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ABSTRACT

Knitted and woven textile structures are examples of doubly periodic structures in
a thickened plane made out of intertwining strands of yarn. Factoring out the group of
translation symmetries of such a structure gives rise to a link diagram in a thickened
torus, as in [2]. Such a diagram on a standard torus in S3 is converted into a classical
link by including two auxiliary components which form the cores of the complementary
solid tori. The resulting link, called a kernel for the structure, is determined by a choice
of generators u, v for the group of symmetries.

A normalized form of the multi-variable Alexander polynomial of a kernel is used to
provide polynomial invariants of the original structure which are essentially independent
of the choice of generators u and v. It gives immediate information about the existence
of closed curves and other topological features in the original textile structure. Because
of its natural algebraic properties under coverings we can recover the polynomial for
kernels based on a proper subgroup from the polynomial derived from the full symmetry
group of the structure. This enables two structures to be compared at similar scales,
even when one has a much smaller minimal repeating cell than the other.

Examples of simple traditional structures are given, and their Alexander data poly-
nomials are presented to illustrate the techniques and results.

Keywords: Textile structure; doubly periodic; torus; multi-variable Alexander
polynomial.

Mathematics Subject Classifications 2000: 57M25

1. Introduction

Textiles represent a diverse class of commonly used materials with specific struc-
tural properties which impose a number of restrictions on the mutual position of
constituting threads and the way in which they are intermeshed. Unlike general
knots and links, textile structures cannot contain closed components or knots tied
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on their threads; they must be structurally coherent, i.e. fabrics cannot contain
non-interlaced threads, disconnected strips or layers.

The development of specific tools to identify such forbidden elements in the
fabric structure forms the focus of this paper.

1.1. Representing a fabric by a link

In [2] Grishanov, Meshkov and Omelchenko introduced the idea of representing a
fabric with a repeating (doubly periodic) pattern by a knot diagram on a torus,
having made a choice of a unit cell for the repeat of the pattern. Algebraic invariants
of this diagram based on the Jones polynomial were used to associate a polynomial
to the fabric which was independent of the choice of unit cell, so long as a minimal
choice of repeating cell was made. In this paper we enhance the nature of the
diagram used to represent the fabric by including two further auxiliary curves, to
produce a link in the 3-dimensional sphere S3 from which the original fabric can
be recovered. We use the multivariable Alexander polynomial of the resulting link
so as to strengthen the information available about topological properties of the
fabric, and remove the need to work with a minimal choice of repeating cell.

We use the term fabric to mean a doubly periodic oriented plane knot diagram,
consisting of coloured strands with at worst simple double point crossings, up to
the classic Reidemeister moves. A fabric gives rise to a link diagram on the torus
T 2 ∼= S1 × S1 by choosing a repeating cell in the pattern and splicing together the
strands where they cross corresponding edges to form the diagram on the torus.
A link in S3 with two further auxiliary components X and Y is constructed by
placing the torus in S3 as a standard torus and including the core curves on each
side of the torus in addition to the curves forming the diagram on the torus. We
make the convention that the curve X lies on the side of the torus towards the face
of the original fabric, and the curve Y lies on the side of the torus towards the back
of the fabric. The resulting link, with the distinguished choice of curves X and Y ,
will be called a kernel for the fabric.

We assume that our fabric lies in a thickened plane, and is invariant under a
discrete group G generated by two independent translations. The quotient of the
thickened plane by the action of G is then a thickened torus T 2 × I, bounded by
two tori corresponding to the face and the back of the fabric. In forming a kernel
of the fabric we have made a choice of embedding of this thickened torus in S3,
determined by an explicit choice of two generators u and v for G along the edges
of our chosen unit cell.

A schematic view of a fabric, with its face uppermost, and a kernel for it, are
shown in Fig. 1.

1.2. Some examples

Some traditional fabrics are shown in the following figures (see Figs. 2–5), with a
choice of repeating cell indicated, and the resulting kernel in each case. For clarity
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Fig. 1. A kernel for a fabric.

Fig. 2. Plain weave.

Fig. 3. Leno weave.

two strands in the diagram of the kernel in Fig. 4 have not been closed. A wide
variety of fabrics can be found in the books by Watson [11, 12], and Spencer [14],
and some of the primary structural elements are described in [13].

Different choices of repeating cell for a given fabric will give rise to different
kernels. For example, choosing the cell shown in Fig. 6 for the single jersey fabric
gives the kernel shown.
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Fig. 4. Multiaxial weave.

Fig. 5. Single jersey.

Fig. 6. Single jersey with a different repeating cell.

1.3. Fabric kernels

The original fabric can be recovered from any one of its kernels. Since the region
between the two auxiliary components X and Y is topologically a thickened torus
this means that the diagram on the torus can be recovered. The whole fabric can
be reconstructed as a doubly periodic plane pattern by unwrapping the torus — in
effect constructing the inverse image of the diagram on the torus under the universal
cover of the torus by the plane.
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We adopt the name fabric kernel for such links.

Definition 1.1. A fabric kernel is a link consisting of two distinguished unknotted
components X and Y which form a Hopf link and one or more further components
representing the fabric strands.

Any fabric kernel determines a fabric as above. Many fabric kernels will give rise
to fabrics which decompose into disconnected layers or strips, or can prove physi-
cally difficult to make. The problem of identification of such structures which are
not textiles from the traditional point of view is a part of a wider problem of enu-
meration of all possible textile structures. Some restricted subclasses corresponding
to variants of traditional woven or knitted material will be of particular interest to
us, but much of our theoretical work will apply to very general fabric links.

We show in the corollary to Theorem 3.3 how to use the classical multivariable
Alexander polynomial of a fabric kernel to tell whether the resulting fabric contains
any closed components. Such chain mail type of fabric is impossible to make using
traditional textile technology, and it is useful to be able to identify readily the
corresponding fabric kernels.

In Sec. 3.3, we show how to compare the polynomials for different kernels for the
same fabric. The Alexander data, which can be displayed as described in Sec. 3.3
on a diagram of the fabric, can be found from any given kernel, and allows the
polynomial of any other kernel to be readily calculated.

