are not overlapping then QF and Q G  are to be regarded as Mn-com- 
patible in a trival sense. 

(19.23) 

and 
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The condition that QF and QG of Definition 19.3 be Mn-compatible 
can be usefully and equivalently expressed in terms of the bilinear 
forms defined by QF and QG. The lemma is a dual of Lemma 19.1. 

Lemma 19.2. The equality (19.22) is valid subject to the conditions 

b y u )  hih, = c*+) gia, (19.25) 

for arbitrary vectors h E V,, and g E V, covariantly related by F and G 
and arbitrary vectors h E V,, and E V,, similarly covariantly related 
by F and G. 

of Definition 19.3 i f  and only i f  

The proof is similar to that of Lemma 19.1. 
Recall the matrix law that the inverse of the transpose of a non- 

singular matrix is the transpose of the inverse. Using this law, one 
finds that the matrix relation (19.23) is derivable from the matrix 
relation (19.6) on equating the inverses of two members of (19.6). 
One similarly derives (19.24) from (19.7), and, if one pleases, (19.6) 
from (19.23) and (19.7) from (19.24). 

We draw the following conclusion: 

Theorem 19.3. When F and G are in 9Mn a necessary and su-cient 
condition that Q-families QR and QG be M,-compatible is that the dual 
Q-families QF and QG be M,-compatible. 

Riemannian Forms and Coform. When the ensemble {QH} of 
Q-families, indexed by H E  9 M n ,  is such that its Q-families are 
pairwise Mn-compatible, we have said that Mn admits a “Riemannian 
structure” in which QH is the Riemannian form over the &-domain 
of H. Under these conditions the Q-families of the dual ensemble 
{QH} are pairwise Mn-compatible in the dual sense, and we term 
QH the Riemannian coform over the En-domain of H. 

We have seen that C“-manifold always admits a Riemannian 
structure. From this point on we shall suppose that M, is provided 
with such a structure and that QH and QH are the corresponding 
form and coform with presentation index H. 

The Fundamental Tensors. Corresponding to an arbitrary presen- 
tation H E  9Mn the matrices 

I1 a,j(H : w)ll and 1 1  d j ( H  : w)II, w E WH , (19.26) 
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of the Riemannian form QH and coform QH respectively represent at w 
the fundamental covariant and contravariant tensors of second order 
at the point q = H ( w )  of the Riemannian manifold M ,  . In the context 
of tensor algebra the distinction between the fundamental covariant 
and contravariant tensors arises from the difference between the 
transformations (19.6) and the transformation (19.23) of the respective 
local representations. 

“Conjugacy” of Tangent Vectors and Cotangent Vectors. Given 
q E M ,  , with the aid of the “fundamental” tensors of the Riemannian 
structure of M ,  one can define a unique isomorphism of the tangent 
vector space Tq onto the cotangent vector space TZ. We shall call this 
isomorphism the conjugacy isomorphism. A tangent vector y E Tq and 
a cotangent vector z E TZ which correspond under this isomorphism 
will be called conjugates one of the other, as will their “factors” in nq 
with the same presentation index H [see (18.6) for definition of nq]. 

Three lemmas are required to define and characterize the conjugacy 
isomorphism. 

Lemma 19.3. Given a tangent vector y E T q ,  the vector z E n, 
(termed the conjugate of y) whose “factor” zH , with index H E  (gMn)q, 
has the n components 

( z H ) ~  = a,(H : w ) ( Y H ) ~ ,  i = 1 ,..., n, w = H-’(q), (19.27) 

in V, is a cotangent vector in TZ. 

Lemma 19.4. Given a cotangent vector z E TZ, the vector y E nq 
(termed the conjugate of z )  whose “factor” y H ,  with index H E (=9Mn)q 
in 17, has the n components 

( y H ) *  = aki(H : W ) ( z H ) i ,  k = l,..., f l ,  w = H-’ (Q), (19.28) 

in V, is a tangent vector in Tq . 

Lemma 19.5 indicates precisely what it means for the conjugate of 
the conjugate of a tangent vector or a cotangent vector at q E M ,  to 
be the original vector. 
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Lemma 19.5. I f  y --+ r,(y) maps y E T, into its conjugate in Tp* and 
z ---t Aq(z) maps z E T$ into its conjugate in T, , then rq and A, are onto 
and inverses one of the other. 

Given y E T, , if z E l7, is defined by (19.27), 
then for arbitrary tangent vector 9 E T, the sum (2,&(9H)i is inde- 
pendent in value of H E  (BMn)q , in accord with Lemma 19.1. It 
follows from Theorem 18.2 (ii) that z is in T$. 

Proof ofLemma 19.3. 

Proof of Lemma 19.4. This proof is similar, using Lemma 19.2 
and Theorem 18.2(iii). 

Proof of Lemma 19.5. Given y E T, , set z = Tq(y). We wish to 

By definition of A, and I’, the “factor” of A,(z) with presentation 
show that A,(z) = y. Given H E  (BM,), , set w = H-l(q). 

index H has a Rth component in V, , 

ak*(H : W)(%H)i = aM(H : w )  a,@ : w)(yH)5 = 8jk(yH)’ = (yH)k, 

showing that (A, o rq) (y)  = y for y E T, . 
lemma follows. 

One shows similarly that (rq o A,)(z) = z for z E T,*, and the 

We summarize and complete these results as follows: 

Theorem 19.4. The mapping of T, onto Tp* in which each tangent 
vector y E Tq goes into its “conjugate” cotangent vector in T$ is an 
isomorphism of Tq onto T$ under whose inverse each cotangent vector 
in Tp* goes into its “conjugate” tangent vector in Tq . 

The Existence of f-Transverse Dynamical Systems in M . .  The 
fundamental theorem is Theorem 19.6. 

Introduction to Theorem 19.5. Let a function f E Cm(M,) be 
“ordinary” on M, , that is, without critical points on M ,  . Corre- 
sponding to each H E 9Mn Theorem 19.5 makes use of the represen- 
tation f 6 H o f f  on the En-domain WH of H. 

According to Definition 17.3 of a dynamical system {d/qR} on Mn 
such a system is determined by an ensemble {qH}, indexed by 
H E  9Mn , of Cm-families vH of nonvanishing vectors qH(w) defined 
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for w on the respective En-domains W, and subject to Condition I11 
of Definition 17.3, that the families vH be pairwise contravariantly 
related by their indexing presentations. 

Theorem 19.5. Given an ordinary function f E Cm(Mn), the system of 
differential equations {d/vH}, indexed by H E  9 M n  , in which for each 
H E  9 M n  

V&W) = uki(H : W )  (a(f5 H ) ( w ) / ~ w ~ ) ,  K = 1, ..., 11, w E W,, (19.29) 

is an f-transverse dynamical system on M ,  . 
We shall show that the three conditions on a dynamical system in 

Definition 17.3 are satisfied. 
Condition I is trivially satisfied. Condition I1 is satisfied if the 

vectors v,(w) never vanish. This is the case because grad( f B H)(w) 
never vanishes by hypothesis and the matrix 1 1  a”(H : w)ll is non- 
singular. 

Condition I11 is satisfied if for each q E M ,  the vector y E l7, whose 
factors are the vectors P)R(W) indexed by H E  (.9Mn), is a tangent 
vector in T , ,  This is the case since y as defined by (19.29) is the 
conjugate of the cotangent vector (gradf)(q) (see Definition 18.3). 

The dynamical system {d/v,} thereby defined is f-transverse, as we 
now verify. 

Each nontrivial solution of the dynamical system on M ,  is a regular 
arc, since the vectors v,(w) never vanish. If t +p ( t )  is a solution on 
M ,  which has a representative t + w(t) in W, , then 

f ( P ( t ) )  = (f H)(w(t))* 

The t-derivative of f (p( t ) )  is thus the dot product h(t) * w(t) of the 
gradient, say h(t), off  ii H evaluated at w(t) and the vector w(t) = 
v,(w(t)). If w(t) is represented by the right member of (19.29), this 
dot product reduces to 

U ’ q H  : w(t))  hi(t) h,(t) 

and is positive, since each Riemannian coform is positive-definite. 
This establishes the theorem. 

Notation. The Submanifold M,f of M ,  . Given a ND function f 
on M ,  , let M,f denote the open submanifold of M ,  from which the 
critical points off have been deleted. 
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A final canonical form for an f-transverse dynamical system is given 
by Theorem 19.6. The characteristic condition (19.31) is motivated 
by the desire to make df/dt = 1 along the image in M ,  of solutions 
of the corresponding local dynamical systems (19.30). 

Theorem 19.6. I f f  is a N D  function in C”(M,), there exists on M,f 
an f-transverse dynamical system {d/$H}, termed canonical, in which the 
local system d/$H 

dwk/dt = $&w), w E domain H, k = 1, ..., a, (19.30) 

indexed by H E 9 M , f ,  satkfis the condition 

w E domain H.  (19.31) 

Definition of $,$(w). With yHk(w) defined as in (19.29) we set 

~ j ~ k k ( ~ U )  = pH(w) qHk(w), w E domain H, k = 1, ..., n, (19.32) 

where pH(w) is an “invariant” factor equal to the reciprocal of 

w E domain H. (19.33) 

The sum (19.33) is “invariant” in the sense that its value depends only 
on t,he point p = H(w) E M ,  and not on the particular presentation 
H E 9 M n f  of p .  This “invariance” follows from (i) of Theorem 18.2. 

Moreover, the sum (19.33) equals 

w E domain H, 

and so is positive. Because pH(w) is invariant the vector ICIH(w), like 
tpH(w), is transformed contravariantly. One verifies (19.3 1). 

Thus Theorem 19.6 is true. 

f-Trajectories on M,’. If t + wl(t)  is a solution of the local 
dynamical system d/& given by (19.30), then 

d ( f 5  H ) ( ~ , ( t ) ) / d t  = 1 (19.34) 
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by virtue of (19.31). On such a solution (f 6 H)(w,(t)) = t + const. 
Given such a solution, there exists another solution t --f w(t)  with the 
same carrier and such that 

(fc H)(w(t))  = 1. (19.35) 

Abbreviating “parameterized” by par, we say that t + w(t)  is an 
(f 6 H)-par solution Of d/l/lH when (19.35) holds. 

Given an (f 5 H)-par solution t --f w(t) o f  the local system d/l/lH, 
the corresponding “solution” t +p(t)  = H(w(t ) )  on Mnf of the 
system {d/t,hH} has the property that f (p ( t ) )  = t, and will be termed an 
arc of an f-trajectory on Mnf of {d/l/lH}. Any simple regular arc of Mnf 
which is the union of open “arcs of f-trajectories” of Mnf will be called 
an f-trajectory of Mnf. 

The f-transverse dynamical system {d/&}, conditioned as in 
Theorem 19.6, has the local form 

a(f  H )  
awa 

a w a  aw5 

aki(H : w )  - (w)  
k = 1,2, ..., n, (19.36) -- - dwk 

dt a( f  H) a(f H )  (w) ’ a5*(H : w )  - (w)  ~ 

where w is a point in the domain of H. The differential equations are 
classically interpreted as differential equations of the orthogonal 
trajectories of the f-level manifolds on Mnf. 

A Simplified Determination of Riemannian Structures. The fol- 
lowing theorem is useful when it is necessary, as in 922, to modify a 
given Riemannian structure: 

Theorem 19.7. Let Mn be a C“-manifold and K a subset of presen- 
tations in 9 M n  which cover I M ,  I. With each presentation H E K let 
there be associated a form Q H  as in (19.2) in such a manner that when F 
and G are overlapping presentations in K ,  QF and QG are Mn-compatible 
in the sense of DeJinition 19.1. 

There then exists a unique C”-Riemannian structure on M ,  whose 
Riemannian forms Q H  include those assigned to presentations H E  K. 

Theorem 19.7 will follow once we have verified Lemma 19.6. 
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Lemma 19.6. In 9 M n  let there be given presentations (F  : U, X ) ,  
(G : V ,  X ) ,  and ( H  : W, X )  with a common range X ,  of which F is in K 
and has been admissibly assigned a form QF with matrix 1 )  b6,(u)ll. I f  G 
and H are assigned f o r m  Q G  and Q H  with matrices respectively 1 1  c6,(w)ll 
and 1 1  edj(w)lI such that Q G  and QH are M,-compatible with QF , then 
Q G  and QH are M,-compatible. 

(H, G) there are associated, respectively, the transition diffs 
Proof of Lemma 19.6. With the ordered pairs (H, F), (F, G), and 

w + ~ ( w ) ,  ~4 v(u), and w + v(w), (19.36’) 

as in 517, with respective Jacobian matrices J(u : w), J(v : u), and 
J(v : w). 

By hypothesis QH and QG have been so defined that subject to 
(19.36’) 

(19.37) II eir(w)ll = Jt’(u : W) II bu(u)ll J(u W )  

[by (19.6)] and 

[by (19.7)]. It follows from (19.37) and (19.38) and the relation 
J(v : w) = J(v : u) J(u : w) that subject to (19.36‘) 

II eidW)ll = JYv : W )  I1 cidv)II J(v : w), 

so that Q H  and QG are M,-compatible by (19.7). 
This establishes Lemma 19.6. 

Proof of Theorem 19.7. Let K‘ be a subset of presentations in 
9 M n  which includes K of Theorem 19.7 and contains each presen- 
tation which is a restriction F of some presentation G E K. To such 
a presentation F E K‘ let a Q-family Q F  be assigned by restricting the 
parameter of the family Q G  to the domain of F. The families QF and QG 
are clearly M,-compatible. It follows from Lemma 19.6 that for each 
F’ E K’ the families Qp are pairwise compatible. 

If H is given in 9 M n  but is not in K’, the range of H can be 
covered by the ranges of a countable set Fl , FB ,... of presentations 
in K’. A matrix 11 ei,(w)ll of the required family Q H  will be uniquely 
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and consistently defined on the ranges of the respective presentations 
Fl , F2 ,... in accord with Lemma 19.6, by imposing the condition that 
Q H  be M,-compatible with the families QFl , Qpp ,.... The resultant 
families Q H ,  H E ~ M , ,  will be Ma-compatible by virtue of 
Lemma 19.6. 

Thus Theorem 19.7 is true. 



FPRESENTATIONS IN gM,f 

Having defined f-trajectories of the canonical f-transverse dynamical 
system {d/#H}, we shall set up fields of such trajectories. Such fields 
are required in all hornotopy considerations dependent on f. Our 
initial study is local. We begin by defining certain special presentations 
in 9 M , f  termed f-presentations. 
As in $19, there is given a C"-manifold M ,  and a ND f E Cm(Mn). 

Again Mnf is the submanifold of M, obtained by deleting from M ,  
the critical points off. 

Corresponding to each value c off, set Topological Manifoldsfe. 

f = {P E M ,  If(P) = C) (20.1) 

(the c-lewel subset of M,) and let the set f be topologized by I M ,  I. 
If c is an ordinary value of f, f" is a topological (n - 1)-manifold, 
called an f-leoel manifold. In any case f o n  M,f is empty or a 
topological (n - 1)-manifold. 

Special Coordinates in E n .  Let the Euclidean space En of coor- 
dinates xl, ..., xn be represented as a product En-l x R of a coordinate 
subplane En-l of coordinates yl, ..., yn-l and an axis R of coordinate T.  

We are thus setting 
(d ,... Xn) = (yll...,yn-ll T). (20.2) 

Let (or, 8) be an open interval of R, and U a nonempty open subset 
of the space En-l of points y. 

Definition 20.1. f-Presentations .F. A presentation 

(9 : U x (a, /I), X) E 9 M n f  ( U  open in En-l) (20.3) 
158 
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will be called an f-presentation if 

(fc q ( y ,  7) = 7, y E u; 7 E (a, B). (20.4) 

We shall denote f-presentations by script letters 9, '3, etc. The 
use of f-presentations depends upon the validity of Lemma 20.1. 

Lemma 20.1. The subset of presentations in 9 M n f  which are 
f-presentations covers 1 Mnf I. 

Proof of Lemma 20.1. Let Po be a point prescribed in Mnf.  To 
prove Lemma 20.1, it is sufficient to show that there exists an 
f-presentation 9 E 9 M n f  of form (20.3) such that p ,  E X. 

There exists a presentation (G : V ,  Y) E 9 M n f  such that p ,  E Y. 
Since f is ordinary on Mnf,  grad( f 6 G)(v) # 0 for v E V. We shall 
suppose the coordinates of points v E V so numbered that the nth 
component of grad( f 6 G)(vo) fails to vanish when vo = G-l(p0). For 
simplicity we shall suppose that vo is the origin in the Euclidean 
n-plane of V .  

We introduce a C"-mapping V - +  En-l x R of the form 

yg = vi, 7 = (fs G)(v), i = 1 ,..., n - 1. (20.5) 

Under (20.5) v goes into the point (y, T ) ;  vo in particular goes into a 
point (yo 9 To), and 

(20.6) 

because of the condition on grad( f 6 G). We can accordingly suppose 
that V and the presentation (G : V, Y) have been so chosen that the 
mapping (20.5) has an inverse X which is a C"-diff, (y ,  T )  + v, of 
the form 

( y ,  7) --t X(y, T) : U x (a, 8) - V (onto V )  

with a domain U x (a, /3) which is the product of an open neighbor- 
hood U of the origin yo in En-l and an open interval (a, 8) containing 
T ~ .  The image points are points X(y, T )  = v E V .  

If one sets 9 = G o X on the domain U x (a, /I), then 

g ( U  x (a, 8)) = G(A(U x (a, B))  = G(V).  
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The presentation 

(9 : u x (a, 81, G ( J 9  E 9 I M n t  I 

(for 9 0  see Definition 13.3) is C"-compatible with G because G and 9 
have the same range and are related by the transition diff A = G-' o 9. 
One show readily (cf. Example 13.1) that 9 is C"-compatible with 
each presentation in 9Mnf. It follows that 9 E 9 M , f .  

We now verify that 9 is an "f-presentation" in the sense of 
Definition 20.1. If ( y ,  T )  is prescribed in U x (a, /I), then by 
definition of 9 as G 0 A and of A, 

(f 5 q y ,  4 = (fc G ) ( W  4) = 7,  

in accord with (20.5). 

whose range G( V )  contains the point p ,  prescribed in Mnf. 
We have thus shown the existence of an f-presentation S E 9Mnf 

This establishes Lemma 20.1. 

Definition 20.2. Partial Presentations SC. Corresponding to each 

(S : u x (a, P), X) E awn' (20.7a) 

and ordinary value c o f f  fixed in (a, /I) we introduce the partial 
mapping 

f-presenta tion 

Sc : y + .F(y, c) : U --+ X n f (onto X nfc)). 

This mapping defines a presentation 

(.Fa: U , X C ) E 9 f C ,  X c = X n f c ,  (20.7b) 

termed a partial presentation induced by 9. 

M.-Embedded Manifolds fe. We shall prove the following theorem: 

Theorem 20.1. Corresponding to each ordinary value c of a ND 
f E Cm(Mn) there exists a unique Mn-embedded C"-manifold E of 
dimension n - 1 whose carrier is f c. The set 9fc  for such a manifold 
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contains the partial presentation 9 c  of each f-presentation 9 whose 
range meets fc. 

We begin the proof of Theorem 20.1 by establishing (i): 

(i) Corresponding to any two f-presentations (F, : U, x (a, , p,), X,) 
and (S2 : U2 X (a2, p2), X,) in BM,f whose ranges meet f c, 9," and 
F2" are C"-compatible. 

According to the definition of C"-compatibility it is sufficient to 
prove (i) in the special case in which X ,  = X2 = X # 0 and 
(a1 , pl) = (a2, p2) = (a, p). In  this case there exists, by hypothesis 
of C"-compatibility, a C"-diff (onto) of form 

s;' 0 q : u, x (a, p)  + u, x (a, /?). (20.8) 

Because of the condition (20.4) on f-presentations the restriction of 
the dif€ (20.8) to U, x {c} yields the C"-diff 

(S2c) -1  o 4" : Ul + U2 (onto U,), 

thereby establishing (i). 
Since the Cm-presentations 9" E 9fc admitted in Theorem 20.1 

cover f there exists a C"-manifold fc whose carrier is f and whose 
set 9 f c  contains the presentations 9 c  admitted in Theorem 20.1. 
We continue with a proof of (ii): 

(ii) off into I M,, I deJnes a C"-embedding 
of f c  in M,. 

To prove (ii) we apply the test of Definition 16.2 on an "embed- 
ding." Corresponding to a point p, prescribed in f there exists by 
Lemma 20.1 an f-presentation 

The inclusion mapping 

(9 : u x (a, p),  X) E BM,t (20.9) 

such that p, E X .  By definition of fc the partial presentation 
(9" : U, X n f ") is in 9fC. The test of Definition 16.2, associated 
with p, and the inclusion 9, is satisfied since the mapping 

9 - 1  Cl.9- : u 4 u x (a, /9) (20.10) 

induces the identity mapping of U x {c} onto U X {c}. 
Hence (ii) is true. 
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That fc is an Mn-embedded C"-manifold now follows from (ii). 
By Theorem 16.5(k) fc is unique among Mn-embedded C"-manifolds 
with carrier fc. 

When 5F is an f-presentation in 
9Mnf the f-transverse dynamical system of Theorem 19.6 takes a 
special form in terms of 9-coordinates (y, T). By hypothesis 
(f 5 S ) ( y ,  T )  = T and in terms of the coordinates yl, ..., yn-l, T 

condition (19.31) of Theorem 19.6 implies that $$(y, T )  = 1. Hence 
the nth equation in the local system d/$p takes the form 

(y, 7 )  E u x (a, B). (20.1 1) 

A System d/t,hH when H = S. 

dddt = + a y ,  4 = 1, 

ff-Presentations in 9 M J .  Theorem 20.2 is the principal theorem 
of $20. It requires the following definition: 

Definition 20.3. f-Presentations. An f-presentation 9 E 9Mnf, 
of form (20.9), will be said to be an ff-presentation if each partial 
mapping 

t + S ( u ,  t )  : (a, 8) --t x (20.12) 

is an f-trajectory of the system {d/$H}. 

Theorem 20.2. Given a N D  f E Cm(Mn) and point p ,  E Mnf, there 
exists anf-presentation 9 in 9Mnf of form (20.9) whose range X is an 
open neighborhood of p ,  in Mnf. 

Notation for Lemma 20.2. Theorem 20.2 will follow from 
Lemma 20.2 below. In Lemma 20.2 there is given an f-presentation 

(20.1 3) 

such that p ,  E W and a < f(p,)  < b. We shall refer to points 
u = (u', ..., un-l) E V and values T E  (a, b). Let (u, ,  7,) be the 
B-coordinates of p ,  . 

(Y : V x (a, b), W )  E 9Mn' (V open in EnJ 

Lemma 20.2. If (a ,  p)  is a suficiently small open subinterval of 
(a, b)  such that OL < T, < 8, and if U is a suficiently small open neighbor- 
hood in V of uo , there exists a C"-dzfl 

(u, t )  + @(u, t )  : u x (a, p)  + N (20.14) 
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onto a neighborhood N in V x (a ,  8) of (uo , T ~ )  such that the following 
is true: For each u E U and for the given T~ the partial mapping 

(20.15) t -+ @(u, t )  : (a,  j?) + En 

gives a t-parameterized trajectory 

y' = @'(u, t )  ,..., yn-' = @"-l(u, t ) ,  T = @(u, t )  = t ,  (20.16) 

of the local dynamical system d/$y which is in N,  satisfies the initial 
conditions 

@(u, 7 0 )  = (u, To) ,  u E u, (20.17) 

and is identical with any trajectory in N which meets it at the same time t. 

Except for the affirmation that the mapping 
0 is a C"-diff Lemma 20.2 is a classical theorem on ordinary differ- 
ential equations (see Valiron [l], Vol. 2, pp. 308-313). 

That 0 is a diff for U and (a, 8) sufficiently restricted follows on 
noting that the Jacobian 

Proof of Lemma 20.2. 

by virtue of the initial conditions 

@(U, To) = u',..., To) = #"-I 

of (20.17) and the identity @(u, t )  = t ,  valid for t €(a, 8). This 
identity is a consequence of the differential equation (20.1 1) and the 
initial condition @(u, T ~ )  = T~ . 
Proof of Theorem 20.2. Let Po be the point prescribed in Mnf.  In  

9 = (9 5 0 : u x (a, j?), S ( N ) )  E 9 0  I M,f I, (20.18) 

is well-defined and po = S ( u o ,  T ~ )  E S(N) .  We shall show that 9 
satisfies Theorem 20.2 by proving the following: (A,) 9 is in 9 M n f ;  
(A,) 9 is an f-presentation; (A3) 9 is anfl-presentation. 

the notation of Lemma 20.2 the presentation 

Verification of (A,). We shall compare 2F with the presentation 

(g 1 N : N ,  Y(N) )  E .!2Mnf, 
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noting first that Y is defined in N, since N C V x (a, @) by virtue of 
Lemma 20.2. Moreover, S and Y I N have the same range Y ( N )  
and are C"-compatible, since 

(Y 1 N)- lo  (Y s 8) = 8 on U x (a, B). 

Statement (A,) follows readily. 

Vmification of (A8). For (u, T )  E U x (a, @) 

( f ~  (g 5 8))(u, T )  = (fc 9) (8 (u ,  T ) )  = W(U, T )  = T .  (20.19) 

The second equality in (20.19) is valid because Y is an f-presentation, 
and the third equality is valid in accord with (20.16) of Lemma 20.2. 

Veri$cation of (A3). For each u E U the partial mappings 

t --+ Y(@(u, t ) )  = q,, t ) ,  t E (a, B), (20.20) 

are solutions on Mnf of the dynamical system {d/q&,}, since the partial 
mappings t -N @(u, t )  are solutions of d/#H when H = $9, in accord 
with Lemma 20.2. The solutions (20.20) are f-parameterized by virtue 
of (20.19). 

This completes the proof of Theorem 20.2. 
We note the following consequence of the unique determination 

of the solutions of a sufficiently restricted local dynamical system 
by each of their points, as implied by Lemma 20.2: 

Two f-trajectories on Mnf of the system (d/t,hH} which intersect in a 
point are overlapping. 

EXERCISE 20.1. Establish the following lemma: 

Lemma 20.3. If ff-presentations S and Y in 9Mnf have the same 
range X C M,f and Euclidean domains 

u x (a,@, I/' x (a,(8) in En (20.21) 

with S-coordinates (u, t )  and Y-coordinates (v, t), respectively, the 
transition dzfl h [cf. (5.6)] of the first of the domains (20.21) onto the 
second is represented by the identity mapping t = T of (a, 8) onto (a, 8) 
and a C"-dtfl u --+ p(u) = w of U onto l? 
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EXERCISE 20.2. Given a ND f E C"(M,), ang-presentation 

(9 : U x (a, /3), X )  E 9 M , f ,  U open in En 

and values c and e in (a, p), prove the following lemma: 

(20.22) 

Lemma 20.4. There exists a Cm-dz# of fc n X onto fe n X in 
which points in f n X and fe n X correspond which are on the same 
f-trajectory . 

Suggestion. Apply Lemma 16.3 to the partial presentations 
(Fe : U, Xe) E 9fe, (Fc : U,  Xc)  E 9 f c ,  X c  = X n f c, and 

Xe -- X nfe. 



f-TRAJECTORIES ON Mnf 

The objective of this section is to prove Theorem 21.1. Theo- 
rem 21.1 is one of two principal aids in proving the fundamental 
homotopy theorem, Theorem 23.2. 

Introduction to Theorem 21.1. As in 920 let there be given a 
C"-manifold M ,  and a ND f E C"(M,). 

The Manqold f(a,b) . Let (a, b) be an open interval of ordinary 
values off. Set 

f h . 6 )  = {P E M7I I a <f(P) < 4. (21.1) 

We suppose f(a,b) topologized by 1 M, 1. Let f(a,b) be the C"-sub- 
manifold of M ,  whose carrier is f(a,b) , Among the presentations in 
gf(u,b) are those #-presentation 2F of 420 whose ranges are subsets 
of f(a,b) . The manifold f(a,b) is covered by such presentations by 
virtue of Theorem 20.2. 

We define a basic condition on M ,  and f: 

Definition 21.1. Bounded f-Compactness of M ,  . Given a ND 
f E Cm(Mn), we say that M, is boundedly f-compact if whenever 
[a, b] is a finite closed interval of values off on M ,  , the subset 

(21.2) f[a.aI = { P  E MtI I = <f(P) < 4 
of M ,  is compact. 

Let c be a value off. If M ,  is boundedly f-compact, the level set? 
of I M ,  I is compact, as one readily proves. If M ,  is boundedly 

166 
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f-compact and if an arbitrary ND g E C"(M,) is given, then M ,  is 
not necessarily boundedly g-compact. If, however, M ,  is compact, 
then for each N D  g E Cm(M,) M ,  is boundedly g-compact. The 
hypothesis of compactness for M ,  is too restrictive for many problems 
in global analysis and differential topology. Bounded f-compactness 
will be a principal hypothesis in Theorem 21.1. 

The Product Manifold fc x (a ,  b). Let c be an ordinary value off 
in the interval (a ,  b). According to Theorem 20.1 f" is the carrier of a 
C"-manifold fc admitting a (?"-embedding in M ,  and having a 
differentiable structure thereby uniquely determined by M ,  . Let 
(a ,  b)  represent the one dimensional regular C"-manifold whose 
carrier is the interval (a ,  b). In  Theorem 21.1 we shall refer to the 
product manifold fc x (a ,  b) with the product differentiable structure 
defined in $13. 

The principal theorem follows. 

Theorem 21.1. Let (a ,  b) be an open interval, possibly infinite, of 
ordinary values off, and let c be prescribed in (a,  b). I f  M ,  is boundedly 
f-compact, there exists a homeomorphismt 

(q> t ,  + r(q, t ,  : fc x (a,  b, - f(a.b) (21.3) 

onto the manifold f(a,b) such that for eachpoint q E f the partial mapping 

t - r(q, t )  : (a, b) + f(a.b) (21.4) 

is an f-trajectory on f (a ,b)  of the canonical dynamical system {d/#H}. 

Note. Theorem 21.1, altered by affirming that the homeo- 
morphism (21.3) is a C"-difF, is true. This extension of Theorem 21.1 
is not needed and accordingly will not be proved. 

Before coming to the proof proper of Theorem 21.1 we add the 
following remarks on f-trajectories: 

f-Trajectories on f(a,a) , The symbols I ,  tl, etc. will denote 
f-trajectories on f(a,b) of the canonical dynamical system {d/$H}. 

~~ 

+f" x (a, b)  ontof(,,b, (Definition 16.1). 
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On these trajectories the range off is an open subinterval of (a ,  b). 
As noted at the end of 520, two f-trajectories 6, and which intersect 
in a point are overlapping. The f-trajectories are f-parameterized, and 
consequently are simple curves. Because they are simple curves, 
no difficulty will arise if denotes both a mapping t 4 p( t )  into 
f(a,b) and the carrier of the image of this mapping. 

Theorem 21.1 will follow from statements I-IV: 

I. Corresponding to a prescribed point q E f there exists a unique 
f-trajectory t -+ q4(t) on f(ab) which meets q and admits an extension 
fm a < t < b. 

Let a point q E f c  be given. According to 
Theorem 20.2 there is an#-presentation 9 in 9f(ab) whose range 
contains q. There then exists an f-trajectory to which meets q. Of the 
f-trajectories 5 on f(a,b) which contain go as a subarc there is a unique 
f-trajectory tq whose f-parameter t has a maximal open domain 
(h, k )  C (a, b). We shall show that (h, k )  = (a ,  b). 

Assuming that k < b, we shall arrive at a contradiction. If k < b, 
fLc,kl is by hypothesis a compact subset of f(a,&) and C1 fq contains a 
point p ,  E f k. By virtue of Theorem 20.2 there exists an ff-presentation 
(5 : U x (a, p), X) E gf(a ,b)  with p ,  E X and h < a < k < p. There 
is clearly a point p ,  E tq n X. Since 5 is anfl-presentation, there is a 
point u E U such that the partial mapping t 4 5 ( u ,  t )  : (a, p) f(a,b) 

is an f-trajectory f meeting p ,  . The f-trajectories fq  and 5' both meet 
p ,  and thus overlap. If tq is continued by t', an f-trajectory is 
formed on which the range off is (h, p). Since p > k, the assumption 
that k < b is false. 

Hence k = b. One proves similarly that h = a,  thereby completing 
the proof of I. 

Verijication of I. 

The Point T(q,  t )  Dejned. For each point q E f and value of t on 
the interval (a ,  b) let r ( q ,  t )  be the point Tq(t) on the f-trajectory tq 
meeting q. 

We continue with a proof of 11. 
11. The mapping 

(490 + q 4 , o  : f x (a9 4 +f ( I l . b )  (21.5) 

is onto f(a,b) and biunique. 
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Let p be prescribed in f(a,b) withf(p) = y # c. On replacing the level 
set f in the formulation of I by the level set fy we are led to the 
following conclusion: Of the f-trajectories on f(a,6) which meet p there 
is one, say 5, on which the range of values off is (a ,  b). Since a < c < b, 
the f-trajectory f must meet f c, so that the mapping F is onto f(a,b) . 

The mapping r is biunique, since f-trajectories meeting different 
points off do not intersect. These f-trajectories thus form a “field.” 

111. If e is a value in the interval (a, b), the partial mapping 

q + % e )  : f C + f C  (21.6) 

is a homeomorphism r; off onto f”. 
The mapping F; is biunique and ontofe by virtue of I and 11. 

Since f andfC are compact, to prove that r; is a homeomorphism, 
it is sufficient to verify (i): 

(i) 
Set p ,  = r ( p , ,  e). For simplicity we suppose that e > c, so that 

p, # p ,  . Let 6 be the closed arc of the f-trajectory joining p ,  to p ,  . 
If e - c is so small that there exists an#-presentation 9 whose open 
range in f(a,b) includes 5, statement (i) follows readily from the 
properties of 9 as an #-presentation. 

The mapping r,C is continuous at each point p ,  E f c, 

In the general case 6 is the union of successive closed subarcs 

51 1 52 l . . . ,  5r+1 (21.7) 

bearing values off on closed intervals separated by values 

c = c1 < c2 < .-- < c,+~ = e 

off so chosen that the arc tt , i = 1, ..., t, is included in the range of 
an #-presentation St . Let 

P l  * P 2  I . . . ,  P,+l 1 PT+l = PL? 9 (21.8) 

be the successive endpoints of the arcs (21.7). Mappings 

P + l  ,a : f c‘ +fC‘+l, i = 1 ,..., Y ,  (21.9) 

defined as was r; are continuous on sufficiently small open neigh- 
borhoods Nt in f ci of pi  . 
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If Nl is sufficiently small, and if one sets 

N,,, = F?(N,), i = 1 ,..., I ,  

then the restriction 

r: 1 N ,  = (rp 1 N,) ... 0 (F:; 1 N,),  (21.10)  

and so is continuous. 
This establishes (i) and hence 111. 
We conclude the proof of Theorem 21.1 by verifying IV. 
IV. The mapping r of (21.3) is a homeomorphism off x (a,  b) 

If [h, K] is a closed subinterval of (a ,  b), r maps the compact subset 
f x [h, k] off  x (a, b) onto the compact subset j[h,k~ of f ( a b )  . It 
follows that IV will be established if we show that F is continuous at 
each point ( p ,  e )  E f x (a,  b). 

Notation for Proof. Set p ,  = r(p, e). We wish to show that 
corresponding to a prescribed open neighborhood W of p ,  in f(a,b) 

there exists an open neighborhood 2 of ( p ,  e)  in f c x (a, b) so small 
that 

F(2)C w. (21.11)  

Onto f(a,b) * 

To that end, let 

(F : u x (a, B), X) E %.b) (21 .12 )  

be an #-presentation such that 

e E (a, B) c (a, 4, P, E x c w. 

Such a presentation exists. Let N be so small an open neighborhood 
in f c  of p ~ f C  that 

F(N, e) C f e  n X. (21.13)  

N exists by virtue of 111. 
Let 2 be the open neighborhood N x (a, f i )  of ( p ,  e)  in f x (a,  b). 

Each point q E r ( Z )  is on an arc of an f-trajectory bearing the interval 
of f-values (a, 8) and meeting f e  n X in accord with (21.13). The 



21. f-TRAJECTORIES ON Mnf 171 

point q is accordingly in the range X of the presentation (21.12). 
Thus 

qz) c x c w. (21.14) 

The continuity of I' at ( p ,  e )  follows, implying the truth of IV. 
This completes the proof of Theorem 21.1. 

EXERCISE 21.1. Show that the homeomorphism I'; of (21.6) is a 
Cw-d# of fc onto fe. 

Suggestion. Parallel the proof of III(i), making use of Lemmas 20.3 
and 20.4 to show that the homeomorphisms in the composition (21.10) 
are C"-diffs. 
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Let M, be a Cm-manifold with a C"-Riemannian structure denoted 
by S. Given a ND f E Cm(M,), the determination of f-trajectories of 
the dynamical system of Theorem 19.6 near a critical point qo off  
can be very difficult unless this dynamical system is induced by a 
structure S specially chosen near qo . In this section we shall show how 
to modify S suitably in a prescribed neighborhood X of qo while 
leaving M, , 9Mn , and f unchanged and changing S at most on X. 
The principal difficulty arises from the requirement that the new forms 
QF assigned to the presentations F E 9Mn be M,-compatible in the 
sense of Definition 19.1. 

Theorem 22.1 is the principal theorem. 

Introduction to Theorem 22.1. The simplest differential form Q F  

which can be assigned to a presentation (F : U, X) E 9Mn is one 
whose matrix 1 1  gsj(u)ll of coefficients is the unit matrix. We term such 
a form canonically Euclidean. Distances and angles defined on U by 
such a form are Euclidean. 

Two C"-Riemannian structures S and S* defined on Mn are 
understood to be identical on any open subset Z of I M, I if corre- 
sponding to each presentation F E 9Mn whose range is included in Z 
the forms Q F  assigned to F in S and S* are identical. 

The following theorem was proved with a somewhat different 
formulation by Morse [9] under Lemma 6.1: 

Theorem 22.1. Let a point qo be prescribed in M, , together with a 
presentation (F : U, X )  E 9 M n  , such that qo E X .  Corresponding to a 
C"-Riemannian structure S given on M, there exists a Cm-Riemannian 
structure S* on M, with the following two properties: 

172 
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(i) 
(ii) 

On I Mn I - X the two Riemannian structures are identical. 
There is a restriction (F,, : U, , Xo) of (F : U, X )  such that 

qo E X , ,  that U, is a relatively compact subset of U, and that the 
Riemannian form Q& assigned to Fo in S* is canonically euclidean. 

We begin the proof of Theorem 22.1 by establishing Lemma 22.1. 

Notation for Lemma 22.1. Let 1 1  cij(u)ll be the matrix of coefficients 
in the given C"-Riemannian form QF . For simplicity suppose that 
F-l(q0) is the origin in I/ C E n .  For each positive Y set 0, = 
{u E En I 1 1  u 1 1  < r}. Let (3 be so small a positive constant that 

C1 D4u C U. (22.1) 

Lemma 22.1. There exists a positive-definite, symmetric, quadratic 
form Q$ with variable coeficients ghk(U) of class C" on U such that 

II g*lC(u)ll = II C i l ( 4 1 ,  24 E u - D4u 9 (22.2) 
and 

II gm(u)II = II a,, 11, u E Du - (22.3) 

In  proving Lemma 22.1 we shall make 
use of a (?"-mapping t + ~ ( t )  of the real axis of t onto [0, 11 such that 

7( t )  = 0, (22.4) 

7( t )  = 1, I t I 2 2, (22.5) 

O < T ( t ) < l ,  1 < I t 1  < 2 .  (22.6) 

An Auxiliary Mapping v. 

0 < I t I < 1, 

Such a mapping exists, as is readily seen. 

Definition of ghk(u). With h and k on the range l,.,,, n set 

g,,(u) = 7 (q) CM&) + (1 - 7 (q)) ah, , u E D4= .  (22.7) 

It follows from (22.7) and (22.4) that 

g*,(u) = a,, 1 II 24 II < L7. (22.8) 

A consequence of (22.8) and (22.7) is that gh,(u), as defined over D,, , 
is of class C". 
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It follows from (22.7) and (22.5) that 

g*,(u) = C h k ( 4 ,  20 < II 11 II < 40. (22.9) 

Taking account of (22.9), we can consistently extend ghk(u) so as to 
be of class C" over U by requiring that 

g**(u) = ChlC(4, 24 E u - D,. 

The matrix IIghk(u)II thereby defined over U satisfies the lemma 
provided we show that IIghk(u)II is the matrix of a positive-definite 
quadratic form. Since the matrices 1 1  chk(u)II and 1 1  S,, 1 1  are both 
positive-definite over U,  we have merely to show that IIghk(u)II is 
positive-definite for u < 1 1  u 1 1  < 20. 

Positiwe-DeJiniteness of 1 1  ghk(u)II. 

0 < 4 24 1114 < 1, 

By virtue of (22.6) 

u < II 24 II < 2% 

so that for these values of 1 1  u 1 1  the values h(u) = ~ ( 1 1  u 111.) and 
p(u) = 1 - q(li u 111.) are positive. According to (22.7) 

11 f A k ( u ) l l  = 1 1  Chk(u)ll + du) 11 11, (22.10) 

so that the matrix IIghk(u)II is positive-definite when u < 11 u 11 < 20. 
This establishes Lemma 22.1. 

Completion of Proof of Theorem 22.1. Referring to (F : U, X) E 9 M n  
of Theorem 22.1 and to Do C U of Lemma 22.1, we shall show that 
the restriction 

P o :  U O , X O ) E ~ M , ,  UO = D o ,  (22.1 1) 

of F is a presentation such that Theorem 22.1 will be satisfied by F, 
and a suitable choice of S*. 

Set X ,  = F(D,,). We shall apply Theorem 19.7, letting K be the 
subset of presentations in 9 M n  which contains the presentation F, 
as given in Theorem 22.1, together with those presentations in 9 M n  
whose ranges do not meet XI.  The presentations in K clearly cover 
I Mn I, and are Mn-compatible since K C 9 M n  . 

To the presentations H E  K we shall assign M,-compatible forms 
Q i  . When H = F we assign to H the form Q$ of Lemma 22.1. To 
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each other presentation H E K we assign the form Q$ assigned to H 
in the given Riemannian structure S. 

For H E  K these forms Q8 are Mn-compatible, since this com- 
patibility is implied by the Mn-compatibility of the forms QH of S 
for H E  K. It follows from Theorem 19.7 that there exists a C" 
Riemannian structure S* whose forms include the above forms Qg , 
H E K. In particular, S* admits the forms Qf of Lemma 22.1 and 
hence a canonically Euclidean form assigned to the restriction F, of F. 

This establishes Theorem 22.1. 
The Reduction Theorem 4.1 and Theorem 22.1 imply the following 

fundamental theorem on modifying a Riemannian structure on Mn : 

Theorem 22.2. Let q be a mitical point o f f  of index k, N an open 

There then exists a presentation 
neighborhood of q, and S a C"-Riemannian structure given on M ,  . 

( F :  D , , X ) E ~ M , ,  q =F(O) (22.12) 

for which 

( f ~  F)(u) = -uI2 - * * *  - u k 2  + u E + ~  4- + una +f(q), 11 u 11 < 0 )  (22.13) 

and X C N ,  and with which there can be associated a modifid C"- 
Riemannian structure S' on M ,  which di8ers from S at most on N and 
in which the Riemannian form QF .is canonically Euclidean. 

A presentation F associated as in Theorem 22.2 with a critical 
point q and a Riemannian structure S' will be termed preferred 
relative to f .  

Corollary 22.1. Given a N D  f E Cm(Mn), it is possible to associate 
presentations F,, chosen from 9Mn biuniquely with the respective critical 
points o f f  and to define a C"-Riemannian structure Sf on M ,  in such a 
manner that relative to f the presentations F,, are of "preferred" type 
and have disjoint range closures. 

Definition 22.1. f-Preferred Riemannian Structures Sf. Let a ND 
f E Cm(M,) be given. A C"-Riemannian structure on M ,  associated 
as in Corollary 22.1 with a set of "preferred" presentations of the 
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respective critical points off will be called an f-preferred Riemannian 
structure St. 

In the remainder of this section and in 923 we shall assume that a 
ND f E Cm(Mn) is given and that M ,  has an f-preferred Riemannian 
structure St. 

f-Trajectories near a Critical Point. We are concerned with 
f-trajectories on M, of a canonical f-transverse dynamical system 
{d/t,4H} induced by an f-preferred Riemannian structure St. We shall 
examine the local representation in F-coordinates of f-trajectories in a 
system d/#F in which F is a preferred presentation of a neighborhood 
of a critical point q. 

We .are assuming that F has the form (22.12), that (22.13) holds, 
and that the Riemannian form QF is canonically Euclidean. The 
differential equations of the local system d/t,4F have the form (19.36), 
or here 

-ui 

2 11 u [la I 

i = l,..., k, 0 < II u II < UI 

j = k + 1, ... ,n, 0 < Ilull < U, 

du{ 
dt 

dui Uj 

dt 

-=- 

(22.14) 
-=- 

2 I\ u 11s I 

in accord with Theorems 19.5 and 19.6 and the nature of QF as 
canonically Euclidean. 

For simplicity in characterizing the ( f 6 F)-parameterized solutions 
of (22.14) we shall here suppose that f(q) = 0. When f(q) = 0, 
(f 6F)(u) is a quadratic function whose values will be denoted 
by P,(u). When 0 < k < n we shall make use of the cone 

pko = {U E En I Pk(U) = 0). 

When 0 < k < n we introduce the coordinate planes 

mk = {U E En I Uk+l = *.* = Un = 0) 

7rn+ = {U E En I ul = * * *  = U K  = 0). 

The solution arcs of (22.14) can be characterized as follows: 

(22.15) 

The Case K = 0. In this case each solution arc is radial and 
( f 6  F)(u) = I] u 112. 
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The Case k = n. The solution arcs are again radial, with 
(f")(u) = - 1 1  fd 1 1 2 *  

The Case 0 < k < n. Each solution arc which meets mk or mn-k 

All other solution arcs in D, are arcs of equilateral hyperbolas explicitly 
is radial, remaining in mk and m,+k, respectively. 

characterized as follows: 

Let two sensed lines meeting the origin be prescribed in mk and 
mn-k ,  respectively, and termed x- and y-axes. These lines are 
mutually orthogonal. Relative to the (x, y)-plane m thereby defined 
let x and y be rectangular coordinates chosen so as to define a metric 
on m consistent with the metric on m induced by En . 

Each solution arc of (22.14) which meets m remains in T and is a 
solution arc of the differential equations 

(22.16) 

on the domain 0 < x2 + y2 < u2, as one readily sees. If not radial, 
such a solution arc, if extended without limit in w ,  is a branch of an 
equilateral hyperbola with the x- and y-axes as asymptotes. There is 
one and only one such hyperbolic arc meeting each point of T not on 
the x- or y-axes. These arcs are orthogonal to the level arcs of 
-x2 + y2 and are to be parameterized by the values of -xa + ya 
on these arcs. 

We shall explicitly record certain important properties of solution 
arcs of (22.14) in D, . 

When 0 < k < n there is a 
hyperbolic solution arc h, meeting each point u E Pko n D, not the 
origin. The point u bisects h, and is the nearest point to the origin 
on h, .  The solution arc h, varies continuously with a point 
u E Pko n Do not the origin. 

