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THE CRITICAL POINTS OF A FUNCTION 
OF n VARIABLES* 

BY 

MARSTON MORSE 

1. Introduction. This paper contains among other results a treatment 
of the criticalt points of a real analytic function without restriction as to the 
nature of the critical points. Together with the results stated by the author 
elsewherel on the removal of the boundary conditions it constitutes a com- 
plete treatment of the problem, the first of its kind. 

In most of the paper the function considered is o class C", and may have 
critical loci not even complexes, in fact an infinite set of such loci. Moreover 
even in the analytic case it is not assumed that the critical loci are complexes, 
a considerable advantage in any case, and the more so because no adequate 
proof exists that they are complexes. 

Starting with a topological definition of type numbers in terms of or- 
dinary neighborhoods of the critical sets, it ends with a most precise deter- 
mination of these type numbers in terms of regions bounded by closed analytic 
manifolds without singularity. At no point is it necessary to break up regions 
more complicated than these into complexes. 

All of the results on critical points known to the author, with one excep- 
tion,? follow as special cases. The results on isolated critical points obtained 
by Brown|| in his Harvard Thesis are the simplest of corollaries. The 
author's? previous results on non-degenerate critical points are obtained with 
more difficulty. It is shown that the definitions of type numbers given are 
justified by a kind of invariance under slight analytic deformations of the 
function. 

The treatment will carry over to regular n-spreads in (n+r)-space. In it 
deformations predominate. It is essentially a generalization of the methods 

* Presented to the Society, October 25, 1930; received by the editors October 7, 1930. 

t A critical point of a function is a point at which all of the first partial derivatives of the func- 
tion vanish. The value of the function at such a point is called a critical value. 

I Morse II, Proceedings of the National Academy of Sciences, vol. 13 (1927), p. 813. 
? Whyburn, W. M., Bulletin of the American Mathematical Society, vol. 35 (1929), p. 701. 

Here the critical values are not necessarily finite in number. 

11 Brown, American Journal of Mathematics, vol. 52 (1930), p. 251. See also Annals of Mathe- 
matics, vol. 31 (1930), p. 449. 

? Morse I, these Transactions, vol. 27 (1925), p. 345. 
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found necessary in a treatment of n-dimensional critical loci in the calculus of 
variations* in the large where a reduction to complexes was not possible. 

2. The functions. Let (x) = (xi, ... , x,,) be a point in euclidean n-space 
in a finite region I, bounded by a closed point set M consisting of a finite 
number of connected, regular,t non-intersecting (n - 1)-spreads of class C"'. 

Let f(x) =f(x,- , x,,) be a real function of class C" defined on a region 
including z in its interior. On M we suppose that the directional derivative 
of f in the sense of the exterior normal to M is positive. As in Morse I?20 
we can then alter the definition of f neighboring M so that the resulting func- 
tion, which we will again call f, will take on an absolute maximum on M 
relative to its values on 2. This can be done without introducing any new 
critical points. 

We ass'ume that the critical values of f are finite in number. This hypo- 
thesis is always fulfilled if f is analytic. 

If a and b are any two ordinary (not critical) values of f, with no critical 
values between them, the domainsf < a andf? b are homeomorphic (Morse I 
?7). When there are critical values between a and b this will not in general 
be so. We are concerned in what follows with the topological differences be- 
tween the domainsf? a and f?< b, and the manner in which these differences 
depend on the critical points off. 

We shall begin by supposing that there is just one critical value of f 
between a and b, and shall denote the domains f? a and f? b by A and B 
respectively, a < b. 

3. The neighborhoods of critical sets g. By a critical set g will be under- 
stood any closed set of critical points on which f is constant, which is 
at a positive distance from other critical points. It may or may not be 
connected. In general it will not be a complex. 

By a neighborhood N of g will be meant an open set of points which 
includes all points within a small positive distance of g. We admit only 
neighborhoods which lie on B -A and are at a positive distance from other 
critical points of f. A neighborhood N' will be called smaller than N if it 
is on N and the distance between the boundaries of N and N' is positive.We 
always suppose N' smaller than N and in particular so small that any point 
on N' can be connected to g on N. This is always possible. 

* Morse III, these Transactions, vol. 36 (1930), p. 599. See also Birkhoff, these Transactions, 
vol. 18 (1917), p. 240. Poincar6, Liouville's Journal, (4), vol. 1 (1885), pp. 167-244. Kronecker, 
Werke, vol. I, pp. 175-226, and vol. II, pp. 71-82. 

t An (n- 1)-spread is called regular and of class C"', if in the neighborhood of any one of its 
points it can be represented by giving one of its coordinates as a function of class C"' of the remain- 
ing coordinates. 
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Supposef= 0 on g. By N and N' we shall mean those points of N and N' 
at which f<0. 

We assume for the present that g is of such sort that for a proper choice of 
N and corresponding sufficiently small choice of N' the following sets of 
cycles exist. 

(a) A complete set (a)k of k-cycles on N1, independent on N, dependent on N'. 
(/) A complete set (c), of k-cycles on N' independent on N of the k-cycles on N. 
We say that the set (a)k [substitute (ck)] is independent of the choice of 

admissible neighborhoods N and N' if there exists a fixed neighborhood N* 
with the following properties. The set (a)k [(Ck)] determined for any N 
smaller than N* and sufficiently small N' corresponding to N is equivalentt 
on N [N] to the set (a) k[(c)7,] determined for any smaller N and corresponding 
sufficiently small N'. 