The Alexander data is then enough to allow comparison of different fabrics.
While two different fabrics can generate the same Alexander data the size of the
kernels must be sufficiently large for this to be possible, and an inventory of small
fabric kernels using their polynomials will give a good means of listing the corre-
sponding fabrics. We expect that more detailed comparisons of two fabrics will be
best conducted by using kernels of approximately the same size — measured for
example by the number of crossings in a repeating cell.

The Alexander data of a layered fabric has some characteristic features,
described in Sec. 3.7. Assuming that the layered fabric has no closed components
then the multivariable Alexander polynomial of any of its kernels must factorise
non-trivially in a certain way, described in Theorem 3.27. This leads to a quick
check for the maximum number of potential layers in a fabric.

2. The Axial Type of a Strand in a Fabric

Suppose that we are given a fabric lying in a thickened plane, with a discrete group
G of invariant translations generated by two independent elements u and v. We
shall assume that the normal direction u × v lies to the face side of the fabric.

Any strand of yarn in the fabric is invariant under some subgroup of G. This
subgroup is either trivial, when the strand is a closed curve, or is infinite cyclic,
generated by some w ∈ G. The element w can be recognised, up to sign, as the
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smallest translation in G that carries one point of the chosen strand to another point
of the same strand. If the strand is oriented then we select w so as to translate the
strand in its preferred direction.

Definition 2.1. The axial type of a strand in a fabric is 0 if the strand is closed
and is otherwise a generator w of the subgroup of translations which leaves the
strand invariant.

Remark 2.2. Once we have chosen generators u and v for G each axial type has
the form w = αu + βv for some integers (α, β), determined up to an overall sign if
the strand is unoriented.

For example, in the single jersey fabric shown in Fig. 5 all fabric strands have
axial type u. In fact all strands are equivalent under translations in G, and yield a
single fabric component in the kernel.

In general there may be two or more inequivalent strands with the same axial
type. For example in Leno weave (Fig. 3), there are two inequivalent strands with
axial type u and two with axial type v, while the multiaxial fabric in Fig. 4 has
strands of type u, v, u + v and u − v.

2.1. Axial type and kernels

We can identify the axial type of the strands in a fabric by calculating certain
linking numbers in a kernel for the fabric.

Assume that the kernel has been constructed using a choice of generators u, v

for the group G of invariant translations. In the torus T 2 = R2/G the lines in
the directions of u and v become closed curves, U and V say, which generate the
homology group H1(T 2). A strand in the fabric with axial type w = αu + βv will
become a closed curve W in the thickened torus T 2 × I which represents αU + βV

in its homology group. Now the curves X and Y in the fabric kernel lie parallel to U

and V respectively on either side of the standard thickened torus. They are oriented
so that lk(X, U) = 0, lk(X, V ) = 1, lk(Y, U) = 1, lk(Y, U) = 0. Since W = αU + βV

in the homology of T 2 × I ∼= S3 − (X ∪ Y ), we get lk(X, W ) = αlk(X, U) +
βlk(X, V ) = β and similarly lk(Y, W ) = α.

Consequently in a fabric kernel L = X∪Y ∪T1∪· · ·∪Tk each oriented component
Ti represents a family of translation-equivalent strands in the fabric of axial type
biu + aiv, where ai = lk(X, Ti) and bi = lk(Y, Ti). In particular, the strands in the
fabric corresponding to Ti are closed curves if and only if ai = bi = 0.

3. The Multivariable Alexander Polynomial

For a link L ⊂ S3 with r > 1 oriented components X1∪· · ·∪Xr the group H1(S3−L)
is free abelian of rank r. It has distinguished generators x1, . . . , xr represented by
oriented meridians of the components. The multivariable Alexander polynomial
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∆L is an element of the integer group ring Z[H1(S3 − L)] and is thus a Laurent
polynomial in Z[x±1

1 , . . . , x±1
r ]. It is defined up to a unit in this ring, and thus up

to multiplication by a signed monomial ±xa1
1 · · ·xar

r .
With some care an absolute version of the polynomial can be defined, as in [7].

The Torres symmetry condition (3.1) shows that

∆L(x−1
1 , . . . , x−1

r ) = (−1)rxm1
1 . . . xmr

r ∆L(x1, . . . , xr),

for some integers m1, . . . , mr. Multiplying ∆L by the monomial x
1
2 m1
1 . . . x

1
2 mr
r gives

Murakami’s absolute version, up to sign, with the property that

∆L(x−1
1 , . . . , x−1

r ) = (−1)r∆L(x1, . . . , xr).

In this format we need to use half-integer powers x
1
2
i of some of the variables {xi}.

We make use of the absolute version in presenting the Alexander data, but for
many of the properties and calculations it is enough to allow a monomial multiple,
so as to avoid negative powers of the variables.

In the case of a single component link, in other words a knot K, we write
∆K ∈ Z[t±1] for its classical Alexander polynomial, and in this paper we use the
non-standard notation ∆K to denote the rational function ∆K = 1

1−t∆K . In this
way, we can give formulae for the behaviour of the Alexander polynomials of related
knots and links in a uniform way, without having to treat the single component case,
r = 1, separately. The formulae can be most consistently handled in the context
of Reidemeister torsion, where an excellent recent account is given in [10]. Here we
give a summary of the properties needed, following the constructions of Fox and
Torres based on Fox’s free differential calculus [9, 1].

3.1. Deletion of components

For an oriented link L with components X1 ∪ · · · ∪Xr, the curve Xi represents the
monomial

∏
j �=i x

lij

j as an element of H1(S3− (L−Xi)), where lij = lk(Xi, Xj) ∈ Z
is the linking number of Xi and Xj . We write

〈Xi〉 =
∏
j �=i

x
lij

j (3.1)

for this monomial. A special case of the Torres–Fox satellite formula relates the
invariants ∆L and ∆L−Xi .

Theorem 3.1 (Torres).

∆L|xi=1 = (1 − 〈Xi〉)∆L−Xi .

Remark 3.2. If the component Xi has a non-zero linking number with at least
one of the other components, then 〈Xi〉 �= 1. It is thus possible to recover the
Alexander polynomial of the sublink L − Xi where Xi is removed, starting from
the polynomial ∆L of the whole link, unless Xi has linking number 0 with all the
other components of L.
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For the absolute versions of the invariants in Theorem 3.1 the factor 〈Xi〉 1
2 −

〈Xi〉− 1
2 appears in place of 1 − 〈Xi〉.