A Special Field of Solution Arcs. 

Entrance Properties of Solution Arcs in D, . Let Bd D, denote the 
boundary of Do . If k < n, corresponding to each point u E Bd D, at 
which Pk(u) > 0 there is an extended (f 6F)-parameterized solution 
arc which enters at u, with t decreasing, and if not radial leaves Dc 
at a point w E Bd 0, at which Pk(w) < 0. 
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Descending and Ascending Bowls. Suppose that f E Cm(Mn) is 
ND and that M ,  is provided with an f-preferred Riemannian structure 
S. With each critical point z off of index k > 0 we shall associate a 
descending k-bowl B-(z, k) and with each critical point z of index 
k < n an ascending ( n  - k)-bowl B+(z, n - k )  defined as follows: 

Definition 22.2. If k > 0, B-(z, k )  shall be the union of z and the 
maximally extended f-trajectories which have z as an upper limiting 
endpoint. 

If k < n, B+(z, n - k )  shall be the union of z and the maximally 
extended f-trajectories which have z as lower limiting endpoint. 

The limit points to which reference is made in these definitions are 
of points p ( t )  on f-trajectories as the f-parameter t increases or 
decreases to a limiting value. The bowls are to be topologized by 
I M, I .  We term z the pole of BJz ,  k )  and of B+(s, n - k) .  

For the purposes of this book two introductory lemmas on bowls 
will suffice and will proved. All results on bowls in this book presup- 
pose the existence of an f-preferred Riemannian structure Sf. In the 
first of the following lemmas it is not assumed that M ,  is boundedly 
f-compact. However, this assumption is necessary in Lemma 22.3. 

In the exercises at the end of the section no assumption that M ,  is 
boundedly f-compact is needed. 

Lemma 22.2. (i) A n  ascending ( n  - k)-bowl is a topological 

(ii) A descending k-bowl is a topological k-manifold. 

Proof of ( i ) .  By the “manifold condition” on B+ = B+(z, n - k )  
at a point q of B+ is meant the condition that there exist a neighbor- 
hood of q relative to B+ which is a topological (n  - k)-ball. 

That this manifold condition is satisfied at the pole z of B+ is seen 
as follows. Let x be identified with the critical point q for which 
(F : 0, , X) of (22.12) is a preferred presentation of a neighborhood 
X of q. As we have just seen, the f-trajectories which tend to z as a 
lower limiting endpoint meet X in the topological (n  - k)-ball 

Lemma 22.2(i) is trivial if n - k = 1. Set r = n - k - 1 and 

(n  - k)-manifold. 

F(nn-k n 00). 

suppose that I > 0. 
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With each point p on an f-trajectory 5 in B, = B+(s, n - K) we 
associate a condition Kp defined as follows but not a pr im.  satisfied: 

The condition K,, . Set f(p) = 7.  Under condition Kp  there shall 
exist onfi) an arbitrarily small neighborhood N p  of p such that N p  n B+ 
is a topological r-ball Apr, r = n - k - 1. 

The trajectory 5 is an open arc with the critical point 2 as lower 
limiting endpoint but not a point of 5. The condition Kp is satisfied 
by all points p on 6 sufficiently near z; it is obviously satisfied by all 
points p E 5 in the set F(D,) = X of Theorem 22.1 associated with 
the critical point q = z. 

We continue with a proof of (a): 

(a) If 5 is an f-trajectory in B,  , the condition Kp is satisjied at 
each point of 6. 

Let t + p ( t )  be a representation of 5 in terms of thef-parameter t .  
Were (a) false, there would exist values a and b among the values off 
on 6 such that the condition Kp(l )  is satisfied when a < t < b but 
that the condition Kp(b) is not satisfied. Let 

(9 : V x (a,  p), Y )  E 9 M n f ,  u < a < b < 8, 

be an #-presentation such that p(b) E Y. 
Choose c so that a < c < b. The condition Kp(,) is satisfied by 

hypothesis by an open neighborhood Np(,) of p(c) in f and by an 
open r-ball A:,,, C . By hypothesis N,(,) can be supposed 
arbitrarily small. Since the presentation '3 can be restricted by 
restricting V as a neighborhood of g-l(p(b))  without altering (a, #I), 
we can suppose that NP(,) = 9(V ,  c). 

The condition KP(,) can then be satisfied by taking NP(,) as 9( V,  b) 
and A:(,) as the homeomorph of A;,,, under the mapping in which 
points in and A;,,, correspond which are on the same f-trajectory. 

This establishes (a). 

Verification of Lemma 22.2(i). Let p # x be an arbitrary point in 
B, - z and setf(p) = q as in condition Kp . By (a) the condition Kp 
is satisfied. Let the topological r-ball A," of condition K p  be so small 
a neighborhood of p onf ' l  that it is included in the range of an 
fl-presentation in 9M,f. If e > 0 is sufficiently small, the union of the 
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subarcs of f-trajectories that meet the above r-ball A,' and on which 
the range off is (7 - e, 7 + e) will be a topological (n - A)-ball on 
B, containing p .  

Note. 
Lemma 22.2(i) follows. The proof of Lemma 22.2(ii) is similar. 

The following lemma is easily verified: 

The process of proving (a) is called a continuation process. 

Lemma 22.3. Given an ascending bowl B, = B,(z, n - k) ,  set 
f(2) a. = Corresponding to an interval (a, c] of ordinary values o f f  set 

B % = { p E B , I a  <f(P) <c) .  (22.17) 

I f  M,, is boundedly f-compact, B% is the homeomorph of a closed 
( n  - k)-ball a of radius c - a under a mapping A in which z corresponds 
to the center of B and each f-trajectory in B% is mapped linearly with 
respect to its f-parameter t onto an open radial arc of 9. 

One shows first that a mapping A of Bg onto an (n - K)-ball ~43 
exists and is biunique, as in the proofs of I and I1 under Theorem 21.1 , 
and then shows that A is a homeomorphism as in the proof of 
Lemma 22.2. 

Definition 22.3. Traces of Bowls. Under the conditions of 
Lemma 22.3 the intersection B, nfc will be called the trace of the 
bowl B, on fc. This trace is a topological sphere of dimension 
( n - k ) -  1. 

Similarly, if a descending bowl B- = B-(z, k )  is given, setf(z) = b. 
If [c, b) is an interval of ordinary values off and if M ,  is boundedly 
f-compact, the intersection B- n f is a topological ( k  - 1)-sphere 
and will be called the trace of the bowl B- onfc. 

Modification of Critical Values off.  The following lemma is 
needed in proving the homotopy theorem of 923 (a study in depth of 
such modifications with the aid of bowls is given by Morse [16]): 
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Lemma 22.4. Given a ND f E Cm(Mn), let z be a criticalpoint off 
and N a compact neighborhood of z which contains no critical point off 
other than z. Corresponding to any suficiently small open netghborhood 
No C N of z and suficiently small positive constant e there exists a 
ND g E C"(Mn) such that z is the only critical point of g in N and 

#(P) =f(P), P E MTZ - N ,  (22.18) 
and 

g(P) =f(P) z t  e, P E No * (22.19) 

As a consequence the critical points o f f  and g are identical and have 
identical indices, and if Mn is boundedly f-compact, M,, is boundedly 
g-compact (see Morse [9] 52). 

Let r be a positive constant. Let t + h,(t) be 
a C"-mapping of R onto [0, 11 such that h,(t) = 1 when 1 t 1 < r and 
h,(t) = 0 when I t 1 2 2r. 

Let (F : U, X) E 9 M n  be such that z E X C N and P'(2) is the 
origin in U. Set 

Notation for Proof. 

w(u) = ( fCF)(u) ,  u E u. (22.20) 

Then w is ND on U with the origin its only critical point. Let D2, 
be an open, origin-centered n-ballin En of radius 2r.- Suppose that 
D*, c u. 

A modijication of w. Set 

e(u) = W(U) f & ( I 1  u II), (22.21) 

O(u) = 44, U E  u - B,, (22.22) 

u E u, 
and note that 

and 
e(u) = ~ ( u )  f e, u E D,. (22.23) 

The origin is a N D  critical point of 8. Any other critical point of 8 
must be in the closed set D2, - 0, on which w has no critical point. 
Hence if e > 0 is sufficiently small, 8 has no critical point other than 
the origin. We suppose e so conditioned. 

T o  prove the lemma, it is sufficient to show that for some sufficiently 
small open neighborhood No C N of z the conclusion of Lemma 22.4 
is true. We shall prove the lemma for No = F(D,). 
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Definition of g. The function g is overdefined by the conditions 

(g q u )  = e(u), u E u, (22.24) 

AP) =m, P E wl - W 2 J .  (22.25) 

This overdefinition is consistent, since (22.24), (22.22), and (22.20) 
imply that 

(g sF)(u) = (fsF)(u), u E u - &. (22.26) 

Moreover, the sets F( U) and M ,  - F(&) are open and have M ,  as 
union. It follows from (22.24) and (22.25) that g is of class C" on M ,  . 

In view of the definitions of g in (22.24) and No as F(D,), (22.23) 
implies (22.19). Since N 3  F(&), (22.25) implies (22.18). Since 8 
has no critical point in U other than the origin and since (22.25) 
holds, z is the only critical point of g in N. 

That the critical points off and g are identical and have the same 
indices is now clear. Since f and g have different values at most on the 
compact set N ,  we infer that Mn is boundedly f-compact if and only 
if boundedly g-compact. 

This establishes the lemma for No = F(D,). 

Exercises on Bowls 

Open Radial Sets DeJined. An open subset 2 of En which contains 
the origin will be termed radial if whenever a point x is in 2, the 
straight arc joining x to the origin is in 2. The boundary of such a 
set is not in general a topological manifold or even bounded. Prove 
the following: 

EXERCISE 22.1. 
of an open n-ball. 

An open radial subset 2 of En is the homeomorph 

EXERCISE 22.2. A bowl B+(z, n - k) on Mn is the homeomorph 
of an open radial subset 2 of En-k under a mapping in which the 
pole z corresponds to the origin in 2 and each f-trajectory f in B+ is 
mapped linearly with respect to itsf-parameter t onto an open radial 
arc in 2. 
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EXERCISE 22.3. 
C"-manifold Nn-k . 

B+(z, n - k) is the carrier of an Mn-embedded 

EXERCISE 22.4. The manifold NnFk is the C"-diffeomorph of an 
open radial subset of En-k . 

EXERCISE 22.5. An open radial subset 2 of En is a real analytic 
diffeomorph of an open n-ball (see Morse [ l l ]  Part I, Bowls). 

These exercises imply the following fundamental theorem (see 
Morse [Il l) .  No assumption that Mn is boundedly f-compact is 
needed. 

Theorem 22.3. (i) An ascending (n - k)-bowl is the carrier of an 
Mn-embedded C"-manqold and is the C"-dayeomorph of an open 
(n - k)-ball. 

A descending k-bowl is the carrier of an Mn-embedded C"- 
mangold and is the C"-d#eomorph of an open k-ball. 

(ii) 
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THE BASIC HOMOTOPY THEOREM 

Hypotheses and Notation. There is given a ND f E Cm(M,J and a 
closed interval [a, b] of values off of which a and b alone are critical. 
Taking account of Lemma 22.4, we suppose for the present that there 
is just one critical point z, onfo and just one critical point z b  on f b .  
Suppose that k, < n and kb > 0 are, respectively, the indices of x, 
and z b ,  Let c be a value fixed in (a ,  b) and let ca and cb be the 
“traces” on f c, respectively, of the bowl ascending from z, and the 
bowl descending from q, . The bowl traces ca and Tlb on f play a 
vital role (Definition 22.3.). 

We shall regard the product space f C x [a,  b] as a subspace of the 
product space f c  x R, terming f c  x {a} the lower boundary of 
f x [a, b] andfC x {b) the upper boundary off x [a, b].  

Geometric Homotopy. The type of homotopy developed in this 
section will be termed geometric to distinguish it from the algebraic 
homotopy involved in the chain homotopies of $27. 

Our basic homotopy theorem is a 
corollary of Theorem 23.1. Theorem 23. I characterizes the family 
of f-trajectories on f [ , , b ]  . In this family the parameter q of an 
f-trajectory fq  will be taken as the point q of intersection of 6 withfc. 
Theorem 23.1 is an extension of Theorem 21.1 in the following sense: 
The values a, b define an open interval (a ,  b) of ordinary values off 
to which Theorem 21.1 applies. The mapping Sa off c x [a, b] onto 

f [ , ,b ]  , which Theorem 23.1 characterizes, is an extension of the 
homeomorphism r off  x (a,  b) onto f ( 0 . b )  , which Theorem 21.1 
affirms to exist. Theorem 23.1 is concerned with this extension, in 
particular with its continuity and its biuniqueness (insofar as it is 
biunique). We refer to Definition 21.1 of bounded f-compactness. 

184 

An Extension of Theorem 21.1. 
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The Mapping Q of Theorem 23.1. Suppose that M,, is boundedly 

Under the conditions of the first paragraph of this section, a 
f-compact. 

mapping 

(4,  t ,  -+ .(a(4, t ,  : f x La, b1 +f[a.bl 
onto f[a,bl is uniquely defined by requiring that for each q E f c the 
partial mapping into f[a,b] = I f r a , ~ l  1, 

+ .(a(q, t ,  : la, b1 +f[a.b] 9 (23.1) 

shall be an f-trajectory s q ,  which in particular shall be closed by za 
at t = a when q E T.", and shall be closed by at t = b when 

It is clear that Q maps f x [a, b] onto f[a.61 . It  is not clear apriori 
P E Tgb - 
that Q is continuous. 

Theorem 23.1. Q is a mapping o f f  x [a, b] onto f[a,b] with the 
following properties: 

The restriction 52 I (f x (a,  b)) is the homeomorphism I' onto 
f(a.6) of Theorem 21.1. 

The antecedents of za and Zb under Q are, respectively, the 
subsets Tico x {a} and Tib x {b} of the lower and upper boundaries of 

The restriction of 8-l to fra,b] - 2, - z b  is a homeomorphism 

f [', b1 - ( Tfa ('1) - ( T f b  ib))' (23.2) 

(i) 

(ii) 

f x [a, 4. 
(iii) 

onto 

(iv) Q is continuous. 

Verijcation of (i). (i) follows immediately from the definition (21.5) 
of r and the above definition of Q. 

Verijcation of (ii). (ii) follows from the definition of Q and of the 
traces Tia and Tib on f c, in view of Lemma 22.3. 

Verijcation of (iii). Let 

(Fa : D,  , Xa) E gM, ,  and (Fb : Dab , Xb) E gM,,  (23.3) 
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be preferred presentations of neighborhoods, respectively, of z, and 
of form (22.12) with X, A &, = 0 .  Since X ,  and xb can be taken 

as arbitrarily small neighborhoods of z, and z b  , (ii) will follow if we 
verify (a): 

The restriction of Sk' toha,b]  - x, - x b  is a homeomorphism 
into the set (23.2). 

Proof of (a). T o  prove (a) we shall modifyfslightly near z, and z b  

in accord with Lemma 22.4. 
Let N ,  C X, and Nb C x b  be compact neighborhoods of z, 

and in M, - fc. By virtue of Lemma 22.4 there exists a ND 
function g E Cm(Mn) which differs from f at most on N ,  V Nb and 
for which [u, b] is an interval of ordinary values of g and M ,  is 
boundedly g-compact. Note that f = gc. 

There accordingly exists an open interval (a, 8) of ordinary values 
of g such that (a, 8) 3 [a, b],  Let g-trajectories be defined in terms of 
the g-transverse dynamical system determined by g and thef-preferred 
Riemannian metric St. By virtue of Theorem 21.1 there exists a 

(a) 

homeomorphism 

(qi 2) --f Y(qi t )  : g" x f i )  --f g(a.6) i gc = f " i  

onto g(u,e) such that for each q E f the partial mapping 

t + yk, t )  : (ai B)  + g(a.6) 

is a g-trajectory on g(u.e) . The identity of g and f on M ,  - 
implies the set equality 

f[o.bl - xa - x b  = g[a,bl  - xa - xb = W i  

(23.4) 

(23.5) 

Na - Nb 

(23.6) 

introducing the subset W of I M ,  I. The set W is open relative to 

It follows that if 6; and 6; are, respectively, maximally extended 
fLa.bl and &a,bl * 

f- and g-trajectories meeting a common point q off c = gc, then 

(e n W) = (6: n W) (23.7) 

and these subarcs have identical parameterizations. The validity of 
(23.7) depends on the fact that ($ n W) is a connected subarc of W, 
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with a closure terminating at any intersection with Bd W (see 
“Entrance Properties of Solution arcs in Do” in 922). 

Statement (a) is true if read with g replacing f .  It follows from the 
equality (23.7) that (a) holds as stated for f ,  and (iii) follows. 

Verzjication of (iv). Because (ii) and (iii) are true, to establish the 
continuity of SZ it is sufficient to establish (iv)a and (iv)b, unconditioned 
by the parentheses (which are added because their conditions are 
needed later in establishing the homotopy theorem): 

Corresponding to a prescribed open neighborhood N, of z, in 
fra,d the set w, = SZ-l(N,) is an open neighborhood of Go x {u} in 
f” x [a,  c] (arbitrarily small 

(iv)b. Corresponding to a prescribed open neighborhood Nb of z b  in 
f[c,b] the set wg = G-’(N,) is an open neighborhood of Tib x {b} in 
f c x [c, b] (arbitrarily small 

(iv)a. 

Nu is suficiently small). 

N,  is suficiently small). 

Proof of (iv)a. Set Y = f c  x [a,  c] - (Tza x {a}).  
Note that 2 = f ~ , , ~ ]  - N, is a compact subset of f[a,cl - z,, . 

It follows from (iii) that the subset SZ-l(Z) of Y is compact. Hence the 
complement w, = SZ-l(N,) of Q-l(Z) in f x [a,  c] is open. 

T o  verify the parenthetical supplement of (iv)a, let w, be a 
prescribed open neighborhood of T:o x {a}  in f x [a,  c].  Then 
Comp. w, in f c x [a,  c] is compact. By virtue of (iii) B (Comp. w,) 
is compact and hence has an open complement N ,  in f [ a , c l .  Since 
Nu = Q(w,) and z, E Nu, (iv)a follows as supplemented. 

The proof of (iv)b is similar. 
Thus (iv) is true and the proof of Theorem 23.1 is complete. 

Retracting Deformations. We shall establish the homotopy 
theorem in the general setting of retracting deformations (see 
Borsuk [l]). Several definitions are needed (see Crowell and Fox [l], 
pp. 54-60). 

Definition 23.1. A Retracting Deformation D. Let Z be a 
topological space (Hausdofi) and B a nonempty subspace of 2. 
Let T be a variable, termed the time, with domain [0, 13. A continuous 
mapping 

(P, 4 - D(P, .) : z x [O, 11 - z (23.8) 
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will be called a deformation D retracting Z on itserf onto B if the 
following conditions are satisfied 

(23.9) 

For each p E 2 the partial mapping 

T + D(p, T )  = DP(T) : [0, 11 --* 2, (23.10) 

introducing Dp, is called the deformation arc of p .  For each 7 E [0, 11 
the partial mapping 

P + D(P, T )  = DAP) : z + 2, (23.11) 

introducing D,, is called the .-mapping of 2 into 2. A retracting 
deformation D each of whose 7-mappings D, is a homeomorphism 
will be said to be isotopic. 

Condition (A,) requires that the “initial” mapping Do of 2 into 2 
be the identity. Condition (A2) requires that the “terminal” mapping 
D, be into B. Condition (As) requires that the deformation arc of a point 
p E B havep as carrier. 

Retracting deformations may have some, none, or all of the following 
three properties: 

Property P, . 
point carrier on B. 

Property P2. If the carriers of two deformation arcs intersect 
other than in a point of B, one of these carriers is included in the other. 

Property Pa. Property Pa is a property of D relative to a real- 
valued continuous function f defined on 2. Deformations with this 
property are such that if p ,  and p 2  are points in 2 at the same f-level, 
then 

f(D”’(7)) =~(D”’(T)) ,  0 < T < 1. (23.12) 

We shall study deformations D retracting a subset of fra,bl onto f a 
assuming that (a, b) is an interval of ordinary values off  and that 

Each deformation arc of D is either simple or has a 
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a and b are critical values. One could similarly study deformations 
retracting subsets of f[a,b] onto f b. Our homotopy theorem affirms the 
existence of an “if-linear” deformation D characterized as follows: 

Definition 23.2. A deformation D retracting a subset 2 of M ,  on 
which f(p) 2 a onto f will be called Sf-linear if conditions (u) and (v) 
are satisfied: 

Condition (u). For each point p € 2  such that f(p) > a the 
carrier of a deformation arc T+DP(T) is either an f-trajectory 
joining p to an ordinary point off”, or an f-trajectory joining p to a 
limiting critical point off on fa.  

Condition (v). On each deformation arc T + D P ( T )  of a point 

An If-linear deformation retracting a subset 2 of M ,  on which 
p E 2, f is a nonincreasing linear function of T ,  constant if p ~ f c .  

f(p) < a onto fa is similarly defined. 

The 1 Homotopy Theorem. The hypotheses of the J. homotopy 
theorem are as follows: There is given a ND f E Cm(Mn) and a closed 
interval [a, b] of values off of which a and b alone are critical values, 
taken on, respectively, by critical points za and z, with indices ha < n 
and hb > 0. We assume that M ,  is boundedly f-compact. 

Theorem 23.2. Under these conditions there exists a unique if-linear 
deformation D retracting the set Z = f[a,b] - on itself onto f a  in 
such a manner that just one f-trajectory is retracted onto each point 
off a, excepting the critical point za , onto which the intersection with 
f [a,b] - z b  Of the bowl ascending from Za is retracted. 

Note. The affirmation of uniqueness of an Sf-linear deformation D 
presupposes a unique “preferred” Riemannian structure St on M ,  . 

In  proving Theorem 23.2 use will be made of the projections prl 
and pr, off x [a, b] onto f and [a, b]. If w = (q, t) E f x [a, 4,  
prl w and pr, w are defined by setting prl w = q and pr, w = t. 
Referring to the mapping LR of Theorem 23.1, we shall verify the 
following lemma. 
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Lemma 23.1 (A )  A mapping D satisfying the homotopy theorem must 

(23.13) 

Conversely, a mapping D with values given by (23.13) defines a 

have as values the points in 2 

D(p, T )  = Q(prl Q-l(p), (1 - ~ ) f ( p )  + 7 4 ,  

deformation D which satisfis the first homotopy theorem. 

(P, 7 )  E Z x [O, 11. 

(p)  

Proof of (A) .  Suppose that D is an if-linear deformation satisfying 
Theorem 23.2. If a point p E 2 is ordinary, that is, if p # z, , a point 
Sa-l(p) E f x [a, b] is uniquely determined with projections 

prlQ-l(p)EfC and pr8Q-l(p) = f ( p ) ~  [a, b]. (23.14) 

The antecedent under Sa in f x [a, b] of the deformation subarc 
T -P DP(T) on which 0 < T < 1 must then be an arc 

7 + Sa-l(Dp(7)) = (prl Q-'(P), (1 - ~ ) f ( p )  + ra) efC x [a, 4, 0 d 7 < 1, 

in accord with the conditions of Definition 23.2 on an if-linear 
deformation D. The formula (23.13) follows when p E 2 is ordinary. 

When D satisfies Theorem 23.2, (23.13) remains valid whenp = z, . 
In this case we note that 

Q(T:h x {a}) = I,, Q-'(I=) = T:a x {a}. (23.15) 

Since f(za) = a, both sides of (23.13) reduce to z, when p = z, . 
Conversely, a mapping D of 2 x [0, 11 into 2 whose 

values D(p,  T )  are given by (23.13) defines a deformation satisfying 
Theorem 23.2 provided the mapping D so defined is continuous. 
This continuity follows at once from (iii) of Theorem 23.1, except at 
pairs (p, T) at which p = z, . To establish the continuity of D at pairs 
(I, , T) ,  one notes that D(z, , T )  = z, and confirms statments 1-4: 

Proof of (p). 

1. The real-valued function 

(P, 7 )  + (1 - ~ ) f ( p )  + 711, ( p ,  T )  E X [O, 13, (23.16) 

is continuous and takes on the value a when ( p ,  T )  = (z, , T). 

Tia Cf" when p = z, . 
2. The set-valued function p --+ prl Q-l(p) takes on the set value 
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3. According to (iv)a of the proof of Theorem 23.1 the following 
is true: Corresponding to a prescribed open neighborhood N, of z, 
in f[a,cl the set prl P 1 ( N a )  is an open neighborhood of cs in f c 

arbitrarily small if N ,  is sufficiently small. 
4. 

It follows that a neighborhood fi in Z x [0, 13 of a pair (z, , T )  is 
mapped by D, as defined by (23.13), into a neighborhood of z, in 2, 
arbitrarily small if iv is sufficiently small. 

The mapping J2 is continuous and (23.15) holds. 

Thus (p) is true and the proof of Lemma 23.1 is complete. 
Theorem 23.2 follows from Lemma 23.1 and Theorem 23.1. 

Note. 

If for an arbitrary value a off one sets 

An if-linear deformation D retracting f[a,b] - z b  onto f a has 
properties PI and Pa and property P3 relative to f .  

fu = { P E M , I f ( P )  d 4, (23.17) 

one obtains a basic corollary: 

Corollary 23.1. Under the hypotheses of homotopy Theorem 23.2 
there exists a unique deformation D' (termed if-linear) retracting 

and points in fa remain fixed. 

of a and b can be interchanged. If one sets 

fb - z b  onto f a  , under which fia,b] - Zb is deformed as in Theorem 23.2 

It is clear that in the homotopy theorem and its corollary the roles 

fu+ = {P E Mva If(P) 2 4, (23.18) 

one is lead to a deformation (termed Tf-linear) retracting fa+ - za 
onto fb+ and similar to the 1 f-linear deformation of Corollary 23.1. 

The Sequence of Critical Values. We are assuming that there is 
given a ND f E  C"(M,) and that M ,  is boundedly f-compact. 
The case in which M ,  is compact is included. There are two other 
conditions on M ,  less restrictive than compactness but more restrictive 
than bounded f-compactness. These conditions are defined as follows: 
If for each value (Y off, f u  is compact, M, is termed f-compact below. 
If for each value a off, fa+ is compact, M ,  is termed f-compact above. 
If M ,  is f-compact below and above, M ,  is compact. 
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We shall suppose for the present that each critical value a off  is 
taken on at just one miticalpoint za (cf. Lemma 22.4). 

If M, is compact, the critical values of f  form a finite sequence 
a,, < a, < 0 . .  < a, with at least two critical values. If M, is f-compact 
below, the critical values form a sequence 

Uo < < Up < .*. (23.19) 

which may be finite but has at least one critical value. If M ,  is 
f-compact abowe, a similar descending sequence of critical values 
exists. Iff  is boundedly f-compact, the critical values (if any exist) 
form a sequence 

* * *  < U-p < (1-1 < Uo < 41 < Us < * * * ,  (23.20) 

which may terminate on the right or on the left. The sequence (23.20) 
may be empty or have just one critical value. 

A Supplement to Corollary 23.1. In the sequence (23.20) of 
critical values off  there can be a maximum (or minimum) critical 
value a which is not a maximum (or minimum) value off on M, . 
Consider the case in which a is a maximum critical value. In this 
case M, can be retracted down onto f a ,  but not by means of 
Corollary 23.1. 

To cover the above case, suppose 
that [a, b) is an interval of values off of which a alone is critical and 
is taken on by a single critical point 2,. The number b may or may 
not be a value off. As in Theorem 21.1, b may be equal to +a. 
One assumes that M ,  is boundedly f-compact, and for simplicity 
that index za < n. 

Hypotheses of Theorem 23.3. 

Theorem 23.3 supplements Theorem 23.2: 

Theorem 23.3. Under the hypotheses of the preceding paragraph 
there exists a unique If-linear deformation 0 retracting f [ a , b )  onto f in 
such a manner that there is just one f-trajectory in f[a,b) retracted onto 
each point o f f  a, excepting the point z, , onto which the intersection with 
f[a,a)  of the bowl ascending from za is retracted. 

To prove Theorem 23.3, one replaces the mapping 8 of 
Theorem 23.1 by a mapping 

(CI, t )  --*&I, t )  :f" X [a, b)  +&a) 9 c E (a, b),  (23.21) 
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onto fLa,b) uniquely determined by requiring that for each q E f the 
partial mapping 

2 + Qq, t )  : [a, a) +fro.*) (23.22) 

shall be an f-trajectory tg which in particular shall be closed by za at 
t = a when Q E  T:a. 

The properties of Sa were enumerated in Theorem 23.1. A similar 
enumeration of characteristics of 0 follows. 

Lemma 23.2. The above mapping d of f a  x [a, b) onto has the 

(i) The restriction 0 I ( f  x (a,  b)) is the homeomorphism r onto 

(ii) The antecedent of za under d is the subset x {a} o f f  x {a}. 
(iii) The restriction of 8-1 to f[a,b) - za is a homeomorphism onto 

following properties: 

f (a ,b)  of Theorem 21.1. 

f x [a, b) - (Ch x {a>). (23.23) 

(iv) 

The proof is similar to that of Theorem 23.1. 

Proof of Theorem 23.3. As in the proof of Theorem 23.2, a mapping 
0 satisfying Theorem 23.3 must have values given by the formula 
(23.13) with 0 in place of Sa and 

The mapping 0 is continuous. 

(P, 7 )  x [O, 11- 

Conversely, a mapping 0 so defined will satisfy the conditions on 0 
of Theorem 23.3, as one shows by a similar proof. 

Theorem 23.3 follows readily. 
Theorem 23.3 was stated and proved as a supplement to Theorem 

23.2 largely for the sake of the following corollary: 

Corollary 23.2. Let a be a maximum critical value of a N D  f E Cm(M) 
which has no absolute maximum on M ,  . If M ,  is boundedly f-compact, 
there exists a unique Jf-linear defmmation retracting M ,  onto f a  in such 
a manner that fa+ is retracted onto f a (cf. Theorem 23.3) with b = sup f ,  
and points of f a  are jixed. 
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There is a similar corollary in which minimum and inf f, respec- 
tively, replace maximum and sup f, while fa and fa+ are interchanged. 
The retraction is If-linear. 

The Determination of Homology Groups of M,, . As will be seen 
in Part 111, if there is a deformation retracting a topological space 2 
onto a subspace B, the singular homology groups on 2 of the 
different dimensions are isomorphic to the singular homology groups 
on B of the corresponding dimensions. In the terminology of 
Corollary 23.1, the qth singular homology group on fa is isomorphic 
to the qth singular homology group of fb - z b  . Hence to determine 
the homology groups on fb , up to an isomorphism, from those of fa 

it is merely necessary to determine the effect on the homology groups 
of adding the critical point z b  to fb - z b  . This problem will be 
solved in Part 111. 

Suppose that a ND f E C"(M,) is given and that M ,  is '7-compact 
below." There is then a sequence of critical values a, < a, < a, < 
off which may be finite or infinite in number. Let z, be the critical 
point at the f-level a,. It will be seen in Part I11 that the homology 
groups of fa, - z1 are isomorphic to those of an n-ball. Bases for the 
homology groups of 

are then successively determined, making use of Corollary 23.1 and 
theorems of Part I11 on the effect of adding z, to fa, - z, . If a, is a 
maximum critical value but not a maximum value off on M ,  , then, 
up to an isomorphism, the homology groups of fa, are those of M ,  
by virtue of Corollary 23.2. 

The condition in the theorems of this section that a critical value a 
of a ND f E C"(M,) be assumed at just one critical point was imposed 
for simplicity of statement and proof and not at all for logical neces- 
sity. In fact, the mechanism preceding this section is admirably 
adapted for a treatment of the case where this condition is not 
imposed. Corresponding to an M ,  which is boundedly f-compact 
and to a critical value a off we now denote by z, the finite set of 
critical points at the f-level a. The Homotopy Theorem 23.2 is replaced 
by Theorem 23.4. 
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Hypotheses of Theorem 23.4. There is given a ND f E Cw(M,,) 
with M ,  boundedly f-compact and an interval [a, b] of values off  
of which a and b alone are critical. 

Theorem 23.4. Under these conditions there exists a unique 3,f-linear 
deformation D retracting the set Z = fra.61 - z b  on itself onto fa in 
such a manner that just one f-trajectory is retracted onto each point of 
f" excepting thepoints of za . Onto x, E z, the intersection with f ~ a , ~ ]  - zb 

of the bowl ascending from z, is retracted. 

A Substitute for Manifold Triangulation. The scope of theorems 
of this section is greatly enlarged by the following theorem: 

Theorem 23.5. Corresponding to a prescribed, connected, noncompact 
C"-manifold M ,  there exists a N D  f E C"(M,,) with the following 
properties: 

(i) For each value a of j, fa is compact. 
(ii) The function f has a point of absolute minimum and no other 

(iii) The function f has no critical point of index n. 

Whitney's theorem in an extended form (Whitney [3], p. 113) states 
that M ,  can be Cw-embedded as a closed subset of some Euclidean 
space E m .  It is accordingly sufficient to establish Theorem 23.5 for 
the case in which M ,  is a closed regular C"-manifold M ,  in a 
Euclidean space Em . By Theorem 6.1 there exists a point a E Em 
which is neither on M ,  nor a focal point of M ,  . The function 

x+FJ(x) =IIa--XII, X E w l ,  

critical point of index 0. 

satisfies the conditions of Theorem 23.5 except at most for conditions 
(ii) and (iii). 

By the methods of Morse [9] used to establish the existence of 
polar ND functions, g~ can be modified by the elimination of critical 
points so that each condition of Theorem 23.5 is satisfied. 

The set f a  affirmed to exist in Theorem 23.5 has no other boundary 
in M ,  than f a, and if a is an ordinary value off, this boundary is a 
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compact C”-manifold of dimension n - 1. Although the homology 
groups of M,, may have infinite connectivities, each subspace fa will 
have finite connectivities, as we shall see. 

The representation of M ,  by means of the subsets fa of M ,  in which 
a takes on the successive critical values off is useful in the general 
study of homotopy and homology on M ,  , It naturally replaces the 
classical representation of M ,  as a “triangulated” complex. 

Homotopy Types. The Homotopy Theorem 23.2 has as corollary 
an illuminating interpretation in terms of “homotopy types.” We were 
led to this interpretation by Theorem A of Bott [3]. Our statement 
of Corollary 23.3 differs from Bott’s Theorem A in that the closed 
k-cell “attached” by Bott to the sublevel set fa, is here taken as the 
(e, k)-dome of the k-bowl descending from the critical point p a .  
This (e,  k)-dome will be defined, together with other terms which 
are needed. 

Definition 23.3. Homotopy Type. In accord with Hilton ([l], p. 3), 
let X and Y be two nonempty Hausdorf€ spaces and h : X + Y and 
g : Y 3 X be two continuous maps into Y and X ,  respectively, such 
that g 0 h : X-P  X is deformable on X into the identity map of X 
onto X and h o g  : Y + Y is deformable on Y into the identity map 
of Y onto Y. Such maps, h and g ,  are termed homotopy equivalences, 
and spaces X and Y so related are said to have the same homotopy type. 
When X and Y have the same homotopy type one writes X N Y. 

The relation N is reflexive, symmetric, and transitive (see 
Hilton [l]). 

If Y C X and if there exists a deformation D (Definition 23.1) whose 
“terminal” mapping D1 retracts X on X onto Y, it is trivial that 
X N Y. Homotopy equivalences sufficient to establish the relation 
X E Y can be taken, respectively, as D, and the inclusion map of Y 
into X. 

Notation. Let f be given on M,, , as throughout this section. 
The value a off  is assumed critical, and pa  the only critical point 
at thef-level a. Suppose that the index k of pa is such that 0 < R < n. 
Suppose e > 0 and that with a - e < a < c the interval [a - e, c] 
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contains no critical values other than a. I t  follows from Theorem 23.2 
that there exists a deformation retracting f ,  onto fa, so that 

f c  - f a  - (23.24) 

Definition 23.4. The (e, k)-Dome with Summit p a .  Turning to 
Definition 22.2, let B-(pa, k) be the k-bowl descending from p a .  
This bowl has a subspace 

7 = Be-( Pa k) = {q  E B-(Pa 9 A) I a 2 f (4) 2 a - e}, (23.25) 

which will be called the (e, k)-dome with summit pa . The (e, k)-dome 
with summit pa is a topological k-ball r ]  on which f assumes an absolute 
maximum a at p a .  The topological (k - 1)-sphere ,f3q which is the 
geometric boundary of r ]  is the set 

87 = r ]  n f a-e. (23.26) 

One terms the set 

fa--6 u TI (23.27) 

the sublevel set fa, with the (e,  k)-dome r ]  “attached” to fa, along pr] 
by the inclusion map of 8.1 into fa, (see Bott [3]). 

Corollary 23.3. Let the constants a - e < a < c,  the critical point 
p a ,  and the index k of pa  be conditioned as above. One then has the 
homotopy relation 

fa-6 LJ 7,’ -fc 3 Q < k < n, (23.28) 

where qCk is the (e, k)-dome with summit pa . 
The relation (23.24) holds as a consequence of Theo- 

rem 23.2. Because of the transitivity of the relation 1 ~ ,  (23.28) will 
follow if (23.24) is supplemented by the relation 

Proof. 

fa-e u 7s‘ - f a  * (23.29) 

We shall see that in a proper notational context (23.29) is an elementary 
consequence of Theorem 21.1. 

The relation (23.29) may be inferred from the following lemma: 
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Lemma 23.3. I f  constants a - e < a < c are conditioned as above, 

(i) There exists a deformation D’ retracting fa-e v 7) onto fa-e v qek. 

(ii) I f  Q > 0 is suficiently small there exists a deformation D” retract- 
ing f a  onto fG-< v -q/. 

Notation for the proof of Lemma 23.3 (ii). Use will be made of the 
special local coordinates u1 ,..., u, introduced in Theorem 22.2. The 
critical point q of Theorem 22.2 is identified with the point pa of 
Lemma 23.3. We refer to the presentation (from (22.12)) 

(F  : D, , X) E BM, (23.30) 

of the neighborhood X on M, of pa = q, and to the quadratic form 

Q(u) = -ula - * a .  - una + .f+, + -.. + una (23.31) 

on the right of (22.13). For simplicity we suppose that f (q) = 0, so 
that for u E 0, , ( f  ~ F ) ( U )  = Q(u). 

In  the n-plane En of the coordinates u1 ,..., u,  we introduce the solid 
n-cone A on which 

and if0 < Q < e, then the following is true. 

-lg - .-- - UK” + 2(u;+1 + * * -  + u,a) \< 0. (23.32) 

On the (n - 1)-cone A’ bounding A, 

- ... - 24; + 2(Uf+, + *.- + u,”) = 0. (23.33) 

For arbitrary positive e the sets 

A, = { U E A  10 >Q(u)  2 -e} 

A: = {u E A’ 10 >Q(u) 2 -e} 

(23.34) 

(23.35) 

are well-defined. 
The geometric boundary PAe of A,. Let Q-e be the nonsingular 

(n  - 1)-dimensional quadric manifold on which Q(u) = -e. We 
introduce the subset, 

A: = AnQ-”  (23.36) 

of Q”. One then has 
PAe = A:u A:. (23.37) 
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An ample conception of these sets can be obtained by diagramming 
these sets in the special cases in which n = 3 and k = 1 or 2. 

Let v k  be the coordinate k-plane 
of En on which U k f l  = ... = u, = 0. We introduce the origin- 
centered k-disk 

A First Retracting Deformation. 

on ?rk . There exists a retracting deformation 

A,  - A: u dek (23.39) 

of A, onto the right side of (23.39). The trajectories of this deformation 
can be taken as subarcs of straight lines orthogonal to vk . Under the 
deformation (23.39) each point of A: u d,k is fixed, while each point 
of A,, not on A: v d,k, moves on its trajectory to a point of A: u d,k 
at a velocity equal to the distance to be traversed. 

If 6 > 0 is sufficiently small, 

4 C DU (23.40) 

[Do from (23.30)]. As a consequence F(d/) is well-defined, and 

r],k = F(dck). (23.41) 

It follows then from (23.39) that there exists a retracting deformation 

W,) - v:) " 7: (23.42) 

of F(d,) onto the right side of (23.42). 

A Second Retracting Deformation. We affirm that there exists a 
retracting deformation D* 

f a  + f a - f  " W C )  (23.43) 

of fa onto the right side of (23.43). 
Under D* the point pa is fixed. Apart from this condition the 

deformation D* is definable in terms of f-trajectories. The definition 
is rendered simple by the fact that the only arcs of f-trajectories in X 
with initial points on f - p ,  and which meet the boundary of F(A,) 
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are those whose images under F-l are hyperbolas orthogonal to the 
level manifolds of Q (see 522). 

Since F(A:) in (23.42) is a subset of fa+ and so is pointwise fixed 
under the deformations (23.42) and (23.43), the existence of the 
deformation D” of Lemma 23.3(ii) may be inferred from the existence 
of the deformations (23.42) and (23.43). The figure when n = 2 and 
k = 1 is helpful. 

This completes the proof of Lemma 23.3(ii). 

Proof of Lemma 23.3(i). A deformation D’ retracting the first of 
the sets 

A = f - u  rl?, B =fo--eurl,k 

onto the second will now be defined. One should refer to Theorem 21.1 
for essential background. 

The value off at an ordinary point p of f  will be called the f- 
coordinate of p. Under D‘ the point pa = q shall remain fixed. A point 
p E fa-, shall be deformed on the f-trajectory 4 meeting p, moving 
in the sense of decreasing f. Let p1 be the point in which &, meets 
fa+ . As the time T increases from 0 to 1 the f-coordinate of the deform 
of p shall decrease at a constant rate such that the deform of p reaches 
p, when the time T = 1. 

A point p E 7.k at which f(p) = Q(-c )  is in fa-. , so that the 
deformation arc of p is already defined. A point p E q,k such that f (p) 
divides the interval [Q(-E), 01 in a ratio p between 0 and 1 shall be 
deformed on the f-trajectory Ap meeting p into the point p, on Ap 
whose f-coordinate divides the interval [Q(-e), 01 in the above ratio p. 
The rate of decrease of the f-coordinate of the deform of p on hp shall 
be constant and such that p, is reached when T = 1. 

It is seen that D’ is a continuous deformation retracting A onto B. 
The proof of Lemma 23.3 is complete. 
Corollary 23.3 follows. 

66Handlebodies.” This is a term associated with a process P used 
in 513 of Morse [l] in 1925 to pass from fa, to fa+e when e > 0 is 
sufficiently small and pa is the only critical point off  with critical 
value on the interval [a - e, a + el. We shall show how the process P 
is related to the process Po of attachment of the (e, k)-dome r ]  of (23.25) 
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to fa, to form fa, u r] in (23.27). Briefly, P attaches a “thickened” 
r ] ,  say r ] * ,  to fa+ along fa“ n r]*. We shall be more explicit. 

Recall that in the process P o ,  r] was attached to fa, along the 
boundary pr] = r] nfa+ of r].  To “thicken” the (e, k)-dome the 
process P replaces r ]  by a cellular neighborhood N of pa relative to 
C1( fa+, -fa,) as follows. The neighborhood N is the image on M, 
under a homeomorphism @ into M,, of a product X k  x Yn-k of 
closed Euclidean balls of dimensions K and n - k, respectively. Thus 

N = @(Xk x Yn-k), 

If 0 is the center of Yapk, @ is to be such that 

@(origin) =pa .  

7 = @(Xk x (0)) C N .  

N is to be “attached” tofa, along the set 

2”-1 = N n f -  = @(pXk x Y-) 

by the inclusion map of Zn-’ into fa+,  and be such that 

p7 = @ ( j 3 X k  x (0)) c Z”-1. 

The boundary of fa, u N is an (n  - 1)-manifold. Without 
modifying fa, and without altering N or fa, u N topologically one 
can so choose N that the boundary of fa, u N is a differentiable 
manifold and fa+, admits an isotopic deformation whose deformation 
arcs are f-trajectories and which retracts fa+e onto its homeomorph 

In  Morse [l], Section 13, on “lncidence relations between the boundary 
of D,  and the remainder of the complex f < c + ea,” e2 replaces the 
above e and there is a detailed definition of the above cells and their 
incidence relations. In the abstract case which concerns us here the 
incidence relations are the same. The special coordinates ul ,..., u, of 
Theorem 22.2 and the isometry between the domain 0, of these coor- 
dinates and the range X of the presentation (F : 0, , X) of Theorem 
22.2 make the above process P particularly simple. 

fa-e U N -  

One can extend the above construction. 
Suppose that there are r ND critical points at the f-level a (cf. $39) 

each with index K. If e > 0 is sufficiently small, disjoint neighborhoods 
N, ,..., N, of the respective critical points can be defined as above 
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and attached to fa+ along disjoint “thickened” topological (k - 1)- 
spheres, rl, ..., Zvs’, 0fp4 to form what is termed a handlebody 

of index k bused on fa+.  

Smale ([l], p. 374) introduced handlebodies based on an n-ball D”. 
He uses such handlebodies in deriving his penetrating solution of the 
PoincarC problem, n > 4. 

EXERCISE 23.1. If a ND f E Cm(M,,) has just one critical value a 
and if M,, is boundedly f-compact, show that there exists a deformation 
D retracting M,, onto f a. 

EXERCISE 23.2. Give a direct proof of Theorem 23.5 in the special 
case in which n = 2 and the carrier of M ,  is an arbitrary, open, 
connected subset of E, . 
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§ 24 

INTRODUCTION 

Vector Spaces. Let X be a commutative field with a unit element 
e. An Abelian group G is called a vector space,’ G over .f, if for each 
r E X and each g E G an element rg E G is defined such that for 
g, g, , g2 E G and I, I1 9 12 E x- 

r(g1 + gz) = ‘gl + rg2 9 (r1 + r2)g = r1g + ‘zg, 
(24.1) 

Given a vector space G over X ,  we admit only those subgroups H 
of G which are linear subspaces of G, that is, are such that rg E H 
whenever I E X and g E H. 

A mapping g~ of G into another vector space G’ over .f is called a 
homomorphism if 

Tl(‘zg) = ( V 2 ) &  eg = g. 

and is called linear if in addition 

The Quotient Group GIL. Let G be a vector space over a field .f 
and L a subgroup of G. Corresponding to each g E G the subset g + L 
of G is called the coset L, of g in G. The cosets of G partition G. If 
g’ E L, , then L,. = L, . The disjoint cosets of G are the elements of a 
group GIL, termed the quotient of G by L. 

+See  Birkhoff and Mac Lane [I], Chapter VII for a detailed treatment of vector 
spaces. 
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Addition in GIL and multiplication by r E Y are defined in accord 
with the respective set relations 

(g11-L) + (gr t - 4  = ( E l  + f a )  $4  r(g +L) = rg + L ,  7 E . f .  

The null element is 0 + L = L. With this understood the following 
three lemmas are readily verified: 

Lemma 24.0. I f  G is a vector space over a field Y and L a linear 

Unless otherwise stated a vector space will be understood as over Y.  
subgroup of G, then GIL is a vector space over Y.  

Lemma 24.1. I f  01 is a linear homomorphism of a vector space G into 
a vector space G' that maps a subspace L of G into a subspace L' of G', 
a linear homomorphism 01* : G/L + G/L' is thereby induced under which 
a coset Lg of G goes into the coset L:, of G'. 