We assume that the sets (a), and (c), are independent of the choice of N and 
N' in the preceding sense, and admit only neighborhoods N smaller than N.* 

We shall show in this paper that our assumptions are always fulfilled in 
the analytic case and in certain other particular cases. In a later paper we 
shall show that these assumptions are always fulfilled for the most general 
critical set as defined above. 

Let (NON) and (NN') be two admissible choices of N and N'. Let (a)k 

and (c), be the cycles described in (a) and (/3) determined for the neighbor- 
hoods N and N'. 

4. Classification of cycles. Suppose now that g is the set of all critical 
points at which f = 0. 

We replace (a), by an algebraicallyl equivalent set made up of two sets 
of k-cycles 
(4 .1) (b) ky (1) k, 

so chosen that each cycle of (1)k bounds on f< 0, and no linear combination 
of the cycles (b), not null so bounds. 

t We mean here that each cycle of the first set is dependent on cycles of the second set and vice 
versa. Dependent and independent are terms always understood with respect to bounding. Cycles 
and chains are here taken in the absolute sense or, with obvious changes, mod m with m > 1 and prime. 
The phrase "a complete set of k-cycles etc." may be replaced by "a set containing the maximum num- 
ber of k-cycles etc.-" Terms in analysis situs will in general be used in the senses defined by Alexander, 
Combinatorial analysis situs, these Transactions, vol. 28 (1926), p. 301. Chains will be understood, 
however, to be symbolic expressions for oriented complexes, singular or non-singular in the sense of 
Veblen, The Cambridge Colloquium, Part II, Analysis Situs. The Colloquium Lectures by Lefschetz 
were not out at the time of the writing of this article but the author knows that they will be helpful 
to the reader. 

I By algebraically equivalent we mean that a non-zero multiple of each member of the first 
set algebraically equals a linear combination of members of the second set and vice versa. Various 
of these sets may be null. 
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Let Ik-l be any linear combination of cycles of the set (l)k-l- We have 

Lk -> Ik-1 on f < 0, 

where Lk is a k-chain. Suitable multiples of the cycles (4.1) bound on N'. 
Without loss of generality, we can suppose the cycles (4.1) themselves bound 
on N1. Thus 

Uk - Ik-1 on N' 

where Uk is a k-chain on N1. 
We now introduce the k-cycle 

Lk + Uk = Xk 

which we will say links Ik-1. We shall term Uk and Lk the upper and lower 
parts respectively of Xk. We shall dcenote by (X)k the set of k-cycles which link 
the respective (k - 1)-cycles of (l)k-l 

On the cycles (b)k, f <O, and hence is less than some negative constant e. 
These cycles are thus on the domain 

(4.2) f ? e. 

They must form a subset of a complete set of k-cycles on (4.2). There then 
exist other k-cycles (i)k on (4.2) such that the two sets 

(b)k, (i)k 

form a complete set of k-cycles onf< e. 
We can, without loss of generality, suppose the set (i) k lies on A, since it is 

homologous on (4.2) to such a set. 
We introduce the following table of complete sets of cycles with appro- 

priate terms: 

(C) k: critical cycles; 
(1) k: linkable cycles; (X) k: linking cycles; 
(i) k: invariant cycles; (b) k: newly bounding cycles. 

Any linear combination of k-cycles of any one of these sets will be called by 
the same name. 

With each linkable cycle Ik-l we associate a linking k-cycle Xk so that Xk 

and Ik-l arise from the same linear combination of corresponding cycles of 
the sets (X)k and (l)k-1 We note that Xk cannot be null unless Ik-l is null. 
For if Xk were null, closed k-cells with points at which fX 0 on uk, the upper 
part of Xk, would have to cancel among themselves and we would have 
k-l bounding on N' contrary to the nature of the set (a) k-1 upon which lk-l 

depends. 
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5. A complete set of k-cycles on B. Let the orthogonal trajectories of 
the contour manifolds f constant (Morse I) be represented in the form 
i= -f, where ?i stands for the derivative of xi with respect to the time. 

At each critical point p we understand that there exists a trajectory coinci- 
dent with p for all time. 

The following lemma is fundamental. 
DEFORMATION LEMMA. Any cycle on Zk on B satisfies an homology 

Zk-Zk' kZ," =Zk, on B in which zk' is a k-chain on N' and Zk " a k-chain on 
f <O while the boundary zki of Z ' is on N1. 

Let each point p of Zk be deformed along the orthogonal trajectory of f 
through p, starting at p when the time t = 0, and moving along this trajectory 
until I equals a time to. Denote the resulting k-cycle by z *. For to sufficiently 
large z * must consist of points either on N', or f< 0, as one readily proves. 

Let z ' be the chain of k-cells of zk*, which, closed, are wholly on N', and 
Zk the chain of remaining k-cells of z *. We see that z ' lies on N'. We see 
also that if Zk* had been sufficiently finely subdivided, z " would lie on f <0. 

The lemma follows directly. 
We call zk and zkJ respectively the upper and lower parts of z'. 
We shall prove the following theorem. 