3.2. Closed components in a fabric

We start from a fabric kernel L. Then L = X ∪ Y ∪ T1 ∪ · · · ∪ Tk, where X and Y

are the distinguished face and back curves forming a Hopf link. The complement
of X ∪ Y forms a standard thickened torus containing the remaining components
T1, . . . , Tk, termed the fabric components of L. These curves correspond to the
strands of yarn in the fabric resulting from unwrapping L.

The curve Ti in the fabric kernel unwraps to give closed components in the
covering fabric if and only if it has linking number 0 with both of the auxiliary
curves X and Y .

Theorem 3.3. Let L = X∪Y ∪T1∪· · ·∪Tk be a fabric kernel. Write ai = lk(Ti, X)
and bi = lk(Ti, Y ). Then its Alexander polynomial ∆L(x, y, t1, . . . , tk) satisfies

∆L(x, y, 1, . . . , 1) =
k∏

i=1

(1 − xaiybi) ∈ Z[x±1, y±1].

Proof. After setting all tj = 1 we have 〈Ti〉 = xaiybi by Eq. (3.1). Repeated use
of Theorem 3.1, suppressing the components T1, . . . , Tk in turn, gives

∆L(x, y, 1, . . . , 1) =
k∏

i=1

(1 − xaiybi)∆X∪Y .

Since the remaining link X ∪ Y is the Hopf link, whose Alexander polynomial is 1,
the result follows.

Corollary 3.4. There is a closed component in the covering fabric of L if and only
if ∆L(x, y, 1, . . . , 1) = 0.

Proof. The Laurent polynomial
∏k

i=1(1 − xaiybi) is equal to 0 in Z[x±1, y±1] if
and only if ai = bi = 0 for some i.

Remark 3.5. The element 〈Ti〉 = xaiybi represents the homology class of Ti in
the thickened torus S3−(X∪Y ). Written additively this is biU +aiV , where U and
V are determined by the generators u and v as in Sec. 2.1. The axial type biu+ aiv

of the corresponding strands in the fabric, and indeed the number of inequivalent
strands of each axial type, can then be read off immediately from ∆L, so long as
there are no closed strands in the fabric.

To determine the axial types using Theorem 3.3, it is enough to be given the
polynomial ∆L as a function of x, y and t only, where all the fabric variables ti have
been set equal to t. If there are no closed components in the fabric, we can then
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Fig. 7. Single jersey with warp and weft inlays.

recover the number k of fabric components in the kernel, and the axial types of the
corresponding fabric strands, from the factors in the evaluation with t = 1.

In a traditional woven fabric, there are just two axial types, corresponding to
the warp and weft directions, while a traditional knitted fabric has only one type.

More sophisticated woven fabrics with multiaxial types have recently been intro-
duced [15], such as the fabrics shown in Figs. 4 and 15. Knitted fabrics too may
have warp and weft type inserts, as in Fig. 7, leading to a multiaxial fabric.

From this basic analysis of the polynomial of a kernel, we can identify immedi-
ately the axial types, although a definite conclusion of whether a fabric is woven or
knitted in the appropriate sense may not be available from the polynomial alone.
Of course if the kernel has more than two different axial types then we can cer-
tainly conclude that the fabric is not a traditional woven structure, while equally a
traditional knitted structure can be excluded unless there is a single axial type.

We give here the polynomials for the kernels of several fabrics.

Example 3.6. Single jersey with a closed thread around the fabric thread

∆L = (tx − t − x)(t + x − 1)(t − 1)(y − 1).

Example 3.7. Single jersey with a trefoil added to the fabric thread

∆L = (tx − t − x)(t + x − 1)(t2 − t + 1)(y − 1).

Example 3.8. Single jersey with warp and weft inlays, as in Fig. 7:

∆L = (t + x − 1)(tx − t − x)(px − 1)(ey − 1)(y − 1),

where the jersey strand has variable t, the warp strand has variable e and the weft
has variable p.

Example 3.9. The Alexander polynomial for the kernel of the chain mail pattern
shown in Fig. 8 is

∆L = (x − y)(1 − xy)(1 − t). (3.2)
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Fig. 8. Chain mail.

This is one of the fabric kernels which, like Example 3.6, does not correspond
to a physically constructible textile fabric, on account of the closed components.
The substitution t = 1 for the fabric variables leads to the value 0, as required by
Theorem 3.3.

3.3. The Alexander data for a fabric

We now present a normalized form of the Alexander polynomial of a kernel giving
rise to an array of polynomials in the fabric variables which are independent of the
choice of generators u and v. The result is a set of invariants for the fabric which
readily determine the Alexander polynomial for any choice of kernel.

Start from the Alexander polynomial ∆L(x, y, t1, . . . , tk) of a kernel L deter-
mined by a choice of generators u and v of the group of translations of the fabric.

Write ti = s2
i and set

U = y
∏

sai

i , V = x
∏

sbi

i , (3.3)

where ai = lk(Ti, X) and bi = lk(Ti, Y ). The integers ai and bi can be easily read
off from the unit cell determined by u and v using the fact that Ti crosses the edge
u algebraically ai times in the direction of v and crosses the edge v algebraically bi

times in the direction of u.
The Alexander data of the fabric consists of the coefficients of ∆L when written

as a polynomial in U and V . When written in this way we say that the Alexander
polynomial ∆L is in data form.

The Alexander data coefficients are Laurent polynomials in the fabric variables
{si}. In Theorem 3.10, we show how they depend essentially on the fabric only and
not on the choice of kernel.

Write

∆L =
∑

Lα,βUαV β

and set Tw = Lα,β for each w = αu + βv ∈ G. In this way we associate a Laurent
polynomial Tw(s1, . . . , sk) to each element w in the translation group G.

Since the Alexander polynomial ∆L is often defined only up to multiplication by
a signed monomial in x, y, t1, . . . , tk there is a measure of ambiguity in the definition
of Tw. Apart from this ambiguity, which can be eliminated up to an overall sign
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by use of the Torres symmetry conditions, the elements Tw do not depend on the
choice of kernel, and are termed collectively the Alexander data of the fabric. The
independence is made precise in the following invariance theorem.