Lemma 24.2. If 01 and y are linear homomorphisms, 01 ; G + G' and 
y : G'+ G", of vector spaces G and G' into vector spaces G' and G", 
respectively, and if restrictions of 01 and y ,  respectively, define linear 
homomorphisms L + L' and L' + L", where L, L', and L" are vector 
subspaces, respectively, of G, G', and G", there is thereby induced a linear 
homomorphism 

(ya)* = y*a* : G/L + G * / r .  

Proof. Lemma 24.1 implies that for g E G the coset Lg of G goes 
into the coset of G" of form (ycu)*L0 = LYya,, = y*L:, = y*a*Lg. 

A set (u) of non-null elements in G is called linearly 
independent or free if no element v E (u) equals a finite linear com- 
bination with coefficients in Y of elements in (u), w deleted. If each 
element of G is a finite linear combination over Z of elements of (u), 
then the elements of (u) are called generators of g. I f  in addition the 
elements of (u) are free, (u) is said to be a base for G. 

One proves readily that if G has two finite bases (ul ,..., urn) and 
(vl ,..., vn), then n = m. One terms the number of elements in a 
finite base for G the dimension of G. If G is not trivial and has no finite 

Generators. 
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base, the dimension of G is said to be injnite. If G is trivial, its 
dimension is said to be zero and it is said to have an empty base. 

If there is a biunique linear homomorphism 01 of one vector space G, 
onto another G, , a base of G, is mapped by 01 onto a base of G, . 
The inverse 01-l is then a biunique linear homomorphism of G, onto G, 
and G, and G, are termed isomorphic. Trivial vector spaces are 
regarded as isomorphic. Vector spaces over Z with finite dimensions 
are isomorphic if and only if their dimensions are equal. 

We record a definition: 

Definition 24.0. Reduced Representations. A representation 

g = rlul + - - -  + r,u, , ri E .X, ui E G, (24.4) 

of a non-null element g E G will be called reduced if no r, = 0 and if 
the elements ul ,..., u, are linearly independent over Z. 

The Existence of Bases. A vector space G may be defined by giving 
a base for G. More generally, it can be shown by Zorn’s lemma that 
every vector space has a base (see Bourbaki [2], p. 147). In the most 
important cases bases are finite and their existence follows from the 
definition of G. The following lemma is needed in the singular 
homology theory: 

Lemma 24.3. Let G be a eector space generated by a base u and g a 
non-null element of G. There then exists a base for G which contains g .  

By hypothesis g has a reduced representation of form (24.4) in 
which the elements u, ,..., u, belong to the base u. The elements of u, 
with u, replaced by g ,  then form a base for G, as one readily verifies. 

The following definition is needed: 

Definition 24.1. Direct Sums of Vector Spaces. Let G, and G, be 
vector spaces with no element in common other than the null element: 

A vector space G with a base which is the union of bases of G, 
and G, is called the direct sum 

(24.5) 

(i) 

G = GI @ G, 
of G, and G, . 
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(ii) Equivalently, a vector space G is the direct sum of vector 
subspaces G, and GB if each element x E G has a unique representation 

X = I , + X ~ ,  x1€G1, Z , E G ~ .  (24.6) 

We turn to an abstract homology theory with a generality sufficient 
for our purposes: 

An Abstract Homology Theory. Let K be a collection of formally 
distinct elements &, called q-cells, each assigned an integer q 2 0 
called its dimension. The cells of dimension q serve as generators over 
X of a vector space denoted by C,(K, X) .  These generators are 
supposedfree in that each finite subset of cells & of the same dimension 
is supposed free. For us the field X ,  although arbitrary, is 
invariable unless otherwise stated, and we shall denote C,(K, X )  by 
C,(K). Elements in C,(K) are called q-chains of K.  For q < 0 we 
understand that C,(K) is the trivial Abelian group. 

The Boundary Operator a. For each nonnegative integer q there 
is given a linear homomorphism 

a : C Q ( K )  c Q - l ( K ) ,  (24.7) 

more explicitly denoted by 8,. It  is required that 

aQ,(a$) = 0, x E C,(K). (24.8) 

One writes (24.8) in the form a(ax) = 0, and one refers to the 
collection of conditions (24.8) as the condition aa = 0. 

If u is a O-cell, 8u is the null element in C,(K). 

Definition 24.2. Admissible Complexes K.  A collection of abstract 
cells & and an operator a satisfying the preceding conditions will be 
called a a-structured complex K over X and termed admissible. 

We now define certain subgroups of C,(K) essential for a homology 
theory, admitting only those subgroups of C,(K) which are “sub- 
spaces” of C,(K). 

Definition 24.3. The Subspace Z,(K) of q-Cycles. A q-chain 
x E C,(K) is termed a q-cycle if ax = 0. Since the homomorphism a 
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is linear by hypothesis, r(ax) = a(rx) for each r E X ,  so that a(m)  = 0 
if ax = 0. It follows that the ensemble of q-cycles is a linear subspace 
Z,(K) of Cq(K). Each O-chain is a O-cycle. 

Definition 24.4. The Subspace B,(K) of Bounding q-Cycles. 
A q-cycle a? is termed bounding or homologous to 0, written XQ - 0, 
if x? = aa?+l for some ( q  + 1)-chain S+l. The subgroup of Z,(K) 
of bounding q-cycles is linear and is denoted by Bq(K). If q-cycles 
x? and yQ are such that x? - f - 0, one writes jP N f ,  and says that 
a? is homologous to f .  

Definition 24.5. The Homology Group H,(K). The quotient group 

is a vector space over X (Lemma 24.0) and is called the qth homology 
group of K.  For q < 0, H,(K) is trivial. The cosets of Z,(K) are called 
homology classes. 

Definition 24.6. The qth Connectiwity Rq of K .  If a homology 
group Hq(K) has a finite dimension, this dimension is called the 
qth connectiwity R,(K) of K .  If the dimension of Hq(K) is not finite, 
one says that R,(K) = a. 

Definition 24.7. Homology Prebases for K .  Any subset of Z,(K) 
which contains just one q-cycle from each homology class of some 
base for H,(K) will be termed a homology prebase for K of q-cycles. 

If bq(K) is a homology prebase for K of q-cycles, no proper linear 
combination over X of q-cycles of b,(K) is homologous to zero, or, 
as we shall say, b,(K) is free homology-wise. Moreover, each q-cycle 
is homologous to a linear combination over X of q-cycles of b,(K), 
or, as we shall say, bq(K) is generating homology-wise. 

Any subset of Zq(K) which is both “free” and “generating” 
homology-wise contains just one q-cycle in each homology class of 
a uniquely determined base for H,(K) and so is a homology prebase 
for K of q-cycles. If R,(K) is finite, the number of elements in a 
homology prebase for K of q-cycles is Rq(K). 
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Homology prebases should not be confused with bases for homology 
groups. 

complexes K' and K". 
Induced Homomorphisms a*. Let there be given two admissible 

Definition 24.8. &Permutable Chain-Transformation. A set of 
linear homomorphisms 

a! : C,(K') + C,(K"), q = 0, I ,  ..., (24.10) 

such that aa = aa or, more explicitly, 

aG+a = aa!,, = 0, l,..., (24.1 1) 

will be called a &permutable chain-transformation+ K' --+ K". For 
brevity, the set of mappings (24.10) will be referred to as the chain- 
transformation a : K' --+ K". 

When (24.1 1) holds a maps a q-cycle x of K' into a q-cycle of K". 
Thus a defines a linear homomorphism Zq(K') + Zq(K") for each q. 
Moreover, a defines a linear homomorphism Bq(K') + B,(K") for 
each q, since whenever a q-cycle x of K' is bounding arx is bounding, 
as (24.1 1) implies. From Lemma 24.1 one can thus infer the following: 

Theorem 24.1. A &permutable chain-transformation a : K' +K" 
induces linear homomorphisms 

a!* : H,(K') + H,(K"), q = 0, l , . . . ,  (24.12) 

under which a homology class of a q-cycle x of K' goes into the homology 
class of the q-cycle ax of K". 

We point out a consequence (24.13) of Lemma 24.2. 
Let K', K" and K "  be three "&structured abstract complexes" 

and let 

and 
a! : CXK') + CJK"), 

y : C,(K") + C,(Krn), 

q = 0, l,..., 

q = 0, I,.. . ,  

+ See Eilenberg [l], p. 411. Strictly, a should bear a subscript q in (24.10). 
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be &permutable chain-transformations. Then the composite mapping 
ya is &permutable, since a ( p )  = 7th = (ya)a. There are induced 
linear homomorphisms, 

a* : H,(K') + H,(K"), y* : H,(K") + H,(K"),  (ya)* : Hq(K') + H,(K'"). 

Moreover, it follows from Lemma 24.2 that 

(A* = Y*"* - (24.13) 

It should be observed that an identity chain-transformation 
a : K 4 K induces an identity homomorphism a* of Hq(K). 

Definition 24.9. Geometric Simplices ap. Let 

be q + 1 points in En with q < n. If these points do not lie in a 
(q - 1)-plane, the set of points x E En with vectorial representations 

x = p(p(0' + p&1) + + p@, (24.15) 

where the parameters po , p1 ,..., pq are subject to the conditions 

PO+PI + *.- +pq = 1, 0 < p i  < 1, (24.16) 

is called a geometric simplex d with vertices (24.14). The simplex uq 
is independent of the order in which its "vertices" (24.14) are given 
and is to be distinguished from an ordered simplex presently to be 
defined. 

Any subset of r + 1 distinct vertices of a*, 0 < r < q, determines 
a geometric r-simplex, called an t-face of d. If Y is any integer in the 
range 0, 1, ..., q and if 

d o ) ,  x(1) ,..., P ,..., x(Q), q > 0, (24.17) 

denotes the subset of the vertices (24.14) of uq with x(") deleted, the 
geometric simplex with vertices (24.17) is called the (q - 1)-face of u* 
opposite the vertex dU). As a polyhedron (see §25), an n-simplex shall 
be regarded as including all of its faces. 



212 111. SINGULAR HOMOLOGY THEORY 

Definition 24.10. Ordered Simplices. When q 2 0 a geometric 
simplex rp whose vertices p ,  have been assigned a definite order (see 
Eilenberg [l], p. 420) p, < p ,  < ..* < p ,  will be termed an ordered 
q-simplex and denoted by 

s = pop1 * * *  PI = fl. (24.18) 

For notational reasons we do not ordinarily write s as E, although s is 
understood as having the dimension q. We term 8 the carrier of s 
and write I s I = rp. When q = 0 we set s = I s I = p ,  . 

When q > 0 the ordered simplex 

s ( i )  = p ,  .-ji - * p a ,  0 < i < q, (24.19) 

obtained by deleting the vertex p ,  from s is called the ith face of s. 
The symbol s(i)  is used for no purpose other than to represent the ith 
face of s. 

To give a definition of the algebraic boundary as of an ordered 
simplex s, let F, , q 2 0, denote the Abelian group (with integral 
coefficients) generated by the set of all distinct ordered q-simplices 
in all Euclidean spaces En of all dimensions, subject to the following 
convention as to distinctness: A q-simplex given in En shall be 
identified with a simplex s' in a Euclidean space En. for which n' > n 
when s' is the image of s under the mapping 

(XI ,..., x,J+ (XI ,..., X, ; O,..,,O) : En + En. . 
With r, so defined, when dim s = q > 0 sett 

as = (- 1)' s ( j )  E ra-l , (24.20) 

and when dim s = 0 set as = 0. Let a so defined be extended 
linearly to define a homomorphism 

a : r a + F a - , ,  q=O,l, ..., (24.21) 

understanding that F, is the trivial group when m < 0. 
A classical lemma can now be verified. 

t Here aa elsewhere a repeated index in a term indicates summation of the term 
over the range of the index. 
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Lemma 24.4. If s is an ordered simplex of dimension q 0, then 
a(&) is the null element in Fq-2 . 

Proof, The lemma is trivial when dim s is 1 or 0. Suppose then 
that dim s = q > 1. Let i and k be restricted to the range 0, l,..., q. 
For fixed i 

as(i) = ( - l ) k p o  ' * * j k  ' * ' j t  "'PQ 
k < i  

+ C ( - l ) k - l p o  ji * . a  j k  ... p ,  (24.22) 

by virtue of (24.19) and the definition (24.20) of as. Applying a to 
both sides of (24.20), one finds that 

k > <  

Q Q 

a(as) = a C ( - l ) i s ( i )  = ( - I ) i  as(i). (24.23) 

If one replaces as(;) in the right side of (24.23) by the chain on the 
right of (24.22), the lemma follows. 

i=o i-0 

Barycentric Coordinates. Let s be an ordered simplex with 

do), dl),..., x(Q), 0 < q < n, (24.24) 

in E, in their given order in s. A point x E I s I = aq of the form (24.15) 
with parameters p conditioned as in (24.16) will be said to have 
barycentric coordinates p relative to s. An induction relative to q 
suffices to prove the following lemma: 

vertices 

Lemma 24.5. Points in I s I = aq with dtgerent barycentric coordinates 
relative to s are different. 

Theorem 24.2 below requires the following definition: A mapping 
H of a subset X of a Euclidean space En onto a subset Y of a Euclidean 
space Em will be termed A-linear if whenever H maps points x and x' 
in XI respectively, onto points y and y' in E m ,  H maps the point' 

t We are representing a point by a vector whose components are the coordinates 
of the point. 
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Ax + (1 - h)x' onto the point hy + (1 - A)y' for every choice of h 
in the interval [0, 11. 

Theorem 24.2. Let a'J and b', q > 1, be geometric simplices in En 
and Em which are carriers of ordered Simplices s,, and S b ,  respectively. 

A mapping of a@ onto & in which points of a'J and & correspond if 
they have the same barycentric coordinates is a A-linear homeomorphism 

That this mapping is biunique follows from Lemma 24.5. That it is 
h-linear is formally verified without difficulty. 

To show that this mapping is bicontinuous, we introduce a model 
geometric simplex E in E,,, which is the carrier of an ordered simplex 
s, whose vertices have coordinates x, ,..., x,,, in E,,, given by the 
successive rows of the unit (q + 1)-square matrix. The representation 
of points y E @ in terms of their barycentric coordinates relative to s, 
takes the special form 

of d onto & . 

Y = (Yl ,.-,Yl?+J = (Po 9 P l  ,...,Pa)- 

The theorem is true if a, is replaced by @. This follows from the 
fact that the mapping of @, onto bQ of the theorem, is biunique and 
continuous and @ is compact. Since there is a similar h-linear homeo- 
morphism of @ onto a'J, Theorem 24.2 follows as stated. 
We term the mapping of a@ onto b9 Armed to exist in Theorem 24.2 

a barycentric homeomorphism. 



§ 25 

MODEL POLYHEDRAL COMPLEXES P 

Singular simplexes and complexes will presently be defined. This 
section is concerned with certain model polyhedral complexes whose 
continuous images in a Hausdorf€ space x will be useful in singular 
homology theory. Among polyhedra are prisms with the aid of which 
model chain homotopies will be defined. 

One starts with a simplicia1 n-polyhedron P in E m ,  m 2 n > 0, 
defined as the union of a finite set of geometric n-simplices in Em no 
two of which intersect other than in a common face of dimension 
less than n. Recall the convention that a geometric simplex, as a 
polyhedron, includes each of its faces. 

Given an n-polyhedron P we shall define a &structured complex P 
over X ,  based, as we shall say, on P, terming P a model polyhedral 
complex. To that end, we must define the cells of P, and on P a 
boundary operator a such that = 0. 

Definition 25.1a. The Cells pQ of P. A q-cell of P is any ordered 
q-simplex pq whose carrier is a geometric simplex @ of P. Two q-cells 
of P are regarded as identical if and only if their carriers are the same 
geometric simplex @ and their vertices have identical orderings. 

Definition 25.1 b. The Boundary Operatw a on P. For each q-cell 
pq = s of P apQ is defined as was as in $24, with &I = f e  in .X, 
as an element in t&(P). The operator 8 is extended as a linear 
homomorphism 

a : C,(P) 4 C,-,(P) over X .  

215 
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It follows from Lemma 24.4 that a(ax) = 0 for each q-chain of 
C,(P). This completes the definition of P as an admissible a-struc- 
tured n-complex “based” on the n-polyhedron P. 

Carriers of Chains of P. A non-null q-chain u* in C,(P) admits a 
unique “reduced representation” (Definition 24.0) 

When u* is so represented the carrier I u* I of u* is defined as the set 
(see Example 25.1): 

I UQ 1 = 1 p p  I u * * .  u I puQ I. (25.1) 

Definition 25.2. The Geometric Boundary j3P of P .  By /3P we shall 
mean the (n - 1)-polyhedron which is the union of those geometric 
(n - 1)-simplices of P which are faces of an odd number of 
n-simplices of P. 

Definition 25.3. The Star P, of a Vertex v of P.  Given a vertex 
w of an n-polyhedron, n > 0, let P, be the closed subpolyhedron of P 
which is the union of the geometric simplices (closed by definition) 
which are incident with o. Let P, be the subcomplex of P based on P, , 

Definition 25.4. The Outer Complex of P , .  The union of the 
geometric simplices of P, , not incident with o, is an (n - 1)- 
polyhedron called the outer boundary P ,  of P, . The complex based 
on is termed the outer complex of P, . The outer complex of P, is a 
subcomplex of P of dimension n - 1. 

Definition 25.5. Vertex-Joins in P. Let p*, 0 < q < n, be a q-cell 
of the “outer complex” of P, . Let Join o p* denote the (q + 1)-cell 
of P whose ordered set of vertices are those of p* preceded by v.  
If c = I& is a chain of the outer complex of P, , set 

Join w c = ii Join w p i g ,  0 < q < n. (25.2) 

Join v c is a (q  + 1)-chain of the complex based on P, 
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Lemma 25.1. If P, is the star of a vertex v of P and c a q-chain of 
the outer complex of P, , then for 0 < q < n 

a Join v c = c - Join v ac. (25.3) 

Formula (25.3) is clearly valid if c is a q-cell of the outer complex 
of P, . Relation (25.3) follows when c is a q-chain rtpt* of the outer 
complex of P, , on taking account of the permutability of rt with a and 
with Join ZJ regarded as a linear operator. 

We draw the following conclusion: 

Lemma 25.2. Any q-cycle of the outer complex of P,, for which 
0 < q < n is bounding in the complex based on P, . 

Barycentric Subdivision. A geometric q-simplex is a simplicial 
q-polyhedron. Its barycentric subdivision b(a*), as we shall define it, 
is another simplicia1 q-polyhedron, essential as a model in building 
the singular homology theory. 

Definition 25.6 b(an). Set b(ao) = uo. Proceeding inductively, 
suppose that n > 0 and that for each integer m on the range 
0, 1, 2, ..., n - 1 b(am) has been so defined that the new vertices in 
b(am) when m > 0 are the barycenters of the respective faces of am 
of positive dimensions. The induction from the case m = n - 1 to 
the case m = n is as follows. 

Let fo, f l  ,..., f,, be the faces of an of dimension n - 1. We are 
assuming that the polyhedra 

have been defined. Let p ,  = bary an be the barycenter of an and let 
un-l be an arbitrary one of the (n - 1)-simplices of the polyhedra 
(25.4). Let I pnun--l I be the geometric simplex whose vertices are p, 
and the vertices of un-l. The polyhedron b(an) shall be the union of 
all geometric simplices obtained in this way as un-l ranges over the 
(n - 1)-simplices of the polyhedra (25.4). One sees that this union 
is a simplicial n-polyhedron and is identical as a set with an. 
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The geometric operations UQ --f b(a*) have algebraic counterparts 
which involve complexes Join w c with e, a barycenter. 

The Burycentric Operator B .  Let an be a geometric n-simplex and 
b(an) its barycentric subdivision. Both an and b(an) determine 
simplicia1 polyhedra. Complexes an and b(an) are “based” on these 
polyhedra. Of the linear homomorphisms of the form 

C,(an) -, C,(b(an)), q = 0, 1, ..., n, (25.5) 

there is one, denoted by B,  which we call a barycentric operator. The 
barycentric operator B is the algebraic counterpart of the geometric 
operation an + b(an). 

Definition 25.7. The Operator B. If uo is a O-chain of an, set 
BuO = uo, Proceeding inductively, when q > 0 set 

B p  = Join w(Bap), w = bary I p I, (25.6) 

for each q-cell p of an, assuming that B2P-I has already been defined 
for chains u*-l of a”. This definition for q-cells of an will be extended 
linearly over q-chains of an. The completion of this inductive definition 
of B yields linear homomorphisms of the form (25.5). 

We continue with the following lemma: 

Lemma 25.3. The operator B defines a set of linear homomorphisms 
of form (25.5) such that for each q-cell p of the complex an 

aBp = s a p ,  (25.7) 

lBPl = I P I ,  (25.8) 

and (cf. Definition 25.2) 

lBaPl = P I P I  (25.9) 

Verzjication of (25.7). When dimp = 0 (25.7) is trivially true. 
When dim p = q > 0 it follows from (25.6) and (25.3) that 

aBp = Sap  - Join w(aB ap), v = bary p. (25.10) 
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Proceeding inductively, we assume that aB2 = Baz when 2 is a 
(q - 1)-chain of an, so that in (25.10) aB(ap) = Ba(ap) = 0. Thus 
(25.10) implies (25.7). 

Venificution of(25.8) und(25.9). When dim p = 0 (25.8) and (25.9) 
are trivially true. 

When dim p = q > 0, ap = (-l)$p(i), in accord with the definition 
(24.20) of as. Because of the linearity of B 

Sap = (-l)i Bp(i). (25.1 1)  

We proceed inductively. From (25.1 I), from (25.1), and from the 
truth of (25.8) when dim p = q - 1 2 0, it follows that 

I I = u I Wi)l = u I dill = B I P I ,  
i f 

confirming (25.9). Note that I p I and I B p  I are convex sets, 

dimp > 0 
From the definition of Bp and from (25.9) we find that in case 

l & l  = I J o i n v B a ~ I  = ( P I ,  v = b a r y p ,  

confirming (25.8) and completing the proof of the lemma. 

Prisms. Among the simplicia1 polyhedra which are most useful as 
models in singular homology theory are simplicially subdivided 
prisms. 

T o  present such prisms properly, let x1 ,..., xm , t be rectangular 
coordinates of a point (x, t )  in Em x R = Em+, . Corresponding to 
each nonempty subset w of Em introduce the set 

wCO = { (x ,  t )  E Em x R I x E W ,  t = I} (25.12) 

(co = congruent) in the m-plane of Em+, on which t = 1. The set 
woo is congruent by orthogonal projection to w in E m .  T o  an ordered 
simplex s in Em there corresponds a congruent ordered simplex 
sco in E g .  Congruent chains and complexes with carriers in Em 
and EE are similarly defined. 

We shall consider prisms given as products w x I, where w is a 
geometric n-simplex in Em , n < m, I the interval [0, 13, and 

w x Z = { ( X , ~ ) E E ,  x R ~ x E w , ~ E Z } .  
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To the lower base w of the prism corresponds the upper base woo 
projecting onto w. If a is a q-face of w with q < n, we term a x I a 
lateral face of the prism w x I. The lateral face a x I has its lower 
base a and its upper base acO. 

A First Subdivision P'(w) of w x I .  Given the prism w x I, 
neither of the bases w and wco is to be subdivided. The lateral faces 
a x I of w x I are to be simplicially subdivided in the order of their 
dimensions, beginning with l-faces. Each lateral l-face is to be divided 
into two geometric 1-simplices by its barycenter. Thereafter the 
lateral faces a x I are to be simplicially divided in the order of their 
dimensions by adding a barycenter p to each face a x I and dividing 
a x I into simplices which are radial joins of p with the already 
subdivided lateral faces of a x I. This process extends to w x I, so 
that P'(w), the subdivided prism, is a union of n-simplices joining 
the barycenter of w x I to the (n - 1)-simplices of the subdivided 
boundary of w x I. Neither a nor acO has been subdivided. 

Another Subdivision P"(w) of w x I .  T o  define P"(w), lateral faces 
of w x I, including their upper bases but not their lower bases, are 
to be subdivided in the order of their dimensions, taking the bary- 
centers of the lateral faces and their upper bases as new vertices. 
Finally, the upper base wco is to be replaced by its subdivision 
(b(w))co = b(wc0) and the barycenter of w x I joined to each (n - 1)- 
simplex on the already subdivided boundary of w x I .  

Corresponding to the (n + 1)-polyhedra P'(w) and P"(w) the 
complexes P'(w) and P"(w) are well-defined, and special linear homo- 
morphisms 8 and A ,  respectively, of the form 

s : CAW) -+ cQ+l(Pr(w)), 

d : C,(W) -+ C,+,(P"(W)), 

q = 0, 1 ,..., 
q = 0, 1 ,..., 

(25.13) 

(25.14) 

are to be defined. 
T o  define a homomorphism p of either of these types, one defines p 

for q-cells p E w and extends this definition linearly over chains in w. 

The Operator 6 .  One defines S inductively by setting 

sp = vpco - WP? 9J = bary(I p I x I ) ,  ( 2 5 . 1 5 a )  
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for each 0-cell p of w and 

Sp = Join v(yC0 - p - M p ) ,  v = bary(1 p I x I ) ,  (25.15b) 

for each cell p E w with dim p > 0. 

The Operator A .  One defines d inductively by setting 

A p  = v ~ C O  - v P ,  v = bary(l P I x 0, (25.16a) 

for each 0-cell p of w and 

d p  = Join v((Bp)CO - p - A a p ) ,  v = bary(1 p I x I), (25.1613) 

for each cell p E w with dim p > 0. 

The meaning of the above linear homomorphisms 6 and d is 
indicated by the following fundamental theorem (cf. Eilenberg [l]): 

Theorem 25.1. Corresponding to an arbitrary geometric n-simplex w 
in E n ,  there exist linear homomorphisms 6 and A ,  respectively, of types 
(25.13) and (25.14), such that for each cell p in the complex w 

asp = pco - p - Sap, (25.17) 

8 A p  = (Bp)C" - p - A a p ,  (25.18) 

l S P l  = I P I  X I =  I4 I, (25.19) 

and, if /3( I p I x I )  denotes the union of the lateral faces and upper and 
lower bases of I p 1 x I ,  then 

(25.20) 

We begin by establishing (25.17). The proof of (25.18) is formally 

I asp I = B(I P I x 1) = I I .  

similar, d replacing 6, and (BP)~O replacing pco. 

Proof of (25.17). In case dim p = 0 the definition of 6 in (25.15a) 
implies that 

a(&,) = (pco - v )  - ( p  - v )  = pco - P ,  

as affirmed by (25.17). Proceeding inductively, we assume that 
(25.17) is true for dim p = 0, 1, 2,.,., fi  - 1 < n and prove its truth 
for 0 < dim p = f i  < n. 
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It follows from the formula (25.3) for a Join w c that when 6p is 
defined by (25.15b) and dim p = fi  > 0 

aSp = (pco - p - S a p )  - Join w a(pC0 - p - Sap). (25 .21 )  

By virtue of our inductive hypothesis, (25.17) is valid when p is 
replaced by a chain in w of dimension on the range 0, l,..,, fi  - 1. 
It follows that 

when dim p = fi, or, equivalently, 

a@co - - sap) = 0, 

so that (25.21) reduces to (25.17). 

Proof of (25.19) and (25.20). We refer to the definition in (25.1) of 
the carrier of a chain. Using this definition and proceeding inductively 
with respect to dim p, one can establish (25.19) as a consequence of 
(25.15) and (25.16). One similarly establishes (25.20) as a consequence 
of (25.17)-(25.19). 

In anticipation of the use of the relations (25.17) and (25.18) in 
defining “singular chain homotopies,” we term the relations (25.17) 
and (25.18) elementary chain-homotopies. 

Barycentric Homeomorphisms of Prisms. In applying the ele- 
mentary chain homotopies of Theorem 25.1 to define singular chain 
homotopies in $27, we shall make use of the barycentric homeo- 
morphism H of one ordered n-simplex s onto another s*, as defined 
at the end of $24. 
As a matter of permanent notation we shall set d = I s I and 

o* = I s* I. The homeomorphism H of s onto s* then admits an 
extension which maps the subdivided prism Y ( d )  in En x R onto the 
subdivided prism I“(,*). In this extension the points (x, t) E P ( d )  and 
(x*, t*) E I”(,*) shall correspond if t = t* and x* = H(x) .  

So extended, H maps an ordered simplex p of the complex P‘(o) 
onto a unique ordered simplex p* = H(p) of the complex P‘(d*). 
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For each q on the range 0, l,..,, tt H thus determines a biunique 
mapping (onto) 

C,(P’(o)) + C,(P’(a*)), 4 = I s I; d* = I S* I. (25.23) 

It is important to note that H I I p 1 is the barycentric homeo- 
morphism of p onto p* determined by the mapping by H of the 
vertices of p onto those of p*. 

EXERCISE 25.1. Prove the following: If up and w@ are chains in P, 
then I up + wa I C I d I u I v@ I. 
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Singular q-Cells. Following Eilenberg [l,  p. 4201, we start with 
vertex-ordered simplices (Definition 24.10) 

s = pop1 ..* p ,  , q = 0, 1 )... . (26.1) 

We distinguish between singular simplices r and singular q-cells i, the 
latter being equivalence classes of the former. 

Definition 26.1. Singular q-Simplices. Let x be a Hausdofi space. 
By a singular q-simplex q 2 0 on x is meant a continuous mapping 
T : s 4 x of an ordered q-simplex s into x. Two singular q-simplices, 

7' : s ' + x  and 7" : s * + x  (26.2) 
4 2 0, 

are termed equivalent, written T' = T", if 

7'(x') = T"(X") (26.3) 

whenever XI and X" are points of s' and s", respectively, with the same 
barycentric coordinates relative to s' and s". 

One verifies readily that the relation T' = 7'' is reflexive, symmetric, 
and transitive in the class of singular q-simplices. Consequently, the 
class of singular simplices in x is partitioned into disjoint equivalence 
classes. 

Definition 26.2a. Singular q-Cells. Given a singular q-simplex T, 

the equivalence class that contains T will be denoted by i and termed 
a singular q-cell. 

224 
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Carriers. Given a singular q-simplex T : s --f x, we shall term the 
corresponding subset T ( I  s I) of x the carrier I T I of T. Noting that 
equivalent q-simplices of a singular q-cell 8 have the same carriers, 
we shall denote this common set by 1 i I or I T  I, and term it the 
carrier of i. 

Definition 26.2b. Simply Carried Singular q-Cells. Given a sin- 
gular q-simplex in x defined by a mapping T : s -+ x which is a 
homeomorphism onto I T I as a subspace of x, the corresponding singular 
q-cell i will be said to be simply carried. 

Following Eilenberg, the complex of singular 
q-cells with carriers on x will be denoted by S(x). 

For q >, 0 the vector spaces over X generated 
by the singular q-cells of S(x) will be denoted by C,(S(x)). For a 
negative integer q, C,(S(x)) shall be the trivial Abelian group. 

The Ensemble S(x). 

The Group C,(S(x)). 

Definition 26.3. The Boundary Operator on S(x). Given the 
ordered q-simplex s of (26.1) with q > 0, recall that 

s(i) = p ,  ... f i i  p ,  , pi deleted, (26.4) 

is the ordered face of s opposite p ,  , 0 < i < q. Given a singular 
q-simplex T : s --f x, q > 0, we introduce the singular (q - 1)-simplices' 

(26.5) 

The algebraic boundary of the singular q-cell 8 shall be the (q - 1)- 
chain* 

a i  = (-ly ii , in C,-l(S(~)). (26.6) 

T~ = T I s(i), i = 0, 1, 2 ,..., 4. 

When q = 0, a+ shall be the null chain in C-,(S(x)). 
It is clear that if T' E T # ,  then for each i on the range 0, 1, ..., q 

Ti(.') Ti(."), (26.7) 

t The symbols s(i) and T~ of Definition 26.3 will be used exclusively in the sense 

* A repeated index i here as elsewhere indicates summation of the term over the 
of Definition 26.3. We have set d = I s I. 

range of i. 
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where x' and x" are points of s'(i) and s"(i) with the same barycentric 
coordinates relative to s' and s" and hence relative to s'(i) and s"(i). 
Hence +; = +:, so that H, as defined by (26.6), is independent of the 
choice of 7 in its equivalence class. 

The definition of the operator 

a : CQ(S(X)) --+ CQ-l(S(X)h 4 2 0, (26.8) 

is completed by linear extension of a as defined on the singular 
q-cells i of S(x). 

We shall verify a classical theorem: 

Theorem 26.1. 
such that 88 = 0. 

The theorem is trivial when q = 0 or 1. 
Suppose q > 1. If the q-cell i is denoted by {T}, (26.6) takes the 

The boundary operator acting on the chains of S(x) is 

form 
a+ = (-I)+ I p ,  -.- fit -.. pQ},  4 > 0. 

Following the proof of Lemma 24.4 as a model, we find that 

a+< = 1 (-i)yTf I p ,  ... f ik ... fit ... p,} 
k e f  

+ c (-l)k-I{Ts I p ,  ... fit *.. f i k  .*. pg} .  
kz i 

By virtue of (26.6) 

= (-l){ iMd, dim+ > 1 .  

Proceeding formally as in the proof of Lemma 24.4, we infer 

Cam'ers of Singukzr Chains. A q-chain (09 of the complex S(x) over 

Theorem 26.1. 

.T admits a "reduced" representation 

wq = YIUIQ + ... + YUUUQ, Yf E X ,  

in terms of cells of S(x) (cf. Definition 24.0). The carrier I Up I of (09 so 
represented shall be the set 

I ulq I = I ulq 1 u ... u I UUQ I. (26.9) 

We shall verify the following: 
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Theorem 26.2. When x reduces to a point p the connectivity 

Rk(S(X)) = 6,k,  K = 0, 1 ,... . (26.10) 

When x = p each singular k-simplex is equivalent to each 
other singular K-simplex, so that for each K there is just one singular 
k-cell ok. If n is a positive integer, it follows then from (26.6) that 
auZn = 02%-l. There are accordingly no nontrivial singular 2n-cycles, 
while each singular (2n - 1)-cycle is bounding. We infer the truth 
of (26.10) when K > 0. 

On observing that dim Z,(S(x)) = 1 and dim B,(S(x)) = 0 when 
x = p, we infer the truth of (26.10) when K = 0. 

This establishes Theorem 26.2. 

Proof. 

Induced Chain-Transformations 3 and +. If P is a simplicia1 
n-polyhedron in Em , m 2 n, and x and x' Hausdo& spaces, we shall 
show how continuous mappings 

g : P + x  and v:,y+x', (26.1 1) 

respectively, induce &permutable chain-transformations 

6 : P + S(x) and 6 : S(x) + S(x') (26.12) 

(cf. Definition 24.8). This notation is permanent. 

Definition 26.4. 6. If s is an ordered simplex of the complex P 
based on P, g I s is a singular simplex on x. Its equivalence class is 
denoted by [g I s]". We set 

1 s  = [g I Sl0 (26.13) 

and extend this definition of 6 for q-cells of P linearly over the 
q-chains of P, thereby defining 6 in (26.12). 

For each ordered simplex s E P the carrier I 6s I = g( I s I) by virtue 
of (26.13). For each chain u of the complex P we shall show that 

I & I Cg(l u 1). (26.14) 

We shall assume that the reader has VeriJcation of (26.14). 
confirmed the result of Example 26.2 below. 
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Suppose that the chain u of P given in (26.14) has a "reduced" 
representation 

f4 = *lf1 + .*. + *UPU 9 *i E X ,  

in accord with (25.0) in terms of q-cells pi of P, so that by (25.1) 

If41 = I P l I U ' * * U I P , I .  

It follows from Example 26.2 that 

I du I c I d f l  I u ... u I Yudf,  1, 

I if4 I Cg(l P1 I) u ... u g(l Pr I )  = g(l I), 

so that by virtue of (26.9) 

thereby confirming (26.14). 
An equality in (26.14) would be incorrect, as examples would show. 

We shall verify the following theorem: 

Theorem 26.3a. The set of linear homomorphisms 

d : CAP) + C,(S(X)), 4 = 0, l,..., 

is  a &permutable chain-transformation 1 : P + S(x). 
Let s be a cell of P. If dim s = 0, by definition as = 0 and 81s = 0, 

so that 81s = jas. If dim s > 0, by the definition of j s  as [g I s]' and 
of a+ in (26.6), 

(summing with respect to i ) ,  so that 

ads = (-1)"g I s(i)l", 

ads = &(--I)* s(i)) = t a s ,  (26.15) 

thereby completing the proof of Theorem 26.3a. 

Definition 26.5. 6. Let q~ be given as in (26.1 1). Let T : s + x be a 

(26.16) 

0. 

singular q-simplex. We set 

8 = ['p 0 T]" 

and extend 6 linearly over the vector spaces C,(S(x)) for q 
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It follows from (26.16) that the carrier of $i is p(~(1 s I ) ) ,  so that if u 
is a q-chain of S(x) 

I @u I C d l w  I) (26 .17 )  

[using (26.9) and Example 26.21. 
Definition 26.5 of $ requires the following justification: 

Lemma 26.1. The equivalence class of a singular simplex p 0 T is 
independent of the choice of T in i. 

Proof. There are given equivalent singular simplices T' : s' --+ x 
and T" : S" --t x. By hypothesis T'(x') = T"(x") for XI E s' and x" E s" 
provided XI and x" have the same barycentric coordinates relative, 
respectively, to s' and S". Hence (p o d)(x') = (p o T")(x") and the 
lemma follows. 

We verify a basic theorem: 

Theorem 26.3b. The linear homomorphisms 

induced by a continuous map p : x' + x" are %permutable chain- 
transformations. 

T o  establish this theorem, it will be sufficient to show that if 
T : s --t x is a singular q-simplex, q > 0, then a@+ = @a+. T o  verify 
this relation recall that @i = [p 0 T]" by definition, and note that in 
accord with (26.6) 

= ( - l ) i Q i i  = $((-])i+J = $a+. 

The theorem follows. 

The Composition of Induced Homomorphisms. Let X I ,  x", x"' be 
three Hausdorf€ spaces and p : X I  --t x" and t,h : x" + x'" continuous 
maps. 
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The induced &permutable chain-transformations 

8 : C,(S(X')) --+ CQ(S(X")), q = 0, I,..., 

q = 0, 1 ,..., 
q = 0, l,..., 

3 : C,(S(X")) --t q S ( x " ) ) ,  

G : C,(S(X')) --t C,(S(X")), 

are well-defined. We shall verify the lemma: 

n n  
Lemma 26.2. +p = I& 
Proof. If .P is a singular cell of S(x'), then by definition (26.16) 

$(*) = [$ O (P T)]" = [($ O a) O TIo = &, (26.18) 

establishing the lemma. 

and 24.2 that 
Turning to singular homology groups, it follows from Lemmas 26.2 

(26.19) 

Hausdodl spaces which are homeomorphic images of one another 
are said to be topologically equivalent. Topologically equivalent 
Hausdorff spaces have isomorphic homology groups. This is a 
consequence of the following theorem: 

n 
(&I* = (3@* = $*e* - 

Theorem 26.4. Given a homeomorphism Q, : X I  -+ x" of a HausdM 
space X I  onto a Hausdorffspace x", let 8 be the inverse of 0. The induced 
chain-transformations 

(26.20) z : C,(S(X')) --+ C,(S(X")), 

Q : C,(S(X")) + ~,(S(x')), 

<z>* : H,(S(x')) + ~Q(S(X") ) ,  

(Q)* : H,(S(x")) + 4(S(x')),  

q = 0, 1 ,..., 
q = 0, l,..., 

are then inverses, as are the homomorphisms 

(26.21) q = 0, I,..., 

q = 0, 1 ,... * 

Proof. &P and Q,@ are by hypothesis identity maps of X I  and x", 
and && define respectively. It follows from Lemma 26.2 that 
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identity homomorphisms of the chain groups of S(x') and S(x"), 
respectively. From (26.19) we then infer that (@)*(&)* and (a)*(&)* 
define identity homomorphisms of the homology groups of S(x') and 
S(x"), respectively (cf. Exercise 26.1). 

Theorem 26.4 follows. 

Note. The chain-transformations j and @ induced by the mappings 
g and q~ of (26.11) are aids in deriving the chain-homotopies on S(x) 
so essential in singular homology theory and its applications. 

Chain-Homotopies on an Abstract Complex K. In the next para- 
graphs we shall introduce concepts to be applied in the singular 
theory, in particular when K is a singular complex S(x). 

Let there be given an abstract &structured complex K and a 
&permutable chain-transformation w defined by homomorphisms 

w : C,(K) + C,(K), q = 0, 1 ,..., (26.22) 

together with linear homomorphisms 

Q : C,(K) + cQ+l(K),  q = 0, 1 ,... . (26.23) 

Definition 26.6. Chain-Homotopies on K .  We say that the above 
chain-homomorphisms w are chain-homotopic to the identity under A2 
if for each q and for arbitrary q-chains z E C,(K) 

aszz = w2 - z - ~ a 2 .  (26.24) 

For each q we term D the homotopy mapping of the chain-homotopy 

If z is a cycle and w is chain-homotopic to the identity, (26.24) 

wz - = a ~ 2 ,  (26.25) 

(26.24) and w the terminal homomorphism. 

shows that 

thus implying the homology wx - z. 

Definition 26.7. Carriers of Chain-Homotopies. In case K is a 
singular complex S(x) the carrier I slz I of Szz is well-defined 
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[see (26.9)], and we say that the chain-homotopy (26.24) is on I Qz I 
or carried by I Qx I. If x is a cycle so that wx - x, we say that this 
homology is on I Qz I. The carriers of chain-homotopies are of basic 
importance in the topology of ND functions. 

Arc-Wise Separate Spaces. If x is a Hausdod space of the form 

x = x1 u xs with x1 n Xa = 0 ,  (26.26) 

where xl and x2 are proper subspaces of x such that no point of x1 is 
arc-wise connected to a point of x 2 ,  we say that x is the union of 
arc-wise separate subspaces x1 and x a .  We shall show how the 
homology groups of S(x) over X are determined by the homology 
groups of S(xl) and S(xa). 

Referring to Definition 24.1 of a “direct sum” of two vector spaces, 
one finds that for q 2 0 

C,(S(X)) = Ca(S(X1)) 0 C,(S(Xd 

zQ(S(x)) = ‘dS(Xl)) @ ZQ(S(x2)) (26.27) 

BQ(S(X)) = BQ(S(X1)) @ BQ(S(X2)) 

(see Definitions 24.3 and 24.4) when x is the union of arc-wise 
separate subspaces x1 and x2 , One verifies these relations in the order 
written, making use of each relation to prove its successors. 

The qth homology group H,(S(x)) is not in general the direct sum 
of the corresponding groups of S(xl) and S(x2) because the latter 
homology groups are not strictly subgroups of H,(S(x)). However, 
on making use of the relations (26.27) and Definition 24.7 of homology 
prebases of q-cycles, one has the following theorem: 

Theorem 26.5. If x is a Hawdotfspace which is the union of arc-wise 
separate Hausdorff spaces x1 and xs, then for each integer q 0 the 
union of homology prebases for S(xl) and S(x2) of q-cycles is a homology 
prebase for S(x) of q-cycles. 

Theorem 26.5 has a corollary of importance. I t  affirms that under 
the hypotheses of Theorem 26.5 there exists an isomorphism 

HQ(S(X)) HdS(xl ) )  @ Hfl(S(x2))* (26.28) 
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Statement (ii) of Theorem 26.6 is a consequence of statement (i) 
of Theorem 26.6 and of Theorem 26.5. A proof of Theorem 26.6 
is left to the reader. 

Theorem 26.6. (i) If x is an arc-wise connected Hausdorff space, 
a homology prebase of singular 0-cells for S(x) is provided by an arbitrary 
0-cell of S(x). 

(ii) If in Theorem 26.5 x1 and x2  are each arc-wise connected, 
a homology prebase of singular 0-cells for S(x) is provided by the union 
of an arbitrary 0-cell in S(xl) and an arbitrary 0-cell in S(x2). 

EXERCISE 26.1. Show that the identity map 'p of a Hausdorfl 
space x onto x induces the identity isomorphism @ of S(x) onto S(x). 

EXERCISE 26.2. Using (26.9) show that if x9 and y* are q-chains 
of S(x), then 

I xq + Y Q  I c I X Q  I u IYQ I .  

EXERCISE 26.3. Let x be a Hausdorfl space which is the union of 
r subspaces x1 ,..., x,. each of which is arc-wise connected, but which 
are pair-wise arc-wise separate. Show that R,(S(x)) = r.  
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CHAIN-HOMOTOPIES ON S(X) 

In $26 we have introduced an abstract complex K and on K have 
defined an abstract chain-homotopy 

X?X = wx - 2 - Qa2, (27.0) 

of the terminal chain-transformation w into the identity chain- 
transformation of K under a “homotopy mapping” 8. 

If the complex K is S(x), there are two types of chain-homotopies 
of importance for us. One is induced by deformations d of x on x 
and the other by algebraic subdivisions of the chains of S(x). 

x E C,(K), 4 = 0, 1, ..., 

Chain-Homotopies Induced by Deformations. Let d be a con- 
tinuous deformation 

of x on x, with an initial mapping 

P + 4 P I O )  = do(P) : x + x, do(P) = P, 

which reduces to the identity, and a terminal mapping 

P + 4 P l  1) = 4(P) : x + x (27.2) 

Given d, and thereby dl , a terminal chain-transformation o = 2, 
denoted by dl . 
(cf. Definition 26.5), given by the set of homomorphisms 
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is chain-homotopic, as we shall see, to the identity chain-trans- 
formation under a homotopy mapping SZ = d, where each homo- 
morphism 

d : Cq(S(x)) + Co+I(S(x))) 4 = 0, 1,*-*, (27.4) 

is uniquely determined by d. 
We shall defined d in terms of d, and verify the corresponding 

chain-homotopy (27.0). We start with a continuous mapping of a 
prism into x. 

7 : s + x, to define d it is sufficient to define d i  for each i E S(x). 
A mapping d, : Q x I +  x. Given an arbitrary singular n-simplex 

To that end, set Q = I s I and introduce the continuous mapping 

(X, t )  + d T ( X ,  t )  = d(T(X) ,  t )  : ((X, t )  E (I x 1) (27.5) 

of the prism (I x I into x. Let P'(Q) be the first subdivision (see $25) 
of the prism (I x I. The mapping d, induces a chain-transformation 

a, : PQ) + s(~) (27.5') 

(cf. Definition 26.4 of "). 
I n  the equivalence class of singular n-simplices of i, let 

T* : s* --+ S(x) be a second singular simplex. Let the barycentric 
homeomorphism H of s onto s* be extended, as at the end of $25, to a 
barycentric homeomorphism of P'(cl) onto I"(Q*), where (I* = I s* I .  
As shown in $25, a barycentric homeomorphism of each ordered 
q-simplex p E P'((I) onto a corresponding ordered simplex p* E PI(.*) 
is defined by H. If p and p* so correspond, 

' T  1 P = 1 P* cO+l(s(x)), (27.6) 

in accord with the definition of A. 

Definition 27.1. The Operator d. Given a singular n-simplex 

d i  = dT@), (27.7) 

T : s --t x defining the singular n-cell i E C,(S(x)), we set 

where the linear homomorphisms 

s : C*(W) - C,+,(P'(W)), q = 0, 1 ,... ) n, w = I s I, 
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are defined in $25. It follows from (27.6) that d i ,  as defined by (27.7), 
is a singular (n + 1)-chain of S(x), a chain independent of the choice 
of the singular n-cell T E i. 