THEOREM 1. A complete set of k-cycles for B is formed by the sets (i) k, 

(X)k, (C)k. 

In other words a complete set of k-cycles for B is obtained by deleting the 
k-cycles of A which are newzly bounding on B, keeping the invariant k-cycles of A, 
and adding the linking and critical k-cycles. 

We shall prove this theorem with the aid of two lemmas. 

LEMMA 1. Any k-cycle Zk on B is dependent on linking, critical, and invar- 
iant k-cycles. (We admit any integer n 3 0 as coefficient of Zk.) 

We first deform zk into z * in accordance with the Deformation Lemma, 
obtaining thereby the cycle zk' 1 of the lemma. Since zk-1 is on N', and 
bounds on f<0, it satisfies an homology 
(5.1) nZk 1 - Ik-1 r- 0 on N, n 0 0, 

where Ik-1 is a linkable (k - 1)-cycle. 
Let Xk be the k-cycle linking k-1. The boundary of the lower part of the 

k-cycle, 
(5 .2) nZk* - Xk, 

bounds on N according to (5.1), and its upper part is on N'. Hencet the 
k-cycle (5.2) may be written as a sum of k-cycles onf <0 and k-cycles on N. 

t The proof holds as stated even when k=0, regarding cycles with negative subscripts as null. 
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But on the one hand k-cycles on f<0 are dependent on B on invariant 
cycles. On the other hand k-cycles on N are dependent on N? on critical 
k-cycles and k-cycles on N?, that is, onf<0. But k-cycles onf <0 are depend- 
ent on B on invariant k-cycles. 

Thus the k-cycle (5.2) is dependent on B on invariant and critical k-cycles, 
and the lemma is proved. 

LEMMA 2. The k-cycles of the theorem are independent on B. 

Suppose we had a relation of the form 

Dk+1 > Xk + Ck+ ik = Dk 

where ik, Ck, and Xk are respectively invariant, critical, and linking k-cycles, 
and Dk+l a chain on B, and Dk its boundary. 

We shall prove successively that Xk, Ck, ik are null. 
We could deform Dk+l as in the Deformation Lemma into a set of points 

either onf<0 or N1. Moreover, we could obtain the same result holding Dk 
fast, altering the deformation T of the lemma as follows. 

Without loss of generality we can suppose Ck and Xk are replaced by 
equivalent cycles null with the given cycles, and such that the new Ck, and uk, 
the upper part of the new Xk, are so near g that T will deform points within 
a sufficiently small positive distance r of Ck and Uk only through points on N1. 

Regard T as a movement depending continuously on the time t as t 
varies from 0 to 1. Let p be the initial distance of any point from Dk. We 
now perform T stopping the movement of a point initially within a distance 
r of Dk at a time t=p/r. We obtain thereby the desired deformation. 

We can suppose that Dk bounds a chain Dk+? whose points lie on f<0 
or else N1. 

Let dk+l be a chain of all (k + 1)-cells of Dk+1 which, when closed, lie wholly 
on N1. Let dk be the boundary of dk+l. 

The points on Dk+i at whichf> 0 form a closed set on N'. Accordingly if 
we suppose Dk+? sufficiently finely divided any closed k-cell of Dk+? possess- 
ing a point at which f>0 would be a k-cell of dk+,, and would be on the 
boundary dk if and only if it is on the boundary Dk of Dk+,. But boundary 
k-cells of Dk with points at which f_0 are found at most on Ck+Uk where 
Uk iS the upper part of Xk. 

We see then that on the k-chain 

(5.3) dk- ck- uk = ek 

the cells with points at which fJ 0 all cancel. Moreover ek is on N', since 
dk, Ck, and Uk are each on N1. Thus ek is on N1. 
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But the boundary of ek is the boundary lk-l of -Uk, since dk and Ck are 
cycles. But a linkable cycle Ik-l does not bound on N unless null. Thus Ik-1 is 
null. Accordingly Xk is null as well as Uk. 

We see then that 

dk = Ck + ek 

But this is impossible unless Ck is null, for otherwise the critical cycle ck 

would be homologous on N' to a cycle ek on N', since dk bounds on N1. 
Hence Ck is null. 

Thus dk is on N1. According to its origin it is homologous to ik on f<0. 
Moreover, for some integer n not zero, 

ndk - Ik + bk 

on N, where Ik and bk are linkable and newly bounding cycles respectively. 
But Ik bounds onf<0. Hence bk--ndk--nik onf<0. But this is impossible 
unless both bk and ik are null. Thus ik is null. 

The lemma is thereby proved. 
The theorem follows at once from Lemmas 1 and 2. 
6. The associated ideal critical points. With any critical set g we now 

associate a set of ideal critical points of type k. The number of points in this 
set will be denoted by Mk and called the kth type number of g. 

The kth type number Mk of g shall be defined as the number of cycles in the 
sets (a)k1,, and (C)k of ?3. 

This type number depends only onf and the topological properties of the 
neighborhoods of g. Accordingly, if g is a critical set composed of the sum of a 
finite number of distinct critical sets, the corresponding kth type number 
will be the sum of the kth type numbers of the component sets. 