Theorem 3.10. The Alexander data of a fabric is independent of the choice of
generators for G, up to an overall multiplication by a monomial in s1, . . . , sk and
translation by an element of G. When we use generators u′ and v′ in place of u and
v to form a kernel L′, then the resulting polynomials T ′

w, w ∈ G satisfy the equation

T ′
w = ±mTw+g,

for some g ∈ G and monomial m in s1, . . . , sk independent of w.

Proof. Our choice u, v of generators for the group of translations G determines
the repeating cell used to construct the kernel. Lines in the plane in the directions
of u and v become closed curves U and V in the quotient torus T 2 = R2/G. The
face torus is embedded as the boundary of a neighbourhood of the face curve X

and the back torus as the boundary of a neighbourhood of the back curve Y , where
X and Y are parallel to the closed curves U and V respectively. In this embedding
the face torus contains curves mX and lX , which are respectively the meridian and
longitude of the curve X . The back torus correspondingly contains mY and lY ,
giving the longitude and meridian curves as lX = U × {1}, lY = V × {0}, while
mX = V × {1} and mY = U × {0}.

In terms of the generators x, y, t1, . . . , tk for the homology H1(S3 − L)
we have

U × {0} = y, U × {1} = 〈X〉 = y
∏

tai

i ,

V × {1} = x, V × {0} = 〈Y 〉 = x
∏

tbi

i ,

where ai = lk(Ti, X) and bi = lk(Ti, Y ). The variables U = y
∏

sai

i and V = x
∏

sbi

i

introduced in Eq. (3.3) thus represent an “average” of the homology of the curves
U and V on the front and back faces of the torus. When the homology H1(S3 −L)
is written additively, we have

2U = U × {0} + U × {1},
2V = V × {0} + V × {1}.

A different choice of generators u′, v′ for G gives rise to a different repeating cell,
and a different kernel for the fabric. Now the complement of a kernel in S3 is the
complement of the fabric quotient in the thickened torus T 2 × I. This complement
is unchanged by the new choice of generators for G, so that S3−L′ ∼= S3−L. What
does change is the curves on the face and back tori that correspond to the longitudes
and meridians of the face and back curves in the two kernels. We then know that
∆′

L = ∆L, when the variables are changed appropriately. We need to compare the
elements x, y, t1, . . . , tk and x′, y′, t1, . . . , tk as elements of H1(S3−L) = H1(S3−L′).
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The comparison is very straightforward when we use the data form of the two
polynomials.

Lemma 3.11. We can suppose that

u′ = pu + qv, v′ = ru + sv

with p, q, r, s ∈ Z and ps − qr = 1. Then

U ′ = pU + qV, V ′ = rU + sV,

when written additively as elements of H1(S3 − L).

Proof. The curves U ′, V ′ on T 2 = R2/G corresponding to the vectors u′, v′ satisfy
the equations

U ′ = pU + qV, V ′ = rU + sV,

as elements of H1(T 2).
Hence on the boundary of the thickened torus we have

U ′ × {i} = pU × {i} + qV × {i}, V ′ × {i} = rU × {i} + sV × {i},
for i = 0, 1.

Adding these equations for i = 0 and i = 1 in H1(S3 − L) we then have

2U ′ = 2(pU + qV ), 2V ′ = 2(rU + sV ).

The multivariable Alexander polynomial ∆L of a fabric kernel L = X ∪Y ∪T1∪
· · ·∪Tk is an element of the integer group ring Z[H1(S3−L)], and hence is a Laurent
polynomial in variables x, y, t1, . . . , tk, since the homology group can be generated
by meridians of the components. The element ∆L depends only on the fundamental
group of S3−L, which is also the fundamental group of the complement of the fabric
quotient in the thickened torus T 2 × I. Hence if L′ is another kernel for the same
fabric it will have the same Alexander polynomial, since π1(S3 −L′) = π1(S3 −L),
written now in terms of different generators of the group H1(S3 − L).

In terms of the Alexander polynomial we can relate ∆L′ to ∆L, up to multiplica-
tion by a signed monomial, using the multiplicative version U ′ = UpV q, V ′ = U rV s

of Lemma 3.11.
The Alexander data polynomials T ′

w defined using the kernel L′ are given by the
equation ∆L′ =

∑
T ′

w(U ′)α′
(V ′)β′

, where w = α′u′ +β′v′. Making the substitution
for U ′ and V ′ gives

∆L = ∆L′ =
∑

T ′
wU (α′p+β′r)V (α′q+β′s) =

∑
T ′

wUαV β ,

with α = α′p + β′r, β = α′q + β′s. Hence, in terms of the Alexander data defined
using L we have T ′

w = Tg with g = αu+βv. Now g = (α′p+β′r)u+(α′q +β′s)v =
α′u′ + β′v′ = w, giving the invariance result that T ′

w = Tw, up to the overall
ambiguity of the definition of the Alexander polynomial.
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3.4. Changing the choice of the repeating cell

Given the Alexander data of a fabric, calculated using any one choice of generators
for the translation group, Theorem 3.10 shows how the multivariable Alexander
polynomial for any other kernel of the same fabric can be found.

We can now compare the Alexander data from two fabrics quite readily. We just
need one choice of unit cell for each to provide the Alexander data. Having put the
two sets of data onto a plane we can see that if the fabrics themselves are affinely
equivalent, in other words related by a translation and a linear transformation,
then one set of data will transform to the other by a similar affine transformation ϕ

carrying the coefficient polynomials {Tw} for one fabric to the polynomials {Tϕ(w)}
of the other. Fabrics with inequivalent Alexander data are then inequivalent.

In particular the number and affine location of the non-zero polynomials in the
Alexander data is a simple invariant of the fabric. This could be refined, without
presenting the whole data, to include the degrees of each fabric variable at the plane
locations.

3.5. Presenting the Alexander data

Superimpose a grid on the fabric by choosing a point O as origin in the plane, and
label the translates of O by elements of the group G. At the translate of O by
w ∈ G place the polynomial Tw. This display of the polynomials Tw is uniquely
determined by the choice of origin, where the polynomials themselves have been
normalized, up to an overall sign, by multiplying all polynomials by a monomial in
the variables {si = t

1
2
i } so as to respect the Torres symmetry conditions.