With d so defined for n-cells i of S(x), d is extended linearly over . .. 

cn(S(x))* 
Heuristically, one can regard the chain d i  as a “singular prism” 

with a %ingular base” i. We are led to a chain-homotopy. 

Theorem 27.1. Given the deformation d as in (27.1), the resultant 
linear operator d and the terminal chain-transformation al of (27.3) 
satisfy the chain-homotopy 

n 

a h  = alz - 2 - daz, x E c,(qX)), (27.8) 

for n = 0, 1, ... . 
Proof. To prove (27.8), it will be sufficient to establish (27.8) in 

the case in which z is the equivalence class i of a singular n-simplex 
T : S + X .  

By virtue of Theorem 25.1 

atis = sco - - &as, (27.9) 

where it is understood that I s I is in En and sco is the congruent image 
of s in the product En x {I}. In the notation of $25, with d = 1 s I, 
the chains in (27.9) are in the model complex P‘(cl), so that if one sets 
g = d, , the &permutable chain-transformation of (27.5)’ can be 
applied to the terms of (27.9), giving the relation 

The proof of Theorem 27.1 will be completed by showing that (27.10) 
reduces, term by term, to the form 

n 

ad? = ali - + - dai. (27.1 1 )  

Proof of (27.1 1). The chains on the left of (27.10) and (27.11) are 
equal by virtue of the definition of d i  in (27.7) and the notation 
g = d , .  
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Evaluation of i s c o .  This chain equals 

by virtue, respectively, of Definition 26.4 of ", by definition of d, in 
(27.5) and by Definition 26.5 of n. 

Evaluation of is. This term is equal to [(do o T )  I s]O by the 
definition of d, in (27.5), and so reduces to 6. 

Evahation of @as. With i summed on the range 0, I ,  ..., n, 
288s equals 

(-l)ii(&(i)) = (-l)id+i = da6 

by virtue, respectively, of the definition of as in (24.20), by Definition 
27.1 of d, and by definition of a+ in (26.6). 

Thus (27.1 1) holds and Theorem 27.1 follows. 
T o  ,apply Theorem 27.1, the following analysis of carriers of its 

For each subset 7 of x we introduce the subset 
chains is necessary. 

d-traj 7 = Union 47, t )  
O < t < l  

(27.12) 

of x and verify the following lemma: 

Lemma 27.1. Given the deformation d of (27.1) and a chain z of 
S(x),  one has the following inclusions: 

I dz I C d-traj I z I, I d;z I C dl(l z 1). (27.13) 

Proof. Turning to the definition (27.7) of d i ,  recall that 
18s I = I s I x I by (25.19). It follows from (27.5), (26.14) and 
(27.12) that 

(27.14) I d+ I Cd,(l s I x I )  = d-traj I 6 1. 

The first inclusion in (27.13) is implied. The second inclusion follows 
from (26.17). 

The following corollary of Theorem 27.1 is fundamental. Its proof 
with the aid of Lemma 27.1 is immediate. 
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Corollary 27.1. Corresponding to the deformation d of (27.1),na 
q-cycle z of S(x) is homologour on d-traj I z I to the terminal cycle dlz 

Corollary 27.1 and Theorems 26.2 and 26.6(i) imply the following: 
on 41 I). 

Corollary 27.2. If a H a w d d  space x can be deformed on itself into 
some one of its points, then 

R,(S(x)) = sop, q = 0, 1, ... . 

Chain-Homotopies Induced by Subdivisions. Given x, we shall 
define a subdivision inducing a &permutable chain-transformation 

2 --+ 7r2 : C,(S(X)) + C,(S(X)), q = 0, 112 ,... . 
By abuse of language, TZ is called the “singular barycentric sub- 
division” of z. One also defines a set of linear homomorphisms 

2 + I72 : C,(S(x)) + Cq+l(S(x)), = 0, 1 , 2  ,... , (27.15) 

such that the homotopy 

an2 = 772 - 2 - na2, 2 E C,(S(X)), (27.16) 

is valid. 
The mappings T and I7 are singular counterparts, respectively, 

of the operators B and A of Theorem 25.1. We shall set up the chain 
homotopy (27.16) with the aid of the elementary homotopy (25.18). 
The chain-homotopy (27.16) has the following fundamental con- 
sequence: 

Corollary 27.3. 

This corollary will be established after the proof of (27.16). 

Each singular q-cycle z of S(x) is homologous on its 
carrier I 2 I to its singular barycentric subdivision TZ. 

Definition 27.2. The “Singular Barycentric Subdivision” TZ of z. 
Let T : s 4 x be a singular simplex. To the ordered q-simplex s there 
corresponds a q-chain Bs, defined in $25, barycentrically subdividing 
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s when q > 0. According to Lemma 25.3 I Bs I = I s I. On I Bs I, 
T is thus defined. We can accordingly define T+ by setting 

.rr+ = +(Bs) (27.17) 

(see Definition 26.4 of ") and extend 7~ linearly over C,(S(x)) for each 
integer q >, 0. 

We affirm that T+, as defined in (27.17), is independent of the choice 
of T E +. This affirmation is implied by the following: If s and s' are 
ordered q-simplices and if H is the corresponding barycentric 
homeomorphism of s onto s', then H maps each ordered simplex u 
of Bs onto a unique ordered simplex u' of Bs' and H I u is the unique 
barycentric homeomorphism of u onto u'. 

That 7~ is &permutable is seen as follows. One starts with (27.17) and 
shows that 

an+ = +Bas = .rra+, 

using Theorem 26.3a and (25.7) to justify the first equality. The 
relation (25.1 I), with the Definitions (27.1 7) and (26.6), imply the 
second equality. 

Notation for the Dejinition of J7. Let (x, t )  be rectangular coor- 
dinates in En x R. Let T : s ---t x be a singular q-simplex with s in En 
and suppose that, as in $25, 

4 x Z = {(x, t ) ~ &  x R I X E  4; ~ E Z } ,  a = I S  I, (27.18) 

Let T be given an extension T~ over I s I x I defined by setting 

T e ( X i  t )  = ~ ( x ) ,  (x, t )  E I I x 1, 

mapping I s I x I into x. Recall the inductively defined linear homo- 
morphisms 

d : C,(W) -+ Cr+1(P"(W)), I = 0, l , . . . ,  

of Theorem 25.1. One takes w as a. The carrier I As I = a x I .  

Definition 27.3. I7. We begin by setting 

n+ = +,(As) (27.19) 
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(A applied to T ~ )  obtaining thereby a “singular prismatic chain” in 
Cq+l(S(x)). So defined on q-cells .9 of C,(S(x)), I7 shall be linearly 
extended over Cq(S(x)) to define a homomorphism of form (27.15). 
As in the definition of IT+, one can readily verify the fact that I7.P 

as defined, is independent of the choice of T E +. [use (25.23)]. 
Theorem 27.2, supplemented by the carrier inclusions below, shows 

how nz and l7z are related for an arbitrary chain a of S(x). 

Theorem 27.2. The mapping z+nz and the identity mapping 
z 4 z of Cq(S(x)) admit the chain-homotopy 

Proof. It is sufficient to show that 

an+ =+-+-nai (27.2 1)  

where i is given as above. To  that end, we start with the “elementary 
homotopy ” 

ads = ( B ~ ) C O  - s - das (27.22) 

of Theorem 25.1. It follows from Lemma 25.3 and Theorem 25.1 that 
each term of (27.22) is a chain of P“(o). Since 1 s I x I is the domain 
of 7, , a &permutable chain-transformation +, is applicable to the 
complex P”(o). Hence 

a+&lS) = i s ( B S ) C O  - +,s - +&la$) (27.23) 

(” applied to T~), The proof of (27.20) will be completed by showing 
that (27.23) reduces, term by term, to (27.21). 

The chains on the left of (27.21) and (27.23) are equal, in accord 
with the definition (27.19) of l7+. 

Evaluation of . F , ( B S ) ~ O .  By virtue of the relation 

this term is equal to +(Bs), and so is equal to d by definition of P+ 
in (27.17). 
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Evaluation of +$. By definition of re this chain is equal to +s and 
so is equal to +, by definition of +. 

Evaluation of +,(Ass). This chain equals 

(- i )a +,(AS(; ) )  = (- i)i n+$ = na+ 
by virtue of the definitions of as, n, and a+ in (24.20)) (27.19), and 
(26.6) respectively. 

Thus (27.21) holds, establishing Theorem 27.2. 

Proof of Corollary 27.3. This corollary follows from the chain- 
homotopy (27.20) once the basic inclusions 

I r2 I C I 2 I and I l7z I C I z I, 2 E C,(S(x)), (27.24) 

have been established. These inclusions cannot be replaced by 
equalities, as examples show. 

Proof of (27.24). Starting with the definition (27.17) of d, recall 
that I Bs I = I s I. It  follows from (27.17) that I d I C I + and hence 
I PZ I C I z I [use (26.9) and Example 26.21. 

Similarly, starting with the definition (27.19) of n+, 
I As I = I s I x I .  It follows from (27.19) that I U+ I C I + 
I nZ I c I z I. 

recall that 
and hence 

Corollary 27.3 now follows from (27.20) making use of (27.24). 

Iterated Subdivisions of Chains. As defined, P is a %permutable 
chain-transformation applicable to each singular chain 2 of S(x). 
In particular, P is applicable to PZ. This leads us to write P as 
~ ( 1 )  and for each positive integer n > 1 to define dn) inductively by 
setting 

= T(T(n-l)  4. (27.25) 

We see that dn) is a &permutable chain-transformation, that 
I dn)z  1 C I z 1, and that when x is a cycle 

dn)z  - z, on I 2 1, (27.26) 

by virtue of Corollary 27.3. 
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The principal lemmas to be associated with the operator dn) 
concern its effect on the “mesh” of a singular chain. 

Definition 27.4. Mesh z. Let x be a metric space, z a non-null 
chain of S(x) of positive dimension, and 

2 = YIU1 + ... + r p e ,  0 # t i  € X ,  

a “reduced” representation of x. The maximum of the diameters in x 
of the carriers I ui 1 is called the mesh of x. If x is a null chain, one sets 
mesh x = 0. 

The following lemma will be verified: 

Lemma 27.2. If 2 i s  a singular chain of S(x) of positive dimension, 

(27.27) 

Let P be a simplicia1 polyhedron in a Euclidean space. 
By mesh P we mean the maximum of the diameters of the simplices 
of P. Let a be a geometric simplex, and for n > 0 let bn(a) be the 
nth barycentric subdivision of a. By an induction with respect to 
dim a = m one readily proves that 

then 
lim mesh 7 7 9 5  = 0. 
nT m 

Proof. 

m 
mesh b(u) < - mesha, m > 0 .  

m + l  
(27.28) 

Hence for a given m-simplex a 

lim mesh &(a) = 0. 
ST- 

(27.29) 

Lemma 27.2 follows. 
The following lemma prepares for the fundamental “Excision 

Theorem” of $28 (cf. Eilenberg and Steenrod [l], p. 11). In  
Lemma 27.3 we make use of the following principle: Let G be a 
vector space over X ,  If a set H of free generators of G is given a 
partition H = H u H” into disjoint subsets, then G is a direct sum 
G = G’ @ G”, where the elements of H’ generate G’ and the elements 
of H” generate G”. 

Let C:(S(x)) denote the vector subspace of C,(S(x)) generated by 
the q-cells of S(x) of mesh less than e. 
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Lemma 27.3. Let x be a metric space, A a proper subspace of x ,  and 
A* a subspace of A such that for some positive e 

( x - - ) , C x - - * ,  (27.30) 

where (x - A)e is the open e-neighborhood of x - A in x. 
Let C;(S(x)) be represented (as is possible) by a direct sum 

C,'(S(x)) = G' @ G", (27.31) 

where G' is generated by the q-cells on x - A* of mesh <e. The chains 
of G" are then on A.  

The vector space G" is generated by the q-cells of S(x) of mesh < e 
which meet A*, These generators do not meet x - A by virtue of 
(27.30). Hence the chains of G" are on A.  



RELATIVE HOMOLOGIES 

Relative cycles and homologies, as we shall define them, are needed 
in studying a ND f E Cm(Mn). In particular, we shall compare the 
singular homology groups of a subset 

f a  = {P E M, If@) d 4 (28.1) 

of M,, with the homology groups of fa - p a ,  where pa is a critical 
point f at the f-level a. 

Let there be given a HausdorfT space x and a subspace A of x. 
If A # x, we term (x, A) an admissible set pair and A a modulus for x. 
We admit the possibility that A may be empty. For q-chains u and w 
of S(x) we write u = w mod A if u - w is a q-chain of S(A). 

Definition 28.1. (i) Cycles on x mod A.  A chain IP of S(x) will 
be called a q-cycle, mod A on x, if 

auQ = 0 mod A. (28.2) 

(ii) Cycles Bounding on x mod A. A q-cycle up on x mod A will 
be said to bound mod A on x if there exists a chain z@+l of S(x)  such 
that 

UQ - auQ+l = 0 mod A. (28.3) 

(iii) Homologies on x mod A. When (28.3) holds we write 

U P  - 0  on xmod A (28.4) 

and say that up is homologous to zero on x mod A. 
244 
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Definition 28.2. Relative Homology Groups. The set of q-cycles 
on x mod A form a vector space over the field X and will be denoted 
by Z,(S(x), S(A)).  The set of q-cycles, on x mod A, which are 
bounding on x mod A, is a vector subspace of Z,(S(x), S(A))  and will 
be denoted by B,(S(x), S(A)).  The quotient group 

(28.5) 

will be called the singular homology group H,(S(x), S(A)) of S(x) on 
x mod A.  

The use of the following terms will abbreviate the exposition: 

Ordinary cycles of S(x) will be called absolute cycles on x. 
Cycles on x mod A will be called relative cycles on x. 
Bounding on x mod A will be called relative bounding on x. 

Conditions (28.2) and (28.3), respectively, define “relative” cycles 
and bounding. The same conditions respectively define absolute 
cycles and bounding if A is empty. 

Definition 28.3. Homology Classes on x mod A.  Two relative 
k-cycles uk and vk are said to be in the same relative homology class 
on x mod A if 

Uk - 0’ E Bk(S(X), S(A)),  (28.6) 

that is, if there exists a chain ck+l of S(x) such that 

uk - v k  = ackfl mod A .  (28.7) 

When (28.7) holds we write 

uk - v k  on x mod A .  (28.8) 

We shall use rel. to mean relative or relatively, depending on the 
context. 

The elements of Hk(S(x),  S(A))  are rel. homology classes. The 
null element is the class of rel. bounding k-cycles. The property of 
two rel. k-cycles on x of being in the same rel. homology class is 
reflexive, symmetric, and transitive. 
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Definition 28.4a. Connectivities of x mod A.  The dimension, if 
finite, of the rel. homology group H,(S(x), S(A)) is called the con- 
nectivity R,(x, A) of x mod A. 

Definition 28.4b. Homology Bebases of Rel. q-Cycles. Paralleling 
Definition 24.7 of "homology prebases of q-cycles," any subset of 
Z,(S(x), S(A))  which contains just one rel. q-cycle in each rel. 
homology class in a base for H,(S(x), S(A))  will be termed a homology 
prebase b,(x, A )  on x mod A. 

Such homology prebases of rel. cycles have properties analogous to 
those enumerated following Definition 24.7 of homology prebases of 
absolute q-cycles. 

The following lemma is a consequence of the definition of &(x, A). 

Lemma 28.1. If each point of x is arc-wise connected on x to some 
point of the modulus A,  then the connectivity R,,(x, A )  = 0. 

Induced Homomorphisms a* of Rel. Singular Homology Groups. 
Let x' and x" be HausdorlT spaces with moduli, respectively, A' 
and A". Let a be a &permutable chain-transformation of S(x') into 
S(x") that induces such a transformation of S(A') into S(A"). One 
sees that a defines linear homomorphisms 

and 
za(S(,$), S(A')) + zq(S(x"), S(A")), = 0, l , * * - s  

B,(S(x')i S(A')) + &(S(x"), S(A")), q = 0, l s - * - ,  

and hence by Lemma 24.1 induces linear homomorphisms 

a* : Ha(S(x'), S(A')) + Hg(S(x"), S(A")), = 0, l , . . . .  (28.9) 

Change of Notation. For brevity we shall in the future write 

S(A))  as Ha(x, A). 

In accord with this we shall write (28.9) in the form 

a* : H*(x', A') + &(XI, A"), q = 0, 1 ,..., (28.9') 

reading and interpreting (28.9)' exactly as (28.9). 
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Let @ now be a continuous mapping of X I  into x" that maps A' into 
A". There is thereby induced a &permutable chain-transformation 9 
(see $26) with the properties ascribed to a in the preceding paragraph. 
There is accordingly induced a linear homomorphism (&)* of the 
nature of a* in (28.9). 

The following theorem concerns topologically equivalent pairs 
(x', A') and (x", A"): 

Theorem 28.1. Suppose that a Hausdog space X I  is topologically 
equivalent to a HausdMspace x" under a homeomorphism 0 of X I  onto 
x" that maps A' onto A". There are then induced isomorphisms 

(6, : Hp(xI, A') -+ H,(x", A"), q = 0, 1 ,..., (28.10) 

onto, under which a rel. homology class on x' of a rel. q-cycle z goes into 
the rel. homology class on x" of &z. 

This theorem follows from an obvious extension of Theorem 26.4. 
As in the proof of Theorem 26.4, let 8 be the inverse of the homeo- 
morphism @. Then, as in the proof of Theorem 26.4, one sees that 
8* and 8,  are inverse linear homomorphisms onto. 

Theorem 28.1 follows. 

Coset-Contracting Isomorphisms. We shall prove a theorem 
which has several important theorems as corollaries: 

Theorem 28.2. Let (x, A) and ( X I ,  A') be two admissible set pairs 
with x' C x, A' C A. Let U be an arbitrary reLt homology class (possibly 
trivial) on x and U' the subclass of reLt cycles on XI. If for each non- 
negative integer q: (a) each rel. q-cycle on x is rel. homologous' on x 
to a rel.: q-cycle on x', and if (b) each rel. q-cycle on x' which is rel. 
bounding+ on x is rel. bounding: on x' then each set U' is a rel. homology 
classt on x' and the mapping 

u + U' : H,(X, A )  --t H,(XI, A') ( 2 8 . 1  1) 

is an isomorphism onto. 

+That  is, mod A. 
*That is, mod A'. 
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The theorem follows from statements 1-5: 

1. The class U’ is not empty. 
2. Chains in U‘ are in the same rel. homology class on x‘. 
3. U’ is a rel. homology class on x’. 
4. The class mapping U d  U’ is biunique and onto. 
5. If V is a second rel. homology class on x, then 

u‘ + V’ = ( U  + V)’ (28.12a) 
rU‘ = (rU)l, I E X .  (28.12b) 

Proof of 1. 

Proof of 2. 

The class U’ is not empty, since (a) holds. 

Let x and y be chains in U’. Then x and y are in U 
and x - y is rel. bounding on x by definition of U. By virtue of 
(b) x - y is also rel. bounding on x’, so that 2 follows. 

Proof of 3. If a chain x E U’ and a chain x on x’ are in the same 
rel. homology class on x‘, then x - x is rel. bounding on x‘ and hence 
rel. bounding on x, since x’ C x and A’ C A. Thus z is in U and a rel. 
cycle on x’, and accordingly in U’ by definition of U’. 

The class U‘ cannot be a subclass of two different 
classes U. That the class mapping U + U’ is onto is trivial. 

The right and left sides of (28.12a) are rel. homology 
classes of Hp(x‘, A’). It remains to show that they are the same rel. 
homology class. It is sufficient to show that these two classes of 
H,(x‘, A’) have a rel. cycle on x’ in common. 

Let x and y be rel. cycles in U’ and V‘, respectively. Then by 
definition of addition in H&, A’), x + y is a rel. cycle in U’ + V’. 
But X E  U and y E V, so that x + y E U + V .  Now, x + y is a rel. 
cycle on x’, so that x + y E (U + V)‘ by definition of (U + V)’. 
Thus (28.12a) is true. 

Proof of 4. 

Proof of 5. 

The proof of (28.12b) is similar. 
This establishes Theorem 28.2. 
We shall call the isomorphism of Theorem 28.2 a coset-contracting 

isomorphism. With us an isomorphism of vector spaces is linear. 

Note on Theorem 28.2. When a coset-contracting isomorphism 
(28.11) exists a “homology prebase” for Ha($, A’) is a homology 
prebase for H,(x, A), but in general not wice wmsu. 
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We continue with a lemma needed in applying Theorem 28.2: 

Lemma 28.2. Corresponding to a prescribed q-cycle z on x mod A 
and a prescribed positive integer p 

2 N +)a on x mod A. (28.13) 

On applying a to the terms of the chain-homotopy (27.20) 
and using the inclusions (27.24), one sees that 7rz is a q-cycle on 
x mod A. The chain-homotopy (27.20) then implies (28.13) when 
p = 1. Proceeding inductively with respect to p, one infers the truth 
of (28.13) for an arbitrary positive integer p. 

A first application of Theorem 28.2 is a simplified “Excision” 
Theorem (cf. Eilenberg and Steenrod [l], p. 11): 

Proof. 

Theorem 28.3. Let x be a metric space, A a proper subspace of x, and 
A* a Subspace of A such that for some positive e 

( x - - ) , C x - - * ,  (28.14) 

where (x - A)e is the open e-neighborhood of x - A on x. 
There then exist coset-contracting isomorphismst 

H,(x,  A )  w H,(x - A*, A - A*), q = 0, 1 ,... . (28.15) 

Method of Proof. It is sufficient to show that statements (a) and (b) 
of Theorem 28.2 are valid under the conditions of Theorem 28.3 
provided ( X I ,  A’) of Theorem 28.2 is taken as the pair 

(x ‘ ,  A‘) = (X - A*, A - A*). (28.16) 

We shall employ Lemma 27.3, noting that its hypotheses are satisfied 
under the conditions of Theorem 28.3. 

Notation. In the proofs of Theorems 28.3 and 28.4 a singular chain 
carried by one of the spaces x, x‘, A, A‘ will be denoted by a letter 
u, v ,  z, etc., with a subscript denoting the space. Note that X I  n A = A’ 
by virtue of (28.16), so that a chain carried by X I  and A is carried by A’. 

+ A * is “excised” from x and A in the right side of (28.15). 
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Verification of (a) of Theorem 28.2. Let zx be a q-cycle on x mod A. 
To verify (a), we shall show that 

2, -yX#  on x mod A (28.17) 

for a suitable cycle yx' on x' mod A'. 
For each positive integer p, by Lemma 28.2 

a; N 7 r W x  on x mod A. (28.18a) 

Let p be so large that mesh < e. Then by Lemma 27.3 &zX 
is the sum of an element in G' and an element in G", that is, of an 
element on x' = x - A* and an element on A. Equivalently, 

7r%, = yx' mod A (28.18b) 

for some chain yx' . From this relation we infer that y x p  is a cycle 
mod A, and hence mod A', since x' n A = A'. The homology (28.17) 
follows from the relations (28.18). 

There is given a q-cycle 2;' on 
x' mod A' which is rel. bounding on x. To establish (b), we must 
prove that zxf is rel. bounding on x' mod A'. 

By hypothesis 2;' = aux mod A for some chain ux . Thus au, is a 
q-cycle on x' mod A. By Lemma 28.2 and the relation 7ra = one 
infers for each p > 0 that 

aUx N d') au, = &%, on x' mod A. (28.19) 

Let p be so large that mesh &)uX < e on x. Then by Lemma 27.3 

Verification of (b) of Theorem 28.2. 

+)uX = w,. mod A 

[cf. (28.18b)], so that by (28.19) and (28.20) 

& , N O  on X'modA. 

Since 2xt = aux mod A, we infer that 

a;. - 0  on x'mod A' 

(28.20) 

(since x' n A = A'), thereby verifying (b). 
Theorem 28.3 follows from Theorem 28.2. 
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A second application of Theorem 28.2 concerns an isomorphism 
induced by a deformation retracting x onto x‘ (see Definition 23.1). 

Theorem 28.4. Let (x, A )  and (x’, A’) be admissible set pairs with 
x’ C x and A’ C A ,  and let d be a deformation retracting x onto x‘ and 
A onto A’. There then exist coset-contracting isomorphisms 

W x ,  A )  H,(x’, A‘), q = 0, l,..., (28.21) 

under which the rel. homologynclass on x of a rel. q-cycle a; goes into 
the rel. homology class on x’ of dlzx , where dl is the terminal mapping of d .  

We shall show that under the hypotheses of the theorem conditions 
(a) and (b) of Theorem 28.2 are satisfied. The rel. q-cycle zx is given. 

T k t  g1zx is a q-cy$e on x’ mod A’ follows 
from the inclusions I dlzx I C x’ and I dlazx I C A‘ implied by 
Definition 26.5 of A, and from the a-permutability of the operator 2l . 
(Theorem 26.3b). 
To establish a homology dlzx N zx on x mod A ,  we turn to the 

chain-homotopy (27.8) induced by d.  Recall that [see (27.13)] 

Verifiation of (a). 

I dz, I C d-traj I 2, I C ,y and I daz, I C d-traj I az, I C A .  

The chain homotopy (27.8) is accordingly on x and takes the form 
n 

adz, = dla, - z, , mod A, (28.22) 

thereby establishing (a) for the rel. q-cycle zx . 
Ver@cation of (b). By hypothesis of (b) there is given a q-cycle 

uxl mod A‘ and a ( q  + 1)-chain yx  such that ay, = ux* mod A .  We 
shall show that ux* N 0 on x’ mod A‘. 

Bynhypothesis ay, = ux’ + oA , introducing the chain wA . Recall 
that dl is &permutable, that dl reduces to the identity on x’, and 
that dlA C A‘, so that &u,I = ux* and 6;oA is on A‘. It follows that 

a(dly,) = dl ay, = dl(u,, + vA) = ux, mod A’. 
n A n 

Thus ux’ N 0 mod A‘, thereby verifying (b). 
Theorem 28.4 follows from Theorem 28.2. 
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Basic Isomorphisms in the Critical Point Theory, The preceding 
theorems imply basic isomorphisms in the critical point theory. 

Let a ND f E Cm(Mn) be given with a critical value a assumed at a 
critical point pa  . In $28 and $29 it is not necessary to assume that pa 
is the only critical point at the f-level a.  

Let Do be an open n-ball in En with center at the origin 0 and with 
radius u. If pa has the index k, there exists (Theorem 22.2) a presen- 
tation (F : Do, X) E 9 M n  such that F(0) = p a ,  and for u E Do 

( f ~ F ) ( u )  = a - U: - *.* - I(: + + + %* = @'((u), (28.23) 

introducing Ok. When (28.23) holds set 

and 

Dko = @ak n DOC En (28.24) 

X, =fanXCMn. (28.25) 

Let Dko  denote Dko with the origin deleted. If Y is any subset of Mn 
which contains pa , shall denote Y - pa , except as noted. 

Theorem 28.1 has the following corollary: 

Theorem 28.1 '. The topological equivalence under F of the set pairs 

(28.26) 

Theorem 28.3' is a corollary of Theorem 28.3 and concerns the 

(Dk', d k o )  and ( x k  , x k )  i m p h  the isomorphisms (Onto) 

H,(X,, 2,) w Hg(Dk0, dko), q = 0, 1 ,... . 

subset fa of Mn defined in (28.1): 

Theorem 28.3'. There exist coset-contracting isomorphisms 

H k f a  9 ./a) Hg(xk 3 *k), 4 = 0, 1,***% (28.27) 

Wh4?refa =fa - p a  and x k  = x k  - p a .  

Proof. One identifies (x, A) of Theorem 28.3 with cfa , f a )  and sets 
f a  - x k  = A*, Sothat A* CA, and x k  = x - A* andxk = A - A*. 
The Excision Condition (28.14) of Theorem 28.3 is satisfied; if e > 0 
is sufficiently small, an e-neighborhood on fa of x - A = p a  is 
included in x - A* = x k  . 

Theorem 28.3' follows from Theorem 28.3. 
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Note. The proof is valid even in the special case in which the 
index k = 0. In this case X ,  = pa , X,, = 0 ,  pa is an isolated point 
of f a ,  and the right member of (28.27) reduces to &(pa). 

T o  apply Theorem 28.4, new notation is required. 
Let Ek be the coordinate plane of En on which uk+l = ... = u, = 0. 

(28.28a) 

and remove the origin 0 from A ,  to form the "centerless" disk d, . 
Note that Qk(0) = a and that on d, Qk(u) < a. 

One denotes the geometric boundary of A ,  by sk-1 and notes that 

For 0 < k \< n we introduce the k-disk (closed) 

A k  = Ek n c1 Da = Ek n c1 Dku, k > 0, 

Int d k  = d k  - S k - 1 ,  Int d k  = d k  - S k - 1 .  
'. 

The Excision Theorem 28.3 leads to the following lemma: 

Lemma 28.3. There exist coset-contracting isomorphisms 

H , ( A k  , d k )  % H , ( h  d k  , Int d k )  4 = 0, 1 ,... . (28.28b) 

Proof. One identifies (x, A) of Theorem 28.3 with ( A , ,  d,) and 
sets A* = &-I,  the geometric boundary of A ,  . Then 

Int dk  = A - A*. Int A ,  = x - A*, 

Moreover, condition (28.14) is satisfied, so that (28.15) implies 
(28.28 b). 

Theorem 28.4'. If the index k of pa  is positive, there exists a defor- 
mation dk retracting D,o onto Int A,  and thereby d k a  onto Int d, , 
implying coset-contracting isomorphisms 

H,(D,", d k ' )  W H , ( h  A ,  , Int d k )  W H , ( A k  , d k ) ,  4 = 0, 1 ,... . (28.29) 

The deformation dk is taken as a mapping of DkU x I onto DkU of 
the form 

(u, 1 )  - d k ( # ,  t )  = (#I )...) # k ,  (1 - t )  #k+l  p . . . ,  (1 - 1)U.n)~  (28.29') 

where u is in Ilku and 0 < t < 1. One replaces ^d of Theorem 28.4 
by d,, . 
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Theorem 28.4' follows from Theorem 28.4 and Lemma 28.3. 
We record a corollary of Theorems 28.1', 28.3', 28.4' obtained by 

an appropriate composition of their isomorphisms: 

Corollary 28.1. When the index k of the critical point pa  is posilive 

H p ( f a  9 j a )  % ~p(d ,  9 dk), = 0,1,*-* - 
We shall give a second basic application of Theorem 28.4. 

(28.30) 

Theorem 28.4". Let j~ C"(M,) be ND and M ,  boundedly 
f-compact (Definition 21.1). Let (a, b) be an open interval of ordinary 
values o f f ,  with a and b critical values of which b is taken on at a unique 
critical pdnt p b  . There then exist coset-contracting isomorphisms 

Hq(fb  , f a )  H p ( f a  9 f a h  4 = 0, 1,***; f b  = f b  - p b  - 
The isomorphisms of Theorem 28.4" exist in accord with 

Theorem 28.4 because there exists (Corollary 23.1) a deformation 
retractingfb onto f a  . 
EXERCISE 28.1. Verify the following: 

Corollary 28.2. Let d be a &formation rectracting a Hausdot# space 
x onto a Hausdorff subspace x'. A q-cycle a4 on x' which is bounding 
on x is bounding on x'. 

Suggestion. Apply Theorem 28.4, taking A and A' as empty 
sets, and observe that &# = fl. 
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COMPARISON OF THE 
HOMOLOGY GROUPS ON fa AND ON f a - P a  

As in $28, a ND f E Cm(M,) is given with a critical value a assumed 
at a critical point pa. To make the desired comparisons, the iso- 
morphisms established in $28 are utilized. To  that end, it is necessary 
to determine the singular homology groups on a k-disk d,, the 
centerless k-disk d, , and the k-sphere S, . 

It is understood that A, is a closed Euclidean k-disk in En , reducing 
to a point when k = 0. The set d, is defined only when k > 0, and is 
d, with its center removed. S, is a Euclidean R-sphere. We understand 
that So is a pair of distinct points. The geometric boundary of A, 
when k > 0 is identified with a sphere . 

Change of Notation. As in the relative homology theory, we shall 
make the replacements: Hq(S(x)) by Hq(x) and Rq(S(x)) by Rq(x) for a 
HausdoriT space x. 

For k > 0, A ,  admits a deformation retracting A, onto its center. 
It follows from Corollary 27.2 that for q and k nonnegative integers 

R,(d,) = Sou. (29.1) 

We shall show that the connectivities 

R,,(Sk) (k = 0, 1 ,... ; q = 0, 1 ,... ; Sk a K-sphere) (29.2) 

are given as in Table I, properly extended, while the connectivities 

Ru(dk) (k = 1,2 ,...; q = 0, 1 ,...; dk a k-disk) (29.3) 
255 
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1 2 3 4 

2 1 1 1 1 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 

L o  
TABLE 1. %(SJ 

0 
1 
2 
3 
4 

- 2 1 1 1 
- 0 1 0 0 
- 0 0 1 0 
- 0 0 0 1 
- 0 0 0 0 

are given as in Table 11, properly extended. In  these tables the rows 
and diagonals of 1’s are to be extended indefinitely to the right. 

TABLE 11. &(A,) 

The entries not otherwise defined are to be 0. There are no entries 
in the column of Table I1 headed by k = 0. 

Let the tables consisting of the columns headed by 
k = 0, 1,2, ..., p in Tables I and I1 be termed, respectively, Tables I(p) 
and Tables II(p). 

Before turning to the verification of these tables we prove an 
essential lemma. 

Notation. 

Lemma 29.0. Given a rel. q-cycle yq on A ,  mod d, , k > 0, ayq N 0 
o n d k i f a n d o n l y i f y Q - O o n A k m o d d k .  

If ayq - 0 on dk , then ayq = au* for some chain uq of S(dk), so 
that yQ - d is an absolute q-cycle on A, . Such a cycle is bounding 
on A,, implying - 0 on A ,  mod d, . 
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A homology yQ N 0 on A, mod d, implies the existence of a chain 
on A ,  and a chain UQ on d, such that yQ = aw@+l + d and hence 

implies that ayq - O on d, . 
That the entry 2 in Table I 

is correct follows from Theorem 26.6(ii). That the entries 1 in the 
first row (q = 0) are correct follows from Theorem 26.6(i). 

The O-entries in Table I(O), that is, in the column k = 0 of Table I, 
and correct, since So is the union of a pair of points p ,  and p ,  , so that 
by (26.28) 

~,(&) H,(p,)  0 ~ , ( p , ) ,  q = 0, I,.. .  . (29.4) 

The groups on the right of (29.4) are trivial when q > 0, in accord 
with Theorem 26.2, so that Table I(0) is correct. 

That Table I as extended is correct will be proved by a mathematical 
induction with the following inductive hypotheses: 

For some integer m > 0 Table I(m - 1)  is correct. 

We have already shown that this hypothesis is valid when m = 1. 
At the end of this section we shall conclude that the validity of 
Table I(m - 1) implies the validity of Table I(m). We continue 
with a lemma. 

The First Row and Column of Table I .  

Lemma 29.1m. If Table I(m - 1) is correct, Table II(m) is 

For k > 0 d, admits a radial deformation retracting d, 
onto the outer geometric boundary Sk-1  of d,,  so that by Theo- 
rem 28.4, with the moduli A and A' empty sets, 

correct. 

Proof. 

Hq(dk)  w IY,(S,+~), p = 0, I ,... . 
Thus the validity of Table II(m) follows from the validity of 
Table I(m - 1). 

We state a key theorem: 

Theorem 29.1 m. If Table I( m - 1) is correct, 

k = 1 ,..., m; q R,(d,, d,) = 82; 0. (29.5) 
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Proof of (29.5) when k # q. Were (29.5) false when k # q, then 
for some rel. q-cycle a~l, a ~ l +  0 on A ,  mod d, , implying i3$ + 0 on 
d, (Lemma 29.0). It would follow from Table II(m) that dim i3xP is 0 
or k - 1. The second alternative is contrary to the hypothesis k # q. 
The first alternative, q = 1 and 8z1 + 0 on d, , implies k = 1, since 
d, is connected for k > 1. Thus both alternatives are contrary to the 
hypothesis k # q. 

Proof of (29.5) when 1 c k < m and q = k. Under these con- 
ditions Table II(m) shows that there exists an absolute (k - 1)-cycle 
uk-1  on d, which is a “homology prebase” for (k - 1)-cycles on d, . 

Let yk be a k-chain on A ,  such that i3yk = d-l ,  in accord with 
(29.1). Since 8yk + 0 on d, , y k  + 0 on d, mod d, by Lemma 29.0. 
If u, is an arbitrary rel. k-cycle on d, mod d, , then for some r in the 
field X ,  by Table Table 11( m), 

a u k  1Wk-1 = r a p  on d k  . (29.6) 

Hence by Lemma 29.0 uk N ryk on A ,  mod d, , completing the proof 
of (29.5) when 1 < k < m and q = k. 

Proof of (29.5) when q = k = 1. The preceding paragraph gives the 
proof for this case provided one takes uo as uo - wo, with uo and wo 
O-cells on d, whose carriers are the two endpoints of A , .  Relations 
(29.6) hold for some r when k = 1, even though 00 is not a “homology 
prebase” for O-cycles on d, . 

This completes the proof of Theorem 29.1 m. 
By virtue of the isomorphism of Corollary 28.1, Theorem 29.1 m 

has the following corollary [see (28.1) for definition of f a ] :  

Corollary 29.1 m. If Table I( m - 1) is correct and the index k of 
the criticalpoint pa  is on the range 1, ..., m, then if one sets fa = fa - pa , 

(29.7) 

Linking and Nonlinking Critical Points p,, . As in $28, pa is a ND 
critical point at the f-level a.  The index of pa is denoted by k. We 
have set f a  - pa  = f a ,  It is not assumed that pa is the only critical 
point at the f-level a or that fa is compact. 
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Definition 29.1. k-Caps o f p ,  . A rel. q-cycle (on fa modf,) which 
is nonbounding on f a  modf, will be called a q-cap of pa . Under the 
conditions+ of Corollary 29.1.m (29.7) holds and there are no q-caps 
of pa other than k-caps, and any such k-cap of pa  is a “homology 
prebase” on f a  modf, for rel. k-cycles on f a  modf, . If k = 0, a 
0-cell with carrier pa is a 0-cap. 

Among critical points pa of index k we distinguish three types, 
of which the third will be proved to be nonexistent. The third type is 
introduced in order that we can say, a priori, that each critical point pa 
is of one of these three types. 

Linking Type. The class of k-caps of pa  is not empty, and each 
k-cap Ck of pa is linkable, that is, atk is null or bounding on fa . 

Nonlinking Type. The class of k-caps of pa  is not empty and each 
k-cap Ck of pa  is nonlinkable, that is, agk is neither 0 nor bounding onf, . 

Neutral Type. The point pa is not of linking or nonlinking type. 
We note that a critical pa of index 0 is of linking type. 
At the end of the inductive process of this section we can conclude 

that there are no critical points of neutral type. At the present stage of 
the induction we are limited to the following lemma: 

Lemma 29.2m. Under the conditions of Corollary 29.1 m, including 
the condition that the index k of pa  is on the range 1, ..., m, there are no 
critical points pa  of neutral type. 

For each critical point pa  here admitted there exist k-caps because 
of (29.7). If one such k-cap Ck is linkable, each such k-cap qk is 
linkable; when k is on the range 1, ..., m it follows from (29.7) that 
for some non-null Y E X ,  Ck - rvk  on f a  modf,, implying that 
a t k  N raqk on fa . We conclude that if Ck is linkable (or nonlinkable), 
then qk is linkable (or nonlinkable). 

Lemma 29.2m follows. 

The following lemma gives an essential characterization of critical 
points pa  of linking type: 

Lemma 29.3m. Under the conditions of Corollary 29.1 m a neces- 
sary and sufJicient condition that pa  be of linking type is that the rel. 

t Including the condition that k be on the range 1, 2, ..., m. 
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homology class on fa modf, of each k-cap of pa (k on the range 1, ..., m) 
contain a nonempty class of k-caps which are absolute k-cycles Xk on fa . 

The condition of the lemma is sufficient in accord with the charac- 
terization of critical points pa of linking type. 

The condition of the lemma is also necessary. Given a k-cap Ck of 
a critical point p, of linking type, there exists, by hypothesis, a k-chain 
uk on f a  such that = auk.  The k-chain Ck - uk is a k-cap of pa and 
an absolute k-cycle Xk on fa . Moreover, Ck - Xk on fa mod f a ,  since 
p - hk  = Uk. 

Definition 29.2. Linking k-Cycles of pa. If pa has the index k, a 
k-cap of pa which is an absolute k-cycle Xk will be called a linking 
k-cycle of pa  . 

We note that a linking k-cycle hk of pa is nonbounding on f a ,  
since a homology hk N 0 on f a  would be interpretable as a rel. homology 
hk - 0 on fa modfa , 

With a critical point pa we associate the differences 

ARQ = %(fa) - %(fa) 4 = O, l I * * s I  (29.8) 

whenever the numbers differenced in (29.8) are finite, and state a basic 
theorem: 

Theorem 29.2. Corresponding to a critical point pa of index k for 
which the differences (29.8) exist, the dz$krences AR, are all zero except 
that 

A& = 1 

dRkd1 = - 1 

when p a  is of linking type 

when pa is of nonlinking type. 

Hypotheses Reviewed. There is no assumption in Theorem 29.2 
that the manifold M ,  is “boundedly f-compact” (Definition 21.1). The 
assumption that the numbers differenced in (29.8) are finite is implied 
(as we shall see in $30) by the hypothesis that fa is a compact subset 
of the manifold M ,  . 

Theorem 29.2m. The first step in the proof of Theorem 29.2 will 
be to prove Theorem 29.2m, that is, Theorem 29.2 under the con- 
ditions of Corollary 29.1 m. Theorem 29.2m is a corollary of a much 
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stronger theorem, Theorem 29.3m. Theorem 29.3m compares 
homology groups on f a  and on f a  rather than dimensions of such 
groups, and is valid regardless of whether or not these dimensions 
are finite. However, the comparison of dimensions continues to play 
a fundamental role. 

Comparison of Homology Prebases on fa and on 3. . Referring 
to Definition 24.7, for each integer q > 0 let 

b U a )  and b,(fa), (29.9) 

respectively, denote “homology prebases” (possibly empty) of 
q-cycles on f a  and onf, , The existence of such prebases follows from 
the existence of bases for the homology groups Hq( f a )  and Hq(fa)  
over .X. Such existence will be verified directly in case f a  is a compact 
subset of M ,  . 

The principal theorem follows. 

Theorem 29.3. (i) If the critical point pa has the index k and if 
one sets f a  = f a  - pa , then a homology prebase bq( f a )  is a homology 
prebase bq( f a )  except in the following two cases: Case 1. q = k and pa 
is of linking type. Case 2. q = k - 1 andp, is of nonlinking type, k > 0. 

(ii) In case 1 ctny set of absolute k-cycles of the form 

bk(fa) hk (29.10) 

(where X k  is a linking k-cycle of p a )  is a homology prebase bk( fa) .  

(iii) In case 2 any set of absolute ( k  - 1)-cycles, k > 0, of the form 

bk-l(fa) - wk-l (29.1 1) 

(in which wk-l is the boundary of a k-cap of pa and bk-l(fa) contains 
wk-l) is a homology prebase bk-l( fa) .  

Continuing our induction with respect to m, let Theorem 29.3 
subject to the conditions of Corollary 29.1 m on m and k be denoted 
by Theorem 29.3m. We shall prove Theorem 29.3m. It will then follow 
that Table I(m) is correct and hence Tables I and I1 are correct. 
Theorems 29.2 and 29.3 are final consequences. 
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Proof of Theorem 29.3m. Before coming to the proof proper of 
Theorem 29.3m we shall verify that the construction of the set (29.1 1) 
is possible for k on the range 1, 2 ,..., m. 

It follows from Corollary 29.lm that a k-cap of pa exists. The 
boundary wk-’ of this k-cap is on f a  and nonbounding on f a  , since, 
by hypothesis of (iii)pa is not of linking type. By virtue of Lemma 24.3 
there then exists a homology prebase bkd1( fa) which contains wk-l, 
so that the set (29.11) exists. 

To  prove that a given set of absolute q-cycles on f a  is a homology 
prebase bg( f a ) ,  it is sufficient to show that the q-cycles of the given set 
are both “homology-wise generating” and “homology-wise free” 
among absolute q-cycles on f a .  

Proof’ of (i)m. In (i) pa comes under neither case 1 nor case 2. 
To  prove that a prebase bg(fa) is then homology-wise generating 
among q-cycles on f a  is to prove that when yQ is an absolute q-cycle 
on f a  then yQ - 0 on f a  mod f a  , or, equivalently, that yg is homologous 
on f a  to an absolute q-cycle onf, . 

Were y’J + 0 on f a  mod f a  , then yQ would be a q-cap, implying that 
q = k by (29.7) and that is a linking k-cycle, contrary to the 
exclusion of case 1 from (i). 

To show that bg(fa) is homology-wise free’ on f a  under the con- 
ditions of (i) it is sufficient to show that an absolute q-cycle y’J on f a  
which is nonbounding on f a  is nonbounding on f a .  

Were yQ = ad+l  on f a ,  then &+I + 0 on f a  modf,, since 
yQ + 0 on f a  . This would imply that d+l is a k-cap by (29.7) and pa 
nonlinking, since yQ + 0 on f a  . This is contrary to the exclusion of 
case 2 from (i). 

Prooft of (ii)m. The set (29.10) of k-cycles is homology-wise 
generating on f a  , since when an absolute k-cycle y k  on f a  is prescribed, 
an r E 3f exists such that yk - & on f a  modfa [by (29.7)]. 

We shall show that the set of k-cycles (29.10) is homology-wise free 
onf,, 1 < k < m .  

The set bk( f a )  of k-cycles is homology-wise free on f a  . Otherwise 
there would exist a k-cycle uk on f a  such that uk + 0 on f a  and 
uk = ayk+l for some chain yk+l on f a  , Then yk+l + 0 on f a  mod f a ,  
contrary to (29.7). 

t When the index k of p,, is on the range 1, 2,,.., m and (29.7) is true. 
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Finally, Xk satisfies no relation hk N uk on f a  with uk on fa , since 
such a relation would imply that Xk - 0 on fa modf, , contrary to 
the fact that Xk is a k-cap. 

Thus (ii)m of Theorem 29.3m is true. 

Proof’ of (iii)m. The set of absolute (k - 1)-cycles of the set 
(29.11) is homology-wise generating on f a  , as we now verify. Since 
there are no (k - 1)-caps,+ each (k - 1)-cycleyk-’ on f a  is homologous 
to zero on fa modf,, It follows that yk-l is included among the 
(k - 1)-cycles on f a  homology-wise generated by the set (29.1 1). 

The (k - 1)-cycles of the set (29.1 1 )  are homology-wise free on f a  , 
as we now verify. We are assuming that k is on the range 1,2, ..., m. 