Let a and A be any two ordinary values of f (a <A3). On the domain f <a 
there will be a complete set of (k - 1)-cycles, independent onf <a, but bound- 
ing on f</. These we call newly bounding relative to the change from a to A. 
On f</ there will be a complete set of k-cycles, independent on f</, and 
independent on f</3 of k-cycles on f<a. These we call new k-cycles relative 
to the change from a to /. 

We shall evaluate the type number Mk. 
The number of (k - 1)-cycles in (a) k1 equals the number of newly 

bounding (k - 1)-cycles and linking k-cycles in complete sets, as follows from 
the decomposition (4.1). The critical cycles (C)k are new k-cycles, and taken 
with the linking k-cycles form a complete set of new k-cycles as follows from 
Theorem 1. 

We thus have the following theorem. 
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THEOREM 2. If a and b are two ordinary values of f, a < b, between which lies 
just one critical value, the kth type number of the corresponding critical set will 
equal the number of newly bounding (k - 1)-cycles plus the number of new 
k-cycles in complete sets, taking these sets relative to a change from f ? a to f < b. 

Let g be the critical set of the theorem. We shall divide the Mk ideal 
critical points of type k associated with g, into two sets of points in number 
mk+ and mk-, called respectively critical points of increasing or decreasing type. 

The number mk+ shall be the number of linking k-cycles and critical k- 
cycles in complete sets, and the number mc- shall be the number of newly 
bounding (k - 1)-cycles in a complete set. 

We now have the following corollary of Theorems 1 and 2. See Morse I 
?18. 

COROLLARY. The kth Betti number of f < b minus the kth Betti number of 
f < a affords a difference given by the formulas 

ARk = mk - mk+?1 

(6.1) +m_ 
AI k = Mk + mk ( k = 0, . n), 

where mk+ and m - are respectively the numbers of ideal critical points associated 
with the critical set g, of increasing and decreasing k-type respectively. Here 
mO =m-+, =?-. 

The preceding corollary also clearly holds if a and b are any two ordinary 
values of f. If then we eliminate either the integers m;- or mk+ from (6.1) we 
obtain the following theorem. 

THEOREM 3. Let a and b be any non-critical constants, a b. Then between 
the changes in the Betti numbers as we pass from the domain f? a to the do- 
main f < b, and the sums of the type numbers of the critical sets with critical values 
between a and b the following relations hold: 

Mo- M1 + *M +(-1)iM = A(Ro - R1 + +(- )iRi) + (- 1)imi+, 
Mo- M1 + * * +(-1)iMi = A(Ro - R1 + + (-1)-'Ri-1) + (- 1)imi, 

where i=O, , n and mn+1=O. 

Many inequalities and other equalities can be deduced from these rela- 
tions. See, for example, Morse III ?14 and ?15, also Morse I ?19. Note the 
interesting relation obtained from (6.1) 

Mk = ARk + mk + mk+l. 

A similar formula can be obtained involving the increasing type numbers. 
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It will be convenient for the next proof to replace the words "the number 
of k-cycles in a complete set of k-cycles" by the words "the count of k-cycles." 

We now state a generalization of Theorem 2. 
THEOREM 4. If a and b are any two ordinary values of f the sum Mk of the 

kth type numbers of the critical sets with critical values between a and b will 
exceed or equal the count u of new k-cycles plus the count v of newly bounding 
(k- 1)-cycles relative to a change from f < a to f _ b, a < b. 

Let c change from a to b taking on successively between a and b a set of 
ordinary values, separating the critical values. Let c1 and c2 be two such suc- 
cessive values. 

Let h be the count of (k - 1)-cycles onf< c1, independent onf? c1, bound- 
ing on f <C2. Let h' be the count of the subset of such cycles dependent on 
f <cl on cycles of f? a. We have h' ? h. Summing for all such changes of c, 

v= Eh?< Eh. 
Now let m be the count of k-cycles onf? c2, independent onf? c2 of cycles 

onf ? c1. Let ml be the count of the subset of such cycles independent onf ? b 
of cycles on f <c1. Summing for all changes of c we have 

u Eml ? Em. 
Combining these results we have 

u + h < Yh + Z = M7, 

and the theorem is proved. 
7. The (qf) trajectories. Let 0 be a function of (x) of class C" in the 

neighborhood of a point p. Suppose p is an ordinary point of both f and 0 
and that the gradients off and q at p are not parallel. By the (qf) vector field 
we mean the set of vectors, at each point q near p, obtained by projecting the 
gradient of 0 on the tangent (n - 1)-plane of the manifoldJf= c at q. 

By the (of) trajectories we mean regular curves of class C' tangent at each 
point to vectors of the (of) vector field. 

The condition that the gradients off and q be not parallel is the following: 

(7.1) A (x) -= [ofk - 'Jkfi] 2 0 (i, k = 1, * * ) 
ik 

where the subscripts i and k indicate partial differentiation with respect to 
the variables xi and xk. 

The differential equations of the (of) trajectories have the form* 

* The summation convention of tensor analysis is used throughout. 
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(7.2) = p(fkfkOi - kkfkfi) = Xi(x), p P 0, 
dt 

where p is a function of (x) of class C' near p. The right hand members of 
(7.2) do not all vanish near p as follows from (7.1). 