Thus to find the Alexander data polynomials Tw, we choose any kernel L and
put ∆L into data form by setting x = V/

∏
sbi

i and y = U/
∏

sai

i as in Eq. (3.3).
Then, Tαu+βv is the coefficient of UαV β in the resulting polynomial.

Conversely, given u and v we can recover the data form of ∆L in terms of U

and V immediately from the Alexander data. Equation (3.3), using the numbers ai

and bi calculated from the choice of u and v, then gives ∆L in terms of x and y.

Example 3.12. We may compare the single jersey data derived from the different
choices of unit cell shown in Figs. 5 and 6.

From a braid presentation of the single jersey kernel L shown in Fig. 5, we can
calculate its multivariable Alexander polynomial

∆L = (1 − y)(1 − x − t)(x + t − tx),

where the variable t = s2 is the single fabric variable. Setting t = 1 gives y − 1
up to monomial multiples, confirming that the fabric has a single axial direction u.
From the intersections with the cell edges we have the Alexander data substitution
U = y and V = xs.
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A similar braid based calculation for the polynomial ∆L′ of the kernel in Fig. 6
gives

∆L′ = (1 − y′)(x′ − tx′ + ty′)(x′ − y′ + ty′)

up to a signed monomial multiple. Again the intersections with the cell edges show
that the data substitution is U ′ = y′, V ′ = x′s. Now this kernel is related to L

by the choice of generators u′ = u, v′ = u + v. Consequently the substitution
U ′ = U, V ′ = UV will convert the data form for L′ into the data form for L, up to
a monomial multiple.

We can exhibit the Alexander data starting from either data form. On the one
hand we have

∆L = (1 − U)(1 − s2 − V/s)(s2 + (s−1 − s)V ),

while

∆L′ = (1 − U ′)((s−1 − s)V ′ + s2U ′)(V ′/s− (1 − s2)U ′) = U2∆L

after the substitution.
Multiplication by s−1 gives the Torres symmetric form of the data displayed in

matrix form below.

s−3 − s−1 s−1 − s−3

−s2 + 3 − s−2 s2 − 3 + s−2

s3 − s s − s3

Fig. 9. Single Jersey (face) data.

Here and in the examples below we present the Alexander data as a matrix
of polynomials based on the stated choice of u and v. The rows of the matrix
correspond to translations by multiples of u, read from left to right, and the columns
to multiples of v, read from the bottom up.

Example 3.13. In the previous example, we have used the single jersey fabric
viewed from its traditional face side. When viewed from the back, as in Fig. 10, the
polynomial for the kernel is ∆L = (1− y)(t2x− tx + 1)(t2x− t + 1). This gives the
normalized Alexander data shown in Fig. 11.

Example 3.14. The Alexander polynomial for the kernel L of plain weave corre-
sponding to the choices of u and v in Fig. 2 is

∆L = −1 + 2px + 2ey − p2x2 − e2y2 + ((1 − e)2(1 − p)2 − 4ep)xy

+ 2p2ex2y + 2pe2xy2 − e2p2x2y2,

where the two fabric strands in the direction of u have the meridian variable p and
those in the direction v have variable e. Write e = a2 and p = b2. Then, setting
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u

v

Fig. 10. Single jersey, from the back.

s3 − s s − s3

−s2 + 3 − s−2 s2 − 3 + s−2

s−3 − s−1 s−1 − s−3

Fig. 11. Single jersey (back) data.

−1 2 −1

2 (a − a−1)2(b − b−1)2 − 4 2

−1 2 −1

Fig. 12. Plain weave data.

−1 2 −1

P Q P

−1 2 −1

Fig. 13. Leno weave data.

0 s − s−1 0

s−1 − s 0 s−1 − s

0 s − s−1 0

Fig. 14. Chain mail data.

U = y/a2 = y/e and V = x/b2 = x/p, as required by equation (3.10), gives the
data form

∆L = −1+2V +2U−V 2−U2+((1−e)2(1−p)2−4ep)UV/ep+2UV 2+2U2V −U2V 2.

This leads to the data shown in Fig. 12.

Example 3.15. Leno weave, which was presented in Fig. 3, has four threads in
the minimal unit cell; two non-equivalent threads are running in the u direction
and two in the v direction.
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Fig. 15. Triaxial weave.

Fig. 16. Triaxial weave data.

The Alexander data for Leno weave is presented in Fig. 13, where

P = (a−2 − 1 + a2)(b−1 − b)2 + 2,

Q = 2(a−1 − a)2(b−1 − b)2 + 2(a−2 − a2)2 − (a−2b−1 + a2b)2 + 2.

Example 3.16. The Alexander data for chain mail is shown in Fig. 14. It is based
on the choice of generators in Fig. 8, and the corresponding Alexander polynomial
in Eq. (3.2). In this case the data form is given simply by U = y, V = x.

Example 3.17. The triaxial weave shown in Fig. 15 has a lattice of symmetries
with a 3-fold symmetry when the strings are oriented in the three axial directions,
u, v and w = −u − v as shown.

The Alexander data, when presented on this lattice, exhibits the same symmetry
very nicely. This is shown in Fig. 16, where the meridian variables of the strings
are a2, b2 and c2 respectively, and P = (a − a−1)(b − b−1)(c − c−1).
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3.6. Multiple repeating cells

For comparison purposes it can be useful to look not just at a minimal area repeat
of a pattern in a fabric. This means that we use a repeating cell whose edges are
determined by two vectors u′, v′ in the group G of translations which generate a
proper subgroup of G. It is always possible to choose generators u, v for G and u′, v′

for a subgroup H of G so that u′ and v′ are multiples of u and v respectively. We
can insist further that u′ = su and v′ = rv where r is a multiple of s. Then, every
vector w′ in H is a multiple w′ = sw of a vector w in G, and in many cases we will
have s = 1.