Were the cycles of the set (29.11) not free, there would exist a 
“reduced” form uk-l in the (k - 1)-cycles of the set (29.1 1) such 
that for some chain yk on fa , uk-l = ayk on fa . Such a chain yk would 
be a k-cap, since ayk + 0 on fa. By hypotheses of (iii), wk-l is the 
boundary of a k-cap wk. Since (29.7) holds, yk - rwk on f a  mod fa 
for some Y E X .  Hence ayk - I awk - 0 on fa , or, explicitly, 

on f a 1  
,,k-l rWk-l 

contrary to the nature of bk-l( fa). 
This completes the proof of Theorem 29.3m. 

We can now complete the verification of Table I by proving the 
following theorem: 

Theorem 29.4m. If Table I( m - 1) is correct Table I( m) is correct. 
Set n = m. T o  prove this theorem, it is sufficient to show that if 

Table I (m - I )  is correct and n = m ,  then 

R,(S,) = 1, n > 0, (29.12) 

and 
R,(S,) = 8,q, q = 1, 2 ,... . (29.13) 

Relation (29.12) has already been established. T o  establish (29.13), 
suppose that S,  is an n-sphere in a Euclidean (n + 1)-space of 

t When the index k is on the range I ,  ..., m and (29.7) is true. 
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coordinates x, , x, ,..., x, and let p --* f(p) be the ND C"-function 
defined on S,  by assigning the value x, to the point p .  One sees that f 
has two critical values, a and b, taken on by f at critical points pa  and Pa 
with indices, respectively, 0 and n. The set fb = 27,. The set 
j b  = fb - pb has the connectivities of the point pa , since j b  admits a 
deformation retracting{, onto pa (Corollary 27.2). 

Since n = m, Corollary 29.lm (with p b  replacing pa)  implies that 
there exists an n-cap on of pa. The boundary awn is on j b  and is 
bounding on fb . The critical point pb is accordingly of linking type. 
It follows from (i) and (ii) of Theorem 29.3m that with fb = Z, 

(29.14) Ra(fo) = %CX) + an' = sna, Q = 1,2,***, 

thereby verifying (29.13). 
Thus Theorem 29.4m is true. 
Hence the extended Tables I and I1 are correct. It follows that 

Theorem 29.3 and its corollary, Theorem 29.2, are true. 

A Comparison of Relative Homolow Groups. In the preceding 
part of this section we have determined the effect on the homology 
groups on fa of deleting from fa the critical point pa at the f-level a. 
If r )  is a value off, r) < a, there are applications in which one needs 
similarly to determine the effect on the homology groups on fa mod f, 
of deleting pa from fa . We shall state modifications of Theorems 29.2 
and 29.3 and indicate how the proofs of Theorems 29.2 and 29.3 
lead to proofs of these modified theorems. These extensions are not 
used until they are applied in 933 in the study of critical chords and 
symmetric products. 

Among critical points pa of index k we here distinguish three types: 

Linking Types mod f n .  Characterized by the condition that for 

Nonlinking Types mod f,, . Characterized by the condition that for 

Neutral Types mod fn . With the point p a  of neither linking nor 

Departing from the notation of (29.9), let 

each k-cap ck of pa , a t k  is null or bounding on fa mod fn . 

each k-cap tk of pa , atk is neither null nor bounding on fa mod fn . 

nonlinking types mod f,,; proved nonexistent (cf. Lemma 29.2rn). 

ba(f4 ,.A) and baCf4 9 . U  4 > 0, (29.15) 
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denote homology prebases of q-cycles, respectively, on fa mod fn and 
on fa mod fn (cf. Definition 28.4b). Similarly, departing from the 
notation of (29.8), with each critical point pa and integer q > 0 we 
associate the difference 

A g u  = U f a  f n )  - ~ C f a  A) (29.16) 

(cf. Definition 28.4a) whenever the numbers differenced are finite, 
and state the following modification of Theorem 29.2: 

Theorem 29.2*. Corresponding to a critical point pa of index k for 
which the dzTermces (29.16) exist, the differences A ag are all 2ero 
except that 

AW, = 1 

A9k- - l  = -1 

when p ,  is of linking type, mod f, , 
when pa  is of nonlinking type, mod f, . (29.17) 

Theorem 29.2* follows from a modification of Theorem 29.3 which 
will be stated below. The proofs of the two modified theorems are 
given by the proofs of Theorems 29.2 and 29.3 read with the following 
replacements: 

“cycles” or “absolute cycles” by “cycles mod fn” 

“on fa” and “onfa” 

“linking” by “linking mod fn” 

‘ ‘nonlinking” by “nonlinking mod fn” 

by “on f a  mod fn” and “on 
fa mod fn ,” respectively 

“bQ(fa)” and “bg( fa)” by “bp( fa fn)” and “bq( f a  9 fn),” 
respectively. 

One should leave “on famodfa” unchanged. Reference to the 
induction with respect to the integer m can be deleted because the 
inductive verification of Tables I and I1 has been completed. 

The modification of Theorem 29.3 takes the following form: 

Theorem 29.3*. (i) If the critical point pa has the index k, a 
homology prebase b,( fa , fn) is a homology prebase b,( fa , fn) provided 
there occurs neither: Case 1. q = k with pa linking mod fn , nor case 2, 
q = k - 1 with pa nonlinking mod fn (k  > 0). 
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(ii) In case 1 any set of k-cycles mod fn of the form 

b&a 9 fn) u hk 

is a homology prebase bk( fa f n )  (where Ak is a linking k-cycle mod fn 

(iii) In case 2 any set of (K - 1)-cycles mod fn of the fwm 
of Pa). 

bn-l(fa tfn) - wB-' 

is a homology prebase bk-l( fa f?) (where cuk--l iS the boundary of a 
k-cap of po and bk-l( fo , fn) contazns cuk-l). 



§ 30 

TYPE NUMBERS AND CONNECTlVlTlES 

The Compact Case. Let M, be a compact C"-manifold. Given 
a ND f E C"(M,), for each nonnegative integer k we introduce the 
following symbols: mk is the number of critical points off of index k; 
a, is the number of critical points off  of index k of linking type; 
bk is the number of critical points off of index k of nonlinking type; 
Rk is the kth connectivity of M ,  . 

We shall prove a basic theorem: 

Theorem 30.1. (i) 

(ii) Between the numbers mk and R, there exist the relations 

The connectivities R, of M ,  are Jinite and for 
k > n, Rk = 0. 

m, 2 Ro 

m, - m, 2 R, - R, 

m2 - ml + mo b R2 - R, + R, (30.1) 

m, - mn-, + mfl-2 ..- (-l)nmO = R, - R,-, + 
The relations (30.1) imply the inequalities 

*.. ( - l P R ,  

(iii) 

mk 2 Rk,  k = 0,  1 ,...,It. (30.2) 

(iv) If I M, I is connected, R, = 1 or O.+ 

+ Depending on the choice of the field X for some manifolds. 
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(v) If I M ,  I is connected and ifzn is an n-cycle on I M ,  I which is 
nohounding on I M ,  I ,  then I zn I = I M ,  I. 

Without loss of generality in proving this theorem we can suppose 
that each critical value off is assumed at just one critical point. Let 
c, < c1 < < c, be the critical values off. Note that b, = 0, since 
each critical point of index 0 is of linking type. Let fc, denote the 
subset fc,  of M ,  with the critical point off at the f-level cj deleted. 

Proof of (i) As a subset X of I M, I becomes the successive sets 

f c ,  s f c ,  ;fc, l f C ,  ; f c ,  ,.lo, ; ..- ;fc,-, A, ;fc, (30.3) 

we shall see by an inductive procedure that Rq(X) takes on integral 
values terminating with the value Rq = Rq(Mn). There is no change 
in Rq(X) as X changes fromfC,-, to jC, , by virtue of the retraction of 
jc, onto fc,-, (Corollary 23.1) and the resultant isomorphisms 

f w c , )  4fq-J (30.4) 

Understanding that b, = 0 and setting a, = b, = 0 for j > n, we 
(see Theorem 28.4). 

shall verify the equalities 

R, = a, - ba+l ,  q = 0, 1, ... . (30.5) 

Relations (30.5) follow on evaluating the differences 

Ra(fc,) - R&jcJ, j = 1 , 2 , * - * ,  r, (30.6) 

by means of Theorem 29.2. This evaluation is made in the order of 
the integers j and shows that the numbers differenced in (30.6) are 
finite and that the relations (30.5) hold. 

Statement (i) follows from (30.5). 

Proof of (ii). For each k on the range 0, 1, ..., n set 8’ = ttlk - R, . 
The relations 

m k = u k + b B ,  k = 0 , 1 ,  ..., n, (30.7) 

and (30.5), with b, = 0, imply that 8, = b, + bk+l and 

8 k  - 8k-1 + 8 k - S  . * *  (-l)k 8 0  = b,+1, k = 0, 1 ,  ..., n. (30.8) 
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The inequalities in (30.1) follow from the relations (30.8). The final 
equality of (30.1) is a consequence of the final equality in (30.8) and 
the vanishing of b,+l. 

of (30.1). 

To establish (iv)) we shall make use of a result 
established by Morse [9] using methods of the character of those 
used in this book. We refer to the theorem that there exists a ND f in 
Cm(Mn) which is "polar-nondegenerate," i.e., which possesses just one 
critical point of index 0 and just one critical point of index n. According 
to (30.5) R, = a,)  and, since M ,  admits a polar-ND f, a, = 1 or 
0 depending on whether the point q of absolute maximum off  on 
1 M ,  1 is of linking or nonlinking type. 

Proof of (iii). The relations (30.2) are a trivial consequence 

Proof of (iv). 

Proof of (v). Let xn be an n-cycle on 1 M ,  I which is nonbounding 
but whose carrier I 2" I is not equal to I M ,  I. We shall arrive at a 
contradiction. 

By hypothesis there exists a point q E 1 M ,  I which is not in I 2, I. 
The theorem on the existence of a polar-ND f on I M ,  I can be 
strengthened by the affirmation that the absolute maximum off can 
be prescribed in position on I M ,  I. We suppose then that the absolute 
maximum off occurs at the above point q. 

We have seen in (iv) that R, = 1 or 0. Since 2, is nonbounding on 
I M ,  I by hypotheses of (v), we conclude that R, = 1 in (v), and hence 
that a, = 1 in (30.5). 

Because a, = 1 there is associated with the critical point q a linking 
n-cycle An. Hence for some constant p E T 

~n N Pzn + awS+l, Wn+= on I M n  I- (30.9) 

By hypothesis p2" is on I M ,  I - q. Hence (30.9) implies that An N 0 
on I M ,  I, mod(( M ,  I - q), so that An cannot be an n-cap of q 
(Definition 29.1). Hence An cannot be a linking n-cycle of q (Defi- 
nition 29.2). 

From this contradiction we infer that the point q does not exist and 
that (v) is true. 

This completes the proof of Theorem 30.1. 
We shall derive a special consequence (30.10) of the relations (30.1). 
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Given f as in Theorem 30.1, set f ‘  = -f. The type numbers off’ 
are then the respective numbers m , ,  m,, ,..., m o .  Hence the 
relations (30.1) hold if mk is replaced by mfl-k for each k on the range 
0, ..., n. A special consequence is that when n is odd 

Ro - R, + RS - (-1)”R, = 0. (3O.lOa) 

The Noncompact Case. Let M, be a C“-manifold and g a ND 
function in Cm(Mn). Suppose that for some ordinary value /3 of g 
the subset 

ga = { P E  I I Ig(P) G 8) (30. lob) 

of M, is compact. We shall verify the following concerning g, : 

Theorem 30.2. (i) The connectivities Rk of the Singular complex 

(ii) If mk denotes the number of critical points of g I g, of index k, 

(iii) The inequalities (30.1), afirmed to hold in (ii), imply the 

The proof of this theorem is similar to the proof of (i)-(iii) of 

S(ga) arejnite and vanish for k > n. 

the reZations (30.1) hold. 

relations mk 2 Rk . 

Theorem 30.1. 

Proof of Theorem 9.1. We shall show that Theorem 9.1 is a 
corollary of Theorem 30.2. 

In Theorem 9.1 there is given a “regular” C”-domain 2 in E,,, 
bounded by a “regular” n-manifold Z of class C” (Definition 9.1). 
On some open neighborhood 0, of 2 there is given a real-valued 
function f of class CB which is ND on 2 and ordinary on 2. The 
function f of Theorem 9.1 is “admissible” relative to 2 and grad f is 
emergent at each point of 2. 

The reader will recall that once Theorem 9.1 is established its 
variants in $9, $10, and Appendix I1 admit the supplementary proofs 
given in Part I. 

To apply Theorem 30.2 to prove Theorem 9.1, an introductory 
lemma is required. 
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Approximation Lemma 30.1. Corresponding to a function f admissible 
in Theorem 9.1 there exists a real-valued function f of class C“, defined 
on the domain D, off, with first and second partial derivatives approxi- 
mating the first and second partial derivatives o f f  so closely on 2 that 
grad f is emergent on Z and the critical points o f f  I 2 are ND and 
correspond biuniquely to those o f f  I 2 with preservation of indices. 

A classical analytic or trigonometric approximation off will suffice. 
The domain D, off I is open and the approximation is on the compact 
subset 2 of Dt . 

The Modijkation g o f f  I .  We cannot apply Theorem 30.2 directly 
to f I .  A modification g off’ is called for. 

By virtue of Theorem 12.2 there exists a ND function g of class C“ 
defined on an open neighborhood D, of 2 and such that the following 
are true: 

1. 

2. 

3. 
4. 

The function g I 2 is “critically equivalent” to f I 2 in the 

The boundary 22 of 2 is a level manifold of g at each point of 

The value of g on Z exceeds the value of g at each point x E 8. 
The neighborhood D, of 2 is so small that f l  is less than the 

We apply Theorem 30.2 to g. The function g is defined on the 
C”-manifold M, with carrier D, and with the Euclidean differentiable 
structure (Definition 13.5). As defined above g I 2 is “critically 
equivalent” to f I 2. Since the set ga = 2 is compact, Theorem 30.2 
applies and yields Theorem 9.1. 

sense of Definition 12.1. 

which g is ordinary. 

value of g at each point of D, - 2. 

We verify a corollary of Theorem 30.2. 

Corollary 30.1. The connectivities Rr , r n, of a connected non- 
compact C“-manifold M ,  are zero. 

Proof. Let f be a ND J E C”(M,) with the properties (i)-(iii) of 
Theorem 23.5. Corresponding to each ordinary value a off one has 
the relations 

R r ( f a )  = 0, > n, (30.1 1) 
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by virtue of Theorem 30.2. Moreover, (30.11) holds when r = n, 
as we now verify. 

The number m, of critical points off I f a  of index n is equal to 0, 
as implied by (iii) of Theorem 23.5. According to Theorem 30.2 
m, 2 R,( fa) [cf. (30.2)], so that (30.11) holds when r = n. 

Since (30.1 1) holds for each ordinary value a off, Corollary 30.1 
follows. 

We shall characterize an important special situation. 

Definition 30.1. A Lacunary Index off. Let M ,  be a compact 
C"-manifold and f ND in Cm(M,). If the type numbers off are such 
that for some i on the range 0, 1, ..., n the type numbers and 
m,, adjacent to m, vanish, i will be called a lacunary index off (see 
Morse [7], p. 151). 

Corollary 30.2. Let M ,  be a compact C"-manifold and f ND in 
C"(M,). If i i s  a lacunary index off, then m, = Ri and R,, = R,+, = 0. 

Under the conditions of Theorem 30.1 it follows from the relations 
(30.1) that 

with the understanding that mk and R, vanish when k < 0 or k > n. 
By the lacunary hypothesis m,+l = m,-l = 0. It follows from (30.2) 
that Ri+, = R,-, = 0 and mi 2 R, . We infer from (30.12) that 
m, = Ri for the given i. 

This establishes Corollary 30.2. 
As we shall see, the case arises in which each of the nonvanishing 

type numbers off has an even index. In such cases for each index i 
Ri = m, . 

The result of Corollary 30.2 will be referred to as the Lacunary 
Principle. 

The Case of Relative Connectivities. The connectivities Rk en- 
tering into the relations of Theorem 30.1 and 30.2 have been 
"absolute" connectivities. With the aid of Theorem 29.3 * a similar 
set of relations may be derived involving the relative connectivities 
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introduced in Theorem 29.3*. These relations are needed in studying 
“symmetric products” and “critical chords” of differentiable manifolds 
in $33. 

There is given a C”-manifold M,, ) 
a function f E C“(M,), and an ordinary value r) o f f  such that the 
subset 

{ P E I M n I  I f ( P ) > q ) = f n +  (30.13) 

Hypotheses of Theorem 30.3. 

of I M ,  I is compact. We assume that f is ND on f,+ . There are thus 
three conditions on the value 7 off: 

q is ordinary; f,+ is compact; f is ND on f,+ . (30.14) 

Theorem 30.2 is replaced by the following theorem: 

Theorem 30.3. Given a C“-manifold M ,  ) an f E C”(M,), and a 
value r ]  o f f  such that conditions (30.14) are satisfid, the following 
are true: 

(i) The connectivities R; of I M ,  I mod f ,  are finite and vanish 
for i > n. 

(ii) Between the type numbers mk of the critical points p o f f  at  which 
f ( p )  > r] and the connectivities Rk the relations (30.1) hold. 

Affirmations (iii)-(v) of Theorem 30.1 are also true under the 
hypotheses of Theorem 30.3 provided Rk is replaced by R; and (v) is 
appropriately modified. We shall not need these modifications of 
(iii)-(v) of Theorem 30.1. 

This proof is similar to the proof of 
Theorem 30.l(i) except for minor modifications due to the presence 
of the modulusf, . We proceed with the proof following the logical 
order of the proof of Theorem 30,1(i). 

In addition to the numbers mk and R; already defined we redefine 
two symbols: ak ) the number of critical points off on f,+ of index k 
and of “linking typemod fn” (see $29); and b,) the number of 
critical points off on f,+ of index k and of “nonlinking type mod fn” 

(see $29). 

Proof of Theorem 30.3(i). 
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Without loss of generality we can suppose that each critical value 
a > q is assumed at just one critical point. Let co < c1 < .-- < cr be 
the critical values off which exceed q. For each critical value a = c, 
let pa  be the critical point at the f-level a. As previously, set 
fa =fa - p a  . Let b,( fa , fn) and b,( fa ,jn) be homology prebases of 
q-cycles mod fn , respectively, on fa and fa, as in Theorem 29.3*. 

Departing from the proof of Theorem 30.1, note that when a = c, , 
j’,, can be retracted by a deformation onto f n .  It follows from 
Theorem 28.4 that for each q, b,( fca , fn) = 0 .  
As in the proof of Theorem 30.1, the integer b, = 0, since each 

critical point of index 0 carries a 0-cycle and so is of linking type and, 
in particular, of linking type mod fn . 

As a subset X of I M,, I takes on the successive sets listed in (30.3), 
taken with present connotations, we shall see by an inductive proce- 
dure that R&X, fn) takes on finite integral values, terminating with 
the value R i a  There is no change in R,(X, f,,) as X changes from 
fc,-l toft, , by virtue of the retraction of fcj onto fC,-, (cf. Theorem 28.4). 

We understand that bo = 0 and that a, = b, = 0 for j > n, since 
there are no critical points of index exceeding n. We shall verify the 
equalities 

(30.15) Ri 2 U, - b,+, , 
Relations (30.15) follow on evaluating the differences 

j = 1, Z-, r, 

= 0, 1, ... . 

%(fc, ,fJ - R,(fcj ,fn), 

by means of Theorem 29.3* (or Theorem 29.2*). Theorem 30.3(i) is 
implied by (30.15) and the vanishing of a, and b, for j > n. 

Proof of Theorem 30.3(ii). 
the proof of Theorem 30.l(ii). 

Thus Theorem 30.3 is true. 

This proof is identical in form with 

Simply-Carried Separate k-Cells. We shall present a lemma on 
nonbounding k-cycles on a topological K-sphere. This lemma has 
important applications. It is based on the following definitions. 

Definition 30.2. Simply-Carried Singular k-Cells. Let x be a 
HausdorfT space. A singular k-simplex on x which is defined by a 
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homeomorphism 7 : s + x of an ordered R-simplex s into x will be 
said to be simply-carried by x, as will the corresponding singular 
k-cell +. 

Simply-Carried n-Cells of rn . Let Fn be a topological n-manifold, 
and let un be a singular n-cell simply-carried by I', . The cell un is the 
equivalence class of a singular simplex 7 : s+ rn , where s is an 
ordered n-simplex in En (see Definition 26.1). Hence I on I = .(I s I). 

A Convention. We understand that E, is a point and r,, a finite set 
of points, both with a discrete topology. 

We shall make use of a classical theorem affirming that a homeo- 
morphism of an open subset A of En into Ek is onto an open subset A' 
of EL (see Hurewicz and Wallman [l], p. 97). By virtue of this 
theorem and the definition of a topological manifold the subset 
.r(Int I s I) of rn is open in rn , and 

T(Int I s I) = Int I un I ,  (30.16) 

where Int I un I is the maximal open subset of I an I relative to rn . 
If n = 0, the set (30.16) is a point. 

Definition 30.3. A Simply-Carried Separate n-Cell of an n-Chain. 
Let zn be a singular n-chain on rn with a reduced form 

z" = epln + ... + emum", m > 1, e, = f l .  (30.17) 

If a cell of this form, say uln, is simply-carried and if Int I uln I is not 
included in the subset 

x = 1 uz" I u ... u I am" I (30.18) 

of Pn , then uln will be called a simply-carried separate n-cell of zn. 

Lemma 30.2. Let zn be a nontrivial n-cycle on a topological n-sphere 
rn . If there exists a simply-carried separate n-cell uln of zn, then zn + 0 
on I', and I zn I = rn . 

We understand that I', is a pair of distinct points. 
Without loss of generality in proving the lemma we can suppose 

that I'n is an origin-centered n-sphere S, in En+, . The proof is by 
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induction with respect to n. The lemma is trivial when n = 0. We 
shall accordingly prove the theorem true for a prescribed n > 0, 
assuming the lemma true when n is replaced by n - 1. 

A first consequence of the hypotheses is that when n > 0 there 
exists a point p in Int I aln I which is not included in  the^ set X of 
(30.18) and which has an open neighborhood, relative to I", , which 
does not meet X. 

Suppose that the coordinate x,-axis in En+, is orthogonal to S,  at p, 
and that on S, , x1 assumes a proper maximum a at p. Let f be the 
ND function on S, defined by the values of x, on S , .  Denote p 
byp, , The point pa is in the open subset Int 1 aln I of rn . 

By virtue of our inductive hypothesis auln + 0 on the topological 
(n - 1)-sphere 1 aaln I. As the homeomorph of a geometric n-simplex 
I uln I is the homeomorph of the n-disk A ,  (of Lemma 29.0 if k of 
Lemma 29.0 is equal to n) under a mapping in which pa can be taken 
as the image of the center of d, and I aaln I as the image of the 
geometric boundary PAn of A ,  . Now, 1 uln I is the closure of Int 1 0," 1, 
an open neighborhood of p a ,  relative to I', . It  follows from 
Lemma 29.0 that uln is an n-cap associated with the critical point 

Now, an = ep1n modf, , so that zn is an n-cap associated with pa . 
Since an is both an n-cap associated with pa and an absolute n-cycle 
on S, , it is a "linking" n-cycle on S, associated with pa.  By 
Theorem 29.3 zn + 0 on S,  . 

Pa of f* 

That I an I = S, when n > 0 follows from Theorem 30.l(v). 
We continue with a topological n-manifold r, . 

Definition 30.4. n-Chains Simply-Carried on Fn . An n-chain an 
on r, with a reduced form (30.17) will be said to be simply-carried 
by r, if each cell a," of the reduced form for an is simply-carried by 
r, and if for each pair of distinct integers i and j on the range 1, ..., m 

Int I uin I n Int I qn I = a. (30.19) 

The following is a corollary of Lemma 30.2: 

Lemma 30.3. If r, is a topological n-sphere and zn a simply-carried 
n-cycle on r,, , then an + 0 on I', and I an I = r, , 

$J 
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In $37 it will be seen that there exists a simply-carried n-cycle on 
each topological n-sphere. 

EXERCISE 30.1. Let M ,  and Qm be two compact C"-manifolds of 
even dimension such that there exist real-valued ND functions 
g~ E Cm(Mn) and y5 E C"(Qm) whose nonvanishing type numbers (for 
a given field X )  have even indices. Spheres of even dimensions serve 
as examples. 

Show that on the product C"-manifold M ,  x Qm there exists a 
ND function f E C"(M, x Qm) each of whose non-vanishing type 
numbers has an even index and whose type numbers are then the 
respective connectivities of M ,  x Qm . 

Let p and q be arbitrary points of I M ,  I and I Qm I 
and (p, q) E I M ,  x Qm I. Choose q~ and $, as is possible, so as to be 
positive-valued and show that the function (p, q) + cp(p) + #(q) is a 
ND function on I M ,  x Qnl I which satisfies the exercise. 

Suggestion. 
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§ 3' 

NORMALS FROM A POINT TO A MANIFOLD 

Let M ,  be a regular compact C"-manifold in Em with 0 < n < m. 
In Theorem 15.3 we have seen that the focal points of M ,  in Em are 
nowhere dense in E m .  Let q be a point fixed in Em - M, and p an 
arbitrary point in M ,  . We term the mapping 

the distance function f ,  with pole q and domain M, . By definition of a 
focal point the function f ,  is ND if and only if q is not a focal point 
of M ,  . 

Let (q, 5) be a straight arc orthogonal to M ,  at a point 5 EM, . We 
term (q, 5) an arc normal to M ,  at 5 and assign this arc an index equal 
to the index of 5 as a critical point off, . Theorem 30.1 then yields the 
following: 

Theorem 31.1. Let q be apoint of Em - M ,  not a focalpoint of M ,  , 
and for i on the range 0, 1 ,  ..., n let mi be the number of normal arcs (q, 5) 
of index i, counting arcs (q, 5) as dazerent if their base points 5 are 
dz#erent. 
If R, is the ith connectivity of M ,  , the relations (30.1) are satisfed, 

as are the relations 

m i > R i ,  i = O  ,..., n. (31.2) 

An Example. Let M, be a torus in E 3 .  The focal points of M ,  are 
the points on the axis of the torus and on the central circle r of the 
corresponding solid torus. For the torus R, = R, = 1 and R, = 2, 
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as we shall see. If q is not a focal point of the torus, nor on the torus, 
there are four straight arcs (q, [), normal to M ,  at points 5 of M ,  . 
If q is in the plane of r and exterior to the circle of M ,  of maximum 
length, each of these normal arcs is a subarc of the longest of these arcs. 

Given a normal arc (q, t), we shall evaluate the index of 5 as a critical 
point of the distance function f, , beginning with the case in which 
m = n + l .  

In making this evaluation we shall admit translations or orthogonal 
transformations of the rectangular coordinates of Em. It is understood 
that a point p E M ,  and the pole q in (31.1) undergo the same changes 
of coordinates, so that if x = (x, ,..., x,) and a = (a, ,..., a,) represent, 
respectively, p and q, then 11 x - a 1 1  is invariant under any admissible 
change of coordinates. 

The Case m = n + 1. Centers of Curvature of M,, . When m = n + 1 
we shall evaluate the index of a critical point 5 E M ,  of the distance 
function f, in terms of the centers of principal normal curvature of M, 
on the normal to M ,  at 5. Such centers must be defined. 

Given a straight arc (q, 5) normal to M ,  at 5, let a system of rectan- 
gular coordinates x be chosen in Em such that 5 E M ,  is represented 
by the origin, and the pole q is represented by the point (0, ..., 0, c) E Em 
with (n + 1)st coordinate c = 1 1  q - 5 11. Setting (x, ,..., x,) = 
(0, ,..., v,), there will exist for 11 w 1 1  sufficiently small a Monge presen- 
tation 

%+l = (%/2) v j  ++ (31.3) 

of a neighborhood of the point 5 on M ,  , in which ai5wtvj is a symmetric 
quadratic form and the remainder (indicated by + + throughout this 
proof) is a function w +L(v) of class C", vanishing with its first and 
second partial derivatives at the origin. 

Let p, , pa ,..., pn be the characteristic roots of the matrix 11 aU 11. 
There then exists an orthogonal transformation of the coordinates 
w, ,..., w, into coordinates u, ,..., u, , by virtue of which a neighborhood 
of 5 on M ,  has a Monge presentation 

%I+, = Q(p& + '.* + Pn'Ln2) ++ (31.4) 

for 11 u 11 < e and e sufficiently small. 
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If the coordinates u, are properly numbered and the roots pi 
correspondingly numbered,.then for some 7 on the range 0, 1, ..., n 

(31 .5 )  

Corresponding to each characteristic root Ph # 0 we set 8 h  = 1/ph 
and term &?h a radius of principal normal curvature belonging to the 
point [ on M,. The point Ph on the normal A, to M ,  at [ whose 
coordinate xn+, = &?h will be called a center of principal normal 
curvature of M ,  belonging to [. Such a center will be counted with a 
multiplicity equal to the multiplicity of Ph as a characteristic root of 
11 aijII. One sees that the centers P, ,..., P, of principal normal cur- 
vature on the normal A, to M ,  at [ are uniquely determined, except for 
order, by M ,  and [ E M, . 

We shall prove the following theorem: 

Theorem 31.2. Suppose that m = n + 1 and that (9, [) is a straight 
arc joining q E Em - M ,  to [ E M ,  , orthogonal to M ,  at [, with [ a N D  
critical point of the distance function f ,  . 

The index of [ as a critical point o f f ,  is then the number of centers of 
principal normal curvature of M ,  belonging to [ on the open arc (4, [), 
counting these centers with their multiplicities. 

T o  determine the index of [ as a critical point of the distance 
function f ,  , we make use of the representation (31.4) of M ,  near [, 
denoting the right side of (31.4) by cp(u). In terms of the coordinates 
(x, ,..., x,+,) = (ul ,..., u,, xn+,) employed in (31.4) the pole q has a 
representation (a, ,..., a,,,) = (0 ,..., 0, c), with c > 0. Hence for 
points x E M ,  with coordinates 

(x1 3 . . . ,  %+l) = (ill Y..., un * cp(u)), (31 .6)  

11 x - a 112 - 8 = 1 1  # 112 + 1 cp(u) - c 12 - c2 

= (1  - p1c)u12 + + (1  - p T c ) ~ ;  + + + U; ++. (31 .7 )  

The critical point [ off, is also a critical point of fq2  on M ,  . Since 
f,([) # 0, one sees that f ,  and fqa have the same index at their common 
critical point [. 
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The index of the quadratic form (31.7) is thus the index of 5 as a 
critical point off, . This index is clearly the number of the charac- 
teristic roots ph # 0 for which 1 - phc < 0, or, equivalently, the 
number of the positive radii w h  < c. 

Finally, no @h = c, since, by hypothesis q is not a focal point of 
M ,  , so that 5 is a ND critical point off, , or, equivalently, (31.7) is 
a ND quadratic form. Hence 1 - phc # 0 for h = 1, 2,..., I ,  implying 
that no = c. 

Theorem 31.2 follows. 

Remark. Suppose, contrary to the hypothesis of Theorem 31.2, 
that the pole q is a center of principal normal curvature based on the 
point 5 E M ,  . Then, for some h on the range 1 ,..., I ,  1 - phc = 0 
and the multiplicity of the center q, as defined above, is the multi- 
plicity of p h  as a characteristic root. One sees that this multiplicity of 
ph is the nullity of the form (31.7), or, equivalently, the nullity p of 
the critical point 5. 

The Case m > n. An Extension of Theorem 31.2. A point 
q E Em - M ,  has been called a focal point of M ,  based on a point 
5 E M ,  if 5 is a degenerate critical point of the distance function f, . 

Definition 31.1. The nullity p of a focal point q of M ,  based on a 
point 1 of M, is by definition the nullity of 5 as a criticalpoint off, . 

The following theorem extends Theorem 31.2. It concerns the 
general case m > n as distinguished from the special case m = n + 1. 

Theorem 31.3. Suppose that m > n and that (4, 5) is a straight arc 
porn q E Em - M ,  to 5 E M ,  , with 5 a ND critical point off, . 

The index of 5 as a m'tical point of f, is then the number of focal points 
of M ,  belonging to 5 on the open arc (q, 5), counting these focal points 
with their nullities. 

Proof when m = n + 1. In this case Theorem 31.3 is no more 
than a reinterpretation of Theorem 31.2 taking account of Definition 
31.1 of the nullity of a focal point q of M ,  . In fact, the Remark 
following the proof of Theorem 31.2 has the following consequence: 
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When m = n + 1 a center q E En+, - M ,  of principal normal cur- 
vature of M. is “based” on a degenerate critical point l, in M ,  and so 
is a focal point of M ,  based on 5.  The multiplicity of q as a center of 
principal normal curvature based on 1, is by Definition 31.1 the nullity 
of q as a focal point of M ,  based on l,. 

Thus when m = n + 1 Theorems 31.2 and 31.3 are equivalent. 

Method of Proof of Theorem 31.3 in the General Case. Theorem 31.3 
belongs to a class of theorems in global variational theory (Morse [ 131) 
capable of a proof by special methods involving “broken primary and 
secondary extremals.” It will be proved in a sequel to the present book 
concerned with this variational theory. The proof involves an exami- 
nation of the variation of the “index” of a “critical extremal” [here 
the arc (4, 1,)] as the endpoints of the extremal vary. 

A Second Proof of Theorem 31.3 Consider the case in which 
m > n + l .  

Notation. Suppose that the critical point 1, is at the origin of 
coordinates in Em and that the n-plane En of coordinates x1 ,..., x, 
is tangent to M ,  at l,. Suppose further that the pole q is on the x,+~- 
axis with xn+l = c > 0. 

For 1 1  w 1 1  sufficiently small a neighborhood N of 1, relative to M ,  
admits a Monge presentation 

(31.8) (XI s..., xn) = (wl ,..*, wn) 

x,,, = ( ~ 3 2 )  wiwj ++, a = I ,..., m - n. 

Let the coordinates (xl ,..., x,) = (wl ,..., en) be orthogonally trans- 
formed into coordinates (ul ,..., un) such that (31.4) holds as before. 
We adopt the notation of (31.5). 

In  terms of the new rectangular coordinates u1 ,..., u, the neighbor- 
hood N of the origin, relative to M ,  , admits a Monge presentation 
replacing the Monge presentation (31.8). With only a slight additional 
complexity of reasoning one finds that at a point p(u)  E N, represented 
by u, f,2(p(u)) - c2 is equal to the form (31.7) plus a remainder R(u) 
of the same character as in the case m = n + 1. The index of 1,, as a 
critical point off, or f2, is the number of roots Ph # 0 for which 
1 - cph < 0, counting these roots with their multiplicities as charac- 
teristic roots of the matrix 11 a t  11. 
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An Interpretation. Let c’ be a positive number and let q’ be the 
point on the x,+~ axis at which x,+~ = c’. If 1 - phc’ = 0 for some h 
on the range 1, ..., r ,  the form (31.7), with c’ replaced by c, is degen- 
erate. That is, by Definition 15.1 the point q’ is a focal point of M,, 
belonging to 5. If p,, has the multiplicity p as a characteristic root 
of 1) u& 11, we see that the form (31.7), with c replaced by c’, has the 
nullity p, since just p of the tt terms in (31.7) would then vanish. 
By virtue of Definition 31.1 the focal point q’ is “counted” with a 
nullity p. 

The index of the form 31.7 is thus the number of focal points of M ,  
“belonging to 5” on the open arc (q, t), counting these focal points 
with their nullities. 

The interpretation of focal points in the variational theory is nearer 
their interpretation in geometric optics. 



§ 32 

EQUILIBRIUM POINTS OF 
AN ELECTROSTATIC POTENTIAL 

We return to the electrostatic potential 

introduced in (6.15). The positive numbers ql ,..., r ] ,  represent 
positive charges of electricity at the respective pointsp(l),..., p(r) in E, , 
while the negative numbers c1 ,..., 5, represent negative charges of 
electricity at the points q(l) ,  ..., qCY) in E3 , Given a point x E E3 distinct 
from each of the points pCi) or q(5), we have set 

Y i  = 11 p ( i )  - x 11,. pj = 1 1  q‘” - x 11, i = 1 ,..., p; j = 1 ,  ..., Y.  (32.2) 

We seek the points of equilibrium of the electrostatic force defined by V, 
that is, the critical points of V (see Kiang [l]). 

An Example. The potential V can have degenerate critical points. 
This is the case when p = 4, v = 0, and the points p(l), pc2), pC3), p(4) 
are the respective points 

(1,0,0); ( - l , O ,  0); (0, 1,O); (0, -1,O)- (32.3) 

Take charges vl = 7, = v3 = q4 = 1. The only critical point of V 
is then the origin, and this point is degenerate, as one readily verifies. 

The Hypothesis of Nondegeneracy. We shall assume that the 
potential V is ND. This assumption is valid for almost all choices of 
the charged points, in accord with Theorem 6.2. 

287 
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With the aid of Theorem 6.5 the reader can verify the following. 
If the charges and each of the charged points are fixed, excepting one 
such point, say q, then the points q E E8 for which V is degenerate are 
nowhere dense. 

V a Harmonic Function. That the potential V satisfies Laplace's 
equation 

a v  
+-=O ax, ax, 

aav aav 
axl axl + -ax, 

(32.4) 

at points x at which V is defined is readily verified. It is a classical 
property of a nonconstant harmonic function that it assumes no 
relative minimum or maximum at an interior point of its domain of 
definition (see Kellogg [l], p. 223). A particular consequence is that 
there are no ND critical points of index 0 or 3. 

The principal theorem of this section follows. 

Theorem 32.1. Let there be given a N D  electrostatic potential V of 
fmm (32.1) such that 

(51 + 5s + + 5") + (71 + 7, + ... + rlU) < 0. (32.5) 

Let mz be the number of critical points of V of index 2 and m1 the number 
of index 1. Then 

ma 2 p; 2 v - 1; m, - ma = v - p - 1. (32.6) 

Proof of Theorem 32.1. The proof makes use of Theorem 9.1 
and of two lemmas, of which the first follows: 

Lemma 32.1. If u is a suflciently large positive constant, then under 
the conditions of Theorem 32.1 11 x 1 )  < o at each charged point p ( 0  and 
q(*) and at each critical point of V,  while grad V is emergent at each point 
of the 2-sphere Zm on which 11 x 11 = u. 

A first condition on u is that it be so large that 11 x 11 < u at each 
charged point p({ )  or q"). At each point x at which 11 x ( 1  2 u, 
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grad V = g(x) = ( gl(x), ga(x), g,(x)) is well-defined. Grad V is emer- 
gent at each point of Zu if and only if the "dot-product" 

g(x) x = g k ( 4  x, > 0, (32.7) 

summing with respect to k on the range 1, 2, 3. If in addition 
g(x)  x > 0 whenever ( 1  x 11 > u, the critical points of V are interior 
to the 2-sphere 2,. 

II x I1 = Q, 

It will be convenient to write V ( x )  in the form 

(32.8) 

summing with respect to i and j for i and j on the ranges 1, ..., p and 
1 ,..., Y, respectively. If the terms indexed by k on the range 1 ,..., n are 
summed as in (32.7) and terms indexed by i and j are summed as in 
(32.8), then (32.7) takes the form 

51 g(x) x = - -" (x, - pC,i))x, - - (x, - q!))x,. (32.9) 
r i s w  P 5 W  

It follows from (32.9) that 

l i t  I1 x I1 (g(x) X) = + ... + 7J - (51 + * * .  + 5,) > 0, (32.10) 
IlXllt 

in accord with (32.5). 

for 1 1  x 1 1  2 u, and. the lemma follows. 
It follows from (32.10) that if u is sufficiently large, g(x)  x > 0 

The Auxiliary Functionf. The proof of Theorem 32.1 depends 
upon the replacement of V by a function f conditioned as in Lemma 
32.2. Theorem 9.1 is applicable to f restricted to the closed n-ball 0, 
bounded by Zo . 

Lemma 32.2. Corresponding to a potential V of form (32.1) there 

(A,) f ( x )  = V(x) except at most in sufla'ently small open disjoint 

Nl ,..., Nu : N; ,..., Ni (32.11) 

exists a real-valued function f of class C" in E3 such that: 

spherical neighborhoods 

of the respective points p c l )  ,..., p"); q(l)  ,..., q(y) .  
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(Aa) f is ordinary at eachpoint in the respective nezghborhoods (32.1 1) 
except for ND critical points of index 3 at the points p ( l ) ,  ..., p ( r )  and of 
index 0 at the points q( l ) ,  ..., q(v) .  

We suppose that the spherical neighborhoods (32.11) are so small 
that V is ordinary at each point of these neighborhoods at which it is 
defined. 

To define f of Lemma 32.2, we shall define f separately on each of 
the open neighborhoods (32.11). At each point x not in one of the 
neighborhoods (32.1 1) we set f ( x )  = V(x) .  

Let e be a positive constant so small that the 
following is true: Each point x for which 0 < 11 x - p(l)Il < e shall be 
in Nl and be such that V(x)  > 0 and V have a negative directional 
derivative on the ray emanating from p(l) .  Let r )  then be a constant 
such that 0 < r )  < e, and set 

Definition off I Nl . 

w = max{V(x) + e"}, where A, = {x E E, I 1 1  x - p(l)ll = e}. (32.12) 
=A, 

The choices of e, r ) ,  and w are such that 

The Auxiliary Function 9. To define f I Nl , we shall make use of 
an even mapping 9 of class C" of the real axis onto the interval [0, 13 
such that 

Y o a )  = 1, 

(p(ta) = 0, t 2 e, (32.14) 

y'(ta) < 0, 

0 d t d 7, 

r ]  < t < e. 

With 9 so defined set ~ ( x )  = 11 x - p(l)ll and define f I Nl by setting 
f (pel)) = w and 

f(~) = ~ ( Y ~ ( x ) ) ( u  - ra(x)) + (1 - Y(Y'(X)) V(X), x E N1 - p'l). (32.15) 

So defined, f I Nl is such that 
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and is of class C". It  follows from (32.17) that f has a critical point of 
index 3 at p ( l )  and has no other critical point on the n-ball on which 
It x - P(l)ll < 7). 

We continue by proving the following: 

(a) I n  N, f is ordinary except at the critical point p ( l ) .  
T o  establish (a), it is sufficient to show that the directional derivative 

df Ids < 0 on each ray h issuing from p ( l )  at points x on h at which 
s = r(x) and 7) Q s < e. To that end, we note that on such a ray 

(32 .18 )  df/& = 4 s )  + B(s), r ]  Q s < e, 

where, in accord with (32.15), 

A($) = - 2 p ( s a )  + (1  - p(sz)) dV/ds, r] < s < e (32.19) 

and 
B(s) = 2 p y s y w  - s2 - V(x)). (32.20) 

The choice of e implies that dVlds < 0 in (32.19). On using (32.14) 
we see that A(s) < 0 if 7) < s < e. By virtue of (32.13) and (32.14) 
B(s) < 0, so that df Ids < 0 for 7) < s < e. This establishes (a). 

We define f I Ni for i = 1, ..., p in the same manner as f I N , .  
The definition off I N; for j = 1, ..., Y must be made so that (A,) of 

Lemma 32.2 holds. This means that the definition f I N; will differ 
from that off I N ,  . One way to give the definition off I Ni is first to 
replace V by V', where V' = -V, and then to replace V' on a 
sufficiently small N;  by an f '  related to V' I N; as f was related to 
V I N ,  . If one sets f = -f on Nj for eachj, one obtains a function f 
satisfying Lemma 32.2. 

That f so defined over E3 is of class C" follows from the fact that f 
is of class C" on the union U of the neighborhoods (32.11) and that 
f (x) = V(x)  not only on E3 - U but also on an open neighborhood 
of E3 - U ,  in accord with the relations of the type of (32.16). 

This completes the proof of Lemma 32.2. 

Completion of Proof of Theorem 32.1. Given V, let o be con- 
ditioned as in Lemma 32.1, and let f be the function of class C" on E3 
replacing V in accord with Lemma 32.2. Let m, , m, , m2 , and m3 be 
the type numbers of the critical points off. Of these type numbers 
m, = v and m3 = p, while m, and m2 are the type numbers of V. 
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We can suppose a so large that C,, of Lemma 32.1 is included in the 
subset of E3 on which f ( x )  = V(x). According to Lemma 32.1 grad V 
is emergent on 2,. Hence grad f is emergent on Ca . Theorem 9.1 is 
applicable to f, with C,, serving as the boundary of the region 2 of 
Theorem 9.1. The connectivities of 2 are zero except that R, = 1. 
Applying Theorem 9.1 to f I 2, the second relation of (9.4) takes the 
form m, 2 v - 1, while the last of the equations (9.4), with n + 1 = 3, 
gives the relation m, - ma = v - p - 1. These two relations imply 
the third relation, ma 2 p, of Theorem 32.1. 

This completes the proof of Theorem 32.1. 

Minimal Sets of Equilibrium Points of V, Given a ND elec- 
trostatic potential V conditioned as in Theorem 32.1, the resultant 
configuration of equilibrium points will be called minimal if 

q = v - l ,  m a = p ,  (32.21) 

and nonminimal if 
m, + m, > p + Y - 1. (32.22) 

It follows from the last relation in (32.6) that 

m, - (Y - 1) = m8 - p, (32.23) 

that is, the excess over the minimum possible number of critical points 
of type 1 is equal to the excess of type 2. 

It is not apriori clear that there exist both minimal and nonminimal 
equilibrium configurations. 

A minimal configuration of equilibrium points is afforded by an 
arbitrary finite set of negative charges on a straight line, as one readily 
verifies. 

A special nonminimal configuration of equilibrium points can be 
set up as in the following example: 

Example. Let unit charges of positive electricity be placed at each 
of the six points 

( f l ,  0, O), (0, fl, O), (090, H), (32.24) 

and let a charge of 5 = -5  units of electricity be placed at  a point q 
near the origin. Let the resultant potential have values denoted by 
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V(x, 4). For almost all values of q near the origin this potential will be 
ND. The number of critical points in a minimal configuration (if any 
existed) would be six. We shall prove the following: 

(i) For almost all positions of q suflciently near the origin the 
potential x -+ V(x,  q) is ND and has more than six critical points. 

In  each coordinate 2-plane of E3 there are four open quadrants. In  
the three coordinate 2-planes there are thus 12 disjoint open quadrants. 
Corresponding to a preferred one of these quadrants, say Q, let h be an 
open ray bisecting Q and tending to the origin. We shall verify the 
following: 

(ii) The potential x -+ V(x, 0 )  has a unique ND critical point on h. 

T o  establish (ii), let new rectangular coordinates (y ,  , y2 , ys)  be 
taken with h the positive y,-axis and with the y,-axis orthogonal to the 
2-plane of the quadrant Q. There will then be unit charges at the unit 
points on they,-axis. The four remaining charges will be in the (y,  , y2) 
plane at the points ( f a ,  F a )  and ( f a ,  f a ) ,  where a = 1/2/2. 

Let y -P U ( y )  be the potential into which the potential x --+ V(x, 0) 
goes in terms of the new coordinates. Taking account of the symmetry 
of the problem and the hypothesis that 5 = -5 ,  simple calculations 
will show that there is just one critical point of U on the y,-axis. 
Further calculation will show that the quadratic form underlying this 
critical point is of ND diagonal type. 

The potential U thus has at least 12 ND critical points. Although 
it can be shown that U has other critical points of degenerate type, this 
fact can be disregarded. In any case, for almost all values of q near the 
origin the potential x -P V(x, q) will be N D  and have ND critical 
points near the 12 critical points of U on the respective 12 rays h. 