On the (of) trajectories f is constant. 
For along such a trajectory we have 

df dxi 
(7-3) = -fi dt = fiXi--O. dt dt 

If we choose p as the reciprocal of 

(7.4) fkfkkifi - 'Pkfkfik i A (x)= 

then dl/dt will be one along each trajectory. The function (7.4) is not zero 
since it equals the function A (x) of (7.1) as indicated. 

We can then so choose the parameter t on the (of) trajectories that at each 
point we have q = t, and this choice we suppose made. 

There is a (of) trajectory through each point near p, and one through each 
point of the contour manifolds q = c near p. The intersections of these tra- 
jectories and manifolds will vary continuously with the constants c and the 
trajectories. 

We shall term the ordinary orthogonal trajectories of the contour mani- 
folds, cj constant, the 0 trajectories. We take their differential equations in 
the form 

(7.5) dxi= = Yi(X). 
dt 4ikck 

So taken we may suppose t = 5 at each point of a trajectory. 
8. Neighborhood functions. The existence of neighborhood functions $, 

as we shall define them, will enable us to express the type numbers in the 
simplest possible form. 

Let g be any connected critical set of f on which f = 0. Relative to g we 
shall call a function q (x) a neighborhood function if it satisfies the following 
conditions. 

(a) It is of class C" in the neighborhood of g. 
(b) It takes on a relative minimum zero on g. 
(c) At points near g but not on g it is ordinary. 
(d) At points near g but not on g at whichf = 0 the gradients of f and q 

are not parallel 
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We shall exhibit neighborhood functions q in certain important cases 
beginning with the analytic case. 

THEOREM 5. If the function f is analytic, the function q =f,fi is an admis- 
sible neighborhood function q relative to the critical set g of f. 

The function q clearly satisfies (a) and (b). We shall finish by proving 
the following lemma. 

LEMMA. If f is analytic, any analytic function which takes on a proper 
. elative minimum zero on g, is an admissible neighborhood function q$. 

Such a function q satisfies (a) and (b). It must then satisfy (c). For g is a 
set of critical points of X, and if q were not ordinary near g the critical set 
g would be a subset of a larger connected critical set. But on all connected 
critical loci an analytic function is constant. Thus q would be zero at some 
points near g not on g, contrary to the nature of a proper minimum. Thus 
(c) holds. 

Now (d) could fail only at points not on g at which 

(8.1) A(x)=0, f = 0, 

when A (x) is given by (7.1). 
But (8.1) is satisfied on g. Suppose it were satisfied on a larger analytic 

locus y connected with g. Let h be any regular curve along which (8.1) is 
satisfied. On h, f = O so that 

dxi 
(8.2) fi dt = 0. 

I say that on h 

dxi 
i- = 0. 

dt 

This is certainly true on g and follows from A (x) = 0 for points on h not 
on g. Thus 0 is constant on h and accordingly on y. It must then be zero on 
-y. From (b) we see that ty =g. Thus (d) holds. 

The lemma and theorem are thereby proved. 
We return now to the non-analytic case. 
We term a critical set at whichf takes on a relative maximum or minimum 

a maximizing or minimizing set respectively. We then state the following 
theorem, an immediate consequence of our definition of a neighborhood func- 
tion 0 . 

THEOREM 6. For a minimizing or maximizing set at which f = 0, the func- 
tionsf and -f are respectively admissible neighborhood functions. 
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In this connection we note the following. 
If the critical values are isolated there are at most a finite number of mini- 

mizing or maximizing critical sets. 
In fact the number of distinct contour manifolds on f= c cannot vary as 

c approaches a critical value from either side. But the number of minimizing 
sets or maximizing sets cannot exceed the total number of these manifolds, 
and hence is finite. 

There may however be an infinite number of distinct critical sets not 
minimizing or maximizing. 

A neighborhood function 4 always exists in the non-degenerate case as 
stated in the following theorem. 

THEOREM 7. If (x) = (a) is a non-degenerate critical point of f the function 

(xi - ai)(X -ai) = ) 

is an admissible neighborhood function. 

The function clearly satisfies all the requirements, possibly excepting the 
one regarding gradients. 

Suppose (a) = (0). The relations of gradients will be unaltered if we use 
an orthogonal transformation to bring f to the form 

f = XkXkXk + n (k = 1, 

where Xk is a constant not zero, and - is of at least the second order with 
respect to the distance p to the origin. 

If we can show that the function (7.4) does not vanish for real points on 
f =0 and for p 0 in some neighborhood of the origin the proof will be com- 
plete. 

Omitting terms of at least the fifth order this function (7.4) is seen to be 

16 [xV2 XkXkXiXi - XkXkXkXiXiXi] . 

But on f = 0 this becomes, up to the terms of at least the fifth order, 

16X? XkXkXiXi. 

The ratio of the last expression to p4 is positive and bounded away from zero 
for p 5 0. 

The function (7.4) is accordingly positive everywhere desired and the 
theorem is proved. 

THEOREM 8. If f is analytic and (x) = (0) is an isolated critical point, the 
function 4 =xixi is an admissible neighborhood function. 