The relation between the Alexander data for the fabric using the full group G,
corresponding to a minimal choice of repeating cell, and the data derived from using
the translations in H only (and thus only considering a larger repeating area) can
be determined by comparing the Alexander polynomials of the kernels L and L(r)

which come from the choice of translations u, v and u, w = rv respectively.
These polynomials are related by a more general result of Salkeld [8] connecting

the multivariable polynomials for a link L with a distinguished unknotted compo-
nent X and the link L(r) given by taking the r-fold cyclic cover of L branched over
X . The two kernels above are related in this way, so Salkeld’s result applies.

There is an r-fold covering map p from the complement of L(r) to the com-
plement of L, inducing a map p∗ on the first homology group. Salkeld’s theorem
expresses p∗(∆L(r)) in terms of ∆L as follows.

Theorem 3.18 (Salkeld). Write x for the meridian variable corresponding to the
component X in L. Then

p∗(∆L(r)) =
∏

∆L(ζx),

as ζ runs through all rth roots of 1.

Corollary 3.19. The data form of ∆L(r) , in terms of U and W, corresponding to
the translations u and w = rv, satisfies the equation

p∗(∆L(r)) =
∏

∆L(ζV ),

as ζ runs through all rth roots of 1, where W = V r.

Proof. In the data form for ∆L we have V = x
∏

sai

i , while in ∆L(r) we have
W = X(

∏
sai

i )r, and p∗(X) = xr. Now ∆L(ζx), given by replacing x with ζx, can
be found from the data form by replacing V with ζV .

Salkeld’s theorem does not give the complete polynomial for the covering link, in
the case when there is more than one component of L(r) covering some component
of L, since p∗(∆L(r)) has the same variable for all components which project to the
same component in L. In the case of fabric kernels we would expect to make this
restriction in any case, as the different components of L(r) with the same image
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must be equivalent strands in the fabric under the full group G of translations. We
would only use a different variable if they were to be considered different in the
fabric, and in this case a translation carrying one to the other would not be part
of the group G. The meridian for the branch curve in L(r) projects to xr in L, and
so the polynomial ∆L(r) , with equivalent components in the fabric having the same
labels, can be recovered from ∆L. Conversely, given ∆L(r) we can recover ∆L as
one factor, corresponding to the root ζ = 1, when the branch curve meridian is
replaced by xr.

If ∆L factorises, then ∆L(r) can be found as a product using the same oper-
ation on each factor. Indeed the operation of passing from ∆L to p∗(∆L(r)) can
be regarded formally as replacing the roots (for x) of ∆L by their rth powers; the
coefficients of powers of x in p∗(∆L(r)) are integer polynomials in the coefficients
of ∆L.

Example 3.20. We can find the data form of the Alexander polynomial for single
jersey doubled horizontally, using the cell with sides w = 2u and v in terms of the
generators u and v shown in Fig. 5 for the translation group. This is given from
Salkeld’s theorem by taking the 2-fold cover of the kernel branched over the curve
Y . The result, as a polynomial in W and V , will be the polynomial P (W, V, t) =
∆L(U, V, t)∆L(−U, V, t) with W = U2. Using the data form ∆L = (1−U)(1− s2−
V/s)(s2 + (s−1 − s)V ), we get

P = (1 − U)(1 + U)(1 − s2 − V/s)2(s2 + (s−1 − s)V )2

= (1 − W )(1 − s2 − V/s)2(s2 + (s−1 − s)V )2.

The polynomial Q for single jersey doubled vertically, corresponding to u and
w = 2v has Q(U, W, t) = ∆L(U, V, t)∆L(U,−V, t) with W = V 2, giving the data
form

Q = (1 − U)2((1 − t)2 − W/t)(t2 − (1 − t)2W/t),

where both fabric strands have the variable t. This converts to the Alexander poly-
nomial by setting U = y, W = xs2 = xt, to get

Q = (1 − y)2((1 − t)2 − x)(t2 − (1 − t)2x).

A more refined version of the Alexander polynomial, using different variables for
the two strands, can be calculated directly from a kernel as

(1 − y)2((1 − t1)(1 − t2) − x)(t1t2 − (1 − t1)(1 − t2)x).

Example 3.21. The Alexander polynomial for 1×1 rib, which alternates face and
back loops in the u direction, is

∆L = (tx − t − x)(t + x − 1)(t2x − tx + 1)(t2x − t + 1)(y − 1).
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This polynomial is a mix of the polynomials for the face and back kernels of
single jersey, and can be compared with the multiple cell case of single jersey in the
previous example, where two face loops are repeated in the u direction. This was
calculated above to be

∆L = (tx − t − x)2(t + x − 1)2(y − 1).

A repeat of the back loop in the u direction gives

∆L = (t2x − tx + 1)2(t2x − t + 1)2(y − 1).

These two polynomials are inequivalent to the polynomial for 1 × 1 rib
Here we use the terms “face loop” and “back loop” for the basic units in sin-

gle jersey when seen from the front or back of the fabric, as in Figs. 5 and 10
respectively.

For the general case of m × n rib, which is a combination of m ≥ 0 face and
n ≥ 0 back loops in the u direction, we have

∆L = ((tx − t − x)(t + x − 1))m((t2x − tx + 1)(t2x − t + 1))n(y − 1).

Indeed this polynomial is the same irrespective of the order in which the face
and back loops occur, so that the standard 2×2 rib gives the same data as the 1×1
rib repeated twice in the u direction. We have tried comparing the polynomials in
which alternate rows have variables t1 and t2, to see if this is enough to distinguish
these fabrics, but again the results are the same.

Example 3.22. Alternate knit and purl rows are sometimes known as garter stitch.
This is a combination of one face and one back loop in the v direction, and has
Alexander polynomial

∆L = (1 + (1 − t1)(1 − t2)x)((1 − t1)(1 − t2) + t1t2x)(y − 1)2.

It can be compared with the polynomial for plain knit or purl fabric, calculated
with different variables t1 and t2 for alternate rows.

For two face loops in the v direction the polynomial is

∆L = (t1t2 − (1 − t1)(1 − t2)x)((1 − t1)(1 − t2) − x)(y − 1)2.

For two back loops in the v direction the polynomial is

∆L = (t21t
2
2x − t1t2 + t1 + t2 − 1)(t21t

2
2x − t21t2x − t22t1x + t1t2x − 1)(y − 1)2.