This establishes (ii) and hence (i). 

Equilibrium Problems. There are many questions concerning the 
nature of equilibrium configurations which would be of interest if 
answered. Among these questions are the following: 

What is the maximum (if any) of the number of points in an 
equilibrium configuration of a ND potential V for which + v is 
given and (32.5) is satisfied ? 

1. 
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2. Is it possible for a degenerate electrostatic potential defined by 
a finite number of charges to have an analytic arc of critical points? 

3. Among ND electrostatic potentials conditioned as is V in 
Theorem 32.1, are there potentials all of whose charges are on a 
straight line and whose equilibrium configurations are nonminimal ? 

Given a degenerate electrostatic potential V for which (32.5) 
holds and a ND potential U which approximates V and differs from V 
only in the position of one charge, what is the simplest way to charac- 
terize topologically the degenerate critical points of V in order to 
condition topologically, as far as possible, the ND critical points of U ? 
(see “Neighborhood functions” by Morse [13] pp. 154-156). 

4. 



§ 33 

SYMMETRIC SQUARES OF 
MANIFOLDS AND CRITICAL CHORDS 

Given a regular compact C”-manifold M ,  in E, , 0 < n < r ,  the 
chords of M ,  orthogonal to M ,  at both endpoints are called “critical 
chords” of M , .  Such chords are represented, as we shall see, by 
critical points of a function h whose domain is the set of unordered 
pairs of distinct points x and y in M ,  and whose value, given x and y ,  
is the distance 1 1  x - y 1 1  = 1 1  y - x 1). The domain of h is an open 
subset of the so-called “symmetric square” I Mn2 I of M ,  . We shall 
topologize I M,2 I. 

Let I Sn2 I be the symmetric square of an n-sphere. The problem of 
determining the connectivities of I Sn2 I mod diag I Sn2 I (to be 
defined) was first solved by the methods of critical point theory. These 
methods are here extended (see Morse [13], pp. 183-191, Richardson 

The spaces x of this section will be metric. Open subsets will be 
defined in the usual way in terms of the metrics, that is, each nonempty 
open set shall be the union of e-neighborhoods of points of x. 

The metric on M ,  will be defined by taking the “distance” between 
two points x and y in M ,  as 1 1  x - y 11, where 1 1  x - y 1 1  is the ordinary 
distance between x and y in E, . The metric on the Cartesian product 
I M ,  x M ,  I will be defined by taking the “distance” between points 
(x ,y )  and (x ‘ ,y ‘ )  in I M ,  x M ,  I as 

[I], P. 528). 

II x - x‘ II + II Y - Y’ II. 

The Involution ( of 1 M ,  x M ,  I. To a point P = (x, y )  E 
I M ,  x M ,  I corresponds the point P* = (y, x) E I M ,  x M ,  I 

295 
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termed the mate of P. The mapping P+ &P) = P* is a homeo- 
morphism of I M, x M ,  I onto I M, x M, I which is an “involution.” 
A point P = (x ,y )  is equal to ((P) if and only if x = y, that is, if P 
is on the “ d i u g d ’  of I M, x M, I. 

We shall make important uses of the following definition: 

Definition 33.0. Prime Subsets of I M, x M ,  I. An open subset Z 

zntz= 0 

of I M, x M, I such that 

will be termed a prime subset of I M, x M,, I. 

The Symmetric Square I M,,* I .  Given M, , we shall define a set 
I Mna I, and continue by defining a metric on this set. 

The Set I Mna I. To define the set I M,* I, let points (x, y) and 
(y, x) in 1 M, x M, I be identified to yield a “point in I Mna 1 ”  
denoted by T(x,y)  or T(y ,  x). The set I Mna I is the ensemble of 
points T(x, y) = T ( y ,  x) for arbitrary choices of x and y in I M, I. 
We have thus introduced a mapping 

(x,Y)+T(x,Y):IMn X M 9 l I + I M n B I  (33.1) 

onto I Mna I. Let diag I Mna I denote the subset of points T(x, x) of 
1 M,* I for x arbitrary in I M, I. The set mapping T1, if restricted to 
sets {p}, with p E diag I M,a 1, maps {p} onto {p}. Set 

I Mna I - diag I Mna I = I I. (33.2) 

The set mapping T-’ is such that for (x, y) E I I andp = T(x, y) 

(33.3) T-l({P}) = {(x, Y ) )  u { (Y ,  4). 

Continuity of T as yet has no meaning. 

representations 
The Set I Mna I Metricized. Let p and po be points in I Mna I with 

P = T(Z,Y) = T(Y, 4, (33.4) Po = T ( X 0  9 Yo) = T(Y0 9 xo), 
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where x, y, xo , and yo are points in I M, I. The distance d(p ,  po)  in 
1 Mn2 I between p and p ,  will be defined by setting 

4P9 Po) = min(ll x - 2 0  II + II Y - Yo IL II x -Yo II + It Y - xo 11). (33.5) 

This distance function has the usual three properties. If po , p ,  and q 
are points in I Maa I: 

(4): 

(43): 

d(P, Po) = d(P0 9 P )  

4 P ,  Po) d d(P, 4) + d(q, Po). 

(A2): d(p ,  p,) = 0 if and only if p = p ,  

The verification of these three properties is trivial except for (A,). 
To verify (A,), suppose that q = T(xl , yl). Givenp, Po as in (33.4) and 
(xl , yl), one can choose (x ,  y) and (xo , yo) so that (33.4) holds and 

(33.6) 

By virtue of the definition (33.5) 

d(P,PO) < IIx - XOII + IIY -YoII, 

so that (A,) follows from (33.6). 

Properties of the Mappitg T. We shall verify the following lemma: 

Lemma 33.1. Let (x ,  ,yo) be a point of I M ,  x M ,  1 and 
p ,  = T(xo ,yo) its image in I Mna I. If N, is the open e-neaghborhood of 
(x, , yo) in I M ,  x M ,  I and U, the open e-neighborhood of p ,  in I M,a I, 
then 

(33.7) T(NJ = U, ; T- ( Ue) = N ,  u W e ) .  

Proof. By definition of the metric on I M ,  x M ,  I 

N ,  = {(x, Y )  E I M n  x K I I e > II x - xo II + II Y - Yo 11). 

If u and w are points in I M ,  I, then 

u = m u ,  0 I K2 I I e > min(llu - xo II + II tJ -Yo II, II - xo II + I I  u -Yo 11)). 
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From these representations of N, and U, it follows that 

T ( N 8 )  u8 ; ‘-’( u8) N6 ‘!(N6) (33.8) 

[using (33.3)]. On applying T-l to the first of these inclusions and T 
to the second, we find that 

N# ‘!(N8) T-l( u6); ‘8 T(N@),  (33.9) 

where use has been made of (33.3) and (33.1). Relations (33.7) follow 
trivially from (33.8) and (33.9). 

Thus Lemma 33.1 is true. 
It is a corollary of Lemma 33.1 that T and T-l are open mappings. 

That is, an open set of I M ,  x M ,  I is mapped onto an open subset of 
I Mn2 1, and conversely an open subset w of I Mna I is mapped by T-’ 
onto an open subset of I Mna I .  

We shall need the following lemma: 

Lemma 33.2. The compactness of I M ,  I implies the compactness of 
I Mna I. 

Recall that a HausdorlT space x is compact if each collection of open 
subsets of x which covers x includes a finite subcollection which 
covers x. 

Let there be given a covering of I Mna I by a collection (web of 
open subsets cot of I Mn2 I. For each i E 01 set zi = T-l(wc). Then, by 
Lemma 33.1 z, is open in I M ,  x M ,  I. Thus (2i)b is a collection of 
open subsets z, of I M ,  x M ,  I covering I M,, x M ,  1. Since 
I M ,  x M, I is compact if I M ,  I is compact, there exists a finite 
subcollection, w1 , ws ,..., wm , of the sets zt which covers I M ,  x M ,  I. 
The sets T(w,), T(w2),  ..., T(wm) are in the collection (w&., and have 
I M,a I as union. 

Since I Mna I is a Hausdod space, Lemma 33.2 follows. 
Lemma 33.2 has the following consequence: 

Lemma 33.3. If Z is a “prime” subset of I M ,  x M ,  I (Definition 
33.0)) the restriction T I Z is biunique and bicontinuous, and hence a 
homeomorphism of Z onto T ( 2 )  C I Mn2 1. 

Taking account of the relation (33.3)) with (x, y) E 1 M ,  x M,, I 
and the hypothesis Z n t (Z)  = 0 ,  we see that the restriction T I Z 
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is biunique. That T I 2 is bicontinuous follows from the fact that 
T ( 2 )  is an open subset of I Mn2 I, that T I 2 is biunique, and T-l is an 
66 open” mapping in accord with Lemma 33.1. 

The Compact Subset diag I Mna I of I Mna I. Diag I Mna I is by 
definition the subset of points T(x,  x) E I Mna I. Making use of the 
metrics on I M ,  x M ,  I and I Mna I, one sees that the mapping 

(x, x) --+ T(x, x) : diag I M, x M,, I + diag I Mn8 1 (33.10) 

onto diag I Mna I is a homeomorphism. The manifold 1 M ,  x M ,  I is 
compact, since 1 M ,  I is compact. The subspace diag I M, x M ,  I of 
1 M ,  x M ,  1 is closed in I M ,  x M, 1 and hence compact. Its 
homeomorph, diag I Mn2 I, is accordingly compact. 

The following lemma greatly simplifies the problem of determining 
the homology characteristics of I Mna I - diag I Mna I: 

Lemma 33.4. A homeomorphism v of the manifold I M ,  1 onto a 
similarly conditioned manifold I N,  I induces a homeomorphism 8, of 
I Mne I onto 1 Nna I that maps diag I Mn2 1 homeomorphically onto 
diag I Nna I. 

The homeomorphism cp induces the homeomorphism @ of 
I M ,  x M? 1 onto I N ,  x N ,  I, in which (x, y )  E I M ,  x M ,  I goes 
into the point 

@(x, Y )  = (dx), dY)) E I N,, x N n  I. 

We shall define 8, at each point p E I Mna I. To that end, let T be the 
mapping of I M ,  x M ,  I onto I Mn2 I defined above, and let T ,  be the 
corresponding mapping of I N, x N,  I onto I Nna I. Introduce the 
point 8 , (p )  E I Nna I by setting 

{@,(P)) = T*(@(T-1({P”9 P E I MnB I .  (33.11) 

Recall that T-l({p}) is given by (33.3), where (x, y )  and ( y ,  x) are 
mated points in I M ,  x M ,  I, coincident if p E diag I Mna 1. Under @ 
these mated points of 1 M ,  x M ,  I go, respectively, into mated points 
(~(x),  ~ ( y ) )  and ( ~ ( y ) ,  ~ ( x ) )  in I N, x N, I. Under T ,  these mated 
points in 1 N ,  x N ,  I go into the point 8 , (p )  of I Nna I, so that (33.1 1) 
is true. 
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That the mapping p --+ @,(p) is biunique and onto 1 Nn2 1 follows 
from the existence of the inverse of (33.1 l), 

(41 --+ w-l(G1({!m, q E I N,B I. 
8, maps an open subset of I Mn2 1 onto an open subset of 1 N,* I 
because each of the mappings F,  @, T ,  is an open mapping. Since q1 
also maps open sets onto open sets, 8, is a homeomorphism. 

One sees that 8, maps diag I Mna I onto diag I Nn2 I, thus completing 
the proof of Lemma 33.4. 

It is a corollary of the preceding lemma and of Theorem 28.1 that 
the q-th homology groups of the spaces 

(33.12) 

(see $28) are isomorphic for each integer q provided 1 M ,  I and 1 N, I 
are topologically equivalent. 

Notation. To relate the connectivities ai of I Mn2 I mod diag 1 Mn2 I 
to the “critical chords” of M ,  , we introduce open subspaces 

I Mn2 I mod diag I Mn2 I and I N-2 I mod diag I Nna I 

respectively, of I Mn2 I and I M ,  x M ,  I [see (33.2)]. It should be 
understood that I M,, 2 M, I is not a symbol for a product. The 
notation (33.13) is permanent. 

Lemma 33.5. The open subspace I f i2 ,  I of I Mn8 I is a topological 
2n-manifold. 

To verify this lemma, let p, be an arbitrary point of I f i2 ,  I. Then 
p ,  = T(xo ,yo) for some point (x, ,yo) in I M ,  2 M ,  I. Since 
I M, 2 M ,  I is a topological 2n-manifold, there exists an open 
neighborhood N of (xo ,yo) relative to I M ,  2 M ,  I which is a topo- 
logical 2n-ball. Since (xo , yo) # (yo2 xo), N can be chosen as so small 
a neighborhood of (xo , yo) in 1 M ,  x M ,  1 that it is a “prime” subset 
of I M ,  x M ,  I. According to Lemma 33.3 T I Nis a homeomorphism 
of N onto the open subspace T ( N )  of I f i2 ,  1. Thus T(N)  is an open 
topological 2n-ball serving as a neighborhood relative to I f i 2 ,  I of 
Po = %o *Yo)* 

Thus Lemma 33.5 is true. 
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An Extension of the Preceding. The theory of symmetric squares 
extends readily to symmetric squares of HausdorfT spaces x. The 
preceding definitions and lemmas have their purely topological 
counterparts. In particular, one can define an open subset of the sym- 
metric square xa as the image of an open subset of x x x under the 
mapping T, where T carries a point (x ,  y) E x x x into the unordered 
pair T ( x ,  y) in x2. When one comes to the study of critical chords the 
purely topological theory ends. I t  was because our principal objective 
was the study of critical chords of differentiable manifolds that 
metric rather than nonmetric HausdorfT spaces were used. 

We turn now to the differential aspects of the theory, with special 
reference to critical chords of M ,  . 

il?lsn as a Differentiable 2n-Manifold. M ,  is given as a regular 
compact C”-manifold in E, , r > n. We shall show that the differen- 
tiable structure on I M ,  I induces a differentiable structure on I I 
in much the same way as that in which the differentiable structure on 
I Mn I induces a product differentiable structure on I M ,  I x I M, I 
(see $13). 

Let p, be an arbitrary point in 
I Ban 1 and (x ,  , y,) a point in I M ,  2 M, I such that p1 = T(xl , y , ) .  
By hypothesis there exist presentations 

(F, : U, , X,) E 9 M , ,  and (33.14) 

of open neighborhoods Xl and Y ,  , respectively, of x1 and y1 so small 
that X ,  x Y ,  is a “prime” subset of I M ,  x M,  I. It  follows from 
Lemma 33.3 that the mapping 

(Y, W) --+ T(F,(u), G,(u)) : U, x Vl --+ T(X,  x Yl) (33.15) 

is a homeomorphism of U, x V ,  onto the open subset T(X,  x YJ 

Presentations in 9A?lz,, Defined. 

(Gl : V, , Y,) E 9 M n  

of I fi2n I. 

Definition 33.1. Prime Presentations in 9°i@sn. We denote the 
homeomorphism (33.15) by T(F, , G,) = T 6 (F, , G,). This homeo- 
morphism is a presentation [cf. (13.6)] 

(T(F1, Gl) : u, x V, 9 T(X,  x Yl)) E gfi* (33.16) 
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termed a prime presentation in 9 " @ a n  . It is characterized by the fact 
that X, x Yl is a prime subset of I M ,  x M ,  I. 

We shall prove Lemma 33.6: 

Lemma 33.6. 
and cover I @an 1. 

It is clear that prime presentations in 9"@a,, cover I fian I. 
To show that such presentations are C"-compatible, we fall back on 

Proposition (A,) of 813. By virtue of Proposition (A,) it is 
sufficient to verify the C"-compatibility of an arbitrary prime 
presentation T(F, , G,) E 9'Ban with each other prime presentation 
T(F8 , G,) E 9"@an for which the presentations 

"Prime" presentations in g0@an are C"-compatible 

(Fa : Uz, X) E 9Mn and (G, : V s ,  Y )  E 9Mn (33.17) 

have the same ranges X and Y on I M ,  1, respectively, as F, and G, . 
The "transition" homeomorphism defined by the presentations 

T(F, , G,) and T(F2, Ga), taken in that order, is a homeomorphism 

(T(Fa 9 Gg))-lo T(F, 9 GI) = (Fa 3 GJ-' 0 (F1, GI) [cf. (13.7)] 
(33.18) 

of U, x V, onto Ua x Va . Since Fa and Fl are C"-compatible by 
hypothesis, as are Ga and Gl , it follows from the form of (33.18) that 
the mapping(33.18) is a C"-diffeomorphism of U, x V, onto Ua x V, . 
Thus Lemma 33.6 is true. 
Since a suitabl chosen countable subset of prime presentations in 

9 " @ a P  covers I Jan I, a C"-diEerentiable structure is thereby defined 
on I Man I in accord with Definition 13.1. So differentiably structured, 
@an will be termed the diagonal-free symmetric square of M ,  . 

In view of Lemma 33.6, prime presentations in .@'@an will be 
termed prime presentations in 9 @ a n  . 

We can regard M ,  2 M ,  as a differentiable submanifold of 
M ,  x M,. 

= (cl OF,, Gil 0 Gl) : U, x V1+ Us x V,  [cf. (1341 

Lemma 33.7. The mapping 

( x , Y ) +  W , y )  : I Mn 9 Mn I -+ I ~ 2 %  I onto I ~ 2 %  I 

defines a C"-immersion M ,  2 M,, + @an . 
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This lemma will be established by the test of Definition 16.2, 
where y ,  F E QM, , and G E 9 N n  of Definition 16.2 are replaced, 
respectively, [in the terms of (33.14) and (33.15)] by T and the 
presentations 

((Fl , Gl) : U, x Vl , X ,  x Y,) E 9(Mn 9 M,) [cf. (13.7)] 

[cf. (33.16)]. (Wl , Gl) : ul x v, T(Xl x Yl)) E 9Mgn 

The test of Definition 16.2 is satisfied if the mapping (16.3), namely 

G-'6 (p 6F) : U+ V 

is a C"-diffeomorphism. In the case at hand this test is satisfied, since 
the mapping 

T(F, , G1)-l 6 (T 5 (Fl , G,)) : Ul x V, + U, x Vl 

is the identity mapping of U, x V,  onto U, x V, . 

The Chord Function h on . Let x and y be distinct points in 
I. The real- I M ,  I, and p = T(x,  y) the corresponding point in I 

valued function 

P + h(p)  = I I  x - Y 11, P E I I 

is called the chord function on a2,. Given a prime presentation 
T(Fl , G,) 69A?f2, , as in (33.16), h has a representation in the local 
T(F,, G,)-coordinates (u, , w,) of the form 

(u1 9 01) + (h 6 T(F1 , Gl))(Ul , 01) = II Fl(U1) - Gl(%)ll, (u1 9 W l )  E u, x Vl, 
(33.19) 

with F,(u,) # G,(wl) (cf. Definition 5.5 and $13). 
This representation shows that h is of class C" on fiZn and that a 

point T(x, y) E M2, is a critical point of h if and only if the chord 
in E, with endpoints x = F,(u,) and y = G,(o,) in I M ,  I is orthogonal 
to M ,  at x and y .  

The lower bound of values of h is zero, but h(p)  > 0 without 
exception for p E I i@2n I. The critical values of h are the lengths of the 
critical chords, and are bounded from zero. The set of critical points 
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of h on 1 &Ian I is closed on I Mna I and hence compact. It is bounded 
from diag I Mna I. 

The chord function h on &Ian may be ND 
or degenerate. It is ND if M,, is an n-dimensional ellipsoid in En+, . 
It is degenerate if M, is an n-sphere. 

Morse has proved the following: 

A. An Unpublished Theorem. Corresponding to a regular, compact, 
connected C"-manifold Mn in E, , n < r, there exists a similarly con- 
ditioned manifold Qn in E, with I Qn I homeomorphic to I M ,  I and such 
that the chord function h on Qln is ND and has just one critical point pa 
corresponding to each critical value of h. 

The proof of the theorem shows that Qn can be chosen so as to 
approximate M ,  in various senses, but this fact is not used in the 
present study. 

It follows from Lemma 33.4 that the manifolds I &Iln I and I Qan I of 
Theorem A are homeomorphic, a fact of great importance. 

If the chord function h on man is ND, its critical points are finite in 
number. This is because the set of critical points of h on I &Iln I is 
compact and the critical points of a ND function are isolated. 

The Extended Chord Function h. The chord function h is defined on 
the open subset I &Iln I of I Mna 1. We shall extend h over all of I Mna I 
by setting h( p )  = 0 when p E diag I Mna I. So defined, h is continuous 
on I Mna I. 

ND ChordFunctions h. 

The Principal Theorem. 

Theorem 33.1. (i) If M ,  is a regular, compact, connected, C"-manifold 
in E, , 0 < n < I ,  the connectivities, 9ti of I Mna I mod diag I Mna 1, 
are finite and vanish, excepting at most the connectivities 

w, , % 9. . .9  %I - (33.20) 

(ii) If the chord function h on &Ian is ND, the type numbers 
mo,  ml ,..., man of the critical points of h and the connectivities 
9to , 9, ,..., Wan satisfy the relations (30.1) and (30.2), with 2n replacing 
n in these relations. 
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It is not affirmed that the connectivities (33.20) are the connectivities 
of the domain I A?T2, I on which h is defined. However, Theorem 30.3 
will be shown to imply Theorem 33.1 once the following lemma is 
established: 

Lemma 33.8. I f ,  corresponding to the manifold M ,  given in Theorem 
is a positive constant less than any critical value of the chord 33.1, 

function h on &2Bn , the isomorphisms 

are valid for each integer q. 

In Theorem 33.l(i) and in this lemma it is not assumed that the 
chord function is ND. 

To prove Lemma 33.8, it will be sufficient to verify the four fol- 
lowing propositions. We shall refer therein to the extension h of h 
over I Mn2 I defined above. The proofs depend upon a deformation 0, 
of I Mn2 I on I Mn2 I near diag I Mn2 I and a second deformation D, 
of I Mn2 I which is global in character. 

Proposition I. Definition of D, . If e is a suflciently small positive 
constant, the subspace h, of I Mna I admits a deformation 0, retracting he 
onto diag I Mn2 I in such a manner that for each constant c for which 
0 < c < e h, is retracted onto diag I Mn2 I. 

Proposition II. Definition of D,. I f ,  curresponding to e of 
Proposition I, 2c = e, I Mn2 I admits a deformation D, deforming I Mn2 [ 
on itself onto itself in such a manner that h, is retracted onto diag [ Ma2 I. 

Proposition Ill. If 2c = e, as in Proposition 11, then 

Ha(/  Mn2 I. diag I Mn2 I )  = Ha(/  Mn2 1, hc), q = 0, 1 ,... . (33.22) 

Proposition IV. For each ordinary value c > 0 of h 

Ha(/ M n 2  I, hc) w H a ( I  fian I, he), = 0, 1 , m - m  . (33.23) 
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Proof of Pr@osition I. In establishing Proposition I we shall make 
use of well-known properties of short geodesic arcs on M ,  . We review 
these properties. 

Corresponding to a sufficiently small positive constant e, statements 
(A,)-(A,J are true: 

(A,) If x and y are points in I M,, I such that 0 < 1 1  x - y 11 < e, 
there is a unique geodesic arc g(x,y), joining x to y on I M, I and 
absolutely minimizing length on M ,  , with a length L(x, y) on M, 
which varies continuously with (x, y) E I M ,  x M,, 1 when 
0 < 11 x - y )I < e. The norm 1 1  x - y 11 is the length of the chord x i .  
The point P(s : x, y) on g(x, y) at a distance s from x measured along 
g(x, y) varies continuously with s, x, y for 

O < l l x - y l I  < e l  O < S < L ( X , Y ) .  

In particular, the midpoint, 

+,y) = P(iL(x,y) : %Y)I 

of the arc g(x, y) varies continuously with (x, y). 

(AB) A point (x, y )  E I M ,  x M, I for which 0 < 1 1  x - y 1 1  < e 
admits a continuous deformation on g(x,y) into the point 
(2(x,y), 2(x,y) )  in diag I M ,  x M ,  I. This deformation is defined by 
replacing x and y by points x, and y, which move continuously on 
g(x, y) toward z(x, y) at a velocity L(x, y)/2 along g(x, y) as t increases 
from 0 to 1. 

(A,) During this deformation of ( x , y )  on 1 M ,  x M ,  I the chord 
length 11 x f  - yf  1 1  shall strictly decrease. 

A Deformation 0, of the Set he.  Given a constant e subject to the 
above conditions, let p be an arbitrary point on h, - diag I M,a 1. 
There then exist points (x, y) and (y, x) in I M ,  2 M ,  I such that 

p = T(x ,y )  = T(y1 x). (33.24) 

The geodesic arcs g(x, y) and g(y,  x) are identical except in sense. 
Under the deformation of the points (x ,y )  and (y, x) into 

at the time t by a point (x, , y,) and (y, x) by the point ( y f  , xt), so that 

(33.25) 

(4x9 y), dx,  y)) = (s(y,  x) ,a(y,  4, as defined in (AB), (w) is replaced 

T(x, 1 % )  = T(yt 9 4 1  0 < t < 1. 
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We subject the pointp E he given by (33.24) to a deformation on I Mn2 I 
in whichp is replaced at the time t by the point (33.25) of I Mn2 I. 

Let he be subject to a deformation 0, on I Mne I in which each 
point p E he - diag 1 Mn2 I is deformed as above and each point 
p E diag I Mn2 I remains fixed. That the deformation D, thereby 
defined satisfies Proposition I is readily verified. 

Proof of Proposition 11. Let e and the deformation De of he be 
conditioned as in Proposition I. We shall show that there exists a 
deformation D, of I Mn2 I satisfying Proposition I1 with 2c = e. 

The trajectory under D, of a point p E I Mn2 I will be defined differ- 
ently depending on whether p comes under: CASE 1 ,  0 < h(p) < c; 
or CASE 2, c < h(p) < 2c; or CASE 3, 2c < h(p). 

In case 1 the trajectory of p under D, shall be the trajectory of p 
under D, .  The set h, then undergoes a deformation retracting h, 
onto diag I Mn2 I. In case 3 the trajectory of p under D, shall reduce 
to p. 

The deformation arcs in case 2 will interpolate between the defor- 
mation arcs in cases 1 and 3 as follows: Corresponding to a point p 
coming under case 2, let the time t p  be determined by the condition 
h(p) = 2c - tpc. One sees that t p  = 0 or 1 depending on whether 
h(p) = 2c or c. In case 2 the trajectory of p under D, shall be that of p 
under D, until the time t p  is reached. For t on the interval tp  < t < 1 
the trajectory of p shall remain fixed as the point into which p has been 
deformed when t = tp  . 

This completes the definition of a deformation D, of I Mn2 I. One 
sees that D, , with 2c = e, satisfies Proposition 11. 

Proof of Proposition 111. The existence of the deformation D, of 
I Mn2 I implies that for each integer q 2 0 (33.22) holds in accord 
with Theorem 28.4. In this application of Theorem 28.4 (x, A), 
(x’, A‘), and d of Theorem 28.4 are taken, respectively, as 

(33.26) 

Proof of Proposition IV. T o  verify Proposition IV, we shall make 
use of the “Excision” Theorem 28.3. We wish to excise diag I Mn2 I 
from I Mn2 I and from its modulus h,, understanding that c is an 
ordinary value of h. We accordingly set x, A, and A* of Theorem 28.3 
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equal to 1 Mn2 1, h, , and diag 1 Mna 1, respectively. The excision of 
diag I Mna I yields the sets 

x - A A * = ) f i * I  and A - A* = h, , (33.27) 

so that once the excision hypothesis is confirmed the isomorphism 
(28.15) 

Hah,  A )  w Ha(x - A*, A - A*), = 0, l,..., 

will yield the isomorphism (33.23). 

hypothesis here takes the form 
Verification of the Excision Hypothesis (28.14). The excision 

( I  Mna I - hc)c C I Mn2 I - diag I MS2 I for some c > 0, (33.28) 

where (I Mn2 I - h& means the eneighborhood of 1 Mn2 I - h, in 
I Mne I. Equivalently, (33.28) is the condition that for some E > 0 the 
e-neighborhood in Mna of the set X = I Mne I - h, does not meet 
diag I Mna I. 

To show that this condition is satisfied, let hc be the subset of 1 M,” 1 
at the h-level c. Taking closures in 1 Mn2 I, C1 X = X u hc. The set 
C1 X accordingly does not meet diag 1 Mna 1. Now, diag I Mna I is 
compact by Lemma 33.2. Moreover, C1 X is compact, since C1 X is 
closed in the compact space I Mn2 I. Hence some c-neighborhood of 
C1 X does not meet diag I Mn2 I. For this E (33.28) is satisfied. Excision 
Theorem 28.3 thus implies (33.23) and thereby Proposition IV. 

Completion of Proof of Lemma 33.8. If (0, el is an interval of 
ordinary values of h, and if in addition 2c = e is conditioned as in 
Propositions I, 11, and 111, the isomorphisms of Propositions I11 and IV 
imply the isomorphisms 

&(I Mn4 I, diag I Mna I) w &(I fi2,, I, h,), q = 0, 1,. .. . (33.29) 

The constant 11 > 0 of Lemma 33.8 is less than the minimum a of 
the critical values of h. It follows, as we shall see, that with c < a, 
as in (33.29), 

H a ( I  f iw I )  h) HJI f im  I, 4Jl = 0, l,... (33.30) 
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VeriBcation of (33.30). That (33.30) is true will follow if we show 
that there exists a homeomorphism 0 of I B2, 1 onto I f i2 ,  I that 
maps h, onto h,. T o  this end, one can define 0 so as to leave 
I fizn I - h, pointwise fixed and map h, onto h, , leaving ha pointwise 
fixed while mapping h, onto h, . That this is possible follows, since 
there are no critical points of h below the h-level a. Appropriate details 
can be supplied by using h-trajectories on h, . 

The isomorphism (33.21) follows from the isomorphisms (33.29) 
and (33.30). 

This establishes Lemma 33.8. 

Proof of Theorem 33.1(i). 

We shall apply Theorem 30.3(i). 
We identify a2, of Theorem 33.1(i) with M ,  of Theorem 30.3. 

The chord function h on a2, will be identified with the ND function f 
on M ,  of Theorem 30.3 and the value 7 of h with the value 7 off. The 
latter identification is permissible because the conditions (30.14) on 
the value 7 off, namely, that 

We first prove Theorem 33.l(i) under 
the assumption that the chord function h of aZfl is ND. 

7 be ordinary, f,+ be compact, f be ND on fn+ (33.31) 

are satisfied by the value 7 of h, understanding that 

hn+ = {P E I f i2n I I NP) 2 v>- 

Theorem 30.3(i) can accordingly be applied if h, B2,, and 2n of 
Theorem 33.l(i) are taken, respectively, as f, M ,  , and n of Theorem 
30.3. 

We infer from Theorem 30.3(i) that the connectivities of 
I f i 2 ,  I mod h, are finite and vanish for i > 2n. The isomor- 
phisms (33.21) imply that these connectivities are those of 
I Mf12 I mod diag I Mf12 1. Finally, B?,, = 0, since 1 M,, I is arcwise 
connected by hypothesis, so that each point of I Mf12 I is arcwise 
connected on 1 MflZ I to the modulus diag I Mf12 1. 

Thus Theorem 33.l(i) is true when the chord function h of a2,, 
is ND. 

Proof of Theorem 33.1(i) when the ChordFunction h is Degenerate. It 
follows from the above unpublished theorem of Morse that there 
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exists a manifold N ,  , homeomorphic to Mn , conditioned as is M ,  , 
and such that the chord function h on Ran is ND. Accord- 
ing to Lemma 33.4 the spaces I Mn2 I mod diag I Mn2 I and 
I Nn2 I mod diag I Nn2 I are topologically equivalent, and hence by 
Theorem 28.1 have isomorphic homology groups. 

Theorem 33.l(i) is accordingly true without exception. 

Proof of Theorem 33.1(ii). By hypothesis the chord function h on 
a2, is ND. If f i2 ,  , h, q ,  and 2n of Theorem 33.1(ii) replace M ,  , f, q, 
n, respectively, of Theorem 30.3(ii), then Theorem 33.1(ii) follows 
from Theorem 30.3(ii) provided the connectivities of I a2, I mod h, 
are understood to be the connectivities W, of Mn2 I mod diag 1 Mn2 1 
in accord with (33.21). 

This establishes Theorem 33.1. 

Chord Functions of Linking Type. A chord function h which 
satisfies the conditions of the following theorem will be said to be of 
linking type. These conditions are satisfied in particular by the chord 
function associated with an ellipsoid with unequal axes when X is the 
field of integers mod 2. (see $34). 

Let h be a ND chord function on a2n with disjoint critical values. 
Let mu be the qth type number of h, that is, the number of critical 
points of h of index q. Let a be the minimum of the lengths of critical 
chords of M ,  and q any positive constant < a.  As previously, for a 
fixed field X set 

g a  = %(I W2 I, diag I Mn2 I), q = 0, 1 ,... . (33.32) 

Theorem 33.2. If under the conditions of the preceding paragraph 
each critical point of the chord function h is linking mod h, , then 

gU = mu, q = 0, 1, ... . (33.33) 

R o o f .  It follows from formula (30.15) that for each q 2 0 

and then from the isomorphisms (33.21) that Wu = mg . 
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Index Determination. Given a critical point p ,  of the chord 
function h of f i2 ,  , the problem of determining whether or not p ,  is 
ND and, if p ,  is ND, of determining the index of p ,  is equivalent to 
a similar problem that can be formulated in terms of the chord function 

(x, Y )  + H(x, Y )  = II x - Y II, (x, Y )  E I M n  2 M n  I. (33.35) 

Recall that 1 M ,  2 M ,  1 was defined in (33.13). We understand that 
M ,  2 M ,  is a differentiable manifold with a differentiable structure 
induced by the differentiable structure of M ,  x M , ,  of which 
M ,  2 M ,  is an open submanifold. 

We shall prove the following lemma: 

Lemma 33.9. A point ( x ,  ,yo)  in 1 M ,  2 M ,  1 is a ND criticalpoint 
of the chord function H on M ,  2 M ,  of index k if and only if the point 
p ,  = T(xo ,yo! in fi,, is a ND critical point of index k of the chord 
function h on M,, . 

Let presentations (F : U, X) and (G : V ,  Y) be given in 9 M n  such 
that x, E X, yo E Y, and X n Y = 0 .  Then presentations 

( (F,G) :Ux V , X x  Y ) E ~ ( M , ~ M , )  

and 

exist. 

mined, respectively, by the local representation 

(T(F, G) : U x V ,  T(X x Y ) )  E .9fi2, 

The critical points of H I (X x Y) and of h I T(X x Y) are deter- 

(u, v )  + ( H  6 (F, G)(u, v )  = II F(u) - G(v)II, (up v )  E u X v, 

of H and the local representation 

(u, v )  + (h  5 T(F, G))(u, v )  = [IF(#) - G(w)ll, (u, v )  E u X 

of h. The identity of these two local representation of H and h implies 
Lemma 33.9. 



§ 34 

THE SYMMETRIC SQUARE OF AN n-SPHERE 

In the terminology of 533 the connectivities Bt of 

1 M,* 1 mod diag 1 M,* I 

over .f will be called the relative connectiwities of 1 MaB I over Y. The 
connectivities 9tt may vary with the field X .  A particular choice of 
the field .f is the field Z, of integers modp, where p is a prime. 
When the field is Z, we shall refer to the numbers Bs as the relative 
connectivities Bi(p) of I M,* I mod p. Morse [13], pp. 183-191, 
proved the following. 

Theorem 34.1. The nonvanishing relative connectivities mod 2 of the 
symmetric product of an n-sphere are 

9?"(2) = L3&+1(2) = ... = W,(2) = 1. (34.1) 

In the proof of this theorem by Morse use was made of the singular 
homology theory in vogue around 1930. We are here concerned with 
a proof of this theorem by the methods of this book. 

We shall explain why the connectivities mod 2 are preferred to those 
mod an odd prime p. A historical reason is that the difficulties in 
computing the relative connectivities mod 2 in Theorem 34.1 were 
first surmounted by the methods of the critical point theory. A more 
cogent reason, which the reader is asked to take on faith, is that 
Bi( p )  < B,(2), and when p > 2 the sum of the relative connectivities 
a$($) is less than their sum when p = 2. 

These relations imply the following: Given a regular C"-manifold 
M, in E,, 0 < tz < Y, homeomorphic to an n-sphere, the connect- 
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ivities g4(2) together imply more concerning the existence of critical 
chords of M, than do the connectivities Bt(p), at least when the chord 
function on i@2n is ND. 
In 934 we shall give a proof of Theorem 34.1, omitting, however, 

a proof of Lemma 34.2. This lemma affirms that the critical points 
of the chord function of the elliptical manifold 8, are of linking type 
when diag I cfn2 I is a modulus. The proof of this lemma is relatively 
long, and it has seemed desirable to limit the pages spent on symmetric 
products. However, a complete proof of this lemma will be published 
separately, further extending the theory of symmetric products. 

The Ellipsoid. Let 8, be the regular analytic manifold in Em+, 
with a carrier I 8, I defined by the condition 

-+>+ 4x,a 4x ...+ 4 . L  = 1 ,  
C S ( 1 )  4 2 )  cB(n + 1 )  

(34.2) 

where 
0 < c(1) < c(2) < < c(n + 1). (34.3) 

We distinguish 8n from its carrier by calling 8, an elliptical manifold. 
The critical chords of 8’ on the respective coordinate axes of E,,, 
will be denoted by 

g(l),g(2),*..,g(n + 1). (34.4) 

With p on the range 1,2, ..., n + 1 the length of g(p) is c(p). 
S,  shall denote the n-sphere structured as a regular differentiable 

manifold in En+, . Lemma 33.4 implies that I I is homeomorphic 
to I Sn2 I and 1 d2, I to I $2, I. The relative connectivities B4 of I SnB I 
are accordingly those of I 8n2 I regardless of the field X .  

The following elementary proposition requires verification: 

(i) gn has no critical chords other than its principal axes 

To prove (i), it is sufficient to verify the following two propositions: 
A straight line meeting 8, orthogonally in two points meets the origin. 
The only critical’chords of 8, which meet the origin are the principal 
axes of 8, . 

g(l),..., g(n + 1). 
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Notation for Theorem 34.1. Differentiable manifolds 8n x 8' , 
&a 2 &a, and &an , are understood in the senses defined in 933. For p 
on its range 1,2, ..., n + 1 let a(p) and -a(p) be the endpoints of the 
chord g(p), supposing that x,, > 0 at a(p) and x,, < 0 at -a@). The 
chord function H on tiFn 2 ~9~ and the chord function h on Jan both 
have the critical values c(l), c(2), ..., c(p) and no other critical values. 
This follows from proposition (i). 

These critical values are taken on by H at the critical points (x, y )  
in the set 

(34.5) Ml), -4))9...9 (.(n + 11, -a(n + I)), 
as well as those in the complementary set 

(-a(l), .(1)),...9 (-+ + I), a(n + 1)). (34.5') 

The critical points of h are the images on den under T of the points 
(34.9, or, equivalently, of the points (34.5') (for T see $33). These 
critical points of h will be denoted by 

Pdl) 9 " * >  Pa(n+1) 9 (34.6) 

where the subscripts give the respective critical values. 

Theorem 34.2. The m'tical points (34.5) of H and (34.6) of h are 
ND, and have the respective indices 

n , n + l ,  ..., 2n. (34.7) 

According to Lemma 33.9, to prove Theorem 34.2, it is sufficient 
to prove the theorem for the chord function H on 8n 2 &. To this 
end, we shall prove the following lemma: 

Lemma 34.1. For each integer p on the range 1, ..., n + 1 the critical 
point (a(p), -a(p)) of the chord function H is ND and has the index 

k ( p ) = n + p - 1 .  (34.8) 

The presentations in %& to be used in proving the lemma will be 
taken as Monge presentations (see $5). 
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A Monge Presentation (F, : U, Xu) €98, . Given p on its range 
1,2, ..., n + 1 and the endpoint a(p) of g(p) ,  we shall define a Monge 
presentation 

(F, : u, Xu) E %ifn (34.9) 

of an open subset Xu of 8, that contains a(p). 
The domain U of F, will be taken in the coordinate n-plane of En+, 

on which xu = 0. Let x -+ P,(x) project En+, orthogonally onto this 
n-plane. For arbitrary x E En+, it is convenient to set 

(x1 1*.*1 xu-, 1 g, 9 xu+, 9 * ' . ,  X"+l) = (4, 1 

where the sign " above a symbol indicates deletion of the symbol. 
Supposing that 11 u 11 < c(1)/2 for u E U, we shall set (x), = 

(ill ,..., u,) = u for points x E En+, such that P,(x) E U. With U so 
conditioned there exists a unique open subset Xu of 8, such that the 
endpoint a(p) is in Xu , and Xu has a real analytic Monge presentation 
of form (34.9). 

Notation. 

1 1 1 1 

It will be convenient to set 
" 

) = (a, ,..., 4, ( ~ 1 . . . 1 c ( p - l ~ ' c ( p ) ' c ( p + l ) '  ' c ( n + l )  
(34.10) 

noting that a, > a2 > > a , .  Products such as U , ~ U , ~  will be 
summed for q on the range 1, ..., n. It should be noted that (34.2) and 
(34.10) imply that 

... 

4u,2u,2 < 1 when (x), = u E U. (34.11) 

If u E U and x = F,(u), (34.2) implies that 

xu = &(p)(l - 4a,aU2)1/2, (x), = u, for u E U. (34.12) 

The condition 1 1  u 11 < c( 1)/2 on u E U implies (34.1 l), and hence that 
xu in (34.12) is given by an absolutely convergent power series in the 
variables u, ,..., u, , so that for u E U and x EF,(u) 

xu = $c(p)(l - 2u:u: + *--), (x), = u, for u E U,  (34.13) 

up to terms of the third order in the series for x u .  
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A Second Monge Presentation G, E 98,, . 
x + p(x) = -x : En+, --t En+, 

The mapping 

onto En+, 

is a reflection of En+, in the origin. Given the Monge presentation F, 
as in (34.9), a second Monge presentation in 9&,, is defined by setting 

(G, : V,  Y,) = ( p  ZF, : U, p(X),), (34.14) 

so that V = U and G, = -F, . It follows from the preceding para- 
graph that for w E U and y = G,(w) 

y,, = - @(p)(l - 2aQ".: + ...) ; (y), = w w E U. (34.15) 

Note that F,(O) = a(p), G,(O) = -a(p). 
The product presentation 

{(F, , G,) : U X V,  Xu x Y,} E .9(d'n 8n) (34.16) 

is well-defined, as is the representation 

0 )  + IIF,(u) - G,(@ll = I1 x - -Y II = w % Y )  

of H when x = F,(u) and y = G,(w). Note that 

It follows from (34.17), (34.13), and (34.15) that when u E U, w E U, 
and x = F,(u) and y = G,(e), 

H(x9-Y) = {II u - tJ (IZ + 8(p)[1 - a:@: + w:) + .-]a}1'2 

so that for the given p, H(x,  y ) /c (p)  has the value 

where the bracket is summed for q on its range 1, ..., n. 
The index of the pth critical point (a(p), -a(p)) of H is the index of 

the quadratic form Q in the series (34.18). One sees that the un- 
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summed form Qug in uq and vg in the series (34.18) is ND and has 
the index 2 or 1 depending on whether ag is greater or less than l/c(p). 
I t  follows that Q is a ND quadratic form in its 2n variables and has the 
index 2(p - 1) + (n  - p + 1) = n + p - 1, establishing Lemma 
34.1. 

Theorem 34.2 follows from Lemmas 34.1 and 33.9. 

We state a lemma whose truth is implied by the analysis of Morse 
[13], pp. 186-191, and which, as stated previously, will be proved by 
the methods of this book in a later paper. 

Lemma 34.2. If q is a positive constant less than the minimum length 
of critical chords of 8,, , then each of the critical points of the chord 
function h is of linking type mod h, over thefield Z2 (see $29). 

Proof of Theorem 34.1, Granting Lemma 34.2. By virtue of 
Lemma 34.2 the condition of Theorem 33.2 that the critical points of 
the chord function h be of linking type mod h, is satisfied. Theorem 
33.2 then affirms that each connectivity Bq is equal to mq, the qth 
type number of h. According to Theorem 34.2 the nonvanishing type 
numbers of h are 

mn = m,,, = = m, = 1, 

so that Theorem 34.1 follows, assuming, as in Theorem 34.1, that 
x = z,. 



§ 35 

THE COMPLEX PROJECTIVE n-SPACE CP, 

Introduction. The complex projective n-space CP, , as defined 
below, has a complex dimension n. With the definition of a suitable 
structure CP, becomes a compact differentiable manifold M,, of 
class C“. Milnor ([2], pp. 25-27) has defined a real-valued ND 
function g on Man with the following properties. The critical points 
of g are n + 1 in number with indices 

0,2 ,..., 2(n - l), 2n (35.1) 

and critical values which increase with the indices of the critical point. 
We shall term such a function a Milnor function g. 

Granting the existence of a Milnor functiong on M,, , the “lacunary 
theorem” of,Morse ([7], p. 151) or Corollary 30.2 implies the following: 

Theorem 35.1. The connectivities Rq ) q 2 0, over X of M,, are 
independent of the choice of the field, and in order of their dimensions are 
alternutingly 1 or 0 for q < 2n, with Rq = 0 for q > 2n. 

To establish Theorem 35.1, we shall define and topologize CP, . 
The topologized CP, will be shown to be a compact, connected, 
topological manifold 1 CP, 1 which admits a differentiable structure 
as a C”-manifold M,, . On M,, a C”-function g will then be defined 
and shown to be a Milnor function. 

CP, Defined. Let CE,,, be the Cartesian product of n + 1 
complex planes of points I, ) I, ,...) 2, respectively. Let CE:+l denote 
CE,,, with the origin deleted from CE,,, . Let z = (z, , z1 ,..., 2,) 

denote an arbitrary point of CE:,, (cf. Chern [l], pp. 1, 2). 
318 
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Two points z' and z" in CE;,, are termed projectively equivalent if 
there exist nonvanishing complex numbers p' and p" such that 
p'z' = p"z". This relation of equivalence is reflexive, symmetric, and 
transitive. 

Let y(z )  denote the projective equivalence class of an arbitrary 
z E CE;,, . The set CP, of equivalence classes y ( z )  is defined by the 
mapping 

z + P)(z) : CEO,,, - CP, , (35.2) 

regarded as onto. The space CE,,, has a well-defined product topology. 
Taken as a subspace of CE,,, , CE;,, has an induced topology. One 
topologizes CP, by requiring that a subset X of CP, be open if and 
only if it is the image under y of an open subset Y of CEO,,, . The set 
y - l (X)  will then be the ensemble of points in CE;+l projectively 
equivalent to points in Y, and will be open in CE;+, . It  follows that y 
is continuous. CP, , so topologized, is a Hausdorf€ space 1 CP, I. 

Lemma 35.1. The space 1 CP, I is a connected, compact, topological 
2n-manifold which can be dzfmentiably structured so as to be a C"- 
manifold M,, . 

I CP, 1 is connected, since it is the continuous image under y of the 
connected space CE;+, . 

The Compactness of 1 CP, 1. 

1 1  z 1 1  = (I ZO 1' + * * *  + 1 Z, la)"', 

Given z E CE:,, set 

K = {Z  E CE;,, 111 z 11 = l}. (35.3) 

Topologized by CE:+, , K is compact. The mapping y 1 K of K is 
onto I CP, 1 and continuous. Hence I CP, 1 is compact. 