The theorem follows from the lemma under Theorem 5. 
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9. The radial trajectories. We shall now prove the existence of a set of 
trajectories termed radial trajectories. They lead away from g somewhat 
after the fashion of rays emanating from a point. The theorem is 

THEOREM 9. If q is a neighborhood function for g, then on the domain 

(9. 1) R: 0 < 0 _ r, f _ 0, 
where r is a small positive constant, there exists a radial field of trajectories, 
one through each point of R, satisfying differential equations of the form 

dxi 
-= Bi(x), BiBi 7# 0, 

dt 

where the functions Bi(x) are of class C' on R. These trajectories reduce to 
(of) trajectories on f =0. On them t may be taken equal to q. As t increases 
they pass out of R only by reaching q =r. 

The q trajectories themselves would do except for the fact that they cross 
f =0 in general. We shall alter the q trajectories neighboring f =0 so that 
they will suffice. 

The (fq$)-trajectories P emanating from f=0 on R in general form a field 
only for a short distance from f=0 depending upon how near q$ is to zero. 
We shall be more precise and say that we can determine a negative function 
iz(a) of class C', for 0 < a ' r, such that the field persists on a trajectory P on 
which = a, and on which f decreases from zero to h (a). 

We can in fact define h(a) successively on the intervals with end points 

r, r/2, r/4, , 

and so define h(a) on its entire interval. 
Now let M(z) be a function of (z) of class C' for z> 0, identically one 

for z> 1 and zero for z zero, otherwise positive. 
Our radial trajectories will now be defined by (7.5), except for the above 

points on P where f decreases from zero to h(q$). At these points the differ- 
ential equations of the radial trajectories shall have the form 

(9.2) -= Xi(x) + MFl (x) ] [Yi(x) - Xi(x)] 
dt I-~~h(j( x)) 

where Xi and Yi are the functions of (7.2) and (7.5) respectively. 
On f=0 the radial trajectories reduce to the (of) trajectories (7.2). For 

f =h(I) they take the form (7.5). Moreover on them 

dqf do = iXi(l -M) - YifqiM = 1 - M + M = 1. 

This shows that we can take t=0 on the radial trajectories. It also shows 
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that the right hand members of (9.2) are not all zero at any one point on R. 
The theorem follows at once. 
10. The type numbers in terms of neighborhood functions. By a radi- 

al deformation we shall mean one in which each point moves on a radial 
trajectory, and points for which q is constant are deformed into points for 
which q is constant. 

The domains of points satisfying q = e or 0 <q < e, where e is a small posi- 
tive constant, less than the constant r of Theorem 9, will be respectively 
denoted by 95e and q$?. The points on these same domains at which f <0 will 
be denoted by ?ke and .e 

From the existence of the radial trajectories we infer the following. 
(1) For any two constants e and 71 less than r the domains qe and ;?, are 

homeomorphic. 
(2) If e < the domain f? can be radially deformed onto the domain 

?7)2 leaving q5 0 fixed and never increasing q$. 
(3) For any closed point set on f ? there exists a radial deformation of 

? that leaves 
- 

fixed and deforms the point set onto q$7. 
We can now prove the following theorem. 

THEOREM 10. If a neighborhood function q exists, the sets of cycles (a)k and 
(C)k of ?3 exist, and are independent of the choices of admissible neighborhoods 
N and N1. 

As a choice of the fixed neighborhood N* of the definition of independence 
of ?3 we take the domain q$ ? r. If N be any neighborhood on q$ ? r let 1 be a 
positive constant so small that the points on q$ ? 1 lie on N. Corresponding 
to N a sufficiently small choice of the neighborhood N', as we shall see, will 
be any neighborhood N' on q$ ? 7. Let e be a positive constant so small that 
the domain q$ ? e consists of points on N'. 

It appears, then, that relative to N and N', the cycles (a)k may be taken 
as a complete set on fe independent on fe, bounding on q$ ? e, while the 
k-cycles (C)k may be taken as a complete set on q$ ? e independent on q$ < e of 
the cycles on 0. We have then the following theorem. 

THEOREM 11. The type number Mk of a critical set is the number of cycles 
in the following two sets: 

(a) a complete set of (k - 1)-cycles on ?)e independent on q5e, bounding on 
< _e; 

(b) a complete set of k-cycles on q ? e independent on q ? e of the cycles on 4e 
The number of cycles in these sets is independent of the choice of the constant 

e for e positive and sufficiently small. 
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A cycle of any set (a) has been termed linkable if it bounds a chain Lk on 
f <0. If it so bounds it must bound outside of q <e as well. For the part of 
Lkon 0 can be radially deformed on q ? onto ?)e. 

We summarize and complete these results as follows. 
The linkable (k - 1)-cycles are those on q., independent on Oe, bounding on 

_e, and bounding onf<0 outside of q5<e. 
The newly bounding (k - 1)-cycles are those on 7e independent on fe, in- 

dependent on f < 0 outside of qb < e, but bounding on 0 < e. 
The critical k-cycles are the cycles (b). 

The number Mo equals the number of critical 0-cycles. It is one for 
connected minimizing sets, and null for all other connected sets. It is of 
increasing type. The number Mn is the number of newly bounding (n - 1)- 
cycles. This is true if we are operating in euclidean n-space or on a portion, 
not all, of a connected regular n-spread. For there are then no non-bounding 
n-cycles, in particular no linking or critical n-cycles. Unless a connected 
critical set is a maximizing set, Mn is null, for there are then no (n - 1)-cycles 
in (a). It is obviously one for connected maximizing sets. 