Replacing x by 1/t1t2x converts the purl to the plain version here, and leaves
the polynomial of the mixed fabric unchanged. It is possible to use the different
signs in the brackets to distinguish the mixed fabric with alternately knit and purl
rows from the plain fabric viewed from either side, by setting t1 = t2 = −1.

Example 3.23. We can use Salkeld’s theorem as in Example 3.20 to calculate the
polynomials for plain weave when doubled in either the u or the v directions. We
start from the data form of the polynomial ∆L(U, V, e, p) given in Example 12, and
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in each case repeat the same variable p for all the weft strands (in the u direction),
and e for all the warp strands (in the v direction), to arrive at a formula for the
multiple cell polynomial.

When doubled in the v direction, using the cell determined by u and w = 2v this
gives the polynomial Q(U, W, e, p) = ∆L(U, V, e, p)∆(U,−V, e, p) with W = V 2.

Here

∆L = −(1 − U)2(1 + V 2) + [2 + (1 − e)2(1 − p)2U/ep + 2U2]V,

giving

Q = (1 − U)4(1 + W )2 − [2 + (1 − e)2(1 − p)2U/ep + 2U2]2W.

The Alexander data can be presented on a translation lattice on the fabric,
after expansion in terms of U and W . The Salkeld factorisation characteristic of
the multiple cell repeat is not immediately obvious in the lattice, but shows up
from the Alexander polynomial when the variable W is replaced by V 2.

In fact the plain weave itself as given traditionally is invariant under a larger
group of translations than those generated by u and v. The translations by 1

2 (u+v)
and 1

2 (u − v) generate the full group of invariant translations, and give rise to
half-size repeating cells. The kernel based on the choice of u, v′ = 1

2 (u + v) can
be used to calculate the Alexander data for this larger group of translations. If
we use the translations 1

2u and 1
2v to index rows and columns of a matrix then

the Alexander data has the simple form shown, where as before we write e = a2

and p = b2.

−1 · 1

· (a − a−1)(b − b−1) ·
1 · −1

Fig. 17. Plain weave minimal cell data.

In this matrix view of the Alexander data, the entries indicated by a dot (·)
correspond to translations which do not belong to the group. The Salkeld factori-
sation of the traditional polynomial arising from the fact that the repeat lattice
is not minimal can be seen from its data form in terms of U and V by putting
UV = V ′2.

Example 3.24. We can also see examples of the multiple cell repeat when we
study twills. Figure 18 shows a picture of a 1/2 twill, with the traditional repeating
cell based on vectors u and v.

The complete translation symmetry group is generated by u and v′ = 1
3 (u + v),

giving a repeat cell of one third the size, shown in Fig. 19.
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Fig. 18. 1/2 twill in traditional representation.

Fig. 19. Minimal unit cell of 1/2 twill.

The data for the kernel based on u and v′ is given here, with u drawn horizontally
and v′ vertically.

√
ab −√

b/a 0

0
√

b/a(a−1 − a)(b−1 − b) 0

0
√

a/b(a−1 − a)(b−1 − b) 0

0 −√
a/b 1/

√
ab

When placed on the plane of the fabric the data, drawn with 1
3u horizontally

and 1
3v vertically, appears as shown in Fig. 20.

√
ab · · −√

b/a

· · √
b/a(a−1 − a)(b−1 − b)

· √
a/b(a−1 − a)(b−1 − b) · ·

−√
a/b · · 1/

√
ab

Fig. 20. 1/2 twill minimal cell data.

In this array a dot (·) is again used for entries which do not correspond to
any translation symmetry, as in the minimal cell display for plain weave shown in
Fig. 17.
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As in the case of the minimal cell repeat for plain weave, discussed above,
Salkeld’s theorem shows that the data form of the Alexander polynomial for the
kernel based on u and v will factorise when we write UV = V ′3, corresponding to
the relation u + v = 3v′. One of the resulting factors, when written in terms of U

and V ′, gives the data form for the minimal cell based on u and v′. A direct check
starting from the Alexander polynomial of the kernel based on u and v does indeed
confirm this.

More generally, an m/n twill consists of a weave in which there are m warp
overlaps and n weft overlaps on any warp or weft thread within the repeat, with an
offset of one thread in each successive row. Take u and v as horizontal and vertical
translations by m + n threads. These are in the symmetry group of the fabric, but
the complete symmetry group can be generated by u and v′ = 1

m+n (u + v), giving
a minimal repeat cell of 1

m+n times the obvious cell generated by u and v. Plain
weave itself can be regarded in this context as a 1/1 twill.

3.7. Layered fabrics

If a fabric decomposes into two separate layers then the plane separating the two lay-
ers becomes a torus separating a kernel N for the fabric into some curves W1, . . . , Wr

on one side of the thickened torus, coming from the lower layer of the fabric, and
others T1, . . . , Tk on the other side coming from the top layer. The face curve X

lies on the side of the torus containing the curves T , while the back curve Y lies on
the side containing the curves W . Because of the torus separating the components
of N there is a decomposition of the polynomial ∆N as a product. This arises as a
special case of a general result of Fox, best described in the following “Fox gluing
formula”.

Suppose that we have two links L = T1∪· · ·∪Tk∪A and M = W1∪· · ·∪Wr∪B.
Remove a neighborhood VA of A and VB of B and glue S3−VA to S3−VB , matching
the meridian a of VA to the longitude of VB and the meridian b of VB to the longitude
of VA. The curves T1∪· · ·∪Tk∪W1∪· · ·∪Wr form a link N in the resulting manifold,
which is again S3 if one of A or B is unknotted.

Theorem 3.25 (Fox gluing formula [1]). The Alexander polynomial of the link
N resulting from this gluing is given by

∆N = ∆L∆M

after substituting a = 〈B〉 in Z[w±1
j ] and b = 〈A〉 in Z[t±1

i ].

Remark 3.26. Theorem 3.1 is a corollary of this formula. Take the link M to be
the unknot B with no further components. Then 〈B〉 = 1 and ∆M = 1

1−b . The link
N is the link L − A, and Theorem 3.25 shows that (1 − 〈A〉)∆L−A = ∆L|a=1.
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Theorem 3.27. If a fabric kernel N arises from a layered fabric as above, then
its Alexander polynomial factorises as

∆N = ∆L

(
xL, yM

∏
w

aj

j , t1, . . . , tk

)
∆M

(
xL

∏
tbi

i , yM , w1, . . . , wr

)
,

where the numbers aj are the linking numbers of the fabric strands in the bottom
layer with the face curve, while the numbers bj are the linking numbers of the strands
in the top layer with the back curve.