I CP, I as a Topological Manifold. 
2n-plane of points 

(u, v) = (u1>81 

Let U, x V, be the real 

(35.4) 3 ~2 ; * * *  ; un , vn)* 

We shall define n + 1 presentations 

( F k  : u, x v, , Xk), k = 0, 1 ,...) n, (35.5) 

of open subspaces Xo, X1, ..., Xn of I CP, I whose union is I CP, I. 
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For each k on the range 0, I ,  ..., n and each point (u, w )  E U, x V,  
a point z = (5 ,  x1 ,..., 2,) in CE:+l of the form 

Z(U, 0; k) = (U1 + i ~ i ) . . . ,  u k  + m k  1, + &+I $..., U, + &) (35.6) 

is introduced with 2 k  = 1. We then set 

Fyu, 0)  = cp(z(u, 0; k)) E CP, , (u, w) E v, x v, (35.7) 

and Fk(U, x V,) = P. The set 

G k = { ~ ~ C E ~ + l I ~ & # O )  

is open in CE;,, and X k  = tp(Gk). Hence Xk is open in 1 CP, I by 
definition of open sets in I CP, I. 

The mapping F k  is biunique, since distinct points (u, w )  and (u', w ' )  
in U, x V ,  yield points z(u, w ;  k) and z(u', 0'; k) in CEt+l which are 
projectively nonequivalent. 

The mapping Fk of U, x V ,  into the HausdorfT space I CP, I is 
continuous, since 'p is continuous and Fk(u, w )  defined by (35.7). The 
mapping Fk is bicontinuous, since the restriction of F k  to a compact 
2n-ball in U, x V ,  is both biunique and continuous. Hence F k  is a 
homeomorphism onto xk . Moreover, 

I CP, 1 = xou xl u *.. u X". (35.8) 

Thus I CP, 1 is a topological 2n-manifold covered by the presen- 
tations 

(35.9) 

The C"-Compatibility of the Presentations Fk. Let h and k be 
distinct integers on the range 0, I ,  ..., n with h > k. We shall establish 
the C"-compatibility of Fk and Fh. 

To that end, let (u, w )  E U, x V ,  be Fk-parameters on X k  and let 
(u', w ' )  E U, x V ,  be Fh-parameters on Xh, Set 

(35.10) Z,, = (Fk)-l(Xk n X')); Z&, = (F)- l (Xk n X*). 

We wish to show that the transition homeomorphism 

= (Fh I Zin)" 0 (F' I 22,) : 22, + ZL (onto) (35.11) 

associated with F k  and Fh is a Cm-diffeomorphism. 
Points (u, w )  E Z,, and (u', w') E Zdn correspond under the transition 

homeomorphism /\kh if and only if the corresponding points z(u, w ;  k) 
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and z(u’, w ‘ ;  h) in CE&, are projectively equivalent, that is, if and 
only if 

(uh + iWh)(u;+l f id+l) = 1 (35.12) 
and 

(35.13b) 
z(u’, w ’ ;  h) 

u;+1 + %+I 
z(u, w ;  K) = , (u’, 0’) E 2in. 

One could omit (35.13a) or (35.13b) and the preceding statement 
would remain true. One sees that hk, is a real analytic diffeomorphism 
of Z,, onto Z;, uniquely determined by the relations (35.13) between 
(u, w )  and (u’, or). 

It follows that the n + 1 presentations Fk of open subsets of I CP, I 
are Cw-compatible. 

Hence 1 CP, I is the carrier of a C”-manifold M a n ,  in accord with 
Definition 13.1. 

This completes the proof of Lemma 35.1. 

Milnor’s Function g on CP, . Corresponding to an arbitrary 
point z E CE:+l and to any set of real constants c, < c1 < .-. < c, , 
a real-valued function g on CP, , or, equivalently, on M,, , will be 
defined by setting 

g(cp(z)) = ci I zi 1”Il z I?. (35.14) 

(summing with respect to i on the range 0, 1, ..., n). We shall prove 
that g is a Milnor function on M2, with critical values c, , c1 ,..., c, . 

Note first that g is real-valued. I t  is uniquely defined at each point 
of CP, , since the right side of (35.14) is the same for any two points 
z E CE:+I which are projectively equivalent. 

The critical points of g on Xk 
(if any exist) are the images under Fk of the critical points 
(u, , 0,) E U, x V,  of the function 

The Critical Points of g on M,, . 

(u, w )  --t (g 6 F k ) ( U ,  4 = g(cp(z(u, w ;  k))) = g,(u, 4, (u, .) E Un x vn , 
(35.15) 

introducing gk (see Definition 5.5). 
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Note that 

II z(u, w ;  411' = 1 + d u ,  w) ,  (u, 0 )  E u, x v, , 
where wa(u, w) is the quadratic form 

wyu, 91) = 11 u 11' + 1 1  w p, u E u, ; 0 E v, . 
From (35.14) and (35.15) it follows that for (u, w )  E U, x V,  

(1 + wa(% w ) ) g k ( %  0)  - c k  

= cO(%a + w1') + "' + ck-1(uka + Wk') 

+ Ck+l(u:+l + .!+1) + "' f cn(uaa f w2)* (35.16) 

Subtracting ckw*(u, w) from both sides of (35.16), we find that 

( l  + w'(u, w)) (gk(u ,  w, - c k )  

= (CO - ck)(%' + w1') f + (ck-l - ck)(ukB + wk') 

+ ( c k + l  - ck)(u:+i + wx+1) + * ' *  + (% - Ck)(U$ + %')a (35.17) 

Thusg, is real-analytic on u, X v, . 
A straightforward computation, using both (35.14) and (35.17), 

shows that the only critical point of g k  on U, X Vn occurs at the 
origin in Un x V ,  and that the corresponding critical value is ck . 
The quadratic terms in the Taylor's expansion of g k  about the origin 
are the terms on the right of (35.17). Taking into account the ordering 
c, < c, < < c, , one sees that the origin is a ND critical point of 
g k  of index 2k. 

Thus g is a Milnor function on Man with critical values 
co < c1 < - 0 .  < c,, assumed respectively at unique ND critical 
points with indices 0 , 2 , 4  ,..., 2n. 

Theorem 35.1 follows porn the "lacunary principle" enunciated in 
Corollary 30.2. 

The critical point of g on CP, with index 2R is the projective 
equivalence class of the point z(0,O; R) E CE!+l , that is, the point in 
CE;+, whose ith complex coordinate 4 is SZk. 

From Appendix I11 and Theorem 35.1 we infer that the Betti 
numbers of CP, are equal to the corresponding connectivities, and 
there are no torsion coefficients. The homology groups H,(CP,, Z) 
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over the ring Z of integers are thus trivial for i odd, and for i on the 
range 0, 2, 4 ,..., 2n are cyclic, isomorphic with Z. 

Remark. The problem of determining whether or not a critical 
point of a Milnor function g is of linking type has not entered because 
the “lacunary” nature of the sequence of indices of the critical points 
of g implies that each critical point is of linking type. In problems of 
more general type the set of indices of the critical points will not in 
general be of lacunary type. In these more general problems it is 
necessary to associate a definite k-cap zk with each critical point of 
positive index k in order to determine whether or not this k-cap is 
linkable (see $29). 

The next section is concerned with this problem. 
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CAPS AND SADDLES 

Objectiwe of $36. Let a ND f E Cm(Mn) be given such that fc is 
compact for each value c off. As affirmed in Theorem 23.5, such an f 
exists on a prescribed C"-manifold M ,  . 

Given a field X ,  the critical points off, with their indices and their 
linking characteristics, determine, up to an isomorphism, the homology 
groups over X of each sublevel set fc of M ,  , in accord with Theorem 
29.3. The importance of simple criteria as to whether or not a critical 
point pa  off is of linking type is clear. 

A critical point pa at the f-level a, of positive index k, is of linking 
type by definition in $29 if and only if given a k-cap zk associated with 
pa , 8zk N 0 on fa . A problem of first importance is accordingly to 
find or recognize a k-cap belonging to a prescribed critical point pa . 
The characterization of a k-cap zk belonging to pa should be in- 
dependent of the particular presentations in 9 M n  used to find or 
recognize a k-cap. 

The two main theorems of this section meet these objectives. The 
first theorem, termed the Saddle Theorem, applies in case 0 < k < n 
and reduces the problem of characterizing a k-cap of pa  to the problem 
when k = n. The second theorem, termed the Carrier Theorem, gives 
an effective characterization of a k-cap of pa  when k = n. The case 
k = 0 is trivial. 

Notation. Corresponding to a prescribed positive dimension and a 
number p > 0, let B," be an origin-centered open j-ball of radius p in 
any Euclidean space of dimension j ,  and let B,' be the C"-manifold 
with carrier B; and with a Euclidean differentiable structure. 

Our first lemma shows the essentially local character of a k-cap of a 
critical point pa  off. 

324 
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Lemma 36.0. Given a presentation (F : U, X )  E 9 M n  such that 
pa E X ,  then pa is a critical point o f f  I X and has the same index relative 
tof  I X a s t o f .  

Moreover, a k-cap of pa  relative to f I X is a k-cap of pa relative 

(a)  

(8) 

The truth of (a) is clear. 

to f .  

Proof of (8). We shall make use of a coset-contracting isomorphism 

H k ( f Q  9 fa) Hk(f l l  x, f Q  (36.1) 

This isomorphism is a consequence of the Excision Theorem 28.3 on 
setting x = f a ,  A = f a ,  A* = fa n (M, - X), and noting that 

By virtue of (29.7) there is just one element in a "prebase" for the 
homology group of either member of (36.1). A k-cap & of pa relative 
to f I X is such an element for the group on the right of (36.1). Since 
(36.1). is a coset-contracting isomorphism, sk is a k-cap of pa relative 

pa = X -  A.  

to f .  
Thus Lemma 36.0 is true. 

Canonical Coordinates near Pa . Before defining saddle manifolds 
and stating the Saddle Theorem we shall define a special presentation 
in 9 M n  , termed f-canonical, of a neighborhood of the critical point pa 
off. Such a presentation is defined with the aid of Theorem 22.2. We 
suppose 0 < k < n. 

Let En be regarded as a Cartesian product, U, x Vn-:, of 
Euclidian spaces U, and Vn-k of dimensions k and n - k, respectively. 
Let u = (ul ,..., uk) be an arbitrary point in U, and v = (q ,..., vn+) 
an arbitrary point in Vn-k . Let 0, and 0, denote the origin in U, and 
Vn+ , respectively. 

It follows from Theorem 22.2 that if (I is a sufficiently small positive 
constant, there exists a presentation 

(G : BRU x Bl-k, Y") E 9 M n  (36.2) 

such that G ( 0 ,  , 0,) = pa and 

(f6 G)(u, W) = a - 11 u [I* + 11 w I[*, (u, O )  E Bk" x B : - k .  (36.3) 
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Definition 36.1. G and Yo. We term G an f-canonicalpresentation 
of a canonical neighborhood Ya of pa relative to M ,  and term the 
G-coordinates (u, w) canonical f-coordinates on Yo. 

Having shown in Lemma 36.0 that the determination of a k-cap of pa 
is a local matter, we shall narrow the determination of a k-cap 2 k  of pa , 
0 < k < n, still further by the use of k-dimensional “saddles” on M ,  
associated with p a ,  As previously, pa is a critical point of f  at the 
f-level a. 

Definition 36.2. An f-Saddle Lh of M,, at p . .  A Cm-manifold 
L k  , 0 < k < n, which is the Cm-diffeomorph of an open Euclidean 
k-ball Bke and which is Cm-embedded in M ,  so as to meet pa will be 
termed an f-saddle of M ,  at pa if, together with I -tk I = I L, - Pa I, 
it has the properties: 

(i) The point pa is a ND critical point off I L k  of index k. 

(ii) I tk  I cfa - 
We can suppose that BkC is in a k-plane of Cartesian coordinates 

a1 ,..., a k  and that there is a homeomorphism onto I L, [ of form 

a +F(a)  : B: + I Lk 1 )  F(0) = p a  9 (36.4) 

which C”-embeds Bke in M ,  . Then F is in QLk and determines 9 L . k  . 
If an f-saddle L k  exists at p a ,  there exists a submanifold L$ of L k  

with carrier included in a prescribed neighborhood of pa relative to M ,  
and with L$ hgain an f-saddle of M, at p a .  We term L$ a subsaddle 
of L, . 

That f-saddles exist is shown by the following lemma: 

Lemma 36.1. The restriction, both of domain and range, of form 

(2.4, 0) + G(U, 0) : B: + L k  Onto e k  (36.4‘) 

of the canonical presentation G E 9 M n ,  given by (36.2), deJnes an 
f-saddle L k  of M,, at pa . 

Let 4 be the inclusion mapping of L k  into M ,  . The inclusion $ 
defines a C”-embedding of e k  in M ,  . The test (16.3) for such an 
embedding is satisfied on taking p, G, and F of (16.3), respectively, as 
$, G of (36.2), and the presentation (36.4‘). That conditions (i) and (ii) 
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of Definition 36.2 are satisfied by L k  follows from (36.3) and the 
relation G(0, , 0,) = pa . 

Most of the remainder of this section will be spent in proving the 
following fundamental theorem: 

Saddle Theorem 36.1. If Lk is an f-saddle of M,, at a critical point pa 
off of positive index k < n, then a k-cap zk of pa , relative to f I Lk , 
is a k-cap of pa on M ,  relative to f. 

The following lemma both motivates and simplifies the proof of 
Theorem 36.1 : 

Lemma 36.2. If the conclusion of Theorem 36.1, modiJied by 
replacing Lk by some subsaddle L$ of Lk , is true, then Theorem 36.1 is 
true as stated. 

Proof. Given the k-cap zk of pa relative to f I Lk , as in Theorem 

zk + O  on famodfa. (36.5) 

Let uk be a k-cap of pa relative to f I L$ . By virtue of Lemma 36.0 
uk is a k-cap relative to f I Lk . Since uk and zk are both k-caps relative 
to f I Lk it follows from (29.7) that on I Lk I mod I t k  I, for some non- 
null rI and y2 in X ,  

rluk - r g k ,  (36.6) 

and hence that (36.6) holds on fa mod!,. By hypothesis of Lemma 
36.2 uk + 0 on fa mod!,, so that (36.5) follows from the validity of 
(36.6) on fa modfa . 

36.1, we must prove under the hypothesis of Lemma 36.2 that 

This establishes Lemma 36.2. 

Presentations F of f-Saddles L, . Of the presentations F of f-saddles 
of form (36.4) there are some essentially simpler than others. If I Lk I is 
in a sufficiently small neighborhood of pa  relative to 1 M ,  I, Lk admits 
a special presentation which we shall term simple and presently define. 
It will be seen that for f-saddles Lk which are “simply” presented, 
the Saddle Theorem can be readily proved. We shall also see that each 
f-saddle has a “simply” presented f-subsaddle, so that by Lemma 36.2 
the Saddle Theorem is true for arbitrary f-saddles. 
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In order to define simple presentations of f-saddles, "canonical" 
coordinates (u, w )  near pa are needed. Recall that Yo is the open 
neighborhood of pa on M, represented by canonical coordinates (u, 0). 

The C"-embedding by F in (36.4) of 
BP in M, as L, satisfies the embedding condition of Definition 16.2. 
If I Lk I is included in the range Yo of the f-canonical presentation G 
given by (36.2)) the mapping 

G - ' E F : B / - + B , "  X g - k  (36.7) 

is well-defined, and by the embedding condition on F is a biunique 
C"-mapping into the domain of G of the form 

f-Saddles Lk Cawied by Yo. 

a + (#(a), ~(a)) : B,6 + B{ X &k. (36.8) 

It implies a CaD-representation 

F(a) = G(u(a), ~(a)), a E Bd , (36.9) 

of the presentation F of L, . In particular, it can happen that the local 
F-coordinates (a1 ,..., a,) have been so chosen that (36.9) takes the 
form 

F(a) = G(a, ~(a)), a E B:, (36.10) 

where a --+ v(a) is a C"-mapping of Bd into B k k  . This leads to a 
definition. 

Definition 36.3. simply Presented f-Saddles Lk . If an f-saddle Lk 
at pa is so small in diameter that I Lk I is included in the open neighbor- 
hood Y o  of pa and if a presentation F of L, of form (36.4) admits a 
representation of form (36.10)) then Lk will be said to be shply  
presented by F. 

The following lemma, taken with Lemma 36.2, enables us to prove 
the Saddle Theorem 36.1 : 

Lemma 36.3. Each f-saddle Lk of M, at pa has a subsaddle Lz at pa 
which admits a "simple" presentation F*. 

hoof, According to (36.3) and (36.9) i f F  is the presentation (36.4) 
of Lk , then 

(36.1 1) (f")(a) = a - I \  ~(.)11* + I1 w(a)II', a E B,S 
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By Condition (i) on Lk of Definition 36.2 pa is a critical point off I Lk 
of index k. This implies that the quadratic form in the Taylor’s 
development about the origin of the right side of (36.11) in terms of 
the variables a1 ,..., ‘Yk is a negative definite quadratic form in ctl ,..., a k  . 
This is possible only if the quadratic form in a similar Taylor’s 
development of -11 u(a)IIa is a negative-definite quadratic form. From 
this we infer that 

(36.1 2) 

When (36.12) holds the mapping a --+ u(a) of B t  into Ek , if 
restricted in domain to a suitable open neighborhood N of the origin 
in Bl ,  can be restricted in range so as to have an inverse 

U-.e(U): B ~ P + N C E * ,  (36.13) 

which, for suitable positive p, is a Cw-diff of B: onto N. From the 
presentation F of L k  given in (36.4) one obtains a presentation 

I( + ~ * ( u )  = F(e(U)) : B; --+ L; (36.14) 

in .%k of an f-subsaddle L$ of M ,  at pa with carrier F*(B:). By virtue 
of (36.14) and (36.9) 

(36.15) 

where we have set o(O(u)) = v(u). Thus the subsaddle L i  of L, is 
“simply” presented by F*. 

F*(u) = G(u(B(u)), w(e(u))) = G(u, v(u)), u E Bk”, 

Proof of the Saddle Theorem 36.1. According to Lemmas 36.2 
and 36.3 we can assume without loss of generality in proving Theorem 
36.1 that thef-saddleLk given in Theorem 36.1 is “simply” presented 
in the sense of Definition 36.3. We accordingly assume that Lk is an 
f-saddle on M ,  at pa  with a presentation E 9L.k 

u +F(u)  : B; + ILk 1, F(0) = p a ,  (36.16) 

F(u) = G(u, v(u)), u E Bk’C B k u ,  (36.17) 
such that 

where u + v(u) is a Cw-mapping of B: into Bak . 
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We shall make use of the subset 

G(Bke x B;-k) = Y (36.18) 

of Ya [cf. (36.2)]. To prove Theorem 36.1, we shall show that there 
exist coset-contracting isomorphisms 

(36.19) 

since the validity of (36.19) when q = k implies that a &cap of pa 
relative to f I Lk is also a k-cap of pa relative to f. 

Method of Roof of (36.19). The isomorphism (36.19) will be 
verified by establishing the coset-contracting isomorphisms [ Y from 
(36.18)] 

H o W a  3 f a )  H U o  n Y,  f o  n Y )  (36.20) 
and 

Ho(fa y, f a  y, w H ~ ( I  Lk 1, I tk 1) (36.21) 

Ho(ja ,fa> w H~(IL, I, I & 11, q = 0,1,-**, 

and then composing these isomorphisms to obtain (36.19). 

This isomorphism follows from the Excision 
Theorem 28.3 in the usual way on taking (x, A) of Theorem 28.3 as 
(fa ,fa) and noting that x - A = pa . 

This isomorphism follows from Theorem 
28.4 once we have established Propositions 36.1 and 36.2. 

Vm!calion of(36.20). 

Vmification of (36.21). 

Proposition 36.1. There exists a deformation d retracting f a  n Y onto 

The deformation d, to be defined, is a deformation of a subset of Y 
on itself. We can define d by suitably defining a deformation 6 in the 
domain of the canonical coordinates (u, w )  representing Y. 

Lk I andfa n Y onto 1 t k  1. 

The image of f a  n Y C Y under G-' is the set 

= {(u, w) Btb x Bi-k I - 11 u ! la  + \I fJ \ l a  < 01, (36.22) 

in accord with (36.3) and (36.18). The image of I Lk I C Y under G-l 
is the set, 

w = {(u, W) E Baa x B:-k I v = v(u), u E B;), (36.22') 
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in accord with (36.16) and (36.17). Let W, and w, denote the sets W 
and w, respectively, with the origin in En deleted. 

Proposition 36.1 will follow from proposition 36.2. 

Proposition 36.2. The deformation 

(u, v ,  t )  -+ qu, 0, t )  = (u, (1 - t )w + tv(u)), (u, 0) E w, 0 < t < 1 ,  
(36.23) 

continuously retracts W onto w and W, onto w, . 
T o  establish Proposition 36.2, it will be sufficient to verify the 

following relations in accord with Definition 23.1 of a retracting 
deformation: 

(4): 
(A2): 

(&): 

(A,): 

(&): 

(-46): S(u, a, 2) E wo 9 ( u , W ) E W o ; O < t < l .  

44 w ,  0) = (4 4, 
w, 0, I) = (u, v(u)), 

S(u, v(u), t )  = (u, v(u)), 

a(Ou, Ov, 5) = (0,s 0")s 

S(u, 0, t )  E W, 

(u, .) E w, 
(I(, 4 E w, 
u E B,"; 0 < t < 1, 

0 < t < 1 ,  

(u, w )  E w, 0 < t < 1 ,  

That relations (A1)-(A4) are true follows immediately from (36.23). 

Proof of (A,). Since the points 6(u, w,  0) = (u, w )  and S(u, w ,  1) = 

Proof of (4). We must prove that if (u,, w,) # (0,, OJ, then 

Note first that when (u, , so) # (0, , 0,) then uo # 0, ; otherwise, 
by (36.22)', (u, , wo) = (0, , OJ. In caseu, # 0, (36.23) implies that 

(u, v(u)) are in W and W is convex in En , (A,) follows. 

S(u, , 0 0  9 t )  # (OUT OJ. 

quo ,  or,, t )  # (OM, OV), 0 < t < 1 .  

Proposition 36.2 follows from relations (A1)-(&). 

Verification of Proposition 36.1. Proposition 36.2 implies the 
following: Corresponding to an arbitrary point p €fa n Y, let 
( i i (p) ,  a(p))  be canonical coordinates of p ;  then p = G(ii(p), B ( p ) )  
and the mapping 

p €fa n Y ,  0 < t < 1, (36.24) ( p ,  t )  -+ d ( p ,  t )  = G ( W ( p ) ,  B(p ) ,  t ) ) ,  
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defines a deformation satisfying Proposition 36.1, This follows from 
the relations (Al)<&) and the character of G as a homeomorphism. 

Conclusion of Proof of Theorem 36.1. Proposition 36.2 implies 
Proposition 36.1, while Proposition 36.1 implies the isomorphism 
(36.21). Isomorphisms (36.20) and (36.21) compose to yield the coset- 
contracting isomorphism (36.19). Theorem 36.1 follows from the 
isomorphism (36.19) when q = k. 

Thus Saddle Theorem 36.1 is true. 

A k-cycle uk on fa modfa will be a k-cap of pa relative to f if and 
only if the barycentric subdivisions of uk are k-caps of pa relative to f 
(cf. Lemma 28.2). From this we infer the following useful corollary 
of the Saddle Theorem: 

Corollary 36.1. A k-cycle uk on f a  modfa which admits a subdivision 
9 + w k  such that I wk I Cf, and 9 is a k-cap of pa relative to f I L, 
is a k-cap of pa on Mn . 

Proof. By Theorem 36.1 2k is a k-cap relative to f, so that 2k + wk 
is a k-cap relative to f. 

The Carrier Theorem. When the index k of the given critical 
point pa of the ND f on Mn is such that 0 < k < n the Saddle 
Theorem reduces the problem of associating a k-cap with pa to the 
problem when k = n. The Carrier Theorem gives an effective suffi- 
cient condition that an n-cycle yn on fa modfa be an n-cap of pa by 
conditioning the way I yn I is carried on I Mn I arbitrarily near pa . 

Recall that if yn is an n-cycle on f a  mod f a  , 
the first barycentric subdivision wyn of yn is also an n-cycle on 
famodfa because an = 78. Moreover, Lemma 28.2 implies that 
nyn - yn on f a  mod f a  , so that yn is an n-cap associated with pa if and 
only if nyn is an n-cap associated with pa . 

Before coming to the Carrier Theorem two definitions are needed: 

Barycentric Subdivision. 

Definition 36.4. Subchains Meeting a Point. Let x be a Hausdo& 
space, q a point of x, and yn a singular n-chain n > 0 on x such that 
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q E I yn  I. If yn  has a reduced form r p i n  over Z, the deletion of the 
terms of this sum for which 1 usn I does not meet q will leave a subchain 
of yn, termed the subchain of yn meeting q. 

Definition 36.5. n-Chains on M ,  Simply-carried at q. Let M, be a 
Cw-manifold and q a point of M ,  . An n-chain yn on M ,  whose carrier 
meets q will be said to be simply-carried by M ,  at q if the following 
two conditions are satisfied: 

Condition (ml). The subchain un of yn which "meets" q has for 
carrier a closed topological n-disk A, on M ,  in which q is an interior 
point. 

Condition ( m J .  aun is carried by PA, , the geometric boundary of 
A, , and in the sense of Definition 30.3 has at least one simply-carried 
separate (n - 1)-cell. 

The second principal theorem of this section follows: 

Carrier Theorem 36.2 (i) Let there be given a C"-manifold M ,  , 
a ND f E Cw(Mn), a critical point pa o f f  of index n at the f-level a, 
and a cycle yn on f a  mod f a  such that 

(36.25) 

(ii) A suflcient condition that y n  be an n-cap associated with pa is 
that for some integer p >, 0 the p-fold barycentric subdivision of yn be 
simply-carried by M ,  at pa . 

We shall prove the theorem in case (ii) holds for p = 0. It will then 
follow in case (ii) holds for some p > 0. 

Let un be the "subchain of yn meeting pa ." We identify pa with the 
point q of Definition 36.5 and introduce the topological n-disk A, as in 
Condition (ml). Under Condition (mB) Lemma 30.2 implies that 
aun + 0 on PA,. If we understand that d, = A, - p a  , it follows 
from Lemma 29.0 that un + 0 on A, mod d, . We see from (36.25) 
that d, C i a .  The Excision Theorem 28.3 then implies that there 
exists a coset-contracting isomorphism 

H n U a  , f a )  Hn(dn 
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so that the condition un + 0 on A ,  mod d, implies that un + 0 on 
fa modf,. Hence yn + 0 on f a  modfa. 

This establishes the Carrier Theorem. 

Remark. The Carrier Theorem is false if the condition on yn of 
the second paragraph of the theorem is deleted. 
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THE REAL PROJECTIVE n-SPACE P, 

The homology groups of P, are well known. However, the derivation 
of these homology groups of P, by the study of a suitably chosen ND 
function f on P, will reveal much concerning critical point theory, 
and, incidentally, disclose the nature of the homology groups in 
question. 

Notation. Let En+, be the Euclidean space of points 
x = (x, , x1 ,..., x,) and the space En+, with the origin deleted. 
Two points x' and X" in EO,+l are termed projectively equivalent if there 
exist real nonzero numbers 7' and 7" such that 7'x' = 7"x". Let $(x) 
denote the projective equivalence class of an arbitrary point x E EO,+!. 
Let P, denote the set of equivalence classes $(x) into which EO,,, is 
partitioned. One has the mapping 

x + $(x) : E:+~ -+ P, onto P, . (37.1) 

The space EO,,, has a standard topology. One topologizes P, by 
requiring that a subset X of P, be open if and only if X is the image 
under q5 of an open subset Y of EO,+l . With P, so topologized, $ is 
continuous and P, becomes a Hausdod space I P, I. 

That I P, I is compact and connected is proved when n > 0, as in 
the case of CP, , and is trivial when n = 0. 

I P, I as a Topological Manifold, To give I P, I a differentiable 
structure,+ let U, be a Cartesian n-plane of points u = (ul ,..., u,). 
We shall define presentations 

(37.2) (Fk : U,, Yk), k = 0, 1, ..., 11, 

t P o  is defined above, but no differentiable structure is to be defined on Po nor 
any functionf. Similarly, I So I is a pair of points, but no differentiable structure is 
to be defined on 1 So I nor any function similar tof. 

335 
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of open subsets Yk of I P, I whose union is I P, I. 
For each R on the range 0, l,.,,, n and each point u E U, a point 

is introduced. We then set 

Fk(u) = +(x(u : k)) E I Pn I, u E u,, n > 0, (37.4) 

and Fk( U,) = Yk. The lemma that Yk is open in I P, I and that Fk is 
biunique and continuous follows as in the case of CP, . Thus I P, I is 
a topological manifold covered by the presentations P, F, ..., P. 

Let h and k be 
distinct integers on the range 0, 1, ..., n, with h > R.  The proof of the 
C"-compability of Fh and Fk is essentially as in the case of CP,, 
u replacing (u, w )  and u' replacing (u', 0'). In particular, the com- 
patibility condition (35.12) here takes the form ~ ~ z l ; C + ~  = 1, and real 
analytic transition homeomorphisms are defined by analytic relations 
similar to (35.13a) and (35.13b). 

One concludes that the n + 1 presentations FO, F,,.,, P are pair- 
wise C"-compatible, so that when n > 0 I P, I becomes the carrier of 
a C"-manifold M ,  whose differentiable structure is determined by 
these n + 1 presentations. 

The C"-Compatibility of the Presentations Fk. 

A ND Function f on P., n > 0. Corresponding to an arbitrary 
point x = (xo , x1 ,..., x,) E g,, and a set of real constants 
0 < co < c1 < < c, , a real-valued function f on P, , or, equiv- 
alently, on M ,  , can be defined by setting 

(summing with respect to i for ion the range 0, 1, ..., n). The function f 
is thereby uniquely defined at each point of P, . 

The critical points off on Yk are the images under Fk of the critical 
points (if any exist) of the mapping 

u --+ ( j c  Fk)(u) = ~ ( + ( x ( u  : A)))  = fk(~),  u E Un , n > 0, (37.6) 
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introducing fk.  It follows from (37.5) and (37.6) that (1 + ~ ~ u ~ ~ * )  fk(z() - ck 
is equal to 

(37.7) COU: + "' + Ck-lUka + ck+luE+1 f ' * '  + c-u:. 

One sees that fk is real and analytic on u, . It follows, as in the case 
of CP, , that the only critical point of f k  on U, is a ND critical point 
u = 0. The corresponding point p k  = Fk(0) is a critical point off on 
Yk of index k. We draw the following conclusion: 

Theorem 37.0. The critical points off are the n + 1 points p k  , 
R = 0, ..., n, of which p k  is in the projective equivalence class on e,, of 
the point xk whose real coordinates x, are i = 0, 1, ..., n, whose 
critical value is ck and whose index is k .  

The indices of the critical points off on M ,  do not form a "lacunary 
sequence." As a consequence, the linking characteristics of these 
critical points are a priori dependent upon the field X ,  To clarify this 
dependence we shall make use of the classical representation of P, in 
which diametrically opposite points of an n-sphere S,, represent the 
same point of P, . 

The Sphere S, . In the Cartesian plane En+, of points 
x = (xo , x1 ,..., xn) let S,  be the regularly structured C"-manifold 
whose carrier is the origin-centered n-sphere I S, I of unit radius. 
Among the presentations in SS, are 2n + 2 Monge presentations 

(Gk' : B, ,  wkf), (37.8) 

of open subsets of S, which we now define. 
= sign E. 

The domain B, shall be an origin-centered open unit n-ball of coor- 
dinates 

(37.9a) 

deleting xk . We complete the definition of the Monge presentation 
(37.8) of wk' by setting 

xk  = c ( 1  - a l P - - * * - a n a ) l / a ,  C Y E B , .  (37.9b) 

The 2n + 2 presentations in 923% thereby defined cover I S, I, and 
are C"-compatible, in accord with Theorem 5.1. 

k = 0, 1, ..., ?Z; = fl, 

wk' shall be the open hemisphere of s, on which sign 

(x0 x1 ,..*, xk-1 , ;k 9 X k + l  $**.)  = (al (**.> %), 
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A Function [ on S,  . A real-valued C"-function x .--+ [(x) is defined 

5 ( ~ )  = c~xIB, x E Sn 9 (37.10) 

on S,, by setting 

(summing with respect to i), where c, < c1 < * * .  < c,, are the 
constants introduced in (37.5). Note that [(x) = f ( # ( x ) )  for x E S,  . 

The critical points, if any, of 5 on the hemisphere wk' are the 
images under Gke of the critical points of the mapping 

a --+ ( 5  ' Gk')(a) = 5 k ( a ) ,  a E Bn 9 

introducing 5,. One finds that [,(a) - c, is equal to 

(37.1 1)  

(c, - Ck) aI2 + .*. + (Ck-l - Ck) alca + (%+I - Ck) 4+l + ..* + (CTI - Ck) anB 

for ar E B, . It follows that the only critical point of [ in the open 
hemisphere W,' of I S,  I is the point qk' at the intersection of W,' with 
the %,-axis. One sees that qk8 is ND and has the critical value ck and 
index k. 

As defined, maps Eo,+l 
onto I P, I. According to Definition 26.5 4 induces the chain trans- 
formation $ of the singular complex S(E;+,) into the singular 
complex S( I P, I). 

On I S,  I the most useful chains are the unitary chains, which we 
shall now define. 

The Chain Transformation 4 Induced by 4. 

Unitary k-Chains on I Sn I. The point 

qrc', k = 0 , 1 ,  ..., n, r = f l ,  (37.12) 

is that point of intersection of the x,-axis with I S,  I at which x, = E. 
The points qk8 will be called the unitary points of I S,  I. An ordered 
subset of k + 1 distinct unitary points, no two of which are antipodal 
on I S, I, determine an ordered Euclidean k-simplex ak in EO,,, . The 
projection T from the origin of ak into I S,  I defines a singular k- 
simplex on I S,  I. The corresponding singular k-cell ok on I S, I will 
be called unitary. The unitary singular n-cells on I S,  1 are "simply- 
carried" by I S,  I (Definition 30.2). 
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A “reduced” k-chain (Definition 24.0) 

uk = elulk + + erark, ei = fl, (37.13) 

in which each k-cell usk is unitary and no two cells utk have the same 
carrier, will be called a unitary k-chain on I S, I. We say that I uk I is 
simply-covered. 

The Operator 8. Given a point q E I S, I, let 8q denote the point on 
I S, 1 antipodal to q. If qoql --. qk is an ordered unitary simplex, let 
(qo , ql ,..., q k )  denote the corresponding singular unitary kcell  dc on 
I S, I. We term the singular unitary k-cell (8qo ,..., 04,) the k-cell 8dc 
opposite uk. If uk = esusk, with e, = f 1, is a unitary k-chain on I S,  I, 
we introduce the unitary k-chain @uk = e,80dk and term 8uk opposite 
uk, Note that 

@(@#k) = #k, a(@@) = @auk. (37.14) 

Given S, , a sequence of 

(37.15) 

Some Special Unitary k-Cycles on I S, I. 
spheres 

s, 9 s, ,..*, sn-1, sn 
carried by I S, I is introduced, where 

- ... I Sk I = {x E I sn I I xn = xn-1 - = xk+l  = 0) 

for each k on the range 1, 2, ..., n - 1. 
We refer to a corresponding sequence of closed hemispheres 

Hl > H2 ,..., Hn-1 , Hn (37.16) 

(37.17) 
of which 

Hk = {x E I s k  I I xk 2 o}, k = 1, 2,..., n. 

It is convenient to denote by Ezo, ..., Eno the respective subspaces 

E,o+, = {x E E,+l I x, = xn-l = **.  = x,+1 = O} 

of EE+l for p on the range 1, 2, ..., n - 1, and to denote by 
Pl , Pa ,..., P,-l the real projective subspaces P, of P, of dimension p 
defined in terms of Ej+, as P, is defined in terms of g+, ,. and 
correspondingly structured both topologically and differentiably. 
Theorem 37.0 holds if one replacesf byf I P, and n by p. 
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In preparation for Theorem 37.1 we introduce the unitary 1 -chain, 

(37.18) 

as a sum of two unitary 1-cells. On I Sl I there exists a unitary singular 
1 -cycle 

r' = w1 + 8wl .  (37.19) 

Taking coo as the singular 0-cell (qz ) ,  we find that 

awl = (q;) - (6') = wo - 8 W O  = r", (37.20) 

introducing the 0-cycle yo. 

from which the following basic theorem results: 
The definitions of wl, yl ,  and yo are the initial steps in an induction 

Theorem 37.1 (a) There exists a sequence wl, w2, ..., wn of unitary 
chains on 1 Sn I whose carriers are the respective simply-covered hemi- 
spheres Hl ,..., H, , and a sequence yl, ..., yn of unitary cycles whose 
carriers are the respective simply-covered spheres 1 S, I, ..., 1 S,  I, where 
the chains wi and cycles y* are such that the following is true: 

(8) If the chains wl, yl ,  and yo are defined as above, then for k on the 
range 1, 2,.,., n 

y k  = wk + 6 ~ k  when k is odd, (37.21) 

yk  = wk - 8 w k  when k is even, (37.22) 

awk = Y ¶  k-1 k = 1,2 ,..., n. (37.23) 

The theorem is true for n = 1. We assume that the theorem is true 
when n is replaced by a positive integer m < n, and prove it true when 
n is replaced by m + 1. 

By hypothesis ym is a unitary m-cycle whose carrier simply covers 
I s?n I .  If 

ym = e1qm + -.* + e,urm, el = &l,  I = 2m+1, (37.24) 

is the reduced form of ym, one defines com+l by setting 
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where u?+l is the unitary (m + 1)-cell on I S, I whose defining vertices 
are the vertices of aim in their given order, preceded by qk+l . One sees 
that I u m + l  I simply covers Hm+, . Setting k = m + 1, one then 
defines a unitary chain ym+l by (37.21) or (37.22), depending on 
whether (m + 1) is odd or even. One sees that I ym+l I simply covers 
1 Sm+, I. For m + 1 odd 

*m+l = awm+l + a&,m+l = y m + @Y”. 
By our inductive hypothesis (37.21) and (37.22) are valid when k = m, 
so that 

a y m + 1  = wm - 8 w ”  + @ ( U P  - Ow”) = 0. (37.26) 

Thus ym+l is a cycle. The proof that ym+l is a cycle when m + 1 is 
even is similar. 

It follows from the definition (37.25) of um+l that (37.23) holds. 

The k-Caps of f  on I P,, I. Theorem 37.1 leads to Theorem 37.2 
below. In Theorem 37.2 we shall refer to the unitary chains uk of 
Theorem 37.1. 

Theorem 37.2. For k on the range 1 , 2  ,..., n, $uk is a k-cap of p k  

a$,k = 2$wk-’ when k is even, (37.27) 

a+k = o when k is odd, (37.28) 

$wk rtL.0 on IPkI whenkisodd. (37.29) 

That ?uk is a k-cap of p k  relative to f I P k  fc$ows from Theorem 
26.2; in fact, the first barycentric subdivision of $uk is the image under 
$ of the first barycentric subdivision of uk, and, as such, is seen to 
be “sipply-carried at pk” in the sense of Definition 36.5. By Theorem 
36.2 $uk is then a k-cap of,Pk relative to f 1 P k .  

relative to f I P k  as well as to f. Moreover, 
n 

A 

One shows as follows that $uk is a k-cap of p k  , relative to f: 
There exists an open neighborhood N of p k  relative to I Pk I which 

is an f-saddle on ] P, ] of p k  . Among the barycentric subdivisions of 
$uk of sufficiently high order there exists one of the form zk + wk, 
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where I zk I C N and I wk I Cf, . Since gk is “simply carried at p k  ,” 
zk is a k-cap of p k  relative to f [ Lk , in accord with Carrier Theorem 
36.2. By Saddle Theorem ?6.1 zk is a k-cap O f p k  relative to f. It  follows 
that zk + wk, and hence $uk, is a k-cap of p k  relative to f .  

VeriJication of (37.27) and (37.28). Note that 

a u k  = wk-l + Owk-’ when k is even (37.30) 
a& = wk--l - 8wk-l (37.3 1) 

by virtue of Theorem 37.1. Relations (37.27) and (37.28) f o b w  on 
applying $ to the terms of (37.30) and (37.31), recalling that 21,4 = $8 
and $@u5 = $245 for any unitary j-chain uf, j = 0, 1 ,..., n. 

Suppose k odd. Then $wk is a k-cycle by 
(37.28). The first conclusion of Theorem 37.2 is that $uk is a k-cap 
of p k  relative to f I Pk . BY definition of a linking k-cycle &P is then a 
linking k-cycle associated with the critical point p k  off I Pk . Theorem 
29.3(ii) applied to f I Pk gives (37.29). 

when k is odd 

VeriJication of (37.29). 

Thus Theorem 37.2 is true. 

Retracting Deformation8 on 1 P,, 1. T o  determine the linking 
characteristics of the critical points p k  off on P,  , a set of retracting 
deformations will be needed. These deformations will be the products 
of deformations, taking “products” in a sense which we shall now 
define. 

A Deformation D. A deformation D of a subset 4 of a Hausdo& 
space ,y is defined by a continuous mapping 

( p ,  t )  + D ( p ,  t )  : 5 x [0, I] --f x into x. 

For each point p E 4, D ( p ,  0 )  = p by hypothesis, and the partial 
mapping t + D(p ,  t )  of [0, 13 into x is called the D-trajectory of p .  
We term 6 the initial set of D and D(6, 1) the terminal set of D .  A 
deformation D is termed continuable by a deformation D’ if the 
terminal set of D is included in the initial set of D’. If X C 5, by the 
restriction of D to X is meant the deformation defined by the mapping 
D I(X x [O, 11). 



37. THE REAL PROJECTIVE 71-SPACE pa 343 

In defining products of deformations the following terminology will 
be used. Let [a, b] and [c, d ]  be intervals of the real axis and t + d ( t )  the 
sense-preserving linear mapping of [c, d ]  onto [a, b]. If an arc h in x of 
form t + h(t) : [a, b] + x is given, then the arc t + h(d(t)) : [c, d] 4 x 
is termed the arc h retaken ower [c, d ] .  Let the terminal point of h be 
denoted by Terh. It is not assumed that a mapping t + h ( t )  is 
biunique. 

Definition 37.1. Product Deformations. For some integer r > 0 let 
Do, D’, D2, ..., Dr be a sequence of r + 1 deformations of subsets of x 
such that each deformation of the sequence except the last is “con- 
tinuable” by its successor. Let the interval [0, I] be partitioned into 
I + 1 successive intervals of equal length whose closures are denoted 
by I, , Il , I ,  ,..., I, . The product deformation 

D = Dr ... D2DlDO (37.32) 

of the initial set 6 of D is inductively defined as follows: If p is a 
prescribed point of f ,  the D-traj of p is an arc t -g ( t )  : [0, 13 + x 
such that 

g I I, = the DO-traj of p ,  retaken over I, , 

g I Il the D1-traj of Ter(g I I,), retaken over Il , (37.33) 

g I I, the D-traj of Ter(g I I,-l), retaken over I,. . 
One readily verifies that the resultant mapping (p, t )  4 D(p,  t )  of 

6 x [0, 11 into x is continuous. 
Our deformation lemma will refer to the subset fe, = fc, - p ,  of 

I P,  I, and in the proof to the subsets I p,  I = I P, - p ,  I of I P,  I for j 
on the range 1 ,  ..., n. 

Lemma 37.1. For k = 1, 2, ..., n there exists a deformation d, 

Before starting the formal proof of Lemma 37.1 we shall describe 

For k on the range I ,  ..., n, c,, is the intersection with I S, I of the 

retracting j,, onto 1 Pk-l 1. 

the subset fc, of 1 P,, I in terms of the subset c,, of 1 S,  I. 

solid (n + 1)-dimensional ellipsoid in En+, on which 

coy: + C1yl2 + ’ * ’  + cnyn2 < ck - (37.34) 
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Moreover, fck = #([,,). Of the unitary points qt' of I S,  I those for 
which i > k, i = k, and i < k are on the exterior, boundary, and 
interior, respectively, of to, relative to I S, I, provided k < n. The 
corresponding critical points pi  off on I P? I are, respectively, on the 
exterior, boundary, and interior of fok relative to I P,  1: 

We continue with a definition: 

The Deformation Sk Retracting I pk I onto I Pk-1 1. Let q be 
prescribed in Q k ,  and thereby #(q) in pk . Corresponding to q, let Aq 
be the unique quarter circle on Hk which issues from qkl, meets q, and 
terminates at a point q' on the boundary I Sk-11 of Hk . The point q 
may coincide with 4'. Under Sk the point #(q) shall be deformed on 
I pk I into the point #(a') on I Pk-1 I by moving q along Aq , and thereby 
#(q) along #(Aq), at a velocity (possibly zero) equal to the length of the 
subarc qq' of & . 

Remark. A simple calculation shows that the value [( p), and hence 
the valuef(#(p)) = [ ( p ) ,  decreases whenever q moves along so 
that yk decreases. 

The Deformation dk dejined, k = 1, 2 ,..., n. Set k = n - r.  The 
restrictions of the deformations 

an , an-1 9 an-8 9. . . ,  an-' (37.35) 

to the respective subsets 

(37.36) 

of f c k  are well-defined deformations 

Do, D', ..., Dr. (37.37) 

Let the sets (37.36) be denoted, respectively, by 

6 0  9 41 , * . .9  4, - 
We shall verify statement (A): 

(A) For 0 < i < r the deformation Di retracts ti onto 

Recall that f( p,,,) = 

. 
2 ck . 
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The deformation Di either leaves a point p E & fixed or deforms p 
so that on the Dc-traj of p ,  f strictly decreases as t increases. It follows 
that Dz deforms & on ti. The least upper bound off on the sets & 
is ck . Hence there is no D(-trajectory terminating at the point pn-c-l 
of I Pn-i-l 1 .  The set ti+, is a proper subset of and is fixed under the 
deformation Dim These facts imply (A). 

A product deformation 

d k -  - Dr DIDQ, r = n - k, (37.38) 

offc, is well-defined. The set 5; = I p k  1. The deformation P is then 
8, and retracts I pk I onto I Pk-, I. The deformation dk accordingly 
retracts , f c k  onto I Pk-1  1. 

Thus Lemma 37.1 is true. 

Linking Characteristics of Critical Points off .  The following 
theorem is a consequence of Theorem 37.2 and Deformation Lemma 
37.1. Let Q be the field of rational numbers. 

Theorem 37.3. For a choice of the field Z us Q or as 2, , with p 
a prime, the chsifcation of the critical points p k  off on P,, for POdiVe 
index k as of linking or nonlinking types is in accord with the Table 111. 

TABLE I11 

Field Index k Classification 

Z 9 , P  = 2 1, 2,  ...) n Linking 

Z9 , p arbitrary Odd Linking 

Z , , P f 2  Even Nonlinking 

Q Odd Linking 
Q Even Nonlinking 

According to Theorem 37.2, for any field Z and any critical point pk 
of positive index, $ak is a k-cap of p k  relative to f. The point p k  will be 
of linking type over T if 

a&k - 0, on jc, over X .  (37.39) 
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The first line of the table follows from (37.27) and (37.28), the second 
and fourth from (37.28). The third and fifth lines of the table are valid 
by (37.27) if 

6 u k - 1  + O  on job over x (37.40) 

for an even index k and an arbitrary field X .  We shall verify (37.40) 
for k even. 