The following corollary of Theorems 8 and 11 brings all of Brown's results 
on isolated critical points under the results of the present paper. 

COROLLARY. Suppose (x) = (0) is an isolated critical point in the analytic 
case. Then if we set 4 = xixi the kth type number Mk, for k not zero, is given by 
the formula 

Mk = Rk-1 - blk 

where Rk is the kth Betti number of the region on the (n - 1)-sphere 4=eon 
which f is negative. In the case of a minimum Mo= 1. Otherwise Mo is null. 

This follows from Theorem 11, noting that in (a) of Theorem 11 all cycles 
on the (n - 1)-sphere 4 = e are bounding on the interior 4 ? e excepting a point 
0-cycle. From this exception the Kronecker delta alk arises. In (b) the com- 
plete set is null except in the case of a minimum, and then the origin may 
serve as a complete 0-set. 

Because of its signal importance we state the following as a separate 
theorem. 

THEOREM 12. In the analytic case Theorem 11 holds without exception with 
4 =fifi- 

From Theorems 6 and 11 we have the following theorem, true in the 
most general non-analytic case. In it we supposef=0 on g. 
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THEOREM 13. For a connected minimizing or maximizing set g, the type 
numbers of g always exist. 

For a minimizing set, Mk is the kth Betti number of the domain f< e, 
neighboring g. 

For a maximizing set, Mk is the number of cycles in the following two sets: 
(a) a complete set of (k - 1)-cycles on f =-e, independent on f =-e, bound- 

ing on f> - e, neighboring g; 
(b) a complete set of k-cycles on f> - e independent on the same domain of 

the k-cycles on its boundary. 

Consider a connected maximizing set. 
In euclidean n-space the set (b) is empty. Let the domain f -e neighbor- 

ing g be denoted by S. If Ri and ,i denote Betti numbers of S and its boun- 
dary f3, respectively, we have* 

Ri-1 + Rn_j = 13-i (i = 1, , n). 

Now there are Rn_i independent (i - 1)-cycles on the residue of S in n-space. 
To add S to its residue is then to diminish the (i-l)st Betti number by 
Rn_i There must then be at least Rn-i (i - 1)-cycles independent on 1B, and 
newly bounding. But there cannot be more than Rn_i such cycles inde- 
pendent on : bounding on S, since R,_1 cycles on 1 do not bound on S. Thus 
Mi = Rn-i- 

11. The type number of a non-degenerate critical point. This case is 
the most important in the many geometric applications. 

Suppose (x) = (0) is a non-degenerate critical point at which f = 0. Let 
the quadratic form fijxixi, in which the partial derivatives are evaluated at 
the origin, be carried by a linear transformation into a form with squared 
terms only. The number of terms with negative coefficients thereby resulting 
is called the index of the critical point. 

We wish to establish anew the results of Morse I. Our problem is pri- 
marily to prove the following theorem. 

THEOREM 14. If k is the index of a non-degenerate critical point, the kth 
type number Mk = 1, while all other type numbers are zero. 

It follows from our initial definition of type numbers that such a number, 
if it exists, will be independent of any one-to-one transformation of the 
neighborhood of the critical points of class C". That the type number exists 
in this case is a consequence of the existence of the neighborhood function 
xixi = , as affirmed in Theorem 7. 

* Apply Alexander's duality relations to ,B (these Transactions, vol. 23 (1922), p. 348). 
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Now we have shown in Morse I that in the neighborhood of the origin 
the function can be carried by a transformation of the above sort into the 
form 
(11.1) f=-l2 -**f- yk2? + yk + + Yn2 

The function yiyi is again an admissible neighborhood function. We 
see from Theorem 13 that the theorem is true if k = 0 or n. 

Suppose then that 0 <k <n. From Theorem 11 we have the following 
lemma. 

LEMMA. The ilk type number Mi equals the (i - 1)st Betti number Ri-1 of 
the domain 

(11.2) yiy= 1, f < 0 (i,j = 1, , 

minus one if i = 1. 
Our problem is then to determine the Betti numbers of the spherical 

region (11.2). 
We shall prove that the domain (11.2) can be deformed on itself into the 

(k - 1)-sphere 
(11 . 3) yI + ...+ yk2=1 y&1l + + yn 2 (11.3) Yi +n i ,Y~i1? +)~0 

by a deformation T that leaves (11.3) fixed. Accordingly the Betti numbers 
of (11.2) will be those of the (k - 1)-sphere, and the theorem will follow from 
the lemma. 

The deformation T will now be given. 
Corresponding to any point (x) = (a) on (11.2) there is a unique angle a 

such that 
(11.4) a2+ * = cos2 , a+, + *+ a 2 = sin2a, O_a<-, n ~~~~4 
and every point (a) satisfying (11.4) is on (11.2). 