Proof. If a fabric kernel N arises from a layered fabric then N comes from a
gluing construction to which Theorem 3.25 applies. Define two other links which
correspond to the two layers of the fabric. These are the kernel for the top layer,
L = XL ∪YL ∪T1∪· · ·∪Tk, given by deleting the curves W from N , and the kernel
for the bottom layer, M = XM ∪YM ∪W1∪· · ·∪Wr, given by deleting the curves T

from N . Then the link N comes from L and M by the gluing construction, taking
A = YL and B = XM .

Now 〈YL〉 = xL

∏
tbi

i and 〈XM 〉 = yM

∏
w

aj

j . In N the auxiliary curves are
X = XL, the face curve of the top layer, and Y = YM , the back curve of the
bottom layer. Hence the Alexander polynomial factorises as

∆N = ∆L

(
xL, yM

∏
w

aj

j , t1, . . . , tk

)
∆M

(
xL

∏
tbi

i , yM , w1, . . . , wr

)
.

Assuming that the fabric has no closed components this factorisation is non-
trivial, since evaluation of either factor when ti = wj = 1 for all i and j gives a
polynomial which is not 0 or 1.

Corollary 3.28. If a fabric decomposes into r layers then the polynomial of any
kernel factorises into r factors corresponding to the kernels of the layers.

The number of non-trivial factors in the Alexander polynomial of any kernel is
then an upper bound for the number of layers. It follows that if the polynomial ∆N

does not factorise then the fabric does not decompose into layers.
The converse does not hold, since some fabrics which do not decompose into

layers can have kernels whose polynomials do factorise non-trivially.

3.8. Strip-like fabrics

A fabric may decompose into disconnected parallel strips; we would not regard such
a fabric as structurally coherent. When this happens there will be only one axial
type for the strands. Assume that one of the generators u is chosen in this direction.
In this case the polynomial for the kernel will be independent of the variable x and
must have a factor of 1 − y even before setting all the fabric variables to 1. It
is worth testing a fabric with only one axial type for the possibility that it may
fall into strips. While a knitted fabric will only have one axial type it may be
possible to confirm that it is a genuinely 2-dimensional fabric if its polynomial has
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no factor of 1−y, or has a non-trivial dependence on x. The knitted fabrics studied
in Examples 3.12, 3.13, 3.20–3.22, with u as their axial type, do indeed exhibit a
factor 1 − y, but the polynomials depend non-trivially on x, confirming that the
fabrics do not fall into strips.

The warp-knitted chain illustrated in Fig. 21 shows a linear chain repeated so
as to give a doubly periodic fabric, in this case presented with a single axial type v.
The Alexander polynomial of its kernel,

(x − 1)(xt + 1 − t)(xt − x + 1),

depends on x and t only, and has a factor of 1 − x, both of which are pointers to
the strip-like nature of the fabric. Its data form then depends on V only and the
data appears as a linear array of polynomials in the v direction.

An example of a fabric which is not a traditional knit or weave is the fishing net,
shown in Fig. 22. It has one axial type, u + v, relative to the choice of generating
translations indicated, but it does not have the geometric characteristics of a knitted
fabric with this as the thread direction.

The Alexander polynomial of the fishing net kernel based on this choice of
generators is

t2x− t3x + t2y − t3y − 4t3xy + 2t2xy − txy − t5xy + 3t4xy + t4 − 2t3 + 4t2 − 3t + 1.

Fig. 21. Warp-knitted chain.

Fig. 22. Fishing net.
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To convert to data form we set U = ys, V = xs, with t = s2. This leads to the
display of Alexander data,

s−1 − s −s4 + 3s2 − 4 + 2s−2 − s−4

s4 − 2s2 + 4 − 3s−2 + s−4 s−1 − s,

confirming that this is not a strip-like fabric.

3.9. Vassiliev invariants

In a recent paper [3], Grishanov, Meshkov and Vassiliev have looked at the use of
Vassiliev invariants of a curve in the thickened torus or Klein bottle as a tool for
distinguishing textile patterns.

Following the paper of [5] in relation to Fiedler’s invariant we believe that the
Alexander polynomial of a kernel can be used to find some of the Vassiliev invariants
for a fabric with a single fabric curve.

Suppose that a kernel L has been constructed from the fabric, with polynomial
∆L(x, y, t), normalized to have Torres symmetry. Expand ∆L(x, y, eh) as a power
series

∑
ar(x, y)hr. The coefficients can be regarded as elements of the integer group

ring of H1(T 2), where x and y are represented by the curves V and U respectively in
the torus T 2. In this setting the polynomial ar appears to be a Vassiliev invariant of
degree r in the sense of [3]. The constant term a0 is, by Theorem 3.3, the polynomial
1 − xayb up to normalization, and the term xayb represents the homotopy class of
the fabric component. This is constant over all homotopic curves in the torus, as
for the degree 0 invariant of [3].

The invariants of the fabric curve of degree 1 should also arise in this way. A
check on the examples above with only one fabric component give the following
results for a1.

Chain mail a0 = 0 a1 = x + x−1 − y − y−1

Single jersey (face) a0 = 1 − y a1 = a0(x−1 − x)
Single jersey (back) a0 = 1 − y a1 = a0(x − x−1)
m × n rib a0 = 1 − y a1 = a0(n − m)(x − x−1)
Fish net a0 = 1 − xy a1 = 1

2 − x − y + 1
2xy

Warp knitted chain a0 = 1 − x a1 = a0(x + 1 − x−1).

4. Further Investigations

Most of our calculations have made use of a Maple program based on [6] for calcu-
lating the multi-variable Alexander polynomial of a closed braid. This has required
work to present a kernel for the fabric in closed braid form. We hope to develop a
similar program to handle links presented as plats, or even just from the diagram
of the fabric inside a unit cell. This approach looks likely to relate to a presentation
of the diagram on the torus as a genus 1 virtual knot [4].
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