By virtue of the Deformation Lemma 37.1 and Theorem 28.4 there 
exists a coset-contracting isomorphism 

Hk- l ( f eb )  Rd Hk- l (pk - l )  Over s* (37.41) 

Moreover, (37.29) implies that over any field X 

t,hk--l ?LO on I Pk--l 1 (37.42) 

for k - 1 even, or, equivalently, for k odd. From (37.41) and (37.42) 
we infer the truth of (37.40), so that the third and fifth lines of the 
table are valid. 

This establishes Theorem 37.3. 
It is an immediate consequence of Theorems 37.3 and 29.3 that 

when the field is Q or Z, , with p a prime, the nonvanishing con- 
nectivities of I P,, I are given by the Table IV. 

TABLE IV 

Field X Dimension n Nonvanishing connectivitiee 
~ ~~ 

Z9,P  = 2 n > O  & = 1, R1 = 1, RI = 1, ..., R, = 1 
Z P , P # ~  Odd n & = 1 , R ,  = 1 

Z 9 , p # 2  Evenn > O  & =  1 

Q Odd n & = 1,R, = 1 

Q Evenn > 0 & = 1 

The results of this section yield all of the homology characteristics 
of P,, over the ring Z of integers, in particular, the Betti numbers of P,, 
and the torsion coefficients of the different dimensions. This will be 
shown in detail in the paper which presents the results abstracted in 
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Appendix 111. The theorem that the qth Betti number of P, is equal to 
the qth connectivity of P, over Q, taken with the above table, gives the 
Betti numbers of P, . 

The space P, , provided with the ND function f of this section, is 
easily seen to come under the prime-simple case of Appendix 111. 
The determination of the torsion subgroups of the respective homology 
groups is particularly simple in the case of prime-simple spaces. 

In 830 a singular n-chain which is 
“simply-carried” on a topological n-manifold has been defined and 
Lemma 30.3 established. Theorem 37.1(a) has (i) of the following 
theorem as by-product. Statement (ii) follows from Lemma 30.3. 

A Unitary n-Cycle on S, . 

Theorem 37.4. (i) On an origin-centered n-sphere S, in En+, there 
exists a simply-carried n-cycle yn the n-cells of whose reduced form are 
unitary. 

(ii) Such an n-cycle on S,, is nonbounding in S,  with I y” 1 = 1 S,  1. 



§ 38 

STEIN MANIFOLDS. 
A THEOREM OF LEFSCHETZ 

Andreotti and Frankel (AF) have given a proof [l] of what is 
known as the Lefschetz Theorem on “hyperplane sections” of a 
nonsingular projective algebraic variety of complex dimension n. 
They refer to an unpublished proof by Thorn as “the first to use Morse’s 
theory of critical points” in proving the Lefschetz Theorem. See AF 
for a formulation of the Lefschetz Theorem (see also Lefschetz [l]). 

The proof as given by AF is based on a theorem on “Stein mani- 
folds” stated and proved by AF. This theorem on Stein manifolds is 
more general than what is required to prove the theorem of Lefschetz. 
We restrict ourselves to this theorem because Stein manifolds, in the 
sense of AF, can be readily defined, and because the application to 
algebraic geometry is relatively simple for one familiar with the 
terminology of algebraic geometry. 

As we shall see, the theorem of AF on Stein manifolds of complex 
dimension n is a theorem on a ND function, defined on a real differ- 
entiable manifold M of dimension 2n, where f is endowed with 
certain special properties because of a special complex analytic origin. 

The Spaces CE, and Earn . CE, is a space of m complex variables, 
the Cartesian product of m complex planes of complex variables 

w, )..., w, . (38.1) 

Let EM be a real Euclidean space of 2m variables, the Cartesian 
product of m real 2-planes with coordinates 

a? 

x19 Y1 ; x2 , Y2 ;...; x,, Y m ,  

348 

respectively. 
(38.2) 
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There is an analytic homeomorphism t of CE, onto Ezm defined by 

x , + i r , = w , , ,  p = l  ,..., m. (38.3) 

One can review the early abstract definition of a Stein manifold as 
found, for example, in SCminaire Henri Cartan, 1951-52, Chapters 
VII-IX, containing lectures by Cartan. 

Remmert [ 13 has shown that a Stein n-manifold, as originally defined, 
can be biholomorphically embedded as a Stein manifold Z, in a 
space CE, of sufficiently high dimension m. With AF we are thus 
concerned with a Stein manifold Z, in CE,n, as now to be defined. 

setting 

Definition 38.1. A Stein Manifold Zn in CE,. Here 0 < n < m, 
and Zn shall have for carrier a closed subset of points in CE, whose 
real image in E,, under 6 is a topological manifold in Earn , and shall 
satisfy the following conditions. 

Properties of Z, in CE,. Corresponding to a prescribed point 
wo E Zn the complex coordinates of CE, shall admit a reordering such 
that the following is true. Set 

z1 = w1 - w:,,.., 2, = w, - w,o, (38.4) 

z = (z1 ,..., 4, (38.5) 

(38.6) 

Let e be a prescribed positive constant. We shall restrict z, by the 
condition 1 1  z 1 1  < e, to an open neighborhood N, of the origin in the 
space CE, of the points x. If e > 0 is sufficiently small and 11 z 1) < e, 
there shall exist absolutely convergent power series 

(38.7) 

in the complex variables (zl ,..., zn) with complex coefficients such 
that for each p, P,(O) = WE+,, and the mapping 

II 2 II = (I 21 l a  + ... + I 2, la)l’z. 

P,(zl ,..., z,), p = 1 ,..., m - t l ,  

(zl ,..., z,) -+ (w, ,..., w,) : N, -+ CE, (38.8) 
in which 

Wjt  = z j ,  j = 1, 2, ..., n, 

p = 1 ,..., m - n, 
(38.9) 

w,,, = P,(zl ,..., 2,), 
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defines an analytic homeomorphism of N, onto an open neighborhood 
X of wo relative to 2,. 

W e  term the above mapping of N, onto X a complex Mongepresentation 
of X C Z,, based on N, . 

Each complex Monge presentation such as (38.9) of an open 
neighborhood X relative to Zn of a point wo E Z,, gives rise to a unique 
real analytic Monge presentation of the real neighborhood X = ((X) 
relative to Ma,. = ((Z,) of the real point PO = f(w0) of Ma, . 

T o  verify thls affirmation, let the complex conjugate of a complex 
number c be denoted by conj c. We can suppose that wo is the origin, 
and in accord with (38.3) and (38.4) set 

z j = x r + i y , ,  j = 1 ,  ..., n, (38.10) 

where xi and yi are real. For convenience we set 

(XI s*.*, xn ;y1 ,...,Yn) = ( ~ 1  ,..., om) = (38.11) 

Corresponding to the complex Monge presentation (38.9) of X, a real 
analytic Monge presentation of X = f(X) is given as follows. 

The coordinates of a point in Earn are given by (38.2). Of these 
coordinates the 2n coordinates in (38.1 1) can be supposed given, as in 
(38.1 l), by the parameters w1 ,..., wan , subject to the condition 1 1  v 11 < e. 
One obtains the remaining 2m - 2n coordinates of a point on Ma, by 
setting 

2xn+o = 

2yn+0 = i conj Pp(z) - iP,,(o) = $o(w), 

+ conj Po(.) = V,(W), 
p = 1 ,..., m - n, (38.12) 

introducing pp and One observes that pp and 1,4~ so defined for 
1 1  w 1 1  < e are real and analytic. The equations (38.1 1) and (38.12) give 
a real analytic Monge presentation of the real neighborhood X = &X) 
of the origin in Man. 

Focal Points of Ma..  It follows from Theorem 6.1 that the 
points q E Earn which are neither on Ma, nor focal points of M,, are 
everywhere dense in Ea,. With this fact as a starting point the 
following theorem can be proved: 
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Theorem 38.1. Let Z, in CE, , n < m, be a Stein manifold with 
a real image g(Z,) = Man in Earn . If q is a fixed point of Earn which 
is neither a point of M,, nor a focal point of Ma,, the real-valued 
distance function 

P + II P - 4 II = f p ( ~ )  : M z n  + R (q fixed) (38.13) 

is ND on M,, and has no critical point with an index k > n. 

The Index Forms. The first part of the proof makes no essential use 
of the fact that the real image M,, of the Stein manifold 2, is anything 
more than an arbitrary differentiable manifold which is regular and 
analytic in E,, . Corresponding to a critical point po  of f q  on M,, one 
obtains a representation such as (31.7) of a quadratic form determining 
the index of P O .  

We term the point q of Theorem 38.1 the pole of the distance 
function f, . 

As in the proof of Theorem 31.3, suppose that Po is the origin of 
coordinates in Earn and that the 2n-plane, say Van,  of coordinates 
(38.1 1) is tangent to M,, at the origin Po. Suppose further that the 
pole q is on the x,+,-axis and that xn+l = c > 0 at q. 

If 1 1  w 1 1  < e and if e is sufficiently small, the points 

(x1 I . . . ,  xm ; y1 ,..., ym) E E,, (38.14) 

in the neighborhood X of po  relative to M,, , as presented by (38.1 1) 
and (38.12), are such that the following is true: For 1 1  w 11 < e (38.12) 
holds and can be given the form 

Xn+o - - &&j wiwj + + 
p = 1 ,  ..., m - n, (38.15) 

Yn+p =z &4j W P ~  + + 
where the quadratic forms on the right of (38.15) are real and sym- 
metric, and the remainders (indicated by + +) are real and analytic 
in the variables w1 ,..., van for 1 1  w 1 1  < e and vanish with their first and 
second partial derivatives at the origin w = 0. 

Let the coordinates wl ,..., w2, be subjected to an orthogonal trans- 
formation T into coordinates u1 ,..., u , ~  such that under T 

b1w.w .  t i  a 3 = O1U12 + ." + (38.16) 
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As in the proof of Theorem 31.2, it follows that if p(w) E X is a point 
with the local coordinates w = (wl ,..., w ~ ) ,  the squareft(p(w)) of the 
distance from to p(w) is equal to ca plus 

I1 w [ I a  - c b b w ,  ++ for 11 w I( < e (38.17) 

[cf. (31.6)] and in terms of the coordinates u1 ,..., #an is equal to ca plus 

(1 - CUl)ul' + **. + (1 - cu,)uk , (38.18) 

omitting terms of order higher than the second. The index k of the 
quadratic form (38.18) is the index of the critical point p0 of the 
distance functionf, . This form is ND by virtue of our choice of q. 

We shall now make our first use of the hypothesis that Man is the 
real image of a Stein manifold C, . The basic lemma follows, 

Lemma 38.1. Let ul ,..., us, be the churucteristic roots of the matrix 
11 bij 11. If u; ,..., uin is a suitable reordering of these roots, then 

(u; ,..., ah) = (-0, ,..., -0,). (38.19) 

Notation. We suppose that (38.9) gives a complex Monge 
presentation of a neighborhood X relative to C,, of the origin wo 
and that (38.12) and (38.11) give the corresponding real Monge 
presentation of X = [(X), with the 2n-plane of coordinates 
(xl ,..., x, ; y1 ,..., y,) = (x, y )  tangent to Man at the origin PO. From 
the first equation in (38.12) we infer that 

P&) + conj PI(%) = W ( X ~  ,--, xn ;y1 , .- ,~n), (38.20) 

subject to the conditions 

2j = x, + iy,, j = 1, ..., n. (38.21) 

Suppose that Q(21 ,..., 2,) is the quadratic form that gives the second 
order terms in the series for 2P,(a), and that Q(xl ,..., x,, ; y1 ,..., yn) 
is the real, symmetric, quadratic form that gives the second order 
terms in the power series for 2q1. Then (38.20) implies that 

Q(4 + c0.j Q(4 = Q(x1 I . . . ,  x, ;y1 ,.*.,Yn), (38.22) 

subject to (38.21). 
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The  relation (38.22) is an identity in the variables (x,, ..., x,; yl,..., yn) 
subject to the conditions z, = x, + z j ,  of (38.21). If in (38.22) one 
substitutes ( -y, , x,) for (5 , y,) and in accord with (38.21) substitutes 
iz, for z, and --i conj z, for conj z, , then the left side of (38.22), so 
evaluated, is equal to 

-(QW + conj Q(+, 
while the right side of (38.22) is equal to 

Q(-yl v...) -.Yn ; x1 ,..., ~ m ) .  

This evaluation accordingly gives the identity 

-Q(x1 ~ * * * ~  xn ;y1 , - * * , ~ n )  = Q(-.Y~ P..., -Yn ; )..., xs). (38.23) 

The right side of (38.23) is a quadratic form Q'(xl ,..., x, ; y1 ,..., y,), 
which reduces to Q(xl ,..., x, ; y1 ,..., y,) after a suitable orthogonal 
transformation. Hence the forms Q' and Q have the same set of charac- 
teristic roots, in different orders. On the other hand, the quadratic form 
Q"(xl ,..., x, ; y ,  ,..., y,) given by the left side of (38.23) has a set of 
characteristic roots which are the negatives of the characteristic roots 
of Q. The roots of Q' are equal to those of Q" because of the identity 
(38.23), and in some order are equal to the roots of Q. 

The function w +tpl(w) originated in (38.12). Subject to (38.11) 
the terms of second order in 291, in an expansion about the origin are 
the forms 

bijwiwj = Q(xl*.**, xn ;y1 ,-.-,Yn)- (38.24) 

Lemma 38.1 accordingly follows from the above properties of the 
characteristic roots of Q. 

T o  verify that the index k of 
the critical point p0 of the distance function p + f,( p )  satisfies the 
condition k < n, we make use of the fact that k is the number of 
coefficients in the quadratic form (38.18) which are negative. 

If a coefficient 1 - cu, in the form (38.18) is negative, u, must be 
positive, and hence by Lemma 38.1 some other characteristic root a; 
of Q must be equal to -u, , and hence yield a positive coefficient of 
the quadratic form (38.18). Lemma 38.1 thus implies that k < n. 

The Proof of Theorem 38.1 Concluded. 

Theorem 38.1 follows. 

We state a first corollary of Theorem 38.1 : 
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Corollary 38.1. No component of the Stein manifold Z, is compact. 
Were a component of C, compact, the real image under [ of this 

component would be a compact, regular, analytic, real manifold Nan , 
a submanifold of Ma, . The distance function p + f,(p) would then 
have a critical point of index 2n on Nan , contrary to Theorem 38.1. 

Corollary 38.2. 

This is a consequence of Theorem 38.1 and Theorem 29.3. 

The singular rth homology groups of the Stein 
manifold Z,, are trivial over each Jield for r > n. 

Corollary 38.3. The homology groups H,.(Zn , Z) of Z, over the ring 
Z of integers are trivial for r > n, and their torsion groups vanish for 
r > n - I .  

Propositions concerning the homology theory over Z are summarized 
in Appendix 111. The homology theory over 2 presented in Appendix 
I11 will be given a full exposition in a paper supplementary to this book 
without making any use of a triangulation of the underlying differ- 
entiable manifold M ,  . The proposition implying Corollary 38.3 is as 
follows: 

Proposition 38.1. If M ,  is a C"-manifold on which there exists a N D  
function f E C"(M,) such that f ,  is compact for each value o f f  and the 
indices k of critical points o f f  are at most m, then the homology groups 
Hr(M, , Z) vanish for r > m and the torsion subgroups vanish for 
r > m - 1 .  



§ 39 

SUPPLEMENTARY CONCEPTS AND THEOREMS 

A. Bowls and Special Homotopies. We shall supplement the 
homotopy theorems of $23. Singular chain-homotopies were intro- 
duced in $27 with the aid of continuous deformations (27.1) of a 
HausdorfT space x on itself. We shall define continuous singuiar 
chain families by first defining continuous deformations of singular 
cells on x rather than of points of x. 

Singular q-simplices 
are defined, following Eilenberg, as in $26. In the sense of Definition 
26.1, a singular q-simplex on x is a continuous mapping 

Continuous Families of Singular q-Simplices. 

X --f T ( X )  : S * X (39.1) 

into x of a vertex-ordered Euclidean simplex s = pop, p, . Let I be 
the unit interval on the t-axis. We understand that a continuous 
family of singular simplices with the initial singular simplex T is 
defined by a continuous map 

(x, t )  -+ Y(x, t )  : s x I -+ x, with F(x, 0) = T(x). (39.2) 

The partial maps 

introducing T ~ ( x ) ,  are the singular simplices 
by F. 

defined, as we shall say, 

Continuous Families of Singular q-cells. Let “equivalent” singular 

(39.4a) 
q-simplices 

T’ : s’ + X 
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and 
T n  : sR + x (39.4b) 

be defined as in $26. We understand, as in 826, that s’ and S’ are two 
vertex-ordered Euclidean simplices barycentrically mapped one onto 
the other with preservation of vertex order. Let continuous mappings 

(x, 2) + q x ,  t )  : sr x I + x (39.5a) 

(x, t )  + q x ,  t )  : SR x I + x (39.5b) 
and 

be given such that 

and 
Y ( x ,  0) = T ’ ( X ) ,  x E s‘, (39.6a) 

q x ,  0) = +), x E sR, (39.6b) 

and such that for each t the partial mappings 

x + q x ,  t )  : s‘ + x (39.7a) 
and 

x + P ( x ,  1 )  : sn+ x (39.7b) 

define “equivalent” singular simplices 7“ and 7”‘ on x. The “initial” 
equivalent singular simplices of F‘ and F’ are given, respectively, by 
(39.4a) and (39.4b). 

The singular q-cells d ( t )  which are the equivalence classes of the 
respective singular simplices ~ l ,  0 < t < 1, of the continuous family Y 
will be said to define a continuous family 9 of singular q-cells d ( t ) .  

We refer to the vertex-ordered 
(q - 1)-simplex, q > 0, 

s(i) = p,, ji * * * p a ,  p i  deleted, (39.8) 

of (26.4) and to T$ = T I s(i) of (26.5), where T is given by (39.1). The 
mapping F of (39.2), if restricted to s(i) x I, defines a continuous 
family of singular (q - 1)-simplices T ~ ‘ ,  with T( as an initial singular 
(q - 1)-simplex. For each t E [0, 11 the relation (26.6) has the formal 
extension 

Families of Singular Boundary Cells. 

adyt) = (-1y O:-l(t), (39.9) 

introducing the singular (q  - 1)-cells uf-’(t) = + $ I ,  where 0 < t < 1 
and i is on the range 0, 1 ,..., q. 
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Continuous Families of Singular q-Chains. Let 

f l  = r,u,q + * a .  + rmumq, 0 # r,, E X ,  m > 0, (39.10) 

be a "reduced" representation on x of the q-chain S (Definition 24.0). 
Suppose that each q-cell u,,q is the initial q-cell in a continuous family 
u,,q(t) of q-cells subject to the following compatibility conditions. These 
conditions are satisfied only exceptionally. We shall give an example 
in the critical point theory. 

Compatibility Conditions. For p and v on the range l,.,., m with 
p # v let 0q-l be a singular (q - 1)-cell which appears formally in a 
representation (39.9) of au,q(O) and of au,q(O), with coefficients on the 
right of (39.9) which are e,, and e, , respectively, on the range f l .  
The compatibility condition requires that the two continuous families 
d - l ( t ) ,  0 < t 9 1, of singular boundary (q - 1)-cells with initial 
(q - 1)-cell d-l associated as above with the families u,,q(t) and u,q(t), 
0 < t < 1 be identical. For each t the cell d - l ( t )  will then appear 
in the formulas (39.9) for au,q(t) and au/( t )  with coefficients e,, and e, , 
respectively. 

Let the reduced q-chain (39.10) be given as an initial chain, and let 
mutually compatible continuous families of cells u,,q(t) be defined with 
initial q-chains a,,q(O) = u,,q, p = 1, 2, ..., m. The family of chains 
defined by setting 

(39.11) 

will be termed an admissible continuous family of singular q-chains S ( t ) ,  
with initial chain 9 = S(0) and terminal chain S(1). I t  is clear that 
if fl  is a q-cycle on x, then S(t) is a q-cycle on x for each t .  

The following theorem connects the preceding special homotopy 
theory with homology theory: 

z"t) = rlul"(t) + ... + rmomq(t), 0 < t < 1, 

Theorem 39.1. If the chain (39.10) is a cycle, so that the family 
(39.1 1) is a family of cycles, then for each value t l  of t on the interval 
0 < t,  < 1 the initial cycle S(0) is homologous to S ( t l )  on 

(39.12) 

We prove no theorems in this section. 
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Deformations through a Critical Level. Let M ,  be a C”-manifold 
and f a ND function in Coo(M,). We suppose f ,  compact for each 
value c off. Let a be a critical value off, assumed at a single critical 
point pa , and set f a  = f a  - pa . 

If a reduced chain (39.10) is given, the maximum diameter on M of ? 
carriers I u,,Q I will be called the mesh of the chain B’J. We are supposing 
that M ,  has been metricized, so that such a mesh is well-defined. 

The following theorems, taken with the homotopy theorems of $23, 
give a basis for the homotopical aspects of the theory of critical points 
on M,. 

Theorem 39.2. Corresponding to the critical point pa  of f there 
exists a positive constant e so small that the following is  true: Suppose 
that the index k of the critical point pa is such that 0 < k < n and let r 
be an integer such that 0 < r < k. Corresponding to any r-cycle zr on f a  
with mesh < e there exists an admissible continuous family of r-cycles 
on f a  whose initial cycle is z* and whose terminal cycle is on f a  . 

Comments on Theorem 39.2 The condition in Theorem 39.2 that 
the mesh of fl  be less than e is not restrictive as far as homology theory 
is concerned, since a suitable subdivision of zr on f a  will be homologous 
to zr on f a  and satisfy this mesh condition. 

Three aids are invoked in proving Theorem 39.2. The theorems on 
deformation retractions into f a  are useful. The concept of “simply 
carried” q-cells of $30 is employed. When k < n the fact that the 
bowl “ascending from pa” has the dimension n - k is what makes the 
condition r < k effective. 

Extensions. The preceding theorems can be extended to the case 
in which the ring Z of integers replaces a field. One can also include 
the case in which in Theorem 39.2 there is given a relative r-cycle zr 
on f a  mod f a  with mesh < e. One can then prove the existence of an 
admissible continuous family of relative r-cycles f l ( t )  on f a  modfa 
whose initial relative cycle .is zr, whose boundaries W ( t )  are in- 
dependent of t ,  and whose terminal cycle vanishes mod f a .  

B. Global Alteration of Critical Values. Given a ND f E Cm(Mn), 
we seek modifications off as a ND function in Cm(Mn) which leave the 
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critical points off invariant, together with their indices. That f can be 
modified so that its replacementf has distinct critical values at distinct 
critical points has been seen in Lemma 22.4. We seek alterations of 
critical values which are more than the infinitesimal modifications of 
Lemma 22.4. 

Let a ND f be given, and a particular critical point z off. A ND 
functionfE Cm(Mn) replacing f will be termed admissible relative to z 
if the critical points off andf are identical and have the same indices 
and iff is identical with f in some neighborhood of each critical point 
off other than z. 

Definition 39.1. A Replacement Interval for f and z. Given a ND 
f E C"(M,) and a critical point z off, an open interval I,' of real values 
will be termed a replacement interval for f and x if for each value a E I,' 
there exists a ND f' E C"(M,) which replaces f admissibly relative to z 
and has the critical valuef(z) = a at z. 

We shall show how the bowls ascending and descending from z 
determine a replacement interval for f and z. T o  that end, two 
definitions are needed. For simplicity we assume that M,, is connected 
and compact. 

Definition 39.2. The k-Dome B-(2). If k > 0, each f-arc of the 
descending bowl BJz,  k) of Definition 22.2 has a critical point x' as 
lower limiting endpoint. Given z, these critical points z' are finite in 
number, and so have a maximum f-value M(s) .  The differentiable 
k-manifold B-(2) with carrier 

I B-(s)I = {q E B-@, k) If(d > Wz)) (39.13) 

C"-embedded in M ,  will be called the k-dome with zenith z. 

Definition 39.3. The Inverted (n - k)-Dome B+(z). If k < n, each 
f-arc of the ascending bowl B+(z, n - k) has a critical point Z" as 
upper limiting endpoint. Given z, these critical points z" are finite in 
number, and so have a minimum f-value m(z). The differentiable 
(n - k)-manifold B+(z) with carrier 

I B+(z)l = {q E B+(% n - R) Im < (39.14) 
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C“-embedded in M ,  will be called the inverted (n  - k)-dome with 
nadir 2. 

The following theorem is a consequence of Theorems 4.1 and 4.2 
of Morse [16] and Morse [12], pp. 249-259: 

Theorem 39.3. Let M ,  be a compact connected C”-manifold and x a 
prescribed critical point off. The open interval of values off assumed by f 
on the union of the domes Bf(2) is a replacement interval I,’for f and 2. 

On referring to Definitions 39.2 and 39.3 we see that the replacement 
interval affirmed to exist in Theorem 39.3 has the form 

I,’ = ( f ( W ( 2 %  f@’) <f (4  <f@”)l (39.1 5) 

where 2‘ and x” are critical points off. 

We admit modifi- 
cations of the Riemannian structure S on M ,  that leave M ,  and f 
invariant. It is desirable to preserve the character of S as “f-prefmed” 
by leaving invariant the Riemannian structure in sufficiently small 
open neighborhoods of each critical point off. To this end, let c be an 
ordinary value off and N, an open neighborhood offC relative to M, 
such that CINc contains no critical point off. A replacement of an 
f-preferred Riemannian structure S on M ,  by a Riemannian structure 
8 on M ,  identical with that of S on the submanifold dB, with carrier 
I M ,  - C1 N, I will be called a sectional mod@cation of S. The new 
Riemannian structure s will be f-preferred because S is f-preferred. 

Each “sectional” modification of a Riemannian structure S on M,, 
presumably will modify the K- or (n - R)-domes whose f-trajectories 
meet fc. On exploiting this fact we are led by a simple proof to the 
following theorem: 

Modzfying a Riemannian Structure S on M ,  . 

Theorem 39.4. Let M, , f, and a critical point x off be given as in 
Theorem 39.3, together with an f-preferred Riemannian structure S on 

It is then possible to make a jinite number of successive sectional 
modzfiations of S such that the replacement interval (39.15) defined by 
the resultant domes Bf(x) is such that 

index 2‘ < index x < index f. (39.16) 

Mn - 



39. SUPPLEMENTARY CONCEPTS AND THEOREMS 361 

The reader can readily verify the theorem for n = 2 and k = 1. 
The general case will then become transparent by virtue of the elemen- 
tary nature of trajectories orthogonal to the level manifolds of a ND 
quadratic form. 

One can illuminate the nature of the proof still further. 
Suppose that some of the f-trajectories emanating from the zenith 

of the original k-dome B-(2) were obstructed in their downward 
continuation by a critical point w with index h 2 k. Let c be a value 
on the open,interval ( f ( w ) , f ( x ) ) .  The original k-dome B-(x) meetsfo 
in a differentiable (k - 1)-sphere. The inverted (n  - h)-dome of 
B+(w) meetsfC in a differentiable (n - h - 1)-sphere. Since 

when h 2 k, (a - -h  - 1) + (k - 1) < n - 1 

it is clear that after a suitable sectional modification of the original 
Riemannian structure the f-trajectories of B-(x) will bypass w. Similar 
arguments apply to the ascending f-trajectories of B+(z). 

Theorem 39.4 follows. 
Theorems 39.3 and 39.4 have the following corollary: 

Corollary 39.1. Corresponding to a compact connected C“-manifold 
there exists a ND F E Cm(Mn) such that at each criticalpoint x of index k 
F(z) = k. 

By virtue of Morse [9], p. 383, there exists a ND f E CoD(M,) with 
just one point p of index 0 and just one point q of index n. 

I t  follows from Theorems 39.3 and 39.4 that a finite sequence of 
“sectional modifications” of preferred Riemannian structures S, 
S1 ,..., S, on M ,  and suitable modifications of critical values off and 
of its replacements will lead to a ND F satisfying Corollary 39.1. 

Corollary 39.1 is Theorem B of Smale [l] and is used by 
Smale in deriving his solution of the PoincarC problem when n 2 5 .  

Smale. 

C. Orientability without Triangulation. Let M, be a compact 
connected C“-manifold. In the absence of a triangulation of M ,  the 
homological characterization of the “orientability” of M ,  requires 
study. We shall give a definition of orientability of M, very similar to 
the classical definition of the orientability of a surface and supplement 
this definition by two equivalent characterizations belonging to 
homology theory: 
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Sense-Compatible Presentations. Two overlapping presentations F 
and G in BMn will be said to be sense-compatible if the corresponding 
transition difT X given by (5.6) has a positive Jacobian. 

Test Sequnces of Presentations. A finite sequence of presentations 

( F , : U i , X , ) E 9 M , , ,  i = l  m > 2 ,  (39.17) 

will be termed a test sequence if it has the following properties: (1) Each 
Ut is an open Euclidean n-ball; (2) Xi n Xi+, # 0 ,  i = 1) ...) m - 1 ; 
(3) Xl A X, # 0 ; (4) for i = l)..., m - 1 the presentations Ft and 
F,,, are sense-compatible. 

Definition 39.4. Orientability. A connected C"-manifold will be 
said to be geometrically orientable if the first and last presentations of 
each test sequence of presentations in .9Mn are sense-compatible. 

Corresponding to an arbitrary, simple, regular arc y joining a point 
q E M ,  to itself it is easily shown that there exists a partition of y into 
a finite sequence of arcs y, ) i = 1, ..., m, corresponding to which there 
exists a test sequence (39.17) of presentations Ft such that 1 yt I C X, 
for each i .  

The fundamental theorem follows: 

Theorem 39.4. A compact connected C"-manifold is orientable in the 
geometric sense if and only if either one of the following two equivalent 
conditions is satisfied: 

Condition 1. Corresponding to a ND f for which p is the sole point 
of maximum off on M,, ) Condition 1 requires that p be of linking type 
(Definition 29.2). 

Condition 2. The nth connectivity of M ,  over theJiald Q of rational 
numbers is 1. 

The existence of a ND f for which p is the sole point of maximum 
off follows from the work of Morse [9]. The equivalence of Conditions 
1 and 2 follows from Theorem 29.3. A proof that geometric orien- 
tability of M ,  is equivalent to Condition 2 will be published separately. 

Geometric orientability is well-defined for C"-manifolds which are 
not compact. Equivalent homological conditions in the noncompact 
case will be studied separately. 



PRELIMINARY DEFINITIONS 

This book presupposes mathematical knowledge at the level of a 
good first-year graduate student. The object of Appendix I is to recall, 
or clarify, a number of terms which are used without definition in the 
text, or are used in different senses by current mathematical writers. 

In general our use of terms is in accord with that of Bourbaki. 
A H a u s d d  space is a topological space X in which distinct points 

have disjoint neighborhoods. 
A topological n-manifold is a Hausdorf€ space in which each point has 

an open neighborhood homeomorphic to Euclidean n-space. 
A subspace of a topological space X is a subset of X whose topology 

is “induced” by that of X. The terms “a subspace of X” and “a 
subset of X” are by no means synonymous. 

A relatively compact subset U of a topological space X is a subset U 
of X whose closure in X is compact. 

Mappings into En of class C’. Let E n ,  n > 0, be a Euclidean 
space of points y = (yl  ,..., yn) .  Let X be a nonempty open subset of 
Em , 0 < m, of points x = (xl ,..., xm). A mapping 

x --t (dx),. . . ,  V”(.)) : x + E n  (1.1) 

will be said to be of class Cr, 0 < r,  on X if for i on the range 1, ..., n, 
the partial derivatives of tpt of orders at least I exist and, together with 
tpc , are continuous, A mapping p of class Cr for each I > 0 is said to be 
of class C“. 

Gradg. If a mapping 

x-+g(x) =g(xl, ..., xm): X + R  
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of a nonempty open subset X of Em into R is of at least class C1, the 
vector 

~ g ( 4 / %  *..** ~g(~)/a%l (1.3) 

will be termed thegradient of g at x and will be denoted by (grad g)(x).  

If F : U --.+ X is a mapping of a set U 
into a set X, then U is termed the domain of F and X the range of F. 

Domain, Range, Image Set. 

The subset &( U) of X is termed the image set of U under F. 

Composition g 0 f. Let two functions 

f : U + V  and g : X + Y  

be given such that V = X. A composite function 

g o f :  u - Y  

is then defined with values 

(8 o f  )(u) = g ( f  (u)), u E u- 

Such composition is associatiwe; if three functions 

f : U + V ,  g : V + W ,  h : W + Z  

are given, the composite functions 

h o ( k ! o f )  and ( h 0 g ) o f  

mapping U into 2 are defined and equal. 

Extended Compositions g 8 f. Let functions f and g be given as in 
(1.4) subject to the conditions f( U) C X. An extended composite 
function 

g a f :  u - Y  (1.9) 

is then defined with values 
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Extended composition of functions is not in general associative, as 
simple examples show. Iff o g  is well-defined, then it is always true 
that 

f o g = f e g .  (1.11) 

Note. An extended composition g 6 f of functions f and g is equal to 
a composition 

g o i o f ' ,  (1.12) 

where f' is a mapping of U ontof( U) with the same values as f and i 
is the inclusion mapping off (U) into X .  It  seems notationally simpler 
for our purposes to use g e f rather than the composition (1.12). 

Afield X is a nontrivial commutative ring in which each nonzero 
element has a multiplicative inverse. 
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ON ELEVATING MANIFOLD DIFFERENTIABILITY 

We shall make use of the following theorem (see Morse [lo]): 

Theorem A. Let M, be a regular, compact, differentiable n-manifold 

There then exists a sense-preserving Cwip, 
in En+, of class 0, p > 0. 

such that 'p(Mn) is  a regular n-manifold of class C" in En+, . 
and to an arbitrary positive constant e the dtfl 'p can be chosen so that 

Cotresponding to an arbitrary neighborhood N of M ,  relative to En+, 

Ip,(x)-x,l < e ,  J = l , . . .  , # + I ,  (11.2) 

and 

(11.3) 

for each x E En,, , and 'p reduces to the identity for x E En,, - N ,  so 
that cp(N) = N .  

Proof of Theorem 9.1'. We take M, of Theorem A as Z of 
Theorem 9.1', so that p = 2 in Theorem A. By hypothesis I Z I 
bounds the compact set 2. In terms of the diff 'p of Theorem A, set 
v(Z) = Z* and 'p(Z) = Z*. Then Z* is a regular manifold of class C" 
and I C* I bounds Z*. 
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Choice of N in Theorem A. Let N be so small a neighborhood of 
I Z I = I M ,  1 that Z* is included in the open domain off of Theorem 
9.1' and the critical points off I 8 are those off 1 8*. 

Choice of e of Theorem A. Let e be so small that grad f is emergent 
on Z*. This is possible, since (2) and (3) hold. 

With e and N so chosen f is admissible relative to the regular 
P-domain Z* bounded by Z*) and grad f is emergent on Z*. 

Theorem 9.1 implies that the type numbers of f I Z* and the 
connectivities of Z* satisfy the relations (9.4). Since the type numbers 
off 1 Z* are equal to those off I 2 and the connectivities of 2 are equal 
to those of Z* (see Part 111), Theorem 9.1' follows. 

Proof of Theorem 10.2'. Let M ,  of Theorem A be taken as Z of 
Theorem 10.2', so that p = 2 in Theorem A. By hypothesis of 
Theorem 10.2' Z bounds 2 of Theorem 10.2'. If p is the diff of 
Theorem A, set v(C) = Z* and p(Z) = Z*. Then C* is a regular 
manifold of class C"' and 1 Z* I bounds Z*. 

Let D be an open neighborhood of 2 on 
which f is of class Ca. Set p(D) = D* and let f * be defined on D* by 
settingf *(y) = f ( x )  for x E D subject to the conditiony = y(x). Then 
f * is of class C2 on D*, ND on Z*, and ordinary on Z*, with the 
critical points off I 8 and off * I 8* corresponding biuniquely with 
preservation of indices. Thus the type numbers off I 8will  be equal to 
the corresponding numbers off * I 8*. 

The restrictions f I Z and f * 1 Z*. These functions have equal 
values at points p E Z and q E Z* when q = y ( p ) .  It follows from 
Theorem 5.5 that the critical points of f  I Z and f I Z* correspond 
biuniquely under y with preservation of indices. If the constant e of 
Theorem A is sufficiently small, the critical points off I Z- and f I ZZ 
(Definition 10.2) will in particular correspond under p. 

One concludes that the augmented type numbers off I 2 are equal 
to those o f f  * I Z*. But the augmented type numbers o f f  * I Z* 
satisfy the relations (9.4) of Theorem 9.1 by virtue of Theorem 10.2. 
Since the connectivities of Z are equal to those of Z*, the augmented 
type numbers off 1 Z likewise satisfy the relations (9.4). 

The Functions f and f *. 

This establishes Theorem 10.2'. 



A P P E N D I X  111 

SINGULAR HOMOLOGY THEORY ON M, OVER Z 

Such a homology theory has been developed by the authors without 
making any use of a global “triangulation” of M,, and will be presented 
in the near future. Appendix I11 is an introduction to this theory. 

Hypotheses. For simplicity let the manifold M,, be of class C“ and 
connected. As has been seen in Theorem 23.5 there then exists a ND 
f E C”(M,,) such that for each value c off, fc is compact and has just 
one critical point of index 0. One can suppose, in accordance with 
Lemma 22.4, that each critical value a off  is assumed at just one 
critical point pa of f. The principal theorems concern the singular 
homology groups off, over Z. Our theorems are proved by an in- 
duction with respect to the increasing values of a in {a},, where {ale 
is the set of critical values a < c off other than the absolute minimum 
a, off. 

We shall state a number of principal theorems, omitting proofs. 
Unless otherwise stated all chains, cycles, and homology groups will 
be singular chains, cycles, and homology groups over Z. A first major 
theorem follows. 

Theorem 1. FOY each value c off and each integer q 2 0 the qth 
homology group off, over Z is “jinitely generated.” 

Theorem 1 is implied by the following lemma. If a > a, and if the 
qth homology group figa of fa over Z is finitely generated, then the 
qth homology group HpQ off a is finitely generated. A proof of this 
lemma and of Theorem 1 without any global triangulation offa ,fa , or 
f, , is a major departure from classical methods. 

368 
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A Finitely Generated Abelian Group A. For Abelian group 
theory see Ledermann [l] and Mac Lane and Birkhoff [2], pp. 344-355. 

The group A is a direct sum B @ T of its torsion subgroup T and a 
free Abelian subgroup B. We term B a Betti subgroup of A and term 
dim B the Betti number of A.  The torsion subgroup T of A is 
uniquely determined by A. This is not true of Betti subgroups of A 
if T is nontrivial. Given a base 

,*.*, “ p  (111.1) 

of B, one obtains a base of a second Betti subgroup B’ of A by adding 
an arbitrary element t, of T to ui in (111.1) for each i. Now, B’ # B 
unless each ti = 0. However, A = B‘ @ T and dim B = dim B‘. 

One can obtain an arbitrary base for B by subjecting the base (111.1) 
of B to a “unimodular” transformation. 

Torsion Subgroups T. The torsion subgroup of a finitely generated 
Abelian group A has a finite number of elements. It may be regarded 
as a Z-module. The group T, if nontrivial, admits a “cyclic primary 
decomposition” (CPD) (see MacLane and Birkoff [2], pp. 353-354). 
Such a CPD of T is by definition a direct sum 

El og, 0 .*. og, (no gi = 0) (111.2) 

of “primary subgroups” of T which are cyclic. 

p : ~  of a prime p ,  with exponent e, >, 1.  One thus has a list 
The order of a summand g, of a CPD of T of form (111.2) is a power 

pf, ..., p:. (111.3) 

of “prime powers,” the orders of the respective summands in (111.2). 
Moreover, a second CPD of T is isomorphic to the first CPD of T and 
so (after a suitable reordering of its direct summands) yields the same 
list (111.3) of prime power orders. The prime powers listed in (111.3) 
are termed elementary divisors of T, or, if one pleases, of the Abelian 
group A of which T is the torsion subgroup. Elementary divisors in 
the list (111.3) are regarded as distinct if they have distinct indices i 
even if they are numerically equal. 

The indexed elementary divisors of T uniquely determine (by 
elementary algebraic processes) the classical ordered set of “torsion 
coefficients” of T with their respective multiplicities. Conversely, the 
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"torsion coefficients" of T, if given with their multiplicities, determine 
(except for order) a list of indexed elementary divisors of T. 

the prime-simple c&e. An important and, in homology theory, a 
very general case, occurs if T is nontrivial and if the exponents in 
(111.3) are equal to 1. Then T and A are termed prime-simple. In the 
case of projective spaces each homology group with a nontrivial 
torsion subgroup comes under the prime-simple case. 

We add a definition to Abelian group theory. 

Definition 1. The Free Index of w E A. With an arbitrary element 
w in a finitely generated Abelian group A we shall associate a unique 
integer s 2 0 termed thepee index of w. We define s as follows. 

The free index s of w shall be zero if w is of finite order. 
If w has an infinite order the free index s of w shall be a positive 

integer s with the following property: Corresponding to each Betti 
subgroup B of A there is a base for B containing an element uB such 
that 

u) = 8uB TB 78 E T. (111.4) 

Such a positive integer s exists and is independent of the choice of the 
Betti group B of A. One terms s the free index of w. 

Program. We turn now to the problem of determining the qth 
homology group H,", q 2 0, of fc , up to an isomorphism. 

A group H,", as we have shown, is a finitely generated Abelian 
group, and as such is determined, up to an isomorphism, by the 
dimension of a Betti subgroup B," and the elementary divisors of the 
unique torsion subgroup T," of H,". It follows from the retracting 
deformations of $223 that these homology characteristics of H; are 
equal to the corresponding characteristics of Hga, where a is the largest 
value of a in {a}C. These characteristics of If; are the terminal result 
of an inductive determination of the corresponding characteristics of 
Hga from those of RQa as a takes on successive increasing values in {a}C . 

Our principal problem is then to determine Hqa from aQa, up to an 
isomorphism, for each a E {a}c, making use of the index k, of the 
critical point pa at the f-level a and the homological characteristics of 
&boundaries of universal k-caps teak associated with pa as follows. 
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The Role of k-Caps. In $29 we have seen that the homology 
groups off, over a prescribed field X are determined, up to an 
isomorphism, by the indices k, of the critical pointsp, at the respective 
critical levels a E {ale and the characterization of each critical point pa 
as being of “linking” or “non-linking” type. This character- 
ization was in terms of k-caps associated in $29 with pa. This asso- 
ciation depended upon the choice of the field X ,  so that the k-caps of 
pa defined in $29 should in the present context be termed k-caps of pa 
over x. 

Universal k-Caps. The k-caps of pa over Z, as we shall define them, 
will be called universal k-caps because they satisfy the definition in $29 
of a k-cap of pa  over every field X .  

An ‘If-saddle Lk of M, at pa ,” as introduced in Definition 36.2, 
will satisfy the isomorphisms (36.19) (here understood as between 
homology groups over Z) provided the f-saddle L& is a sufficiently 
small “subsaddle” of a prescribed f-saddle of M, at pa . 

Definition 2. A Universal k-Cap of pa. Given an f-saddle Lk , 
restricted as in the preceding paragraph, a universal k-cap K,,& of pa shall 
be any singular k-cell which is “Simply carried” by I Lk 1 and such that 
pa E I K , ~  I and I a K a k  I Cf, (see Definition 30.2 of simply carried). 

The universal k-caps K , ~  associated with the critical point pa 
enter our homology theory by way of the following fundamental 
lemma: 

A Lemma on wi-’. If wl-’ denotes the homology class on fa of a 
preferred universal k-cap K,P, then the homology class on fa of the 
&boundary of any other universal k-cap of pa is ewkl, where e = f 1. 

Definition 3. The Free Index s, of wk’. The first of the essential 
homological characteristics of wt-’ is its invariant free index s, as an 
element in the Abelian group I-&’ . 

The distinction between the cases s, = 0, s, = 1, and s, > 1 is 
fundamental in our program of determination (up to an isomorphism) 
of Hpa from The determination of the Betti numbers of fa from 
those of fa is as follows: 
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Theorem 2. For an arbitrary integer r > 0 and value a E {ale the 
following relations hold: 

dim B," - dim 8," = 1, 

dim B,' - dim 8," = 0, 

dim B f ,  - dim e-, = 0, ( I  = k, ; S, = O), 

dim BPl - dim e-1 = -1, (r = k, ; S, > O), 

while dim Bqa = dim Bqa when q # k,  or k, - 1. 

Elementary Divisors of Haa. Our program includes the deter- 
mination of the elementary divisors of the torsion subgroup Tpa of Hqa 
given the Betti numbers of fa, the elementary divisors of pqa, the 
index k,  of pa , and homological characteristics of wk-l on fa, such as 
the free index s, and linking index t, of pa , presently to be defined. 

The simplest cases occur when q # k,  - 1. In each such case the 
elementary divisors of Tqa are equal to those of pqa. The same is true if 
q = k, - 1 ands ,  = 1. 

We introduce another homological characteristic of wt-': 

The linking index t, of pa . By virtue of relation (111.4) applied to 
I&' as an element in figl 

(111.5) 

where we have added the superscript a to uB and T~ of (111.4). Set 

t ,  = min(order T$), (111.6) 
B 

where B ranges over all Betti subgroups of fig-' . The integer t, is at 
least 1. We term t, the linking index of pa relative to f. 

The above determination of the elementary divisors of Hqa is 
complete except in the case in which q = k, - 1 and s, # 1. 

The following theorem is of interest: 

Theorem 3. A necessary and suficient condition that each nontrivial 
torsion group Tqa for which a E {a}, be prime-simple is that each linking 
index t, = 1 and each free index s, > 0 be the product of distinctprimes. 
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In the paper to which Appendix I11 is an introduction the deter- 
mination of the elementary divisors will be made more explicit in 
accord with the program outlined above. 

I t  should be noted that the carriers of the universal K-cap a- 
boundaries are topological ( K  - 1)-spheres, so that the determination 
(up to an isomorphism) of the homology groups of fc has been reduced 
to the determination of the indices of the critical points pa off and 
homological properties on f a  of the spherically carried (K - 1)-cycles 

We shall close Appendix I11 by stating two theorems useful in 
interpreting results on homology groups over the field Q in terms of 
homology groups over Z. 

Given the above sublevel set f, of M ,  , let N ,  be the set of all indices 
of critical points off on f, . We say that f, is of lacunary type if there 
are no two positive integers in N, which differ by 1. Iff is a Milnor 
function of a complex projective space, each fc is of lacunary type. 

aKak. 

Theorem 4. The homology groups of a sublevel set fc of lacunary 
type are torsion free. 

Another theorem of general use follows. 

Theorem 5. Let x be a Hausdot3ff space for which $nitely generated 
singular homology groups over 2 and over Q exist. Then 

&(XI Q) = &(x)i q = 0, I , * * * ,  

where &(x) is the 4th Betti number of x. 
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a retracting deformation 
a sublevel set defined in (23.17) 
a superlevel set defined in (23.18) and (30.13) 
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Meaning 
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SECTION 35 
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