Now hold each such point (a) and corresponding a fast. In the required 
deformation the point (y) shall not move if it is initially on (11.3). If (y) 
is initially at a point (a) not on (11.3) it shall move as follows: 

cos (at) 
Yi = ai (i=1, . k)) 

cos a 
(11.5) 

sin (at) 
Yis= (j=ak+rielfom n), 1a 

sin az 

as t varies from 1 to zero. 
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It is easily seen that this affords the required deformation except possibly 
for continuity of movement of points near (11.3). But for these points a is 
near zero, and we have from (11.5) that 

Yk+? ? + yn = sin (at), 

so that for a near zero the variables yk+i, y, ly are uniformly near zero. 
Thus the deformation is continuous. 
The theorem now follows from the lemma. 
The principal theorems on type number relations in Morse I now follow. 
12. A justification of the definitions of type numbers. We shall in- 

vestigate how the type numbers of a function change with variation of the 
function. 

Let F(x, ,u) be a function of (x) and a set of parameters (a), analytic in 
(x) and (,u) for (x) on z and (,u) neighboring (0), and such that 

f(x) - F(x, 0). 

For (,u) sufficiently near (0), F(x, p) will satisfy our boundary conditions and 
possess critical points lying only in arbitrarily small neighborhoods of the 
critical sets of g. 

We state the following lemma. 

LEMMA 1. If a and b are any ordinary values of f with a <b, then for (,u) 
sufficiently near (0) the domains f ? b and F ? b are homeomorphic under a trans- 
formation that makes f ? a and F < a correspond. 

The lemma is easily established by using the orthogonal trajectories of f. 
A deformation can be set up along these trajectories which affords the homeo- 
morphism, moving only those points which are very near f = a and f = b. See 
Morse I ?7. 

We note that to prove this lemma we need only to have F(x, ,u) of 
class C". 

Let g be a connected critical set of f. Recall that - =fifi is a neighborhood 
function for g. We now give a lemma which enables us to avoid critical sets 
with the same critical value. 

LEMMA 2. Corresponding to the critical set g of F(x, 0) there exists a func- 
tion 4{(x) of class C" throughout z with the following properties: 

(1) Except when 4 <e, +(x) 0, where e is a small positive constant. 
(2) When 4 <el, +(x) -p, where p is an arbitrarily small positive constant 

and el is a positive constant less than e. 
(3) For (,u) sufficiently near (0), F+i/ has no other critical points than 

those of F. 
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Let H(z) be a function of z of class C" for z>0, one for z<e1 and zero for 
z > e. The function 4{(x) will now be defined as zero except when q$ <e, and 
when q < e it will be defined by the equation 

{(x) = ph [+(x) ]. 

One sees that ,1 has all the required properties, except possibly (3). But 
(3) could fail only when 

(12.1) el < 4 < e. 

For p = 0 and (,u) = (0) we have F+ 4=f. Moreover F?+4 is of class C" 
in (x), (a,), and p. On the domain (12.1) the gradient of f is not null. Accord- 
ingly for p and (,u) sufficiently near p = 0 and (,) = (0) respectively, the 
gradient of F+?4 is not null. 

Thus t1 satisfies (3) and the lemma is proved. 
Our definition of type numbers is justified by the following theorem. 

THEOREM 15. If (g) be sufficiently near (/) = (0), the critical points of 
F(x, /x) will appear only in sets arbitrarily near the critical sets of f. Corre- 
sponding to each critical set g off the critical points of F which lie in g's neighbor- 
hood have a kth type number sum at least as great as the kth type number of g. 

By virtue of Lemma 2 we will lose no generality if we suppose the critical 
values at the different critical sets of f are all different. The addition of ,t in 
Lemma 2 did not change the position or type numbers of the critical points 
of F for (,u) sufficiently near (0). 

Let g be any critical set of f whose critical value is separated from the 
other critical values of f by constants a and b. Let -y be the set of critical 
points of F(x, /) which lie in the neighborhood of g. Let (p) be taken so 
near (0) that the critical values of F on -y lie between a and b, and so that 
the homeomorphism of Lemma 1 holds. 

The type number Mk of the set g relative to f will equal the number Nk 

of newly bounding (k - 1)-cycles and new k-cycles in complete sets, relative 
to a change from the domainf? a to f < b. By virtue of the homeomorphism 
of Lemma 1 the number Nk will be the same relative to F. But according 
to Theorem 4 the kth type number sum of the critical points -y of F will 
exceed or equal Nk, that is, the type number Mk of g. 

The theorem is thereby proved. 
Our work is further justified by the following theorem. 

THEOREM 16. If f is analytic there exists a set of constants (Mi) arbitrarily 
near (0) such that the critical points of the function 

F(x /.t = f(x + 
e / 

_ixi 
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are non-degenerate and lie in arbitrarily small neighborhoods of the critical 
Points off. 

Corresponding to each connected critical set g off the critical points of F(x, A) 
which lie in g's neighborhood have a kth type number sum at least as great as 
the kth type number of g. 

The condition that F(x, /) have no degenerate critical points is that the 
equations 

f -xi+ i= 0 

have no solution at which the Hessian of f vanishes. That a choice of the 
constants (,u) can be so made arbitrarily near (,u) = (0) follows from a general 
theorem formulated by Kellogg.* 

The second statement in the theorem now follows from Theorem 15. 

* Kellogg, Singular manifolds among those of an analytic family, Bulletin of the American Mathe- 
matical Society, vol. 35 (1929), p. 711. 

HARVARD UNIVERSITY, 
CAMBRIDGE, MASS. 
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